1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * use_far_sets_bugfixed (stored in bit 18 of layout ) 43 * 44 * The data to be stored is divided into chunks using chunksize. Each device 45 * is divided into far_copies sections. In each section, chunks are laid out 46 * in a style similar to raid0, but near_copies copies of each chunk is stored 47 * (each on a different drive). The starting device for each section is offset 48 * near_copies from the starting device of the previous section. Thus there 49 * are (near_copies * far_copies) of each chunk, and each is on a different 50 * drive. near_copies and far_copies must be at least one, and their product 51 * is at most raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of being very far 55 * apart on disk, there are adjacent stripes. 56 * 57 * The far and offset algorithms are handled slightly differently if 58 * 'use_far_sets' is true. In this case, the array's devices are grouped into 59 * sets that are (near_copies * far_copies) in size. The far copied stripes 60 * are still shifted by 'near_copies' devices, but this shifting stays confined 61 * to the set rather than the entire array. This is done to improve the number 62 * of device combinations that can fail without causing the array to fail. 63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 64 * on a device): 65 * A B C D A B C D E 66 * ... ... 67 * D A B C E A B C D 68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 69 * [A B] [C D] [A B] [C D E] 70 * |...| |...| |...| | ... | 71 * [B A] [D C] [B A] [E C D] 72 */ 73 74 /* 75 * Number of guaranteed r10bios in case of extreme VM load: 76 */ 77 #define NR_RAID10_BIOS 256 78 79 /* when we get a read error on a read-only array, we redirect to another 80 * device without failing the first device, or trying to over-write to 81 * correct the read error. To keep track of bad blocks on a per-bio 82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 83 */ 84 #define IO_BLOCKED ((struct bio *)1) 85 /* When we successfully write to a known bad-block, we need to remove the 86 * bad-block marking which must be done from process context. So we record 87 * the success by setting devs[n].bio to IO_MADE_GOOD 88 */ 89 #define IO_MADE_GOOD ((struct bio *)2) 90 91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 92 93 /* When there are this many requests queued to be written by 94 * the raid10 thread, we become 'congested' to provide back-pressure 95 * for writeback. 96 */ 97 static int max_queued_requests = 1024; 98 99 static void allow_barrier(struct r10conf *conf); 100 static void lower_barrier(struct r10conf *conf); 101 static int _enough(struct r10conf *conf, int previous, int ignore); 102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 103 int *skipped); 104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 105 static void end_reshape_write(struct bio *bio); 106 static void end_reshape(struct r10conf *conf); 107 108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 int size = offsetof(struct r10bio, devs[conf->copies]); 112 113 /* allocate a r10bio with room for raid_disks entries in the 114 * bios array */ 115 return kzalloc(size, gfp_flags); 116 } 117 118 static void r10bio_pool_free(void *r10_bio, void *data) 119 { 120 kfree(r10_bio); 121 } 122 123 /* Maximum size of each resync request */ 124 #define RESYNC_BLOCK_SIZE (64*1024) 125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 126 /* amount of memory to reserve for resync requests */ 127 #define RESYNC_WINDOW (1024*1024) 128 /* maximum number of concurrent requests, memory permitting */ 129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 130 131 /* 132 * When performing a resync, we need to read and compare, so 133 * we need as many pages are there are copies. 134 * When performing a recovery, we need 2 bios, one for read, 135 * one for write (we recover only one drive per r10buf) 136 * 137 */ 138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 139 { 140 struct r10conf *conf = data; 141 struct page *page; 142 struct r10bio *r10_bio; 143 struct bio *bio; 144 int i, j; 145 int nalloc; 146 147 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 148 if (!r10_bio) 149 return NULL; 150 151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 153 nalloc = conf->copies; /* resync */ 154 else 155 nalloc = 2; /* recovery */ 156 157 /* 158 * Allocate bios. 159 */ 160 for (j = nalloc ; j-- ; ) { 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 162 if (!bio) 163 goto out_free_bio; 164 r10_bio->devs[j].bio = bio; 165 if (!conf->have_replacement) 166 continue; 167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 168 if (!bio) 169 goto out_free_bio; 170 r10_bio->devs[j].repl_bio = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them 174 * where needed. 175 */ 176 for (j = 0 ; j < nalloc; j++) { 177 struct bio *rbio = r10_bio->devs[j].repl_bio; 178 bio = r10_bio->devs[j].bio; 179 for (i = 0; i < RESYNC_PAGES; i++) { 180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 181 &conf->mddev->recovery)) { 182 /* we can share bv_page's during recovery 183 * and reshape */ 184 struct bio *rbio = r10_bio->devs[0].bio; 185 page = rbio->bi_io_vec[i].bv_page; 186 get_page(page); 187 } else 188 page = alloc_page(gfp_flags); 189 if (unlikely(!page)) 190 goto out_free_pages; 191 192 bio->bi_io_vec[i].bv_page = page; 193 if (rbio) 194 rbio->bi_io_vec[i].bv_page = page; 195 } 196 } 197 198 return r10_bio; 199 200 out_free_pages: 201 for ( ; i > 0 ; i--) 202 safe_put_page(bio->bi_io_vec[i-1].bv_page); 203 while (j--) 204 for (i = 0; i < RESYNC_PAGES ; i++) 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 206 j = 0; 207 out_free_bio: 208 for ( ; j < nalloc; j++) { 209 if (r10_bio->devs[j].bio) 210 bio_put(r10_bio->devs[j].bio); 211 if (r10_bio->devs[j].repl_bio) 212 bio_put(r10_bio->devs[j].repl_bio); 213 } 214 r10bio_pool_free(r10_bio, conf); 215 return NULL; 216 } 217 218 static void r10buf_pool_free(void *__r10_bio, void *data) 219 { 220 int i; 221 struct r10conf *conf = data; 222 struct r10bio *r10bio = __r10_bio; 223 int j; 224 225 for (j=0; j < conf->copies; j++) { 226 struct bio *bio = r10bio->devs[j].bio; 227 if (bio) { 228 for (i = 0; i < RESYNC_PAGES; i++) { 229 safe_put_page(bio->bi_io_vec[i].bv_page); 230 bio->bi_io_vec[i].bv_page = NULL; 231 } 232 bio_put(bio); 233 } 234 bio = r10bio->devs[j].repl_bio; 235 if (bio) 236 bio_put(bio); 237 } 238 r10bio_pool_free(r10bio, conf); 239 } 240 241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->copies; i++) { 246 struct bio **bio = & r10_bio->devs[i].bio; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 bio = &r10_bio->devs[i].repl_bio; 251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 252 bio_put(*bio); 253 *bio = NULL; 254 } 255 } 256 257 static void free_r10bio(struct r10bio *r10_bio) 258 { 259 struct r10conf *conf = r10_bio->mddev->private; 260 261 put_all_bios(conf, r10_bio); 262 mempool_free(r10_bio, conf->r10bio_pool); 263 } 264 265 static void put_buf(struct r10bio *r10_bio) 266 { 267 struct r10conf *conf = r10_bio->mddev->private; 268 269 mempool_free(r10_bio, conf->r10buf_pool); 270 271 lower_barrier(conf); 272 } 273 274 static void reschedule_retry(struct r10bio *r10_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r10_bio->mddev; 278 struct r10conf *conf = mddev->private; 279 280 spin_lock_irqsave(&conf->device_lock, flags); 281 list_add(&r10_bio->retry_list, &conf->retry_list); 282 conf->nr_queued ++; 283 spin_unlock_irqrestore(&conf->device_lock, flags); 284 285 /* wake up frozen array... */ 286 wake_up(&conf->wait_barrier); 287 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void raid_end_bio_io(struct r10bio *r10_bio) 297 { 298 struct bio *bio = r10_bio->master_bio; 299 int done; 300 struct r10conf *conf = r10_bio->mddev->private; 301 302 if (bio->bi_phys_segments) { 303 unsigned long flags; 304 spin_lock_irqsave(&conf->device_lock, flags); 305 bio->bi_phys_segments--; 306 done = (bio->bi_phys_segments == 0); 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 } else 309 done = 1; 310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 311 bio->bi_error = -EIO; 312 if (done) { 313 bio_endio(bio); 314 /* 315 * Wake up any possible resync thread that waits for the device 316 * to go idle. 317 */ 318 allow_barrier(conf); 319 } 320 free_r10bio(r10_bio); 321 } 322 323 /* 324 * Update disk head position estimator based on IRQ completion info. 325 */ 326 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 327 { 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 331 r10_bio->devs[slot].addr + (r10_bio->sectors); 332 } 333 334 /* 335 * Find the disk number which triggered given bio 336 */ 337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 338 struct bio *bio, int *slotp, int *replp) 339 { 340 int slot; 341 int repl = 0; 342 343 for (slot = 0; slot < conf->copies; slot++) { 344 if (r10_bio->devs[slot].bio == bio) 345 break; 346 if (r10_bio->devs[slot].repl_bio == bio) { 347 repl = 1; 348 break; 349 } 350 } 351 352 BUG_ON(slot == conf->copies); 353 update_head_pos(slot, r10_bio); 354 355 if (slotp) 356 *slotp = slot; 357 if (replp) 358 *replp = repl; 359 return r10_bio->devs[slot].devnum; 360 } 361 362 static void raid10_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_error; 365 struct r10bio *r10_bio = bio->bi_private; 366 int slot, dev; 367 struct md_rdev *rdev; 368 struct r10conf *conf = r10_bio->mddev->private; 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio) 443 { 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 452 453 if (repl) 454 rdev = conf->mirrors[dev].replacement; 455 if (!rdev) { 456 smp_rmb(); 457 repl = 0; 458 rdev = conf->mirrors[dev].rdev; 459 } 460 /* 461 * this branch is our 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_error) { 464 if (repl) 465 /* Never record new bad blocks to replacement, 466 * just fail it. 467 */ 468 md_error(rdev->mddev, rdev); 469 else { 470 set_bit(WriteErrorSeen, &rdev->flags); 471 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 472 set_bit(MD_RECOVERY_NEEDED, 473 &rdev->mddev->recovery); 474 set_bit(R10BIO_WriteError, &r10_bio->state); 475 dec_rdev = 0; 476 } 477 } else { 478 /* 479 * Set R10BIO_Uptodate in our master bio, so that 480 * we will return a good error code for to the higher 481 * levels even if IO on some other mirrored buffer fails. 482 * 483 * The 'master' represents the composite IO operation to 484 * user-side. So if something waits for IO, then it will 485 * wait for the 'master' bio. 486 */ 487 sector_t first_bad; 488 int bad_sectors; 489 490 /* 491 * Do not set R10BIO_Uptodate if the current device is 492 * rebuilding or Faulty. This is because we cannot use 493 * such device for properly reading the data back (we could 494 * potentially use it, if the current write would have felt 495 * before rdev->recovery_offset, but for simplicity we don't 496 * check this here. 497 */ 498 if (test_bit(In_sync, &rdev->flags) && 499 !test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_Uptodate, &r10_bio->state); 501 502 /* Maybe we can clear some bad blocks. */ 503 if (is_badblock(rdev, 504 r10_bio->devs[slot].addr, 505 r10_bio->sectors, 506 &first_bad, &bad_sectors)) { 507 bio_put(bio); 508 if (repl) 509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 510 else 511 r10_bio->devs[slot].bio = IO_MADE_GOOD; 512 dec_rdev = 0; 513 set_bit(R10BIO_MadeGood, &r10_bio->state); 514 } 515 } 516 517 /* 518 * 519 * Let's see if all mirrored write operations have finished 520 * already. 521 */ 522 one_write_done(r10_bio); 523 if (dec_rdev) 524 rdev_dec_pending(rdev, conf->mddev); 525 } 526 527 /* 528 * RAID10 layout manager 529 * As well as the chunksize and raid_disks count, there are two 530 * parameters: near_copies and far_copies. 531 * near_copies * far_copies must be <= raid_disks. 532 * Normally one of these will be 1. 533 * If both are 1, we get raid0. 534 * If near_copies == raid_disks, we get raid1. 535 * 536 * Chunks are laid out in raid0 style with near_copies copies of the 537 * first chunk, followed by near_copies copies of the next chunk and 538 * so on. 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned 540 * as described above, we start again with a device offset of near_copies. 541 * So we effectively have another copy of the whole array further down all 542 * the drives, but with blocks on different drives. 543 * With this layout, and block is never stored twice on the one device. 544 * 545 * raid10_find_phys finds the sector offset of a given virtual sector 546 * on each device that it is on. 547 * 548 * raid10_find_virt does the reverse mapping, from a device and a 549 * sector offset to a virtual address 550 */ 551 552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 553 { 554 int n,f; 555 sector_t sector; 556 sector_t chunk; 557 sector_t stripe; 558 int dev; 559 int slot = 0; 560 int last_far_set_start, last_far_set_size; 561 562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 563 last_far_set_start *= geo->far_set_size; 564 565 last_far_set_size = geo->far_set_size; 566 last_far_set_size += (geo->raid_disks % geo->far_set_size); 567 568 /* now calculate first sector/dev */ 569 chunk = r10bio->sector >> geo->chunk_shift; 570 sector = r10bio->sector & geo->chunk_mask; 571 572 chunk *= geo->near_copies; 573 stripe = chunk; 574 dev = sector_div(stripe, geo->raid_disks); 575 if (geo->far_offset) 576 stripe *= geo->far_copies; 577 578 sector += stripe << geo->chunk_shift; 579 580 /* and calculate all the others */ 581 for (n = 0; n < geo->near_copies; n++) { 582 int d = dev; 583 int set; 584 sector_t s = sector; 585 r10bio->devs[slot].devnum = d; 586 r10bio->devs[slot].addr = s; 587 slot++; 588 589 for (f = 1; f < geo->far_copies; f++) { 590 set = d / geo->far_set_size; 591 d += geo->near_copies; 592 593 if ((geo->raid_disks % geo->far_set_size) && 594 (d > last_far_set_start)) { 595 d -= last_far_set_start; 596 d %= last_far_set_size; 597 d += last_far_set_start; 598 } else { 599 d %= geo->far_set_size; 600 d += geo->far_set_size * set; 601 } 602 s += geo->stride; 603 r10bio->devs[slot].devnum = d; 604 r10bio->devs[slot].addr = s; 605 slot++; 606 } 607 dev++; 608 if (dev >= geo->raid_disks) { 609 dev = 0; 610 sector += (geo->chunk_mask + 1); 611 } 612 } 613 } 614 615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 616 { 617 struct geom *geo = &conf->geo; 618 619 if (conf->reshape_progress != MaxSector && 620 ((r10bio->sector >= conf->reshape_progress) != 621 conf->mddev->reshape_backwards)) { 622 set_bit(R10BIO_Previous, &r10bio->state); 623 geo = &conf->prev; 624 } else 625 clear_bit(R10BIO_Previous, &r10bio->state); 626 627 __raid10_find_phys(geo, r10bio); 628 } 629 630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 631 { 632 sector_t offset, chunk, vchunk; 633 /* Never use conf->prev as this is only called during resync 634 * or recovery, so reshape isn't happening 635 */ 636 struct geom *geo = &conf->geo; 637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 638 int far_set_size = geo->far_set_size; 639 int last_far_set_start; 640 641 if (geo->raid_disks % geo->far_set_size) { 642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 643 last_far_set_start *= geo->far_set_size; 644 645 if (dev >= last_far_set_start) { 646 far_set_size = geo->far_set_size; 647 far_set_size += (geo->raid_disks % geo->far_set_size); 648 far_set_start = last_far_set_start; 649 } 650 } 651 652 offset = sector & geo->chunk_mask; 653 if (geo->far_offset) { 654 int fc; 655 chunk = sector >> geo->chunk_shift; 656 fc = sector_div(chunk, geo->far_copies); 657 dev -= fc * geo->near_copies; 658 if (dev < far_set_start) 659 dev += far_set_size; 660 } else { 661 while (sector >= geo->stride) { 662 sector -= geo->stride; 663 if (dev < (geo->near_copies + far_set_start)) 664 dev += far_set_size - geo->near_copies; 665 else 666 dev -= geo->near_copies; 667 } 668 chunk = sector >> geo->chunk_shift; 669 } 670 vchunk = chunk * geo->raid_disks + dev; 671 sector_div(vchunk, geo->near_copies); 672 return (vchunk << geo->chunk_shift) + offset; 673 } 674 675 /* 676 * This routine returns the disk from which the requested read should 677 * be done. There is a per-array 'next expected sequential IO' sector 678 * number - if this matches on the next IO then we use the last disk. 679 * There is also a per-disk 'last know head position' sector that is 680 * maintained from IRQ contexts, both the normal and the resync IO 681 * completion handlers update this position correctly. If there is no 682 * perfect sequential match then we pick the disk whose head is closest. 683 * 684 * If there are 2 mirrors in the same 2 devices, performance degrades 685 * because position is mirror, not device based. 686 * 687 * The rdev for the device selected will have nr_pending incremented. 688 */ 689 690 /* 691 * FIXME: possibly should rethink readbalancing and do it differently 692 * depending on near_copies / far_copies geometry. 693 */ 694 static struct md_rdev *read_balance(struct r10conf *conf, 695 struct r10bio *r10_bio, 696 int *max_sectors) 697 { 698 const sector_t this_sector = r10_bio->sector; 699 int disk, slot; 700 int sectors = r10_bio->sectors; 701 int best_good_sectors; 702 sector_t new_distance, best_dist; 703 struct md_rdev *best_rdev, *rdev = NULL; 704 int do_balance; 705 int best_slot; 706 struct geom *geo = &conf->geo; 707 708 raid10_find_phys(conf, r10_bio); 709 rcu_read_lock(); 710 sectors = r10_bio->sectors; 711 best_slot = -1; 712 best_rdev = NULL; 713 best_dist = MaxSector; 714 best_good_sectors = 0; 715 do_balance = 1; 716 /* 717 * Check if we can balance. We can balance on the whole 718 * device if no resync is going on (recovery is ok), or below 719 * the resync window. We take the first readable disk when 720 * above the resync window. 721 */ 722 if (conf->mddev->recovery_cp < MaxSector 723 && (this_sector + sectors >= conf->next_resync)) 724 do_balance = 0; 725 726 for (slot = 0; slot < conf->copies ; slot++) { 727 sector_t first_bad; 728 int bad_sectors; 729 sector_t dev_sector; 730 731 if (r10_bio->devs[slot].bio == IO_BLOCKED) 732 continue; 733 disk = r10_bio->devs[slot].devnum; 734 rdev = rcu_dereference(conf->mirrors[disk].replacement); 735 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 737 rdev = rcu_dereference(conf->mirrors[disk].rdev); 738 if (rdev == NULL || 739 test_bit(Faulty, &rdev->flags)) 740 continue; 741 if (!test_bit(In_sync, &rdev->flags) && 742 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 743 continue; 744 745 dev_sector = r10_bio->devs[slot].addr; 746 if (is_badblock(rdev, dev_sector, sectors, 747 &first_bad, &bad_sectors)) { 748 if (best_dist < MaxSector) 749 /* Already have a better slot */ 750 continue; 751 if (first_bad <= dev_sector) { 752 /* Cannot read here. If this is the 753 * 'primary' device, then we must not read 754 * beyond 'bad_sectors' from another device. 755 */ 756 bad_sectors -= (dev_sector - first_bad); 757 if (!do_balance && sectors > bad_sectors) 758 sectors = bad_sectors; 759 if (best_good_sectors > sectors) 760 best_good_sectors = sectors; 761 } else { 762 sector_t good_sectors = 763 first_bad - dev_sector; 764 if (good_sectors > best_good_sectors) { 765 best_good_sectors = good_sectors; 766 best_slot = slot; 767 best_rdev = rdev; 768 } 769 if (!do_balance) 770 /* Must read from here */ 771 break; 772 } 773 continue; 774 } else 775 best_good_sectors = sectors; 776 777 if (!do_balance) 778 break; 779 780 /* This optimisation is debatable, and completely destroys 781 * sequential read speed for 'far copies' arrays. So only 782 * keep it for 'near' arrays, and review those later. 783 */ 784 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 785 break; 786 787 /* for far > 1 always use the lowest address */ 788 if (geo->far_copies > 1) 789 new_distance = r10_bio->devs[slot].addr; 790 else 791 new_distance = abs(r10_bio->devs[slot].addr - 792 conf->mirrors[disk].head_position); 793 if (new_distance < best_dist) { 794 best_dist = new_distance; 795 best_slot = slot; 796 best_rdev = rdev; 797 } 798 } 799 if (slot >= conf->copies) { 800 slot = best_slot; 801 rdev = best_rdev; 802 } 803 804 if (slot >= 0) { 805 atomic_inc(&rdev->nr_pending); 806 r10_bio->read_slot = slot; 807 } else 808 rdev = NULL; 809 rcu_read_unlock(); 810 *max_sectors = best_good_sectors; 811 812 return rdev; 813 } 814 815 static int raid10_congested(struct mddev *mddev, int bits) 816 { 817 struct r10conf *conf = mddev->private; 818 int i, ret = 0; 819 820 if ((bits & (1 << WB_async_congested)) && 821 conf->pending_count >= max_queued_requests) 822 return 1; 823 824 rcu_read_lock(); 825 for (i = 0; 826 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 827 && ret == 0; 828 i++) { 829 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 830 if (rdev && !test_bit(Faulty, &rdev->flags)) { 831 struct request_queue *q = bdev_get_queue(rdev->bdev); 832 833 ret |= bdi_congested(&q->backing_dev_info, bits); 834 } 835 } 836 rcu_read_unlock(); 837 return ret; 838 } 839 840 static void flush_pending_writes(struct r10conf *conf) 841 { 842 /* Any writes that have been queued but are awaiting 843 * bitmap updates get flushed here. 844 */ 845 spin_lock_irq(&conf->device_lock); 846 847 if (conf->pending_bio_list.head) { 848 struct bio *bio; 849 bio = bio_list_get(&conf->pending_bio_list); 850 conf->pending_count = 0; 851 spin_unlock_irq(&conf->device_lock); 852 /* flush any pending bitmap writes to disk 853 * before proceeding w/ I/O */ 854 bitmap_unplug(conf->mddev->bitmap); 855 wake_up(&conf->wait_barrier); 856 857 while (bio) { /* submit pending writes */ 858 struct bio *next = bio->bi_next; 859 bio->bi_next = NULL; 860 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 861 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 862 /* Just ignore it */ 863 bio_endio(bio); 864 else 865 generic_make_request(bio); 866 bio = next; 867 } 868 } else 869 spin_unlock_irq(&conf->device_lock); 870 } 871 872 /* Barriers.... 873 * Sometimes we need to suspend IO while we do something else, 874 * either some resync/recovery, or reconfigure the array. 875 * To do this we raise a 'barrier'. 876 * The 'barrier' is a counter that can be raised multiple times 877 * to count how many activities are happening which preclude 878 * normal IO. 879 * We can only raise the barrier if there is no pending IO. 880 * i.e. if nr_pending == 0. 881 * We choose only to raise the barrier if no-one is waiting for the 882 * barrier to go down. This means that as soon as an IO request 883 * is ready, no other operations which require a barrier will start 884 * until the IO request has had a chance. 885 * 886 * So: regular IO calls 'wait_barrier'. When that returns there 887 * is no backgroup IO happening, It must arrange to call 888 * allow_barrier when it has finished its IO. 889 * backgroup IO calls must call raise_barrier. Once that returns 890 * there is no normal IO happeing. It must arrange to call 891 * lower_barrier when the particular background IO completes. 892 */ 893 894 static void raise_barrier(struct r10conf *conf, int force) 895 { 896 BUG_ON(force && !conf->barrier); 897 spin_lock_irq(&conf->resync_lock); 898 899 /* Wait until no block IO is waiting (unless 'force') */ 900 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 901 conf->resync_lock); 902 903 /* block any new IO from starting */ 904 conf->barrier++; 905 906 /* Now wait for all pending IO to complete */ 907 wait_event_lock_irq(conf->wait_barrier, 908 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 909 conf->resync_lock); 910 911 spin_unlock_irq(&conf->resync_lock); 912 } 913 914 static void lower_barrier(struct r10conf *conf) 915 { 916 unsigned long flags; 917 spin_lock_irqsave(&conf->resync_lock, flags); 918 conf->barrier--; 919 spin_unlock_irqrestore(&conf->resync_lock, flags); 920 wake_up(&conf->wait_barrier); 921 } 922 923 static void wait_barrier(struct r10conf *conf) 924 { 925 spin_lock_irq(&conf->resync_lock); 926 if (conf->barrier) { 927 conf->nr_waiting++; 928 /* Wait for the barrier to drop. 929 * However if there are already pending 930 * requests (preventing the barrier from 931 * rising completely), and the 932 * pre-process bio queue isn't empty, 933 * then don't wait, as we need to empty 934 * that queue to get the nr_pending 935 * count down. 936 */ 937 wait_event_lock_irq(conf->wait_barrier, 938 !conf->barrier || 939 (atomic_read(&conf->nr_pending) && 940 current->bio_list && 941 !bio_list_empty(current->bio_list)), 942 conf->resync_lock); 943 conf->nr_waiting--; 944 if (!conf->nr_waiting) 945 wake_up(&conf->wait_barrier); 946 } 947 atomic_inc(&conf->nr_pending); 948 spin_unlock_irq(&conf->resync_lock); 949 } 950 951 static void allow_barrier(struct r10conf *conf) 952 { 953 if ((atomic_dec_and_test(&conf->nr_pending)) || 954 (conf->array_freeze_pending)) 955 wake_up(&conf->wait_barrier); 956 } 957 958 static void freeze_array(struct r10conf *conf, int extra) 959 { 960 /* stop syncio and normal IO and wait for everything to 961 * go quiet. 962 * We increment barrier and nr_waiting, and then 963 * wait until nr_pending match nr_queued+extra 964 * This is called in the context of one normal IO request 965 * that has failed. Thus any sync request that might be pending 966 * will be blocked by nr_pending, and we need to wait for 967 * pending IO requests to complete or be queued for re-try. 968 * Thus the number queued (nr_queued) plus this request (extra) 969 * must match the number of pending IOs (nr_pending) before 970 * we continue. 971 */ 972 spin_lock_irq(&conf->resync_lock); 973 conf->array_freeze_pending++; 974 conf->barrier++; 975 conf->nr_waiting++; 976 wait_event_lock_irq_cmd(conf->wait_barrier, 977 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 978 conf->resync_lock, 979 flush_pending_writes(conf)); 980 981 conf->array_freeze_pending--; 982 spin_unlock_irq(&conf->resync_lock); 983 } 984 985 static void unfreeze_array(struct r10conf *conf) 986 { 987 /* reverse the effect of the freeze */ 988 spin_lock_irq(&conf->resync_lock); 989 conf->barrier--; 990 conf->nr_waiting--; 991 wake_up(&conf->wait_barrier); 992 spin_unlock_irq(&conf->resync_lock); 993 } 994 995 static sector_t choose_data_offset(struct r10bio *r10_bio, 996 struct md_rdev *rdev) 997 { 998 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 999 test_bit(R10BIO_Previous, &r10_bio->state)) 1000 return rdev->data_offset; 1001 else 1002 return rdev->new_data_offset; 1003 } 1004 1005 struct raid10_plug_cb { 1006 struct blk_plug_cb cb; 1007 struct bio_list pending; 1008 int pending_cnt; 1009 }; 1010 1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1012 { 1013 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1014 cb); 1015 struct mddev *mddev = plug->cb.data; 1016 struct r10conf *conf = mddev->private; 1017 struct bio *bio; 1018 1019 if (from_schedule || current->bio_list) { 1020 spin_lock_irq(&conf->device_lock); 1021 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1022 conf->pending_count += plug->pending_cnt; 1023 spin_unlock_irq(&conf->device_lock); 1024 wake_up(&conf->wait_barrier); 1025 md_wakeup_thread(mddev->thread); 1026 kfree(plug); 1027 return; 1028 } 1029 1030 /* we aren't scheduling, so we can do the write-out directly. */ 1031 bio = bio_list_get(&plug->pending); 1032 bitmap_unplug(mddev->bitmap); 1033 wake_up(&conf->wait_barrier); 1034 1035 while (bio) { /* submit pending writes */ 1036 struct bio *next = bio->bi_next; 1037 bio->bi_next = NULL; 1038 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1039 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1040 /* Just ignore it */ 1041 bio_endio(bio); 1042 else 1043 generic_make_request(bio); 1044 bio = next; 1045 } 1046 kfree(plug); 1047 } 1048 1049 static void __make_request(struct mddev *mddev, struct bio *bio) 1050 { 1051 struct r10conf *conf = mddev->private; 1052 struct r10bio *r10_bio; 1053 struct bio *read_bio; 1054 int i; 1055 const int op = bio_op(bio); 1056 const int rw = bio_data_dir(bio); 1057 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1058 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1059 unsigned long flags; 1060 struct md_rdev *blocked_rdev; 1061 struct blk_plug_cb *cb; 1062 struct raid10_plug_cb *plug = NULL; 1063 int sectors_handled; 1064 int max_sectors; 1065 int sectors; 1066 1067 /* 1068 * Register the new request and wait if the reconstruction 1069 * thread has put up a bar for new requests. 1070 * Continue immediately if no resync is active currently. 1071 */ 1072 wait_barrier(conf); 1073 1074 sectors = bio_sectors(bio); 1075 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1076 bio->bi_iter.bi_sector < conf->reshape_progress && 1077 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1078 /* IO spans the reshape position. Need to wait for 1079 * reshape to pass 1080 */ 1081 allow_barrier(conf); 1082 wait_event(conf->wait_barrier, 1083 conf->reshape_progress <= bio->bi_iter.bi_sector || 1084 conf->reshape_progress >= bio->bi_iter.bi_sector + 1085 sectors); 1086 wait_barrier(conf); 1087 } 1088 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1089 bio_data_dir(bio) == WRITE && 1090 (mddev->reshape_backwards 1091 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1092 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1093 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1094 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1095 /* Need to update reshape_position in metadata */ 1096 mddev->reshape_position = conf->reshape_progress; 1097 set_mask_bits(&mddev->flags, 0, 1098 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 1099 md_wakeup_thread(mddev->thread); 1100 wait_event(mddev->sb_wait, 1101 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1102 1103 conf->reshape_safe = mddev->reshape_position; 1104 } 1105 1106 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1107 1108 r10_bio->master_bio = bio; 1109 r10_bio->sectors = sectors; 1110 1111 r10_bio->mddev = mddev; 1112 r10_bio->sector = bio->bi_iter.bi_sector; 1113 r10_bio->state = 0; 1114 1115 /* We might need to issue multiple reads to different 1116 * devices if there are bad blocks around, so we keep 1117 * track of the number of reads in bio->bi_phys_segments. 1118 * If this is 0, there is only one r10_bio and no locking 1119 * will be needed when the request completes. If it is 1120 * non-zero, then it is the number of not-completed requests. 1121 */ 1122 bio->bi_phys_segments = 0; 1123 bio_clear_flag(bio, BIO_SEG_VALID); 1124 1125 if (rw == READ) { 1126 /* 1127 * read balancing logic: 1128 */ 1129 struct md_rdev *rdev; 1130 int slot; 1131 1132 read_again: 1133 rdev = read_balance(conf, r10_bio, &max_sectors); 1134 if (!rdev) { 1135 raid_end_bio_io(r10_bio); 1136 return; 1137 } 1138 slot = r10_bio->read_slot; 1139 1140 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1141 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1142 max_sectors); 1143 1144 r10_bio->devs[slot].bio = read_bio; 1145 r10_bio->devs[slot].rdev = rdev; 1146 1147 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1148 choose_data_offset(r10_bio, rdev); 1149 read_bio->bi_bdev = rdev->bdev; 1150 read_bio->bi_end_io = raid10_end_read_request; 1151 bio_set_op_attrs(read_bio, op, do_sync); 1152 read_bio->bi_private = r10_bio; 1153 1154 if (max_sectors < r10_bio->sectors) { 1155 /* Could not read all from this device, so we will 1156 * need another r10_bio. 1157 */ 1158 sectors_handled = (r10_bio->sector + max_sectors 1159 - bio->bi_iter.bi_sector); 1160 r10_bio->sectors = max_sectors; 1161 spin_lock_irq(&conf->device_lock); 1162 if (bio->bi_phys_segments == 0) 1163 bio->bi_phys_segments = 2; 1164 else 1165 bio->bi_phys_segments++; 1166 spin_unlock_irq(&conf->device_lock); 1167 /* Cannot call generic_make_request directly 1168 * as that will be queued in __generic_make_request 1169 * and subsequent mempool_alloc might block 1170 * waiting for it. so hand bio over to raid10d. 1171 */ 1172 reschedule_retry(r10_bio); 1173 1174 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1175 1176 r10_bio->master_bio = bio; 1177 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1178 r10_bio->state = 0; 1179 r10_bio->mddev = mddev; 1180 r10_bio->sector = bio->bi_iter.bi_sector + 1181 sectors_handled; 1182 goto read_again; 1183 } else 1184 generic_make_request(read_bio); 1185 return; 1186 } 1187 1188 /* 1189 * WRITE: 1190 */ 1191 if (conf->pending_count >= max_queued_requests) { 1192 md_wakeup_thread(mddev->thread); 1193 wait_event(conf->wait_barrier, 1194 conf->pending_count < max_queued_requests); 1195 } 1196 /* first select target devices under rcu_lock and 1197 * inc refcount on their rdev. Record them by setting 1198 * bios[x] to bio 1199 * If there are known/acknowledged bad blocks on any device 1200 * on which we have seen a write error, we want to avoid 1201 * writing to those blocks. This potentially requires several 1202 * writes to write around the bad blocks. Each set of writes 1203 * gets its own r10_bio with a set of bios attached. The number 1204 * of r10_bios is recored in bio->bi_phys_segments just as with 1205 * the read case. 1206 */ 1207 1208 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1209 raid10_find_phys(conf, r10_bio); 1210 retry_write: 1211 blocked_rdev = NULL; 1212 rcu_read_lock(); 1213 max_sectors = r10_bio->sectors; 1214 1215 for (i = 0; i < conf->copies; i++) { 1216 int d = r10_bio->devs[i].devnum; 1217 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1218 struct md_rdev *rrdev = rcu_dereference( 1219 conf->mirrors[d].replacement); 1220 if (rdev == rrdev) 1221 rrdev = NULL; 1222 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1223 atomic_inc(&rdev->nr_pending); 1224 blocked_rdev = rdev; 1225 break; 1226 } 1227 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1228 atomic_inc(&rrdev->nr_pending); 1229 blocked_rdev = rrdev; 1230 break; 1231 } 1232 if (rdev && (test_bit(Faulty, &rdev->flags))) 1233 rdev = NULL; 1234 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1235 rrdev = NULL; 1236 1237 r10_bio->devs[i].bio = NULL; 1238 r10_bio->devs[i].repl_bio = NULL; 1239 1240 if (!rdev && !rrdev) { 1241 set_bit(R10BIO_Degraded, &r10_bio->state); 1242 continue; 1243 } 1244 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1245 sector_t first_bad; 1246 sector_t dev_sector = r10_bio->devs[i].addr; 1247 int bad_sectors; 1248 int is_bad; 1249 1250 is_bad = is_badblock(rdev, dev_sector, 1251 max_sectors, 1252 &first_bad, &bad_sectors); 1253 if (is_bad < 0) { 1254 /* Mustn't write here until the bad block 1255 * is acknowledged 1256 */ 1257 atomic_inc(&rdev->nr_pending); 1258 set_bit(BlockedBadBlocks, &rdev->flags); 1259 blocked_rdev = rdev; 1260 break; 1261 } 1262 if (is_bad && first_bad <= dev_sector) { 1263 /* Cannot write here at all */ 1264 bad_sectors -= (dev_sector - first_bad); 1265 if (bad_sectors < max_sectors) 1266 /* Mustn't write more than bad_sectors 1267 * to other devices yet 1268 */ 1269 max_sectors = bad_sectors; 1270 /* We don't set R10BIO_Degraded as that 1271 * only applies if the disk is missing, 1272 * so it might be re-added, and we want to 1273 * know to recover this chunk. 1274 * In this case the device is here, and the 1275 * fact that this chunk is not in-sync is 1276 * recorded in the bad block log. 1277 */ 1278 continue; 1279 } 1280 if (is_bad) { 1281 int good_sectors = first_bad - dev_sector; 1282 if (good_sectors < max_sectors) 1283 max_sectors = good_sectors; 1284 } 1285 } 1286 if (rdev) { 1287 r10_bio->devs[i].bio = bio; 1288 atomic_inc(&rdev->nr_pending); 1289 } 1290 if (rrdev) { 1291 r10_bio->devs[i].repl_bio = bio; 1292 atomic_inc(&rrdev->nr_pending); 1293 } 1294 } 1295 rcu_read_unlock(); 1296 1297 if (unlikely(blocked_rdev)) { 1298 /* Have to wait for this device to get unblocked, then retry */ 1299 int j; 1300 int d; 1301 1302 for (j = 0; j < i; j++) { 1303 if (r10_bio->devs[j].bio) { 1304 d = r10_bio->devs[j].devnum; 1305 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1306 } 1307 if (r10_bio->devs[j].repl_bio) { 1308 struct md_rdev *rdev; 1309 d = r10_bio->devs[j].devnum; 1310 rdev = conf->mirrors[d].replacement; 1311 if (!rdev) { 1312 /* Race with remove_disk */ 1313 smp_mb(); 1314 rdev = conf->mirrors[d].rdev; 1315 } 1316 rdev_dec_pending(rdev, mddev); 1317 } 1318 } 1319 allow_barrier(conf); 1320 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1321 wait_barrier(conf); 1322 goto retry_write; 1323 } 1324 1325 if (max_sectors < r10_bio->sectors) { 1326 /* We are splitting this into multiple parts, so 1327 * we need to prepare for allocating another r10_bio. 1328 */ 1329 r10_bio->sectors = max_sectors; 1330 spin_lock_irq(&conf->device_lock); 1331 if (bio->bi_phys_segments == 0) 1332 bio->bi_phys_segments = 2; 1333 else 1334 bio->bi_phys_segments++; 1335 spin_unlock_irq(&conf->device_lock); 1336 } 1337 sectors_handled = r10_bio->sector + max_sectors - 1338 bio->bi_iter.bi_sector; 1339 1340 atomic_set(&r10_bio->remaining, 1); 1341 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1342 1343 for (i = 0; i < conf->copies; i++) { 1344 struct bio *mbio; 1345 int d = r10_bio->devs[i].devnum; 1346 if (r10_bio->devs[i].bio) { 1347 struct md_rdev *rdev = conf->mirrors[d].rdev; 1348 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1349 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1350 max_sectors); 1351 r10_bio->devs[i].bio = mbio; 1352 1353 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1354 choose_data_offset(r10_bio, 1355 rdev)); 1356 mbio->bi_bdev = rdev->bdev; 1357 mbio->bi_end_io = raid10_end_write_request; 1358 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1359 mbio->bi_private = r10_bio; 1360 1361 atomic_inc(&r10_bio->remaining); 1362 1363 cb = blk_check_plugged(raid10_unplug, mddev, 1364 sizeof(*plug)); 1365 if (cb) 1366 plug = container_of(cb, struct raid10_plug_cb, 1367 cb); 1368 else 1369 plug = NULL; 1370 spin_lock_irqsave(&conf->device_lock, flags); 1371 if (plug) { 1372 bio_list_add(&plug->pending, mbio); 1373 plug->pending_cnt++; 1374 } else { 1375 bio_list_add(&conf->pending_bio_list, mbio); 1376 conf->pending_count++; 1377 } 1378 spin_unlock_irqrestore(&conf->device_lock, flags); 1379 if (!plug) 1380 md_wakeup_thread(mddev->thread); 1381 } 1382 1383 if (r10_bio->devs[i].repl_bio) { 1384 struct md_rdev *rdev = conf->mirrors[d].replacement; 1385 if (rdev == NULL) { 1386 /* Replacement just got moved to main 'rdev' */ 1387 smp_mb(); 1388 rdev = conf->mirrors[d].rdev; 1389 } 1390 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1391 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1392 max_sectors); 1393 r10_bio->devs[i].repl_bio = mbio; 1394 1395 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1396 choose_data_offset( 1397 r10_bio, rdev)); 1398 mbio->bi_bdev = rdev->bdev; 1399 mbio->bi_end_io = raid10_end_write_request; 1400 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1401 mbio->bi_private = r10_bio; 1402 1403 atomic_inc(&r10_bio->remaining); 1404 spin_lock_irqsave(&conf->device_lock, flags); 1405 bio_list_add(&conf->pending_bio_list, mbio); 1406 conf->pending_count++; 1407 spin_unlock_irqrestore(&conf->device_lock, flags); 1408 if (!mddev_check_plugged(mddev)) 1409 md_wakeup_thread(mddev->thread); 1410 } 1411 } 1412 1413 /* Don't remove the bias on 'remaining' (one_write_done) until 1414 * after checking if we need to go around again. 1415 */ 1416 1417 if (sectors_handled < bio_sectors(bio)) { 1418 one_write_done(r10_bio); 1419 /* We need another r10_bio. It has already been counted 1420 * in bio->bi_phys_segments. 1421 */ 1422 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1423 1424 r10_bio->master_bio = bio; 1425 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1426 1427 r10_bio->mddev = mddev; 1428 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1429 r10_bio->state = 0; 1430 goto retry_write; 1431 } 1432 one_write_done(r10_bio); 1433 } 1434 1435 static void raid10_make_request(struct mddev *mddev, struct bio *bio) 1436 { 1437 struct r10conf *conf = mddev->private; 1438 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1439 int chunk_sects = chunk_mask + 1; 1440 1441 struct bio *split; 1442 1443 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1444 md_flush_request(mddev, bio); 1445 return; 1446 } 1447 1448 md_write_start(mddev, bio); 1449 1450 do { 1451 1452 /* 1453 * If this request crosses a chunk boundary, we need to split 1454 * it. 1455 */ 1456 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1457 bio_sectors(bio) > chunk_sects 1458 && (conf->geo.near_copies < conf->geo.raid_disks 1459 || conf->prev.near_copies < 1460 conf->prev.raid_disks))) { 1461 split = bio_split(bio, chunk_sects - 1462 (bio->bi_iter.bi_sector & 1463 (chunk_sects - 1)), 1464 GFP_NOIO, fs_bio_set); 1465 bio_chain(split, bio); 1466 } else { 1467 split = bio; 1468 } 1469 1470 __make_request(mddev, split); 1471 } while (split != bio); 1472 1473 /* In case raid10d snuck in to freeze_array */ 1474 wake_up(&conf->wait_barrier); 1475 } 1476 1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1478 { 1479 struct r10conf *conf = mddev->private; 1480 int i; 1481 1482 if (conf->geo.near_copies < conf->geo.raid_disks) 1483 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1484 if (conf->geo.near_copies > 1) 1485 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1486 if (conf->geo.far_copies > 1) { 1487 if (conf->geo.far_offset) 1488 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1489 else 1490 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1491 if (conf->geo.far_set_size != conf->geo.raid_disks) 1492 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1493 } 1494 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1495 conf->geo.raid_disks - mddev->degraded); 1496 rcu_read_lock(); 1497 for (i = 0; i < conf->geo.raid_disks; i++) { 1498 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1499 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1500 } 1501 rcu_read_unlock(); 1502 seq_printf(seq, "]"); 1503 } 1504 1505 /* check if there are enough drives for 1506 * every block to appear on atleast one. 1507 * Don't consider the device numbered 'ignore' 1508 * as we might be about to remove it. 1509 */ 1510 static int _enough(struct r10conf *conf, int previous, int ignore) 1511 { 1512 int first = 0; 1513 int has_enough = 0; 1514 int disks, ncopies; 1515 if (previous) { 1516 disks = conf->prev.raid_disks; 1517 ncopies = conf->prev.near_copies; 1518 } else { 1519 disks = conf->geo.raid_disks; 1520 ncopies = conf->geo.near_copies; 1521 } 1522 1523 rcu_read_lock(); 1524 do { 1525 int n = conf->copies; 1526 int cnt = 0; 1527 int this = first; 1528 while (n--) { 1529 struct md_rdev *rdev; 1530 if (this != ignore && 1531 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1532 test_bit(In_sync, &rdev->flags)) 1533 cnt++; 1534 this = (this+1) % disks; 1535 } 1536 if (cnt == 0) 1537 goto out; 1538 first = (first + ncopies) % disks; 1539 } while (first != 0); 1540 has_enough = 1; 1541 out: 1542 rcu_read_unlock(); 1543 return has_enough; 1544 } 1545 1546 static int enough(struct r10conf *conf, int ignore) 1547 { 1548 /* when calling 'enough', both 'prev' and 'geo' must 1549 * be stable. 1550 * This is ensured if ->reconfig_mutex or ->device_lock 1551 * is held. 1552 */ 1553 return _enough(conf, 0, ignore) && 1554 _enough(conf, 1, ignore); 1555 } 1556 1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1558 { 1559 char b[BDEVNAME_SIZE]; 1560 struct r10conf *conf = mddev->private; 1561 unsigned long flags; 1562 1563 /* 1564 * If it is not operational, then we have already marked it as dead 1565 * else if it is the last working disks, ignore the error, let the 1566 * next level up know. 1567 * else mark the drive as failed 1568 */ 1569 spin_lock_irqsave(&conf->device_lock, flags); 1570 if (test_bit(In_sync, &rdev->flags) 1571 && !enough(conf, rdev->raid_disk)) { 1572 /* 1573 * Don't fail the drive, just return an IO error. 1574 */ 1575 spin_unlock_irqrestore(&conf->device_lock, flags); 1576 return; 1577 } 1578 if (test_and_clear_bit(In_sync, &rdev->flags)) 1579 mddev->degraded++; 1580 /* 1581 * If recovery is running, make sure it aborts. 1582 */ 1583 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1584 set_bit(Blocked, &rdev->flags); 1585 set_bit(Faulty, &rdev->flags); 1586 set_mask_bits(&mddev->flags, 0, 1587 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 1588 spin_unlock_irqrestore(&conf->device_lock, flags); 1589 printk(KERN_ALERT 1590 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1591 "md/raid10:%s: Operation continuing on %d devices.\n", 1592 mdname(mddev), bdevname(rdev->bdev, b), 1593 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1594 } 1595 1596 static void print_conf(struct r10conf *conf) 1597 { 1598 int i; 1599 struct md_rdev *rdev; 1600 1601 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1602 if (!conf) { 1603 printk(KERN_DEBUG "(!conf)\n"); 1604 return; 1605 } 1606 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1607 conf->geo.raid_disks); 1608 1609 /* This is only called with ->reconfix_mutex held, so 1610 * rcu protection of rdev is not needed */ 1611 for (i = 0; i < conf->geo.raid_disks; i++) { 1612 char b[BDEVNAME_SIZE]; 1613 rdev = conf->mirrors[i].rdev; 1614 if (rdev) 1615 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1616 i, !test_bit(In_sync, &rdev->flags), 1617 !test_bit(Faulty, &rdev->flags), 1618 bdevname(rdev->bdev,b)); 1619 } 1620 } 1621 1622 static void close_sync(struct r10conf *conf) 1623 { 1624 wait_barrier(conf); 1625 allow_barrier(conf); 1626 1627 mempool_destroy(conf->r10buf_pool); 1628 conf->r10buf_pool = NULL; 1629 } 1630 1631 static int raid10_spare_active(struct mddev *mddev) 1632 { 1633 int i; 1634 struct r10conf *conf = mddev->private; 1635 struct raid10_info *tmp; 1636 int count = 0; 1637 unsigned long flags; 1638 1639 /* 1640 * Find all non-in_sync disks within the RAID10 configuration 1641 * and mark them in_sync 1642 */ 1643 for (i = 0; i < conf->geo.raid_disks; i++) { 1644 tmp = conf->mirrors + i; 1645 if (tmp->replacement 1646 && tmp->replacement->recovery_offset == MaxSector 1647 && !test_bit(Faulty, &tmp->replacement->flags) 1648 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1649 /* Replacement has just become active */ 1650 if (!tmp->rdev 1651 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1652 count++; 1653 if (tmp->rdev) { 1654 /* Replaced device not technically faulty, 1655 * but we need to be sure it gets removed 1656 * and never re-added. 1657 */ 1658 set_bit(Faulty, &tmp->rdev->flags); 1659 sysfs_notify_dirent_safe( 1660 tmp->rdev->sysfs_state); 1661 } 1662 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1663 } else if (tmp->rdev 1664 && tmp->rdev->recovery_offset == MaxSector 1665 && !test_bit(Faulty, &tmp->rdev->flags) 1666 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1667 count++; 1668 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1669 } 1670 } 1671 spin_lock_irqsave(&conf->device_lock, flags); 1672 mddev->degraded -= count; 1673 spin_unlock_irqrestore(&conf->device_lock, flags); 1674 1675 print_conf(conf); 1676 return count; 1677 } 1678 1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1680 { 1681 struct r10conf *conf = mddev->private; 1682 int err = -EEXIST; 1683 int mirror; 1684 int first = 0; 1685 int last = conf->geo.raid_disks - 1; 1686 1687 if (mddev->recovery_cp < MaxSector) 1688 /* only hot-add to in-sync arrays, as recovery is 1689 * very different from resync 1690 */ 1691 return -EBUSY; 1692 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1693 return -EINVAL; 1694 1695 if (md_integrity_add_rdev(rdev, mddev)) 1696 return -ENXIO; 1697 1698 if (rdev->raid_disk >= 0) 1699 first = last = rdev->raid_disk; 1700 1701 if (rdev->saved_raid_disk >= first && 1702 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1703 mirror = rdev->saved_raid_disk; 1704 else 1705 mirror = first; 1706 for ( ; mirror <= last ; mirror++) { 1707 struct raid10_info *p = &conf->mirrors[mirror]; 1708 if (p->recovery_disabled == mddev->recovery_disabled) 1709 continue; 1710 if (p->rdev) { 1711 if (!test_bit(WantReplacement, &p->rdev->flags) || 1712 p->replacement != NULL) 1713 continue; 1714 clear_bit(In_sync, &rdev->flags); 1715 set_bit(Replacement, &rdev->flags); 1716 rdev->raid_disk = mirror; 1717 err = 0; 1718 if (mddev->gendisk) 1719 disk_stack_limits(mddev->gendisk, rdev->bdev, 1720 rdev->data_offset << 9); 1721 conf->fullsync = 1; 1722 rcu_assign_pointer(p->replacement, rdev); 1723 break; 1724 } 1725 1726 if (mddev->gendisk) 1727 disk_stack_limits(mddev->gendisk, rdev->bdev, 1728 rdev->data_offset << 9); 1729 1730 p->head_position = 0; 1731 p->recovery_disabled = mddev->recovery_disabled - 1; 1732 rdev->raid_disk = mirror; 1733 err = 0; 1734 if (rdev->saved_raid_disk != mirror) 1735 conf->fullsync = 1; 1736 rcu_assign_pointer(p->rdev, rdev); 1737 break; 1738 } 1739 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1740 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1741 1742 print_conf(conf); 1743 return err; 1744 } 1745 1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1747 { 1748 struct r10conf *conf = mddev->private; 1749 int err = 0; 1750 int number = rdev->raid_disk; 1751 struct md_rdev **rdevp; 1752 struct raid10_info *p = conf->mirrors + number; 1753 1754 print_conf(conf); 1755 if (rdev == p->rdev) 1756 rdevp = &p->rdev; 1757 else if (rdev == p->replacement) 1758 rdevp = &p->replacement; 1759 else 1760 return 0; 1761 1762 if (test_bit(In_sync, &rdev->flags) || 1763 atomic_read(&rdev->nr_pending)) { 1764 err = -EBUSY; 1765 goto abort; 1766 } 1767 /* Only remove non-faulty devices if recovery 1768 * is not possible. 1769 */ 1770 if (!test_bit(Faulty, &rdev->flags) && 1771 mddev->recovery_disabled != p->recovery_disabled && 1772 (!p->replacement || p->replacement == rdev) && 1773 number < conf->geo.raid_disks && 1774 enough(conf, -1)) { 1775 err = -EBUSY; 1776 goto abort; 1777 } 1778 *rdevp = NULL; 1779 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1780 synchronize_rcu(); 1781 if (atomic_read(&rdev->nr_pending)) { 1782 /* lost the race, try later */ 1783 err = -EBUSY; 1784 *rdevp = rdev; 1785 goto abort; 1786 } 1787 } 1788 if (p->replacement) { 1789 /* We must have just cleared 'rdev' */ 1790 p->rdev = p->replacement; 1791 clear_bit(Replacement, &p->replacement->flags); 1792 smp_mb(); /* Make sure other CPUs may see both as identical 1793 * but will never see neither -- if they are careful. 1794 */ 1795 p->replacement = NULL; 1796 clear_bit(WantReplacement, &rdev->flags); 1797 } else 1798 /* We might have just remove the Replacement as faulty 1799 * Clear the flag just in case 1800 */ 1801 clear_bit(WantReplacement, &rdev->flags); 1802 1803 err = md_integrity_register(mddev); 1804 1805 abort: 1806 1807 print_conf(conf); 1808 return err; 1809 } 1810 1811 static void end_sync_read(struct bio *bio) 1812 { 1813 struct r10bio *r10_bio = bio->bi_private; 1814 struct r10conf *conf = r10_bio->mddev->private; 1815 int d; 1816 1817 if (bio == r10_bio->master_bio) { 1818 /* this is a reshape read */ 1819 d = r10_bio->read_slot; /* really the read dev */ 1820 } else 1821 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1822 1823 if (!bio->bi_error) 1824 set_bit(R10BIO_Uptodate, &r10_bio->state); 1825 else 1826 /* The write handler will notice the lack of 1827 * R10BIO_Uptodate and record any errors etc 1828 */ 1829 atomic_add(r10_bio->sectors, 1830 &conf->mirrors[d].rdev->corrected_errors); 1831 1832 /* for reconstruct, we always reschedule after a read. 1833 * for resync, only after all reads 1834 */ 1835 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1836 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1837 atomic_dec_and_test(&r10_bio->remaining)) { 1838 /* we have read all the blocks, 1839 * do the comparison in process context in raid10d 1840 */ 1841 reschedule_retry(r10_bio); 1842 } 1843 } 1844 1845 static void end_sync_request(struct r10bio *r10_bio) 1846 { 1847 struct mddev *mddev = r10_bio->mddev; 1848 1849 while (atomic_dec_and_test(&r10_bio->remaining)) { 1850 if (r10_bio->master_bio == NULL) { 1851 /* the primary of several recovery bios */ 1852 sector_t s = r10_bio->sectors; 1853 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1854 test_bit(R10BIO_WriteError, &r10_bio->state)) 1855 reschedule_retry(r10_bio); 1856 else 1857 put_buf(r10_bio); 1858 md_done_sync(mddev, s, 1); 1859 break; 1860 } else { 1861 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1862 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1863 test_bit(R10BIO_WriteError, &r10_bio->state)) 1864 reschedule_retry(r10_bio); 1865 else 1866 put_buf(r10_bio); 1867 r10_bio = r10_bio2; 1868 } 1869 } 1870 } 1871 1872 static void end_sync_write(struct bio *bio) 1873 { 1874 struct r10bio *r10_bio = bio->bi_private; 1875 struct mddev *mddev = r10_bio->mddev; 1876 struct r10conf *conf = mddev->private; 1877 int d; 1878 sector_t first_bad; 1879 int bad_sectors; 1880 int slot; 1881 int repl; 1882 struct md_rdev *rdev = NULL; 1883 1884 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1885 if (repl) 1886 rdev = conf->mirrors[d].replacement; 1887 else 1888 rdev = conf->mirrors[d].rdev; 1889 1890 if (bio->bi_error) { 1891 if (repl) 1892 md_error(mddev, rdev); 1893 else { 1894 set_bit(WriteErrorSeen, &rdev->flags); 1895 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1896 set_bit(MD_RECOVERY_NEEDED, 1897 &rdev->mddev->recovery); 1898 set_bit(R10BIO_WriteError, &r10_bio->state); 1899 } 1900 } else if (is_badblock(rdev, 1901 r10_bio->devs[slot].addr, 1902 r10_bio->sectors, 1903 &first_bad, &bad_sectors)) 1904 set_bit(R10BIO_MadeGood, &r10_bio->state); 1905 1906 rdev_dec_pending(rdev, mddev); 1907 1908 end_sync_request(r10_bio); 1909 } 1910 1911 /* 1912 * Note: sync and recover and handled very differently for raid10 1913 * This code is for resync. 1914 * For resync, we read through virtual addresses and read all blocks. 1915 * If there is any error, we schedule a write. The lowest numbered 1916 * drive is authoritative. 1917 * However requests come for physical address, so we need to map. 1918 * For every physical address there are raid_disks/copies virtual addresses, 1919 * which is always are least one, but is not necessarly an integer. 1920 * This means that a physical address can span multiple chunks, so we may 1921 * have to submit multiple io requests for a single sync request. 1922 */ 1923 /* 1924 * We check if all blocks are in-sync and only write to blocks that 1925 * aren't in sync 1926 */ 1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1928 { 1929 struct r10conf *conf = mddev->private; 1930 int i, first; 1931 struct bio *tbio, *fbio; 1932 int vcnt; 1933 1934 atomic_set(&r10_bio->remaining, 1); 1935 1936 /* find the first device with a block */ 1937 for (i=0; i<conf->copies; i++) 1938 if (!r10_bio->devs[i].bio->bi_error) 1939 break; 1940 1941 if (i == conf->copies) 1942 goto done; 1943 1944 first = i; 1945 fbio = r10_bio->devs[i].bio; 1946 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 1947 fbio->bi_iter.bi_idx = 0; 1948 1949 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1950 /* now find blocks with errors */ 1951 for (i=0 ; i < conf->copies ; i++) { 1952 int j, d; 1953 1954 tbio = r10_bio->devs[i].bio; 1955 1956 if (tbio->bi_end_io != end_sync_read) 1957 continue; 1958 if (i == first) 1959 continue; 1960 if (!r10_bio->devs[i].bio->bi_error) { 1961 /* We know that the bi_io_vec layout is the same for 1962 * both 'first' and 'i', so we just compare them. 1963 * All vec entries are PAGE_SIZE; 1964 */ 1965 int sectors = r10_bio->sectors; 1966 for (j = 0; j < vcnt; j++) { 1967 int len = PAGE_SIZE; 1968 if (sectors < (len / 512)) 1969 len = sectors * 512; 1970 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1971 page_address(tbio->bi_io_vec[j].bv_page), 1972 len)) 1973 break; 1974 sectors -= len/512; 1975 } 1976 if (j == vcnt) 1977 continue; 1978 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 1979 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1980 /* Don't fix anything. */ 1981 continue; 1982 } 1983 /* Ok, we need to write this bio, either to correct an 1984 * inconsistency or to correct an unreadable block. 1985 * First we need to fixup bv_offset, bv_len and 1986 * bi_vecs, as the read request might have corrupted these 1987 */ 1988 bio_reset(tbio); 1989 1990 tbio->bi_vcnt = vcnt; 1991 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size; 1992 tbio->bi_private = r10_bio; 1993 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 1994 tbio->bi_end_io = end_sync_write; 1995 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 1996 1997 bio_copy_data(tbio, fbio); 1998 1999 d = r10_bio->devs[i].devnum; 2000 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2001 atomic_inc(&r10_bio->remaining); 2002 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2003 2004 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2005 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2006 generic_make_request(tbio); 2007 } 2008 2009 /* Now write out to any replacement devices 2010 * that are active 2011 */ 2012 for (i = 0; i < conf->copies; i++) { 2013 int d; 2014 2015 tbio = r10_bio->devs[i].repl_bio; 2016 if (!tbio || !tbio->bi_end_io) 2017 continue; 2018 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2019 && r10_bio->devs[i].bio != fbio) 2020 bio_copy_data(tbio, fbio); 2021 d = r10_bio->devs[i].devnum; 2022 atomic_inc(&r10_bio->remaining); 2023 md_sync_acct(conf->mirrors[d].replacement->bdev, 2024 bio_sectors(tbio)); 2025 generic_make_request(tbio); 2026 } 2027 2028 done: 2029 if (atomic_dec_and_test(&r10_bio->remaining)) { 2030 md_done_sync(mddev, r10_bio->sectors, 1); 2031 put_buf(r10_bio); 2032 } 2033 } 2034 2035 /* 2036 * Now for the recovery code. 2037 * Recovery happens across physical sectors. 2038 * We recover all non-is_sync drives by finding the virtual address of 2039 * each, and then choose a working drive that also has that virt address. 2040 * There is a separate r10_bio for each non-in_sync drive. 2041 * Only the first two slots are in use. The first for reading, 2042 * The second for writing. 2043 * 2044 */ 2045 static void fix_recovery_read_error(struct r10bio *r10_bio) 2046 { 2047 /* We got a read error during recovery. 2048 * We repeat the read in smaller page-sized sections. 2049 * If a read succeeds, write it to the new device or record 2050 * a bad block if we cannot. 2051 * If a read fails, record a bad block on both old and 2052 * new devices. 2053 */ 2054 struct mddev *mddev = r10_bio->mddev; 2055 struct r10conf *conf = mddev->private; 2056 struct bio *bio = r10_bio->devs[0].bio; 2057 sector_t sect = 0; 2058 int sectors = r10_bio->sectors; 2059 int idx = 0; 2060 int dr = r10_bio->devs[0].devnum; 2061 int dw = r10_bio->devs[1].devnum; 2062 2063 while (sectors) { 2064 int s = sectors; 2065 struct md_rdev *rdev; 2066 sector_t addr; 2067 int ok; 2068 2069 if (s > (PAGE_SIZE>>9)) 2070 s = PAGE_SIZE >> 9; 2071 2072 rdev = conf->mirrors[dr].rdev; 2073 addr = r10_bio->devs[0].addr + sect, 2074 ok = sync_page_io(rdev, 2075 addr, 2076 s << 9, 2077 bio->bi_io_vec[idx].bv_page, 2078 REQ_OP_READ, 0, false); 2079 if (ok) { 2080 rdev = conf->mirrors[dw].rdev; 2081 addr = r10_bio->devs[1].addr + sect; 2082 ok = sync_page_io(rdev, 2083 addr, 2084 s << 9, 2085 bio->bi_io_vec[idx].bv_page, 2086 REQ_OP_WRITE, 0, false); 2087 if (!ok) { 2088 set_bit(WriteErrorSeen, &rdev->flags); 2089 if (!test_and_set_bit(WantReplacement, 2090 &rdev->flags)) 2091 set_bit(MD_RECOVERY_NEEDED, 2092 &rdev->mddev->recovery); 2093 } 2094 } 2095 if (!ok) { 2096 /* We don't worry if we cannot set a bad block - 2097 * it really is bad so there is no loss in not 2098 * recording it yet 2099 */ 2100 rdev_set_badblocks(rdev, addr, s, 0); 2101 2102 if (rdev != conf->mirrors[dw].rdev) { 2103 /* need bad block on destination too */ 2104 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2105 addr = r10_bio->devs[1].addr + sect; 2106 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2107 if (!ok) { 2108 /* just abort the recovery */ 2109 printk(KERN_NOTICE 2110 "md/raid10:%s: recovery aborted" 2111 " due to read error\n", 2112 mdname(mddev)); 2113 2114 conf->mirrors[dw].recovery_disabled 2115 = mddev->recovery_disabled; 2116 set_bit(MD_RECOVERY_INTR, 2117 &mddev->recovery); 2118 break; 2119 } 2120 } 2121 } 2122 2123 sectors -= s; 2124 sect += s; 2125 idx++; 2126 } 2127 } 2128 2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2130 { 2131 struct r10conf *conf = mddev->private; 2132 int d; 2133 struct bio *wbio, *wbio2; 2134 2135 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2136 fix_recovery_read_error(r10_bio); 2137 end_sync_request(r10_bio); 2138 return; 2139 } 2140 2141 /* 2142 * share the pages with the first bio 2143 * and submit the write request 2144 */ 2145 d = r10_bio->devs[1].devnum; 2146 wbio = r10_bio->devs[1].bio; 2147 wbio2 = r10_bio->devs[1].repl_bio; 2148 /* Need to test wbio2->bi_end_io before we call 2149 * generic_make_request as if the former is NULL, 2150 * the latter is free to free wbio2. 2151 */ 2152 if (wbio2 && !wbio2->bi_end_io) 2153 wbio2 = NULL; 2154 if (wbio->bi_end_io) { 2155 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2156 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2157 generic_make_request(wbio); 2158 } 2159 if (wbio2) { 2160 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2161 md_sync_acct(conf->mirrors[d].replacement->bdev, 2162 bio_sectors(wbio2)); 2163 generic_make_request(wbio2); 2164 } 2165 } 2166 2167 /* 2168 * Used by fix_read_error() to decay the per rdev read_errors. 2169 * We halve the read error count for every hour that has elapsed 2170 * since the last recorded read error. 2171 * 2172 */ 2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2174 { 2175 long cur_time_mon; 2176 unsigned long hours_since_last; 2177 unsigned int read_errors = atomic_read(&rdev->read_errors); 2178 2179 cur_time_mon = ktime_get_seconds(); 2180 2181 if (rdev->last_read_error == 0) { 2182 /* first time we've seen a read error */ 2183 rdev->last_read_error = cur_time_mon; 2184 return; 2185 } 2186 2187 hours_since_last = (long)(cur_time_mon - 2188 rdev->last_read_error) / 3600; 2189 2190 rdev->last_read_error = cur_time_mon; 2191 2192 /* 2193 * if hours_since_last is > the number of bits in read_errors 2194 * just set read errors to 0. We do this to avoid 2195 * overflowing the shift of read_errors by hours_since_last. 2196 */ 2197 if (hours_since_last >= 8 * sizeof(read_errors)) 2198 atomic_set(&rdev->read_errors, 0); 2199 else 2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2201 } 2202 2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2204 int sectors, struct page *page, int rw) 2205 { 2206 sector_t first_bad; 2207 int bad_sectors; 2208 2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2211 return -1; 2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2213 /* success */ 2214 return 1; 2215 if (rw == WRITE) { 2216 set_bit(WriteErrorSeen, &rdev->flags); 2217 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2218 set_bit(MD_RECOVERY_NEEDED, 2219 &rdev->mddev->recovery); 2220 } 2221 /* need to record an error - either for the block or the device */ 2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2223 md_error(rdev->mddev, rdev); 2224 return 0; 2225 } 2226 2227 /* 2228 * This is a kernel thread which: 2229 * 2230 * 1. Retries failed read operations on working mirrors. 2231 * 2. Updates the raid superblock when problems encounter. 2232 * 3. Performs writes following reads for array synchronising. 2233 */ 2234 2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2236 { 2237 int sect = 0; /* Offset from r10_bio->sector */ 2238 int sectors = r10_bio->sectors; 2239 struct md_rdev*rdev; 2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2241 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2242 2243 /* still own a reference to this rdev, so it cannot 2244 * have been cleared recently. 2245 */ 2246 rdev = conf->mirrors[d].rdev; 2247 2248 if (test_bit(Faulty, &rdev->flags)) 2249 /* drive has already been failed, just ignore any 2250 more fix_read_error() attempts */ 2251 return; 2252 2253 check_decay_read_errors(mddev, rdev); 2254 atomic_inc(&rdev->read_errors); 2255 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2256 char b[BDEVNAME_SIZE]; 2257 bdevname(rdev->bdev, b); 2258 2259 printk(KERN_NOTICE 2260 "md/raid10:%s: %s: Raid device exceeded " 2261 "read_error threshold [cur %d:max %d]\n", 2262 mdname(mddev), b, 2263 atomic_read(&rdev->read_errors), max_read_errors); 2264 printk(KERN_NOTICE 2265 "md/raid10:%s: %s: Failing raid device\n", 2266 mdname(mddev), b); 2267 md_error(mddev, rdev); 2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2269 return; 2270 } 2271 2272 while(sectors) { 2273 int s = sectors; 2274 int sl = r10_bio->read_slot; 2275 int success = 0; 2276 int start; 2277 2278 if (s > (PAGE_SIZE>>9)) 2279 s = PAGE_SIZE >> 9; 2280 2281 rcu_read_lock(); 2282 do { 2283 sector_t first_bad; 2284 int bad_sectors; 2285 2286 d = r10_bio->devs[sl].devnum; 2287 rdev = rcu_dereference(conf->mirrors[d].rdev); 2288 if (rdev && 2289 test_bit(In_sync, &rdev->flags) && 2290 !test_bit(Faulty, &rdev->flags) && 2291 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2292 &first_bad, &bad_sectors) == 0) { 2293 atomic_inc(&rdev->nr_pending); 2294 rcu_read_unlock(); 2295 success = sync_page_io(rdev, 2296 r10_bio->devs[sl].addr + 2297 sect, 2298 s<<9, 2299 conf->tmppage, 2300 REQ_OP_READ, 0, false); 2301 rdev_dec_pending(rdev, mddev); 2302 rcu_read_lock(); 2303 if (success) 2304 break; 2305 } 2306 sl++; 2307 if (sl == conf->copies) 2308 sl = 0; 2309 } while (!success && sl != r10_bio->read_slot); 2310 rcu_read_unlock(); 2311 2312 if (!success) { 2313 /* Cannot read from anywhere, just mark the block 2314 * as bad on the first device to discourage future 2315 * reads. 2316 */ 2317 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2318 rdev = conf->mirrors[dn].rdev; 2319 2320 if (!rdev_set_badblocks( 2321 rdev, 2322 r10_bio->devs[r10_bio->read_slot].addr 2323 + sect, 2324 s, 0)) { 2325 md_error(mddev, rdev); 2326 r10_bio->devs[r10_bio->read_slot].bio 2327 = IO_BLOCKED; 2328 } 2329 break; 2330 } 2331 2332 start = sl; 2333 /* write it back and re-read */ 2334 rcu_read_lock(); 2335 while (sl != r10_bio->read_slot) { 2336 char b[BDEVNAME_SIZE]; 2337 2338 if (sl==0) 2339 sl = conf->copies; 2340 sl--; 2341 d = r10_bio->devs[sl].devnum; 2342 rdev = rcu_dereference(conf->mirrors[d].rdev); 2343 if (!rdev || 2344 test_bit(Faulty, &rdev->flags) || 2345 !test_bit(In_sync, &rdev->flags)) 2346 continue; 2347 2348 atomic_inc(&rdev->nr_pending); 2349 rcu_read_unlock(); 2350 if (r10_sync_page_io(rdev, 2351 r10_bio->devs[sl].addr + 2352 sect, 2353 s, conf->tmppage, WRITE) 2354 == 0) { 2355 /* Well, this device is dead */ 2356 printk(KERN_NOTICE 2357 "md/raid10:%s: read correction " 2358 "write failed" 2359 " (%d sectors at %llu on %s)\n", 2360 mdname(mddev), s, 2361 (unsigned long long)( 2362 sect + 2363 choose_data_offset(r10_bio, 2364 rdev)), 2365 bdevname(rdev->bdev, b)); 2366 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2367 "drive\n", 2368 mdname(mddev), 2369 bdevname(rdev->bdev, b)); 2370 } 2371 rdev_dec_pending(rdev, mddev); 2372 rcu_read_lock(); 2373 } 2374 sl = start; 2375 while (sl != r10_bio->read_slot) { 2376 char b[BDEVNAME_SIZE]; 2377 2378 if (sl==0) 2379 sl = conf->copies; 2380 sl--; 2381 d = r10_bio->devs[sl].devnum; 2382 rdev = rcu_dereference(conf->mirrors[d].rdev); 2383 if (!rdev || 2384 test_bit(Faulty, &rdev->flags) || 2385 !test_bit(In_sync, &rdev->flags)) 2386 continue; 2387 2388 atomic_inc(&rdev->nr_pending); 2389 rcu_read_unlock(); 2390 switch (r10_sync_page_io(rdev, 2391 r10_bio->devs[sl].addr + 2392 sect, 2393 s, conf->tmppage, 2394 READ)) { 2395 case 0: 2396 /* Well, this device is dead */ 2397 printk(KERN_NOTICE 2398 "md/raid10:%s: unable to read back " 2399 "corrected sectors" 2400 " (%d sectors at %llu on %s)\n", 2401 mdname(mddev), s, 2402 (unsigned long long)( 2403 sect + 2404 choose_data_offset(r10_bio, rdev)), 2405 bdevname(rdev->bdev, b)); 2406 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2407 "drive\n", 2408 mdname(mddev), 2409 bdevname(rdev->bdev, b)); 2410 break; 2411 case 1: 2412 printk(KERN_INFO 2413 "md/raid10:%s: read error corrected" 2414 " (%d sectors at %llu on %s)\n", 2415 mdname(mddev), s, 2416 (unsigned long long)( 2417 sect + 2418 choose_data_offset(r10_bio, rdev)), 2419 bdevname(rdev->bdev, b)); 2420 atomic_add(s, &rdev->corrected_errors); 2421 } 2422 2423 rdev_dec_pending(rdev, mddev); 2424 rcu_read_lock(); 2425 } 2426 rcu_read_unlock(); 2427 2428 sectors -= s; 2429 sect += s; 2430 } 2431 } 2432 2433 static int narrow_write_error(struct r10bio *r10_bio, int i) 2434 { 2435 struct bio *bio = r10_bio->master_bio; 2436 struct mddev *mddev = r10_bio->mddev; 2437 struct r10conf *conf = mddev->private; 2438 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2439 /* bio has the data to be written to slot 'i' where 2440 * we just recently had a write error. 2441 * We repeatedly clone the bio and trim down to one block, 2442 * then try the write. Where the write fails we record 2443 * a bad block. 2444 * It is conceivable that the bio doesn't exactly align with 2445 * blocks. We must handle this. 2446 * 2447 * We currently own a reference to the rdev. 2448 */ 2449 2450 int block_sectors; 2451 sector_t sector; 2452 int sectors; 2453 int sect_to_write = r10_bio->sectors; 2454 int ok = 1; 2455 2456 if (rdev->badblocks.shift < 0) 2457 return 0; 2458 2459 block_sectors = roundup(1 << rdev->badblocks.shift, 2460 bdev_logical_block_size(rdev->bdev) >> 9); 2461 sector = r10_bio->sector; 2462 sectors = ((r10_bio->sector + block_sectors) 2463 & ~(sector_t)(block_sectors - 1)) 2464 - sector; 2465 2466 while (sect_to_write) { 2467 struct bio *wbio; 2468 if (sectors > sect_to_write) 2469 sectors = sect_to_write; 2470 /* Write at 'sector' for 'sectors' */ 2471 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2472 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2473 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2474 choose_data_offset(r10_bio, rdev) + 2475 (sector - r10_bio->sector)); 2476 wbio->bi_bdev = rdev->bdev; 2477 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2478 2479 if (submit_bio_wait(wbio) < 0) 2480 /* Failure! */ 2481 ok = rdev_set_badblocks(rdev, sector, 2482 sectors, 0) 2483 && ok; 2484 2485 bio_put(wbio); 2486 sect_to_write -= sectors; 2487 sector += sectors; 2488 sectors = block_sectors; 2489 } 2490 return ok; 2491 } 2492 2493 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2494 { 2495 int slot = r10_bio->read_slot; 2496 struct bio *bio; 2497 struct r10conf *conf = mddev->private; 2498 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2499 char b[BDEVNAME_SIZE]; 2500 unsigned long do_sync; 2501 int max_sectors; 2502 2503 /* we got a read error. Maybe the drive is bad. Maybe just 2504 * the block and we can fix it. 2505 * We freeze all other IO, and try reading the block from 2506 * other devices. When we find one, we re-write 2507 * and check it that fixes the read error. 2508 * This is all done synchronously while the array is 2509 * frozen. 2510 */ 2511 bio = r10_bio->devs[slot].bio; 2512 bdevname(bio->bi_bdev, b); 2513 bio_put(bio); 2514 r10_bio->devs[slot].bio = NULL; 2515 2516 if (mddev->ro == 0) { 2517 freeze_array(conf, 1); 2518 fix_read_error(conf, mddev, r10_bio); 2519 unfreeze_array(conf); 2520 } else 2521 r10_bio->devs[slot].bio = IO_BLOCKED; 2522 2523 rdev_dec_pending(rdev, mddev); 2524 2525 read_more: 2526 rdev = read_balance(conf, r10_bio, &max_sectors); 2527 if (rdev == NULL) { 2528 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2529 " read error for block %llu\n", 2530 mdname(mddev), b, 2531 (unsigned long long)r10_bio->sector); 2532 raid_end_bio_io(r10_bio); 2533 return; 2534 } 2535 2536 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC); 2537 slot = r10_bio->read_slot; 2538 printk_ratelimited( 2539 KERN_ERR 2540 "md/raid10:%s: %s: redirecting " 2541 "sector %llu to another mirror\n", 2542 mdname(mddev), 2543 bdevname(rdev->bdev, b), 2544 (unsigned long long)r10_bio->sector); 2545 bio = bio_clone_mddev(r10_bio->master_bio, 2546 GFP_NOIO, mddev); 2547 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2548 r10_bio->devs[slot].bio = bio; 2549 r10_bio->devs[slot].rdev = rdev; 2550 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2551 + choose_data_offset(r10_bio, rdev); 2552 bio->bi_bdev = rdev->bdev; 2553 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2554 bio->bi_private = r10_bio; 2555 bio->bi_end_io = raid10_end_read_request; 2556 if (max_sectors < r10_bio->sectors) { 2557 /* Drat - have to split this up more */ 2558 struct bio *mbio = r10_bio->master_bio; 2559 int sectors_handled = 2560 r10_bio->sector + max_sectors 2561 - mbio->bi_iter.bi_sector; 2562 r10_bio->sectors = max_sectors; 2563 spin_lock_irq(&conf->device_lock); 2564 if (mbio->bi_phys_segments == 0) 2565 mbio->bi_phys_segments = 2; 2566 else 2567 mbio->bi_phys_segments++; 2568 spin_unlock_irq(&conf->device_lock); 2569 generic_make_request(bio); 2570 2571 r10_bio = mempool_alloc(conf->r10bio_pool, 2572 GFP_NOIO); 2573 r10_bio->master_bio = mbio; 2574 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2575 r10_bio->state = 0; 2576 set_bit(R10BIO_ReadError, 2577 &r10_bio->state); 2578 r10_bio->mddev = mddev; 2579 r10_bio->sector = mbio->bi_iter.bi_sector 2580 + sectors_handled; 2581 2582 goto read_more; 2583 } else 2584 generic_make_request(bio); 2585 } 2586 2587 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2588 { 2589 /* Some sort of write request has finished and it 2590 * succeeded in writing where we thought there was a 2591 * bad block. So forget the bad block. 2592 * Or possibly if failed and we need to record 2593 * a bad block. 2594 */ 2595 int m; 2596 struct md_rdev *rdev; 2597 2598 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2599 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2600 for (m = 0; m < conf->copies; m++) { 2601 int dev = r10_bio->devs[m].devnum; 2602 rdev = conf->mirrors[dev].rdev; 2603 if (r10_bio->devs[m].bio == NULL) 2604 continue; 2605 if (!r10_bio->devs[m].bio->bi_error) { 2606 rdev_clear_badblocks( 2607 rdev, 2608 r10_bio->devs[m].addr, 2609 r10_bio->sectors, 0); 2610 } else { 2611 if (!rdev_set_badblocks( 2612 rdev, 2613 r10_bio->devs[m].addr, 2614 r10_bio->sectors, 0)) 2615 md_error(conf->mddev, rdev); 2616 } 2617 rdev = conf->mirrors[dev].replacement; 2618 if (r10_bio->devs[m].repl_bio == NULL) 2619 continue; 2620 2621 if (!r10_bio->devs[m].repl_bio->bi_error) { 2622 rdev_clear_badblocks( 2623 rdev, 2624 r10_bio->devs[m].addr, 2625 r10_bio->sectors, 0); 2626 } else { 2627 if (!rdev_set_badblocks( 2628 rdev, 2629 r10_bio->devs[m].addr, 2630 r10_bio->sectors, 0)) 2631 md_error(conf->mddev, rdev); 2632 } 2633 } 2634 put_buf(r10_bio); 2635 } else { 2636 bool fail = false; 2637 for (m = 0; m < conf->copies; m++) { 2638 int dev = r10_bio->devs[m].devnum; 2639 struct bio *bio = r10_bio->devs[m].bio; 2640 rdev = conf->mirrors[dev].rdev; 2641 if (bio == IO_MADE_GOOD) { 2642 rdev_clear_badblocks( 2643 rdev, 2644 r10_bio->devs[m].addr, 2645 r10_bio->sectors, 0); 2646 rdev_dec_pending(rdev, conf->mddev); 2647 } else if (bio != NULL && bio->bi_error) { 2648 fail = true; 2649 if (!narrow_write_error(r10_bio, m)) { 2650 md_error(conf->mddev, rdev); 2651 set_bit(R10BIO_Degraded, 2652 &r10_bio->state); 2653 } 2654 rdev_dec_pending(rdev, conf->mddev); 2655 } 2656 bio = r10_bio->devs[m].repl_bio; 2657 rdev = conf->mirrors[dev].replacement; 2658 if (rdev && bio == IO_MADE_GOOD) { 2659 rdev_clear_badblocks( 2660 rdev, 2661 r10_bio->devs[m].addr, 2662 r10_bio->sectors, 0); 2663 rdev_dec_pending(rdev, conf->mddev); 2664 } 2665 } 2666 if (fail) { 2667 spin_lock_irq(&conf->device_lock); 2668 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2669 conf->nr_queued++; 2670 spin_unlock_irq(&conf->device_lock); 2671 md_wakeup_thread(conf->mddev->thread); 2672 } else { 2673 if (test_bit(R10BIO_WriteError, 2674 &r10_bio->state)) 2675 close_write(r10_bio); 2676 raid_end_bio_io(r10_bio); 2677 } 2678 } 2679 } 2680 2681 static void raid10d(struct md_thread *thread) 2682 { 2683 struct mddev *mddev = thread->mddev; 2684 struct r10bio *r10_bio; 2685 unsigned long flags; 2686 struct r10conf *conf = mddev->private; 2687 struct list_head *head = &conf->retry_list; 2688 struct blk_plug plug; 2689 2690 md_check_recovery(mddev); 2691 2692 if (!list_empty_careful(&conf->bio_end_io_list) && 2693 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2694 LIST_HEAD(tmp); 2695 spin_lock_irqsave(&conf->device_lock, flags); 2696 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2697 while (!list_empty(&conf->bio_end_io_list)) { 2698 list_move(conf->bio_end_io_list.prev, &tmp); 2699 conf->nr_queued--; 2700 } 2701 } 2702 spin_unlock_irqrestore(&conf->device_lock, flags); 2703 while (!list_empty(&tmp)) { 2704 r10_bio = list_first_entry(&tmp, struct r10bio, 2705 retry_list); 2706 list_del(&r10_bio->retry_list); 2707 if (mddev->degraded) 2708 set_bit(R10BIO_Degraded, &r10_bio->state); 2709 2710 if (test_bit(R10BIO_WriteError, 2711 &r10_bio->state)) 2712 close_write(r10_bio); 2713 raid_end_bio_io(r10_bio); 2714 } 2715 } 2716 2717 blk_start_plug(&plug); 2718 for (;;) { 2719 2720 flush_pending_writes(conf); 2721 2722 spin_lock_irqsave(&conf->device_lock, flags); 2723 if (list_empty(head)) { 2724 spin_unlock_irqrestore(&conf->device_lock, flags); 2725 break; 2726 } 2727 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2728 list_del(head->prev); 2729 conf->nr_queued--; 2730 spin_unlock_irqrestore(&conf->device_lock, flags); 2731 2732 mddev = r10_bio->mddev; 2733 conf = mddev->private; 2734 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2735 test_bit(R10BIO_WriteError, &r10_bio->state)) 2736 handle_write_completed(conf, r10_bio); 2737 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2738 reshape_request_write(mddev, r10_bio); 2739 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2740 sync_request_write(mddev, r10_bio); 2741 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2742 recovery_request_write(mddev, r10_bio); 2743 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2744 handle_read_error(mddev, r10_bio); 2745 else { 2746 /* just a partial read to be scheduled from a 2747 * separate context 2748 */ 2749 int slot = r10_bio->read_slot; 2750 generic_make_request(r10_bio->devs[slot].bio); 2751 } 2752 2753 cond_resched(); 2754 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2755 md_check_recovery(mddev); 2756 } 2757 blk_finish_plug(&plug); 2758 } 2759 2760 static int init_resync(struct r10conf *conf) 2761 { 2762 int buffs; 2763 int i; 2764 2765 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2766 BUG_ON(conf->r10buf_pool); 2767 conf->have_replacement = 0; 2768 for (i = 0; i < conf->geo.raid_disks; i++) 2769 if (conf->mirrors[i].replacement) 2770 conf->have_replacement = 1; 2771 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2772 if (!conf->r10buf_pool) 2773 return -ENOMEM; 2774 conf->next_resync = 0; 2775 return 0; 2776 } 2777 2778 /* 2779 * perform a "sync" on one "block" 2780 * 2781 * We need to make sure that no normal I/O request - particularly write 2782 * requests - conflict with active sync requests. 2783 * 2784 * This is achieved by tracking pending requests and a 'barrier' concept 2785 * that can be installed to exclude normal IO requests. 2786 * 2787 * Resync and recovery are handled very differently. 2788 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2789 * 2790 * For resync, we iterate over virtual addresses, read all copies, 2791 * and update if there are differences. If only one copy is live, 2792 * skip it. 2793 * For recovery, we iterate over physical addresses, read a good 2794 * value for each non-in_sync drive, and over-write. 2795 * 2796 * So, for recovery we may have several outstanding complex requests for a 2797 * given address, one for each out-of-sync device. We model this by allocating 2798 * a number of r10_bio structures, one for each out-of-sync device. 2799 * As we setup these structures, we collect all bio's together into a list 2800 * which we then process collectively to add pages, and then process again 2801 * to pass to generic_make_request. 2802 * 2803 * The r10_bio structures are linked using a borrowed master_bio pointer. 2804 * This link is counted in ->remaining. When the r10_bio that points to NULL 2805 * has its remaining count decremented to 0, the whole complex operation 2806 * is complete. 2807 * 2808 */ 2809 2810 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2811 int *skipped) 2812 { 2813 struct r10conf *conf = mddev->private; 2814 struct r10bio *r10_bio; 2815 struct bio *biolist = NULL, *bio; 2816 sector_t max_sector, nr_sectors; 2817 int i; 2818 int max_sync; 2819 sector_t sync_blocks; 2820 sector_t sectors_skipped = 0; 2821 int chunks_skipped = 0; 2822 sector_t chunk_mask = conf->geo.chunk_mask; 2823 2824 if (!conf->r10buf_pool) 2825 if (init_resync(conf)) 2826 return 0; 2827 2828 /* 2829 * Allow skipping a full rebuild for incremental assembly 2830 * of a clean array, like RAID1 does. 2831 */ 2832 if (mddev->bitmap == NULL && 2833 mddev->recovery_cp == MaxSector && 2834 mddev->reshape_position == MaxSector && 2835 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2836 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2837 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2838 conf->fullsync == 0) { 2839 *skipped = 1; 2840 return mddev->dev_sectors - sector_nr; 2841 } 2842 2843 skipped: 2844 max_sector = mddev->dev_sectors; 2845 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2846 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2847 max_sector = mddev->resync_max_sectors; 2848 if (sector_nr >= max_sector) { 2849 /* If we aborted, we need to abort the 2850 * sync on the 'current' bitmap chucks (there can 2851 * be several when recovering multiple devices). 2852 * as we may have started syncing it but not finished. 2853 * We can find the current address in 2854 * mddev->curr_resync, but for recovery, 2855 * we need to convert that to several 2856 * virtual addresses. 2857 */ 2858 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2859 end_reshape(conf); 2860 close_sync(conf); 2861 return 0; 2862 } 2863 2864 if (mddev->curr_resync < max_sector) { /* aborted */ 2865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2866 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2867 &sync_blocks, 1); 2868 else for (i = 0; i < conf->geo.raid_disks; i++) { 2869 sector_t sect = 2870 raid10_find_virt(conf, mddev->curr_resync, i); 2871 bitmap_end_sync(mddev->bitmap, sect, 2872 &sync_blocks, 1); 2873 } 2874 } else { 2875 /* completed sync */ 2876 if ((!mddev->bitmap || conf->fullsync) 2877 && conf->have_replacement 2878 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2879 /* Completed a full sync so the replacements 2880 * are now fully recovered. 2881 */ 2882 rcu_read_lock(); 2883 for (i = 0; i < conf->geo.raid_disks; i++) { 2884 struct md_rdev *rdev = 2885 rcu_dereference(conf->mirrors[i].replacement); 2886 if (rdev) 2887 rdev->recovery_offset = MaxSector; 2888 } 2889 rcu_read_unlock(); 2890 } 2891 conf->fullsync = 0; 2892 } 2893 bitmap_close_sync(mddev->bitmap); 2894 close_sync(conf); 2895 *skipped = 1; 2896 return sectors_skipped; 2897 } 2898 2899 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2900 return reshape_request(mddev, sector_nr, skipped); 2901 2902 if (chunks_skipped >= conf->geo.raid_disks) { 2903 /* if there has been nothing to do on any drive, 2904 * then there is nothing to do at all.. 2905 */ 2906 *skipped = 1; 2907 return (max_sector - sector_nr) + sectors_skipped; 2908 } 2909 2910 if (max_sector > mddev->resync_max) 2911 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2912 2913 /* make sure whole request will fit in a chunk - if chunks 2914 * are meaningful 2915 */ 2916 if (conf->geo.near_copies < conf->geo.raid_disks && 2917 max_sector > (sector_nr | chunk_mask)) 2918 max_sector = (sector_nr | chunk_mask) + 1; 2919 2920 /* 2921 * If there is non-resync activity waiting for a turn, then let it 2922 * though before starting on this new sync request. 2923 */ 2924 if (conf->nr_waiting) 2925 schedule_timeout_uninterruptible(1); 2926 2927 /* Again, very different code for resync and recovery. 2928 * Both must result in an r10bio with a list of bios that 2929 * have bi_end_io, bi_sector, bi_bdev set, 2930 * and bi_private set to the r10bio. 2931 * For recovery, we may actually create several r10bios 2932 * with 2 bios in each, that correspond to the bios in the main one. 2933 * In this case, the subordinate r10bios link back through a 2934 * borrowed master_bio pointer, and the counter in the master 2935 * includes a ref from each subordinate. 2936 */ 2937 /* First, we decide what to do and set ->bi_end_io 2938 * To end_sync_read if we want to read, and 2939 * end_sync_write if we will want to write. 2940 */ 2941 2942 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2943 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2944 /* recovery... the complicated one */ 2945 int j; 2946 r10_bio = NULL; 2947 2948 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2949 int still_degraded; 2950 struct r10bio *rb2; 2951 sector_t sect; 2952 int must_sync; 2953 int any_working; 2954 struct raid10_info *mirror = &conf->mirrors[i]; 2955 struct md_rdev *mrdev, *mreplace; 2956 2957 rcu_read_lock(); 2958 mrdev = rcu_dereference(mirror->rdev); 2959 mreplace = rcu_dereference(mirror->replacement); 2960 2961 if ((mrdev == NULL || 2962 test_bit(Faulty, &mrdev->flags) || 2963 test_bit(In_sync, &mrdev->flags)) && 2964 (mreplace == NULL || 2965 test_bit(Faulty, &mreplace->flags))) { 2966 rcu_read_unlock(); 2967 continue; 2968 } 2969 2970 still_degraded = 0; 2971 /* want to reconstruct this device */ 2972 rb2 = r10_bio; 2973 sect = raid10_find_virt(conf, sector_nr, i); 2974 if (sect >= mddev->resync_max_sectors) { 2975 /* last stripe is not complete - don't 2976 * try to recover this sector. 2977 */ 2978 rcu_read_unlock(); 2979 continue; 2980 } 2981 if (mreplace && test_bit(Faulty, &mreplace->flags)) 2982 mreplace = NULL; 2983 /* Unless we are doing a full sync, or a replacement 2984 * we only need to recover the block if it is set in 2985 * the bitmap 2986 */ 2987 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2988 &sync_blocks, 1); 2989 if (sync_blocks < max_sync) 2990 max_sync = sync_blocks; 2991 if (!must_sync && 2992 mreplace == NULL && 2993 !conf->fullsync) { 2994 /* yep, skip the sync_blocks here, but don't assume 2995 * that there will never be anything to do here 2996 */ 2997 chunks_skipped = -1; 2998 rcu_read_unlock(); 2999 continue; 3000 } 3001 atomic_inc(&mrdev->nr_pending); 3002 if (mreplace) 3003 atomic_inc(&mreplace->nr_pending); 3004 rcu_read_unlock(); 3005 3006 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3007 r10_bio->state = 0; 3008 raise_barrier(conf, rb2 != NULL); 3009 atomic_set(&r10_bio->remaining, 0); 3010 3011 r10_bio->master_bio = (struct bio*)rb2; 3012 if (rb2) 3013 atomic_inc(&rb2->remaining); 3014 r10_bio->mddev = mddev; 3015 set_bit(R10BIO_IsRecover, &r10_bio->state); 3016 r10_bio->sector = sect; 3017 3018 raid10_find_phys(conf, r10_bio); 3019 3020 /* Need to check if the array will still be 3021 * degraded 3022 */ 3023 rcu_read_lock(); 3024 for (j = 0; j < conf->geo.raid_disks; j++) { 3025 struct md_rdev *rdev = rcu_dereference( 3026 conf->mirrors[j].rdev); 3027 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3028 still_degraded = 1; 3029 break; 3030 } 3031 } 3032 3033 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3034 &sync_blocks, still_degraded); 3035 3036 any_working = 0; 3037 for (j=0; j<conf->copies;j++) { 3038 int k; 3039 int d = r10_bio->devs[j].devnum; 3040 sector_t from_addr, to_addr; 3041 struct md_rdev *rdev = 3042 rcu_dereference(conf->mirrors[d].rdev); 3043 sector_t sector, first_bad; 3044 int bad_sectors; 3045 if (!rdev || 3046 !test_bit(In_sync, &rdev->flags)) 3047 continue; 3048 /* This is where we read from */ 3049 any_working = 1; 3050 sector = r10_bio->devs[j].addr; 3051 3052 if (is_badblock(rdev, sector, max_sync, 3053 &first_bad, &bad_sectors)) { 3054 if (first_bad > sector) 3055 max_sync = first_bad - sector; 3056 else { 3057 bad_sectors -= (sector 3058 - first_bad); 3059 if (max_sync > bad_sectors) 3060 max_sync = bad_sectors; 3061 continue; 3062 } 3063 } 3064 bio = r10_bio->devs[0].bio; 3065 bio_reset(bio); 3066 bio->bi_next = biolist; 3067 biolist = bio; 3068 bio->bi_private = r10_bio; 3069 bio->bi_end_io = end_sync_read; 3070 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3071 from_addr = r10_bio->devs[j].addr; 3072 bio->bi_iter.bi_sector = from_addr + 3073 rdev->data_offset; 3074 bio->bi_bdev = rdev->bdev; 3075 atomic_inc(&rdev->nr_pending); 3076 /* and we write to 'i' (if not in_sync) */ 3077 3078 for (k=0; k<conf->copies; k++) 3079 if (r10_bio->devs[k].devnum == i) 3080 break; 3081 BUG_ON(k == conf->copies); 3082 to_addr = r10_bio->devs[k].addr; 3083 r10_bio->devs[0].devnum = d; 3084 r10_bio->devs[0].addr = from_addr; 3085 r10_bio->devs[1].devnum = i; 3086 r10_bio->devs[1].addr = to_addr; 3087 3088 if (!test_bit(In_sync, &mrdev->flags)) { 3089 bio = r10_bio->devs[1].bio; 3090 bio_reset(bio); 3091 bio->bi_next = biolist; 3092 biolist = bio; 3093 bio->bi_private = r10_bio; 3094 bio->bi_end_io = end_sync_write; 3095 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3096 bio->bi_iter.bi_sector = to_addr 3097 + mrdev->data_offset; 3098 bio->bi_bdev = mrdev->bdev; 3099 atomic_inc(&r10_bio->remaining); 3100 } else 3101 r10_bio->devs[1].bio->bi_end_io = NULL; 3102 3103 /* and maybe write to replacement */ 3104 bio = r10_bio->devs[1].repl_bio; 3105 if (bio) 3106 bio->bi_end_io = NULL; 3107 /* Note: if mreplace != NULL, then bio 3108 * cannot be NULL as r10buf_pool_alloc will 3109 * have allocated it. 3110 * So the second test here is pointless. 3111 * But it keeps semantic-checkers happy, and 3112 * this comment keeps human reviewers 3113 * happy. 3114 */ 3115 if (mreplace == NULL || bio == NULL || 3116 test_bit(Faulty, &mreplace->flags)) 3117 break; 3118 bio_reset(bio); 3119 bio->bi_next = biolist; 3120 biolist = bio; 3121 bio->bi_private = r10_bio; 3122 bio->bi_end_io = end_sync_write; 3123 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3124 bio->bi_iter.bi_sector = to_addr + 3125 mreplace->data_offset; 3126 bio->bi_bdev = mreplace->bdev; 3127 atomic_inc(&r10_bio->remaining); 3128 break; 3129 } 3130 rcu_read_unlock(); 3131 if (j == conf->copies) { 3132 /* Cannot recover, so abort the recovery or 3133 * record a bad block */ 3134 if (any_working) { 3135 /* problem is that there are bad blocks 3136 * on other device(s) 3137 */ 3138 int k; 3139 for (k = 0; k < conf->copies; k++) 3140 if (r10_bio->devs[k].devnum == i) 3141 break; 3142 if (!test_bit(In_sync, 3143 &mrdev->flags) 3144 && !rdev_set_badblocks( 3145 mrdev, 3146 r10_bio->devs[k].addr, 3147 max_sync, 0)) 3148 any_working = 0; 3149 if (mreplace && 3150 !rdev_set_badblocks( 3151 mreplace, 3152 r10_bio->devs[k].addr, 3153 max_sync, 0)) 3154 any_working = 0; 3155 } 3156 if (!any_working) { 3157 if (!test_and_set_bit(MD_RECOVERY_INTR, 3158 &mddev->recovery)) 3159 printk(KERN_INFO "md/raid10:%s: insufficient " 3160 "working devices for recovery.\n", 3161 mdname(mddev)); 3162 mirror->recovery_disabled 3163 = mddev->recovery_disabled; 3164 } 3165 put_buf(r10_bio); 3166 if (rb2) 3167 atomic_dec(&rb2->remaining); 3168 r10_bio = rb2; 3169 rdev_dec_pending(mrdev, mddev); 3170 if (mreplace) 3171 rdev_dec_pending(mreplace, mddev); 3172 break; 3173 } 3174 rdev_dec_pending(mrdev, mddev); 3175 if (mreplace) 3176 rdev_dec_pending(mreplace, mddev); 3177 } 3178 if (biolist == NULL) { 3179 while (r10_bio) { 3180 struct r10bio *rb2 = r10_bio; 3181 r10_bio = (struct r10bio*) rb2->master_bio; 3182 rb2->master_bio = NULL; 3183 put_buf(rb2); 3184 } 3185 goto giveup; 3186 } 3187 } else { 3188 /* resync. Schedule a read for every block at this virt offset */ 3189 int count = 0; 3190 3191 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3192 3193 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3194 &sync_blocks, mddev->degraded) && 3195 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3196 &mddev->recovery)) { 3197 /* We can skip this block */ 3198 *skipped = 1; 3199 return sync_blocks + sectors_skipped; 3200 } 3201 if (sync_blocks < max_sync) 3202 max_sync = sync_blocks; 3203 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3204 r10_bio->state = 0; 3205 3206 r10_bio->mddev = mddev; 3207 atomic_set(&r10_bio->remaining, 0); 3208 raise_barrier(conf, 0); 3209 conf->next_resync = sector_nr; 3210 3211 r10_bio->master_bio = NULL; 3212 r10_bio->sector = sector_nr; 3213 set_bit(R10BIO_IsSync, &r10_bio->state); 3214 raid10_find_phys(conf, r10_bio); 3215 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3216 3217 for (i = 0; i < conf->copies; i++) { 3218 int d = r10_bio->devs[i].devnum; 3219 sector_t first_bad, sector; 3220 int bad_sectors; 3221 struct md_rdev *rdev; 3222 3223 if (r10_bio->devs[i].repl_bio) 3224 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3225 3226 bio = r10_bio->devs[i].bio; 3227 bio_reset(bio); 3228 bio->bi_error = -EIO; 3229 rcu_read_lock(); 3230 rdev = rcu_dereference(conf->mirrors[d].rdev); 3231 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3232 rcu_read_unlock(); 3233 continue; 3234 } 3235 sector = r10_bio->devs[i].addr; 3236 if (is_badblock(rdev, sector, max_sync, 3237 &first_bad, &bad_sectors)) { 3238 if (first_bad > sector) 3239 max_sync = first_bad - sector; 3240 else { 3241 bad_sectors -= (sector - first_bad); 3242 if (max_sync > bad_sectors) 3243 max_sync = bad_sectors; 3244 rcu_read_unlock(); 3245 continue; 3246 } 3247 } 3248 atomic_inc(&rdev->nr_pending); 3249 atomic_inc(&r10_bio->remaining); 3250 bio->bi_next = biolist; 3251 biolist = bio; 3252 bio->bi_private = r10_bio; 3253 bio->bi_end_io = end_sync_read; 3254 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3255 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3256 bio->bi_bdev = rdev->bdev; 3257 count++; 3258 3259 rdev = rcu_dereference(conf->mirrors[d].replacement); 3260 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3261 rcu_read_unlock(); 3262 continue; 3263 } 3264 atomic_inc(&rdev->nr_pending); 3265 rcu_read_unlock(); 3266 3267 /* Need to set up for writing to the replacement */ 3268 bio = r10_bio->devs[i].repl_bio; 3269 bio_reset(bio); 3270 bio->bi_error = -EIO; 3271 3272 sector = r10_bio->devs[i].addr; 3273 bio->bi_next = biolist; 3274 biolist = bio; 3275 bio->bi_private = r10_bio; 3276 bio->bi_end_io = end_sync_write; 3277 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3278 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3279 bio->bi_bdev = rdev->bdev; 3280 count++; 3281 } 3282 3283 if (count < 2) { 3284 for (i=0; i<conf->copies; i++) { 3285 int d = r10_bio->devs[i].devnum; 3286 if (r10_bio->devs[i].bio->bi_end_io) 3287 rdev_dec_pending(conf->mirrors[d].rdev, 3288 mddev); 3289 if (r10_bio->devs[i].repl_bio && 3290 r10_bio->devs[i].repl_bio->bi_end_io) 3291 rdev_dec_pending( 3292 conf->mirrors[d].replacement, 3293 mddev); 3294 } 3295 put_buf(r10_bio); 3296 biolist = NULL; 3297 goto giveup; 3298 } 3299 } 3300 3301 nr_sectors = 0; 3302 if (sector_nr + max_sync < max_sector) 3303 max_sector = sector_nr + max_sync; 3304 do { 3305 struct page *page; 3306 int len = PAGE_SIZE; 3307 if (sector_nr + (len>>9) > max_sector) 3308 len = (max_sector - sector_nr) << 9; 3309 if (len == 0) 3310 break; 3311 for (bio= biolist ; bio ; bio=bio->bi_next) { 3312 struct bio *bio2; 3313 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3314 if (bio_add_page(bio, page, len, 0)) 3315 continue; 3316 3317 /* stop here */ 3318 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3319 for (bio2 = biolist; 3320 bio2 && bio2 != bio; 3321 bio2 = bio2->bi_next) { 3322 /* remove last page from this bio */ 3323 bio2->bi_vcnt--; 3324 bio2->bi_iter.bi_size -= len; 3325 bio_clear_flag(bio2, BIO_SEG_VALID); 3326 } 3327 goto bio_full; 3328 } 3329 nr_sectors += len>>9; 3330 sector_nr += len>>9; 3331 } while (biolist->bi_vcnt < RESYNC_PAGES); 3332 bio_full: 3333 r10_bio->sectors = nr_sectors; 3334 3335 while (biolist) { 3336 bio = biolist; 3337 biolist = biolist->bi_next; 3338 3339 bio->bi_next = NULL; 3340 r10_bio = bio->bi_private; 3341 r10_bio->sectors = nr_sectors; 3342 3343 if (bio->bi_end_io == end_sync_read) { 3344 md_sync_acct(bio->bi_bdev, nr_sectors); 3345 bio->bi_error = 0; 3346 generic_make_request(bio); 3347 } 3348 } 3349 3350 if (sectors_skipped) 3351 /* pretend they weren't skipped, it makes 3352 * no important difference in this case 3353 */ 3354 md_done_sync(mddev, sectors_skipped, 1); 3355 3356 return sectors_skipped + nr_sectors; 3357 giveup: 3358 /* There is nowhere to write, so all non-sync 3359 * drives must be failed or in resync, all drives 3360 * have a bad block, so try the next chunk... 3361 */ 3362 if (sector_nr + max_sync < max_sector) 3363 max_sector = sector_nr + max_sync; 3364 3365 sectors_skipped += (max_sector - sector_nr); 3366 chunks_skipped ++; 3367 sector_nr = max_sector; 3368 goto skipped; 3369 } 3370 3371 static sector_t 3372 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3373 { 3374 sector_t size; 3375 struct r10conf *conf = mddev->private; 3376 3377 if (!raid_disks) 3378 raid_disks = min(conf->geo.raid_disks, 3379 conf->prev.raid_disks); 3380 if (!sectors) 3381 sectors = conf->dev_sectors; 3382 3383 size = sectors >> conf->geo.chunk_shift; 3384 sector_div(size, conf->geo.far_copies); 3385 size = size * raid_disks; 3386 sector_div(size, conf->geo.near_copies); 3387 3388 return size << conf->geo.chunk_shift; 3389 } 3390 3391 static void calc_sectors(struct r10conf *conf, sector_t size) 3392 { 3393 /* Calculate the number of sectors-per-device that will 3394 * actually be used, and set conf->dev_sectors and 3395 * conf->stride 3396 */ 3397 3398 size = size >> conf->geo.chunk_shift; 3399 sector_div(size, conf->geo.far_copies); 3400 size = size * conf->geo.raid_disks; 3401 sector_div(size, conf->geo.near_copies); 3402 /* 'size' is now the number of chunks in the array */ 3403 /* calculate "used chunks per device" */ 3404 size = size * conf->copies; 3405 3406 /* We need to round up when dividing by raid_disks to 3407 * get the stride size. 3408 */ 3409 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3410 3411 conf->dev_sectors = size << conf->geo.chunk_shift; 3412 3413 if (conf->geo.far_offset) 3414 conf->geo.stride = 1 << conf->geo.chunk_shift; 3415 else { 3416 sector_div(size, conf->geo.far_copies); 3417 conf->geo.stride = size << conf->geo.chunk_shift; 3418 } 3419 } 3420 3421 enum geo_type {geo_new, geo_old, geo_start}; 3422 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3423 { 3424 int nc, fc, fo; 3425 int layout, chunk, disks; 3426 switch (new) { 3427 case geo_old: 3428 layout = mddev->layout; 3429 chunk = mddev->chunk_sectors; 3430 disks = mddev->raid_disks - mddev->delta_disks; 3431 break; 3432 case geo_new: 3433 layout = mddev->new_layout; 3434 chunk = mddev->new_chunk_sectors; 3435 disks = mddev->raid_disks; 3436 break; 3437 default: /* avoid 'may be unused' warnings */ 3438 case geo_start: /* new when starting reshape - raid_disks not 3439 * updated yet. */ 3440 layout = mddev->new_layout; 3441 chunk = mddev->new_chunk_sectors; 3442 disks = mddev->raid_disks + mddev->delta_disks; 3443 break; 3444 } 3445 if (layout >> 19) 3446 return -1; 3447 if (chunk < (PAGE_SIZE >> 9) || 3448 !is_power_of_2(chunk)) 3449 return -2; 3450 nc = layout & 255; 3451 fc = (layout >> 8) & 255; 3452 fo = layout & (1<<16); 3453 geo->raid_disks = disks; 3454 geo->near_copies = nc; 3455 geo->far_copies = fc; 3456 geo->far_offset = fo; 3457 switch (layout >> 17) { 3458 case 0: /* original layout. simple but not always optimal */ 3459 geo->far_set_size = disks; 3460 break; 3461 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3462 * actually using this, but leave code here just in case.*/ 3463 geo->far_set_size = disks/fc; 3464 WARN(geo->far_set_size < fc, 3465 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3466 break; 3467 case 2: /* "improved" layout fixed to match documentation */ 3468 geo->far_set_size = fc * nc; 3469 break; 3470 default: /* Not a valid layout */ 3471 return -1; 3472 } 3473 geo->chunk_mask = chunk - 1; 3474 geo->chunk_shift = ffz(~chunk); 3475 return nc*fc; 3476 } 3477 3478 static struct r10conf *setup_conf(struct mddev *mddev) 3479 { 3480 struct r10conf *conf = NULL; 3481 int err = -EINVAL; 3482 struct geom geo; 3483 int copies; 3484 3485 copies = setup_geo(&geo, mddev, geo_new); 3486 3487 if (copies == -2) { 3488 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3489 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3490 mdname(mddev), PAGE_SIZE); 3491 goto out; 3492 } 3493 3494 if (copies < 2 || copies > mddev->raid_disks) { 3495 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3496 mdname(mddev), mddev->new_layout); 3497 goto out; 3498 } 3499 3500 err = -ENOMEM; 3501 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3502 if (!conf) 3503 goto out; 3504 3505 /* FIXME calc properly */ 3506 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3507 max(0,-mddev->delta_disks)), 3508 GFP_KERNEL); 3509 if (!conf->mirrors) 3510 goto out; 3511 3512 conf->tmppage = alloc_page(GFP_KERNEL); 3513 if (!conf->tmppage) 3514 goto out; 3515 3516 conf->geo = geo; 3517 conf->copies = copies; 3518 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3519 r10bio_pool_free, conf); 3520 if (!conf->r10bio_pool) 3521 goto out; 3522 3523 calc_sectors(conf, mddev->dev_sectors); 3524 if (mddev->reshape_position == MaxSector) { 3525 conf->prev = conf->geo; 3526 conf->reshape_progress = MaxSector; 3527 } else { 3528 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3529 err = -EINVAL; 3530 goto out; 3531 } 3532 conf->reshape_progress = mddev->reshape_position; 3533 if (conf->prev.far_offset) 3534 conf->prev.stride = 1 << conf->prev.chunk_shift; 3535 else 3536 /* far_copies must be 1 */ 3537 conf->prev.stride = conf->dev_sectors; 3538 } 3539 conf->reshape_safe = conf->reshape_progress; 3540 spin_lock_init(&conf->device_lock); 3541 INIT_LIST_HEAD(&conf->retry_list); 3542 INIT_LIST_HEAD(&conf->bio_end_io_list); 3543 3544 spin_lock_init(&conf->resync_lock); 3545 init_waitqueue_head(&conf->wait_barrier); 3546 atomic_set(&conf->nr_pending, 0); 3547 3548 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3549 if (!conf->thread) 3550 goto out; 3551 3552 conf->mddev = mddev; 3553 return conf; 3554 3555 out: 3556 if (err == -ENOMEM) 3557 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3558 mdname(mddev)); 3559 if (conf) { 3560 mempool_destroy(conf->r10bio_pool); 3561 kfree(conf->mirrors); 3562 safe_put_page(conf->tmppage); 3563 kfree(conf); 3564 } 3565 return ERR_PTR(err); 3566 } 3567 3568 static int raid10_run(struct mddev *mddev) 3569 { 3570 struct r10conf *conf; 3571 int i, disk_idx, chunk_size; 3572 struct raid10_info *disk; 3573 struct md_rdev *rdev; 3574 sector_t size; 3575 sector_t min_offset_diff = 0; 3576 int first = 1; 3577 bool discard_supported = false; 3578 3579 if (mddev->private == NULL) { 3580 conf = setup_conf(mddev); 3581 if (IS_ERR(conf)) 3582 return PTR_ERR(conf); 3583 mddev->private = conf; 3584 } 3585 conf = mddev->private; 3586 if (!conf) 3587 goto out; 3588 3589 mddev->thread = conf->thread; 3590 conf->thread = NULL; 3591 3592 chunk_size = mddev->chunk_sectors << 9; 3593 if (mddev->queue) { 3594 blk_queue_max_discard_sectors(mddev->queue, 3595 mddev->chunk_sectors); 3596 blk_queue_max_write_same_sectors(mddev->queue, 0); 3597 blk_queue_io_min(mddev->queue, chunk_size); 3598 if (conf->geo.raid_disks % conf->geo.near_copies) 3599 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3600 else 3601 blk_queue_io_opt(mddev->queue, chunk_size * 3602 (conf->geo.raid_disks / conf->geo.near_copies)); 3603 } 3604 3605 rdev_for_each(rdev, mddev) { 3606 long long diff; 3607 struct request_queue *q; 3608 3609 disk_idx = rdev->raid_disk; 3610 if (disk_idx < 0) 3611 continue; 3612 if (disk_idx >= conf->geo.raid_disks && 3613 disk_idx >= conf->prev.raid_disks) 3614 continue; 3615 disk = conf->mirrors + disk_idx; 3616 3617 if (test_bit(Replacement, &rdev->flags)) { 3618 if (disk->replacement) 3619 goto out_free_conf; 3620 disk->replacement = rdev; 3621 } else { 3622 if (disk->rdev) 3623 goto out_free_conf; 3624 disk->rdev = rdev; 3625 } 3626 q = bdev_get_queue(rdev->bdev); 3627 diff = (rdev->new_data_offset - rdev->data_offset); 3628 if (!mddev->reshape_backwards) 3629 diff = -diff; 3630 if (diff < 0) 3631 diff = 0; 3632 if (first || diff < min_offset_diff) 3633 min_offset_diff = diff; 3634 3635 if (mddev->gendisk) 3636 disk_stack_limits(mddev->gendisk, rdev->bdev, 3637 rdev->data_offset << 9); 3638 3639 disk->head_position = 0; 3640 3641 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3642 discard_supported = true; 3643 } 3644 3645 if (mddev->queue) { 3646 if (discard_supported) 3647 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3648 mddev->queue); 3649 else 3650 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3651 mddev->queue); 3652 } 3653 /* need to check that every block has at least one working mirror */ 3654 if (!enough(conf, -1)) { 3655 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3656 mdname(mddev)); 3657 goto out_free_conf; 3658 } 3659 3660 if (conf->reshape_progress != MaxSector) { 3661 /* must ensure that shape change is supported */ 3662 if (conf->geo.far_copies != 1 && 3663 conf->geo.far_offset == 0) 3664 goto out_free_conf; 3665 if (conf->prev.far_copies != 1 && 3666 conf->prev.far_offset == 0) 3667 goto out_free_conf; 3668 } 3669 3670 mddev->degraded = 0; 3671 for (i = 0; 3672 i < conf->geo.raid_disks 3673 || i < conf->prev.raid_disks; 3674 i++) { 3675 3676 disk = conf->mirrors + i; 3677 3678 if (!disk->rdev && disk->replacement) { 3679 /* The replacement is all we have - use it */ 3680 disk->rdev = disk->replacement; 3681 disk->replacement = NULL; 3682 clear_bit(Replacement, &disk->rdev->flags); 3683 } 3684 3685 if (!disk->rdev || 3686 !test_bit(In_sync, &disk->rdev->flags)) { 3687 disk->head_position = 0; 3688 mddev->degraded++; 3689 if (disk->rdev && 3690 disk->rdev->saved_raid_disk < 0) 3691 conf->fullsync = 1; 3692 } 3693 disk->recovery_disabled = mddev->recovery_disabled - 1; 3694 } 3695 3696 if (mddev->recovery_cp != MaxSector) 3697 printk(KERN_NOTICE "md/raid10:%s: not clean" 3698 " -- starting background reconstruction\n", 3699 mdname(mddev)); 3700 printk(KERN_INFO 3701 "md/raid10:%s: active with %d out of %d devices\n", 3702 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3703 conf->geo.raid_disks); 3704 /* 3705 * Ok, everything is just fine now 3706 */ 3707 mddev->dev_sectors = conf->dev_sectors; 3708 size = raid10_size(mddev, 0, 0); 3709 md_set_array_sectors(mddev, size); 3710 mddev->resync_max_sectors = size; 3711 3712 if (mddev->queue) { 3713 int stripe = conf->geo.raid_disks * 3714 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3715 3716 /* Calculate max read-ahead size. 3717 * We need to readahead at least twice a whole stripe.... 3718 * maybe... 3719 */ 3720 stripe /= conf->geo.near_copies; 3721 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3722 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3723 } 3724 3725 if (md_integrity_register(mddev)) 3726 goto out_free_conf; 3727 3728 if (conf->reshape_progress != MaxSector) { 3729 unsigned long before_length, after_length; 3730 3731 before_length = ((1 << conf->prev.chunk_shift) * 3732 conf->prev.far_copies); 3733 after_length = ((1 << conf->geo.chunk_shift) * 3734 conf->geo.far_copies); 3735 3736 if (max(before_length, after_length) > min_offset_diff) { 3737 /* This cannot work */ 3738 printk("md/raid10: offset difference not enough to continue reshape\n"); 3739 goto out_free_conf; 3740 } 3741 conf->offset_diff = min_offset_diff; 3742 3743 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3744 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3745 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3746 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3747 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3748 "reshape"); 3749 } 3750 3751 return 0; 3752 3753 out_free_conf: 3754 md_unregister_thread(&mddev->thread); 3755 mempool_destroy(conf->r10bio_pool); 3756 safe_put_page(conf->tmppage); 3757 kfree(conf->mirrors); 3758 kfree(conf); 3759 mddev->private = NULL; 3760 out: 3761 return -EIO; 3762 } 3763 3764 static void raid10_free(struct mddev *mddev, void *priv) 3765 { 3766 struct r10conf *conf = priv; 3767 3768 mempool_destroy(conf->r10bio_pool); 3769 safe_put_page(conf->tmppage); 3770 kfree(conf->mirrors); 3771 kfree(conf->mirrors_old); 3772 kfree(conf->mirrors_new); 3773 kfree(conf); 3774 } 3775 3776 static void raid10_quiesce(struct mddev *mddev, int state) 3777 { 3778 struct r10conf *conf = mddev->private; 3779 3780 switch(state) { 3781 case 1: 3782 raise_barrier(conf, 0); 3783 break; 3784 case 0: 3785 lower_barrier(conf); 3786 break; 3787 } 3788 } 3789 3790 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3791 { 3792 /* Resize of 'far' arrays is not supported. 3793 * For 'near' and 'offset' arrays we can set the 3794 * number of sectors used to be an appropriate multiple 3795 * of the chunk size. 3796 * For 'offset', this is far_copies*chunksize. 3797 * For 'near' the multiplier is the LCM of 3798 * near_copies and raid_disks. 3799 * So if far_copies > 1 && !far_offset, fail. 3800 * Else find LCM(raid_disks, near_copy)*far_copies and 3801 * multiply by chunk_size. Then round to this number. 3802 * This is mostly done by raid10_size() 3803 */ 3804 struct r10conf *conf = mddev->private; 3805 sector_t oldsize, size; 3806 3807 if (mddev->reshape_position != MaxSector) 3808 return -EBUSY; 3809 3810 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3811 return -EINVAL; 3812 3813 oldsize = raid10_size(mddev, 0, 0); 3814 size = raid10_size(mddev, sectors, 0); 3815 if (mddev->external_size && 3816 mddev->array_sectors > size) 3817 return -EINVAL; 3818 if (mddev->bitmap) { 3819 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3820 if (ret) 3821 return ret; 3822 } 3823 md_set_array_sectors(mddev, size); 3824 if (mddev->queue) { 3825 set_capacity(mddev->gendisk, mddev->array_sectors); 3826 revalidate_disk(mddev->gendisk); 3827 } 3828 if (sectors > mddev->dev_sectors && 3829 mddev->recovery_cp > oldsize) { 3830 mddev->recovery_cp = oldsize; 3831 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3832 } 3833 calc_sectors(conf, sectors); 3834 mddev->dev_sectors = conf->dev_sectors; 3835 mddev->resync_max_sectors = size; 3836 return 0; 3837 } 3838 3839 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3840 { 3841 struct md_rdev *rdev; 3842 struct r10conf *conf; 3843 3844 if (mddev->degraded > 0) { 3845 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3846 mdname(mddev)); 3847 return ERR_PTR(-EINVAL); 3848 } 3849 sector_div(size, devs); 3850 3851 /* Set new parameters */ 3852 mddev->new_level = 10; 3853 /* new layout: far_copies = 1, near_copies = 2 */ 3854 mddev->new_layout = (1<<8) + 2; 3855 mddev->new_chunk_sectors = mddev->chunk_sectors; 3856 mddev->delta_disks = mddev->raid_disks; 3857 mddev->raid_disks *= 2; 3858 /* make sure it will be not marked as dirty */ 3859 mddev->recovery_cp = MaxSector; 3860 mddev->dev_sectors = size; 3861 3862 conf = setup_conf(mddev); 3863 if (!IS_ERR(conf)) { 3864 rdev_for_each(rdev, mddev) 3865 if (rdev->raid_disk >= 0) { 3866 rdev->new_raid_disk = rdev->raid_disk * 2; 3867 rdev->sectors = size; 3868 } 3869 conf->barrier = 1; 3870 } 3871 3872 return conf; 3873 } 3874 3875 static void *raid10_takeover(struct mddev *mddev) 3876 { 3877 struct r0conf *raid0_conf; 3878 3879 /* raid10 can take over: 3880 * raid0 - providing it has only two drives 3881 */ 3882 if (mddev->level == 0) { 3883 /* for raid0 takeover only one zone is supported */ 3884 raid0_conf = mddev->private; 3885 if (raid0_conf->nr_strip_zones > 1) { 3886 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3887 " with more than one zone.\n", 3888 mdname(mddev)); 3889 return ERR_PTR(-EINVAL); 3890 } 3891 return raid10_takeover_raid0(mddev, 3892 raid0_conf->strip_zone->zone_end, 3893 raid0_conf->strip_zone->nb_dev); 3894 } 3895 return ERR_PTR(-EINVAL); 3896 } 3897 3898 static int raid10_check_reshape(struct mddev *mddev) 3899 { 3900 /* Called when there is a request to change 3901 * - layout (to ->new_layout) 3902 * - chunk size (to ->new_chunk_sectors) 3903 * - raid_disks (by delta_disks) 3904 * or when trying to restart a reshape that was ongoing. 3905 * 3906 * We need to validate the request and possibly allocate 3907 * space if that might be an issue later. 3908 * 3909 * Currently we reject any reshape of a 'far' mode array, 3910 * allow chunk size to change if new is generally acceptable, 3911 * allow raid_disks to increase, and allow 3912 * a switch between 'near' mode and 'offset' mode. 3913 */ 3914 struct r10conf *conf = mddev->private; 3915 struct geom geo; 3916 3917 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3918 return -EINVAL; 3919 3920 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3921 /* mustn't change number of copies */ 3922 return -EINVAL; 3923 if (geo.far_copies > 1 && !geo.far_offset) 3924 /* Cannot switch to 'far' mode */ 3925 return -EINVAL; 3926 3927 if (mddev->array_sectors & geo.chunk_mask) 3928 /* not factor of array size */ 3929 return -EINVAL; 3930 3931 if (!enough(conf, -1)) 3932 return -EINVAL; 3933 3934 kfree(conf->mirrors_new); 3935 conf->mirrors_new = NULL; 3936 if (mddev->delta_disks > 0) { 3937 /* allocate new 'mirrors' list */ 3938 conf->mirrors_new = kzalloc( 3939 sizeof(struct raid10_info) 3940 *(mddev->raid_disks + 3941 mddev->delta_disks), 3942 GFP_KERNEL); 3943 if (!conf->mirrors_new) 3944 return -ENOMEM; 3945 } 3946 return 0; 3947 } 3948 3949 /* 3950 * Need to check if array has failed when deciding whether to: 3951 * - start an array 3952 * - remove non-faulty devices 3953 * - add a spare 3954 * - allow a reshape 3955 * This determination is simple when no reshape is happening. 3956 * However if there is a reshape, we need to carefully check 3957 * both the before and after sections. 3958 * This is because some failed devices may only affect one 3959 * of the two sections, and some non-in_sync devices may 3960 * be insync in the section most affected by failed devices. 3961 */ 3962 static int calc_degraded(struct r10conf *conf) 3963 { 3964 int degraded, degraded2; 3965 int i; 3966 3967 rcu_read_lock(); 3968 degraded = 0; 3969 /* 'prev' section first */ 3970 for (i = 0; i < conf->prev.raid_disks; i++) { 3971 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3972 if (!rdev || test_bit(Faulty, &rdev->flags)) 3973 degraded++; 3974 else if (!test_bit(In_sync, &rdev->flags)) 3975 /* When we can reduce the number of devices in 3976 * an array, this might not contribute to 3977 * 'degraded'. It does now. 3978 */ 3979 degraded++; 3980 } 3981 rcu_read_unlock(); 3982 if (conf->geo.raid_disks == conf->prev.raid_disks) 3983 return degraded; 3984 rcu_read_lock(); 3985 degraded2 = 0; 3986 for (i = 0; i < conf->geo.raid_disks; i++) { 3987 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3988 if (!rdev || test_bit(Faulty, &rdev->flags)) 3989 degraded2++; 3990 else if (!test_bit(In_sync, &rdev->flags)) { 3991 /* If reshape is increasing the number of devices, 3992 * this section has already been recovered, so 3993 * it doesn't contribute to degraded. 3994 * else it does. 3995 */ 3996 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3997 degraded2++; 3998 } 3999 } 4000 rcu_read_unlock(); 4001 if (degraded2 > degraded) 4002 return degraded2; 4003 return degraded; 4004 } 4005 4006 static int raid10_start_reshape(struct mddev *mddev) 4007 { 4008 /* A 'reshape' has been requested. This commits 4009 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4010 * This also checks if there are enough spares and adds them 4011 * to the array. 4012 * We currently require enough spares to make the final 4013 * array non-degraded. We also require that the difference 4014 * between old and new data_offset - on each device - is 4015 * enough that we never risk over-writing. 4016 */ 4017 4018 unsigned long before_length, after_length; 4019 sector_t min_offset_diff = 0; 4020 int first = 1; 4021 struct geom new; 4022 struct r10conf *conf = mddev->private; 4023 struct md_rdev *rdev; 4024 int spares = 0; 4025 int ret; 4026 4027 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4028 return -EBUSY; 4029 4030 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4031 return -EINVAL; 4032 4033 before_length = ((1 << conf->prev.chunk_shift) * 4034 conf->prev.far_copies); 4035 after_length = ((1 << conf->geo.chunk_shift) * 4036 conf->geo.far_copies); 4037 4038 rdev_for_each(rdev, mddev) { 4039 if (!test_bit(In_sync, &rdev->flags) 4040 && !test_bit(Faulty, &rdev->flags)) 4041 spares++; 4042 if (rdev->raid_disk >= 0) { 4043 long long diff = (rdev->new_data_offset 4044 - rdev->data_offset); 4045 if (!mddev->reshape_backwards) 4046 diff = -diff; 4047 if (diff < 0) 4048 diff = 0; 4049 if (first || diff < min_offset_diff) 4050 min_offset_diff = diff; 4051 } 4052 } 4053 4054 if (max(before_length, after_length) > min_offset_diff) 4055 return -EINVAL; 4056 4057 if (spares < mddev->delta_disks) 4058 return -EINVAL; 4059 4060 conf->offset_diff = min_offset_diff; 4061 spin_lock_irq(&conf->device_lock); 4062 if (conf->mirrors_new) { 4063 memcpy(conf->mirrors_new, conf->mirrors, 4064 sizeof(struct raid10_info)*conf->prev.raid_disks); 4065 smp_mb(); 4066 kfree(conf->mirrors_old); 4067 conf->mirrors_old = conf->mirrors; 4068 conf->mirrors = conf->mirrors_new; 4069 conf->mirrors_new = NULL; 4070 } 4071 setup_geo(&conf->geo, mddev, geo_start); 4072 smp_mb(); 4073 if (mddev->reshape_backwards) { 4074 sector_t size = raid10_size(mddev, 0, 0); 4075 if (size < mddev->array_sectors) { 4076 spin_unlock_irq(&conf->device_lock); 4077 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4078 mdname(mddev)); 4079 return -EINVAL; 4080 } 4081 mddev->resync_max_sectors = size; 4082 conf->reshape_progress = size; 4083 } else 4084 conf->reshape_progress = 0; 4085 conf->reshape_safe = conf->reshape_progress; 4086 spin_unlock_irq(&conf->device_lock); 4087 4088 if (mddev->delta_disks && mddev->bitmap) { 4089 ret = bitmap_resize(mddev->bitmap, 4090 raid10_size(mddev, 0, 4091 conf->geo.raid_disks), 4092 0, 0); 4093 if (ret) 4094 goto abort; 4095 } 4096 if (mddev->delta_disks > 0) { 4097 rdev_for_each(rdev, mddev) 4098 if (rdev->raid_disk < 0 && 4099 !test_bit(Faulty, &rdev->flags)) { 4100 if (raid10_add_disk(mddev, rdev) == 0) { 4101 if (rdev->raid_disk >= 4102 conf->prev.raid_disks) 4103 set_bit(In_sync, &rdev->flags); 4104 else 4105 rdev->recovery_offset = 0; 4106 4107 if (sysfs_link_rdev(mddev, rdev)) 4108 /* Failure here is OK */; 4109 } 4110 } else if (rdev->raid_disk >= conf->prev.raid_disks 4111 && !test_bit(Faulty, &rdev->flags)) { 4112 /* This is a spare that was manually added */ 4113 set_bit(In_sync, &rdev->flags); 4114 } 4115 } 4116 /* When a reshape changes the number of devices, 4117 * ->degraded is measured against the larger of the 4118 * pre and post numbers. 4119 */ 4120 spin_lock_irq(&conf->device_lock); 4121 mddev->degraded = calc_degraded(conf); 4122 spin_unlock_irq(&conf->device_lock); 4123 mddev->raid_disks = conf->geo.raid_disks; 4124 mddev->reshape_position = conf->reshape_progress; 4125 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4126 4127 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4128 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4129 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4130 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4131 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4132 4133 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4134 "reshape"); 4135 if (!mddev->sync_thread) { 4136 ret = -EAGAIN; 4137 goto abort; 4138 } 4139 conf->reshape_checkpoint = jiffies; 4140 md_wakeup_thread(mddev->sync_thread); 4141 md_new_event(mddev); 4142 return 0; 4143 4144 abort: 4145 mddev->recovery = 0; 4146 spin_lock_irq(&conf->device_lock); 4147 conf->geo = conf->prev; 4148 mddev->raid_disks = conf->geo.raid_disks; 4149 rdev_for_each(rdev, mddev) 4150 rdev->new_data_offset = rdev->data_offset; 4151 smp_wmb(); 4152 conf->reshape_progress = MaxSector; 4153 conf->reshape_safe = MaxSector; 4154 mddev->reshape_position = MaxSector; 4155 spin_unlock_irq(&conf->device_lock); 4156 return ret; 4157 } 4158 4159 /* Calculate the last device-address that could contain 4160 * any block from the chunk that includes the array-address 's' 4161 * and report the next address. 4162 * i.e. the address returned will be chunk-aligned and after 4163 * any data that is in the chunk containing 's'. 4164 */ 4165 static sector_t last_dev_address(sector_t s, struct geom *geo) 4166 { 4167 s = (s | geo->chunk_mask) + 1; 4168 s >>= geo->chunk_shift; 4169 s *= geo->near_copies; 4170 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4171 s *= geo->far_copies; 4172 s <<= geo->chunk_shift; 4173 return s; 4174 } 4175 4176 /* Calculate the first device-address that could contain 4177 * any block from the chunk that includes the array-address 's'. 4178 * This too will be the start of a chunk 4179 */ 4180 static sector_t first_dev_address(sector_t s, struct geom *geo) 4181 { 4182 s >>= geo->chunk_shift; 4183 s *= geo->near_copies; 4184 sector_div(s, geo->raid_disks); 4185 s *= geo->far_copies; 4186 s <<= geo->chunk_shift; 4187 return s; 4188 } 4189 4190 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4191 int *skipped) 4192 { 4193 /* We simply copy at most one chunk (smallest of old and new) 4194 * at a time, possibly less if that exceeds RESYNC_PAGES, 4195 * or we hit a bad block or something. 4196 * This might mean we pause for normal IO in the middle of 4197 * a chunk, but that is not a problem as mddev->reshape_position 4198 * can record any location. 4199 * 4200 * If we will want to write to a location that isn't 4201 * yet recorded as 'safe' (i.e. in metadata on disk) then 4202 * we need to flush all reshape requests and update the metadata. 4203 * 4204 * When reshaping forwards (e.g. to more devices), we interpret 4205 * 'safe' as the earliest block which might not have been copied 4206 * down yet. We divide this by previous stripe size and multiply 4207 * by previous stripe length to get lowest device offset that we 4208 * cannot write to yet. 4209 * We interpret 'sector_nr' as an address that we want to write to. 4210 * From this we use last_device_address() to find where we might 4211 * write to, and first_device_address on the 'safe' position. 4212 * If this 'next' write position is after the 'safe' position, 4213 * we must update the metadata to increase the 'safe' position. 4214 * 4215 * When reshaping backwards, we round in the opposite direction 4216 * and perform the reverse test: next write position must not be 4217 * less than current safe position. 4218 * 4219 * In all this the minimum difference in data offsets 4220 * (conf->offset_diff - always positive) allows a bit of slack, 4221 * so next can be after 'safe', but not by more than offset_diff 4222 * 4223 * We need to prepare all the bios here before we start any IO 4224 * to ensure the size we choose is acceptable to all devices. 4225 * The means one for each copy for write-out and an extra one for 4226 * read-in. 4227 * We store the read-in bio in ->master_bio and the others in 4228 * ->devs[x].bio and ->devs[x].repl_bio. 4229 */ 4230 struct r10conf *conf = mddev->private; 4231 struct r10bio *r10_bio; 4232 sector_t next, safe, last; 4233 int max_sectors; 4234 int nr_sectors; 4235 int s; 4236 struct md_rdev *rdev; 4237 int need_flush = 0; 4238 struct bio *blist; 4239 struct bio *bio, *read_bio; 4240 int sectors_done = 0; 4241 4242 if (sector_nr == 0) { 4243 /* If restarting in the middle, skip the initial sectors */ 4244 if (mddev->reshape_backwards && 4245 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4246 sector_nr = (raid10_size(mddev, 0, 0) 4247 - conf->reshape_progress); 4248 } else if (!mddev->reshape_backwards && 4249 conf->reshape_progress > 0) 4250 sector_nr = conf->reshape_progress; 4251 if (sector_nr) { 4252 mddev->curr_resync_completed = sector_nr; 4253 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4254 *skipped = 1; 4255 return sector_nr; 4256 } 4257 } 4258 4259 /* We don't use sector_nr to track where we are up to 4260 * as that doesn't work well for ->reshape_backwards. 4261 * So just use ->reshape_progress. 4262 */ 4263 if (mddev->reshape_backwards) { 4264 /* 'next' is the earliest device address that we might 4265 * write to for this chunk in the new layout 4266 */ 4267 next = first_dev_address(conf->reshape_progress - 1, 4268 &conf->geo); 4269 4270 /* 'safe' is the last device address that we might read from 4271 * in the old layout after a restart 4272 */ 4273 safe = last_dev_address(conf->reshape_safe - 1, 4274 &conf->prev); 4275 4276 if (next + conf->offset_diff < safe) 4277 need_flush = 1; 4278 4279 last = conf->reshape_progress - 1; 4280 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4281 & conf->prev.chunk_mask); 4282 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4283 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4284 } else { 4285 /* 'next' is after the last device address that we 4286 * might write to for this chunk in the new layout 4287 */ 4288 next = last_dev_address(conf->reshape_progress, &conf->geo); 4289 4290 /* 'safe' is the earliest device address that we might 4291 * read from in the old layout after a restart 4292 */ 4293 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4294 4295 /* Need to update metadata if 'next' might be beyond 'safe' 4296 * as that would possibly corrupt data 4297 */ 4298 if (next > safe + conf->offset_diff) 4299 need_flush = 1; 4300 4301 sector_nr = conf->reshape_progress; 4302 last = sector_nr | (conf->geo.chunk_mask 4303 & conf->prev.chunk_mask); 4304 4305 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4306 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4307 } 4308 4309 if (need_flush || 4310 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4311 /* Need to update reshape_position in metadata */ 4312 wait_barrier(conf); 4313 mddev->reshape_position = conf->reshape_progress; 4314 if (mddev->reshape_backwards) 4315 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4316 - conf->reshape_progress; 4317 else 4318 mddev->curr_resync_completed = conf->reshape_progress; 4319 conf->reshape_checkpoint = jiffies; 4320 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4321 md_wakeup_thread(mddev->thread); 4322 wait_event(mddev->sb_wait, mddev->flags == 0 || 4323 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4324 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4325 allow_barrier(conf); 4326 return sectors_done; 4327 } 4328 conf->reshape_safe = mddev->reshape_position; 4329 allow_barrier(conf); 4330 } 4331 4332 read_more: 4333 /* Now schedule reads for blocks from sector_nr to last */ 4334 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4335 r10_bio->state = 0; 4336 raise_barrier(conf, sectors_done != 0); 4337 atomic_set(&r10_bio->remaining, 0); 4338 r10_bio->mddev = mddev; 4339 r10_bio->sector = sector_nr; 4340 set_bit(R10BIO_IsReshape, &r10_bio->state); 4341 r10_bio->sectors = last - sector_nr + 1; 4342 rdev = read_balance(conf, r10_bio, &max_sectors); 4343 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4344 4345 if (!rdev) { 4346 /* Cannot read from here, so need to record bad blocks 4347 * on all the target devices. 4348 */ 4349 // FIXME 4350 mempool_free(r10_bio, conf->r10buf_pool); 4351 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4352 return sectors_done; 4353 } 4354 4355 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4356 4357 read_bio->bi_bdev = rdev->bdev; 4358 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4359 + rdev->data_offset); 4360 read_bio->bi_private = r10_bio; 4361 read_bio->bi_end_io = end_sync_read; 4362 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4363 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4364 read_bio->bi_error = 0; 4365 read_bio->bi_vcnt = 0; 4366 read_bio->bi_iter.bi_size = 0; 4367 r10_bio->master_bio = read_bio; 4368 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4369 4370 /* Now find the locations in the new layout */ 4371 __raid10_find_phys(&conf->geo, r10_bio); 4372 4373 blist = read_bio; 4374 read_bio->bi_next = NULL; 4375 4376 rcu_read_lock(); 4377 for (s = 0; s < conf->copies*2; s++) { 4378 struct bio *b; 4379 int d = r10_bio->devs[s/2].devnum; 4380 struct md_rdev *rdev2; 4381 if (s&1) { 4382 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4383 b = r10_bio->devs[s/2].repl_bio; 4384 } else { 4385 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4386 b = r10_bio->devs[s/2].bio; 4387 } 4388 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4389 continue; 4390 4391 bio_reset(b); 4392 b->bi_bdev = rdev2->bdev; 4393 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4394 rdev2->new_data_offset; 4395 b->bi_private = r10_bio; 4396 b->bi_end_io = end_reshape_write; 4397 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4398 b->bi_next = blist; 4399 blist = b; 4400 } 4401 4402 /* Now add as many pages as possible to all of these bios. */ 4403 4404 nr_sectors = 0; 4405 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4406 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4407 int len = (max_sectors - s) << 9; 4408 if (len > PAGE_SIZE) 4409 len = PAGE_SIZE; 4410 for (bio = blist; bio ; bio = bio->bi_next) { 4411 struct bio *bio2; 4412 if (bio_add_page(bio, page, len, 0)) 4413 continue; 4414 4415 /* Didn't fit, must stop */ 4416 for (bio2 = blist; 4417 bio2 && bio2 != bio; 4418 bio2 = bio2->bi_next) { 4419 /* Remove last page from this bio */ 4420 bio2->bi_vcnt--; 4421 bio2->bi_iter.bi_size -= len; 4422 bio_clear_flag(bio2, BIO_SEG_VALID); 4423 } 4424 goto bio_full; 4425 } 4426 sector_nr += len >> 9; 4427 nr_sectors += len >> 9; 4428 } 4429 bio_full: 4430 rcu_read_unlock(); 4431 r10_bio->sectors = nr_sectors; 4432 4433 /* Now submit the read */ 4434 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4435 atomic_inc(&r10_bio->remaining); 4436 read_bio->bi_next = NULL; 4437 generic_make_request(read_bio); 4438 sector_nr += nr_sectors; 4439 sectors_done += nr_sectors; 4440 if (sector_nr <= last) 4441 goto read_more; 4442 4443 /* Now that we have done the whole section we can 4444 * update reshape_progress 4445 */ 4446 if (mddev->reshape_backwards) 4447 conf->reshape_progress -= sectors_done; 4448 else 4449 conf->reshape_progress += sectors_done; 4450 4451 return sectors_done; 4452 } 4453 4454 static void end_reshape_request(struct r10bio *r10_bio); 4455 static int handle_reshape_read_error(struct mddev *mddev, 4456 struct r10bio *r10_bio); 4457 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4458 { 4459 /* Reshape read completed. Hopefully we have a block 4460 * to write out. 4461 * If we got a read error then we do sync 1-page reads from 4462 * elsewhere until we find the data - or give up. 4463 */ 4464 struct r10conf *conf = mddev->private; 4465 int s; 4466 4467 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4468 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4469 /* Reshape has been aborted */ 4470 md_done_sync(mddev, r10_bio->sectors, 0); 4471 return; 4472 } 4473 4474 /* We definitely have the data in the pages, schedule the 4475 * writes. 4476 */ 4477 atomic_set(&r10_bio->remaining, 1); 4478 for (s = 0; s < conf->copies*2; s++) { 4479 struct bio *b; 4480 int d = r10_bio->devs[s/2].devnum; 4481 struct md_rdev *rdev; 4482 rcu_read_lock(); 4483 if (s&1) { 4484 rdev = rcu_dereference(conf->mirrors[d].replacement); 4485 b = r10_bio->devs[s/2].repl_bio; 4486 } else { 4487 rdev = rcu_dereference(conf->mirrors[d].rdev); 4488 b = r10_bio->devs[s/2].bio; 4489 } 4490 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4491 rcu_read_unlock(); 4492 continue; 4493 } 4494 atomic_inc(&rdev->nr_pending); 4495 rcu_read_unlock(); 4496 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4497 atomic_inc(&r10_bio->remaining); 4498 b->bi_next = NULL; 4499 generic_make_request(b); 4500 } 4501 end_reshape_request(r10_bio); 4502 } 4503 4504 static void end_reshape(struct r10conf *conf) 4505 { 4506 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4507 return; 4508 4509 spin_lock_irq(&conf->device_lock); 4510 conf->prev = conf->geo; 4511 md_finish_reshape(conf->mddev); 4512 smp_wmb(); 4513 conf->reshape_progress = MaxSector; 4514 conf->reshape_safe = MaxSector; 4515 spin_unlock_irq(&conf->device_lock); 4516 4517 /* read-ahead size must cover two whole stripes, which is 4518 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4519 */ 4520 if (conf->mddev->queue) { 4521 int stripe = conf->geo.raid_disks * 4522 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4523 stripe /= conf->geo.near_copies; 4524 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4525 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4526 } 4527 conf->fullsync = 0; 4528 } 4529 4530 static int handle_reshape_read_error(struct mddev *mddev, 4531 struct r10bio *r10_bio) 4532 { 4533 /* Use sync reads to get the blocks from somewhere else */ 4534 int sectors = r10_bio->sectors; 4535 struct r10conf *conf = mddev->private; 4536 struct { 4537 struct r10bio r10_bio; 4538 struct r10dev devs[conf->copies]; 4539 } on_stack; 4540 struct r10bio *r10b = &on_stack.r10_bio; 4541 int slot = 0; 4542 int idx = 0; 4543 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4544 4545 r10b->sector = r10_bio->sector; 4546 __raid10_find_phys(&conf->prev, r10b); 4547 4548 while (sectors) { 4549 int s = sectors; 4550 int success = 0; 4551 int first_slot = slot; 4552 4553 if (s > (PAGE_SIZE >> 9)) 4554 s = PAGE_SIZE >> 9; 4555 4556 rcu_read_lock(); 4557 while (!success) { 4558 int d = r10b->devs[slot].devnum; 4559 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4560 sector_t addr; 4561 if (rdev == NULL || 4562 test_bit(Faulty, &rdev->flags) || 4563 !test_bit(In_sync, &rdev->flags)) 4564 goto failed; 4565 4566 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4567 atomic_inc(&rdev->nr_pending); 4568 rcu_read_unlock(); 4569 success = sync_page_io(rdev, 4570 addr, 4571 s << 9, 4572 bvec[idx].bv_page, 4573 REQ_OP_READ, 0, false); 4574 rdev_dec_pending(rdev, mddev); 4575 rcu_read_lock(); 4576 if (success) 4577 break; 4578 failed: 4579 slot++; 4580 if (slot >= conf->copies) 4581 slot = 0; 4582 if (slot == first_slot) 4583 break; 4584 } 4585 rcu_read_unlock(); 4586 if (!success) { 4587 /* couldn't read this block, must give up */ 4588 set_bit(MD_RECOVERY_INTR, 4589 &mddev->recovery); 4590 return -EIO; 4591 } 4592 sectors -= s; 4593 idx++; 4594 } 4595 return 0; 4596 } 4597 4598 static void end_reshape_write(struct bio *bio) 4599 { 4600 struct r10bio *r10_bio = bio->bi_private; 4601 struct mddev *mddev = r10_bio->mddev; 4602 struct r10conf *conf = mddev->private; 4603 int d; 4604 int slot; 4605 int repl; 4606 struct md_rdev *rdev = NULL; 4607 4608 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4609 if (repl) 4610 rdev = conf->mirrors[d].replacement; 4611 if (!rdev) { 4612 smp_mb(); 4613 rdev = conf->mirrors[d].rdev; 4614 } 4615 4616 if (bio->bi_error) { 4617 /* FIXME should record badblock */ 4618 md_error(mddev, rdev); 4619 } 4620 4621 rdev_dec_pending(rdev, mddev); 4622 end_reshape_request(r10_bio); 4623 } 4624 4625 static void end_reshape_request(struct r10bio *r10_bio) 4626 { 4627 if (!atomic_dec_and_test(&r10_bio->remaining)) 4628 return; 4629 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4630 bio_put(r10_bio->master_bio); 4631 put_buf(r10_bio); 4632 } 4633 4634 static void raid10_finish_reshape(struct mddev *mddev) 4635 { 4636 struct r10conf *conf = mddev->private; 4637 4638 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4639 return; 4640 4641 if (mddev->delta_disks > 0) { 4642 sector_t size = raid10_size(mddev, 0, 0); 4643 md_set_array_sectors(mddev, size); 4644 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4645 mddev->recovery_cp = mddev->resync_max_sectors; 4646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4647 } 4648 mddev->resync_max_sectors = size; 4649 if (mddev->queue) { 4650 set_capacity(mddev->gendisk, mddev->array_sectors); 4651 revalidate_disk(mddev->gendisk); 4652 } 4653 } else { 4654 int d; 4655 rcu_read_lock(); 4656 for (d = conf->geo.raid_disks ; 4657 d < conf->geo.raid_disks - mddev->delta_disks; 4658 d++) { 4659 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4660 if (rdev) 4661 clear_bit(In_sync, &rdev->flags); 4662 rdev = rcu_dereference(conf->mirrors[d].replacement); 4663 if (rdev) 4664 clear_bit(In_sync, &rdev->flags); 4665 } 4666 rcu_read_unlock(); 4667 } 4668 mddev->layout = mddev->new_layout; 4669 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4670 mddev->reshape_position = MaxSector; 4671 mddev->delta_disks = 0; 4672 mddev->reshape_backwards = 0; 4673 } 4674 4675 static struct md_personality raid10_personality = 4676 { 4677 .name = "raid10", 4678 .level = 10, 4679 .owner = THIS_MODULE, 4680 .make_request = raid10_make_request, 4681 .run = raid10_run, 4682 .free = raid10_free, 4683 .status = raid10_status, 4684 .error_handler = raid10_error, 4685 .hot_add_disk = raid10_add_disk, 4686 .hot_remove_disk= raid10_remove_disk, 4687 .spare_active = raid10_spare_active, 4688 .sync_request = raid10_sync_request, 4689 .quiesce = raid10_quiesce, 4690 .size = raid10_size, 4691 .resize = raid10_resize, 4692 .takeover = raid10_takeover, 4693 .check_reshape = raid10_check_reshape, 4694 .start_reshape = raid10_start_reshape, 4695 .finish_reshape = raid10_finish_reshape, 4696 .congested = raid10_congested, 4697 }; 4698 4699 static int __init raid_init(void) 4700 { 4701 return register_md_personality(&raid10_personality); 4702 } 4703 4704 static void raid_exit(void) 4705 { 4706 unregister_md_personality(&raid10_personality); 4707 } 4708 4709 module_init(raid_init); 4710 module_exit(raid_exit); 4711 MODULE_LICENSE("GPL"); 4712 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4713 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4714 MODULE_ALIAS("md-raid10"); 4715 MODULE_ALIAS("md-level-10"); 4716 4717 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4718