1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio, int error) 443 { 444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct r10bio *r10_bio = bio->bi_private; 446 int dev; 447 int dec_rdev = 1; 448 struct r10conf *conf = r10_bio->mddev->private; 449 int slot, repl; 450 struct md_rdev *rdev = NULL; 451 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 453 454 if (repl) 455 rdev = conf->mirrors[dev].replacement; 456 if (!rdev) { 457 smp_rmb(); 458 repl = 0; 459 rdev = conf->mirrors[dev].rdev; 460 } 461 /* 462 * this branch is our 'one mirror IO has finished' event handler: 463 */ 464 if (!uptodate) { 465 if (repl) 466 /* Never record new bad blocks to replacement, 467 * just fail it. 468 */ 469 md_error(rdev->mddev, rdev); 470 else { 471 set_bit(WriteErrorSeen, &rdev->flags); 472 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 473 set_bit(MD_RECOVERY_NEEDED, 474 &rdev->mddev->recovery); 475 set_bit(R10BIO_WriteError, &r10_bio->state); 476 dec_rdev = 0; 477 } 478 } else { 479 /* 480 * Set R10BIO_Uptodate in our master bio, so that 481 * we will return a good error code for to the higher 482 * levels even if IO on some other mirrored buffer fails. 483 * 484 * The 'master' represents the composite IO operation to 485 * user-side. So if something waits for IO, then it will 486 * wait for the 'master' bio. 487 */ 488 sector_t first_bad; 489 int bad_sectors; 490 491 /* 492 * Do not set R10BIO_Uptodate if the current device is 493 * rebuilding or Faulty. This is because we cannot use 494 * such device for properly reading the data back (we could 495 * potentially use it, if the current write would have felt 496 * before rdev->recovery_offset, but for simplicity we don't 497 * check this here. 498 */ 499 if (test_bit(In_sync, &rdev->flags) && 500 !test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_Uptodate, &r10_bio->state); 502 503 /* Maybe we can clear some bad blocks. */ 504 if (is_badblock(rdev, 505 r10_bio->devs[slot].addr, 506 r10_bio->sectors, 507 &first_bad, &bad_sectors)) { 508 bio_put(bio); 509 if (repl) 510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 511 else 512 r10_bio->devs[slot].bio = IO_MADE_GOOD; 513 dec_rdev = 0; 514 set_bit(R10BIO_MadeGood, &r10_bio->state); 515 } 516 } 517 518 /* 519 * 520 * Let's see if all mirrored write operations have finished 521 * already. 522 */ 523 one_write_done(r10_bio); 524 if (dec_rdev) 525 rdev_dec_pending(rdev, conf->mddev); 526 } 527 528 /* 529 * RAID10 layout manager 530 * As well as the chunksize and raid_disks count, there are two 531 * parameters: near_copies and far_copies. 532 * near_copies * far_copies must be <= raid_disks. 533 * Normally one of these will be 1. 534 * If both are 1, we get raid0. 535 * If near_copies == raid_disks, we get raid1. 536 * 537 * Chunks are laid out in raid0 style with near_copies copies of the 538 * first chunk, followed by near_copies copies of the next chunk and 539 * so on. 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned 541 * as described above, we start again with a device offset of near_copies. 542 * So we effectively have another copy of the whole array further down all 543 * the drives, but with blocks on different drives. 544 * With this layout, and block is never stored twice on the one device. 545 * 546 * raid10_find_phys finds the sector offset of a given virtual sector 547 * on each device that it is on. 548 * 549 * raid10_find_virt does the reverse mapping, from a device and a 550 * sector offset to a virtual address 551 */ 552 553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 554 { 555 int n,f; 556 sector_t sector; 557 sector_t chunk; 558 sector_t stripe; 559 int dev; 560 int slot = 0; 561 int last_far_set_start, last_far_set_size; 562 563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 564 last_far_set_start *= geo->far_set_size; 565 566 last_far_set_size = geo->far_set_size; 567 last_far_set_size += (geo->raid_disks % geo->far_set_size); 568 569 /* now calculate first sector/dev */ 570 chunk = r10bio->sector >> geo->chunk_shift; 571 sector = r10bio->sector & geo->chunk_mask; 572 573 chunk *= geo->near_copies; 574 stripe = chunk; 575 dev = sector_div(stripe, geo->raid_disks); 576 if (geo->far_offset) 577 stripe *= geo->far_copies; 578 579 sector += stripe << geo->chunk_shift; 580 581 /* and calculate all the others */ 582 for (n = 0; n < geo->near_copies; n++) { 583 int d = dev; 584 int set; 585 sector_t s = sector; 586 r10bio->devs[slot].devnum = d; 587 r10bio->devs[slot].addr = s; 588 slot++; 589 590 for (f = 1; f < geo->far_copies; f++) { 591 set = d / geo->far_set_size; 592 d += geo->near_copies; 593 594 if ((geo->raid_disks % geo->far_set_size) && 595 (d > last_far_set_start)) { 596 d -= last_far_set_start; 597 d %= last_far_set_size; 598 d += last_far_set_start; 599 } else { 600 d %= geo->far_set_size; 601 d += geo->far_set_size * set; 602 } 603 s += geo->stride; 604 r10bio->devs[slot].devnum = d; 605 r10bio->devs[slot].addr = s; 606 slot++; 607 } 608 dev++; 609 if (dev >= geo->raid_disks) { 610 dev = 0; 611 sector += (geo->chunk_mask + 1); 612 } 613 } 614 } 615 616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 617 { 618 struct geom *geo = &conf->geo; 619 620 if (conf->reshape_progress != MaxSector && 621 ((r10bio->sector >= conf->reshape_progress) != 622 conf->mddev->reshape_backwards)) { 623 set_bit(R10BIO_Previous, &r10bio->state); 624 geo = &conf->prev; 625 } else 626 clear_bit(R10BIO_Previous, &r10bio->state); 627 628 __raid10_find_phys(geo, r10bio); 629 } 630 631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 632 { 633 sector_t offset, chunk, vchunk; 634 /* Never use conf->prev as this is only called during resync 635 * or recovery, so reshape isn't happening 636 */ 637 struct geom *geo = &conf->geo; 638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 639 int far_set_size = geo->far_set_size; 640 int last_far_set_start; 641 642 if (geo->raid_disks % geo->far_set_size) { 643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 644 last_far_set_start *= geo->far_set_size; 645 646 if (dev >= last_far_set_start) { 647 far_set_size = geo->far_set_size; 648 far_set_size += (geo->raid_disks % geo->far_set_size); 649 far_set_start = last_far_set_start; 650 } 651 } 652 653 offset = sector & geo->chunk_mask; 654 if (geo->far_offset) { 655 int fc; 656 chunk = sector >> geo->chunk_shift; 657 fc = sector_div(chunk, geo->far_copies); 658 dev -= fc * geo->near_copies; 659 if (dev < far_set_start) 660 dev += far_set_size; 661 } else { 662 while (sector >= geo->stride) { 663 sector -= geo->stride; 664 if (dev < (geo->near_copies + far_set_start)) 665 dev += far_set_size - geo->near_copies; 666 else 667 dev -= geo->near_copies; 668 } 669 chunk = sector >> geo->chunk_shift; 670 } 671 vchunk = chunk * geo->raid_disks + dev; 672 sector_div(vchunk, geo->near_copies); 673 return (vchunk << geo->chunk_shift) + offset; 674 } 675 676 /** 677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 678 * @q: request queue 679 * @bvm: properties of new bio 680 * @biovec: the request that could be merged to it. 681 * 682 * Return amount of bytes we can accept at this offset 683 * This requires checking for end-of-chunk if near_copies != raid_disks, 684 * and for subordinate merge_bvec_fns if merge_check_needed. 685 */ 686 static int raid10_mergeable_bvec(struct request_queue *q, 687 struct bvec_merge_data *bvm, 688 struct bio_vec *biovec) 689 { 690 struct mddev *mddev = q->queuedata; 691 struct r10conf *conf = mddev->private; 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 693 int max; 694 unsigned int chunk_sectors; 695 unsigned int bio_sectors = bvm->bi_size >> 9; 696 struct geom *geo = &conf->geo; 697 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 699 if (conf->reshape_progress != MaxSector && 700 ((sector >= conf->reshape_progress) != 701 conf->mddev->reshape_backwards)) 702 geo = &conf->prev; 703 704 if (geo->near_copies < geo->raid_disks) { 705 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 706 + bio_sectors)) << 9; 707 if (max < 0) 708 /* bio_add cannot handle a negative return */ 709 max = 0; 710 if (max <= biovec->bv_len && bio_sectors == 0) 711 return biovec->bv_len; 712 } else 713 max = biovec->bv_len; 714 715 if (mddev->merge_check_needed) { 716 struct { 717 struct r10bio r10_bio; 718 struct r10dev devs[conf->copies]; 719 } on_stack; 720 struct r10bio *r10_bio = &on_stack.r10_bio; 721 int s; 722 if (conf->reshape_progress != MaxSector) { 723 /* Cannot give any guidance during reshape */ 724 if (max <= biovec->bv_len && bio_sectors == 0) 725 return biovec->bv_len; 726 return 0; 727 } 728 r10_bio->sector = sector; 729 raid10_find_phys(conf, r10_bio); 730 rcu_read_lock(); 731 for (s = 0; s < conf->copies; s++) { 732 int disk = r10_bio->devs[s].devnum; 733 struct md_rdev *rdev = rcu_dereference( 734 conf->mirrors[disk].rdev); 735 if (rdev && !test_bit(Faulty, &rdev->flags)) { 736 struct request_queue *q = 737 bdev_get_queue(rdev->bdev); 738 if (q->merge_bvec_fn) { 739 bvm->bi_sector = r10_bio->devs[s].addr 740 + rdev->data_offset; 741 bvm->bi_bdev = rdev->bdev; 742 max = min(max, q->merge_bvec_fn( 743 q, bvm, biovec)); 744 } 745 } 746 rdev = rcu_dereference(conf->mirrors[disk].replacement); 747 if (rdev && !test_bit(Faulty, &rdev->flags)) { 748 struct request_queue *q = 749 bdev_get_queue(rdev->bdev); 750 if (q->merge_bvec_fn) { 751 bvm->bi_sector = r10_bio->devs[s].addr 752 + rdev->data_offset; 753 bvm->bi_bdev = rdev->bdev; 754 max = min(max, q->merge_bvec_fn( 755 q, bvm, biovec)); 756 } 757 } 758 } 759 rcu_read_unlock(); 760 } 761 return max; 762 } 763 764 /* 765 * This routine returns the disk from which the requested read should 766 * be done. There is a per-array 'next expected sequential IO' sector 767 * number - if this matches on the next IO then we use the last disk. 768 * There is also a per-disk 'last know head position' sector that is 769 * maintained from IRQ contexts, both the normal and the resync IO 770 * completion handlers update this position correctly. If there is no 771 * perfect sequential match then we pick the disk whose head is closest. 772 * 773 * If there are 2 mirrors in the same 2 devices, performance degrades 774 * because position is mirror, not device based. 775 * 776 * The rdev for the device selected will have nr_pending incremented. 777 */ 778 779 /* 780 * FIXME: possibly should rethink readbalancing and do it differently 781 * depending on near_copies / far_copies geometry. 782 */ 783 static struct md_rdev *read_balance(struct r10conf *conf, 784 struct r10bio *r10_bio, 785 int *max_sectors) 786 { 787 const sector_t this_sector = r10_bio->sector; 788 int disk, slot; 789 int sectors = r10_bio->sectors; 790 int best_good_sectors; 791 sector_t new_distance, best_dist; 792 struct md_rdev *best_rdev, *rdev = NULL; 793 int do_balance; 794 int best_slot; 795 struct geom *geo = &conf->geo; 796 797 raid10_find_phys(conf, r10_bio); 798 rcu_read_lock(); 799 retry: 800 sectors = r10_bio->sectors; 801 best_slot = -1; 802 best_rdev = NULL; 803 best_dist = MaxSector; 804 best_good_sectors = 0; 805 do_balance = 1; 806 /* 807 * Check if we can balance. We can balance on the whole 808 * device if no resync is going on (recovery is ok), or below 809 * the resync window. We take the first readable disk when 810 * above the resync window. 811 */ 812 if (conf->mddev->recovery_cp < MaxSector 813 && (this_sector + sectors >= conf->next_resync)) 814 do_balance = 0; 815 816 for (slot = 0; slot < conf->copies ; slot++) { 817 sector_t first_bad; 818 int bad_sectors; 819 sector_t dev_sector; 820 821 if (r10_bio->devs[slot].bio == IO_BLOCKED) 822 continue; 823 disk = r10_bio->devs[slot].devnum; 824 rdev = rcu_dereference(conf->mirrors[disk].replacement); 825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 826 test_bit(Unmerged, &rdev->flags) || 827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 828 rdev = rcu_dereference(conf->mirrors[disk].rdev); 829 if (rdev == NULL || 830 test_bit(Faulty, &rdev->flags) || 831 test_bit(Unmerged, &rdev->flags)) 832 continue; 833 if (!test_bit(In_sync, &rdev->flags) && 834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 835 continue; 836 837 dev_sector = r10_bio->devs[slot].addr; 838 if (is_badblock(rdev, dev_sector, sectors, 839 &first_bad, &bad_sectors)) { 840 if (best_dist < MaxSector) 841 /* Already have a better slot */ 842 continue; 843 if (first_bad <= dev_sector) { 844 /* Cannot read here. If this is the 845 * 'primary' device, then we must not read 846 * beyond 'bad_sectors' from another device. 847 */ 848 bad_sectors -= (dev_sector - first_bad); 849 if (!do_balance && sectors > bad_sectors) 850 sectors = bad_sectors; 851 if (best_good_sectors > sectors) 852 best_good_sectors = sectors; 853 } else { 854 sector_t good_sectors = 855 first_bad - dev_sector; 856 if (good_sectors > best_good_sectors) { 857 best_good_sectors = good_sectors; 858 best_slot = slot; 859 best_rdev = rdev; 860 } 861 if (!do_balance) 862 /* Must read from here */ 863 break; 864 } 865 continue; 866 } else 867 best_good_sectors = sectors; 868 869 if (!do_balance) 870 break; 871 872 /* This optimisation is debatable, and completely destroys 873 * sequential read speed for 'far copies' arrays. So only 874 * keep it for 'near' arrays, and review those later. 875 */ 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 877 break; 878 879 /* for far > 1 always use the lowest address */ 880 if (geo->far_copies > 1) 881 new_distance = r10_bio->devs[slot].addr; 882 else 883 new_distance = abs(r10_bio->devs[slot].addr - 884 conf->mirrors[disk].head_position); 885 if (new_distance < best_dist) { 886 best_dist = new_distance; 887 best_slot = slot; 888 best_rdev = rdev; 889 } 890 } 891 if (slot >= conf->copies) { 892 slot = best_slot; 893 rdev = best_rdev; 894 } 895 896 if (slot >= 0) { 897 atomic_inc(&rdev->nr_pending); 898 if (test_bit(Faulty, &rdev->flags)) { 899 /* Cannot risk returning a device that failed 900 * before we inc'ed nr_pending 901 */ 902 rdev_dec_pending(rdev, conf->mddev); 903 goto retry; 904 } 905 r10_bio->read_slot = slot; 906 } else 907 rdev = NULL; 908 rcu_read_unlock(); 909 *max_sectors = best_good_sectors; 910 911 return rdev; 912 } 913 914 int md_raid10_congested(struct mddev *mddev, int bits) 915 { 916 struct r10conf *conf = mddev->private; 917 int i, ret = 0; 918 919 if ((bits & (1 << BDI_async_congested)) && 920 conf->pending_count >= max_queued_requests) 921 return 1; 922 923 rcu_read_lock(); 924 for (i = 0; 925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 926 && ret == 0; 927 i++) { 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 struct request_queue *q = bdev_get_queue(rdev->bdev); 931 932 ret |= bdi_congested(&q->backing_dev_info, bits); 933 } 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(md_raid10_congested); 939 940 static int raid10_congested(void *data, int bits) 941 { 942 struct mddev *mddev = data; 943 944 return mddev_congested(mddev, bits) || 945 md_raid10_congested(mddev, bits); 946 } 947 948 static void flush_pending_writes(struct r10conf *conf) 949 { 950 /* Any writes that have been queued but are awaiting 951 * bitmap updates get flushed here. 952 */ 953 spin_lock_irq(&conf->device_lock); 954 955 if (conf->pending_bio_list.head) { 956 struct bio *bio; 957 bio = bio_list_get(&conf->pending_bio_list); 958 conf->pending_count = 0; 959 spin_unlock_irq(&conf->device_lock); 960 /* flush any pending bitmap writes to disk 961 * before proceeding w/ I/O */ 962 bitmap_unplug(conf->mddev->bitmap); 963 wake_up(&conf->wait_barrier); 964 965 while (bio) { /* submit pending writes */ 966 struct bio *next = bio->bi_next; 967 bio->bi_next = NULL; 968 if (unlikely((bio->bi_rw & REQ_DISCARD) && 969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 970 /* Just ignore it */ 971 bio_endio(bio, 0); 972 else 973 generic_make_request(bio); 974 bio = next; 975 } 976 } else 977 spin_unlock_irq(&conf->device_lock); 978 } 979 980 /* Barriers.... 981 * Sometimes we need to suspend IO while we do something else, 982 * either some resync/recovery, or reconfigure the array. 983 * To do this we raise a 'barrier'. 984 * The 'barrier' is a counter that can be raised multiple times 985 * to count how many activities are happening which preclude 986 * normal IO. 987 * We can only raise the barrier if there is no pending IO. 988 * i.e. if nr_pending == 0. 989 * We choose only to raise the barrier if no-one is waiting for the 990 * barrier to go down. This means that as soon as an IO request 991 * is ready, no other operations which require a barrier will start 992 * until the IO request has had a chance. 993 * 994 * So: regular IO calls 'wait_barrier'. When that returns there 995 * is no backgroup IO happening, It must arrange to call 996 * allow_barrier when it has finished its IO. 997 * backgroup IO calls must call raise_barrier. Once that returns 998 * there is no normal IO happeing. It must arrange to call 999 * lower_barrier when the particular background IO completes. 1000 */ 1001 1002 static void raise_barrier(struct r10conf *conf, int force) 1003 { 1004 BUG_ON(force && !conf->barrier); 1005 spin_lock_irq(&conf->resync_lock); 1006 1007 /* Wait until no block IO is waiting (unless 'force') */ 1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1009 conf->resync_lock); 1010 1011 /* block any new IO from starting */ 1012 conf->barrier++; 1013 1014 /* Now wait for all pending IO to complete */ 1015 wait_event_lock_irq(conf->wait_barrier, 1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1017 conf->resync_lock); 1018 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void lower_barrier(struct r10conf *conf) 1023 { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->resync_lock, flags); 1026 conf->barrier--; 1027 spin_unlock_irqrestore(&conf->resync_lock, flags); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static void wait_barrier(struct r10conf *conf) 1032 { 1033 spin_lock_irq(&conf->resync_lock); 1034 if (conf->barrier) { 1035 conf->nr_waiting++; 1036 /* Wait for the barrier to drop. 1037 * However if there are already pending 1038 * requests (preventing the barrier from 1039 * rising completely), and the 1040 * pre-process bio queue isn't empty, 1041 * then don't wait, as we need to empty 1042 * that queue to get the nr_pending 1043 * count down. 1044 */ 1045 wait_event_lock_irq(conf->wait_barrier, 1046 !conf->barrier || 1047 (conf->nr_pending && 1048 current->bio_list && 1049 !bio_list_empty(current->bio_list)), 1050 conf->resync_lock); 1051 conf->nr_waiting--; 1052 } 1053 conf->nr_pending++; 1054 spin_unlock_irq(&conf->resync_lock); 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->resync_lock, flags); 1061 conf->nr_pending--; 1062 spin_unlock_irqrestore(&conf->resync_lock, flags); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->barrier++; 1082 conf->nr_waiting++; 1083 wait_event_lock_irq_cmd(conf->wait_barrier, 1084 conf->nr_pending == conf->nr_queued+extra, 1085 conf->resync_lock, 1086 flush_pending_writes(conf)); 1087 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 1091 static void unfreeze_array(struct r10conf *conf) 1092 { 1093 /* reverse the effect of the freeze */ 1094 spin_lock_irq(&conf->resync_lock); 1095 conf->barrier--; 1096 conf->nr_waiting--; 1097 wake_up(&conf->wait_barrier); 1098 spin_unlock_irq(&conf->resync_lock); 1099 } 1100 1101 static sector_t choose_data_offset(struct r10bio *r10_bio, 1102 struct md_rdev *rdev) 1103 { 1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1105 test_bit(R10BIO_Previous, &r10_bio->state)) 1106 return rdev->data_offset; 1107 else 1108 return rdev->new_data_offset; 1109 } 1110 1111 struct raid10_plug_cb { 1112 struct blk_plug_cb cb; 1113 struct bio_list pending; 1114 int pending_cnt; 1115 }; 1116 1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1118 { 1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1120 cb); 1121 struct mddev *mddev = plug->cb.data; 1122 struct r10conf *conf = mddev->private; 1123 struct bio *bio; 1124 1125 if (from_schedule || current->bio_list) { 1126 spin_lock_irq(&conf->device_lock); 1127 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1128 conf->pending_count += plug->pending_cnt; 1129 spin_unlock_irq(&conf->device_lock); 1130 wake_up(&conf->wait_barrier); 1131 md_wakeup_thread(mddev->thread); 1132 kfree(plug); 1133 return; 1134 } 1135 1136 /* we aren't scheduling, so we can do the write-out directly. */ 1137 bio = bio_list_get(&plug->pending); 1138 bitmap_unplug(mddev->bitmap); 1139 wake_up(&conf->wait_barrier); 1140 1141 while (bio) { /* submit pending writes */ 1142 struct bio *next = bio->bi_next; 1143 bio->bi_next = NULL; 1144 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio, 0); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static void make_request(struct mddev *mddev, struct bio * bio) 1156 { 1157 struct r10conf *conf = mddev->private; 1158 struct r10bio *r10_bio; 1159 struct bio *read_bio; 1160 int i; 1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1162 int chunk_sects = chunk_mask + 1; 1163 const int rw = bio_data_dir(bio); 1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1166 const unsigned long do_discard = (bio->bi_rw 1167 & (REQ_DISCARD | REQ_SECURE)); 1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1169 unsigned long flags; 1170 struct md_rdev *blocked_rdev; 1171 struct blk_plug_cb *cb; 1172 struct raid10_plug_cb *plug = NULL; 1173 int sectors_handled; 1174 int max_sectors; 1175 int sectors; 1176 1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1178 md_flush_request(mddev, bio); 1179 return; 1180 } 1181 1182 /* If this request crosses a chunk boundary, we need to 1183 * split it. This will only happen for 1 PAGE (or less) requests. 1184 */ 1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio) 1186 > chunk_sects 1187 && (conf->geo.near_copies < conf->geo.raid_disks 1188 || conf->prev.near_copies < conf->prev.raid_disks))) { 1189 struct bio_pair *bp; 1190 /* Sanity check -- queue functions should prevent this happening */ 1191 if (bio_segments(bio) > 1) 1192 goto bad_map; 1193 /* This is a one page bio that upper layers 1194 * refuse to split for us, so we need to split it. 1195 */ 1196 bp = bio_split(bio, 1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1198 1199 /* Each of these 'make_request' calls will call 'wait_barrier'. 1200 * If the first succeeds but the second blocks due to the resync 1201 * thread raising the barrier, we will deadlock because the 1202 * IO to the underlying device will be queued in generic_make_request 1203 * and will never complete, so will never reduce nr_pending. 1204 * So increment nr_waiting here so no new raise_barriers will 1205 * succeed, and so the second wait_barrier cannot block. 1206 */ 1207 spin_lock_irq(&conf->resync_lock); 1208 conf->nr_waiting++; 1209 spin_unlock_irq(&conf->resync_lock); 1210 1211 make_request(mddev, &bp->bio1); 1212 make_request(mddev, &bp->bio2); 1213 1214 spin_lock_irq(&conf->resync_lock); 1215 conf->nr_waiting--; 1216 wake_up(&conf->wait_barrier); 1217 spin_unlock_irq(&conf->resync_lock); 1218 1219 bio_pair_release(bp); 1220 return; 1221 bad_map: 1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2); 1225 1226 bio_io_error(bio); 1227 return; 1228 } 1229 1230 md_write_start(mddev, bio); 1231 1232 /* 1233 * Register the new request and wait if the reconstruction 1234 * thread has put up a bar for new requests. 1235 * Continue immediately if no resync is active currently. 1236 */ 1237 wait_barrier(conf); 1238 1239 sectors = bio_sectors(bio); 1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1241 bio->bi_sector < conf->reshape_progress && 1242 bio->bi_sector + sectors > conf->reshape_progress) { 1243 /* IO spans the reshape position. Need to wait for 1244 * reshape to pass 1245 */ 1246 allow_barrier(conf); 1247 wait_event(conf->wait_barrier, 1248 conf->reshape_progress <= bio->bi_sector || 1249 conf->reshape_progress >= bio->bi_sector + sectors); 1250 wait_barrier(conf); 1251 } 1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1253 bio_data_dir(bio) == WRITE && 1254 (mddev->reshape_backwards 1255 ? (bio->bi_sector < conf->reshape_safe && 1256 bio->bi_sector + sectors > conf->reshape_progress) 1257 : (bio->bi_sector + sectors > conf->reshape_safe && 1258 bio->bi_sector < conf->reshape_progress))) { 1259 /* Need to update reshape_position in metadata */ 1260 mddev->reshape_position = conf->reshape_progress; 1261 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1262 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1263 md_wakeup_thread(mddev->thread); 1264 wait_event(mddev->sb_wait, 1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1266 1267 conf->reshape_safe = mddev->reshape_position; 1268 } 1269 1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1271 1272 r10_bio->master_bio = bio; 1273 r10_bio->sectors = sectors; 1274 1275 r10_bio->mddev = mddev; 1276 r10_bio->sector = bio->bi_sector; 1277 r10_bio->state = 0; 1278 1279 /* We might need to issue multiple reads to different 1280 * devices if there are bad blocks around, so we keep 1281 * track of the number of reads in bio->bi_phys_segments. 1282 * If this is 0, there is only one r10_bio and no locking 1283 * will be needed when the request completes. If it is 1284 * non-zero, then it is the number of not-completed requests. 1285 */ 1286 bio->bi_phys_segments = 0; 1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1288 1289 if (rw == READ) { 1290 /* 1291 * read balancing logic: 1292 */ 1293 struct md_rdev *rdev; 1294 int slot; 1295 1296 read_again: 1297 rdev = read_balance(conf, r10_bio, &max_sectors); 1298 if (!rdev) { 1299 raid_end_bio_io(r10_bio); 1300 return; 1301 } 1302 slot = r10_bio->read_slot; 1303 1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1305 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1306 max_sectors); 1307 1308 r10_bio->devs[slot].bio = read_bio; 1309 r10_bio->devs[slot].rdev = rdev; 1310 1311 read_bio->bi_sector = r10_bio->devs[slot].addr + 1312 choose_data_offset(r10_bio, rdev); 1313 read_bio->bi_bdev = rdev->bdev; 1314 read_bio->bi_end_io = raid10_end_read_request; 1315 read_bio->bi_rw = READ | do_sync; 1316 read_bio->bi_private = r10_bio; 1317 1318 if (max_sectors < r10_bio->sectors) { 1319 /* Could not read all from this device, so we will 1320 * need another r10_bio. 1321 */ 1322 sectors_handled = (r10_bio->sectors + max_sectors 1323 - bio->bi_sector); 1324 r10_bio->sectors = max_sectors; 1325 spin_lock_irq(&conf->device_lock); 1326 if (bio->bi_phys_segments == 0) 1327 bio->bi_phys_segments = 2; 1328 else 1329 bio->bi_phys_segments++; 1330 spin_unlock(&conf->device_lock); 1331 /* Cannot call generic_make_request directly 1332 * as that will be queued in __generic_make_request 1333 * and subsequent mempool_alloc might block 1334 * waiting for it. so hand bio over to raid10d. 1335 */ 1336 reschedule_retry(r10_bio); 1337 1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1339 1340 r10_bio->master_bio = bio; 1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1342 r10_bio->state = 0; 1343 r10_bio->mddev = mddev; 1344 r10_bio->sector = bio->bi_sector + sectors_handled; 1345 goto read_again; 1346 } else 1347 generic_make_request(read_bio); 1348 return; 1349 } 1350 1351 /* 1352 * WRITE: 1353 */ 1354 if (conf->pending_count >= max_queued_requests) { 1355 md_wakeup_thread(mddev->thread); 1356 wait_event(conf->wait_barrier, 1357 conf->pending_count < max_queued_requests); 1358 } 1359 /* first select target devices under rcu_lock and 1360 * inc refcount on their rdev. Record them by setting 1361 * bios[x] to bio 1362 * If there are known/acknowledged bad blocks on any device 1363 * on which we have seen a write error, we want to avoid 1364 * writing to those blocks. This potentially requires several 1365 * writes to write around the bad blocks. Each set of writes 1366 * gets its own r10_bio with a set of bios attached. The number 1367 * of r10_bios is recored in bio->bi_phys_segments just as with 1368 * the read case. 1369 */ 1370 1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1372 raid10_find_phys(conf, r10_bio); 1373 retry_write: 1374 blocked_rdev = NULL; 1375 rcu_read_lock(); 1376 max_sectors = r10_bio->sectors; 1377 1378 for (i = 0; i < conf->copies; i++) { 1379 int d = r10_bio->devs[i].devnum; 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1381 struct md_rdev *rrdev = rcu_dereference( 1382 conf->mirrors[d].replacement); 1383 if (rdev == rrdev) 1384 rrdev = NULL; 1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1386 atomic_inc(&rdev->nr_pending); 1387 blocked_rdev = rdev; 1388 break; 1389 } 1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1391 atomic_inc(&rrdev->nr_pending); 1392 blocked_rdev = rrdev; 1393 break; 1394 } 1395 if (rdev && (test_bit(Faulty, &rdev->flags) 1396 || test_bit(Unmerged, &rdev->flags))) 1397 rdev = NULL; 1398 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1399 || test_bit(Unmerged, &rrdev->flags))) 1400 rrdev = NULL; 1401 1402 r10_bio->devs[i].bio = NULL; 1403 r10_bio->devs[i].repl_bio = NULL; 1404 1405 if (!rdev && !rrdev) { 1406 set_bit(R10BIO_Degraded, &r10_bio->state); 1407 continue; 1408 } 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1410 sector_t first_bad; 1411 sector_t dev_sector = r10_bio->devs[i].addr; 1412 int bad_sectors; 1413 int is_bad; 1414 1415 is_bad = is_badblock(rdev, dev_sector, 1416 max_sectors, 1417 &first_bad, &bad_sectors); 1418 if (is_bad < 0) { 1419 /* Mustn't write here until the bad block 1420 * is acknowledged 1421 */ 1422 atomic_inc(&rdev->nr_pending); 1423 set_bit(BlockedBadBlocks, &rdev->flags); 1424 blocked_rdev = rdev; 1425 break; 1426 } 1427 if (is_bad && first_bad <= dev_sector) { 1428 /* Cannot write here at all */ 1429 bad_sectors -= (dev_sector - first_bad); 1430 if (bad_sectors < max_sectors) 1431 /* Mustn't write more than bad_sectors 1432 * to other devices yet 1433 */ 1434 max_sectors = bad_sectors; 1435 /* We don't set R10BIO_Degraded as that 1436 * only applies if the disk is missing, 1437 * so it might be re-added, and we want to 1438 * know to recover this chunk. 1439 * In this case the device is here, and the 1440 * fact that this chunk is not in-sync is 1441 * recorded in the bad block log. 1442 */ 1443 continue; 1444 } 1445 if (is_bad) { 1446 int good_sectors = first_bad - dev_sector; 1447 if (good_sectors < max_sectors) 1448 max_sectors = good_sectors; 1449 } 1450 } 1451 if (rdev) { 1452 r10_bio->devs[i].bio = bio; 1453 atomic_inc(&rdev->nr_pending); 1454 } 1455 if (rrdev) { 1456 r10_bio->devs[i].repl_bio = bio; 1457 atomic_inc(&rrdev->nr_pending); 1458 } 1459 } 1460 rcu_read_unlock(); 1461 1462 if (unlikely(blocked_rdev)) { 1463 /* Have to wait for this device to get unblocked, then retry */ 1464 int j; 1465 int d; 1466 1467 for (j = 0; j < i; j++) { 1468 if (r10_bio->devs[j].bio) { 1469 d = r10_bio->devs[j].devnum; 1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1471 } 1472 if (r10_bio->devs[j].repl_bio) { 1473 struct md_rdev *rdev; 1474 d = r10_bio->devs[j].devnum; 1475 rdev = conf->mirrors[d].replacement; 1476 if (!rdev) { 1477 /* Race with remove_disk */ 1478 smp_mb(); 1479 rdev = conf->mirrors[d].rdev; 1480 } 1481 rdev_dec_pending(rdev, mddev); 1482 } 1483 } 1484 allow_barrier(conf); 1485 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1486 wait_barrier(conf); 1487 goto retry_write; 1488 } 1489 1490 if (max_sectors < r10_bio->sectors) { 1491 /* We are splitting this into multiple parts, so 1492 * we need to prepare for allocating another r10_bio. 1493 */ 1494 r10_bio->sectors = max_sectors; 1495 spin_lock_irq(&conf->device_lock); 1496 if (bio->bi_phys_segments == 0) 1497 bio->bi_phys_segments = 2; 1498 else 1499 bio->bi_phys_segments++; 1500 spin_unlock_irq(&conf->device_lock); 1501 } 1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1503 1504 atomic_set(&r10_bio->remaining, 1); 1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1506 1507 for (i = 0; i < conf->copies; i++) { 1508 struct bio *mbio; 1509 int d = r10_bio->devs[i].devnum; 1510 if (r10_bio->devs[i].bio) { 1511 struct md_rdev *rdev = conf->mirrors[d].rdev; 1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1513 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1514 max_sectors); 1515 r10_bio->devs[i].bio = mbio; 1516 1517 mbio->bi_sector = (r10_bio->devs[i].addr+ 1518 choose_data_offset(r10_bio, 1519 rdev)); 1520 mbio->bi_bdev = rdev->bdev; 1521 mbio->bi_end_io = raid10_end_write_request; 1522 mbio->bi_rw = 1523 WRITE | do_sync | do_fua | do_discard | do_same; 1524 mbio->bi_private = r10_bio; 1525 1526 atomic_inc(&r10_bio->remaining); 1527 1528 cb = blk_check_plugged(raid10_unplug, mddev, 1529 sizeof(*plug)); 1530 if (cb) 1531 plug = container_of(cb, struct raid10_plug_cb, 1532 cb); 1533 else 1534 plug = NULL; 1535 spin_lock_irqsave(&conf->device_lock, flags); 1536 if (plug) { 1537 bio_list_add(&plug->pending, mbio); 1538 plug->pending_cnt++; 1539 } else { 1540 bio_list_add(&conf->pending_bio_list, mbio); 1541 conf->pending_count++; 1542 } 1543 spin_unlock_irqrestore(&conf->device_lock, flags); 1544 if (!plug) 1545 md_wakeup_thread(mddev->thread); 1546 } 1547 1548 if (r10_bio->devs[i].repl_bio) { 1549 struct md_rdev *rdev = conf->mirrors[d].replacement; 1550 if (rdev == NULL) { 1551 /* Replacement just got moved to main 'rdev' */ 1552 smp_mb(); 1553 rdev = conf->mirrors[d].rdev; 1554 } 1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1556 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1557 max_sectors); 1558 r10_bio->devs[i].repl_bio = mbio; 1559 1560 mbio->bi_sector = (r10_bio->devs[i].addr + 1561 choose_data_offset( 1562 r10_bio, rdev)); 1563 mbio->bi_bdev = rdev->bdev; 1564 mbio->bi_end_io = raid10_end_write_request; 1565 mbio->bi_rw = 1566 WRITE | do_sync | do_fua | do_discard | do_same; 1567 mbio->bi_private = r10_bio; 1568 1569 atomic_inc(&r10_bio->remaining); 1570 spin_lock_irqsave(&conf->device_lock, flags); 1571 bio_list_add(&conf->pending_bio_list, mbio); 1572 conf->pending_count++; 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 if (!mddev_check_plugged(mddev)) 1575 md_wakeup_thread(mddev->thread); 1576 } 1577 } 1578 1579 /* Don't remove the bias on 'remaining' (one_write_done) until 1580 * after checking if we need to go around again. 1581 */ 1582 1583 if (sectors_handled < bio_sectors(bio)) { 1584 one_write_done(r10_bio); 1585 /* We need another r10_bio. It has already been counted 1586 * in bio->bi_phys_segments. 1587 */ 1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1589 1590 r10_bio->master_bio = bio; 1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1592 1593 r10_bio->mddev = mddev; 1594 r10_bio->sector = bio->bi_sector + sectors_handled; 1595 r10_bio->state = 0; 1596 goto retry_write; 1597 } 1598 one_write_done(r10_bio); 1599 1600 /* In case raid10d snuck in to freeze_array */ 1601 wake_up(&conf->wait_barrier); 1602 } 1603 1604 static void status(struct seq_file *seq, struct mddev *mddev) 1605 { 1606 struct r10conf *conf = mddev->private; 1607 int i; 1608 1609 if (conf->geo.near_copies < conf->geo.raid_disks) 1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1611 if (conf->geo.near_copies > 1) 1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1613 if (conf->geo.far_copies > 1) { 1614 if (conf->geo.far_offset) 1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1616 else 1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1618 } 1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1620 conf->geo.raid_disks - mddev->degraded); 1621 for (i = 0; i < conf->geo.raid_disks; i++) 1622 seq_printf(seq, "%s", 1623 conf->mirrors[i].rdev && 1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1625 seq_printf(seq, "]"); 1626 } 1627 1628 /* check if there are enough drives for 1629 * every block to appear on atleast one. 1630 * Don't consider the device numbered 'ignore' 1631 * as we might be about to remove it. 1632 */ 1633 static int _enough(struct r10conf *conf, int previous, int ignore) 1634 { 1635 int first = 0; 1636 int has_enough = 0; 1637 int disks, ncopies; 1638 if (previous) { 1639 disks = conf->prev.raid_disks; 1640 ncopies = conf->prev.near_copies; 1641 } else { 1642 disks = conf->geo.raid_disks; 1643 ncopies = conf->geo.near_copies; 1644 } 1645 1646 rcu_read_lock(); 1647 do { 1648 int n = conf->copies; 1649 int cnt = 0; 1650 int this = first; 1651 while (n--) { 1652 struct md_rdev *rdev; 1653 if (this != ignore && 1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1655 test_bit(In_sync, &rdev->flags)) 1656 cnt++; 1657 this = (this+1) % disks; 1658 } 1659 if (cnt == 0) 1660 goto out; 1661 first = (first + ncopies) % disks; 1662 } while (first != 0); 1663 has_enough = 1; 1664 out: 1665 rcu_read_unlock(); 1666 return has_enough; 1667 } 1668 1669 static int enough(struct r10conf *conf, int ignore) 1670 { 1671 /* when calling 'enough', both 'prev' and 'geo' must 1672 * be stable. 1673 * This is ensured if ->reconfig_mutex or ->device_lock 1674 * is held. 1675 */ 1676 return _enough(conf, 0, ignore) && 1677 _enough(conf, 1, ignore); 1678 } 1679 1680 static void error(struct mddev *mddev, struct md_rdev *rdev) 1681 { 1682 char b[BDEVNAME_SIZE]; 1683 struct r10conf *conf = mddev->private; 1684 unsigned long flags; 1685 1686 /* 1687 * If it is not operational, then we have already marked it as dead 1688 * else if it is the last working disks, ignore the error, let the 1689 * next level up know. 1690 * else mark the drive as failed 1691 */ 1692 spin_lock_irqsave(&conf->device_lock, flags); 1693 if (test_bit(In_sync, &rdev->flags) 1694 && !enough(conf, rdev->raid_disk)) { 1695 /* 1696 * Don't fail the drive, just return an IO error. 1697 */ 1698 spin_unlock_irqrestore(&conf->device_lock, flags); 1699 return; 1700 } 1701 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1702 mddev->degraded++; 1703 /* 1704 * if recovery is running, make sure it aborts. 1705 */ 1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1707 } 1708 set_bit(Blocked, &rdev->flags); 1709 set_bit(Faulty, &rdev->flags); 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1711 spin_unlock_irqrestore(&conf->device_lock, flags); 1712 printk(KERN_ALERT 1713 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1714 "md/raid10:%s: Operation continuing on %d devices.\n", 1715 mdname(mddev), bdevname(rdev->bdev, b), 1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1717 } 1718 1719 static void print_conf(struct r10conf *conf) 1720 { 1721 int i; 1722 struct raid10_info *tmp; 1723 1724 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1725 if (!conf) { 1726 printk(KERN_DEBUG "(!conf)\n"); 1727 return; 1728 } 1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1730 conf->geo.raid_disks); 1731 1732 for (i = 0; i < conf->geo.raid_disks; i++) { 1733 char b[BDEVNAME_SIZE]; 1734 tmp = conf->mirrors + i; 1735 if (tmp->rdev) 1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1737 i, !test_bit(In_sync, &tmp->rdev->flags), 1738 !test_bit(Faulty, &tmp->rdev->flags), 1739 bdevname(tmp->rdev->bdev,b)); 1740 } 1741 } 1742 1743 static void close_sync(struct r10conf *conf) 1744 { 1745 wait_barrier(conf); 1746 allow_barrier(conf); 1747 1748 mempool_destroy(conf->r10buf_pool); 1749 conf->r10buf_pool = NULL; 1750 } 1751 1752 static int raid10_spare_active(struct mddev *mddev) 1753 { 1754 int i; 1755 struct r10conf *conf = mddev->private; 1756 struct raid10_info *tmp; 1757 int count = 0; 1758 unsigned long flags; 1759 1760 /* 1761 * Find all non-in_sync disks within the RAID10 configuration 1762 * and mark them in_sync 1763 */ 1764 for (i = 0; i < conf->geo.raid_disks; i++) { 1765 tmp = conf->mirrors + i; 1766 if (tmp->replacement 1767 && tmp->replacement->recovery_offset == MaxSector 1768 && !test_bit(Faulty, &tmp->replacement->flags) 1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1770 /* Replacement has just become active */ 1771 if (!tmp->rdev 1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1773 count++; 1774 if (tmp->rdev) { 1775 /* Replaced device not technically faulty, 1776 * but we need to be sure it gets removed 1777 * and never re-added. 1778 */ 1779 set_bit(Faulty, &tmp->rdev->flags); 1780 sysfs_notify_dirent_safe( 1781 tmp->rdev->sysfs_state); 1782 } 1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1784 } else if (tmp->rdev 1785 && !test_bit(Faulty, &tmp->rdev->flags) 1786 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1787 count++; 1788 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1789 } 1790 } 1791 spin_lock_irqsave(&conf->device_lock, flags); 1792 mddev->degraded -= count; 1793 spin_unlock_irqrestore(&conf->device_lock, flags); 1794 1795 print_conf(conf); 1796 return count; 1797 } 1798 1799 1800 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1801 { 1802 struct r10conf *conf = mddev->private; 1803 int err = -EEXIST; 1804 int mirror; 1805 int first = 0; 1806 int last = conf->geo.raid_disks - 1; 1807 struct request_queue *q = bdev_get_queue(rdev->bdev); 1808 1809 if (mddev->recovery_cp < MaxSector) 1810 /* only hot-add to in-sync arrays, as recovery is 1811 * very different from resync 1812 */ 1813 return -EBUSY; 1814 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1815 return -EINVAL; 1816 1817 if (rdev->raid_disk >= 0) 1818 first = last = rdev->raid_disk; 1819 1820 if (q->merge_bvec_fn) { 1821 set_bit(Unmerged, &rdev->flags); 1822 mddev->merge_check_needed = 1; 1823 } 1824 1825 if (rdev->saved_raid_disk >= first && 1826 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1827 mirror = rdev->saved_raid_disk; 1828 else 1829 mirror = first; 1830 for ( ; mirror <= last ; mirror++) { 1831 struct raid10_info *p = &conf->mirrors[mirror]; 1832 if (p->recovery_disabled == mddev->recovery_disabled) 1833 continue; 1834 if (p->rdev) { 1835 if (!test_bit(WantReplacement, &p->rdev->flags) || 1836 p->replacement != NULL) 1837 continue; 1838 clear_bit(In_sync, &rdev->flags); 1839 set_bit(Replacement, &rdev->flags); 1840 rdev->raid_disk = mirror; 1841 err = 0; 1842 if (mddev->gendisk) 1843 disk_stack_limits(mddev->gendisk, rdev->bdev, 1844 rdev->data_offset << 9); 1845 conf->fullsync = 1; 1846 rcu_assign_pointer(p->replacement, rdev); 1847 break; 1848 } 1849 1850 if (mddev->gendisk) 1851 disk_stack_limits(mddev->gendisk, rdev->bdev, 1852 rdev->data_offset << 9); 1853 1854 p->head_position = 0; 1855 p->recovery_disabled = mddev->recovery_disabled - 1; 1856 rdev->raid_disk = mirror; 1857 err = 0; 1858 if (rdev->saved_raid_disk != mirror) 1859 conf->fullsync = 1; 1860 rcu_assign_pointer(p->rdev, rdev); 1861 break; 1862 } 1863 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1864 /* Some requests might not have seen this new 1865 * merge_bvec_fn. We must wait for them to complete 1866 * before merging the device fully. 1867 * First we make sure any code which has tested 1868 * our function has submitted the request, then 1869 * we wait for all outstanding requests to complete. 1870 */ 1871 synchronize_sched(); 1872 freeze_array(conf, 0); 1873 unfreeze_array(conf); 1874 clear_bit(Unmerged, &rdev->flags); 1875 } 1876 md_integrity_add_rdev(rdev, mddev); 1877 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1878 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1879 1880 print_conf(conf); 1881 return err; 1882 } 1883 1884 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1885 { 1886 struct r10conf *conf = mddev->private; 1887 int err = 0; 1888 int number = rdev->raid_disk; 1889 struct md_rdev **rdevp; 1890 struct raid10_info *p = conf->mirrors + number; 1891 1892 print_conf(conf); 1893 if (rdev == p->rdev) 1894 rdevp = &p->rdev; 1895 else if (rdev == p->replacement) 1896 rdevp = &p->replacement; 1897 else 1898 return 0; 1899 1900 if (test_bit(In_sync, &rdev->flags) || 1901 atomic_read(&rdev->nr_pending)) { 1902 err = -EBUSY; 1903 goto abort; 1904 } 1905 /* Only remove faulty devices if recovery 1906 * is not possible. 1907 */ 1908 if (!test_bit(Faulty, &rdev->flags) && 1909 mddev->recovery_disabled != p->recovery_disabled && 1910 (!p->replacement || p->replacement == rdev) && 1911 number < conf->geo.raid_disks && 1912 enough(conf, -1)) { 1913 err = -EBUSY; 1914 goto abort; 1915 } 1916 *rdevp = NULL; 1917 synchronize_rcu(); 1918 if (atomic_read(&rdev->nr_pending)) { 1919 /* lost the race, try later */ 1920 err = -EBUSY; 1921 *rdevp = rdev; 1922 goto abort; 1923 } else if (p->replacement) { 1924 /* We must have just cleared 'rdev' */ 1925 p->rdev = p->replacement; 1926 clear_bit(Replacement, &p->replacement->flags); 1927 smp_mb(); /* Make sure other CPUs may see both as identical 1928 * but will never see neither -- if they are careful. 1929 */ 1930 p->replacement = NULL; 1931 clear_bit(WantReplacement, &rdev->flags); 1932 } else 1933 /* We might have just remove the Replacement as faulty 1934 * Clear the flag just in case 1935 */ 1936 clear_bit(WantReplacement, &rdev->flags); 1937 1938 err = md_integrity_register(mddev); 1939 1940 abort: 1941 1942 print_conf(conf); 1943 return err; 1944 } 1945 1946 1947 static void end_sync_read(struct bio *bio, int error) 1948 { 1949 struct r10bio *r10_bio = bio->bi_private; 1950 struct r10conf *conf = r10_bio->mddev->private; 1951 int d; 1952 1953 if (bio == r10_bio->master_bio) { 1954 /* this is a reshape read */ 1955 d = r10_bio->read_slot; /* really the read dev */ 1956 } else 1957 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1958 1959 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1960 set_bit(R10BIO_Uptodate, &r10_bio->state); 1961 else 1962 /* The write handler will notice the lack of 1963 * R10BIO_Uptodate and record any errors etc 1964 */ 1965 atomic_add(r10_bio->sectors, 1966 &conf->mirrors[d].rdev->corrected_errors); 1967 1968 /* for reconstruct, we always reschedule after a read. 1969 * for resync, only after all reads 1970 */ 1971 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1972 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1973 atomic_dec_and_test(&r10_bio->remaining)) { 1974 /* we have read all the blocks, 1975 * do the comparison in process context in raid10d 1976 */ 1977 reschedule_retry(r10_bio); 1978 } 1979 } 1980 1981 static void end_sync_request(struct r10bio *r10_bio) 1982 { 1983 struct mddev *mddev = r10_bio->mddev; 1984 1985 while (atomic_dec_and_test(&r10_bio->remaining)) { 1986 if (r10_bio->master_bio == NULL) { 1987 /* the primary of several recovery bios */ 1988 sector_t s = r10_bio->sectors; 1989 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1990 test_bit(R10BIO_WriteError, &r10_bio->state)) 1991 reschedule_retry(r10_bio); 1992 else 1993 put_buf(r10_bio); 1994 md_done_sync(mddev, s, 1); 1995 break; 1996 } else { 1997 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1998 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1999 test_bit(R10BIO_WriteError, &r10_bio->state)) 2000 reschedule_retry(r10_bio); 2001 else 2002 put_buf(r10_bio); 2003 r10_bio = r10_bio2; 2004 } 2005 } 2006 } 2007 2008 static void end_sync_write(struct bio *bio, int error) 2009 { 2010 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2011 struct r10bio *r10_bio = bio->bi_private; 2012 struct mddev *mddev = r10_bio->mddev; 2013 struct r10conf *conf = mddev->private; 2014 int d; 2015 sector_t first_bad; 2016 int bad_sectors; 2017 int slot; 2018 int repl; 2019 struct md_rdev *rdev = NULL; 2020 2021 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2022 if (repl) 2023 rdev = conf->mirrors[d].replacement; 2024 else 2025 rdev = conf->mirrors[d].rdev; 2026 2027 if (!uptodate) { 2028 if (repl) 2029 md_error(mddev, rdev); 2030 else { 2031 set_bit(WriteErrorSeen, &rdev->flags); 2032 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2033 set_bit(MD_RECOVERY_NEEDED, 2034 &rdev->mddev->recovery); 2035 set_bit(R10BIO_WriteError, &r10_bio->state); 2036 } 2037 } else if (is_badblock(rdev, 2038 r10_bio->devs[slot].addr, 2039 r10_bio->sectors, 2040 &first_bad, &bad_sectors)) 2041 set_bit(R10BIO_MadeGood, &r10_bio->state); 2042 2043 rdev_dec_pending(rdev, mddev); 2044 2045 end_sync_request(r10_bio); 2046 } 2047 2048 /* 2049 * Note: sync and recover and handled very differently for raid10 2050 * This code is for resync. 2051 * For resync, we read through virtual addresses and read all blocks. 2052 * If there is any error, we schedule a write. The lowest numbered 2053 * drive is authoritative. 2054 * However requests come for physical address, so we need to map. 2055 * For every physical address there are raid_disks/copies virtual addresses, 2056 * which is always are least one, but is not necessarly an integer. 2057 * This means that a physical address can span multiple chunks, so we may 2058 * have to submit multiple io requests for a single sync request. 2059 */ 2060 /* 2061 * We check if all blocks are in-sync and only write to blocks that 2062 * aren't in sync 2063 */ 2064 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2065 { 2066 struct r10conf *conf = mddev->private; 2067 int i, first; 2068 struct bio *tbio, *fbio; 2069 int vcnt; 2070 2071 atomic_set(&r10_bio->remaining, 1); 2072 2073 /* find the first device with a block */ 2074 for (i=0; i<conf->copies; i++) 2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2076 break; 2077 2078 if (i == conf->copies) 2079 goto done; 2080 2081 first = i; 2082 fbio = r10_bio->devs[i].bio; 2083 2084 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2085 /* now find blocks with errors */ 2086 for (i=0 ; i < conf->copies ; i++) { 2087 int j, d; 2088 2089 tbio = r10_bio->devs[i].bio; 2090 2091 if (tbio->bi_end_io != end_sync_read) 2092 continue; 2093 if (i == first) 2094 continue; 2095 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2096 /* We know that the bi_io_vec layout is the same for 2097 * both 'first' and 'i', so we just compare them. 2098 * All vec entries are PAGE_SIZE; 2099 */ 2100 for (j = 0; j < vcnt; j++) 2101 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2102 page_address(tbio->bi_io_vec[j].bv_page), 2103 fbio->bi_io_vec[j].bv_len)) 2104 break; 2105 if (j == vcnt) 2106 continue; 2107 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2108 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2109 /* Don't fix anything. */ 2110 continue; 2111 } 2112 /* Ok, we need to write this bio, either to correct an 2113 * inconsistency or to correct an unreadable block. 2114 * First we need to fixup bv_offset, bv_len and 2115 * bi_vecs, as the read request might have corrupted these 2116 */ 2117 bio_reset(tbio); 2118 2119 tbio->bi_vcnt = vcnt; 2120 tbio->bi_size = r10_bio->sectors << 9; 2121 tbio->bi_rw = WRITE; 2122 tbio->bi_private = r10_bio; 2123 tbio->bi_sector = r10_bio->devs[i].addr; 2124 2125 for (j=0; j < vcnt ; j++) { 2126 tbio->bi_io_vec[j].bv_offset = 0; 2127 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2128 2129 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2130 page_address(fbio->bi_io_vec[j].bv_page), 2131 PAGE_SIZE); 2132 } 2133 tbio->bi_end_io = end_sync_write; 2134 2135 d = r10_bio->devs[i].devnum; 2136 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2137 atomic_inc(&r10_bio->remaining); 2138 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2139 2140 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2141 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2142 generic_make_request(tbio); 2143 } 2144 2145 /* Now write out to any replacement devices 2146 * that are active 2147 */ 2148 for (i = 0; i < conf->copies; i++) { 2149 int j, d; 2150 2151 tbio = r10_bio->devs[i].repl_bio; 2152 if (!tbio || !tbio->bi_end_io) 2153 continue; 2154 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2155 && r10_bio->devs[i].bio != fbio) 2156 for (j = 0; j < vcnt; j++) 2157 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2158 page_address(fbio->bi_io_vec[j].bv_page), 2159 PAGE_SIZE); 2160 d = r10_bio->devs[i].devnum; 2161 atomic_inc(&r10_bio->remaining); 2162 md_sync_acct(conf->mirrors[d].replacement->bdev, 2163 bio_sectors(tbio)); 2164 generic_make_request(tbio); 2165 } 2166 2167 done: 2168 if (atomic_dec_and_test(&r10_bio->remaining)) { 2169 md_done_sync(mddev, r10_bio->sectors, 1); 2170 put_buf(r10_bio); 2171 } 2172 } 2173 2174 /* 2175 * Now for the recovery code. 2176 * Recovery happens across physical sectors. 2177 * We recover all non-is_sync drives by finding the virtual address of 2178 * each, and then choose a working drive that also has that virt address. 2179 * There is a separate r10_bio for each non-in_sync drive. 2180 * Only the first two slots are in use. The first for reading, 2181 * The second for writing. 2182 * 2183 */ 2184 static void fix_recovery_read_error(struct r10bio *r10_bio) 2185 { 2186 /* We got a read error during recovery. 2187 * We repeat the read in smaller page-sized sections. 2188 * If a read succeeds, write it to the new device or record 2189 * a bad block if we cannot. 2190 * If a read fails, record a bad block on both old and 2191 * new devices. 2192 */ 2193 struct mddev *mddev = r10_bio->mddev; 2194 struct r10conf *conf = mddev->private; 2195 struct bio *bio = r10_bio->devs[0].bio; 2196 sector_t sect = 0; 2197 int sectors = r10_bio->sectors; 2198 int idx = 0; 2199 int dr = r10_bio->devs[0].devnum; 2200 int dw = r10_bio->devs[1].devnum; 2201 2202 while (sectors) { 2203 int s = sectors; 2204 struct md_rdev *rdev; 2205 sector_t addr; 2206 int ok; 2207 2208 if (s > (PAGE_SIZE>>9)) 2209 s = PAGE_SIZE >> 9; 2210 2211 rdev = conf->mirrors[dr].rdev; 2212 addr = r10_bio->devs[0].addr + sect, 2213 ok = sync_page_io(rdev, 2214 addr, 2215 s << 9, 2216 bio->bi_io_vec[idx].bv_page, 2217 READ, false); 2218 if (ok) { 2219 rdev = conf->mirrors[dw].rdev; 2220 addr = r10_bio->devs[1].addr + sect; 2221 ok = sync_page_io(rdev, 2222 addr, 2223 s << 9, 2224 bio->bi_io_vec[idx].bv_page, 2225 WRITE, false); 2226 if (!ok) { 2227 set_bit(WriteErrorSeen, &rdev->flags); 2228 if (!test_and_set_bit(WantReplacement, 2229 &rdev->flags)) 2230 set_bit(MD_RECOVERY_NEEDED, 2231 &rdev->mddev->recovery); 2232 } 2233 } 2234 if (!ok) { 2235 /* We don't worry if we cannot set a bad block - 2236 * it really is bad so there is no loss in not 2237 * recording it yet 2238 */ 2239 rdev_set_badblocks(rdev, addr, s, 0); 2240 2241 if (rdev != conf->mirrors[dw].rdev) { 2242 /* need bad block on destination too */ 2243 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2244 addr = r10_bio->devs[1].addr + sect; 2245 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2246 if (!ok) { 2247 /* just abort the recovery */ 2248 printk(KERN_NOTICE 2249 "md/raid10:%s: recovery aborted" 2250 " due to read error\n", 2251 mdname(mddev)); 2252 2253 conf->mirrors[dw].recovery_disabled 2254 = mddev->recovery_disabled; 2255 set_bit(MD_RECOVERY_INTR, 2256 &mddev->recovery); 2257 break; 2258 } 2259 } 2260 } 2261 2262 sectors -= s; 2263 sect += s; 2264 idx++; 2265 } 2266 } 2267 2268 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2269 { 2270 struct r10conf *conf = mddev->private; 2271 int d; 2272 struct bio *wbio, *wbio2; 2273 2274 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2275 fix_recovery_read_error(r10_bio); 2276 end_sync_request(r10_bio); 2277 return; 2278 } 2279 2280 /* 2281 * share the pages with the first bio 2282 * and submit the write request 2283 */ 2284 d = r10_bio->devs[1].devnum; 2285 wbio = r10_bio->devs[1].bio; 2286 wbio2 = r10_bio->devs[1].repl_bio; 2287 if (wbio->bi_end_io) { 2288 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2289 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2290 generic_make_request(wbio); 2291 } 2292 if (wbio2 && wbio2->bi_end_io) { 2293 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2294 md_sync_acct(conf->mirrors[d].replacement->bdev, 2295 bio_sectors(wbio2)); 2296 generic_make_request(wbio2); 2297 } 2298 } 2299 2300 2301 /* 2302 * Used by fix_read_error() to decay the per rdev read_errors. 2303 * We halve the read error count for every hour that has elapsed 2304 * since the last recorded read error. 2305 * 2306 */ 2307 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2308 { 2309 struct timespec cur_time_mon; 2310 unsigned long hours_since_last; 2311 unsigned int read_errors = atomic_read(&rdev->read_errors); 2312 2313 ktime_get_ts(&cur_time_mon); 2314 2315 if (rdev->last_read_error.tv_sec == 0 && 2316 rdev->last_read_error.tv_nsec == 0) { 2317 /* first time we've seen a read error */ 2318 rdev->last_read_error = cur_time_mon; 2319 return; 2320 } 2321 2322 hours_since_last = (cur_time_mon.tv_sec - 2323 rdev->last_read_error.tv_sec) / 3600; 2324 2325 rdev->last_read_error = cur_time_mon; 2326 2327 /* 2328 * if hours_since_last is > the number of bits in read_errors 2329 * just set read errors to 0. We do this to avoid 2330 * overflowing the shift of read_errors by hours_since_last. 2331 */ 2332 if (hours_since_last >= 8 * sizeof(read_errors)) 2333 atomic_set(&rdev->read_errors, 0); 2334 else 2335 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2336 } 2337 2338 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2339 int sectors, struct page *page, int rw) 2340 { 2341 sector_t first_bad; 2342 int bad_sectors; 2343 2344 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2345 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2346 return -1; 2347 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2348 /* success */ 2349 return 1; 2350 if (rw == WRITE) { 2351 set_bit(WriteErrorSeen, &rdev->flags); 2352 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2353 set_bit(MD_RECOVERY_NEEDED, 2354 &rdev->mddev->recovery); 2355 } 2356 /* need to record an error - either for the block or the device */ 2357 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2358 md_error(rdev->mddev, rdev); 2359 return 0; 2360 } 2361 2362 /* 2363 * This is a kernel thread which: 2364 * 2365 * 1. Retries failed read operations on working mirrors. 2366 * 2. Updates the raid superblock when problems encounter. 2367 * 3. Performs writes following reads for array synchronising. 2368 */ 2369 2370 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2371 { 2372 int sect = 0; /* Offset from r10_bio->sector */ 2373 int sectors = r10_bio->sectors; 2374 struct md_rdev*rdev; 2375 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2376 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2377 2378 /* still own a reference to this rdev, so it cannot 2379 * have been cleared recently. 2380 */ 2381 rdev = conf->mirrors[d].rdev; 2382 2383 if (test_bit(Faulty, &rdev->flags)) 2384 /* drive has already been failed, just ignore any 2385 more fix_read_error() attempts */ 2386 return; 2387 2388 check_decay_read_errors(mddev, rdev); 2389 atomic_inc(&rdev->read_errors); 2390 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2391 char b[BDEVNAME_SIZE]; 2392 bdevname(rdev->bdev, b); 2393 2394 printk(KERN_NOTICE 2395 "md/raid10:%s: %s: Raid device exceeded " 2396 "read_error threshold [cur %d:max %d]\n", 2397 mdname(mddev), b, 2398 atomic_read(&rdev->read_errors), max_read_errors); 2399 printk(KERN_NOTICE 2400 "md/raid10:%s: %s: Failing raid device\n", 2401 mdname(mddev), b); 2402 md_error(mddev, conf->mirrors[d].rdev); 2403 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2404 return; 2405 } 2406 2407 while(sectors) { 2408 int s = sectors; 2409 int sl = r10_bio->read_slot; 2410 int success = 0; 2411 int start; 2412 2413 if (s > (PAGE_SIZE>>9)) 2414 s = PAGE_SIZE >> 9; 2415 2416 rcu_read_lock(); 2417 do { 2418 sector_t first_bad; 2419 int bad_sectors; 2420 2421 d = r10_bio->devs[sl].devnum; 2422 rdev = rcu_dereference(conf->mirrors[d].rdev); 2423 if (rdev && 2424 !test_bit(Unmerged, &rdev->flags) && 2425 test_bit(In_sync, &rdev->flags) && 2426 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2427 &first_bad, &bad_sectors) == 0) { 2428 atomic_inc(&rdev->nr_pending); 2429 rcu_read_unlock(); 2430 success = sync_page_io(rdev, 2431 r10_bio->devs[sl].addr + 2432 sect, 2433 s<<9, 2434 conf->tmppage, READ, false); 2435 rdev_dec_pending(rdev, mddev); 2436 rcu_read_lock(); 2437 if (success) 2438 break; 2439 } 2440 sl++; 2441 if (sl == conf->copies) 2442 sl = 0; 2443 } while (!success && sl != r10_bio->read_slot); 2444 rcu_read_unlock(); 2445 2446 if (!success) { 2447 /* Cannot read from anywhere, just mark the block 2448 * as bad on the first device to discourage future 2449 * reads. 2450 */ 2451 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2452 rdev = conf->mirrors[dn].rdev; 2453 2454 if (!rdev_set_badblocks( 2455 rdev, 2456 r10_bio->devs[r10_bio->read_slot].addr 2457 + sect, 2458 s, 0)) { 2459 md_error(mddev, rdev); 2460 r10_bio->devs[r10_bio->read_slot].bio 2461 = IO_BLOCKED; 2462 } 2463 break; 2464 } 2465 2466 start = sl; 2467 /* write it back and re-read */ 2468 rcu_read_lock(); 2469 while (sl != r10_bio->read_slot) { 2470 char b[BDEVNAME_SIZE]; 2471 2472 if (sl==0) 2473 sl = conf->copies; 2474 sl--; 2475 d = r10_bio->devs[sl].devnum; 2476 rdev = rcu_dereference(conf->mirrors[d].rdev); 2477 if (!rdev || 2478 test_bit(Unmerged, &rdev->flags) || 2479 !test_bit(In_sync, &rdev->flags)) 2480 continue; 2481 2482 atomic_inc(&rdev->nr_pending); 2483 rcu_read_unlock(); 2484 if (r10_sync_page_io(rdev, 2485 r10_bio->devs[sl].addr + 2486 sect, 2487 s, conf->tmppage, WRITE) 2488 == 0) { 2489 /* Well, this device is dead */ 2490 printk(KERN_NOTICE 2491 "md/raid10:%s: read correction " 2492 "write failed" 2493 " (%d sectors at %llu on %s)\n", 2494 mdname(mddev), s, 2495 (unsigned long long)( 2496 sect + 2497 choose_data_offset(r10_bio, 2498 rdev)), 2499 bdevname(rdev->bdev, b)); 2500 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2501 "drive\n", 2502 mdname(mddev), 2503 bdevname(rdev->bdev, b)); 2504 } 2505 rdev_dec_pending(rdev, mddev); 2506 rcu_read_lock(); 2507 } 2508 sl = start; 2509 while (sl != r10_bio->read_slot) { 2510 char b[BDEVNAME_SIZE]; 2511 2512 if (sl==0) 2513 sl = conf->copies; 2514 sl--; 2515 d = r10_bio->devs[sl].devnum; 2516 rdev = rcu_dereference(conf->mirrors[d].rdev); 2517 if (!rdev || 2518 !test_bit(In_sync, &rdev->flags)) 2519 continue; 2520 2521 atomic_inc(&rdev->nr_pending); 2522 rcu_read_unlock(); 2523 switch (r10_sync_page_io(rdev, 2524 r10_bio->devs[sl].addr + 2525 sect, 2526 s, conf->tmppage, 2527 READ)) { 2528 case 0: 2529 /* Well, this device is dead */ 2530 printk(KERN_NOTICE 2531 "md/raid10:%s: unable to read back " 2532 "corrected sectors" 2533 " (%d sectors at %llu on %s)\n", 2534 mdname(mddev), s, 2535 (unsigned long long)( 2536 sect + 2537 choose_data_offset(r10_bio, rdev)), 2538 bdevname(rdev->bdev, b)); 2539 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2540 "drive\n", 2541 mdname(mddev), 2542 bdevname(rdev->bdev, b)); 2543 break; 2544 case 1: 2545 printk(KERN_INFO 2546 "md/raid10:%s: read error corrected" 2547 " (%d sectors at %llu on %s)\n", 2548 mdname(mddev), s, 2549 (unsigned long long)( 2550 sect + 2551 choose_data_offset(r10_bio, rdev)), 2552 bdevname(rdev->bdev, b)); 2553 atomic_add(s, &rdev->corrected_errors); 2554 } 2555 2556 rdev_dec_pending(rdev, mddev); 2557 rcu_read_lock(); 2558 } 2559 rcu_read_unlock(); 2560 2561 sectors -= s; 2562 sect += s; 2563 } 2564 } 2565 2566 static int narrow_write_error(struct r10bio *r10_bio, int i) 2567 { 2568 struct bio *bio = r10_bio->master_bio; 2569 struct mddev *mddev = r10_bio->mddev; 2570 struct r10conf *conf = mddev->private; 2571 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2572 /* bio has the data to be written to slot 'i' where 2573 * we just recently had a write error. 2574 * We repeatedly clone the bio and trim down to one block, 2575 * then try the write. Where the write fails we record 2576 * a bad block. 2577 * It is conceivable that the bio doesn't exactly align with 2578 * blocks. We must handle this. 2579 * 2580 * We currently own a reference to the rdev. 2581 */ 2582 2583 int block_sectors; 2584 sector_t sector; 2585 int sectors; 2586 int sect_to_write = r10_bio->sectors; 2587 int ok = 1; 2588 2589 if (rdev->badblocks.shift < 0) 2590 return 0; 2591 2592 block_sectors = 1 << rdev->badblocks.shift; 2593 sector = r10_bio->sector; 2594 sectors = ((r10_bio->sector + block_sectors) 2595 & ~(sector_t)(block_sectors - 1)) 2596 - sector; 2597 2598 while (sect_to_write) { 2599 struct bio *wbio; 2600 if (sectors > sect_to_write) 2601 sectors = sect_to_write; 2602 /* Write at 'sector' for 'sectors' */ 2603 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2604 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2605 wbio->bi_sector = (r10_bio->devs[i].addr+ 2606 choose_data_offset(r10_bio, rdev) + 2607 (sector - r10_bio->sector)); 2608 wbio->bi_bdev = rdev->bdev; 2609 if (submit_bio_wait(WRITE, wbio) == 0) 2610 /* Failure! */ 2611 ok = rdev_set_badblocks(rdev, sector, 2612 sectors, 0) 2613 && ok; 2614 2615 bio_put(wbio); 2616 sect_to_write -= sectors; 2617 sector += sectors; 2618 sectors = block_sectors; 2619 } 2620 return ok; 2621 } 2622 2623 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2624 { 2625 int slot = r10_bio->read_slot; 2626 struct bio *bio; 2627 struct r10conf *conf = mddev->private; 2628 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2629 char b[BDEVNAME_SIZE]; 2630 unsigned long do_sync; 2631 int max_sectors; 2632 2633 /* we got a read error. Maybe the drive is bad. Maybe just 2634 * the block and we can fix it. 2635 * We freeze all other IO, and try reading the block from 2636 * other devices. When we find one, we re-write 2637 * and check it that fixes the read error. 2638 * This is all done synchronously while the array is 2639 * frozen. 2640 */ 2641 bio = r10_bio->devs[slot].bio; 2642 bdevname(bio->bi_bdev, b); 2643 bio_put(bio); 2644 r10_bio->devs[slot].bio = NULL; 2645 2646 if (mddev->ro == 0) { 2647 freeze_array(conf, 1); 2648 fix_read_error(conf, mddev, r10_bio); 2649 unfreeze_array(conf); 2650 } else 2651 r10_bio->devs[slot].bio = IO_BLOCKED; 2652 2653 rdev_dec_pending(rdev, mddev); 2654 2655 read_more: 2656 rdev = read_balance(conf, r10_bio, &max_sectors); 2657 if (rdev == NULL) { 2658 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2659 " read error for block %llu\n", 2660 mdname(mddev), b, 2661 (unsigned long long)r10_bio->sector); 2662 raid_end_bio_io(r10_bio); 2663 return; 2664 } 2665 2666 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2667 slot = r10_bio->read_slot; 2668 printk_ratelimited( 2669 KERN_ERR 2670 "md/raid10:%s: %s: redirecting " 2671 "sector %llu to another mirror\n", 2672 mdname(mddev), 2673 bdevname(rdev->bdev, b), 2674 (unsigned long long)r10_bio->sector); 2675 bio = bio_clone_mddev(r10_bio->master_bio, 2676 GFP_NOIO, mddev); 2677 md_trim_bio(bio, 2678 r10_bio->sector - bio->bi_sector, 2679 max_sectors); 2680 r10_bio->devs[slot].bio = bio; 2681 r10_bio->devs[slot].rdev = rdev; 2682 bio->bi_sector = r10_bio->devs[slot].addr 2683 + choose_data_offset(r10_bio, rdev); 2684 bio->bi_bdev = rdev->bdev; 2685 bio->bi_rw = READ | do_sync; 2686 bio->bi_private = r10_bio; 2687 bio->bi_end_io = raid10_end_read_request; 2688 if (max_sectors < r10_bio->sectors) { 2689 /* Drat - have to split this up more */ 2690 struct bio *mbio = r10_bio->master_bio; 2691 int sectors_handled = 2692 r10_bio->sector + max_sectors 2693 - mbio->bi_sector; 2694 r10_bio->sectors = max_sectors; 2695 spin_lock_irq(&conf->device_lock); 2696 if (mbio->bi_phys_segments == 0) 2697 mbio->bi_phys_segments = 2; 2698 else 2699 mbio->bi_phys_segments++; 2700 spin_unlock_irq(&conf->device_lock); 2701 generic_make_request(bio); 2702 2703 r10_bio = mempool_alloc(conf->r10bio_pool, 2704 GFP_NOIO); 2705 r10_bio->master_bio = mbio; 2706 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2707 r10_bio->state = 0; 2708 set_bit(R10BIO_ReadError, 2709 &r10_bio->state); 2710 r10_bio->mddev = mddev; 2711 r10_bio->sector = mbio->bi_sector 2712 + sectors_handled; 2713 2714 goto read_more; 2715 } else 2716 generic_make_request(bio); 2717 } 2718 2719 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2720 { 2721 /* Some sort of write request has finished and it 2722 * succeeded in writing where we thought there was a 2723 * bad block. So forget the bad block. 2724 * Or possibly if failed and we need to record 2725 * a bad block. 2726 */ 2727 int m; 2728 struct md_rdev *rdev; 2729 2730 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2731 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2732 for (m = 0; m < conf->copies; m++) { 2733 int dev = r10_bio->devs[m].devnum; 2734 rdev = conf->mirrors[dev].rdev; 2735 if (r10_bio->devs[m].bio == NULL) 2736 continue; 2737 if (test_bit(BIO_UPTODATE, 2738 &r10_bio->devs[m].bio->bi_flags)) { 2739 rdev_clear_badblocks( 2740 rdev, 2741 r10_bio->devs[m].addr, 2742 r10_bio->sectors, 0); 2743 } else { 2744 if (!rdev_set_badblocks( 2745 rdev, 2746 r10_bio->devs[m].addr, 2747 r10_bio->sectors, 0)) 2748 md_error(conf->mddev, rdev); 2749 } 2750 rdev = conf->mirrors[dev].replacement; 2751 if (r10_bio->devs[m].repl_bio == NULL) 2752 continue; 2753 if (test_bit(BIO_UPTODATE, 2754 &r10_bio->devs[m].repl_bio->bi_flags)) { 2755 rdev_clear_badblocks( 2756 rdev, 2757 r10_bio->devs[m].addr, 2758 r10_bio->sectors, 0); 2759 } else { 2760 if (!rdev_set_badblocks( 2761 rdev, 2762 r10_bio->devs[m].addr, 2763 r10_bio->sectors, 0)) 2764 md_error(conf->mddev, rdev); 2765 } 2766 } 2767 put_buf(r10_bio); 2768 } else { 2769 for (m = 0; m < conf->copies; m++) { 2770 int dev = r10_bio->devs[m].devnum; 2771 struct bio *bio = r10_bio->devs[m].bio; 2772 rdev = conf->mirrors[dev].rdev; 2773 if (bio == IO_MADE_GOOD) { 2774 rdev_clear_badblocks( 2775 rdev, 2776 r10_bio->devs[m].addr, 2777 r10_bio->sectors, 0); 2778 rdev_dec_pending(rdev, conf->mddev); 2779 } else if (bio != NULL && 2780 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2781 if (!narrow_write_error(r10_bio, m)) { 2782 md_error(conf->mddev, rdev); 2783 set_bit(R10BIO_Degraded, 2784 &r10_bio->state); 2785 } 2786 rdev_dec_pending(rdev, conf->mddev); 2787 } 2788 bio = r10_bio->devs[m].repl_bio; 2789 rdev = conf->mirrors[dev].replacement; 2790 if (rdev && bio == IO_MADE_GOOD) { 2791 rdev_clear_badblocks( 2792 rdev, 2793 r10_bio->devs[m].addr, 2794 r10_bio->sectors, 0); 2795 rdev_dec_pending(rdev, conf->mddev); 2796 } 2797 } 2798 if (test_bit(R10BIO_WriteError, 2799 &r10_bio->state)) 2800 close_write(r10_bio); 2801 raid_end_bio_io(r10_bio); 2802 } 2803 } 2804 2805 static void raid10d(struct md_thread *thread) 2806 { 2807 struct mddev *mddev = thread->mddev; 2808 struct r10bio *r10_bio; 2809 unsigned long flags; 2810 struct r10conf *conf = mddev->private; 2811 struct list_head *head = &conf->retry_list; 2812 struct blk_plug plug; 2813 2814 md_check_recovery(mddev); 2815 2816 blk_start_plug(&plug); 2817 for (;;) { 2818 2819 flush_pending_writes(conf); 2820 2821 spin_lock_irqsave(&conf->device_lock, flags); 2822 if (list_empty(head)) { 2823 spin_unlock_irqrestore(&conf->device_lock, flags); 2824 break; 2825 } 2826 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2827 list_del(head->prev); 2828 conf->nr_queued--; 2829 spin_unlock_irqrestore(&conf->device_lock, flags); 2830 2831 mddev = r10_bio->mddev; 2832 conf = mddev->private; 2833 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2834 test_bit(R10BIO_WriteError, &r10_bio->state)) 2835 handle_write_completed(conf, r10_bio); 2836 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2837 reshape_request_write(mddev, r10_bio); 2838 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2839 sync_request_write(mddev, r10_bio); 2840 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2841 recovery_request_write(mddev, r10_bio); 2842 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2843 handle_read_error(mddev, r10_bio); 2844 else { 2845 /* just a partial read to be scheduled from a 2846 * separate context 2847 */ 2848 int slot = r10_bio->read_slot; 2849 generic_make_request(r10_bio->devs[slot].bio); 2850 } 2851 2852 cond_resched(); 2853 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2854 md_check_recovery(mddev); 2855 } 2856 blk_finish_plug(&plug); 2857 } 2858 2859 2860 static int init_resync(struct r10conf *conf) 2861 { 2862 int buffs; 2863 int i; 2864 2865 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2866 BUG_ON(conf->r10buf_pool); 2867 conf->have_replacement = 0; 2868 for (i = 0; i < conf->geo.raid_disks; i++) 2869 if (conf->mirrors[i].replacement) 2870 conf->have_replacement = 1; 2871 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2872 if (!conf->r10buf_pool) 2873 return -ENOMEM; 2874 conf->next_resync = 0; 2875 return 0; 2876 } 2877 2878 /* 2879 * perform a "sync" on one "block" 2880 * 2881 * We need to make sure that no normal I/O request - particularly write 2882 * requests - conflict with active sync requests. 2883 * 2884 * This is achieved by tracking pending requests and a 'barrier' concept 2885 * that can be installed to exclude normal IO requests. 2886 * 2887 * Resync and recovery are handled very differently. 2888 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2889 * 2890 * For resync, we iterate over virtual addresses, read all copies, 2891 * and update if there are differences. If only one copy is live, 2892 * skip it. 2893 * For recovery, we iterate over physical addresses, read a good 2894 * value for each non-in_sync drive, and over-write. 2895 * 2896 * So, for recovery we may have several outstanding complex requests for a 2897 * given address, one for each out-of-sync device. We model this by allocating 2898 * a number of r10_bio structures, one for each out-of-sync device. 2899 * As we setup these structures, we collect all bio's together into a list 2900 * which we then process collectively to add pages, and then process again 2901 * to pass to generic_make_request. 2902 * 2903 * The r10_bio structures are linked using a borrowed master_bio pointer. 2904 * This link is counted in ->remaining. When the r10_bio that points to NULL 2905 * has its remaining count decremented to 0, the whole complex operation 2906 * is complete. 2907 * 2908 */ 2909 2910 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2911 int *skipped, int go_faster) 2912 { 2913 struct r10conf *conf = mddev->private; 2914 struct r10bio *r10_bio; 2915 struct bio *biolist = NULL, *bio; 2916 sector_t max_sector, nr_sectors; 2917 int i; 2918 int max_sync; 2919 sector_t sync_blocks; 2920 sector_t sectors_skipped = 0; 2921 int chunks_skipped = 0; 2922 sector_t chunk_mask = conf->geo.chunk_mask; 2923 2924 if (!conf->r10buf_pool) 2925 if (init_resync(conf)) 2926 return 0; 2927 2928 /* 2929 * Allow skipping a full rebuild for incremental assembly 2930 * of a clean array, like RAID1 does. 2931 */ 2932 if (mddev->bitmap == NULL && 2933 mddev->recovery_cp == MaxSector && 2934 mddev->reshape_position == MaxSector && 2935 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2936 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2937 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2938 conf->fullsync == 0) { 2939 *skipped = 1; 2940 return mddev->dev_sectors - sector_nr; 2941 } 2942 2943 skipped: 2944 max_sector = mddev->dev_sectors; 2945 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2946 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2947 max_sector = mddev->resync_max_sectors; 2948 if (sector_nr >= max_sector) { 2949 /* If we aborted, we need to abort the 2950 * sync on the 'current' bitmap chucks (there can 2951 * be several when recovering multiple devices). 2952 * as we may have started syncing it but not finished. 2953 * We can find the current address in 2954 * mddev->curr_resync, but for recovery, 2955 * we need to convert that to several 2956 * virtual addresses. 2957 */ 2958 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2959 end_reshape(conf); 2960 return 0; 2961 } 2962 2963 if (mddev->curr_resync < max_sector) { /* aborted */ 2964 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2965 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2966 &sync_blocks, 1); 2967 else for (i = 0; i < conf->geo.raid_disks; i++) { 2968 sector_t sect = 2969 raid10_find_virt(conf, mddev->curr_resync, i); 2970 bitmap_end_sync(mddev->bitmap, sect, 2971 &sync_blocks, 1); 2972 } 2973 } else { 2974 /* completed sync */ 2975 if ((!mddev->bitmap || conf->fullsync) 2976 && conf->have_replacement 2977 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2978 /* Completed a full sync so the replacements 2979 * are now fully recovered. 2980 */ 2981 for (i = 0; i < conf->geo.raid_disks; i++) 2982 if (conf->mirrors[i].replacement) 2983 conf->mirrors[i].replacement 2984 ->recovery_offset 2985 = MaxSector; 2986 } 2987 conf->fullsync = 0; 2988 } 2989 bitmap_close_sync(mddev->bitmap); 2990 close_sync(conf); 2991 *skipped = 1; 2992 return sectors_skipped; 2993 } 2994 2995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2996 return reshape_request(mddev, sector_nr, skipped); 2997 2998 if (chunks_skipped >= conf->geo.raid_disks) { 2999 /* if there has been nothing to do on any drive, 3000 * then there is nothing to do at all.. 3001 */ 3002 *skipped = 1; 3003 return (max_sector - sector_nr) + sectors_skipped; 3004 } 3005 3006 if (max_sector > mddev->resync_max) 3007 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3008 3009 /* make sure whole request will fit in a chunk - if chunks 3010 * are meaningful 3011 */ 3012 if (conf->geo.near_copies < conf->geo.raid_disks && 3013 max_sector > (sector_nr | chunk_mask)) 3014 max_sector = (sector_nr | chunk_mask) + 1; 3015 /* 3016 * If there is non-resync activity waiting for us then 3017 * put in a delay to throttle resync. 3018 */ 3019 if (!go_faster && conf->nr_waiting) 3020 msleep_interruptible(1000); 3021 3022 /* Again, very different code for resync and recovery. 3023 * Both must result in an r10bio with a list of bios that 3024 * have bi_end_io, bi_sector, bi_bdev set, 3025 * and bi_private set to the r10bio. 3026 * For recovery, we may actually create several r10bios 3027 * with 2 bios in each, that correspond to the bios in the main one. 3028 * In this case, the subordinate r10bios link back through a 3029 * borrowed master_bio pointer, and the counter in the master 3030 * includes a ref from each subordinate. 3031 */ 3032 /* First, we decide what to do and set ->bi_end_io 3033 * To end_sync_read if we want to read, and 3034 * end_sync_write if we will want to write. 3035 */ 3036 3037 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3038 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3039 /* recovery... the complicated one */ 3040 int j; 3041 r10_bio = NULL; 3042 3043 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3044 int still_degraded; 3045 struct r10bio *rb2; 3046 sector_t sect; 3047 int must_sync; 3048 int any_working; 3049 struct raid10_info *mirror = &conf->mirrors[i]; 3050 3051 if ((mirror->rdev == NULL || 3052 test_bit(In_sync, &mirror->rdev->flags)) 3053 && 3054 (mirror->replacement == NULL || 3055 test_bit(Faulty, 3056 &mirror->replacement->flags))) 3057 continue; 3058 3059 still_degraded = 0; 3060 /* want to reconstruct this device */ 3061 rb2 = r10_bio; 3062 sect = raid10_find_virt(conf, sector_nr, i); 3063 if (sect >= mddev->resync_max_sectors) { 3064 /* last stripe is not complete - don't 3065 * try to recover this sector. 3066 */ 3067 continue; 3068 } 3069 /* Unless we are doing a full sync, or a replacement 3070 * we only need to recover the block if it is set in 3071 * the bitmap 3072 */ 3073 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3074 &sync_blocks, 1); 3075 if (sync_blocks < max_sync) 3076 max_sync = sync_blocks; 3077 if (!must_sync && 3078 mirror->replacement == NULL && 3079 !conf->fullsync) { 3080 /* yep, skip the sync_blocks here, but don't assume 3081 * that there will never be anything to do here 3082 */ 3083 chunks_skipped = -1; 3084 continue; 3085 } 3086 3087 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3088 raise_barrier(conf, rb2 != NULL); 3089 atomic_set(&r10_bio->remaining, 0); 3090 3091 r10_bio->master_bio = (struct bio*)rb2; 3092 if (rb2) 3093 atomic_inc(&rb2->remaining); 3094 r10_bio->mddev = mddev; 3095 set_bit(R10BIO_IsRecover, &r10_bio->state); 3096 r10_bio->sector = sect; 3097 3098 raid10_find_phys(conf, r10_bio); 3099 3100 /* Need to check if the array will still be 3101 * degraded 3102 */ 3103 for (j = 0; j < conf->geo.raid_disks; j++) 3104 if (conf->mirrors[j].rdev == NULL || 3105 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3106 still_degraded = 1; 3107 break; 3108 } 3109 3110 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3111 &sync_blocks, still_degraded); 3112 3113 any_working = 0; 3114 for (j=0; j<conf->copies;j++) { 3115 int k; 3116 int d = r10_bio->devs[j].devnum; 3117 sector_t from_addr, to_addr; 3118 struct md_rdev *rdev; 3119 sector_t sector, first_bad; 3120 int bad_sectors; 3121 if (!conf->mirrors[d].rdev || 3122 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3123 continue; 3124 /* This is where we read from */ 3125 any_working = 1; 3126 rdev = conf->mirrors[d].rdev; 3127 sector = r10_bio->devs[j].addr; 3128 3129 if (is_badblock(rdev, sector, max_sync, 3130 &first_bad, &bad_sectors)) { 3131 if (first_bad > sector) 3132 max_sync = first_bad - sector; 3133 else { 3134 bad_sectors -= (sector 3135 - first_bad); 3136 if (max_sync > bad_sectors) 3137 max_sync = bad_sectors; 3138 continue; 3139 } 3140 } 3141 bio = r10_bio->devs[0].bio; 3142 bio_reset(bio); 3143 bio->bi_next = biolist; 3144 biolist = bio; 3145 bio->bi_private = r10_bio; 3146 bio->bi_end_io = end_sync_read; 3147 bio->bi_rw = READ; 3148 from_addr = r10_bio->devs[j].addr; 3149 bio->bi_sector = from_addr + rdev->data_offset; 3150 bio->bi_bdev = rdev->bdev; 3151 atomic_inc(&rdev->nr_pending); 3152 /* and we write to 'i' (if not in_sync) */ 3153 3154 for (k=0; k<conf->copies; k++) 3155 if (r10_bio->devs[k].devnum == i) 3156 break; 3157 BUG_ON(k == conf->copies); 3158 to_addr = r10_bio->devs[k].addr; 3159 r10_bio->devs[0].devnum = d; 3160 r10_bio->devs[0].addr = from_addr; 3161 r10_bio->devs[1].devnum = i; 3162 r10_bio->devs[1].addr = to_addr; 3163 3164 rdev = mirror->rdev; 3165 if (!test_bit(In_sync, &rdev->flags)) { 3166 bio = r10_bio->devs[1].bio; 3167 bio_reset(bio); 3168 bio->bi_next = biolist; 3169 biolist = bio; 3170 bio->bi_private = r10_bio; 3171 bio->bi_end_io = end_sync_write; 3172 bio->bi_rw = WRITE; 3173 bio->bi_sector = to_addr 3174 + rdev->data_offset; 3175 bio->bi_bdev = rdev->bdev; 3176 atomic_inc(&r10_bio->remaining); 3177 } else 3178 r10_bio->devs[1].bio->bi_end_io = NULL; 3179 3180 /* and maybe write to replacement */ 3181 bio = r10_bio->devs[1].repl_bio; 3182 if (bio) 3183 bio->bi_end_io = NULL; 3184 rdev = mirror->replacement; 3185 /* Note: if rdev != NULL, then bio 3186 * cannot be NULL as r10buf_pool_alloc will 3187 * have allocated it. 3188 * So the second test here is pointless. 3189 * But it keeps semantic-checkers happy, and 3190 * this comment keeps human reviewers 3191 * happy. 3192 */ 3193 if (rdev == NULL || bio == NULL || 3194 test_bit(Faulty, &rdev->flags)) 3195 break; 3196 bio_reset(bio); 3197 bio->bi_next = biolist; 3198 biolist = bio; 3199 bio->bi_private = r10_bio; 3200 bio->bi_end_io = end_sync_write; 3201 bio->bi_rw = WRITE; 3202 bio->bi_sector = to_addr + rdev->data_offset; 3203 bio->bi_bdev = rdev->bdev; 3204 atomic_inc(&r10_bio->remaining); 3205 break; 3206 } 3207 if (j == conf->copies) { 3208 /* Cannot recover, so abort the recovery or 3209 * record a bad block */ 3210 put_buf(r10_bio); 3211 if (rb2) 3212 atomic_dec(&rb2->remaining); 3213 r10_bio = rb2; 3214 if (any_working) { 3215 /* problem is that there are bad blocks 3216 * on other device(s) 3217 */ 3218 int k; 3219 for (k = 0; k < conf->copies; k++) 3220 if (r10_bio->devs[k].devnum == i) 3221 break; 3222 if (!test_bit(In_sync, 3223 &mirror->rdev->flags) 3224 && !rdev_set_badblocks( 3225 mirror->rdev, 3226 r10_bio->devs[k].addr, 3227 max_sync, 0)) 3228 any_working = 0; 3229 if (mirror->replacement && 3230 !rdev_set_badblocks( 3231 mirror->replacement, 3232 r10_bio->devs[k].addr, 3233 max_sync, 0)) 3234 any_working = 0; 3235 } 3236 if (!any_working) { 3237 if (!test_and_set_bit(MD_RECOVERY_INTR, 3238 &mddev->recovery)) 3239 printk(KERN_INFO "md/raid10:%s: insufficient " 3240 "working devices for recovery.\n", 3241 mdname(mddev)); 3242 mirror->recovery_disabled 3243 = mddev->recovery_disabled; 3244 } 3245 break; 3246 } 3247 } 3248 if (biolist == NULL) { 3249 while (r10_bio) { 3250 struct r10bio *rb2 = r10_bio; 3251 r10_bio = (struct r10bio*) rb2->master_bio; 3252 rb2->master_bio = NULL; 3253 put_buf(rb2); 3254 } 3255 goto giveup; 3256 } 3257 } else { 3258 /* resync. Schedule a read for every block at this virt offset */ 3259 int count = 0; 3260 3261 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3262 3263 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3264 &sync_blocks, mddev->degraded) && 3265 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3266 &mddev->recovery)) { 3267 /* We can skip this block */ 3268 *skipped = 1; 3269 return sync_blocks + sectors_skipped; 3270 } 3271 if (sync_blocks < max_sync) 3272 max_sync = sync_blocks; 3273 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3274 3275 r10_bio->mddev = mddev; 3276 atomic_set(&r10_bio->remaining, 0); 3277 raise_barrier(conf, 0); 3278 conf->next_resync = sector_nr; 3279 3280 r10_bio->master_bio = NULL; 3281 r10_bio->sector = sector_nr; 3282 set_bit(R10BIO_IsSync, &r10_bio->state); 3283 raid10_find_phys(conf, r10_bio); 3284 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3285 3286 for (i = 0; i < conf->copies; i++) { 3287 int d = r10_bio->devs[i].devnum; 3288 sector_t first_bad, sector; 3289 int bad_sectors; 3290 3291 if (r10_bio->devs[i].repl_bio) 3292 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3293 3294 bio = r10_bio->devs[i].bio; 3295 bio_reset(bio); 3296 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3297 if (conf->mirrors[d].rdev == NULL || 3298 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3299 continue; 3300 sector = r10_bio->devs[i].addr; 3301 if (is_badblock(conf->mirrors[d].rdev, 3302 sector, max_sync, 3303 &first_bad, &bad_sectors)) { 3304 if (first_bad > sector) 3305 max_sync = first_bad - sector; 3306 else { 3307 bad_sectors -= (sector - first_bad); 3308 if (max_sync > bad_sectors) 3309 max_sync = bad_sectors; 3310 continue; 3311 } 3312 } 3313 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3314 atomic_inc(&r10_bio->remaining); 3315 bio->bi_next = biolist; 3316 biolist = bio; 3317 bio->bi_private = r10_bio; 3318 bio->bi_end_io = end_sync_read; 3319 bio->bi_rw = READ; 3320 bio->bi_sector = sector + 3321 conf->mirrors[d].rdev->data_offset; 3322 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3323 count++; 3324 3325 if (conf->mirrors[d].replacement == NULL || 3326 test_bit(Faulty, 3327 &conf->mirrors[d].replacement->flags)) 3328 continue; 3329 3330 /* Need to set up for writing to the replacement */ 3331 bio = r10_bio->devs[i].repl_bio; 3332 bio_reset(bio); 3333 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3334 3335 sector = r10_bio->devs[i].addr; 3336 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3337 bio->bi_next = biolist; 3338 biolist = bio; 3339 bio->bi_private = r10_bio; 3340 bio->bi_end_io = end_sync_write; 3341 bio->bi_rw = WRITE; 3342 bio->bi_sector = sector + 3343 conf->mirrors[d].replacement->data_offset; 3344 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3345 count++; 3346 } 3347 3348 if (count < 2) { 3349 for (i=0; i<conf->copies; i++) { 3350 int d = r10_bio->devs[i].devnum; 3351 if (r10_bio->devs[i].bio->bi_end_io) 3352 rdev_dec_pending(conf->mirrors[d].rdev, 3353 mddev); 3354 if (r10_bio->devs[i].repl_bio && 3355 r10_bio->devs[i].repl_bio->bi_end_io) 3356 rdev_dec_pending( 3357 conf->mirrors[d].replacement, 3358 mddev); 3359 } 3360 put_buf(r10_bio); 3361 biolist = NULL; 3362 goto giveup; 3363 } 3364 } 3365 3366 nr_sectors = 0; 3367 if (sector_nr + max_sync < max_sector) 3368 max_sector = sector_nr + max_sync; 3369 do { 3370 struct page *page; 3371 int len = PAGE_SIZE; 3372 if (sector_nr + (len>>9) > max_sector) 3373 len = (max_sector - sector_nr) << 9; 3374 if (len == 0) 3375 break; 3376 for (bio= biolist ; bio ; bio=bio->bi_next) { 3377 struct bio *bio2; 3378 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3379 if (bio_add_page(bio, page, len, 0)) 3380 continue; 3381 3382 /* stop here */ 3383 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3384 for (bio2 = biolist; 3385 bio2 && bio2 != bio; 3386 bio2 = bio2->bi_next) { 3387 /* remove last page from this bio */ 3388 bio2->bi_vcnt--; 3389 bio2->bi_size -= len; 3390 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3391 } 3392 goto bio_full; 3393 } 3394 nr_sectors += len>>9; 3395 sector_nr += len>>9; 3396 } while (biolist->bi_vcnt < RESYNC_PAGES); 3397 bio_full: 3398 r10_bio->sectors = nr_sectors; 3399 3400 while (biolist) { 3401 bio = biolist; 3402 biolist = biolist->bi_next; 3403 3404 bio->bi_next = NULL; 3405 r10_bio = bio->bi_private; 3406 r10_bio->sectors = nr_sectors; 3407 3408 if (bio->bi_end_io == end_sync_read) { 3409 md_sync_acct(bio->bi_bdev, nr_sectors); 3410 generic_make_request(bio); 3411 } 3412 } 3413 3414 if (sectors_skipped) 3415 /* pretend they weren't skipped, it makes 3416 * no important difference in this case 3417 */ 3418 md_done_sync(mddev, sectors_skipped, 1); 3419 3420 return sectors_skipped + nr_sectors; 3421 giveup: 3422 /* There is nowhere to write, so all non-sync 3423 * drives must be failed or in resync, all drives 3424 * have a bad block, so try the next chunk... 3425 */ 3426 if (sector_nr + max_sync < max_sector) 3427 max_sector = sector_nr + max_sync; 3428 3429 sectors_skipped += (max_sector - sector_nr); 3430 chunks_skipped ++; 3431 sector_nr = max_sector; 3432 goto skipped; 3433 } 3434 3435 static sector_t 3436 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3437 { 3438 sector_t size; 3439 struct r10conf *conf = mddev->private; 3440 3441 if (!raid_disks) 3442 raid_disks = min(conf->geo.raid_disks, 3443 conf->prev.raid_disks); 3444 if (!sectors) 3445 sectors = conf->dev_sectors; 3446 3447 size = sectors >> conf->geo.chunk_shift; 3448 sector_div(size, conf->geo.far_copies); 3449 size = size * raid_disks; 3450 sector_div(size, conf->geo.near_copies); 3451 3452 return size << conf->geo.chunk_shift; 3453 } 3454 3455 static void calc_sectors(struct r10conf *conf, sector_t size) 3456 { 3457 /* Calculate the number of sectors-per-device that will 3458 * actually be used, and set conf->dev_sectors and 3459 * conf->stride 3460 */ 3461 3462 size = size >> conf->geo.chunk_shift; 3463 sector_div(size, conf->geo.far_copies); 3464 size = size * conf->geo.raid_disks; 3465 sector_div(size, conf->geo.near_copies); 3466 /* 'size' is now the number of chunks in the array */ 3467 /* calculate "used chunks per device" */ 3468 size = size * conf->copies; 3469 3470 /* We need to round up when dividing by raid_disks to 3471 * get the stride size. 3472 */ 3473 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3474 3475 conf->dev_sectors = size << conf->geo.chunk_shift; 3476 3477 if (conf->geo.far_offset) 3478 conf->geo.stride = 1 << conf->geo.chunk_shift; 3479 else { 3480 sector_div(size, conf->geo.far_copies); 3481 conf->geo.stride = size << conf->geo.chunk_shift; 3482 } 3483 } 3484 3485 enum geo_type {geo_new, geo_old, geo_start}; 3486 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3487 { 3488 int nc, fc, fo; 3489 int layout, chunk, disks; 3490 switch (new) { 3491 case geo_old: 3492 layout = mddev->layout; 3493 chunk = mddev->chunk_sectors; 3494 disks = mddev->raid_disks - mddev->delta_disks; 3495 break; 3496 case geo_new: 3497 layout = mddev->new_layout; 3498 chunk = mddev->new_chunk_sectors; 3499 disks = mddev->raid_disks; 3500 break; 3501 default: /* avoid 'may be unused' warnings */ 3502 case geo_start: /* new when starting reshape - raid_disks not 3503 * updated yet. */ 3504 layout = mddev->new_layout; 3505 chunk = mddev->new_chunk_sectors; 3506 disks = mddev->raid_disks + mddev->delta_disks; 3507 break; 3508 } 3509 if (layout >> 18) 3510 return -1; 3511 if (chunk < (PAGE_SIZE >> 9) || 3512 !is_power_of_2(chunk)) 3513 return -2; 3514 nc = layout & 255; 3515 fc = (layout >> 8) & 255; 3516 fo = layout & (1<<16); 3517 geo->raid_disks = disks; 3518 geo->near_copies = nc; 3519 geo->far_copies = fc; 3520 geo->far_offset = fo; 3521 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3522 geo->chunk_mask = chunk - 1; 3523 geo->chunk_shift = ffz(~chunk); 3524 return nc*fc; 3525 } 3526 3527 static struct r10conf *setup_conf(struct mddev *mddev) 3528 { 3529 struct r10conf *conf = NULL; 3530 int err = -EINVAL; 3531 struct geom geo; 3532 int copies; 3533 3534 copies = setup_geo(&geo, mddev, geo_new); 3535 3536 if (copies == -2) { 3537 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3538 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3539 mdname(mddev), PAGE_SIZE); 3540 goto out; 3541 } 3542 3543 if (copies < 2 || copies > mddev->raid_disks) { 3544 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3545 mdname(mddev), mddev->new_layout); 3546 goto out; 3547 } 3548 3549 err = -ENOMEM; 3550 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3551 if (!conf) 3552 goto out; 3553 3554 /* FIXME calc properly */ 3555 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3556 max(0,-mddev->delta_disks)), 3557 GFP_KERNEL); 3558 if (!conf->mirrors) 3559 goto out; 3560 3561 conf->tmppage = alloc_page(GFP_KERNEL); 3562 if (!conf->tmppage) 3563 goto out; 3564 3565 conf->geo = geo; 3566 conf->copies = copies; 3567 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3568 r10bio_pool_free, conf); 3569 if (!conf->r10bio_pool) 3570 goto out; 3571 3572 calc_sectors(conf, mddev->dev_sectors); 3573 if (mddev->reshape_position == MaxSector) { 3574 conf->prev = conf->geo; 3575 conf->reshape_progress = MaxSector; 3576 } else { 3577 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3578 err = -EINVAL; 3579 goto out; 3580 } 3581 conf->reshape_progress = mddev->reshape_position; 3582 if (conf->prev.far_offset) 3583 conf->prev.stride = 1 << conf->prev.chunk_shift; 3584 else 3585 /* far_copies must be 1 */ 3586 conf->prev.stride = conf->dev_sectors; 3587 } 3588 spin_lock_init(&conf->device_lock); 3589 INIT_LIST_HEAD(&conf->retry_list); 3590 3591 spin_lock_init(&conf->resync_lock); 3592 init_waitqueue_head(&conf->wait_barrier); 3593 3594 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3595 if (!conf->thread) 3596 goto out; 3597 3598 conf->mddev = mddev; 3599 return conf; 3600 3601 out: 3602 if (err == -ENOMEM) 3603 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3604 mdname(mddev)); 3605 if (conf) { 3606 if (conf->r10bio_pool) 3607 mempool_destroy(conf->r10bio_pool); 3608 kfree(conf->mirrors); 3609 safe_put_page(conf->tmppage); 3610 kfree(conf); 3611 } 3612 return ERR_PTR(err); 3613 } 3614 3615 static int run(struct mddev *mddev) 3616 { 3617 struct r10conf *conf; 3618 int i, disk_idx, chunk_size; 3619 struct raid10_info *disk; 3620 struct md_rdev *rdev; 3621 sector_t size; 3622 sector_t min_offset_diff = 0; 3623 int first = 1; 3624 bool discard_supported = false; 3625 3626 if (mddev->private == NULL) { 3627 conf = setup_conf(mddev); 3628 if (IS_ERR(conf)) 3629 return PTR_ERR(conf); 3630 mddev->private = conf; 3631 } 3632 conf = mddev->private; 3633 if (!conf) 3634 goto out; 3635 3636 mddev->thread = conf->thread; 3637 conf->thread = NULL; 3638 3639 chunk_size = mddev->chunk_sectors << 9; 3640 if (mddev->queue) { 3641 blk_queue_max_discard_sectors(mddev->queue, 3642 mddev->chunk_sectors); 3643 blk_queue_max_write_same_sectors(mddev->queue, 0); 3644 blk_queue_io_min(mddev->queue, chunk_size); 3645 if (conf->geo.raid_disks % conf->geo.near_copies) 3646 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3647 else 3648 blk_queue_io_opt(mddev->queue, chunk_size * 3649 (conf->geo.raid_disks / conf->geo.near_copies)); 3650 } 3651 3652 rdev_for_each(rdev, mddev) { 3653 long long diff; 3654 struct request_queue *q; 3655 3656 disk_idx = rdev->raid_disk; 3657 if (disk_idx < 0) 3658 continue; 3659 if (disk_idx >= conf->geo.raid_disks && 3660 disk_idx >= conf->prev.raid_disks) 3661 continue; 3662 disk = conf->mirrors + disk_idx; 3663 3664 if (test_bit(Replacement, &rdev->flags)) { 3665 if (disk->replacement) 3666 goto out_free_conf; 3667 disk->replacement = rdev; 3668 } else { 3669 if (disk->rdev) 3670 goto out_free_conf; 3671 disk->rdev = rdev; 3672 } 3673 q = bdev_get_queue(rdev->bdev); 3674 if (q->merge_bvec_fn) 3675 mddev->merge_check_needed = 1; 3676 diff = (rdev->new_data_offset - rdev->data_offset); 3677 if (!mddev->reshape_backwards) 3678 diff = -diff; 3679 if (diff < 0) 3680 diff = 0; 3681 if (first || diff < min_offset_diff) 3682 min_offset_diff = diff; 3683 3684 if (mddev->gendisk) 3685 disk_stack_limits(mddev->gendisk, rdev->bdev, 3686 rdev->data_offset << 9); 3687 3688 disk->head_position = 0; 3689 3690 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3691 discard_supported = true; 3692 } 3693 3694 if (mddev->queue) { 3695 if (discard_supported) 3696 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3697 mddev->queue); 3698 else 3699 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3700 mddev->queue); 3701 } 3702 /* need to check that every block has at least one working mirror */ 3703 if (!enough(conf, -1)) { 3704 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3705 mdname(mddev)); 3706 goto out_free_conf; 3707 } 3708 3709 if (conf->reshape_progress != MaxSector) { 3710 /* must ensure that shape change is supported */ 3711 if (conf->geo.far_copies != 1 && 3712 conf->geo.far_offset == 0) 3713 goto out_free_conf; 3714 if (conf->prev.far_copies != 1 && 3715 conf->prev.far_offset == 0) 3716 goto out_free_conf; 3717 } 3718 3719 mddev->degraded = 0; 3720 for (i = 0; 3721 i < conf->geo.raid_disks 3722 || i < conf->prev.raid_disks; 3723 i++) { 3724 3725 disk = conf->mirrors + i; 3726 3727 if (!disk->rdev && disk->replacement) { 3728 /* The replacement is all we have - use it */ 3729 disk->rdev = disk->replacement; 3730 disk->replacement = NULL; 3731 clear_bit(Replacement, &disk->rdev->flags); 3732 } 3733 3734 if (!disk->rdev || 3735 !test_bit(In_sync, &disk->rdev->flags)) { 3736 disk->head_position = 0; 3737 mddev->degraded++; 3738 if (disk->rdev) 3739 conf->fullsync = 1; 3740 } 3741 disk->recovery_disabled = mddev->recovery_disabled - 1; 3742 } 3743 3744 if (mddev->recovery_cp != MaxSector) 3745 printk(KERN_NOTICE "md/raid10:%s: not clean" 3746 " -- starting background reconstruction\n", 3747 mdname(mddev)); 3748 printk(KERN_INFO 3749 "md/raid10:%s: active with %d out of %d devices\n", 3750 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3751 conf->geo.raid_disks); 3752 /* 3753 * Ok, everything is just fine now 3754 */ 3755 mddev->dev_sectors = conf->dev_sectors; 3756 size = raid10_size(mddev, 0, 0); 3757 md_set_array_sectors(mddev, size); 3758 mddev->resync_max_sectors = size; 3759 3760 if (mddev->queue) { 3761 int stripe = conf->geo.raid_disks * 3762 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3763 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3764 mddev->queue->backing_dev_info.congested_data = mddev; 3765 3766 /* Calculate max read-ahead size. 3767 * We need to readahead at least twice a whole stripe.... 3768 * maybe... 3769 */ 3770 stripe /= conf->geo.near_copies; 3771 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3772 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3773 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3774 } 3775 3776 3777 if (md_integrity_register(mddev)) 3778 goto out_free_conf; 3779 3780 if (conf->reshape_progress != MaxSector) { 3781 unsigned long before_length, after_length; 3782 3783 before_length = ((1 << conf->prev.chunk_shift) * 3784 conf->prev.far_copies); 3785 after_length = ((1 << conf->geo.chunk_shift) * 3786 conf->geo.far_copies); 3787 3788 if (max(before_length, after_length) > min_offset_diff) { 3789 /* This cannot work */ 3790 printk("md/raid10: offset difference not enough to continue reshape\n"); 3791 goto out_free_conf; 3792 } 3793 conf->offset_diff = min_offset_diff; 3794 3795 conf->reshape_safe = conf->reshape_progress; 3796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3799 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3800 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3801 "reshape"); 3802 } 3803 3804 return 0; 3805 3806 out_free_conf: 3807 md_unregister_thread(&mddev->thread); 3808 if (conf->r10bio_pool) 3809 mempool_destroy(conf->r10bio_pool); 3810 safe_put_page(conf->tmppage); 3811 kfree(conf->mirrors); 3812 kfree(conf); 3813 mddev->private = NULL; 3814 out: 3815 return -EIO; 3816 } 3817 3818 static int stop(struct mddev *mddev) 3819 { 3820 struct r10conf *conf = mddev->private; 3821 3822 raise_barrier(conf, 0); 3823 lower_barrier(conf); 3824 3825 md_unregister_thread(&mddev->thread); 3826 if (mddev->queue) 3827 /* the unplug fn references 'conf'*/ 3828 blk_sync_queue(mddev->queue); 3829 3830 if (conf->r10bio_pool) 3831 mempool_destroy(conf->r10bio_pool); 3832 safe_put_page(conf->tmppage); 3833 kfree(conf->mirrors); 3834 kfree(conf); 3835 mddev->private = NULL; 3836 return 0; 3837 } 3838 3839 static void raid10_quiesce(struct mddev *mddev, int state) 3840 { 3841 struct r10conf *conf = mddev->private; 3842 3843 switch(state) { 3844 case 1: 3845 raise_barrier(conf, 0); 3846 break; 3847 case 0: 3848 lower_barrier(conf); 3849 break; 3850 } 3851 } 3852 3853 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3854 { 3855 /* Resize of 'far' arrays is not supported. 3856 * For 'near' and 'offset' arrays we can set the 3857 * number of sectors used to be an appropriate multiple 3858 * of the chunk size. 3859 * For 'offset', this is far_copies*chunksize. 3860 * For 'near' the multiplier is the LCM of 3861 * near_copies and raid_disks. 3862 * So if far_copies > 1 && !far_offset, fail. 3863 * Else find LCM(raid_disks, near_copy)*far_copies and 3864 * multiply by chunk_size. Then round to this number. 3865 * This is mostly done by raid10_size() 3866 */ 3867 struct r10conf *conf = mddev->private; 3868 sector_t oldsize, size; 3869 3870 if (mddev->reshape_position != MaxSector) 3871 return -EBUSY; 3872 3873 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3874 return -EINVAL; 3875 3876 oldsize = raid10_size(mddev, 0, 0); 3877 size = raid10_size(mddev, sectors, 0); 3878 if (mddev->external_size && 3879 mddev->array_sectors > size) 3880 return -EINVAL; 3881 if (mddev->bitmap) { 3882 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3883 if (ret) 3884 return ret; 3885 } 3886 md_set_array_sectors(mddev, size); 3887 set_capacity(mddev->gendisk, mddev->array_sectors); 3888 revalidate_disk(mddev->gendisk); 3889 if (sectors > mddev->dev_sectors && 3890 mddev->recovery_cp > oldsize) { 3891 mddev->recovery_cp = oldsize; 3892 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3893 } 3894 calc_sectors(conf, sectors); 3895 mddev->dev_sectors = conf->dev_sectors; 3896 mddev->resync_max_sectors = size; 3897 return 0; 3898 } 3899 3900 static void *raid10_takeover_raid0(struct mddev *mddev) 3901 { 3902 struct md_rdev *rdev; 3903 struct r10conf *conf; 3904 3905 if (mddev->degraded > 0) { 3906 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3907 mdname(mddev)); 3908 return ERR_PTR(-EINVAL); 3909 } 3910 3911 /* Set new parameters */ 3912 mddev->new_level = 10; 3913 /* new layout: far_copies = 1, near_copies = 2 */ 3914 mddev->new_layout = (1<<8) + 2; 3915 mddev->new_chunk_sectors = mddev->chunk_sectors; 3916 mddev->delta_disks = mddev->raid_disks; 3917 mddev->raid_disks *= 2; 3918 /* make sure it will be not marked as dirty */ 3919 mddev->recovery_cp = MaxSector; 3920 3921 conf = setup_conf(mddev); 3922 if (!IS_ERR(conf)) { 3923 rdev_for_each(rdev, mddev) 3924 if (rdev->raid_disk >= 0) 3925 rdev->new_raid_disk = rdev->raid_disk * 2; 3926 conf->barrier = 1; 3927 } 3928 3929 return conf; 3930 } 3931 3932 static void *raid10_takeover(struct mddev *mddev) 3933 { 3934 struct r0conf *raid0_conf; 3935 3936 /* raid10 can take over: 3937 * raid0 - providing it has only two drives 3938 */ 3939 if (mddev->level == 0) { 3940 /* for raid0 takeover only one zone is supported */ 3941 raid0_conf = mddev->private; 3942 if (raid0_conf->nr_strip_zones > 1) { 3943 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3944 " with more than one zone.\n", 3945 mdname(mddev)); 3946 return ERR_PTR(-EINVAL); 3947 } 3948 return raid10_takeover_raid0(mddev); 3949 } 3950 return ERR_PTR(-EINVAL); 3951 } 3952 3953 static int raid10_check_reshape(struct mddev *mddev) 3954 { 3955 /* Called when there is a request to change 3956 * - layout (to ->new_layout) 3957 * - chunk size (to ->new_chunk_sectors) 3958 * - raid_disks (by delta_disks) 3959 * or when trying to restart a reshape that was ongoing. 3960 * 3961 * We need to validate the request and possibly allocate 3962 * space if that might be an issue later. 3963 * 3964 * Currently we reject any reshape of a 'far' mode array, 3965 * allow chunk size to change if new is generally acceptable, 3966 * allow raid_disks to increase, and allow 3967 * a switch between 'near' mode and 'offset' mode. 3968 */ 3969 struct r10conf *conf = mddev->private; 3970 struct geom geo; 3971 3972 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3973 return -EINVAL; 3974 3975 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3976 /* mustn't change number of copies */ 3977 return -EINVAL; 3978 if (geo.far_copies > 1 && !geo.far_offset) 3979 /* Cannot switch to 'far' mode */ 3980 return -EINVAL; 3981 3982 if (mddev->array_sectors & geo.chunk_mask) 3983 /* not factor of array size */ 3984 return -EINVAL; 3985 3986 if (!enough(conf, -1)) 3987 return -EINVAL; 3988 3989 kfree(conf->mirrors_new); 3990 conf->mirrors_new = NULL; 3991 if (mddev->delta_disks > 0) { 3992 /* allocate new 'mirrors' list */ 3993 conf->mirrors_new = kzalloc( 3994 sizeof(struct raid10_info) 3995 *(mddev->raid_disks + 3996 mddev->delta_disks), 3997 GFP_KERNEL); 3998 if (!conf->mirrors_new) 3999 return -ENOMEM; 4000 } 4001 return 0; 4002 } 4003 4004 /* 4005 * Need to check if array has failed when deciding whether to: 4006 * - start an array 4007 * - remove non-faulty devices 4008 * - add a spare 4009 * - allow a reshape 4010 * This determination is simple when no reshape is happening. 4011 * However if there is a reshape, we need to carefully check 4012 * both the before and after sections. 4013 * This is because some failed devices may only affect one 4014 * of the two sections, and some non-in_sync devices may 4015 * be insync in the section most affected by failed devices. 4016 */ 4017 static int calc_degraded(struct r10conf *conf) 4018 { 4019 int degraded, degraded2; 4020 int i; 4021 4022 rcu_read_lock(); 4023 degraded = 0; 4024 /* 'prev' section first */ 4025 for (i = 0; i < conf->prev.raid_disks; i++) { 4026 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4027 if (!rdev || test_bit(Faulty, &rdev->flags)) 4028 degraded++; 4029 else if (!test_bit(In_sync, &rdev->flags)) 4030 /* When we can reduce the number of devices in 4031 * an array, this might not contribute to 4032 * 'degraded'. It does now. 4033 */ 4034 degraded++; 4035 } 4036 rcu_read_unlock(); 4037 if (conf->geo.raid_disks == conf->prev.raid_disks) 4038 return degraded; 4039 rcu_read_lock(); 4040 degraded2 = 0; 4041 for (i = 0; i < conf->geo.raid_disks; i++) { 4042 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4043 if (!rdev || test_bit(Faulty, &rdev->flags)) 4044 degraded2++; 4045 else if (!test_bit(In_sync, &rdev->flags)) { 4046 /* If reshape is increasing the number of devices, 4047 * this section has already been recovered, so 4048 * it doesn't contribute to degraded. 4049 * else it does. 4050 */ 4051 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4052 degraded2++; 4053 } 4054 } 4055 rcu_read_unlock(); 4056 if (degraded2 > degraded) 4057 return degraded2; 4058 return degraded; 4059 } 4060 4061 static int raid10_start_reshape(struct mddev *mddev) 4062 { 4063 /* A 'reshape' has been requested. This commits 4064 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4065 * This also checks if there are enough spares and adds them 4066 * to the array. 4067 * We currently require enough spares to make the final 4068 * array non-degraded. We also require that the difference 4069 * between old and new data_offset - on each device - is 4070 * enough that we never risk over-writing. 4071 */ 4072 4073 unsigned long before_length, after_length; 4074 sector_t min_offset_diff = 0; 4075 int first = 1; 4076 struct geom new; 4077 struct r10conf *conf = mddev->private; 4078 struct md_rdev *rdev; 4079 int spares = 0; 4080 int ret; 4081 4082 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4083 return -EBUSY; 4084 4085 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4086 return -EINVAL; 4087 4088 before_length = ((1 << conf->prev.chunk_shift) * 4089 conf->prev.far_copies); 4090 after_length = ((1 << conf->geo.chunk_shift) * 4091 conf->geo.far_copies); 4092 4093 rdev_for_each(rdev, mddev) { 4094 if (!test_bit(In_sync, &rdev->flags) 4095 && !test_bit(Faulty, &rdev->flags)) 4096 spares++; 4097 if (rdev->raid_disk >= 0) { 4098 long long diff = (rdev->new_data_offset 4099 - rdev->data_offset); 4100 if (!mddev->reshape_backwards) 4101 diff = -diff; 4102 if (diff < 0) 4103 diff = 0; 4104 if (first || diff < min_offset_diff) 4105 min_offset_diff = diff; 4106 } 4107 } 4108 4109 if (max(before_length, after_length) > min_offset_diff) 4110 return -EINVAL; 4111 4112 if (spares < mddev->delta_disks) 4113 return -EINVAL; 4114 4115 conf->offset_diff = min_offset_diff; 4116 spin_lock_irq(&conf->device_lock); 4117 if (conf->mirrors_new) { 4118 memcpy(conf->mirrors_new, conf->mirrors, 4119 sizeof(struct raid10_info)*conf->prev.raid_disks); 4120 smp_mb(); 4121 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4122 conf->mirrors_old = conf->mirrors; 4123 conf->mirrors = conf->mirrors_new; 4124 conf->mirrors_new = NULL; 4125 } 4126 setup_geo(&conf->geo, mddev, geo_start); 4127 smp_mb(); 4128 if (mddev->reshape_backwards) { 4129 sector_t size = raid10_size(mddev, 0, 0); 4130 if (size < mddev->array_sectors) { 4131 spin_unlock_irq(&conf->device_lock); 4132 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4133 mdname(mddev)); 4134 return -EINVAL; 4135 } 4136 mddev->resync_max_sectors = size; 4137 conf->reshape_progress = size; 4138 } else 4139 conf->reshape_progress = 0; 4140 spin_unlock_irq(&conf->device_lock); 4141 4142 if (mddev->delta_disks && mddev->bitmap) { 4143 ret = bitmap_resize(mddev->bitmap, 4144 raid10_size(mddev, 0, 4145 conf->geo.raid_disks), 4146 0, 0); 4147 if (ret) 4148 goto abort; 4149 } 4150 if (mddev->delta_disks > 0) { 4151 rdev_for_each(rdev, mddev) 4152 if (rdev->raid_disk < 0 && 4153 !test_bit(Faulty, &rdev->flags)) { 4154 if (raid10_add_disk(mddev, rdev) == 0) { 4155 if (rdev->raid_disk >= 4156 conf->prev.raid_disks) 4157 set_bit(In_sync, &rdev->flags); 4158 else 4159 rdev->recovery_offset = 0; 4160 4161 if (sysfs_link_rdev(mddev, rdev)) 4162 /* Failure here is OK */; 4163 } 4164 } else if (rdev->raid_disk >= conf->prev.raid_disks 4165 && !test_bit(Faulty, &rdev->flags)) { 4166 /* This is a spare that was manually added */ 4167 set_bit(In_sync, &rdev->flags); 4168 } 4169 } 4170 /* When a reshape changes the number of devices, 4171 * ->degraded is measured against the larger of the 4172 * pre and post numbers. 4173 */ 4174 spin_lock_irq(&conf->device_lock); 4175 mddev->degraded = calc_degraded(conf); 4176 spin_unlock_irq(&conf->device_lock); 4177 mddev->raid_disks = conf->geo.raid_disks; 4178 mddev->reshape_position = conf->reshape_progress; 4179 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4180 4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4184 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4185 4186 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4187 "reshape"); 4188 if (!mddev->sync_thread) { 4189 ret = -EAGAIN; 4190 goto abort; 4191 } 4192 conf->reshape_checkpoint = jiffies; 4193 md_wakeup_thread(mddev->sync_thread); 4194 md_new_event(mddev); 4195 return 0; 4196 4197 abort: 4198 mddev->recovery = 0; 4199 spin_lock_irq(&conf->device_lock); 4200 conf->geo = conf->prev; 4201 mddev->raid_disks = conf->geo.raid_disks; 4202 rdev_for_each(rdev, mddev) 4203 rdev->new_data_offset = rdev->data_offset; 4204 smp_wmb(); 4205 conf->reshape_progress = MaxSector; 4206 mddev->reshape_position = MaxSector; 4207 spin_unlock_irq(&conf->device_lock); 4208 return ret; 4209 } 4210 4211 /* Calculate the last device-address that could contain 4212 * any block from the chunk that includes the array-address 's' 4213 * and report the next address. 4214 * i.e. the address returned will be chunk-aligned and after 4215 * any data that is in the chunk containing 's'. 4216 */ 4217 static sector_t last_dev_address(sector_t s, struct geom *geo) 4218 { 4219 s = (s | geo->chunk_mask) + 1; 4220 s >>= geo->chunk_shift; 4221 s *= geo->near_copies; 4222 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4223 s *= geo->far_copies; 4224 s <<= geo->chunk_shift; 4225 return s; 4226 } 4227 4228 /* Calculate the first device-address that could contain 4229 * any block from the chunk that includes the array-address 's'. 4230 * This too will be the start of a chunk 4231 */ 4232 static sector_t first_dev_address(sector_t s, struct geom *geo) 4233 { 4234 s >>= geo->chunk_shift; 4235 s *= geo->near_copies; 4236 sector_div(s, geo->raid_disks); 4237 s *= geo->far_copies; 4238 s <<= geo->chunk_shift; 4239 return s; 4240 } 4241 4242 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4243 int *skipped) 4244 { 4245 /* We simply copy at most one chunk (smallest of old and new) 4246 * at a time, possibly less if that exceeds RESYNC_PAGES, 4247 * or we hit a bad block or something. 4248 * This might mean we pause for normal IO in the middle of 4249 * a chunk, but that is not a problem was mddev->reshape_position 4250 * can record any location. 4251 * 4252 * If we will want to write to a location that isn't 4253 * yet recorded as 'safe' (i.e. in metadata on disk) then 4254 * we need to flush all reshape requests and update the metadata. 4255 * 4256 * When reshaping forwards (e.g. to more devices), we interpret 4257 * 'safe' as the earliest block which might not have been copied 4258 * down yet. We divide this by previous stripe size and multiply 4259 * by previous stripe length to get lowest device offset that we 4260 * cannot write to yet. 4261 * We interpret 'sector_nr' as an address that we want to write to. 4262 * From this we use last_device_address() to find where we might 4263 * write to, and first_device_address on the 'safe' position. 4264 * If this 'next' write position is after the 'safe' position, 4265 * we must update the metadata to increase the 'safe' position. 4266 * 4267 * When reshaping backwards, we round in the opposite direction 4268 * and perform the reverse test: next write position must not be 4269 * less than current safe position. 4270 * 4271 * In all this the minimum difference in data offsets 4272 * (conf->offset_diff - always positive) allows a bit of slack, 4273 * so next can be after 'safe', but not by more than offset_disk 4274 * 4275 * We need to prepare all the bios here before we start any IO 4276 * to ensure the size we choose is acceptable to all devices. 4277 * The means one for each copy for write-out and an extra one for 4278 * read-in. 4279 * We store the read-in bio in ->master_bio and the others in 4280 * ->devs[x].bio and ->devs[x].repl_bio. 4281 */ 4282 struct r10conf *conf = mddev->private; 4283 struct r10bio *r10_bio; 4284 sector_t next, safe, last; 4285 int max_sectors; 4286 int nr_sectors; 4287 int s; 4288 struct md_rdev *rdev; 4289 int need_flush = 0; 4290 struct bio *blist; 4291 struct bio *bio, *read_bio; 4292 int sectors_done = 0; 4293 4294 if (sector_nr == 0) { 4295 /* If restarting in the middle, skip the initial sectors */ 4296 if (mddev->reshape_backwards && 4297 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4298 sector_nr = (raid10_size(mddev, 0, 0) 4299 - conf->reshape_progress); 4300 } else if (!mddev->reshape_backwards && 4301 conf->reshape_progress > 0) 4302 sector_nr = conf->reshape_progress; 4303 if (sector_nr) { 4304 mddev->curr_resync_completed = sector_nr; 4305 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4306 *skipped = 1; 4307 return sector_nr; 4308 } 4309 } 4310 4311 /* We don't use sector_nr to track where we are up to 4312 * as that doesn't work well for ->reshape_backwards. 4313 * So just use ->reshape_progress. 4314 */ 4315 if (mddev->reshape_backwards) { 4316 /* 'next' is the earliest device address that we might 4317 * write to for this chunk in the new layout 4318 */ 4319 next = first_dev_address(conf->reshape_progress - 1, 4320 &conf->geo); 4321 4322 /* 'safe' is the last device address that we might read from 4323 * in the old layout after a restart 4324 */ 4325 safe = last_dev_address(conf->reshape_safe - 1, 4326 &conf->prev); 4327 4328 if (next + conf->offset_diff < safe) 4329 need_flush = 1; 4330 4331 last = conf->reshape_progress - 1; 4332 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4333 & conf->prev.chunk_mask); 4334 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4335 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4336 } else { 4337 /* 'next' is after the last device address that we 4338 * might write to for this chunk in the new layout 4339 */ 4340 next = last_dev_address(conf->reshape_progress, &conf->geo); 4341 4342 /* 'safe' is the earliest device address that we might 4343 * read from in the old layout after a restart 4344 */ 4345 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4346 4347 /* Need to update metadata if 'next' might be beyond 'safe' 4348 * as that would possibly corrupt data 4349 */ 4350 if (next > safe + conf->offset_diff) 4351 need_flush = 1; 4352 4353 sector_nr = conf->reshape_progress; 4354 last = sector_nr | (conf->geo.chunk_mask 4355 & conf->prev.chunk_mask); 4356 4357 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4358 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4359 } 4360 4361 if (need_flush || 4362 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4363 /* Need to update reshape_position in metadata */ 4364 wait_barrier(conf); 4365 mddev->reshape_position = conf->reshape_progress; 4366 if (mddev->reshape_backwards) 4367 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4368 - conf->reshape_progress; 4369 else 4370 mddev->curr_resync_completed = conf->reshape_progress; 4371 conf->reshape_checkpoint = jiffies; 4372 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4373 md_wakeup_thread(mddev->thread); 4374 wait_event(mddev->sb_wait, mddev->flags == 0 || 4375 kthread_should_stop()); 4376 conf->reshape_safe = mddev->reshape_position; 4377 allow_barrier(conf); 4378 } 4379 4380 read_more: 4381 /* Now schedule reads for blocks from sector_nr to last */ 4382 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4383 raise_barrier(conf, sectors_done != 0); 4384 atomic_set(&r10_bio->remaining, 0); 4385 r10_bio->mddev = mddev; 4386 r10_bio->sector = sector_nr; 4387 set_bit(R10BIO_IsReshape, &r10_bio->state); 4388 r10_bio->sectors = last - sector_nr + 1; 4389 rdev = read_balance(conf, r10_bio, &max_sectors); 4390 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4391 4392 if (!rdev) { 4393 /* Cannot read from here, so need to record bad blocks 4394 * on all the target devices. 4395 */ 4396 // FIXME 4397 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4398 return sectors_done; 4399 } 4400 4401 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4402 4403 read_bio->bi_bdev = rdev->bdev; 4404 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4405 + rdev->data_offset); 4406 read_bio->bi_private = r10_bio; 4407 read_bio->bi_end_io = end_sync_read; 4408 read_bio->bi_rw = READ; 4409 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4410 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4411 read_bio->bi_vcnt = 0; 4412 read_bio->bi_size = 0; 4413 r10_bio->master_bio = read_bio; 4414 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4415 4416 /* Now find the locations in the new layout */ 4417 __raid10_find_phys(&conf->geo, r10_bio); 4418 4419 blist = read_bio; 4420 read_bio->bi_next = NULL; 4421 4422 for (s = 0; s < conf->copies*2; s++) { 4423 struct bio *b; 4424 int d = r10_bio->devs[s/2].devnum; 4425 struct md_rdev *rdev2; 4426 if (s&1) { 4427 rdev2 = conf->mirrors[d].replacement; 4428 b = r10_bio->devs[s/2].repl_bio; 4429 } else { 4430 rdev2 = conf->mirrors[d].rdev; 4431 b = r10_bio->devs[s/2].bio; 4432 } 4433 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4434 continue; 4435 4436 bio_reset(b); 4437 b->bi_bdev = rdev2->bdev; 4438 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4439 b->bi_private = r10_bio; 4440 b->bi_end_io = end_reshape_write; 4441 b->bi_rw = WRITE; 4442 b->bi_next = blist; 4443 blist = b; 4444 } 4445 4446 /* Now add as many pages as possible to all of these bios. */ 4447 4448 nr_sectors = 0; 4449 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4450 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4451 int len = (max_sectors - s) << 9; 4452 if (len > PAGE_SIZE) 4453 len = PAGE_SIZE; 4454 for (bio = blist; bio ; bio = bio->bi_next) { 4455 struct bio *bio2; 4456 if (bio_add_page(bio, page, len, 0)) 4457 continue; 4458 4459 /* Didn't fit, must stop */ 4460 for (bio2 = blist; 4461 bio2 && bio2 != bio; 4462 bio2 = bio2->bi_next) { 4463 /* Remove last page from this bio */ 4464 bio2->bi_vcnt--; 4465 bio2->bi_size -= len; 4466 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4467 } 4468 goto bio_full; 4469 } 4470 sector_nr += len >> 9; 4471 nr_sectors += len >> 9; 4472 } 4473 bio_full: 4474 r10_bio->sectors = nr_sectors; 4475 4476 /* Now submit the read */ 4477 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4478 atomic_inc(&r10_bio->remaining); 4479 read_bio->bi_next = NULL; 4480 generic_make_request(read_bio); 4481 sector_nr += nr_sectors; 4482 sectors_done += nr_sectors; 4483 if (sector_nr <= last) 4484 goto read_more; 4485 4486 /* Now that we have done the whole section we can 4487 * update reshape_progress 4488 */ 4489 if (mddev->reshape_backwards) 4490 conf->reshape_progress -= sectors_done; 4491 else 4492 conf->reshape_progress += sectors_done; 4493 4494 return sectors_done; 4495 } 4496 4497 static void end_reshape_request(struct r10bio *r10_bio); 4498 static int handle_reshape_read_error(struct mddev *mddev, 4499 struct r10bio *r10_bio); 4500 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4501 { 4502 /* Reshape read completed. Hopefully we have a block 4503 * to write out. 4504 * If we got a read error then we do sync 1-page reads from 4505 * elsewhere until we find the data - or give up. 4506 */ 4507 struct r10conf *conf = mddev->private; 4508 int s; 4509 4510 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4511 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4512 /* Reshape has been aborted */ 4513 md_done_sync(mddev, r10_bio->sectors, 0); 4514 return; 4515 } 4516 4517 /* We definitely have the data in the pages, schedule the 4518 * writes. 4519 */ 4520 atomic_set(&r10_bio->remaining, 1); 4521 for (s = 0; s < conf->copies*2; s++) { 4522 struct bio *b; 4523 int d = r10_bio->devs[s/2].devnum; 4524 struct md_rdev *rdev; 4525 if (s&1) { 4526 rdev = conf->mirrors[d].replacement; 4527 b = r10_bio->devs[s/2].repl_bio; 4528 } else { 4529 rdev = conf->mirrors[d].rdev; 4530 b = r10_bio->devs[s/2].bio; 4531 } 4532 if (!rdev || test_bit(Faulty, &rdev->flags)) 4533 continue; 4534 atomic_inc(&rdev->nr_pending); 4535 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4536 atomic_inc(&r10_bio->remaining); 4537 b->bi_next = NULL; 4538 generic_make_request(b); 4539 } 4540 end_reshape_request(r10_bio); 4541 } 4542 4543 static void end_reshape(struct r10conf *conf) 4544 { 4545 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4546 return; 4547 4548 spin_lock_irq(&conf->device_lock); 4549 conf->prev = conf->geo; 4550 md_finish_reshape(conf->mddev); 4551 smp_wmb(); 4552 conf->reshape_progress = MaxSector; 4553 spin_unlock_irq(&conf->device_lock); 4554 4555 /* read-ahead size must cover two whole stripes, which is 4556 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4557 */ 4558 if (conf->mddev->queue) { 4559 int stripe = conf->geo.raid_disks * 4560 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4561 stripe /= conf->geo.near_copies; 4562 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4563 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4564 } 4565 conf->fullsync = 0; 4566 } 4567 4568 4569 static int handle_reshape_read_error(struct mddev *mddev, 4570 struct r10bio *r10_bio) 4571 { 4572 /* Use sync reads to get the blocks from somewhere else */ 4573 int sectors = r10_bio->sectors; 4574 struct r10conf *conf = mddev->private; 4575 struct { 4576 struct r10bio r10_bio; 4577 struct r10dev devs[conf->copies]; 4578 } on_stack; 4579 struct r10bio *r10b = &on_stack.r10_bio; 4580 int slot = 0; 4581 int idx = 0; 4582 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4583 4584 r10b->sector = r10_bio->sector; 4585 __raid10_find_phys(&conf->prev, r10b); 4586 4587 while (sectors) { 4588 int s = sectors; 4589 int success = 0; 4590 int first_slot = slot; 4591 4592 if (s > (PAGE_SIZE >> 9)) 4593 s = PAGE_SIZE >> 9; 4594 4595 while (!success) { 4596 int d = r10b->devs[slot].devnum; 4597 struct md_rdev *rdev = conf->mirrors[d].rdev; 4598 sector_t addr; 4599 if (rdev == NULL || 4600 test_bit(Faulty, &rdev->flags) || 4601 !test_bit(In_sync, &rdev->flags)) 4602 goto failed; 4603 4604 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4605 success = sync_page_io(rdev, 4606 addr, 4607 s << 9, 4608 bvec[idx].bv_page, 4609 READ, false); 4610 if (success) 4611 break; 4612 failed: 4613 slot++; 4614 if (slot >= conf->copies) 4615 slot = 0; 4616 if (slot == first_slot) 4617 break; 4618 } 4619 if (!success) { 4620 /* couldn't read this block, must give up */ 4621 set_bit(MD_RECOVERY_INTR, 4622 &mddev->recovery); 4623 return -EIO; 4624 } 4625 sectors -= s; 4626 idx++; 4627 } 4628 return 0; 4629 } 4630 4631 static void end_reshape_write(struct bio *bio, int error) 4632 { 4633 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4634 struct r10bio *r10_bio = bio->bi_private; 4635 struct mddev *mddev = r10_bio->mddev; 4636 struct r10conf *conf = mddev->private; 4637 int d; 4638 int slot; 4639 int repl; 4640 struct md_rdev *rdev = NULL; 4641 4642 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4643 if (repl) 4644 rdev = conf->mirrors[d].replacement; 4645 if (!rdev) { 4646 smp_mb(); 4647 rdev = conf->mirrors[d].rdev; 4648 } 4649 4650 if (!uptodate) { 4651 /* FIXME should record badblock */ 4652 md_error(mddev, rdev); 4653 } 4654 4655 rdev_dec_pending(rdev, mddev); 4656 end_reshape_request(r10_bio); 4657 } 4658 4659 static void end_reshape_request(struct r10bio *r10_bio) 4660 { 4661 if (!atomic_dec_and_test(&r10_bio->remaining)) 4662 return; 4663 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4664 bio_put(r10_bio->master_bio); 4665 put_buf(r10_bio); 4666 } 4667 4668 static void raid10_finish_reshape(struct mddev *mddev) 4669 { 4670 struct r10conf *conf = mddev->private; 4671 4672 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4673 return; 4674 4675 if (mddev->delta_disks > 0) { 4676 sector_t size = raid10_size(mddev, 0, 0); 4677 md_set_array_sectors(mddev, size); 4678 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4679 mddev->recovery_cp = mddev->resync_max_sectors; 4680 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4681 } 4682 mddev->resync_max_sectors = size; 4683 set_capacity(mddev->gendisk, mddev->array_sectors); 4684 revalidate_disk(mddev->gendisk); 4685 } else { 4686 int d; 4687 for (d = conf->geo.raid_disks ; 4688 d < conf->geo.raid_disks - mddev->delta_disks; 4689 d++) { 4690 struct md_rdev *rdev = conf->mirrors[d].rdev; 4691 if (rdev) 4692 clear_bit(In_sync, &rdev->flags); 4693 rdev = conf->mirrors[d].replacement; 4694 if (rdev) 4695 clear_bit(In_sync, &rdev->flags); 4696 } 4697 } 4698 mddev->layout = mddev->new_layout; 4699 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4700 mddev->reshape_position = MaxSector; 4701 mddev->delta_disks = 0; 4702 mddev->reshape_backwards = 0; 4703 } 4704 4705 static struct md_personality raid10_personality = 4706 { 4707 .name = "raid10", 4708 .level = 10, 4709 .owner = THIS_MODULE, 4710 .make_request = make_request, 4711 .run = run, 4712 .stop = stop, 4713 .status = status, 4714 .error_handler = error, 4715 .hot_add_disk = raid10_add_disk, 4716 .hot_remove_disk= raid10_remove_disk, 4717 .spare_active = raid10_spare_active, 4718 .sync_request = sync_request, 4719 .quiesce = raid10_quiesce, 4720 .size = raid10_size, 4721 .resize = raid10_resize, 4722 .takeover = raid10_takeover, 4723 .check_reshape = raid10_check_reshape, 4724 .start_reshape = raid10_start_reshape, 4725 .finish_reshape = raid10_finish_reshape, 4726 }; 4727 4728 static int __init raid_init(void) 4729 { 4730 return register_md_personality(&raid10_personality); 4731 } 4732 4733 static void raid_exit(void) 4734 { 4735 unregister_md_personality(&raid10_personality); 4736 } 4737 4738 module_init(raid_init); 4739 module_exit(raid_exit); 4740 MODULE_LICENSE("GPL"); 4741 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4742 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4743 MODULE_ALIAS("md-raid10"); 4744 MODULE_ALIAS("md-level-10"); 4745 4746 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4747