xref: /openbmc/linux/drivers/md/raid10.c (revision 7b6d864b)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct r10bio *r10_bio = bio->bi_private;
446 	int dev;
447 	int dec_rdev = 1;
448 	struct r10conf *conf = r10_bio->mddev->private;
449 	int slot, repl;
450 	struct md_rdev *rdev = NULL;
451 
452 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 
454 	if (repl)
455 		rdev = conf->mirrors[dev].replacement;
456 	if (!rdev) {
457 		smp_rmb();
458 		repl = 0;
459 		rdev = conf->mirrors[dev].rdev;
460 	}
461 	/*
462 	 * this branch is our 'one mirror IO has finished' event handler:
463 	 */
464 	if (!uptodate) {
465 		if (repl)
466 			/* Never record new bad blocks to replacement,
467 			 * just fail it.
468 			 */
469 			md_error(rdev->mddev, rdev);
470 		else {
471 			set_bit(WriteErrorSeen,	&rdev->flags);
472 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 				set_bit(MD_RECOVERY_NEEDED,
474 					&rdev->mddev->recovery);
475 			set_bit(R10BIO_WriteError, &r10_bio->state);
476 			dec_rdev = 0;
477 		}
478 	} else {
479 		/*
480 		 * Set R10BIO_Uptodate in our master bio, so that
481 		 * we will return a good error code for to the higher
482 		 * levels even if IO on some other mirrored buffer fails.
483 		 *
484 		 * The 'master' represents the composite IO operation to
485 		 * user-side. So if something waits for IO, then it will
486 		 * wait for the 'master' bio.
487 		 */
488 		sector_t first_bad;
489 		int bad_sectors;
490 
491 		/*
492 		 * Do not set R10BIO_Uptodate if the current device is
493 		 * rebuilding or Faulty. This is because we cannot use
494 		 * such device for properly reading the data back (we could
495 		 * potentially use it, if the current write would have felt
496 		 * before rdev->recovery_offset, but for simplicity we don't
497 		 * check this here.
498 		 */
499 		if (test_bit(In_sync, &rdev->flags) &&
500 		    !test_bit(Faulty, &rdev->flags))
501 			set_bit(R10BIO_Uptodate, &r10_bio->state);
502 
503 		/* Maybe we can clear some bad blocks. */
504 		if (is_badblock(rdev,
505 				r10_bio->devs[slot].addr,
506 				r10_bio->sectors,
507 				&first_bad, &bad_sectors)) {
508 			bio_put(bio);
509 			if (repl)
510 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 			else
512 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 			dec_rdev = 0;
514 			set_bit(R10BIO_MadeGood, &r10_bio->state);
515 		}
516 	}
517 
518 	/*
519 	 *
520 	 * Let's see if all mirrored write operations have finished
521 	 * already.
522 	 */
523 	one_write_done(r10_bio);
524 	if (dec_rdev)
525 		rdev_dec_pending(rdev, conf->mddev);
526 }
527 
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552 
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 	int n,f;
556 	sector_t sector;
557 	sector_t chunk;
558 	sector_t stripe;
559 	int dev;
560 	int slot = 0;
561 	int last_far_set_start, last_far_set_size;
562 
563 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 	last_far_set_start *= geo->far_set_size;
565 
566 	last_far_set_size = geo->far_set_size;
567 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 
569 	/* now calculate first sector/dev */
570 	chunk = r10bio->sector >> geo->chunk_shift;
571 	sector = r10bio->sector & geo->chunk_mask;
572 
573 	chunk *= geo->near_copies;
574 	stripe = chunk;
575 	dev = sector_div(stripe, geo->raid_disks);
576 	if (geo->far_offset)
577 		stripe *= geo->far_copies;
578 
579 	sector += stripe << geo->chunk_shift;
580 
581 	/* and calculate all the others */
582 	for (n = 0; n < geo->near_copies; n++) {
583 		int d = dev;
584 		int set;
585 		sector_t s = sector;
586 		r10bio->devs[slot].devnum = d;
587 		r10bio->devs[slot].addr = s;
588 		slot++;
589 
590 		for (f = 1; f < geo->far_copies; f++) {
591 			set = d / geo->far_set_size;
592 			d += geo->near_copies;
593 
594 			if ((geo->raid_disks % geo->far_set_size) &&
595 			    (d > last_far_set_start)) {
596 				d -= last_far_set_start;
597 				d %= last_far_set_size;
598 				d += last_far_set_start;
599 			} else {
600 				d %= geo->far_set_size;
601 				d += geo->far_set_size * set;
602 			}
603 			s += geo->stride;
604 			r10bio->devs[slot].devnum = d;
605 			r10bio->devs[slot].addr = s;
606 			slot++;
607 		}
608 		dev++;
609 		if (dev >= geo->raid_disks) {
610 			dev = 0;
611 			sector += (geo->chunk_mask + 1);
612 		}
613 	}
614 }
615 
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 	struct geom *geo = &conf->geo;
619 
620 	if (conf->reshape_progress != MaxSector &&
621 	    ((r10bio->sector >= conf->reshape_progress) !=
622 	     conf->mddev->reshape_backwards)) {
623 		set_bit(R10BIO_Previous, &r10bio->state);
624 		geo = &conf->prev;
625 	} else
626 		clear_bit(R10BIO_Previous, &r10bio->state);
627 
628 	__raid10_find_phys(geo, r10bio);
629 }
630 
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 	sector_t offset, chunk, vchunk;
634 	/* Never use conf->prev as this is only called during resync
635 	 * or recovery, so reshape isn't happening
636 	 */
637 	struct geom *geo = &conf->geo;
638 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 	int far_set_size = geo->far_set_size;
640 	int last_far_set_start;
641 
642 	if (geo->raid_disks % geo->far_set_size) {
643 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 		last_far_set_start *= geo->far_set_size;
645 
646 		if (dev >= last_far_set_start) {
647 			far_set_size = geo->far_set_size;
648 			far_set_size += (geo->raid_disks % geo->far_set_size);
649 			far_set_start = last_far_set_start;
650 		}
651 	}
652 
653 	offset = sector & geo->chunk_mask;
654 	if (geo->far_offset) {
655 		int fc;
656 		chunk = sector >> geo->chunk_shift;
657 		fc = sector_div(chunk, geo->far_copies);
658 		dev -= fc * geo->near_copies;
659 		if (dev < far_set_start)
660 			dev += far_set_size;
661 	} else {
662 		while (sector >= geo->stride) {
663 			sector -= geo->stride;
664 			if (dev < (geo->near_copies + far_set_start))
665 				dev += far_set_size - geo->near_copies;
666 			else
667 				dev -= geo->near_copies;
668 		}
669 		chunk = sector >> geo->chunk_shift;
670 	}
671 	vchunk = chunk * geo->raid_disks + dev;
672 	sector_div(vchunk, geo->near_copies);
673 	return (vchunk << geo->chunk_shift) + offset;
674 }
675 
676 /**
677  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *	@q: request queue
679  *	@bvm: properties of new bio
680  *	@biovec: the request that could be merged to it.
681  *
682  *	Return amount of bytes we can accept at this offset
683  *	This requires checking for end-of-chunk if near_copies != raid_disks,
684  *	and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 				 struct bvec_merge_data *bvm,
688 				 struct bio_vec *biovec)
689 {
690 	struct mddev *mddev = q->queuedata;
691 	struct r10conf *conf = mddev->private;
692 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 	int max;
694 	unsigned int chunk_sectors;
695 	unsigned int bio_sectors = bvm->bi_size >> 9;
696 	struct geom *geo = &conf->geo;
697 
698 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 	if (conf->reshape_progress != MaxSector &&
700 	    ((sector >= conf->reshape_progress) !=
701 	     conf->mddev->reshape_backwards))
702 		geo = &conf->prev;
703 
704 	if (geo->near_copies < geo->raid_disks) {
705 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 					+ bio_sectors)) << 9;
707 		if (max < 0)
708 			/* bio_add cannot handle a negative return */
709 			max = 0;
710 		if (max <= biovec->bv_len && bio_sectors == 0)
711 			return biovec->bv_len;
712 	} else
713 		max = biovec->bv_len;
714 
715 	if (mddev->merge_check_needed) {
716 		struct {
717 			struct r10bio r10_bio;
718 			struct r10dev devs[conf->copies];
719 		} on_stack;
720 		struct r10bio *r10_bio = &on_stack.r10_bio;
721 		int s;
722 		if (conf->reshape_progress != MaxSector) {
723 			/* Cannot give any guidance during reshape */
724 			if (max <= biovec->bv_len && bio_sectors == 0)
725 				return biovec->bv_len;
726 			return 0;
727 		}
728 		r10_bio->sector = sector;
729 		raid10_find_phys(conf, r10_bio);
730 		rcu_read_lock();
731 		for (s = 0; s < conf->copies; s++) {
732 			int disk = r10_bio->devs[s].devnum;
733 			struct md_rdev *rdev = rcu_dereference(
734 				conf->mirrors[disk].rdev);
735 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 				struct request_queue *q =
737 					bdev_get_queue(rdev->bdev);
738 				if (q->merge_bvec_fn) {
739 					bvm->bi_sector = r10_bio->devs[s].addr
740 						+ rdev->data_offset;
741 					bvm->bi_bdev = rdev->bdev;
742 					max = min(max, q->merge_bvec_fn(
743 							  q, bvm, biovec));
744 				}
745 			}
746 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 				struct request_queue *q =
749 					bdev_get_queue(rdev->bdev);
750 				if (q->merge_bvec_fn) {
751 					bvm->bi_sector = r10_bio->devs[s].addr
752 						+ rdev->data_offset;
753 					bvm->bi_bdev = rdev->bdev;
754 					max = min(max, q->merge_bvec_fn(
755 							  q, bvm, biovec));
756 				}
757 			}
758 		}
759 		rcu_read_unlock();
760 	}
761 	return max;
762 }
763 
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778 
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 				    struct r10bio *r10_bio,
785 				    int *max_sectors)
786 {
787 	const sector_t this_sector = r10_bio->sector;
788 	int disk, slot;
789 	int sectors = r10_bio->sectors;
790 	int best_good_sectors;
791 	sector_t new_distance, best_dist;
792 	struct md_rdev *best_rdev, *rdev = NULL;
793 	int do_balance;
794 	int best_slot;
795 	struct geom *geo = &conf->geo;
796 
797 	raid10_find_phys(conf, r10_bio);
798 	rcu_read_lock();
799 retry:
800 	sectors = r10_bio->sectors;
801 	best_slot = -1;
802 	best_rdev = NULL;
803 	best_dist = MaxSector;
804 	best_good_sectors = 0;
805 	do_balance = 1;
806 	/*
807 	 * Check if we can balance. We can balance on the whole
808 	 * device if no resync is going on (recovery is ok), or below
809 	 * the resync window. We take the first readable disk when
810 	 * above the resync window.
811 	 */
812 	if (conf->mddev->recovery_cp < MaxSector
813 	    && (this_sector + sectors >= conf->next_resync))
814 		do_balance = 0;
815 
816 	for (slot = 0; slot < conf->copies ; slot++) {
817 		sector_t first_bad;
818 		int bad_sectors;
819 		sector_t dev_sector;
820 
821 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 			continue;
823 		disk = r10_bio->devs[slot].devnum;
824 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 		    test_bit(Unmerged, &rdev->flags) ||
827 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 		if (rdev == NULL ||
830 		    test_bit(Faulty, &rdev->flags) ||
831 		    test_bit(Unmerged, &rdev->flags))
832 			continue;
833 		if (!test_bit(In_sync, &rdev->flags) &&
834 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 			continue;
836 
837 		dev_sector = r10_bio->devs[slot].addr;
838 		if (is_badblock(rdev, dev_sector, sectors,
839 				&first_bad, &bad_sectors)) {
840 			if (best_dist < MaxSector)
841 				/* Already have a better slot */
842 				continue;
843 			if (first_bad <= dev_sector) {
844 				/* Cannot read here.  If this is the
845 				 * 'primary' device, then we must not read
846 				 * beyond 'bad_sectors' from another device.
847 				 */
848 				bad_sectors -= (dev_sector - first_bad);
849 				if (!do_balance && sectors > bad_sectors)
850 					sectors = bad_sectors;
851 				if (best_good_sectors > sectors)
852 					best_good_sectors = sectors;
853 			} else {
854 				sector_t good_sectors =
855 					first_bad - dev_sector;
856 				if (good_sectors > best_good_sectors) {
857 					best_good_sectors = good_sectors;
858 					best_slot = slot;
859 					best_rdev = rdev;
860 				}
861 				if (!do_balance)
862 					/* Must read from here */
863 					break;
864 			}
865 			continue;
866 		} else
867 			best_good_sectors = sectors;
868 
869 		if (!do_balance)
870 			break;
871 
872 		/* This optimisation is debatable, and completely destroys
873 		 * sequential read speed for 'far copies' arrays.  So only
874 		 * keep it for 'near' arrays, and review those later.
875 		 */
876 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 			break;
878 
879 		/* for far > 1 always use the lowest address */
880 		if (geo->far_copies > 1)
881 			new_distance = r10_bio->devs[slot].addr;
882 		else
883 			new_distance = abs(r10_bio->devs[slot].addr -
884 					   conf->mirrors[disk].head_position);
885 		if (new_distance < best_dist) {
886 			best_dist = new_distance;
887 			best_slot = slot;
888 			best_rdev = rdev;
889 		}
890 	}
891 	if (slot >= conf->copies) {
892 		slot = best_slot;
893 		rdev = best_rdev;
894 	}
895 
896 	if (slot >= 0) {
897 		atomic_inc(&rdev->nr_pending);
898 		if (test_bit(Faulty, &rdev->flags)) {
899 			/* Cannot risk returning a device that failed
900 			 * before we inc'ed nr_pending
901 			 */
902 			rdev_dec_pending(rdev, conf->mddev);
903 			goto retry;
904 		}
905 		r10_bio->read_slot = slot;
906 	} else
907 		rdev = NULL;
908 	rcu_read_unlock();
909 	*max_sectors = best_good_sectors;
910 
911 	return rdev;
912 }
913 
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 	struct r10conf *conf = mddev->private;
917 	int i, ret = 0;
918 
919 	if ((bits & (1 << BDI_async_congested)) &&
920 	    conf->pending_count >= max_queued_requests)
921 		return 1;
922 
923 	rcu_read_lock();
924 	for (i = 0;
925 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 		     && ret == 0;
927 	     i++) {
928 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 			struct request_queue *q = bdev_get_queue(rdev->bdev);
931 
932 			ret |= bdi_congested(&q->backing_dev_info, bits);
933 		}
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939 
940 static int raid10_congested(void *data, int bits)
941 {
942 	struct mddev *mddev = data;
943 
944 	return mddev_congested(mddev, bits) ||
945 		md_raid10_congested(mddev, bits);
946 }
947 
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 	/* Any writes that have been queued but are awaiting
951 	 * bitmap updates get flushed here.
952 	 */
953 	spin_lock_irq(&conf->device_lock);
954 
955 	if (conf->pending_bio_list.head) {
956 		struct bio *bio;
957 		bio = bio_list_get(&conf->pending_bio_list);
958 		conf->pending_count = 0;
959 		spin_unlock_irq(&conf->device_lock);
960 		/* flush any pending bitmap writes to disk
961 		 * before proceeding w/ I/O */
962 		bitmap_unplug(conf->mddev->bitmap);
963 		wake_up(&conf->wait_barrier);
964 
965 		while (bio) { /* submit pending writes */
966 			struct bio *next = bio->bi_next;
967 			bio->bi_next = NULL;
968 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 				/* Just ignore it */
971 				bio_endio(bio, 0);
972 			else
973 				generic_make_request(bio);
974 			bio = next;
975 		}
976 	} else
977 		spin_unlock_irq(&conf->device_lock);
978 }
979 
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001 
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 	BUG_ON(force && !conf->barrier);
1005 	spin_lock_irq(&conf->resync_lock);
1006 
1007 	/* Wait until no block IO is waiting (unless 'force') */
1008 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 			    conf->resync_lock);
1010 
1011 	/* block any new IO from starting */
1012 	conf->barrier++;
1013 
1014 	/* Now wait for all pending IO to complete */
1015 	wait_event_lock_irq(conf->wait_barrier,
1016 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 			    conf->resync_lock);
1018 
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 	unsigned long flags;
1025 	spin_lock_irqsave(&conf->resync_lock, flags);
1026 	conf->barrier--;
1027 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 	spin_lock_irq(&conf->resync_lock);
1034 	if (conf->barrier) {
1035 		conf->nr_waiting++;
1036 		/* Wait for the barrier to drop.
1037 		 * However if there are already pending
1038 		 * requests (preventing the barrier from
1039 		 * rising completely), and the
1040 		 * pre-process bio queue isn't empty,
1041 		 * then don't wait, as we need to empty
1042 		 * that queue to get the nr_pending
1043 		 * count down.
1044 		 */
1045 		wait_event_lock_irq(conf->wait_barrier,
1046 				    !conf->barrier ||
1047 				    (conf->nr_pending &&
1048 				     current->bio_list &&
1049 				     !bio_list_empty(current->bio_list)),
1050 				    conf->resync_lock);
1051 		conf->nr_waiting--;
1052 	}
1053 	conf->nr_pending++;
1054 	spin_unlock_irq(&conf->resync_lock);
1055 }
1056 
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	unsigned long flags;
1060 	spin_lock_irqsave(&conf->resync_lock, flags);
1061 	conf->nr_pending--;
1062 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->barrier++;
1082 	conf->nr_waiting++;
1083 	wait_event_lock_irq_cmd(conf->wait_barrier,
1084 				conf->nr_pending == conf->nr_queued+extra,
1085 				conf->resync_lock,
1086 				flush_pending_writes(conf));
1087 
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 	/* reverse the effect of the freeze */
1094 	spin_lock_irq(&conf->resync_lock);
1095 	conf->barrier--;
1096 	conf->nr_waiting--;
1097 	wake_up(&conf->wait_barrier);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 }
1100 
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 				   struct md_rdev *rdev)
1103 {
1104 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 	    test_bit(R10BIO_Previous, &r10_bio->state))
1106 		return rdev->data_offset;
1107 	else
1108 		return rdev->new_data_offset;
1109 }
1110 
1111 struct raid10_plug_cb {
1112 	struct blk_plug_cb	cb;
1113 	struct bio_list		pending;
1114 	int			pending_cnt;
1115 };
1116 
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 						   cb);
1121 	struct mddev *mddev = plug->cb.data;
1122 	struct r10conf *conf = mddev->private;
1123 	struct bio *bio;
1124 
1125 	if (from_schedule || current->bio_list) {
1126 		spin_lock_irq(&conf->device_lock);
1127 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 		conf->pending_count += plug->pending_cnt;
1129 		spin_unlock_irq(&conf->device_lock);
1130 		wake_up(&conf->wait_barrier);
1131 		md_wakeup_thread(mddev->thread);
1132 		kfree(plug);
1133 		return;
1134 	}
1135 
1136 	/* we aren't scheduling, so we can do the write-out directly. */
1137 	bio = bio_list_get(&plug->pending);
1138 	bitmap_unplug(mddev->bitmap);
1139 	wake_up(&conf->wait_barrier);
1140 
1141 	while (bio) { /* submit pending writes */
1142 		struct bio *next = bio->bi_next;
1143 		bio->bi_next = NULL;
1144 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio, 0);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157 	struct r10conf *conf = mddev->private;
1158 	struct r10bio *r10_bio;
1159 	struct bio *read_bio;
1160 	int i;
1161 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 	int chunk_sects = chunk_mask + 1;
1163 	const int rw = bio_data_dir(bio);
1164 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 	const unsigned long do_discard = (bio->bi_rw
1167 					  & (REQ_DISCARD | REQ_SECURE));
1168 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 	unsigned long flags;
1170 	struct md_rdev *blocked_rdev;
1171 	struct blk_plug_cb *cb;
1172 	struct raid10_plug_cb *plug = NULL;
1173 	int sectors_handled;
1174 	int max_sectors;
1175 	int sectors;
1176 
1177 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 		md_flush_request(mddev, bio);
1179 		return;
1180 	}
1181 
1182 	/* If this request crosses a chunk boundary, we need to
1183 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1184 	 */
1185 	if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186 		     > chunk_sects
1187 		     && (conf->geo.near_copies < conf->geo.raid_disks
1188 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 		struct bio_pair *bp;
1190 		/* Sanity check -- queue functions should prevent this happening */
1191 		if (bio_segments(bio) > 1)
1192 			goto bad_map;
1193 		/* This is a one page bio that upper layers
1194 		 * refuse to split for us, so we need to split it.
1195 		 */
1196 		bp = bio_split(bio,
1197 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1198 
1199 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1200 		 * If the first succeeds but the second blocks due to the resync
1201 		 * thread raising the barrier, we will deadlock because the
1202 		 * IO to the underlying device will be queued in generic_make_request
1203 		 * and will never complete, so will never reduce nr_pending.
1204 		 * So increment nr_waiting here so no new raise_barriers will
1205 		 * succeed, and so the second wait_barrier cannot block.
1206 		 */
1207 		spin_lock_irq(&conf->resync_lock);
1208 		conf->nr_waiting++;
1209 		spin_unlock_irq(&conf->resync_lock);
1210 
1211 		make_request(mddev, &bp->bio1);
1212 		make_request(mddev, &bp->bio2);
1213 
1214 		spin_lock_irq(&conf->resync_lock);
1215 		conf->nr_waiting--;
1216 		wake_up(&conf->wait_barrier);
1217 		spin_unlock_irq(&conf->resync_lock);
1218 
1219 		bio_pair_release(bp);
1220 		return;
1221 	bad_map:
1222 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 		       (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1225 
1226 		bio_io_error(bio);
1227 		return;
1228 	}
1229 
1230 	md_write_start(mddev, bio);
1231 
1232 	/*
1233 	 * Register the new request and wait if the reconstruction
1234 	 * thread has put up a bar for new requests.
1235 	 * Continue immediately if no resync is active currently.
1236 	 */
1237 	wait_barrier(conf);
1238 
1239 	sectors = bio_sectors(bio);
1240 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 	    bio->bi_sector < conf->reshape_progress &&
1242 	    bio->bi_sector + sectors > conf->reshape_progress) {
1243 		/* IO spans the reshape position.  Need to wait for
1244 		 * reshape to pass
1245 		 */
1246 		allow_barrier(conf);
1247 		wait_event(conf->wait_barrier,
1248 			   conf->reshape_progress <= bio->bi_sector ||
1249 			   conf->reshape_progress >= bio->bi_sector + sectors);
1250 		wait_barrier(conf);
1251 	}
1252 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 	    bio_data_dir(bio) == WRITE &&
1254 	    (mddev->reshape_backwards
1255 	     ? (bio->bi_sector < conf->reshape_safe &&
1256 		bio->bi_sector + sectors > conf->reshape_progress)
1257 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 		bio->bi_sector < conf->reshape_progress))) {
1259 		/* Need to update reshape_position in metadata */
1260 		mddev->reshape_position = conf->reshape_progress;
1261 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 		md_wakeup_thread(mddev->thread);
1264 		wait_event(mddev->sb_wait,
1265 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266 
1267 		conf->reshape_safe = mddev->reshape_position;
1268 	}
1269 
1270 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271 
1272 	r10_bio->master_bio = bio;
1273 	r10_bio->sectors = sectors;
1274 
1275 	r10_bio->mddev = mddev;
1276 	r10_bio->sector = bio->bi_sector;
1277 	r10_bio->state = 0;
1278 
1279 	/* We might need to issue multiple reads to different
1280 	 * devices if there are bad blocks around, so we keep
1281 	 * track of the number of reads in bio->bi_phys_segments.
1282 	 * If this is 0, there is only one r10_bio and no locking
1283 	 * will be needed when the request completes.  If it is
1284 	 * non-zero, then it is the number of not-completed requests.
1285 	 */
1286 	bio->bi_phys_segments = 0;
1287 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288 
1289 	if (rw == READ) {
1290 		/*
1291 		 * read balancing logic:
1292 		 */
1293 		struct md_rdev *rdev;
1294 		int slot;
1295 
1296 read_again:
1297 		rdev = read_balance(conf, r10_bio, &max_sectors);
1298 		if (!rdev) {
1299 			raid_end_bio_io(r10_bio);
1300 			return;
1301 		}
1302 		slot = r10_bio->read_slot;
1303 
1304 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 			    max_sectors);
1307 
1308 		r10_bio->devs[slot].bio = read_bio;
1309 		r10_bio->devs[slot].rdev = rdev;
1310 
1311 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1312 			choose_data_offset(r10_bio, rdev);
1313 		read_bio->bi_bdev = rdev->bdev;
1314 		read_bio->bi_end_io = raid10_end_read_request;
1315 		read_bio->bi_rw = READ | do_sync;
1316 		read_bio->bi_private = r10_bio;
1317 
1318 		if (max_sectors < r10_bio->sectors) {
1319 			/* Could not read all from this device, so we will
1320 			 * need another r10_bio.
1321 			 */
1322 			sectors_handled = (r10_bio->sectors + max_sectors
1323 					   - bio->bi_sector);
1324 			r10_bio->sectors = max_sectors;
1325 			spin_lock_irq(&conf->device_lock);
1326 			if (bio->bi_phys_segments == 0)
1327 				bio->bi_phys_segments = 2;
1328 			else
1329 				bio->bi_phys_segments++;
1330 			spin_unlock(&conf->device_lock);
1331 			/* Cannot call generic_make_request directly
1332 			 * as that will be queued in __generic_make_request
1333 			 * and subsequent mempool_alloc might block
1334 			 * waiting for it.  so hand bio over to raid10d.
1335 			 */
1336 			reschedule_retry(r10_bio);
1337 
1338 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339 
1340 			r10_bio->master_bio = bio;
1341 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342 			r10_bio->state = 0;
1343 			r10_bio->mddev = mddev;
1344 			r10_bio->sector = bio->bi_sector + sectors_handled;
1345 			goto read_again;
1346 		} else
1347 			generic_make_request(read_bio);
1348 		return;
1349 	}
1350 
1351 	/*
1352 	 * WRITE:
1353 	 */
1354 	if (conf->pending_count >= max_queued_requests) {
1355 		md_wakeup_thread(mddev->thread);
1356 		wait_event(conf->wait_barrier,
1357 			   conf->pending_count < max_queued_requests);
1358 	}
1359 	/* first select target devices under rcu_lock and
1360 	 * inc refcount on their rdev.  Record them by setting
1361 	 * bios[x] to bio
1362 	 * If there are known/acknowledged bad blocks on any device
1363 	 * on which we have seen a write error, we want to avoid
1364 	 * writing to those blocks.  This potentially requires several
1365 	 * writes to write around the bad blocks.  Each set of writes
1366 	 * gets its own r10_bio with a set of bios attached.  The number
1367 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 	 * the read case.
1369 	 */
1370 
1371 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372 	raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374 	blocked_rdev = NULL;
1375 	rcu_read_lock();
1376 	max_sectors = r10_bio->sectors;
1377 
1378 	for (i = 0;  i < conf->copies; i++) {
1379 		int d = r10_bio->devs[i].devnum;
1380 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381 		struct md_rdev *rrdev = rcu_dereference(
1382 			conf->mirrors[d].replacement);
1383 		if (rdev == rrdev)
1384 			rrdev = NULL;
1385 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 			atomic_inc(&rdev->nr_pending);
1387 			blocked_rdev = rdev;
1388 			break;
1389 		}
1390 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 			atomic_inc(&rrdev->nr_pending);
1392 			blocked_rdev = rrdev;
1393 			break;
1394 		}
1395 		if (rdev && (test_bit(Faulty, &rdev->flags)
1396 			     || test_bit(Unmerged, &rdev->flags)))
1397 			rdev = NULL;
1398 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 			      || test_bit(Unmerged, &rrdev->flags)))
1400 			rrdev = NULL;
1401 
1402 		r10_bio->devs[i].bio = NULL;
1403 		r10_bio->devs[i].repl_bio = NULL;
1404 
1405 		if (!rdev && !rrdev) {
1406 			set_bit(R10BIO_Degraded, &r10_bio->state);
1407 			continue;
1408 		}
1409 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410 			sector_t first_bad;
1411 			sector_t dev_sector = r10_bio->devs[i].addr;
1412 			int bad_sectors;
1413 			int is_bad;
1414 
1415 			is_bad = is_badblock(rdev, dev_sector,
1416 					     max_sectors,
1417 					     &first_bad, &bad_sectors);
1418 			if (is_bad < 0) {
1419 				/* Mustn't write here until the bad block
1420 				 * is acknowledged
1421 				 */
1422 				atomic_inc(&rdev->nr_pending);
1423 				set_bit(BlockedBadBlocks, &rdev->flags);
1424 				blocked_rdev = rdev;
1425 				break;
1426 			}
1427 			if (is_bad && first_bad <= dev_sector) {
1428 				/* Cannot write here at all */
1429 				bad_sectors -= (dev_sector - first_bad);
1430 				if (bad_sectors < max_sectors)
1431 					/* Mustn't write more than bad_sectors
1432 					 * to other devices yet
1433 					 */
1434 					max_sectors = bad_sectors;
1435 				/* We don't set R10BIO_Degraded as that
1436 				 * only applies if the disk is missing,
1437 				 * so it might be re-added, and we want to
1438 				 * know to recover this chunk.
1439 				 * In this case the device is here, and the
1440 				 * fact that this chunk is not in-sync is
1441 				 * recorded in the bad block log.
1442 				 */
1443 				continue;
1444 			}
1445 			if (is_bad) {
1446 				int good_sectors = first_bad - dev_sector;
1447 				if (good_sectors < max_sectors)
1448 					max_sectors = good_sectors;
1449 			}
1450 		}
1451 		if (rdev) {
1452 			r10_bio->devs[i].bio = bio;
1453 			atomic_inc(&rdev->nr_pending);
1454 		}
1455 		if (rrdev) {
1456 			r10_bio->devs[i].repl_bio = bio;
1457 			atomic_inc(&rrdev->nr_pending);
1458 		}
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (unlikely(blocked_rdev)) {
1463 		/* Have to wait for this device to get unblocked, then retry */
1464 		int j;
1465 		int d;
1466 
1467 		for (j = 0; j < i; j++) {
1468 			if (r10_bio->devs[j].bio) {
1469 				d = r10_bio->devs[j].devnum;
1470 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 			}
1472 			if (r10_bio->devs[j].repl_bio) {
1473 				struct md_rdev *rdev;
1474 				d = r10_bio->devs[j].devnum;
1475 				rdev = conf->mirrors[d].replacement;
1476 				if (!rdev) {
1477 					/* Race with remove_disk */
1478 					smp_mb();
1479 					rdev = conf->mirrors[d].rdev;
1480 				}
1481 				rdev_dec_pending(rdev, mddev);
1482 			}
1483 		}
1484 		allow_barrier(conf);
1485 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 		wait_barrier(conf);
1487 		goto retry_write;
1488 	}
1489 
1490 	if (max_sectors < r10_bio->sectors) {
1491 		/* We are splitting this into multiple parts, so
1492 		 * we need to prepare for allocating another r10_bio.
1493 		 */
1494 		r10_bio->sectors = max_sectors;
1495 		spin_lock_irq(&conf->device_lock);
1496 		if (bio->bi_phys_segments == 0)
1497 			bio->bi_phys_segments = 2;
1498 		else
1499 			bio->bi_phys_segments++;
1500 		spin_unlock_irq(&conf->device_lock);
1501 	}
1502 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503 
1504 	atomic_set(&r10_bio->remaining, 1);
1505 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506 
1507 	for (i = 0; i < conf->copies; i++) {
1508 		struct bio *mbio;
1509 		int d = r10_bio->devs[i].devnum;
1510 		if (r10_bio->devs[i].bio) {
1511 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 				    max_sectors);
1515 			r10_bio->devs[i].bio = mbio;
1516 
1517 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1518 					   choose_data_offset(r10_bio,
1519 							      rdev));
1520 			mbio->bi_bdev = rdev->bdev;
1521 			mbio->bi_end_io	= raid10_end_write_request;
1522 			mbio->bi_rw =
1523 				WRITE | do_sync | do_fua | do_discard | do_same;
1524 			mbio->bi_private = r10_bio;
1525 
1526 			atomic_inc(&r10_bio->remaining);
1527 
1528 			cb = blk_check_plugged(raid10_unplug, mddev,
1529 					       sizeof(*plug));
1530 			if (cb)
1531 				plug = container_of(cb, struct raid10_plug_cb,
1532 						    cb);
1533 			else
1534 				plug = NULL;
1535 			spin_lock_irqsave(&conf->device_lock, flags);
1536 			if (plug) {
1537 				bio_list_add(&plug->pending, mbio);
1538 				plug->pending_cnt++;
1539 			} else {
1540 				bio_list_add(&conf->pending_bio_list, mbio);
1541 				conf->pending_count++;
1542 			}
1543 			spin_unlock_irqrestore(&conf->device_lock, flags);
1544 			if (!plug)
1545 				md_wakeup_thread(mddev->thread);
1546 		}
1547 
1548 		if (r10_bio->devs[i].repl_bio) {
1549 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 			if (rdev == NULL) {
1551 				/* Replacement just got moved to main 'rdev' */
1552 				smp_mb();
1553 				rdev = conf->mirrors[d].rdev;
1554 			}
1555 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 				    max_sectors);
1558 			r10_bio->devs[i].repl_bio = mbio;
1559 
1560 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1561 					   choose_data_offset(
1562 						   r10_bio, rdev));
1563 			mbio->bi_bdev = rdev->bdev;
1564 			mbio->bi_end_io	= raid10_end_write_request;
1565 			mbio->bi_rw =
1566 				WRITE | do_sync | do_fua | do_discard | do_same;
1567 			mbio->bi_private = r10_bio;
1568 
1569 			atomic_inc(&r10_bio->remaining);
1570 			spin_lock_irqsave(&conf->device_lock, flags);
1571 			bio_list_add(&conf->pending_bio_list, mbio);
1572 			conf->pending_count++;
1573 			spin_unlock_irqrestore(&conf->device_lock, flags);
1574 			if (!mddev_check_plugged(mddev))
1575 				md_wakeup_thread(mddev->thread);
1576 		}
1577 	}
1578 
1579 	/* Don't remove the bias on 'remaining' (one_write_done) until
1580 	 * after checking if we need to go around again.
1581 	 */
1582 
1583 	if (sectors_handled < bio_sectors(bio)) {
1584 		one_write_done(r10_bio);
1585 		/* We need another r10_bio.  It has already been counted
1586 		 * in bio->bi_phys_segments.
1587 		 */
1588 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589 
1590 		r10_bio->master_bio = bio;
1591 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1592 
1593 		r10_bio->mddev = mddev;
1594 		r10_bio->sector = bio->bi_sector + sectors_handled;
1595 		r10_bio->state = 0;
1596 		goto retry_write;
1597 	}
1598 	one_write_done(r10_bio);
1599 
1600 	/* In case raid10d snuck in to freeze_array */
1601 	wake_up(&conf->wait_barrier);
1602 }
1603 
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606 	struct r10conf *conf = mddev->private;
1607 	int i;
1608 
1609 	if (conf->geo.near_copies < conf->geo.raid_disks)
1610 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611 	if (conf->geo.near_copies > 1)
1612 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 	if (conf->geo.far_copies > 1) {
1614 		if (conf->geo.far_offset)
1615 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616 		else
1617 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1618 	}
1619 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 					conf->geo.raid_disks - mddev->degraded);
1621 	for (i = 0; i < conf->geo.raid_disks; i++)
1622 		seq_printf(seq, "%s",
1623 			      conf->mirrors[i].rdev &&
1624 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625 	seq_printf(seq, "]");
1626 }
1627 
1628 /* check if there are enough drives for
1629  * every block to appear on atleast one.
1630  * Don't consider the device numbered 'ignore'
1631  * as we might be about to remove it.
1632  */
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1634 {
1635 	int first = 0;
1636 	int has_enough = 0;
1637 	int disks, ncopies;
1638 	if (previous) {
1639 		disks = conf->prev.raid_disks;
1640 		ncopies = conf->prev.near_copies;
1641 	} else {
1642 		disks = conf->geo.raid_disks;
1643 		ncopies = conf->geo.near_copies;
1644 	}
1645 
1646 	rcu_read_lock();
1647 	do {
1648 		int n = conf->copies;
1649 		int cnt = 0;
1650 		int this = first;
1651 		while (n--) {
1652 			struct md_rdev *rdev;
1653 			if (this != ignore &&
1654 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 			    test_bit(In_sync, &rdev->flags))
1656 				cnt++;
1657 			this = (this+1) % disks;
1658 		}
1659 		if (cnt == 0)
1660 			goto out;
1661 		first = (first + ncopies) % disks;
1662 	} while (first != 0);
1663 	has_enough = 1;
1664 out:
1665 	rcu_read_unlock();
1666 	return has_enough;
1667 }
1668 
1669 static int enough(struct r10conf *conf, int ignore)
1670 {
1671 	/* when calling 'enough', both 'prev' and 'geo' must
1672 	 * be stable.
1673 	 * This is ensured if ->reconfig_mutex or ->device_lock
1674 	 * is held.
1675 	 */
1676 	return _enough(conf, 0, ignore) &&
1677 		_enough(conf, 1, ignore);
1678 }
1679 
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	char b[BDEVNAME_SIZE];
1683 	struct r10conf *conf = mddev->private;
1684 	unsigned long flags;
1685 
1686 	/*
1687 	 * If it is not operational, then we have already marked it as dead
1688 	 * else if it is the last working disks, ignore the error, let the
1689 	 * next level up know.
1690 	 * else mark the drive as failed
1691 	 */
1692 	spin_lock_irqsave(&conf->device_lock, flags);
1693 	if (test_bit(In_sync, &rdev->flags)
1694 	    && !enough(conf, rdev->raid_disk)) {
1695 		/*
1696 		 * Don't fail the drive, just return an IO error.
1697 		 */
1698 		spin_unlock_irqrestore(&conf->device_lock, flags);
1699 		return;
1700 	}
1701 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702 		mddev->degraded++;
1703 			/*
1704 		 * if recovery is running, make sure it aborts.
1705 		 */
1706 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1707 	}
1708 	set_bit(Blocked, &rdev->flags);
1709 	set_bit(Faulty, &rdev->flags);
1710 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 	spin_unlock_irqrestore(&conf->device_lock, flags);
1712 	printk(KERN_ALERT
1713 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1715 	       mdname(mddev), bdevname(rdev->bdev, b),
1716 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1717 }
1718 
1719 static void print_conf(struct r10conf *conf)
1720 {
1721 	int i;
1722 	struct raid10_info *tmp;
1723 
1724 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1725 	if (!conf) {
1726 		printk(KERN_DEBUG "(!conf)\n");
1727 		return;
1728 	}
1729 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 		conf->geo.raid_disks);
1731 
1732 	for (i = 0; i < conf->geo.raid_disks; i++) {
1733 		char b[BDEVNAME_SIZE];
1734 		tmp = conf->mirrors + i;
1735 		if (tmp->rdev)
1736 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737 				i, !test_bit(In_sync, &tmp->rdev->flags),
1738 			        !test_bit(Faulty, &tmp->rdev->flags),
1739 				bdevname(tmp->rdev->bdev,b));
1740 	}
1741 }
1742 
1743 static void close_sync(struct r10conf *conf)
1744 {
1745 	wait_barrier(conf);
1746 	allow_barrier(conf);
1747 
1748 	mempool_destroy(conf->r10buf_pool);
1749 	conf->r10buf_pool = NULL;
1750 }
1751 
1752 static int raid10_spare_active(struct mddev *mddev)
1753 {
1754 	int i;
1755 	struct r10conf *conf = mddev->private;
1756 	struct raid10_info *tmp;
1757 	int count = 0;
1758 	unsigned long flags;
1759 
1760 	/*
1761 	 * Find all non-in_sync disks within the RAID10 configuration
1762 	 * and mark them in_sync
1763 	 */
1764 	for (i = 0; i < conf->geo.raid_disks; i++) {
1765 		tmp = conf->mirrors + i;
1766 		if (tmp->replacement
1767 		    && tmp->replacement->recovery_offset == MaxSector
1768 		    && !test_bit(Faulty, &tmp->replacement->flags)
1769 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 			/* Replacement has just become active */
1771 			if (!tmp->rdev
1772 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 				count++;
1774 			if (tmp->rdev) {
1775 				/* Replaced device not technically faulty,
1776 				 * but we need to be sure it gets removed
1777 				 * and never re-added.
1778 				 */
1779 				set_bit(Faulty, &tmp->rdev->flags);
1780 				sysfs_notify_dirent_safe(
1781 					tmp->rdev->sysfs_state);
1782 			}
1783 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 		} else if (tmp->rdev
1785 			   && !test_bit(Faulty, &tmp->rdev->flags)
1786 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1787 			count++;
1788 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1789 		}
1790 	}
1791 	spin_lock_irqsave(&conf->device_lock, flags);
1792 	mddev->degraded -= count;
1793 	spin_unlock_irqrestore(&conf->device_lock, flags);
1794 
1795 	print_conf(conf);
1796 	return count;
1797 }
1798 
1799 
1800 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802 	struct r10conf *conf = mddev->private;
1803 	int err = -EEXIST;
1804 	int mirror;
1805 	int first = 0;
1806 	int last = conf->geo.raid_disks - 1;
1807 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1808 
1809 	if (mddev->recovery_cp < MaxSector)
1810 		/* only hot-add to in-sync arrays, as recovery is
1811 		 * very different from resync
1812 		 */
1813 		return -EBUSY;
1814 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1815 		return -EINVAL;
1816 
1817 	if (rdev->raid_disk >= 0)
1818 		first = last = rdev->raid_disk;
1819 
1820 	if (q->merge_bvec_fn) {
1821 		set_bit(Unmerged, &rdev->flags);
1822 		mddev->merge_check_needed = 1;
1823 	}
1824 
1825 	if (rdev->saved_raid_disk >= first &&
1826 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1827 		mirror = rdev->saved_raid_disk;
1828 	else
1829 		mirror = first;
1830 	for ( ; mirror <= last ; mirror++) {
1831 		struct raid10_info *p = &conf->mirrors[mirror];
1832 		if (p->recovery_disabled == mddev->recovery_disabled)
1833 			continue;
1834 		if (p->rdev) {
1835 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1836 			    p->replacement != NULL)
1837 				continue;
1838 			clear_bit(In_sync, &rdev->flags);
1839 			set_bit(Replacement, &rdev->flags);
1840 			rdev->raid_disk = mirror;
1841 			err = 0;
1842 			if (mddev->gendisk)
1843 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1844 						  rdev->data_offset << 9);
1845 			conf->fullsync = 1;
1846 			rcu_assign_pointer(p->replacement, rdev);
1847 			break;
1848 		}
1849 
1850 		if (mddev->gendisk)
1851 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1852 					  rdev->data_offset << 9);
1853 
1854 		p->head_position = 0;
1855 		p->recovery_disabled = mddev->recovery_disabled - 1;
1856 		rdev->raid_disk = mirror;
1857 		err = 0;
1858 		if (rdev->saved_raid_disk != mirror)
1859 			conf->fullsync = 1;
1860 		rcu_assign_pointer(p->rdev, rdev);
1861 		break;
1862 	}
1863 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1864 		/* Some requests might not have seen this new
1865 		 * merge_bvec_fn.  We must wait for them to complete
1866 		 * before merging the device fully.
1867 		 * First we make sure any code which has tested
1868 		 * our function has submitted the request, then
1869 		 * we wait for all outstanding requests to complete.
1870 		 */
1871 		synchronize_sched();
1872 		freeze_array(conf, 0);
1873 		unfreeze_array(conf);
1874 		clear_bit(Unmerged, &rdev->flags);
1875 	}
1876 	md_integrity_add_rdev(rdev, mddev);
1877 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1878 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1879 
1880 	print_conf(conf);
1881 	return err;
1882 }
1883 
1884 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1885 {
1886 	struct r10conf *conf = mddev->private;
1887 	int err = 0;
1888 	int number = rdev->raid_disk;
1889 	struct md_rdev **rdevp;
1890 	struct raid10_info *p = conf->mirrors + number;
1891 
1892 	print_conf(conf);
1893 	if (rdev == p->rdev)
1894 		rdevp = &p->rdev;
1895 	else if (rdev == p->replacement)
1896 		rdevp = &p->replacement;
1897 	else
1898 		return 0;
1899 
1900 	if (test_bit(In_sync, &rdev->flags) ||
1901 	    atomic_read(&rdev->nr_pending)) {
1902 		err = -EBUSY;
1903 		goto abort;
1904 	}
1905 	/* Only remove faulty devices if recovery
1906 	 * is not possible.
1907 	 */
1908 	if (!test_bit(Faulty, &rdev->flags) &&
1909 	    mddev->recovery_disabled != p->recovery_disabled &&
1910 	    (!p->replacement || p->replacement == rdev) &&
1911 	    number < conf->geo.raid_disks &&
1912 	    enough(conf, -1)) {
1913 		err = -EBUSY;
1914 		goto abort;
1915 	}
1916 	*rdevp = NULL;
1917 	synchronize_rcu();
1918 	if (atomic_read(&rdev->nr_pending)) {
1919 		/* lost the race, try later */
1920 		err = -EBUSY;
1921 		*rdevp = rdev;
1922 		goto abort;
1923 	} else if (p->replacement) {
1924 		/* We must have just cleared 'rdev' */
1925 		p->rdev = p->replacement;
1926 		clear_bit(Replacement, &p->replacement->flags);
1927 		smp_mb(); /* Make sure other CPUs may see both as identical
1928 			   * but will never see neither -- if they are careful.
1929 			   */
1930 		p->replacement = NULL;
1931 		clear_bit(WantReplacement, &rdev->flags);
1932 	} else
1933 		/* We might have just remove the Replacement as faulty
1934 		 * Clear the flag just in case
1935 		 */
1936 		clear_bit(WantReplacement, &rdev->flags);
1937 
1938 	err = md_integrity_register(mddev);
1939 
1940 abort:
1941 
1942 	print_conf(conf);
1943 	return err;
1944 }
1945 
1946 
1947 static void end_sync_read(struct bio *bio, int error)
1948 {
1949 	struct r10bio *r10_bio = bio->bi_private;
1950 	struct r10conf *conf = r10_bio->mddev->private;
1951 	int d;
1952 
1953 	if (bio == r10_bio->master_bio) {
1954 		/* this is a reshape read */
1955 		d = r10_bio->read_slot; /* really the read dev */
1956 	} else
1957 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1958 
1959 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1960 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1961 	else
1962 		/* The write handler will notice the lack of
1963 		 * R10BIO_Uptodate and record any errors etc
1964 		 */
1965 		atomic_add(r10_bio->sectors,
1966 			   &conf->mirrors[d].rdev->corrected_errors);
1967 
1968 	/* for reconstruct, we always reschedule after a read.
1969 	 * for resync, only after all reads
1970 	 */
1971 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1972 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1973 	    atomic_dec_and_test(&r10_bio->remaining)) {
1974 		/* we have read all the blocks,
1975 		 * do the comparison in process context in raid10d
1976 		 */
1977 		reschedule_retry(r10_bio);
1978 	}
1979 }
1980 
1981 static void end_sync_request(struct r10bio *r10_bio)
1982 {
1983 	struct mddev *mddev = r10_bio->mddev;
1984 
1985 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1986 		if (r10_bio->master_bio == NULL) {
1987 			/* the primary of several recovery bios */
1988 			sector_t s = r10_bio->sectors;
1989 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1990 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1991 				reschedule_retry(r10_bio);
1992 			else
1993 				put_buf(r10_bio);
1994 			md_done_sync(mddev, s, 1);
1995 			break;
1996 		} else {
1997 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1998 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1999 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2000 				reschedule_retry(r10_bio);
2001 			else
2002 				put_buf(r10_bio);
2003 			r10_bio = r10_bio2;
2004 		}
2005 	}
2006 }
2007 
2008 static void end_sync_write(struct bio *bio, int error)
2009 {
2010 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2011 	struct r10bio *r10_bio = bio->bi_private;
2012 	struct mddev *mddev = r10_bio->mddev;
2013 	struct r10conf *conf = mddev->private;
2014 	int d;
2015 	sector_t first_bad;
2016 	int bad_sectors;
2017 	int slot;
2018 	int repl;
2019 	struct md_rdev *rdev = NULL;
2020 
2021 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2022 	if (repl)
2023 		rdev = conf->mirrors[d].replacement;
2024 	else
2025 		rdev = conf->mirrors[d].rdev;
2026 
2027 	if (!uptodate) {
2028 		if (repl)
2029 			md_error(mddev, rdev);
2030 		else {
2031 			set_bit(WriteErrorSeen, &rdev->flags);
2032 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2033 				set_bit(MD_RECOVERY_NEEDED,
2034 					&rdev->mddev->recovery);
2035 			set_bit(R10BIO_WriteError, &r10_bio->state);
2036 		}
2037 	} else if (is_badblock(rdev,
2038 			     r10_bio->devs[slot].addr,
2039 			     r10_bio->sectors,
2040 			     &first_bad, &bad_sectors))
2041 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2042 
2043 	rdev_dec_pending(rdev, mddev);
2044 
2045 	end_sync_request(r10_bio);
2046 }
2047 
2048 /*
2049  * Note: sync and recover and handled very differently for raid10
2050  * This code is for resync.
2051  * For resync, we read through virtual addresses and read all blocks.
2052  * If there is any error, we schedule a write.  The lowest numbered
2053  * drive is authoritative.
2054  * However requests come for physical address, so we need to map.
2055  * For every physical address there are raid_disks/copies virtual addresses,
2056  * which is always are least one, but is not necessarly an integer.
2057  * This means that a physical address can span multiple chunks, so we may
2058  * have to submit multiple io requests for a single sync request.
2059  */
2060 /*
2061  * We check if all blocks are in-sync and only write to blocks that
2062  * aren't in sync
2063  */
2064 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2065 {
2066 	struct r10conf *conf = mddev->private;
2067 	int i, first;
2068 	struct bio *tbio, *fbio;
2069 	int vcnt;
2070 
2071 	atomic_set(&r10_bio->remaining, 1);
2072 
2073 	/* find the first device with a block */
2074 	for (i=0; i<conf->copies; i++)
2075 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2076 			break;
2077 
2078 	if (i == conf->copies)
2079 		goto done;
2080 
2081 	first = i;
2082 	fbio = r10_bio->devs[i].bio;
2083 
2084 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085 	/* now find blocks with errors */
2086 	for (i=0 ; i < conf->copies ; i++) {
2087 		int  j, d;
2088 
2089 		tbio = r10_bio->devs[i].bio;
2090 
2091 		if (tbio->bi_end_io != end_sync_read)
2092 			continue;
2093 		if (i == first)
2094 			continue;
2095 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2096 			/* We know that the bi_io_vec layout is the same for
2097 			 * both 'first' and 'i', so we just compare them.
2098 			 * All vec entries are PAGE_SIZE;
2099 			 */
2100 			for (j = 0; j < vcnt; j++)
2101 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2102 					   page_address(tbio->bi_io_vec[j].bv_page),
2103 					   fbio->bi_io_vec[j].bv_len))
2104 					break;
2105 			if (j == vcnt)
2106 				continue;
2107 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2108 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2109 				/* Don't fix anything. */
2110 				continue;
2111 		}
2112 		/* Ok, we need to write this bio, either to correct an
2113 		 * inconsistency or to correct an unreadable block.
2114 		 * First we need to fixup bv_offset, bv_len and
2115 		 * bi_vecs, as the read request might have corrupted these
2116 		 */
2117 		bio_reset(tbio);
2118 
2119 		tbio->bi_vcnt = vcnt;
2120 		tbio->bi_size = r10_bio->sectors << 9;
2121 		tbio->bi_rw = WRITE;
2122 		tbio->bi_private = r10_bio;
2123 		tbio->bi_sector = r10_bio->devs[i].addr;
2124 
2125 		for (j=0; j < vcnt ; j++) {
2126 			tbio->bi_io_vec[j].bv_offset = 0;
2127 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2128 
2129 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2130 			       page_address(fbio->bi_io_vec[j].bv_page),
2131 			       PAGE_SIZE);
2132 		}
2133 		tbio->bi_end_io = end_sync_write;
2134 
2135 		d = r10_bio->devs[i].devnum;
2136 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2137 		atomic_inc(&r10_bio->remaining);
2138 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2139 
2140 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2141 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2142 		generic_make_request(tbio);
2143 	}
2144 
2145 	/* Now write out to any replacement devices
2146 	 * that are active
2147 	 */
2148 	for (i = 0; i < conf->copies; i++) {
2149 		int j, d;
2150 
2151 		tbio = r10_bio->devs[i].repl_bio;
2152 		if (!tbio || !tbio->bi_end_io)
2153 			continue;
2154 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2155 		    && r10_bio->devs[i].bio != fbio)
2156 			for (j = 0; j < vcnt; j++)
2157 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2158 				       page_address(fbio->bi_io_vec[j].bv_page),
2159 				       PAGE_SIZE);
2160 		d = r10_bio->devs[i].devnum;
2161 		atomic_inc(&r10_bio->remaining);
2162 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2163 			     bio_sectors(tbio));
2164 		generic_make_request(tbio);
2165 	}
2166 
2167 done:
2168 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2169 		md_done_sync(mddev, r10_bio->sectors, 1);
2170 		put_buf(r10_bio);
2171 	}
2172 }
2173 
2174 /*
2175  * Now for the recovery code.
2176  * Recovery happens across physical sectors.
2177  * We recover all non-is_sync drives by finding the virtual address of
2178  * each, and then choose a working drive that also has that virt address.
2179  * There is a separate r10_bio for each non-in_sync drive.
2180  * Only the first two slots are in use. The first for reading,
2181  * The second for writing.
2182  *
2183  */
2184 static void fix_recovery_read_error(struct r10bio *r10_bio)
2185 {
2186 	/* We got a read error during recovery.
2187 	 * We repeat the read in smaller page-sized sections.
2188 	 * If a read succeeds, write it to the new device or record
2189 	 * a bad block if we cannot.
2190 	 * If a read fails, record a bad block on both old and
2191 	 * new devices.
2192 	 */
2193 	struct mddev *mddev = r10_bio->mddev;
2194 	struct r10conf *conf = mddev->private;
2195 	struct bio *bio = r10_bio->devs[0].bio;
2196 	sector_t sect = 0;
2197 	int sectors = r10_bio->sectors;
2198 	int idx = 0;
2199 	int dr = r10_bio->devs[0].devnum;
2200 	int dw = r10_bio->devs[1].devnum;
2201 
2202 	while (sectors) {
2203 		int s = sectors;
2204 		struct md_rdev *rdev;
2205 		sector_t addr;
2206 		int ok;
2207 
2208 		if (s > (PAGE_SIZE>>9))
2209 			s = PAGE_SIZE >> 9;
2210 
2211 		rdev = conf->mirrors[dr].rdev;
2212 		addr = r10_bio->devs[0].addr + sect,
2213 		ok = sync_page_io(rdev,
2214 				  addr,
2215 				  s << 9,
2216 				  bio->bi_io_vec[idx].bv_page,
2217 				  READ, false);
2218 		if (ok) {
2219 			rdev = conf->mirrors[dw].rdev;
2220 			addr = r10_bio->devs[1].addr + sect;
2221 			ok = sync_page_io(rdev,
2222 					  addr,
2223 					  s << 9,
2224 					  bio->bi_io_vec[idx].bv_page,
2225 					  WRITE, false);
2226 			if (!ok) {
2227 				set_bit(WriteErrorSeen, &rdev->flags);
2228 				if (!test_and_set_bit(WantReplacement,
2229 						      &rdev->flags))
2230 					set_bit(MD_RECOVERY_NEEDED,
2231 						&rdev->mddev->recovery);
2232 			}
2233 		}
2234 		if (!ok) {
2235 			/* We don't worry if we cannot set a bad block -
2236 			 * it really is bad so there is no loss in not
2237 			 * recording it yet
2238 			 */
2239 			rdev_set_badblocks(rdev, addr, s, 0);
2240 
2241 			if (rdev != conf->mirrors[dw].rdev) {
2242 				/* need bad block on destination too */
2243 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2244 				addr = r10_bio->devs[1].addr + sect;
2245 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2246 				if (!ok) {
2247 					/* just abort the recovery */
2248 					printk(KERN_NOTICE
2249 					       "md/raid10:%s: recovery aborted"
2250 					       " due to read error\n",
2251 					       mdname(mddev));
2252 
2253 					conf->mirrors[dw].recovery_disabled
2254 						= mddev->recovery_disabled;
2255 					set_bit(MD_RECOVERY_INTR,
2256 						&mddev->recovery);
2257 					break;
2258 				}
2259 			}
2260 		}
2261 
2262 		sectors -= s;
2263 		sect += s;
2264 		idx++;
2265 	}
2266 }
2267 
2268 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2269 {
2270 	struct r10conf *conf = mddev->private;
2271 	int d;
2272 	struct bio *wbio, *wbio2;
2273 
2274 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2275 		fix_recovery_read_error(r10_bio);
2276 		end_sync_request(r10_bio);
2277 		return;
2278 	}
2279 
2280 	/*
2281 	 * share the pages with the first bio
2282 	 * and submit the write request
2283 	 */
2284 	d = r10_bio->devs[1].devnum;
2285 	wbio = r10_bio->devs[1].bio;
2286 	wbio2 = r10_bio->devs[1].repl_bio;
2287 	if (wbio->bi_end_io) {
2288 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2289 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2290 		generic_make_request(wbio);
2291 	}
2292 	if (wbio2 && wbio2->bi_end_io) {
2293 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2294 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2295 			     bio_sectors(wbio2));
2296 		generic_make_request(wbio2);
2297 	}
2298 }
2299 
2300 
2301 /*
2302  * Used by fix_read_error() to decay the per rdev read_errors.
2303  * We halve the read error count for every hour that has elapsed
2304  * since the last recorded read error.
2305  *
2306  */
2307 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2308 {
2309 	struct timespec cur_time_mon;
2310 	unsigned long hours_since_last;
2311 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2312 
2313 	ktime_get_ts(&cur_time_mon);
2314 
2315 	if (rdev->last_read_error.tv_sec == 0 &&
2316 	    rdev->last_read_error.tv_nsec == 0) {
2317 		/* first time we've seen a read error */
2318 		rdev->last_read_error = cur_time_mon;
2319 		return;
2320 	}
2321 
2322 	hours_since_last = (cur_time_mon.tv_sec -
2323 			    rdev->last_read_error.tv_sec) / 3600;
2324 
2325 	rdev->last_read_error = cur_time_mon;
2326 
2327 	/*
2328 	 * if hours_since_last is > the number of bits in read_errors
2329 	 * just set read errors to 0. We do this to avoid
2330 	 * overflowing the shift of read_errors by hours_since_last.
2331 	 */
2332 	if (hours_since_last >= 8 * sizeof(read_errors))
2333 		atomic_set(&rdev->read_errors, 0);
2334 	else
2335 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2336 }
2337 
2338 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2339 			    int sectors, struct page *page, int rw)
2340 {
2341 	sector_t first_bad;
2342 	int bad_sectors;
2343 
2344 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2345 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2346 		return -1;
2347 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2348 		/* success */
2349 		return 1;
2350 	if (rw == WRITE) {
2351 		set_bit(WriteErrorSeen, &rdev->flags);
2352 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2353 			set_bit(MD_RECOVERY_NEEDED,
2354 				&rdev->mddev->recovery);
2355 	}
2356 	/* need to record an error - either for the block or the device */
2357 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2358 		md_error(rdev->mddev, rdev);
2359 	return 0;
2360 }
2361 
2362 /*
2363  * This is a kernel thread which:
2364  *
2365  *	1.	Retries failed read operations on working mirrors.
2366  *	2.	Updates the raid superblock when problems encounter.
2367  *	3.	Performs writes following reads for array synchronising.
2368  */
2369 
2370 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2371 {
2372 	int sect = 0; /* Offset from r10_bio->sector */
2373 	int sectors = r10_bio->sectors;
2374 	struct md_rdev*rdev;
2375 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2376 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2377 
2378 	/* still own a reference to this rdev, so it cannot
2379 	 * have been cleared recently.
2380 	 */
2381 	rdev = conf->mirrors[d].rdev;
2382 
2383 	if (test_bit(Faulty, &rdev->flags))
2384 		/* drive has already been failed, just ignore any
2385 		   more fix_read_error() attempts */
2386 		return;
2387 
2388 	check_decay_read_errors(mddev, rdev);
2389 	atomic_inc(&rdev->read_errors);
2390 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2391 		char b[BDEVNAME_SIZE];
2392 		bdevname(rdev->bdev, b);
2393 
2394 		printk(KERN_NOTICE
2395 		       "md/raid10:%s: %s: Raid device exceeded "
2396 		       "read_error threshold [cur %d:max %d]\n",
2397 		       mdname(mddev), b,
2398 		       atomic_read(&rdev->read_errors), max_read_errors);
2399 		printk(KERN_NOTICE
2400 		       "md/raid10:%s: %s: Failing raid device\n",
2401 		       mdname(mddev), b);
2402 		md_error(mddev, conf->mirrors[d].rdev);
2403 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2404 		return;
2405 	}
2406 
2407 	while(sectors) {
2408 		int s = sectors;
2409 		int sl = r10_bio->read_slot;
2410 		int success = 0;
2411 		int start;
2412 
2413 		if (s > (PAGE_SIZE>>9))
2414 			s = PAGE_SIZE >> 9;
2415 
2416 		rcu_read_lock();
2417 		do {
2418 			sector_t first_bad;
2419 			int bad_sectors;
2420 
2421 			d = r10_bio->devs[sl].devnum;
2422 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2423 			if (rdev &&
2424 			    !test_bit(Unmerged, &rdev->flags) &&
2425 			    test_bit(In_sync, &rdev->flags) &&
2426 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2427 					&first_bad, &bad_sectors) == 0) {
2428 				atomic_inc(&rdev->nr_pending);
2429 				rcu_read_unlock();
2430 				success = sync_page_io(rdev,
2431 						       r10_bio->devs[sl].addr +
2432 						       sect,
2433 						       s<<9,
2434 						       conf->tmppage, READ, false);
2435 				rdev_dec_pending(rdev, mddev);
2436 				rcu_read_lock();
2437 				if (success)
2438 					break;
2439 			}
2440 			sl++;
2441 			if (sl == conf->copies)
2442 				sl = 0;
2443 		} while (!success && sl != r10_bio->read_slot);
2444 		rcu_read_unlock();
2445 
2446 		if (!success) {
2447 			/* Cannot read from anywhere, just mark the block
2448 			 * as bad on the first device to discourage future
2449 			 * reads.
2450 			 */
2451 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2452 			rdev = conf->mirrors[dn].rdev;
2453 
2454 			if (!rdev_set_badblocks(
2455 				    rdev,
2456 				    r10_bio->devs[r10_bio->read_slot].addr
2457 				    + sect,
2458 				    s, 0)) {
2459 				md_error(mddev, rdev);
2460 				r10_bio->devs[r10_bio->read_slot].bio
2461 					= IO_BLOCKED;
2462 			}
2463 			break;
2464 		}
2465 
2466 		start = sl;
2467 		/* write it back and re-read */
2468 		rcu_read_lock();
2469 		while (sl != r10_bio->read_slot) {
2470 			char b[BDEVNAME_SIZE];
2471 
2472 			if (sl==0)
2473 				sl = conf->copies;
2474 			sl--;
2475 			d = r10_bio->devs[sl].devnum;
2476 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2477 			if (!rdev ||
2478 			    test_bit(Unmerged, &rdev->flags) ||
2479 			    !test_bit(In_sync, &rdev->flags))
2480 				continue;
2481 
2482 			atomic_inc(&rdev->nr_pending);
2483 			rcu_read_unlock();
2484 			if (r10_sync_page_io(rdev,
2485 					     r10_bio->devs[sl].addr +
2486 					     sect,
2487 					     s, conf->tmppage, WRITE)
2488 			    == 0) {
2489 				/* Well, this device is dead */
2490 				printk(KERN_NOTICE
2491 				       "md/raid10:%s: read correction "
2492 				       "write failed"
2493 				       " (%d sectors at %llu on %s)\n",
2494 				       mdname(mddev), s,
2495 				       (unsigned long long)(
2496 					       sect +
2497 					       choose_data_offset(r10_bio,
2498 								  rdev)),
2499 				       bdevname(rdev->bdev, b));
2500 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2501 				       "drive\n",
2502 				       mdname(mddev),
2503 				       bdevname(rdev->bdev, b));
2504 			}
2505 			rdev_dec_pending(rdev, mddev);
2506 			rcu_read_lock();
2507 		}
2508 		sl = start;
2509 		while (sl != r10_bio->read_slot) {
2510 			char b[BDEVNAME_SIZE];
2511 
2512 			if (sl==0)
2513 				sl = conf->copies;
2514 			sl--;
2515 			d = r10_bio->devs[sl].devnum;
2516 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2517 			if (!rdev ||
2518 			    !test_bit(In_sync, &rdev->flags))
2519 				continue;
2520 
2521 			atomic_inc(&rdev->nr_pending);
2522 			rcu_read_unlock();
2523 			switch (r10_sync_page_io(rdev,
2524 					     r10_bio->devs[sl].addr +
2525 					     sect,
2526 					     s, conf->tmppage,
2527 						 READ)) {
2528 			case 0:
2529 				/* Well, this device is dead */
2530 				printk(KERN_NOTICE
2531 				       "md/raid10:%s: unable to read back "
2532 				       "corrected sectors"
2533 				       " (%d sectors at %llu on %s)\n",
2534 				       mdname(mddev), s,
2535 				       (unsigned long long)(
2536 					       sect +
2537 					       choose_data_offset(r10_bio, rdev)),
2538 				       bdevname(rdev->bdev, b));
2539 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2540 				       "drive\n",
2541 				       mdname(mddev),
2542 				       bdevname(rdev->bdev, b));
2543 				break;
2544 			case 1:
2545 				printk(KERN_INFO
2546 				       "md/raid10:%s: read error corrected"
2547 				       " (%d sectors at %llu on %s)\n",
2548 				       mdname(mddev), s,
2549 				       (unsigned long long)(
2550 					       sect +
2551 					       choose_data_offset(r10_bio, rdev)),
2552 				       bdevname(rdev->bdev, b));
2553 				atomic_add(s, &rdev->corrected_errors);
2554 			}
2555 
2556 			rdev_dec_pending(rdev, mddev);
2557 			rcu_read_lock();
2558 		}
2559 		rcu_read_unlock();
2560 
2561 		sectors -= s;
2562 		sect += s;
2563 	}
2564 }
2565 
2566 static int narrow_write_error(struct r10bio *r10_bio, int i)
2567 {
2568 	struct bio *bio = r10_bio->master_bio;
2569 	struct mddev *mddev = r10_bio->mddev;
2570 	struct r10conf *conf = mddev->private;
2571 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2572 	/* bio has the data to be written to slot 'i' where
2573 	 * we just recently had a write error.
2574 	 * We repeatedly clone the bio and trim down to one block,
2575 	 * then try the write.  Where the write fails we record
2576 	 * a bad block.
2577 	 * It is conceivable that the bio doesn't exactly align with
2578 	 * blocks.  We must handle this.
2579 	 *
2580 	 * We currently own a reference to the rdev.
2581 	 */
2582 
2583 	int block_sectors;
2584 	sector_t sector;
2585 	int sectors;
2586 	int sect_to_write = r10_bio->sectors;
2587 	int ok = 1;
2588 
2589 	if (rdev->badblocks.shift < 0)
2590 		return 0;
2591 
2592 	block_sectors = 1 << rdev->badblocks.shift;
2593 	sector = r10_bio->sector;
2594 	sectors = ((r10_bio->sector + block_sectors)
2595 		   & ~(sector_t)(block_sectors - 1))
2596 		- sector;
2597 
2598 	while (sect_to_write) {
2599 		struct bio *wbio;
2600 		if (sectors > sect_to_write)
2601 			sectors = sect_to_write;
2602 		/* Write at 'sector' for 'sectors' */
2603 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2604 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2605 		wbio->bi_sector = (r10_bio->devs[i].addr+
2606 				   choose_data_offset(r10_bio, rdev) +
2607 				   (sector - r10_bio->sector));
2608 		wbio->bi_bdev = rdev->bdev;
2609 		if (submit_bio_wait(WRITE, wbio) == 0)
2610 			/* Failure! */
2611 			ok = rdev_set_badblocks(rdev, sector,
2612 						sectors, 0)
2613 				&& ok;
2614 
2615 		bio_put(wbio);
2616 		sect_to_write -= sectors;
2617 		sector += sectors;
2618 		sectors = block_sectors;
2619 	}
2620 	return ok;
2621 }
2622 
2623 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2624 {
2625 	int slot = r10_bio->read_slot;
2626 	struct bio *bio;
2627 	struct r10conf *conf = mddev->private;
2628 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2629 	char b[BDEVNAME_SIZE];
2630 	unsigned long do_sync;
2631 	int max_sectors;
2632 
2633 	/* we got a read error. Maybe the drive is bad.  Maybe just
2634 	 * the block and we can fix it.
2635 	 * We freeze all other IO, and try reading the block from
2636 	 * other devices.  When we find one, we re-write
2637 	 * and check it that fixes the read error.
2638 	 * This is all done synchronously while the array is
2639 	 * frozen.
2640 	 */
2641 	bio = r10_bio->devs[slot].bio;
2642 	bdevname(bio->bi_bdev, b);
2643 	bio_put(bio);
2644 	r10_bio->devs[slot].bio = NULL;
2645 
2646 	if (mddev->ro == 0) {
2647 		freeze_array(conf, 1);
2648 		fix_read_error(conf, mddev, r10_bio);
2649 		unfreeze_array(conf);
2650 	} else
2651 		r10_bio->devs[slot].bio = IO_BLOCKED;
2652 
2653 	rdev_dec_pending(rdev, mddev);
2654 
2655 read_more:
2656 	rdev = read_balance(conf, r10_bio, &max_sectors);
2657 	if (rdev == NULL) {
2658 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2659 		       " read error for block %llu\n",
2660 		       mdname(mddev), b,
2661 		       (unsigned long long)r10_bio->sector);
2662 		raid_end_bio_io(r10_bio);
2663 		return;
2664 	}
2665 
2666 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2667 	slot = r10_bio->read_slot;
2668 	printk_ratelimited(
2669 		KERN_ERR
2670 		"md/raid10:%s: %s: redirecting "
2671 		"sector %llu to another mirror\n",
2672 		mdname(mddev),
2673 		bdevname(rdev->bdev, b),
2674 		(unsigned long long)r10_bio->sector);
2675 	bio = bio_clone_mddev(r10_bio->master_bio,
2676 			      GFP_NOIO, mddev);
2677 	md_trim_bio(bio,
2678 		    r10_bio->sector - bio->bi_sector,
2679 		    max_sectors);
2680 	r10_bio->devs[slot].bio = bio;
2681 	r10_bio->devs[slot].rdev = rdev;
2682 	bio->bi_sector = r10_bio->devs[slot].addr
2683 		+ choose_data_offset(r10_bio, rdev);
2684 	bio->bi_bdev = rdev->bdev;
2685 	bio->bi_rw = READ | do_sync;
2686 	bio->bi_private = r10_bio;
2687 	bio->bi_end_io = raid10_end_read_request;
2688 	if (max_sectors < r10_bio->sectors) {
2689 		/* Drat - have to split this up more */
2690 		struct bio *mbio = r10_bio->master_bio;
2691 		int sectors_handled =
2692 			r10_bio->sector + max_sectors
2693 			- mbio->bi_sector;
2694 		r10_bio->sectors = max_sectors;
2695 		spin_lock_irq(&conf->device_lock);
2696 		if (mbio->bi_phys_segments == 0)
2697 			mbio->bi_phys_segments = 2;
2698 		else
2699 			mbio->bi_phys_segments++;
2700 		spin_unlock_irq(&conf->device_lock);
2701 		generic_make_request(bio);
2702 
2703 		r10_bio = mempool_alloc(conf->r10bio_pool,
2704 					GFP_NOIO);
2705 		r10_bio->master_bio = mbio;
2706 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2707 		r10_bio->state = 0;
2708 		set_bit(R10BIO_ReadError,
2709 			&r10_bio->state);
2710 		r10_bio->mddev = mddev;
2711 		r10_bio->sector = mbio->bi_sector
2712 			+ sectors_handled;
2713 
2714 		goto read_more;
2715 	} else
2716 		generic_make_request(bio);
2717 }
2718 
2719 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2720 {
2721 	/* Some sort of write request has finished and it
2722 	 * succeeded in writing where we thought there was a
2723 	 * bad block.  So forget the bad block.
2724 	 * Or possibly if failed and we need to record
2725 	 * a bad block.
2726 	 */
2727 	int m;
2728 	struct md_rdev *rdev;
2729 
2730 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2731 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2732 		for (m = 0; m < conf->copies; m++) {
2733 			int dev = r10_bio->devs[m].devnum;
2734 			rdev = conf->mirrors[dev].rdev;
2735 			if (r10_bio->devs[m].bio == NULL)
2736 				continue;
2737 			if (test_bit(BIO_UPTODATE,
2738 				     &r10_bio->devs[m].bio->bi_flags)) {
2739 				rdev_clear_badblocks(
2740 					rdev,
2741 					r10_bio->devs[m].addr,
2742 					r10_bio->sectors, 0);
2743 			} else {
2744 				if (!rdev_set_badblocks(
2745 					    rdev,
2746 					    r10_bio->devs[m].addr,
2747 					    r10_bio->sectors, 0))
2748 					md_error(conf->mddev, rdev);
2749 			}
2750 			rdev = conf->mirrors[dev].replacement;
2751 			if (r10_bio->devs[m].repl_bio == NULL)
2752 				continue;
2753 			if (test_bit(BIO_UPTODATE,
2754 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2755 				rdev_clear_badblocks(
2756 					rdev,
2757 					r10_bio->devs[m].addr,
2758 					r10_bio->sectors, 0);
2759 			} else {
2760 				if (!rdev_set_badblocks(
2761 					    rdev,
2762 					    r10_bio->devs[m].addr,
2763 					    r10_bio->sectors, 0))
2764 					md_error(conf->mddev, rdev);
2765 			}
2766 		}
2767 		put_buf(r10_bio);
2768 	} else {
2769 		for (m = 0; m < conf->copies; m++) {
2770 			int dev = r10_bio->devs[m].devnum;
2771 			struct bio *bio = r10_bio->devs[m].bio;
2772 			rdev = conf->mirrors[dev].rdev;
2773 			if (bio == IO_MADE_GOOD) {
2774 				rdev_clear_badblocks(
2775 					rdev,
2776 					r10_bio->devs[m].addr,
2777 					r10_bio->sectors, 0);
2778 				rdev_dec_pending(rdev, conf->mddev);
2779 			} else if (bio != NULL &&
2780 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2781 				if (!narrow_write_error(r10_bio, m)) {
2782 					md_error(conf->mddev, rdev);
2783 					set_bit(R10BIO_Degraded,
2784 						&r10_bio->state);
2785 				}
2786 				rdev_dec_pending(rdev, conf->mddev);
2787 			}
2788 			bio = r10_bio->devs[m].repl_bio;
2789 			rdev = conf->mirrors[dev].replacement;
2790 			if (rdev && bio == IO_MADE_GOOD) {
2791 				rdev_clear_badblocks(
2792 					rdev,
2793 					r10_bio->devs[m].addr,
2794 					r10_bio->sectors, 0);
2795 				rdev_dec_pending(rdev, conf->mddev);
2796 			}
2797 		}
2798 		if (test_bit(R10BIO_WriteError,
2799 			     &r10_bio->state))
2800 			close_write(r10_bio);
2801 		raid_end_bio_io(r10_bio);
2802 	}
2803 }
2804 
2805 static void raid10d(struct md_thread *thread)
2806 {
2807 	struct mddev *mddev = thread->mddev;
2808 	struct r10bio *r10_bio;
2809 	unsigned long flags;
2810 	struct r10conf *conf = mddev->private;
2811 	struct list_head *head = &conf->retry_list;
2812 	struct blk_plug plug;
2813 
2814 	md_check_recovery(mddev);
2815 
2816 	blk_start_plug(&plug);
2817 	for (;;) {
2818 
2819 		flush_pending_writes(conf);
2820 
2821 		spin_lock_irqsave(&conf->device_lock, flags);
2822 		if (list_empty(head)) {
2823 			spin_unlock_irqrestore(&conf->device_lock, flags);
2824 			break;
2825 		}
2826 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2827 		list_del(head->prev);
2828 		conf->nr_queued--;
2829 		spin_unlock_irqrestore(&conf->device_lock, flags);
2830 
2831 		mddev = r10_bio->mddev;
2832 		conf = mddev->private;
2833 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2834 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2835 			handle_write_completed(conf, r10_bio);
2836 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2837 			reshape_request_write(mddev, r10_bio);
2838 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2839 			sync_request_write(mddev, r10_bio);
2840 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2841 			recovery_request_write(mddev, r10_bio);
2842 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2843 			handle_read_error(mddev, r10_bio);
2844 		else {
2845 			/* just a partial read to be scheduled from a
2846 			 * separate context
2847 			 */
2848 			int slot = r10_bio->read_slot;
2849 			generic_make_request(r10_bio->devs[slot].bio);
2850 		}
2851 
2852 		cond_resched();
2853 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2854 			md_check_recovery(mddev);
2855 	}
2856 	blk_finish_plug(&plug);
2857 }
2858 
2859 
2860 static int init_resync(struct r10conf *conf)
2861 {
2862 	int buffs;
2863 	int i;
2864 
2865 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2866 	BUG_ON(conf->r10buf_pool);
2867 	conf->have_replacement = 0;
2868 	for (i = 0; i < conf->geo.raid_disks; i++)
2869 		if (conf->mirrors[i].replacement)
2870 			conf->have_replacement = 1;
2871 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2872 	if (!conf->r10buf_pool)
2873 		return -ENOMEM;
2874 	conf->next_resync = 0;
2875 	return 0;
2876 }
2877 
2878 /*
2879  * perform a "sync" on one "block"
2880  *
2881  * We need to make sure that no normal I/O request - particularly write
2882  * requests - conflict with active sync requests.
2883  *
2884  * This is achieved by tracking pending requests and a 'barrier' concept
2885  * that can be installed to exclude normal IO requests.
2886  *
2887  * Resync and recovery are handled very differently.
2888  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2889  *
2890  * For resync, we iterate over virtual addresses, read all copies,
2891  * and update if there are differences.  If only one copy is live,
2892  * skip it.
2893  * For recovery, we iterate over physical addresses, read a good
2894  * value for each non-in_sync drive, and over-write.
2895  *
2896  * So, for recovery we may have several outstanding complex requests for a
2897  * given address, one for each out-of-sync device.  We model this by allocating
2898  * a number of r10_bio structures, one for each out-of-sync device.
2899  * As we setup these structures, we collect all bio's together into a list
2900  * which we then process collectively to add pages, and then process again
2901  * to pass to generic_make_request.
2902  *
2903  * The r10_bio structures are linked using a borrowed master_bio pointer.
2904  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2905  * has its remaining count decremented to 0, the whole complex operation
2906  * is complete.
2907  *
2908  */
2909 
2910 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2911 			     int *skipped, int go_faster)
2912 {
2913 	struct r10conf *conf = mddev->private;
2914 	struct r10bio *r10_bio;
2915 	struct bio *biolist = NULL, *bio;
2916 	sector_t max_sector, nr_sectors;
2917 	int i;
2918 	int max_sync;
2919 	sector_t sync_blocks;
2920 	sector_t sectors_skipped = 0;
2921 	int chunks_skipped = 0;
2922 	sector_t chunk_mask = conf->geo.chunk_mask;
2923 
2924 	if (!conf->r10buf_pool)
2925 		if (init_resync(conf))
2926 			return 0;
2927 
2928 	/*
2929 	 * Allow skipping a full rebuild for incremental assembly
2930 	 * of a clean array, like RAID1 does.
2931 	 */
2932 	if (mddev->bitmap == NULL &&
2933 	    mddev->recovery_cp == MaxSector &&
2934 	    mddev->reshape_position == MaxSector &&
2935 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2936 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2937 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2938 	    conf->fullsync == 0) {
2939 		*skipped = 1;
2940 		return mddev->dev_sectors - sector_nr;
2941 	}
2942 
2943  skipped:
2944 	max_sector = mddev->dev_sectors;
2945 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2946 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2947 		max_sector = mddev->resync_max_sectors;
2948 	if (sector_nr >= max_sector) {
2949 		/* If we aborted, we need to abort the
2950 		 * sync on the 'current' bitmap chucks (there can
2951 		 * be several when recovering multiple devices).
2952 		 * as we may have started syncing it but not finished.
2953 		 * We can find the current address in
2954 		 * mddev->curr_resync, but for recovery,
2955 		 * we need to convert that to several
2956 		 * virtual addresses.
2957 		 */
2958 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2959 			end_reshape(conf);
2960 			return 0;
2961 		}
2962 
2963 		if (mddev->curr_resync < max_sector) { /* aborted */
2964 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2965 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2966 						&sync_blocks, 1);
2967 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2968 				sector_t sect =
2969 					raid10_find_virt(conf, mddev->curr_resync, i);
2970 				bitmap_end_sync(mddev->bitmap, sect,
2971 						&sync_blocks, 1);
2972 			}
2973 		} else {
2974 			/* completed sync */
2975 			if ((!mddev->bitmap || conf->fullsync)
2976 			    && conf->have_replacement
2977 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2978 				/* Completed a full sync so the replacements
2979 				 * are now fully recovered.
2980 				 */
2981 				for (i = 0; i < conf->geo.raid_disks; i++)
2982 					if (conf->mirrors[i].replacement)
2983 						conf->mirrors[i].replacement
2984 							->recovery_offset
2985 							= MaxSector;
2986 			}
2987 			conf->fullsync = 0;
2988 		}
2989 		bitmap_close_sync(mddev->bitmap);
2990 		close_sync(conf);
2991 		*skipped = 1;
2992 		return sectors_skipped;
2993 	}
2994 
2995 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996 		return reshape_request(mddev, sector_nr, skipped);
2997 
2998 	if (chunks_skipped >= conf->geo.raid_disks) {
2999 		/* if there has been nothing to do on any drive,
3000 		 * then there is nothing to do at all..
3001 		 */
3002 		*skipped = 1;
3003 		return (max_sector - sector_nr) + sectors_skipped;
3004 	}
3005 
3006 	if (max_sector > mddev->resync_max)
3007 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008 
3009 	/* make sure whole request will fit in a chunk - if chunks
3010 	 * are meaningful
3011 	 */
3012 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3013 	    max_sector > (sector_nr | chunk_mask))
3014 		max_sector = (sector_nr | chunk_mask) + 1;
3015 	/*
3016 	 * If there is non-resync activity waiting for us then
3017 	 * put in a delay to throttle resync.
3018 	 */
3019 	if (!go_faster && conf->nr_waiting)
3020 		msleep_interruptible(1000);
3021 
3022 	/* Again, very different code for resync and recovery.
3023 	 * Both must result in an r10bio with a list of bios that
3024 	 * have bi_end_io, bi_sector, bi_bdev set,
3025 	 * and bi_private set to the r10bio.
3026 	 * For recovery, we may actually create several r10bios
3027 	 * with 2 bios in each, that correspond to the bios in the main one.
3028 	 * In this case, the subordinate r10bios link back through a
3029 	 * borrowed master_bio pointer, and the counter in the master
3030 	 * includes a ref from each subordinate.
3031 	 */
3032 	/* First, we decide what to do and set ->bi_end_io
3033 	 * To end_sync_read if we want to read, and
3034 	 * end_sync_write if we will want to write.
3035 	 */
3036 
3037 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3038 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3039 		/* recovery... the complicated one */
3040 		int j;
3041 		r10_bio = NULL;
3042 
3043 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3044 			int still_degraded;
3045 			struct r10bio *rb2;
3046 			sector_t sect;
3047 			int must_sync;
3048 			int any_working;
3049 			struct raid10_info *mirror = &conf->mirrors[i];
3050 
3051 			if ((mirror->rdev == NULL ||
3052 			     test_bit(In_sync, &mirror->rdev->flags))
3053 			    &&
3054 			    (mirror->replacement == NULL ||
3055 			     test_bit(Faulty,
3056 				      &mirror->replacement->flags)))
3057 				continue;
3058 
3059 			still_degraded = 0;
3060 			/* want to reconstruct this device */
3061 			rb2 = r10_bio;
3062 			sect = raid10_find_virt(conf, sector_nr, i);
3063 			if (sect >= mddev->resync_max_sectors) {
3064 				/* last stripe is not complete - don't
3065 				 * try to recover this sector.
3066 				 */
3067 				continue;
3068 			}
3069 			/* Unless we are doing a full sync, or a replacement
3070 			 * we only need to recover the block if it is set in
3071 			 * the bitmap
3072 			 */
3073 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3074 						      &sync_blocks, 1);
3075 			if (sync_blocks < max_sync)
3076 				max_sync = sync_blocks;
3077 			if (!must_sync &&
3078 			    mirror->replacement == NULL &&
3079 			    !conf->fullsync) {
3080 				/* yep, skip the sync_blocks here, but don't assume
3081 				 * that there will never be anything to do here
3082 				 */
3083 				chunks_skipped = -1;
3084 				continue;
3085 			}
3086 
3087 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3088 			raise_barrier(conf, rb2 != NULL);
3089 			atomic_set(&r10_bio->remaining, 0);
3090 
3091 			r10_bio->master_bio = (struct bio*)rb2;
3092 			if (rb2)
3093 				atomic_inc(&rb2->remaining);
3094 			r10_bio->mddev = mddev;
3095 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3096 			r10_bio->sector = sect;
3097 
3098 			raid10_find_phys(conf, r10_bio);
3099 
3100 			/* Need to check if the array will still be
3101 			 * degraded
3102 			 */
3103 			for (j = 0; j < conf->geo.raid_disks; j++)
3104 				if (conf->mirrors[j].rdev == NULL ||
3105 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3106 					still_degraded = 1;
3107 					break;
3108 				}
3109 
3110 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3111 						      &sync_blocks, still_degraded);
3112 
3113 			any_working = 0;
3114 			for (j=0; j<conf->copies;j++) {
3115 				int k;
3116 				int d = r10_bio->devs[j].devnum;
3117 				sector_t from_addr, to_addr;
3118 				struct md_rdev *rdev;
3119 				sector_t sector, first_bad;
3120 				int bad_sectors;
3121 				if (!conf->mirrors[d].rdev ||
3122 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3123 					continue;
3124 				/* This is where we read from */
3125 				any_working = 1;
3126 				rdev = conf->mirrors[d].rdev;
3127 				sector = r10_bio->devs[j].addr;
3128 
3129 				if (is_badblock(rdev, sector, max_sync,
3130 						&first_bad, &bad_sectors)) {
3131 					if (first_bad > sector)
3132 						max_sync = first_bad - sector;
3133 					else {
3134 						bad_sectors -= (sector
3135 								- first_bad);
3136 						if (max_sync > bad_sectors)
3137 							max_sync = bad_sectors;
3138 						continue;
3139 					}
3140 				}
3141 				bio = r10_bio->devs[0].bio;
3142 				bio_reset(bio);
3143 				bio->bi_next = biolist;
3144 				biolist = bio;
3145 				bio->bi_private = r10_bio;
3146 				bio->bi_end_io = end_sync_read;
3147 				bio->bi_rw = READ;
3148 				from_addr = r10_bio->devs[j].addr;
3149 				bio->bi_sector = from_addr + rdev->data_offset;
3150 				bio->bi_bdev = rdev->bdev;
3151 				atomic_inc(&rdev->nr_pending);
3152 				/* and we write to 'i' (if not in_sync) */
3153 
3154 				for (k=0; k<conf->copies; k++)
3155 					if (r10_bio->devs[k].devnum == i)
3156 						break;
3157 				BUG_ON(k == conf->copies);
3158 				to_addr = r10_bio->devs[k].addr;
3159 				r10_bio->devs[0].devnum = d;
3160 				r10_bio->devs[0].addr = from_addr;
3161 				r10_bio->devs[1].devnum = i;
3162 				r10_bio->devs[1].addr = to_addr;
3163 
3164 				rdev = mirror->rdev;
3165 				if (!test_bit(In_sync, &rdev->flags)) {
3166 					bio = r10_bio->devs[1].bio;
3167 					bio_reset(bio);
3168 					bio->bi_next = biolist;
3169 					biolist = bio;
3170 					bio->bi_private = r10_bio;
3171 					bio->bi_end_io = end_sync_write;
3172 					bio->bi_rw = WRITE;
3173 					bio->bi_sector = to_addr
3174 						+ rdev->data_offset;
3175 					bio->bi_bdev = rdev->bdev;
3176 					atomic_inc(&r10_bio->remaining);
3177 				} else
3178 					r10_bio->devs[1].bio->bi_end_io = NULL;
3179 
3180 				/* and maybe write to replacement */
3181 				bio = r10_bio->devs[1].repl_bio;
3182 				if (bio)
3183 					bio->bi_end_io = NULL;
3184 				rdev = mirror->replacement;
3185 				/* Note: if rdev != NULL, then bio
3186 				 * cannot be NULL as r10buf_pool_alloc will
3187 				 * have allocated it.
3188 				 * So the second test here is pointless.
3189 				 * But it keeps semantic-checkers happy, and
3190 				 * this comment keeps human reviewers
3191 				 * happy.
3192 				 */
3193 				if (rdev == NULL || bio == NULL ||
3194 				    test_bit(Faulty, &rdev->flags))
3195 					break;
3196 				bio_reset(bio);
3197 				bio->bi_next = biolist;
3198 				biolist = bio;
3199 				bio->bi_private = r10_bio;
3200 				bio->bi_end_io = end_sync_write;
3201 				bio->bi_rw = WRITE;
3202 				bio->bi_sector = to_addr + rdev->data_offset;
3203 				bio->bi_bdev = rdev->bdev;
3204 				atomic_inc(&r10_bio->remaining);
3205 				break;
3206 			}
3207 			if (j == conf->copies) {
3208 				/* Cannot recover, so abort the recovery or
3209 				 * record a bad block */
3210 				put_buf(r10_bio);
3211 				if (rb2)
3212 					atomic_dec(&rb2->remaining);
3213 				r10_bio = rb2;
3214 				if (any_working) {
3215 					/* problem is that there are bad blocks
3216 					 * on other device(s)
3217 					 */
3218 					int k;
3219 					for (k = 0; k < conf->copies; k++)
3220 						if (r10_bio->devs[k].devnum == i)
3221 							break;
3222 					if (!test_bit(In_sync,
3223 						      &mirror->rdev->flags)
3224 					    && !rdev_set_badblocks(
3225 						    mirror->rdev,
3226 						    r10_bio->devs[k].addr,
3227 						    max_sync, 0))
3228 						any_working = 0;
3229 					if (mirror->replacement &&
3230 					    !rdev_set_badblocks(
3231 						    mirror->replacement,
3232 						    r10_bio->devs[k].addr,
3233 						    max_sync, 0))
3234 						any_working = 0;
3235 				}
3236 				if (!any_working)  {
3237 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3238 							      &mddev->recovery))
3239 						printk(KERN_INFO "md/raid10:%s: insufficient "
3240 						       "working devices for recovery.\n",
3241 						       mdname(mddev));
3242 					mirror->recovery_disabled
3243 						= mddev->recovery_disabled;
3244 				}
3245 				break;
3246 			}
3247 		}
3248 		if (biolist == NULL) {
3249 			while (r10_bio) {
3250 				struct r10bio *rb2 = r10_bio;
3251 				r10_bio = (struct r10bio*) rb2->master_bio;
3252 				rb2->master_bio = NULL;
3253 				put_buf(rb2);
3254 			}
3255 			goto giveup;
3256 		}
3257 	} else {
3258 		/* resync. Schedule a read for every block at this virt offset */
3259 		int count = 0;
3260 
3261 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3262 
3263 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3264 				       &sync_blocks, mddev->degraded) &&
3265 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3266 						 &mddev->recovery)) {
3267 			/* We can skip this block */
3268 			*skipped = 1;
3269 			return sync_blocks + sectors_skipped;
3270 		}
3271 		if (sync_blocks < max_sync)
3272 			max_sync = sync_blocks;
3273 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3274 
3275 		r10_bio->mddev = mddev;
3276 		atomic_set(&r10_bio->remaining, 0);
3277 		raise_barrier(conf, 0);
3278 		conf->next_resync = sector_nr;
3279 
3280 		r10_bio->master_bio = NULL;
3281 		r10_bio->sector = sector_nr;
3282 		set_bit(R10BIO_IsSync, &r10_bio->state);
3283 		raid10_find_phys(conf, r10_bio);
3284 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3285 
3286 		for (i = 0; i < conf->copies; i++) {
3287 			int d = r10_bio->devs[i].devnum;
3288 			sector_t first_bad, sector;
3289 			int bad_sectors;
3290 
3291 			if (r10_bio->devs[i].repl_bio)
3292 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3293 
3294 			bio = r10_bio->devs[i].bio;
3295 			bio_reset(bio);
3296 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3297 			if (conf->mirrors[d].rdev == NULL ||
3298 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3299 				continue;
3300 			sector = r10_bio->devs[i].addr;
3301 			if (is_badblock(conf->mirrors[d].rdev,
3302 					sector, max_sync,
3303 					&first_bad, &bad_sectors)) {
3304 				if (first_bad > sector)
3305 					max_sync = first_bad - sector;
3306 				else {
3307 					bad_sectors -= (sector - first_bad);
3308 					if (max_sync > bad_sectors)
3309 						max_sync = bad_sectors;
3310 					continue;
3311 				}
3312 			}
3313 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3314 			atomic_inc(&r10_bio->remaining);
3315 			bio->bi_next = biolist;
3316 			biolist = bio;
3317 			bio->bi_private = r10_bio;
3318 			bio->bi_end_io = end_sync_read;
3319 			bio->bi_rw = READ;
3320 			bio->bi_sector = sector +
3321 				conf->mirrors[d].rdev->data_offset;
3322 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3323 			count++;
3324 
3325 			if (conf->mirrors[d].replacement == NULL ||
3326 			    test_bit(Faulty,
3327 				     &conf->mirrors[d].replacement->flags))
3328 				continue;
3329 
3330 			/* Need to set up for writing to the replacement */
3331 			bio = r10_bio->devs[i].repl_bio;
3332 			bio_reset(bio);
3333 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3334 
3335 			sector = r10_bio->devs[i].addr;
3336 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3337 			bio->bi_next = biolist;
3338 			biolist = bio;
3339 			bio->bi_private = r10_bio;
3340 			bio->bi_end_io = end_sync_write;
3341 			bio->bi_rw = WRITE;
3342 			bio->bi_sector = sector +
3343 				conf->mirrors[d].replacement->data_offset;
3344 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3345 			count++;
3346 		}
3347 
3348 		if (count < 2) {
3349 			for (i=0; i<conf->copies; i++) {
3350 				int d = r10_bio->devs[i].devnum;
3351 				if (r10_bio->devs[i].bio->bi_end_io)
3352 					rdev_dec_pending(conf->mirrors[d].rdev,
3353 							 mddev);
3354 				if (r10_bio->devs[i].repl_bio &&
3355 				    r10_bio->devs[i].repl_bio->bi_end_io)
3356 					rdev_dec_pending(
3357 						conf->mirrors[d].replacement,
3358 						mddev);
3359 			}
3360 			put_buf(r10_bio);
3361 			biolist = NULL;
3362 			goto giveup;
3363 		}
3364 	}
3365 
3366 	nr_sectors = 0;
3367 	if (sector_nr + max_sync < max_sector)
3368 		max_sector = sector_nr + max_sync;
3369 	do {
3370 		struct page *page;
3371 		int len = PAGE_SIZE;
3372 		if (sector_nr + (len>>9) > max_sector)
3373 			len = (max_sector - sector_nr) << 9;
3374 		if (len == 0)
3375 			break;
3376 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3377 			struct bio *bio2;
3378 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3379 			if (bio_add_page(bio, page, len, 0))
3380 				continue;
3381 
3382 			/* stop here */
3383 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3384 			for (bio2 = biolist;
3385 			     bio2 && bio2 != bio;
3386 			     bio2 = bio2->bi_next) {
3387 				/* remove last page from this bio */
3388 				bio2->bi_vcnt--;
3389 				bio2->bi_size -= len;
3390 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3391 			}
3392 			goto bio_full;
3393 		}
3394 		nr_sectors += len>>9;
3395 		sector_nr += len>>9;
3396 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3397  bio_full:
3398 	r10_bio->sectors = nr_sectors;
3399 
3400 	while (biolist) {
3401 		bio = biolist;
3402 		biolist = biolist->bi_next;
3403 
3404 		bio->bi_next = NULL;
3405 		r10_bio = bio->bi_private;
3406 		r10_bio->sectors = nr_sectors;
3407 
3408 		if (bio->bi_end_io == end_sync_read) {
3409 			md_sync_acct(bio->bi_bdev, nr_sectors);
3410 			generic_make_request(bio);
3411 		}
3412 	}
3413 
3414 	if (sectors_skipped)
3415 		/* pretend they weren't skipped, it makes
3416 		 * no important difference in this case
3417 		 */
3418 		md_done_sync(mddev, sectors_skipped, 1);
3419 
3420 	return sectors_skipped + nr_sectors;
3421  giveup:
3422 	/* There is nowhere to write, so all non-sync
3423 	 * drives must be failed or in resync, all drives
3424 	 * have a bad block, so try the next chunk...
3425 	 */
3426 	if (sector_nr + max_sync < max_sector)
3427 		max_sector = sector_nr + max_sync;
3428 
3429 	sectors_skipped += (max_sector - sector_nr);
3430 	chunks_skipped ++;
3431 	sector_nr = max_sector;
3432 	goto skipped;
3433 }
3434 
3435 static sector_t
3436 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437 {
3438 	sector_t size;
3439 	struct r10conf *conf = mddev->private;
3440 
3441 	if (!raid_disks)
3442 		raid_disks = min(conf->geo.raid_disks,
3443 				 conf->prev.raid_disks);
3444 	if (!sectors)
3445 		sectors = conf->dev_sectors;
3446 
3447 	size = sectors >> conf->geo.chunk_shift;
3448 	sector_div(size, conf->geo.far_copies);
3449 	size = size * raid_disks;
3450 	sector_div(size, conf->geo.near_copies);
3451 
3452 	return size << conf->geo.chunk_shift;
3453 }
3454 
3455 static void calc_sectors(struct r10conf *conf, sector_t size)
3456 {
3457 	/* Calculate the number of sectors-per-device that will
3458 	 * actually be used, and set conf->dev_sectors and
3459 	 * conf->stride
3460 	 */
3461 
3462 	size = size >> conf->geo.chunk_shift;
3463 	sector_div(size, conf->geo.far_copies);
3464 	size = size * conf->geo.raid_disks;
3465 	sector_div(size, conf->geo.near_copies);
3466 	/* 'size' is now the number of chunks in the array */
3467 	/* calculate "used chunks per device" */
3468 	size = size * conf->copies;
3469 
3470 	/* We need to round up when dividing by raid_disks to
3471 	 * get the stride size.
3472 	 */
3473 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474 
3475 	conf->dev_sectors = size << conf->geo.chunk_shift;
3476 
3477 	if (conf->geo.far_offset)
3478 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3479 	else {
3480 		sector_div(size, conf->geo.far_copies);
3481 		conf->geo.stride = size << conf->geo.chunk_shift;
3482 	}
3483 }
3484 
3485 enum geo_type {geo_new, geo_old, geo_start};
3486 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487 {
3488 	int nc, fc, fo;
3489 	int layout, chunk, disks;
3490 	switch (new) {
3491 	case geo_old:
3492 		layout = mddev->layout;
3493 		chunk = mddev->chunk_sectors;
3494 		disks = mddev->raid_disks - mddev->delta_disks;
3495 		break;
3496 	case geo_new:
3497 		layout = mddev->new_layout;
3498 		chunk = mddev->new_chunk_sectors;
3499 		disks = mddev->raid_disks;
3500 		break;
3501 	default: /* avoid 'may be unused' warnings */
3502 	case geo_start: /* new when starting reshape - raid_disks not
3503 			 * updated yet. */
3504 		layout = mddev->new_layout;
3505 		chunk = mddev->new_chunk_sectors;
3506 		disks = mddev->raid_disks + mddev->delta_disks;
3507 		break;
3508 	}
3509 	if (layout >> 18)
3510 		return -1;
3511 	if (chunk < (PAGE_SIZE >> 9) ||
3512 	    !is_power_of_2(chunk))
3513 		return -2;
3514 	nc = layout & 255;
3515 	fc = (layout >> 8) & 255;
3516 	fo = layout & (1<<16);
3517 	geo->raid_disks = disks;
3518 	geo->near_copies = nc;
3519 	geo->far_copies = fc;
3520 	geo->far_offset = fo;
3521 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3522 	geo->chunk_mask = chunk - 1;
3523 	geo->chunk_shift = ffz(~chunk);
3524 	return nc*fc;
3525 }
3526 
3527 static struct r10conf *setup_conf(struct mddev *mddev)
3528 {
3529 	struct r10conf *conf = NULL;
3530 	int err = -EINVAL;
3531 	struct geom geo;
3532 	int copies;
3533 
3534 	copies = setup_geo(&geo, mddev, geo_new);
3535 
3536 	if (copies == -2) {
3537 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539 		       mdname(mddev), PAGE_SIZE);
3540 		goto out;
3541 	}
3542 
3543 	if (copies < 2 || copies > mddev->raid_disks) {
3544 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545 		       mdname(mddev), mddev->new_layout);
3546 		goto out;
3547 	}
3548 
3549 	err = -ENOMEM;
3550 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551 	if (!conf)
3552 		goto out;
3553 
3554 	/* FIXME calc properly */
3555 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556 							    max(0,-mddev->delta_disks)),
3557 				GFP_KERNEL);
3558 	if (!conf->mirrors)
3559 		goto out;
3560 
3561 	conf->tmppage = alloc_page(GFP_KERNEL);
3562 	if (!conf->tmppage)
3563 		goto out;
3564 
3565 	conf->geo = geo;
3566 	conf->copies = copies;
3567 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568 					   r10bio_pool_free, conf);
3569 	if (!conf->r10bio_pool)
3570 		goto out;
3571 
3572 	calc_sectors(conf, mddev->dev_sectors);
3573 	if (mddev->reshape_position == MaxSector) {
3574 		conf->prev = conf->geo;
3575 		conf->reshape_progress = MaxSector;
3576 	} else {
3577 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578 			err = -EINVAL;
3579 			goto out;
3580 		}
3581 		conf->reshape_progress = mddev->reshape_position;
3582 		if (conf->prev.far_offset)
3583 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3584 		else
3585 			/* far_copies must be 1 */
3586 			conf->prev.stride = conf->dev_sectors;
3587 	}
3588 	spin_lock_init(&conf->device_lock);
3589 	INIT_LIST_HEAD(&conf->retry_list);
3590 
3591 	spin_lock_init(&conf->resync_lock);
3592 	init_waitqueue_head(&conf->wait_barrier);
3593 
3594 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595 	if (!conf->thread)
3596 		goto out;
3597 
3598 	conf->mddev = mddev;
3599 	return conf;
3600 
3601  out:
3602 	if (err == -ENOMEM)
3603 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604 		       mdname(mddev));
3605 	if (conf) {
3606 		if (conf->r10bio_pool)
3607 			mempool_destroy(conf->r10bio_pool);
3608 		kfree(conf->mirrors);
3609 		safe_put_page(conf->tmppage);
3610 		kfree(conf);
3611 	}
3612 	return ERR_PTR(err);
3613 }
3614 
3615 static int run(struct mddev *mddev)
3616 {
3617 	struct r10conf *conf;
3618 	int i, disk_idx, chunk_size;
3619 	struct raid10_info *disk;
3620 	struct md_rdev *rdev;
3621 	sector_t size;
3622 	sector_t min_offset_diff = 0;
3623 	int first = 1;
3624 	bool discard_supported = false;
3625 
3626 	if (mddev->private == NULL) {
3627 		conf = setup_conf(mddev);
3628 		if (IS_ERR(conf))
3629 			return PTR_ERR(conf);
3630 		mddev->private = conf;
3631 	}
3632 	conf = mddev->private;
3633 	if (!conf)
3634 		goto out;
3635 
3636 	mddev->thread = conf->thread;
3637 	conf->thread = NULL;
3638 
3639 	chunk_size = mddev->chunk_sectors << 9;
3640 	if (mddev->queue) {
3641 		blk_queue_max_discard_sectors(mddev->queue,
3642 					      mddev->chunk_sectors);
3643 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3644 		blk_queue_io_min(mddev->queue, chunk_size);
3645 		if (conf->geo.raid_disks % conf->geo.near_copies)
3646 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647 		else
3648 			blk_queue_io_opt(mddev->queue, chunk_size *
3649 					 (conf->geo.raid_disks / conf->geo.near_copies));
3650 	}
3651 
3652 	rdev_for_each(rdev, mddev) {
3653 		long long diff;
3654 		struct request_queue *q;
3655 
3656 		disk_idx = rdev->raid_disk;
3657 		if (disk_idx < 0)
3658 			continue;
3659 		if (disk_idx >= conf->geo.raid_disks &&
3660 		    disk_idx >= conf->prev.raid_disks)
3661 			continue;
3662 		disk = conf->mirrors + disk_idx;
3663 
3664 		if (test_bit(Replacement, &rdev->flags)) {
3665 			if (disk->replacement)
3666 				goto out_free_conf;
3667 			disk->replacement = rdev;
3668 		} else {
3669 			if (disk->rdev)
3670 				goto out_free_conf;
3671 			disk->rdev = rdev;
3672 		}
3673 		q = bdev_get_queue(rdev->bdev);
3674 		if (q->merge_bvec_fn)
3675 			mddev->merge_check_needed = 1;
3676 		diff = (rdev->new_data_offset - rdev->data_offset);
3677 		if (!mddev->reshape_backwards)
3678 			diff = -diff;
3679 		if (diff < 0)
3680 			diff = 0;
3681 		if (first || diff < min_offset_diff)
3682 			min_offset_diff = diff;
3683 
3684 		if (mddev->gendisk)
3685 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3686 					  rdev->data_offset << 9);
3687 
3688 		disk->head_position = 0;
3689 
3690 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691 			discard_supported = true;
3692 	}
3693 
3694 	if (mddev->queue) {
3695 		if (discard_supported)
3696 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697 						mddev->queue);
3698 		else
3699 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700 						  mddev->queue);
3701 	}
3702 	/* need to check that every block has at least one working mirror */
3703 	if (!enough(conf, -1)) {
3704 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705 		       mdname(mddev));
3706 		goto out_free_conf;
3707 	}
3708 
3709 	if (conf->reshape_progress != MaxSector) {
3710 		/* must ensure that shape change is supported */
3711 		if (conf->geo.far_copies != 1 &&
3712 		    conf->geo.far_offset == 0)
3713 			goto out_free_conf;
3714 		if (conf->prev.far_copies != 1 &&
3715 		    conf->prev.far_offset == 0)
3716 			goto out_free_conf;
3717 	}
3718 
3719 	mddev->degraded = 0;
3720 	for (i = 0;
3721 	     i < conf->geo.raid_disks
3722 		     || i < conf->prev.raid_disks;
3723 	     i++) {
3724 
3725 		disk = conf->mirrors + i;
3726 
3727 		if (!disk->rdev && disk->replacement) {
3728 			/* The replacement is all we have - use it */
3729 			disk->rdev = disk->replacement;
3730 			disk->replacement = NULL;
3731 			clear_bit(Replacement, &disk->rdev->flags);
3732 		}
3733 
3734 		if (!disk->rdev ||
3735 		    !test_bit(In_sync, &disk->rdev->flags)) {
3736 			disk->head_position = 0;
3737 			mddev->degraded++;
3738 			if (disk->rdev)
3739 				conf->fullsync = 1;
3740 		}
3741 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3742 	}
3743 
3744 	if (mddev->recovery_cp != MaxSector)
3745 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3746 		       " -- starting background reconstruction\n",
3747 		       mdname(mddev));
3748 	printk(KERN_INFO
3749 		"md/raid10:%s: active with %d out of %d devices\n",
3750 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3751 		conf->geo.raid_disks);
3752 	/*
3753 	 * Ok, everything is just fine now
3754 	 */
3755 	mddev->dev_sectors = conf->dev_sectors;
3756 	size = raid10_size(mddev, 0, 0);
3757 	md_set_array_sectors(mddev, size);
3758 	mddev->resync_max_sectors = size;
3759 
3760 	if (mddev->queue) {
3761 		int stripe = conf->geo.raid_disks *
3762 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3763 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3764 		mddev->queue->backing_dev_info.congested_data = mddev;
3765 
3766 		/* Calculate max read-ahead size.
3767 		 * We need to readahead at least twice a whole stripe....
3768 		 * maybe...
3769 		 */
3770 		stripe /= conf->geo.near_copies;
3771 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3772 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3773 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3774 	}
3775 
3776 
3777 	if (md_integrity_register(mddev))
3778 		goto out_free_conf;
3779 
3780 	if (conf->reshape_progress != MaxSector) {
3781 		unsigned long before_length, after_length;
3782 
3783 		before_length = ((1 << conf->prev.chunk_shift) *
3784 				 conf->prev.far_copies);
3785 		after_length = ((1 << conf->geo.chunk_shift) *
3786 				conf->geo.far_copies);
3787 
3788 		if (max(before_length, after_length) > min_offset_diff) {
3789 			/* This cannot work */
3790 			printk("md/raid10: offset difference not enough to continue reshape\n");
3791 			goto out_free_conf;
3792 		}
3793 		conf->offset_diff = min_offset_diff;
3794 
3795 		conf->reshape_safe = conf->reshape_progress;
3796 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3798 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3799 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3800 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3801 							"reshape");
3802 	}
3803 
3804 	return 0;
3805 
3806 out_free_conf:
3807 	md_unregister_thread(&mddev->thread);
3808 	if (conf->r10bio_pool)
3809 		mempool_destroy(conf->r10bio_pool);
3810 	safe_put_page(conf->tmppage);
3811 	kfree(conf->mirrors);
3812 	kfree(conf);
3813 	mddev->private = NULL;
3814 out:
3815 	return -EIO;
3816 }
3817 
3818 static int stop(struct mddev *mddev)
3819 {
3820 	struct r10conf *conf = mddev->private;
3821 
3822 	raise_barrier(conf, 0);
3823 	lower_barrier(conf);
3824 
3825 	md_unregister_thread(&mddev->thread);
3826 	if (mddev->queue)
3827 		/* the unplug fn references 'conf'*/
3828 		blk_sync_queue(mddev->queue);
3829 
3830 	if (conf->r10bio_pool)
3831 		mempool_destroy(conf->r10bio_pool);
3832 	safe_put_page(conf->tmppage);
3833 	kfree(conf->mirrors);
3834 	kfree(conf);
3835 	mddev->private = NULL;
3836 	return 0;
3837 }
3838 
3839 static void raid10_quiesce(struct mddev *mddev, int state)
3840 {
3841 	struct r10conf *conf = mddev->private;
3842 
3843 	switch(state) {
3844 	case 1:
3845 		raise_barrier(conf, 0);
3846 		break;
3847 	case 0:
3848 		lower_barrier(conf);
3849 		break;
3850 	}
3851 }
3852 
3853 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3854 {
3855 	/* Resize of 'far' arrays is not supported.
3856 	 * For 'near' and 'offset' arrays we can set the
3857 	 * number of sectors used to be an appropriate multiple
3858 	 * of the chunk size.
3859 	 * For 'offset', this is far_copies*chunksize.
3860 	 * For 'near' the multiplier is the LCM of
3861 	 * near_copies and raid_disks.
3862 	 * So if far_copies > 1 && !far_offset, fail.
3863 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3864 	 * multiply by chunk_size.  Then round to this number.
3865 	 * This is mostly done by raid10_size()
3866 	 */
3867 	struct r10conf *conf = mddev->private;
3868 	sector_t oldsize, size;
3869 
3870 	if (mddev->reshape_position != MaxSector)
3871 		return -EBUSY;
3872 
3873 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3874 		return -EINVAL;
3875 
3876 	oldsize = raid10_size(mddev, 0, 0);
3877 	size = raid10_size(mddev, sectors, 0);
3878 	if (mddev->external_size &&
3879 	    mddev->array_sectors > size)
3880 		return -EINVAL;
3881 	if (mddev->bitmap) {
3882 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3883 		if (ret)
3884 			return ret;
3885 	}
3886 	md_set_array_sectors(mddev, size);
3887 	set_capacity(mddev->gendisk, mddev->array_sectors);
3888 	revalidate_disk(mddev->gendisk);
3889 	if (sectors > mddev->dev_sectors &&
3890 	    mddev->recovery_cp > oldsize) {
3891 		mddev->recovery_cp = oldsize;
3892 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3893 	}
3894 	calc_sectors(conf, sectors);
3895 	mddev->dev_sectors = conf->dev_sectors;
3896 	mddev->resync_max_sectors = size;
3897 	return 0;
3898 }
3899 
3900 static void *raid10_takeover_raid0(struct mddev *mddev)
3901 {
3902 	struct md_rdev *rdev;
3903 	struct r10conf *conf;
3904 
3905 	if (mddev->degraded > 0) {
3906 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3907 		       mdname(mddev));
3908 		return ERR_PTR(-EINVAL);
3909 	}
3910 
3911 	/* Set new parameters */
3912 	mddev->new_level = 10;
3913 	/* new layout: far_copies = 1, near_copies = 2 */
3914 	mddev->new_layout = (1<<8) + 2;
3915 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3916 	mddev->delta_disks = mddev->raid_disks;
3917 	mddev->raid_disks *= 2;
3918 	/* make sure it will be not marked as dirty */
3919 	mddev->recovery_cp = MaxSector;
3920 
3921 	conf = setup_conf(mddev);
3922 	if (!IS_ERR(conf)) {
3923 		rdev_for_each(rdev, mddev)
3924 			if (rdev->raid_disk >= 0)
3925 				rdev->new_raid_disk = rdev->raid_disk * 2;
3926 		conf->barrier = 1;
3927 	}
3928 
3929 	return conf;
3930 }
3931 
3932 static void *raid10_takeover(struct mddev *mddev)
3933 {
3934 	struct r0conf *raid0_conf;
3935 
3936 	/* raid10 can take over:
3937 	 *  raid0 - providing it has only two drives
3938 	 */
3939 	if (mddev->level == 0) {
3940 		/* for raid0 takeover only one zone is supported */
3941 		raid0_conf = mddev->private;
3942 		if (raid0_conf->nr_strip_zones > 1) {
3943 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3944 			       " with more than one zone.\n",
3945 			       mdname(mddev));
3946 			return ERR_PTR(-EINVAL);
3947 		}
3948 		return raid10_takeover_raid0(mddev);
3949 	}
3950 	return ERR_PTR(-EINVAL);
3951 }
3952 
3953 static int raid10_check_reshape(struct mddev *mddev)
3954 {
3955 	/* Called when there is a request to change
3956 	 * - layout (to ->new_layout)
3957 	 * - chunk size (to ->new_chunk_sectors)
3958 	 * - raid_disks (by delta_disks)
3959 	 * or when trying to restart a reshape that was ongoing.
3960 	 *
3961 	 * We need to validate the request and possibly allocate
3962 	 * space if that might be an issue later.
3963 	 *
3964 	 * Currently we reject any reshape of a 'far' mode array,
3965 	 * allow chunk size to change if new is generally acceptable,
3966 	 * allow raid_disks to increase, and allow
3967 	 * a switch between 'near' mode and 'offset' mode.
3968 	 */
3969 	struct r10conf *conf = mddev->private;
3970 	struct geom geo;
3971 
3972 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3973 		return -EINVAL;
3974 
3975 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3976 		/* mustn't change number of copies */
3977 		return -EINVAL;
3978 	if (geo.far_copies > 1 && !geo.far_offset)
3979 		/* Cannot switch to 'far' mode */
3980 		return -EINVAL;
3981 
3982 	if (mddev->array_sectors & geo.chunk_mask)
3983 			/* not factor of array size */
3984 			return -EINVAL;
3985 
3986 	if (!enough(conf, -1))
3987 		return -EINVAL;
3988 
3989 	kfree(conf->mirrors_new);
3990 	conf->mirrors_new = NULL;
3991 	if (mddev->delta_disks > 0) {
3992 		/* allocate new 'mirrors' list */
3993 		conf->mirrors_new = kzalloc(
3994 			sizeof(struct raid10_info)
3995 			*(mddev->raid_disks +
3996 			  mddev->delta_disks),
3997 			GFP_KERNEL);
3998 		if (!conf->mirrors_new)
3999 			return -ENOMEM;
4000 	}
4001 	return 0;
4002 }
4003 
4004 /*
4005  * Need to check if array has failed when deciding whether to:
4006  *  - start an array
4007  *  - remove non-faulty devices
4008  *  - add a spare
4009  *  - allow a reshape
4010  * This determination is simple when no reshape is happening.
4011  * However if there is a reshape, we need to carefully check
4012  * both the before and after sections.
4013  * This is because some failed devices may only affect one
4014  * of the two sections, and some non-in_sync devices may
4015  * be insync in the section most affected by failed devices.
4016  */
4017 static int calc_degraded(struct r10conf *conf)
4018 {
4019 	int degraded, degraded2;
4020 	int i;
4021 
4022 	rcu_read_lock();
4023 	degraded = 0;
4024 	/* 'prev' section first */
4025 	for (i = 0; i < conf->prev.raid_disks; i++) {
4026 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4027 		if (!rdev || test_bit(Faulty, &rdev->flags))
4028 			degraded++;
4029 		else if (!test_bit(In_sync, &rdev->flags))
4030 			/* When we can reduce the number of devices in
4031 			 * an array, this might not contribute to
4032 			 * 'degraded'.  It does now.
4033 			 */
4034 			degraded++;
4035 	}
4036 	rcu_read_unlock();
4037 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4038 		return degraded;
4039 	rcu_read_lock();
4040 	degraded2 = 0;
4041 	for (i = 0; i < conf->geo.raid_disks; i++) {
4042 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4043 		if (!rdev || test_bit(Faulty, &rdev->flags))
4044 			degraded2++;
4045 		else if (!test_bit(In_sync, &rdev->flags)) {
4046 			/* If reshape is increasing the number of devices,
4047 			 * this section has already been recovered, so
4048 			 * it doesn't contribute to degraded.
4049 			 * else it does.
4050 			 */
4051 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4052 				degraded2++;
4053 		}
4054 	}
4055 	rcu_read_unlock();
4056 	if (degraded2 > degraded)
4057 		return degraded2;
4058 	return degraded;
4059 }
4060 
4061 static int raid10_start_reshape(struct mddev *mddev)
4062 {
4063 	/* A 'reshape' has been requested. This commits
4064 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4065 	 * This also checks if there are enough spares and adds them
4066 	 * to the array.
4067 	 * We currently require enough spares to make the final
4068 	 * array non-degraded.  We also require that the difference
4069 	 * between old and new data_offset - on each device - is
4070 	 * enough that we never risk over-writing.
4071 	 */
4072 
4073 	unsigned long before_length, after_length;
4074 	sector_t min_offset_diff = 0;
4075 	int first = 1;
4076 	struct geom new;
4077 	struct r10conf *conf = mddev->private;
4078 	struct md_rdev *rdev;
4079 	int spares = 0;
4080 	int ret;
4081 
4082 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4083 		return -EBUSY;
4084 
4085 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4086 		return -EINVAL;
4087 
4088 	before_length = ((1 << conf->prev.chunk_shift) *
4089 			 conf->prev.far_copies);
4090 	after_length = ((1 << conf->geo.chunk_shift) *
4091 			conf->geo.far_copies);
4092 
4093 	rdev_for_each(rdev, mddev) {
4094 		if (!test_bit(In_sync, &rdev->flags)
4095 		    && !test_bit(Faulty, &rdev->flags))
4096 			spares++;
4097 		if (rdev->raid_disk >= 0) {
4098 			long long diff = (rdev->new_data_offset
4099 					  - rdev->data_offset);
4100 			if (!mddev->reshape_backwards)
4101 				diff = -diff;
4102 			if (diff < 0)
4103 				diff = 0;
4104 			if (first || diff < min_offset_diff)
4105 				min_offset_diff = diff;
4106 		}
4107 	}
4108 
4109 	if (max(before_length, after_length) > min_offset_diff)
4110 		return -EINVAL;
4111 
4112 	if (spares < mddev->delta_disks)
4113 		return -EINVAL;
4114 
4115 	conf->offset_diff = min_offset_diff;
4116 	spin_lock_irq(&conf->device_lock);
4117 	if (conf->mirrors_new) {
4118 		memcpy(conf->mirrors_new, conf->mirrors,
4119 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4120 		smp_mb();
4121 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4122 		conf->mirrors_old = conf->mirrors;
4123 		conf->mirrors = conf->mirrors_new;
4124 		conf->mirrors_new = NULL;
4125 	}
4126 	setup_geo(&conf->geo, mddev, geo_start);
4127 	smp_mb();
4128 	if (mddev->reshape_backwards) {
4129 		sector_t size = raid10_size(mddev, 0, 0);
4130 		if (size < mddev->array_sectors) {
4131 			spin_unlock_irq(&conf->device_lock);
4132 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4133 			       mdname(mddev));
4134 			return -EINVAL;
4135 		}
4136 		mddev->resync_max_sectors = size;
4137 		conf->reshape_progress = size;
4138 	} else
4139 		conf->reshape_progress = 0;
4140 	spin_unlock_irq(&conf->device_lock);
4141 
4142 	if (mddev->delta_disks && mddev->bitmap) {
4143 		ret = bitmap_resize(mddev->bitmap,
4144 				    raid10_size(mddev, 0,
4145 						conf->geo.raid_disks),
4146 				    0, 0);
4147 		if (ret)
4148 			goto abort;
4149 	}
4150 	if (mddev->delta_disks > 0) {
4151 		rdev_for_each(rdev, mddev)
4152 			if (rdev->raid_disk < 0 &&
4153 			    !test_bit(Faulty, &rdev->flags)) {
4154 				if (raid10_add_disk(mddev, rdev) == 0) {
4155 					if (rdev->raid_disk >=
4156 					    conf->prev.raid_disks)
4157 						set_bit(In_sync, &rdev->flags);
4158 					else
4159 						rdev->recovery_offset = 0;
4160 
4161 					if (sysfs_link_rdev(mddev, rdev))
4162 						/* Failure here  is OK */;
4163 				}
4164 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4165 				   && !test_bit(Faulty, &rdev->flags)) {
4166 				/* This is a spare that was manually added */
4167 				set_bit(In_sync, &rdev->flags);
4168 			}
4169 	}
4170 	/* When a reshape changes the number of devices,
4171 	 * ->degraded is measured against the larger of the
4172 	 * pre and  post numbers.
4173 	 */
4174 	spin_lock_irq(&conf->device_lock);
4175 	mddev->degraded = calc_degraded(conf);
4176 	spin_unlock_irq(&conf->device_lock);
4177 	mddev->raid_disks = conf->geo.raid_disks;
4178 	mddev->reshape_position = conf->reshape_progress;
4179 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4180 
4181 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4183 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4184 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4185 
4186 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4187 						"reshape");
4188 	if (!mddev->sync_thread) {
4189 		ret = -EAGAIN;
4190 		goto abort;
4191 	}
4192 	conf->reshape_checkpoint = jiffies;
4193 	md_wakeup_thread(mddev->sync_thread);
4194 	md_new_event(mddev);
4195 	return 0;
4196 
4197 abort:
4198 	mddev->recovery = 0;
4199 	spin_lock_irq(&conf->device_lock);
4200 	conf->geo = conf->prev;
4201 	mddev->raid_disks = conf->geo.raid_disks;
4202 	rdev_for_each(rdev, mddev)
4203 		rdev->new_data_offset = rdev->data_offset;
4204 	smp_wmb();
4205 	conf->reshape_progress = MaxSector;
4206 	mddev->reshape_position = MaxSector;
4207 	spin_unlock_irq(&conf->device_lock);
4208 	return ret;
4209 }
4210 
4211 /* Calculate the last device-address that could contain
4212  * any block from the chunk that includes the array-address 's'
4213  * and report the next address.
4214  * i.e. the address returned will be chunk-aligned and after
4215  * any data that is in the chunk containing 's'.
4216  */
4217 static sector_t last_dev_address(sector_t s, struct geom *geo)
4218 {
4219 	s = (s | geo->chunk_mask) + 1;
4220 	s >>= geo->chunk_shift;
4221 	s *= geo->near_copies;
4222 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4223 	s *= geo->far_copies;
4224 	s <<= geo->chunk_shift;
4225 	return s;
4226 }
4227 
4228 /* Calculate the first device-address that could contain
4229  * any block from the chunk that includes the array-address 's'.
4230  * This too will be the start of a chunk
4231  */
4232 static sector_t first_dev_address(sector_t s, struct geom *geo)
4233 {
4234 	s >>= geo->chunk_shift;
4235 	s *= geo->near_copies;
4236 	sector_div(s, geo->raid_disks);
4237 	s *= geo->far_copies;
4238 	s <<= geo->chunk_shift;
4239 	return s;
4240 }
4241 
4242 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4243 				int *skipped)
4244 {
4245 	/* We simply copy at most one chunk (smallest of old and new)
4246 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4247 	 * or we hit a bad block or something.
4248 	 * This might mean we pause for normal IO in the middle of
4249 	 * a chunk, but that is not a problem was mddev->reshape_position
4250 	 * can record any location.
4251 	 *
4252 	 * If we will want to write to a location that isn't
4253 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4254 	 * we need to flush all reshape requests and update the metadata.
4255 	 *
4256 	 * When reshaping forwards (e.g. to more devices), we interpret
4257 	 * 'safe' as the earliest block which might not have been copied
4258 	 * down yet.  We divide this by previous stripe size and multiply
4259 	 * by previous stripe length to get lowest device offset that we
4260 	 * cannot write to yet.
4261 	 * We interpret 'sector_nr' as an address that we want to write to.
4262 	 * From this we use last_device_address() to find where we might
4263 	 * write to, and first_device_address on the  'safe' position.
4264 	 * If this 'next' write position is after the 'safe' position,
4265 	 * we must update the metadata to increase the 'safe' position.
4266 	 *
4267 	 * When reshaping backwards, we round in the opposite direction
4268 	 * and perform the reverse test:  next write position must not be
4269 	 * less than current safe position.
4270 	 *
4271 	 * In all this the minimum difference in data offsets
4272 	 * (conf->offset_diff - always positive) allows a bit of slack,
4273 	 * so next can be after 'safe', but not by more than offset_disk
4274 	 *
4275 	 * We need to prepare all the bios here before we start any IO
4276 	 * to ensure the size we choose is acceptable to all devices.
4277 	 * The means one for each copy for write-out and an extra one for
4278 	 * read-in.
4279 	 * We store the read-in bio in ->master_bio and the others in
4280 	 * ->devs[x].bio and ->devs[x].repl_bio.
4281 	 */
4282 	struct r10conf *conf = mddev->private;
4283 	struct r10bio *r10_bio;
4284 	sector_t next, safe, last;
4285 	int max_sectors;
4286 	int nr_sectors;
4287 	int s;
4288 	struct md_rdev *rdev;
4289 	int need_flush = 0;
4290 	struct bio *blist;
4291 	struct bio *bio, *read_bio;
4292 	int sectors_done = 0;
4293 
4294 	if (sector_nr == 0) {
4295 		/* If restarting in the middle, skip the initial sectors */
4296 		if (mddev->reshape_backwards &&
4297 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4298 			sector_nr = (raid10_size(mddev, 0, 0)
4299 				     - conf->reshape_progress);
4300 		} else if (!mddev->reshape_backwards &&
4301 			   conf->reshape_progress > 0)
4302 			sector_nr = conf->reshape_progress;
4303 		if (sector_nr) {
4304 			mddev->curr_resync_completed = sector_nr;
4305 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4306 			*skipped = 1;
4307 			return sector_nr;
4308 		}
4309 	}
4310 
4311 	/* We don't use sector_nr to track where we are up to
4312 	 * as that doesn't work well for ->reshape_backwards.
4313 	 * So just use ->reshape_progress.
4314 	 */
4315 	if (mddev->reshape_backwards) {
4316 		/* 'next' is the earliest device address that we might
4317 		 * write to for this chunk in the new layout
4318 		 */
4319 		next = first_dev_address(conf->reshape_progress - 1,
4320 					 &conf->geo);
4321 
4322 		/* 'safe' is the last device address that we might read from
4323 		 * in the old layout after a restart
4324 		 */
4325 		safe = last_dev_address(conf->reshape_safe - 1,
4326 					&conf->prev);
4327 
4328 		if (next + conf->offset_diff < safe)
4329 			need_flush = 1;
4330 
4331 		last = conf->reshape_progress - 1;
4332 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4333 					       & conf->prev.chunk_mask);
4334 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4335 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4336 	} else {
4337 		/* 'next' is after the last device address that we
4338 		 * might write to for this chunk in the new layout
4339 		 */
4340 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4341 
4342 		/* 'safe' is the earliest device address that we might
4343 		 * read from in the old layout after a restart
4344 		 */
4345 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4346 
4347 		/* Need to update metadata if 'next' might be beyond 'safe'
4348 		 * as that would possibly corrupt data
4349 		 */
4350 		if (next > safe + conf->offset_diff)
4351 			need_flush = 1;
4352 
4353 		sector_nr = conf->reshape_progress;
4354 		last  = sector_nr | (conf->geo.chunk_mask
4355 				     & conf->prev.chunk_mask);
4356 
4357 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4358 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4359 	}
4360 
4361 	if (need_flush ||
4362 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4363 		/* Need to update reshape_position in metadata */
4364 		wait_barrier(conf);
4365 		mddev->reshape_position = conf->reshape_progress;
4366 		if (mddev->reshape_backwards)
4367 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4368 				- conf->reshape_progress;
4369 		else
4370 			mddev->curr_resync_completed = conf->reshape_progress;
4371 		conf->reshape_checkpoint = jiffies;
4372 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4373 		md_wakeup_thread(mddev->thread);
4374 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4375 			   kthread_should_stop());
4376 		conf->reshape_safe = mddev->reshape_position;
4377 		allow_barrier(conf);
4378 	}
4379 
4380 read_more:
4381 	/* Now schedule reads for blocks from sector_nr to last */
4382 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4383 	raise_barrier(conf, sectors_done != 0);
4384 	atomic_set(&r10_bio->remaining, 0);
4385 	r10_bio->mddev = mddev;
4386 	r10_bio->sector = sector_nr;
4387 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4388 	r10_bio->sectors = last - sector_nr + 1;
4389 	rdev = read_balance(conf, r10_bio, &max_sectors);
4390 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4391 
4392 	if (!rdev) {
4393 		/* Cannot read from here, so need to record bad blocks
4394 		 * on all the target devices.
4395 		 */
4396 		// FIXME
4397 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4398 		return sectors_done;
4399 	}
4400 
4401 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4402 
4403 	read_bio->bi_bdev = rdev->bdev;
4404 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4405 			       + rdev->data_offset);
4406 	read_bio->bi_private = r10_bio;
4407 	read_bio->bi_end_io = end_sync_read;
4408 	read_bio->bi_rw = READ;
4409 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4410 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4411 	read_bio->bi_vcnt = 0;
4412 	read_bio->bi_size = 0;
4413 	r10_bio->master_bio = read_bio;
4414 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4415 
4416 	/* Now find the locations in the new layout */
4417 	__raid10_find_phys(&conf->geo, r10_bio);
4418 
4419 	blist = read_bio;
4420 	read_bio->bi_next = NULL;
4421 
4422 	for (s = 0; s < conf->copies*2; s++) {
4423 		struct bio *b;
4424 		int d = r10_bio->devs[s/2].devnum;
4425 		struct md_rdev *rdev2;
4426 		if (s&1) {
4427 			rdev2 = conf->mirrors[d].replacement;
4428 			b = r10_bio->devs[s/2].repl_bio;
4429 		} else {
4430 			rdev2 = conf->mirrors[d].rdev;
4431 			b = r10_bio->devs[s/2].bio;
4432 		}
4433 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4434 			continue;
4435 
4436 		bio_reset(b);
4437 		b->bi_bdev = rdev2->bdev;
4438 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4439 		b->bi_private = r10_bio;
4440 		b->bi_end_io = end_reshape_write;
4441 		b->bi_rw = WRITE;
4442 		b->bi_next = blist;
4443 		blist = b;
4444 	}
4445 
4446 	/* Now add as many pages as possible to all of these bios. */
4447 
4448 	nr_sectors = 0;
4449 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4450 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4451 		int len = (max_sectors - s) << 9;
4452 		if (len > PAGE_SIZE)
4453 			len = PAGE_SIZE;
4454 		for (bio = blist; bio ; bio = bio->bi_next) {
4455 			struct bio *bio2;
4456 			if (bio_add_page(bio, page, len, 0))
4457 				continue;
4458 
4459 			/* Didn't fit, must stop */
4460 			for (bio2 = blist;
4461 			     bio2 && bio2 != bio;
4462 			     bio2 = bio2->bi_next) {
4463 				/* Remove last page from this bio */
4464 				bio2->bi_vcnt--;
4465 				bio2->bi_size -= len;
4466 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4467 			}
4468 			goto bio_full;
4469 		}
4470 		sector_nr += len >> 9;
4471 		nr_sectors += len >> 9;
4472 	}
4473 bio_full:
4474 	r10_bio->sectors = nr_sectors;
4475 
4476 	/* Now submit the read */
4477 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4478 	atomic_inc(&r10_bio->remaining);
4479 	read_bio->bi_next = NULL;
4480 	generic_make_request(read_bio);
4481 	sector_nr += nr_sectors;
4482 	sectors_done += nr_sectors;
4483 	if (sector_nr <= last)
4484 		goto read_more;
4485 
4486 	/* Now that we have done the whole section we can
4487 	 * update reshape_progress
4488 	 */
4489 	if (mddev->reshape_backwards)
4490 		conf->reshape_progress -= sectors_done;
4491 	else
4492 		conf->reshape_progress += sectors_done;
4493 
4494 	return sectors_done;
4495 }
4496 
4497 static void end_reshape_request(struct r10bio *r10_bio);
4498 static int handle_reshape_read_error(struct mddev *mddev,
4499 				     struct r10bio *r10_bio);
4500 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4501 {
4502 	/* Reshape read completed.  Hopefully we have a block
4503 	 * to write out.
4504 	 * If we got a read error then we do sync 1-page reads from
4505 	 * elsewhere until we find the data - or give up.
4506 	 */
4507 	struct r10conf *conf = mddev->private;
4508 	int s;
4509 
4510 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4511 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4512 			/* Reshape has been aborted */
4513 			md_done_sync(mddev, r10_bio->sectors, 0);
4514 			return;
4515 		}
4516 
4517 	/* We definitely have the data in the pages, schedule the
4518 	 * writes.
4519 	 */
4520 	atomic_set(&r10_bio->remaining, 1);
4521 	for (s = 0; s < conf->copies*2; s++) {
4522 		struct bio *b;
4523 		int d = r10_bio->devs[s/2].devnum;
4524 		struct md_rdev *rdev;
4525 		if (s&1) {
4526 			rdev = conf->mirrors[d].replacement;
4527 			b = r10_bio->devs[s/2].repl_bio;
4528 		} else {
4529 			rdev = conf->mirrors[d].rdev;
4530 			b = r10_bio->devs[s/2].bio;
4531 		}
4532 		if (!rdev || test_bit(Faulty, &rdev->flags))
4533 			continue;
4534 		atomic_inc(&rdev->nr_pending);
4535 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4536 		atomic_inc(&r10_bio->remaining);
4537 		b->bi_next = NULL;
4538 		generic_make_request(b);
4539 	}
4540 	end_reshape_request(r10_bio);
4541 }
4542 
4543 static void end_reshape(struct r10conf *conf)
4544 {
4545 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4546 		return;
4547 
4548 	spin_lock_irq(&conf->device_lock);
4549 	conf->prev = conf->geo;
4550 	md_finish_reshape(conf->mddev);
4551 	smp_wmb();
4552 	conf->reshape_progress = MaxSector;
4553 	spin_unlock_irq(&conf->device_lock);
4554 
4555 	/* read-ahead size must cover two whole stripes, which is
4556 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4557 	 */
4558 	if (conf->mddev->queue) {
4559 		int stripe = conf->geo.raid_disks *
4560 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4561 		stripe /= conf->geo.near_copies;
4562 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4563 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4564 	}
4565 	conf->fullsync = 0;
4566 }
4567 
4568 
4569 static int handle_reshape_read_error(struct mddev *mddev,
4570 				     struct r10bio *r10_bio)
4571 {
4572 	/* Use sync reads to get the blocks from somewhere else */
4573 	int sectors = r10_bio->sectors;
4574 	struct r10conf *conf = mddev->private;
4575 	struct {
4576 		struct r10bio r10_bio;
4577 		struct r10dev devs[conf->copies];
4578 	} on_stack;
4579 	struct r10bio *r10b = &on_stack.r10_bio;
4580 	int slot = 0;
4581 	int idx = 0;
4582 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4583 
4584 	r10b->sector = r10_bio->sector;
4585 	__raid10_find_phys(&conf->prev, r10b);
4586 
4587 	while (sectors) {
4588 		int s = sectors;
4589 		int success = 0;
4590 		int first_slot = slot;
4591 
4592 		if (s > (PAGE_SIZE >> 9))
4593 			s = PAGE_SIZE >> 9;
4594 
4595 		while (!success) {
4596 			int d = r10b->devs[slot].devnum;
4597 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4598 			sector_t addr;
4599 			if (rdev == NULL ||
4600 			    test_bit(Faulty, &rdev->flags) ||
4601 			    !test_bit(In_sync, &rdev->flags))
4602 				goto failed;
4603 
4604 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4605 			success = sync_page_io(rdev,
4606 					       addr,
4607 					       s << 9,
4608 					       bvec[idx].bv_page,
4609 					       READ, false);
4610 			if (success)
4611 				break;
4612 		failed:
4613 			slot++;
4614 			if (slot >= conf->copies)
4615 				slot = 0;
4616 			if (slot == first_slot)
4617 				break;
4618 		}
4619 		if (!success) {
4620 			/* couldn't read this block, must give up */
4621 			set_bit(MD_RECOVERY_INTR,
4622 				&mddev->recovery);
4623 			return -EIO;
4624 		}
4625 		sectors -= s;
4626 		idx++;
4627 	}
4628 	return 0;
4629 }
4630 
4631 static void end_reshape_write(struct bio *bio, int error)
4632 {
4633 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4634 	struct r10bio *r10_bio = bio->bi_private;
4635 	struct mddev *mddev = r10_bio->mddev;
4636 	struct r10conf *conf = mddev->private;
4637 	int d;
4638 	int slot;
4639 	int repl;
4640 	struct md_rdev *rdev = NULL;
4641 
4642 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4643 	if (repl)
4644 		rdev = conf->mirrors[d].replacement;
4645 	if (!rdev) {
4646 		smp_mb();
4647 		rdev = conf->mirrors[d].rdev;
4648 	}
4649 
4650 	if (!uptodate) {
4651 		/* FIXME should record badblock */
4652 		md_error(mddev, rdev);
4653 	}
4654 
4655 	rdev_dec_pending(rdev, mddev);
4656 	end_reshape_request(r10_bio);
4657 }
4658 
4659 static void end_reshape_request(struct r10bio *r10_bio)
4660 {
4661 	if (!atomic_dec_and_test(&r10_bio->remaining))
4662 		return;
4663 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4664 	bio_put(r10_bio->master_bio);
4665 	put_buf(r10_bio);
4666 }
4667 
4668 static void raid10_finish_reshape(struct mddev *mddev)
4669 {
4670 	struct r10conf *conf = mddev->private;
4671 
4672 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4673 		return;
4674 
4675 	if (mddev->delta_disks > 0) {
4676 		sector_t size = raid10_size(mddev, 0, 0);
4677 		md_set_array_sectors(mddev, size);
4678 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4679 			mddev->recovery_cp = mddev->resync_max_sectors;
4680 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4681 		}
4682 		mddev->resync_max_sectors = size;
4683 		set_capacity(mddev->gendisk, mddev->array_sectors);
4684 		revalidate_disk(mddev->gendisk);
4685 	} else {
4686 		int d;
4687 		for (d = conf->geo.raid_disks ;
4688 		     d < conf->geo.raid_disks - mddev->delta_disks;
4689 		     d++) {
4690 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4691 			if (rdev)
4692 				clear_bit(In_sync, &rdev->flags);
4693 			rdev = conf->mirrors[d].replacement;
4694 			if (rdev)
4695 				clear_bit(In_sync, &rdev->flags);
4696 		}
4697 	}
4698 	mddev->layout = mddev->new_layout;
4699 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4700 	mddev->reshape_position = MaxSector;
4701 	mddev->delta_disks = 0;
4702 	mddev->reshape_backwards = 0;
4703 }
4704 
4705 static struct md_personality raid10_personality =
4706 {
4707 	.name		= "raid10",
4708 	.level		= 10,
4709 	.owner		= THIS_MODULE,
4710 	.make_request	= make_request,
4711 	.run		= run,
4712 	.stop		= stop,
4713 	.status		= status,
4714 	.error_handler	= error,
4715 	.hot_add_disk	= raid10_add_disk,
4716 	.hot_remove_disk= raid10_remove_disk,
4717 	.spare_active	= raid10_spare_active,
4718 	.sync_request	= sync_request,
4719 	.quiesce	= raid10_quiesce,
4720 	.size		= raid10_size,
4721 	.resize		= raid10_resize,
4722 	.takeover	= raid10_takeover,
4723 	.check_reshape	= raid10_check_reshape,
4724 	.start_reshape	= raid10_start_reshape,
4725 	.finish_reshape	= raid10_finish_reshape,
4726 };
4727 
4728 static int __init raid_init(void)
4729 {
4730 	return register_md_personality(&raid10_personality);
4731 }
4732 
4733 static void raid_exit(void)
4734 {
4735 	unregister_md_personality(&raid10_personality);
4736 }
4737 
4738 module_init(raid_init);
4739 module_exit(raid_exit);
4740 MODULE_LICENSE("GPL");
4741 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4742 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4743 MODULE_ALIAS("md-raid10");
4744 MODULE_ALIAS("md-level-10");
4745 
4746 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4747