1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 slot = r10_bio->read_slot; 370 dev = r10_bio->devs[slot].devnum; 371 rdev = r10_bio->devs[slot].rdev; 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(slot, r10_bio); 376 377 if (uptodate) { 378 /* 379 * Set R10BIO_Uptodate in our master bio, so that 380 * we will return a good error code to the higher 381 * levels even if IO on some other mirrored buffer fails. 382 * 383 * The 'master' represents the composite IO operation to 384 * user-side. So if something waits for IO, then it will 385 * wait for the 'master' bio. 386 */ 387 set_bit(R10BIO_Uptodate, &r10_bio->state); 388 } else { 389 /* If all other devices that store this block have 390 * failed, we want to return the error upwards rather 391 * than fail the last device. Here we redefine 392 * "uptodate" to mean "Don't want to retry" 393 */ 394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 395 rdev->raid_disk)) 396 uptodate = 1; 397 } 398 if (uptodate) { 399 raid_end_bio_io(r10_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error - keep the refcount on the rdev 404 */ 405 char b[BDEVNAME_SIZE]; 406 printk_ratelimited(KERN_ERR 407 "md/raid10:%s: %s: rescheduling sector %llu\n", 408 mdname(conf->mddev), 409 bdevname(rdev->bdev, b), 410 (unsigned long long)r10_bio->sector); 411 set_bit(R10BIO_ReadError, &r10_bio->state); 412 reschedule_retry(r10_bio); 413 } 414 } 415 416 static void close_write(struct r10bio *r10_bio) 417 { 418 /* clear the bitmap if all writes complete successfully */ 419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 420 r10_bio->sectors, 421 !test_bit(R10BIO_Degraded, &r10_bio->state), 422 0); 423 md_write_end(r10_bio->mddev); 424 } 425 426 static void one_write_done(struct r10bio *r10_bio) 427 { 428 if (atomic_dec_and_test(&r10_bio->remaining)) { 429 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 430 reschedule_retry(r10_bio); 431 else { 432 close_write(r10_bio); 433 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 434 reschedule_retry(r10_bio); 435 else 436 raid_end_bio_io(r10_bio); 437 } 438 } 439 } 440 441 static void raid10_end_write_request(struct bio *bio, int error) 442 { 443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 452 453 if (repl) 454 rdev = conf->mirrors[dev].replacement; 455 if (!rdev) { 456 smp_rmb(); 457 repl = 0; 458 rdev = conf->mirrors[dev].rdev; 459 } 460 /* 461 * this branch is our 'one mirror IO has finished' event handler: 462 */ 463 if (!uptodate) { 464 if (repl) 465 /* Never record new bad blocks to replacement, 466 * just fail it. 467 */ 468 md_error(rdev->mddev, rdev); 469 else { 470 set_bit(WriteErrorSeen, &rdev->flags); 471 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 472 set_bit(MD_RECOVERY_NEEDED, 473 &rdev->mddev->recovery); 474 set_bit(R10BIO_WriteError, &r10_bio->state); 475 dec_rdev = 0; 476 } 477 } else { 478 /* 479 * Set R10BIO_Uptodate in our master bio, so that 480 * we will return a good error code for to the higher 481 * levels even if IO on some other mirrored buffer fails. 482 * 483 * The 'master' represents the composite IO operation to 484 * user-side. So if something waits for IO, then it will 485 * wait for the 'master' bio. 486 */ 487 sector_t first_bad; 488 int bad_sectors; 489 490 /* 491 * Do not set R10BIO_Uptodate if the current device is 492 * rebuilding or Faulty. This is because we cannot use 493 * such device for properly reading the data back (we could 494 * potentially use it, if the current write would have felt 495 * before rdev->recovery_offset, but for simplicity we don't 496 * check this here. 497 */ 498 if (test_bit(In_sync, &rdev->flags) && 499 !test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_Uptodate, &r10_bio->state); 501 502 /* Maybe we can clear some bad blocks. */ 503 if (is_badblock(rdev, 504 r10_bio->devs[slot].addr, 505 r10_bio->sectors, 506 &first_bad, &bad_sectors)) { 507 bio_put(bio); 508 if (repl) 509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 510 else 511 r10_bio->devs[slot].bio = IO_MADE_GOOD; 512 dec_rdev = 0; 513 set_bit(R10BIO_MadeGood, &r10_bio->state); 514 } 515 } 516 517 /* 518 * 519 * Let's see if all mirrored write operations have finished 520 * already. 521 */ 522 one_write_done(r10_bio); 523 if (dec_rdev) 524 rdev_dec_pending(rdev, conf->mddev); 525 } 526 527 /* 528 * RAID10 layout manager 529 * As well as the chunksize and raid_disks count, there are two 530 * parameters: near_copies and far_copies. 531 * near_copies * far_copies must be <= raid_disks. 532 * Normally one of these will be 1. 533 * If both are 1, we get raid0. 534 * If near_copies == raid_disks, we get raid1. 535 * 536 * Chunks are laid out in raid0 style with near_copies copies of the 537 * first chunk, followed by near_copies copies of the next chunk and 538 * so on. 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned 540 * as described above, we start again with a device offset of near_copies. 541 * So we effectively have another copy of the whole array further down all 542 * the drives, but with blocks on different drives. 543 * With this layout, and block is never stored twice on the one device. 544 * 545 * raid10_find_phys finds the sector offset of a given virtual sector 546 * on each device that it is on. 547 * 548 * raid10_find_virt does the reverse mapping, from a device and a 549 * sector offset to a virtual address 550 */ 551 552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 553 { 554 int n,f; 555 sector_t sector; 556 sector_t chunk; 557 sector_t stripe; 558 int dev; 559 int slot = 0; 560 int last_far_set_start, last_far_set_size; 561 562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 563 last_far_set_start *= geo->far_set_size; 564 565 last_far_set_size = geo->far_set_size; 566 last_far_set_size += (geo->raid_disks % geo->far_set_size); 567 568 /* now calculate first sector/dev */ 569 chunk = r10bio->sector >> geo->chunk_shift; 570 sector = r10bio->sector & geo->chunk_mask; 571 572 chunk *= geo->near_copies; 573 stripe = chunk; 574 dev = sector_div(stripe, geo->raid_disks); 575 if (geo->far_offset) 576 stripe *= geo->far_copies; 577 578 sector += stripe << geo->chunk_shift; 579 580 /* and calculate all the others */ 581 for (n = 0; n < geo->near_copies; n++) { 582 int d = dev; 583 int set; 584 sector_t s = sector; 585 r10bio->devs[slot].devnum = d; 586 r10bio->devs[slot].addr = s; 587 slot++; 588 589 for (f = 1; f < geo->far_copies; f++) { 590 set = d / geo->far_set_size; 591 d += geo->near_copies; 592 593 if ((geo->raid_disks % geo->far_set_size) && 594 (d > last_far_set_start)) { 595 d -= last_far_set_start; 596 d %= last_far_set_size; 597 d += last_far_set_start; 598 } else { 599 d %= geo->far_set_size; 600 d += geo->far_set_size * set; 601 } 602 s += geo->stride; 603 r10bio->devs[slot].devnum = d; 604 r10bio->devs[slot].addr = s; 605 slot++; 606 } 607 dev++; 608 if (dev >= geo->raid_disks) { 609 dev = 0; 610 sector += (geo->chunk_mask + 1); 611 } 612 } 613 } 614 615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 616 { 617 struct geom *geo = &conf->geo; 618 619 if (conf->reshape_progress != MaxSector && 620 ((r10bio->sector >= conf->reshape_progress) != 621 conf->mddev->reshape_backwards)) { 622 set_bit(R10BIO_Previous, &r10bio->state); 623 geo = &conf->prev; 624 } else 625 clear_bit(R10BIO_Previous, &r10bio->state); 626 627 __raid10_find_phys(geo, r10bio); 628 } 629 630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 631 { 632 sector_t offset, chunk, vchunk; 633 /* Never use conf->prev as this is only called during resync 634 * or recovery, so reshape isn't happening 635 */ 636 struct geom *geo = &conf->geo; 637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 638 int far_set_size = geo->far_set_size; 639 int last_far_set_start; 640 641 if (geo->raid_disks % geo->far_set_size) { 642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 643 last_far_set_start *= geo->far_set_size; 644 645 if (dev >= last_far_set_start) { 646 far_set_size = geo->far_set_size; 647 far_set_size += (geo->raid_disks % geo->far_set_size); 648 far_set_start = last_far_set_start; 649 } 650 } 651 652 offset = sector & geo->chunk_mask; 653 if (geo->far_offset) { 654 int fc; 655 chunk = sector >> geo->chunk_shift; 656 fc = sector_div(chunk, geo->far_copies); 657 dev -= fc * geo->near_copies; 658 if (dev < far_set_start) 659 dev += far_set_size; 660 } else { 661 while (sector >= geo->stride) { 662 sector -= geo->stride; 663 if (dev < (geo->near_copies + far_set_start)) 664 dev += far_set_size - geo->near_copies; 665 else 666 dev -= geo->near_copies; 667 } 668 chunk = sector >> geo->chunk_shift; 669 } 670 vchunk = chunk * geo->raid_disks + dev; 671 sector_div(vchunk, geo->near_copies); 672 return (vchunk << geo->chunk_shift) + offset; 673 } 674 675 /** 676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 677 * @mddev: the md device 678 * @bvm: properties of new bio 679 * @biovec: the request that could be merged to it. 680 * 681 * Return amount of bytes we can accept at this offset 682 * This requires checking for end-of-chunk if near_copies != raid_disks, 683 * and for subordinate merge_bvec_fns if merge_check_needed. 684 */ 685 static int raid10_mergeable_bvec(struct mddev *mddev, 686 struct bvec_merge_data *bvm, 687 struct bio_vec *biovec) 688 { 689 struct r10conf *conf = mddev->private; 690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 691 int max; 692 unsigned int chunk_sectors; 693 unsigned int bio_sectors = bvm->bi_size >> 9; 694 struct geom *geo = &conf->geo; 695 696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 697 if (conf->reshape_progress != MaxSector && 698 ((sector >= conf->reshape_progress) != 699 conf->mddev->reshape_backwards)) 700 geo = &conf->prev; 701 702 if (geo->near_copies < geo->raid_disks) { 703 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 704 + bio_sectors)) << 9; 705 if (max < 0) 706 /* bio_add cannot handle a negative return */ 707 max = 0; 708 if (max <= biovec->bv_len && bio_sectors == 0) 709 return biovec->bv_len; 710 } else 711 max = biovec->bv_len; 712 713 if (mddev->merge_check_needed) { 714 struct { 715 struct r10bio r10_bio; 716 struct r10dev devs[conf->copies]; 717 } on_stack; 718 struct r10bio *r10_bio = &on_stack.r10_bio; 719 int s; 720 if (conf->reshape_progress != MaxSector) { 721 /* Cannot give any guidance during reshape */ 722 if (max <= biovec->bv_len && bio_sectors == 0) 723 return biovec->bv_len; 724 return 0; 725 } 726 r10_bio->sector = sector; 727 raid10_find_phys(conf, r10_bio); 728 rcu_read_lock(); 729 for (s = 0; s < conf->copies; s++) { 730 int disk = r10_bio->devs[s].devnum; 731 struct md_rdev *rdev = rcu_dereference( 732 conf->mirrors[disk].rdev); 733 if (rdev && !test_bit(Faulty, &rdev->flags)) { 734 struct request_queue *q = 735 bdev_get_queue(rdev->bdev); 736 if (q->merge_bvec_fn) { 737 bvm->bi_sector = r10_bio->devs[s].addr 738 + rdev->data_offset; 739 bvm->bi_bdev = rdev->bdev; 740 max = min(max, q->merge_bvec_fn( 741 q, bvm, biovec)); 742 } 743 } 744 rdev = rcu_dereference(conf->mirrors[disk].replacement); 745 if (rdev && !test_bit(Faulty, &rdev->flags)) { 746 struct request_queue *q = 747 bdev_get_queue(rdev->bdev); 748 if (q->merge_bvec_fn) { 749 bvm->bi_sector = r10_bio->devs[s].addr 750 + rdev->data_offset; 751 bvm->bi_bdev = rdev->bdev; 752 max = min(max, q->merge_bvec_fn( 753 q, bvm, biovec)); 754 } 755 } 756 } 757 rcu_read_unlock(); 758 } 759 return max; 760 } 761 762 /* 763 * This routine returns the disk from which the requested read should 764 * be done. There is a per-array 'next expected sequential IO' sector 765 * number - if this matches on the next IO then we use the last disk. 766 * There is also a per-disk 'last know head position' sector that is 767 * maintained from IRQ contexts, both the normal and the resync IO 768 * completion handlers update this position correctly. If there is no 769 * perfect sequential match then we pick the disk whose head is closest. 770 * 771 * If there are 2 mirrors in the same 2 devices, performance degrades 772 * because position is mirror, not device based. 773 * 774 * The rdev for the device selected will have nr_pending incremented. 775 */ 776 777 /* 778 * FIXME: possibly should rethink readbalancing and do it differently 779 * depending on near_copies / far_copies geometry. 780 */ 781 static struct md_rdev *read_balance(struct r10conf *conf, 782 struct r10bio *r10_bio, 783 int *max_sectors) 784 { 785 const sector_t this_sector = r10_bio->sector; 786 int disk, slot; 787 int sectors = r10_bio->sectors; 788 int best_good_sectors; 789 sector_t new_distance, best_dist; 790 struct md_rdev *best_rdev, *rdev = NULL; 791 int do_balance; 792 int best_slot; 793 struct geom *geo = &conf->geo; 794 795 raid10_find_phys(conf, r10_bio); 796 rcu_read_lock(); 797 retry: 798 sectors = r10_bio->sectors; 799 best_slot = -1; 800 best_rdev = NULL; 801 best_dist = MaxSector; 802 best_good_sectors = 0; 803 do_balance = 1; 804 /* 805 * Check if we can balance. We can balance on the whole 806 * device if no resync is going on (recovery is ok), or below 807 * the resync window. We take the first readable disk when 808 * above the resync window. 809 */ 810 if (conf->mddev->recovery_cp < MaxSector 811 && (this_sector + sectors >= conf->next_resync)) 812 do_balance = 0; 813 814 for (slot = 0; slot < conf->copies ; slot++) { 815 sector_t first_bad; 816 int bad_sectors; 817 sector_t dev_sector; 818 819 if (r10_bio->devs[slot].bio == IO_BLOCKED) 820 continue; 821 disk = r10_bio->devs[slot].devnum; 822 rdev = rcu_dereference(conf->mirrors[disk].replacement); 823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 824 test_bit(Unmerged, &rdev->flags) || 825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 826 rdev = rcu_dereference(conf->mirrors[disk].rdev); 827 if (rdev == NULL || 828 test_bit(Faulty, &rdev->flags) || 829 test_bit(Unmerged, &rdev->flags)) 830 continue; 831 if (!test_bit(In_sync, &rdev->flags) && 832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 833 continue; 834 835 dev_sector = r10_bio->devs[slot].addr; 836 if (is_badblock(rdev, dev_sector, sectors, 837 &first_bad, &bad_sectors)) { 838 if (best_dist < MaxSector) 839 /* Already have a better slot */ 840 continue; 841 if (first_bad <= dev_sector) { 842 /* Cannot read here. If this is the 843 * 'primary' device, then we must not read 844 * beyond 'bad_sectors' from another device. 845 */ 846 bad_sectors -= (dev_sector - first_bad); 847 if (!do_balance && sectors > bad_sectors) 848 sectors = bad_sectors; 849 if (best_good_sectors > sectors) 850 best_good_sectors = sectors; 851 } else { 852 sector_t good_sectors = 853 first_bad - dev_sector; 854 if (good_sectors > best_good_sectors) { 855 best_good_sectors = good_sectors; 856 best_slot = slot; 857 best_rdev = rdev; 858 } 859 if (!do_balance) 860 /* Must read from here */ 861 break; 862 } 863 continue; 864 } else 865 best_good_sectors = sectors; 866 867 if (!do_balance) 868 break; 869 870 /* This optimisation is debatable, and completely destroys 871 * sequential read speed for 'far copies' arrays. So only 872 * keep it for 'near' arrays, and review those later. 873 */ 874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 875 break; 876 877 /* for far > 1 always use the lowest address */ 878 if (geo->far_copies > 1) 879 new_distance = r10_bio->devs[slot].addr; 880 else 881 new_distance = abs(r10_bio->devs[slot].addr - 882 conf->mirrors[disk].head_position); 883 if (new_distance < best_dist) { 884 best_dist = new_distance; 885 best_slot = slot; 886 best_rdev = rdev; 887 } 888 } 889 if (slot >= conf->copies) { 890 slot = best_slot; 891 rdev = best_rdev; 892 } 893 894 if (slot >= 0) { 895 atomic_inc(&rdev->nr_pending); 896 if (test_bit(Faulty, &rdev->flags)) { 897 /* Cannot risk returning a device that failed 898 * before we inc'ed nr_pending 899 */ 900 rdev_dec_pending(rdev, conf->mddev); 901 goto retry; 902 } 903 r10_bio->read_slot = slot; 904 } else 905 rdev = NULL; 906 rcu_read_unlock(); 907 *max_sectors = best_good_sectors; 908 909 return rdev; 910 } 911 912 static int raid10_congested(struct mddev *mddev, int bits) 913 { 914 struct r10conf *conf = mddev->private; 915 int i, ret = 0; 916 917 if ((bits & (1 << BDI_async_congested)) && 918 conf->pending_count >= max_queued_requests) 919 return 1; 920 921 rcu_read_lock(); 922 for (i = 0; 923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 924 && ret == 0; 925 i++) { 926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 927 if (rdev && !test_bit(Faulty, &rdev->flags)) { 928 struct request_queue *q = bdev_get_queue(rdev->bdev); 929 930 ret |= bdi_congested(&q->backing_dev_info, bits); 931 } 932 } 933 rcu_read_unlock(); 934 return ret; 935 } 936 937 static void flush_pending_writes(struct r10conf *conf) 938 { 939 /* Any writes that have been queued but are awaiting 940 * bitmap updates get flushed here. 941 */ 942 spin_lock_irq(&conf->device_lock); 943 944 if (conf->pending_bio_list.head) { 945 struct bio *bio; 946 bio = bio_list_get(&conf->pending_bio_list); 947 conf->pending_count = 0; 948 spin_unlock_irq(&conf->device_lock); 949 /* flush any pending bitmap writes to disk 950 * before proceeding w/ I/O */ 951 bitmap_unplug(conf->mddev->bitmap); 952 wake_up(&conf->wait_barrier); 953 954 while (bio) { /* submit pending writes */ 955 struct bio *next = bio->bi_next; 956 bio->bi_next = NULL; 957 if (unlikely((bio->bi_rw & REQ_DISCARD) && 958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 959 /* Just ignore it */ 960 bio_endio(bio, 0); 961 else 962 generic_make_request(bio); 963 bio = next; 964 } 965 } else 966 spin_unlock_irq(&conf->device_lock); 967 } 968 969 /* Barriers.... 970 * Sometimes we need to suspend IO while we do something else, 971 * either some resync/recovery, or reconfigure the array. 972 * To do this we raise a 'barrier'. 973 * The 'barrier' is a counter that can be raised multiple times 974 * to count how many activities are happening which preclude 975 * normal IO. 976 * We can only raise the barrier if there is no pending IO. 977 * i.e. if nr_pending == 0. 978 * We choose only to raise the barrier if no-one is waiting for the 979 * barrier to go down. This means that as soon as an IO request 980 * is ready, no other operations which require a barrier will start 981 * until the IO request has had a chance. 982 * 983 * So: regular IO calls 'wait_barrier'. When that returns there 984 * is no backgroup IO happening, It must arrange to call 985 * allow_barrier when it has finished its IO. 986 * backgroup IO calls must call raise_barrier. Once that returns 987 * there is no normal IO happeing. It must arrange to call 988 * lower_barrier when the particular background IO completes. 989 */ 990 991 static void raise_barrier(struct r10conf *conf, int force) 992 { 993 BUG_ON(force && !conf->barrier); 994 spin_lock_irq(&conf->resync_lock); 995 996 /* Wait until no block IO is waiting (unless 'force') */ 997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 998 conf->resync_lock); 999 1000 /* block any new IO from starting */ 1001 conf->barrier++; 1002 1003 /* Now wait for all pending IO to complete */ 1004 wait_event_lock_irq(conf->wait_barrier, 1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1006 conf->resync_lock); 1007 1008 spin_unlock_irq(&conf->resync_lock); 1009 } 1010 1011 static void lower_barrier(struct r10conf *conf) 1012 { 1013 unsigned long flags; 1014 spin_lock_irqsave(&conf->resync_lock, flags); 1015 conf->barrier--; 1016 spin_unlock_irqrestore(&conf->resync_lock, flags); 1017 wake_up(&conf->wait_barrier); 1018 } 1019 1020 static void wait_barrier(struct r10conf *conf) 1021 { 1022 spin_lock_irq(&conf->resync_lock); 1023 if (conf->barrier) { 1024 conf->nr_waiting++; 1025 /* Wait for the barrier to drop. 1026 * However if there are already pending 1027 * requests (preventing the barrier from 1028 * rising completely), and the 1029 * pre-process bio queue isn't empty, 1030 * then don't wait, as we need to empty 1031 * that queue to get the nr_pending 1032 * count down. 1033 */ 1034 wait_event_lock_irq(conf->wait_barrier, 1035 !conf->barrier || 1036 (conf->nr_pending && 1037 current->bio_list && 1038 !bio_list_empty(current->bio_list)), 1039 conf->resync_lock); 1040 conf->nr_waiting--; 1041 } 1042 conf->nr_pending++; 1043 spin_unlock_irq(&conf->resync_lock); 1044 } 1045 1046 static void allow_barrier(struct r10conf *conf) 1047 { 1048 unsigned long flags; 1049 spin_lock_irqsave(&conf->resync_lock, flags); 1050 conf->nr_pending--; 1051 spin_unlock_irqrestore(&conf->resync_lock, flags); 1052 wake_up(&conf->wait_barrier); 1053 } 1054 1055 static void freeze_array(struct r10conf *conf, int extra) 1056 { 1057 /* stop syncio and normal IO and wait for everything to 1058 * go quiet. 1059 * We increment barrier and nr_waiting, and then 1060 * wait until nr_pending match nr_queued+extra 1061 * This is called in the context of one normal IO request 1062 * that has failed. Thus any sync request that might be pending 1063 * will be blocked by nr_pending, and we need to wait for 1064 * pending IO requests to complete or be queued for re-try. 1065 * Thus the number queued (nr_queued) plus this request (extra) 1066 * must match the number of pending IOs (nr_pending) before 1067 * we continue. 1068 */ 1069 spin_lock_irq(&conf->resync_lock); 1070 conf->barrier++; 1071 conf->nr_waiting++; 1072 wait_event_lock_irq_cmd(conf->wait_barrier, 1073 conf->nr_pending == conf->nr_queued+extra, 1074 conf->resync_lock, 1075 flush_pending_writes(conf)); 1076 1077 spin_unlock_irq(&conf->resync_lock); 1078 } 1079 1080 static void unfreeze_array(struct r10conf *conf) 1081 { 1082 /* reverse the effect of the freeze */ 1083 spin_lock_irq(&conf->resync_lock); 1084 conf->barrier--; 1085 conf->nr_waiting--; 1086 wake_up(&conf->wait_barrier); 1087 spin_unlock_irq(&conf->resync_lock); 1088 } 1089 1090 static sector_t choose_data_offset(struct r10bio *r10_bio, 1091 struct md_rdev *rdev) 1092 { 1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1094 test_bit(R10BIO_Previous, &r10_bio->state)) 1095 return rdev->data_offset; 1096 else 1097 return rdev->new_data_offset; 1098 } 1099 1100 struct raid10_plug_cb { 1101 struct blk_plug_cb cb; 1102 struct bio_list pending; 1103 int pending_cnt; 1104 }; 1105 1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1107 { 1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1109 cb); 1110 struct mddev *mddev = plug->cb.data; 1111 struct r10conf *conf = mddev->private; 1112 struct bio *bio; 1113 1114 if (from_schedule || current->bio_list) { 1115 spin_lock_irq(&conf->device_lock); 1116 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1117 conf->pending_count += plug->pending_cnt; 1118 spin_unlock_irq(&conf->device_lock); 1119 wake_up(&conf->wait_barrier); 1120 md_wakeup_thread(mddev->thread); 1121 kfree(plug); 1122 return; 1123 } 1124 1125 /* we aren't scheduling, so we can do the write-out directly. */ 1126 bio = bio_list_get(&plug->pending); 1127 bitmap_unplug(mddev->bitmap); 1128 wake_up(&conf->wait_barrier); 1129 1130 while (bio) { /* submit pending writes */ 1131 struct bio *next = bio->bi_next; 1132 bio->bi_next = NULL; 1133 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1135 /* Just ignore it */ 1136 bio_endio(bio, 0); 1137 else 1138 generic_make_request(bio); 1139 bio = next; 1140 } 1141 kfree(plug); 1142 } 1143 1144 static void __make_request(struct mddev *mddev, struct bio *bio) 1145 { 1146 struct r10conf *conf = mddev->private; 1147 struct r10bio *r10_bio; 1148 struct bio *read_bio; 1149 int i; 1150 const int rw = bio_data_dir(bio); 1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1153 const unsigned long do_discard = (bio->bi_rw 1154 & (REQ_DISCARD | REQ_SECURE)); 1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1156 unsigned long flags; 1157 struct md_rdev *blocked_rdev; 1158 struct blk_plug_cb *cb; 1159 struct raid10_plug_cb *plug = NULL; 1160 int sectors_handled; 1161 int max_sectors; 1162 int sectors; 1163 1164 /* 1165 * Register the new request and wait if the reconstruction 1166 * thread has put up a bar for new requests. 1167 * Continue immediately if no resync is active currently. 1168 */ 1169 wait_barrier(conf); 1170 1171 sectors = bio_sectors(bio); 1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1173 bio->bi_iter.bi_sector < conf->reshape_progress && 1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1175 /* IO spans the reshape position. Need to wait for 1176 * reshape to pass 1177 */ 1178 allow_barrier(conf); 1179 wait_event(conf->wait_barrier, 1180 conf->reshape_progress <= bio->bi_iter.bi_sector || 1181 conf->reshape_progress >= bio->bi_iter.bi_sector + 1182 sectors); 1183 wait_barrier(conf); 1184 } 1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1186 bio_data_dir(bio) == WRITE && 1187 (mddev->reshape_backwards 1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1191 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1192 /* Need to update reshape_position in metadata */ 1193 mddev->reshape_position = conf->reshape_progress; 1194 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1195 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1196 md_wakeup_thread(mddev->thread); 1197 wait_event(mddev->sb_wait, 1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1199 1200 conf->reshape_safe = mddev->reshape_position; 1201 } 1202 1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1204 1205 r10_bio->master_bio = bio; 1206 r10_bio->sectors = sectors; 1207 1208 r10_bio->mddev = mddev; 1209 r10_bio->sector = bio->bi_iter.bi_sector; 1210 r10_bio->state = 0; 1211 1212 /* We might need to issue multiple reads to different 1213 * devices if there are bad blocks around, so we keep 1214 * track of the number of reads in bio->bi_phys_segments. 1215 * If this is 0, there is only one r10_bio and no locking 1216 * will be needed when the request completes. If it is 1217 * non-zero, then it is the number of not-completed requests. 1218 */ 1219 bio->bi_phys_segments = 0; 1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1221 1222 if (rw == READ) { 1223 /* 1224 * read balancing logic: 1225 */ 1226 struct md_rdev *rdev; 1227 int slot; 1228 1229 read_again: 1230 rdev = read_balance(conf, r10_bio, &max_sectors); 1231 if (!rdev) { 1232 raid_end_bio_io(r10_bio); 1233 return; 1234 } 1235 slot = r10_bio->read_slot; 1236 1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1239 max_sectors); 1240 1241 r10_bio->devs[slot].bio = read_bio; 1242 r10_bio->devs[slot].rdev = rdev; 1243 1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1245 choose_data_offset(r10_bio, rdev); 1246 read_bio->bi_bdev = rdev->bdev; 1247 read_bio->bi_end_io = raid10_end_read_request; 1248 read_bio->bi_rw = READ | do_sync; 1249 read_bio->bi_private = r10_bio; 1250 1251 if (max_sectors < r10_bio->sectors) { 1252 /* Could not read all from this device, so we will 1253 * need another r10_bio. 1254 */ 1255 sectors_handled = (r10_bio->sector + max_sectors 1256 - bio->bi_iter.bi_sector); 1257 r10_bio->sectors = max_sectors; 1258 spin_lock_irq(&conf->device_lock); 1259 if (bio->bi_phys_segments == 0) 1260 bio->bi_phys_segments = 2; 1261 else 1262 bio->bi_phys_segments++; 1263 spin_unlock_irq(&conf->device_lock); 1264 /* Cannot call generic_make_request directly 1265 * as that will be queued in __generic_make_request 1266 * and subsequent mempool_alloc might block 1267 * waiting for it. so hand bio over to raid10d. 1268 */ 1269 reschedule_retry(r10_bio); 1270 1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1272 1273 r10_bio->master_bio = bio; 1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1275 r10_bio->state = 0; 1276 r10_bio->mddev = mddev; 1277 r10_bio->sector = bio->bi_iter.bi_sector + 1278 sectors_handled; 1279 goto read_again; 1280 } else 1281 generic_make_request(read_bio); 1282 return; 1283 } 1284 1285 /* 1286 * WRITE: 1287 */ 1288 if (conf->pending_count >= max_queued_requests) { 1289 md_wakeup_thread(mddev->thread); 1290 wait_event(conf->wait_barrier, 1291 conf->pending_count < max_queued_requests); 1292 } 1293 /* first select target devices under rcu_lock and 1294 * inc refcount on their rdev. Record them by setting 1295 * bios[x] to bio 1296 * If there are known/acknowledged bad blocks on any device 1297 * on which we have seen a write error, we want to avoid 1298 * writing to those blocks. This potentially requires several 1299 * writes to write around the bad blocks. Each set of writes 1300 * gets its own r10_bio with a set of bios attached. The number 1301 * of r10_bios is recored in bio->bi_phys_segments just as with 1302 * the read case. 1303 */ 1304 1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1306 raid10_find_phys(conf, r10_bio); 1307 retry_write: 1308 blocked_rdev = NULL; 1309 rcu_read_lock(); 1310 max_sectors = r10_bio->sectors; 1311 1312 for (i = 0; i < conf->copies; i++) { 1313 int d = r10_bio->devs[i].devnum; 1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1315 struct md_rdev *rrdev = rcu_dereference( 1316 conf->mirrors[d].replacement); 1317 if (rdev == rrdev) 1318 rrdev = NULL; 1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1320 atomic_inc(&rdev->nr_pending); 1321 blocked_rdev = rdev; 1322 break; 1323 } 1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1325 atomic_inc(&rrdev->nr_pending); 1326 blocked_rdev = rrdev; 1327 break; 1328 } 1329 if (rdev && (test_bit(Faulty, &rdev->flags) 1330 || test_bit(Unmerged, &rdev->flags))) 1331 rdev = NULL; 1332 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1333 || test_bit(Unmerged, &rrdev->flags))) 1334 rrdev = NULL; 1335 1336 r10_bio->devs[i].bio = NULL; 1337 r10_bio->devs[i].repl_bio = NULL; 1338 1339 if (!rdev && !rrdev) { 1340 set_bit(R10BIO_Degraded, &r10_bio->state); 1341 continue; 1342 } 1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1344 sector_t first_bad; 1345 sector_t dev_sector = r10_bio->devs[i].addr; 1346 int bad_sectors; 1347 int is_bad; 1348 1349 is_bad = is_badblock(rdev, dev_sector, 1350 max_sectors, 1351 &first_bad, &bad_sectors); 1352 if (is_bad < 0) { 1353 /* Mustn't write here until the bad block 1354 * is acknowledged 1355 */ 1356 atomic_inc(&rdev->nr_pending); 1357 set_bit(BlockedBadBlocks, &rdev->flags); 1358 blocked_rdev = rdev; 1359 break; 1360 } 1361 if (is_bad && first_bad <= dev_sector) { 1362 /* Cannot write here at all */ 1363 bad_sectors -= (dev_sector - first_bad); 1364 if (bad_sectors < max_sectors) 1365 /* Mustn't write more than bad_sectors 1366 * to other devices yet 1367 */ 1368 max_sectors = bad_sectors; 1369 /* We don't set R10BIO_Degraded as that 1370 * only applies if the disk is missing, 1371 * so it might be re-added, and we want to 1372 * know to recover this chunk. 1373 * In this case the device is here, and the 1374 * fact that this chunk is not in-sync is 1375 * recorded in the bad block log. 1376 */ 1377 continue; 1378 } 1379 if (is_bad) { 1380 int good_sectors = first_bad - dev_sector; 1381 if (good_sectors < max_sectors) 1382 max_sectors = good_sectors; 1383 } 1384 } 1385 if (rdev) { 1386 r10_bio->devs[i].bio = bio; 1387 atomic_inc(&rdev->nr_pending); 1388 } 1389 if (rrdev) { 1390 r10_bio->devs[i].repl_bio = bio; 1391 atomic_inc(&rrdev->nr_pending); 1392 } 1393 } 1394 rcu_read_unlock(); 1395 1396 if (unlikely(blocked_rdev)) { 1397 /* Have to wait for this device to get unblocked, then retry */ 1398 int j; 1399 int d; 1400 1401 for (j = 0; j < i; j++) { 1402 if (r10_bio->devs[j].bio) { 1403 d = r10_bio->devs[j].devnum; 1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1405 } 1406 if (r10_bio->devs[j].repl_bio) { 1407 struct md_rdev *rdev; 1408 d = r10_bio->devs[j].devnum; 1409 rdev = conf->mirrors[d].replacement; 1410 if (!rdev) { 1411 /* Race with remove_disk */ 1412 smp_mb(); 1413 rdev = conf->mirrors[d].rdev; 1414 } 1415 rdev_dec_pending(rdev, mddev); 1416 } 1417 } 1418 allow_barrier(conf); 1419 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1420 wait_barrier(conf); 1421 goto retry_write; 1422 } 1423 1424 if (max_sectors < r10_bio->sectors) { 1425 /* We are splitting this into multiple parts, so 1426 * we need to prepare for allocating another r10_bio. 1427 */ 1428 r10_bio->sectors = max_sectors; 1429 spin_lock_irq(&conf->device_lock); 1430 if (bio->bi_phys_segments == 0) 1431 bio->bi_phys_segments = 2; 1432 else 1433 bio->bi_phys_segments++; 1434 spin_unlock_irq(&conf->device_lock); 1435 } 1436 sectors_handled = r10_bio->sector + max_sectors - 1437 bio->bi_iter.bi_sector; 1438 1439 atomic_set(&r10_bio->remaining, 1); 1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1441 1442 for (i = 0; i < conf->copies; i++) { 1443 struct bio *mbio; 1444 int d = r10_bio->devs[i].devnum; 1445 if (r10_bio->devs[i].bio) { 1446 struct md_rdev *rdev = conf->mirrors[d].rdev; 1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1449 max_sectors); 1450 r10_bio->devs[i].bio = mbio; 1451 1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1453 choose_data_offset(r10_bio, 1454 rdev)); 1455 mbio->bi_bdev = rdev->bdev; 1456 mbio->bi_end_io = raid10_end_write_request; 1457 mbio->bi_rw = 1458 WRITE | do_sync | do_fua | do_discard | do_same; 1459 mbio->bi_private = r10_bio; 1460 1461 atomic_inc(&r10_bio->remaining); 1462 1463 cb = blk_check_plugged(raid10_unplug, mddev, 1464 sizeof(*plug)); 1465 if (cb) 1466 plug = container_of(cb, struct raid10_plug_cb, 1467 cb); 1468 else 1469 plug = NULL; 1470 spin_lock_irqsave(&conf->device_lock, flags); 1471 if (plug) { 1472 bio_list_add(&plug->pending, mbio); 1473 plug->pending_cnt++; 1474 } else { 1475 bio_list_add(&conf->pending_bio_list, mbio); 1476 conf->pending_count++; 1477 } 1478 spin_unlock_irqrestore(&conf->device_lock, flags); 1479 if (!plug) 1480 md_wakeup_thread(mddev->thread); 1481 } 1482 1483 if (r10_bio->devs[i].repl_bio) { 1484 struct md_rdev *rdev = conf->mirrors[d].replacement; 1485 if (rdev == NULL) { 1486 /* Replacement just got moved to main 'rdev' */ 1487 smp_mb(); 1488 rdev = conf->mirrors[d].rdev; 1489 } 1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1492 max_sectors); 1493 r10_bio->devs[i].repl_bio = mbio; 1494 1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1496 choose_data_offset( 1497 r10_bio, rdev)); 1498 mbio->bi_bdev = rdev->bdev; 1499 mbio->bi_end_io = raid10_end_write_request; 1500 mbio->bi_rw = 1501 WRITE | do_sync | do_fua | do_discard | do_same; 1502 mbio->bi_private = r10_bio; 1503 1504 atomic_inc(&r10_bio->remaining); 1505 spin_lock_irqsave(&conf->device_lock, flags); 1506 bio_list_add(&conf->pending_bio_list, mbio); 1507 conf->pending_count++; 1508 spin_unlock_irqrestore(&conf->device_lock, flags); 1509 if (!mddev_check_plugged(mddev)) 1510 md_wakeup_thread(mddev->thread); 1511 } 1512 } 1513 1514 /* Don't remove the bias on 'remaining' (one_write_done) until 1515 * after checking if we need to go around again. 1516 */ 1517 1518 if (sectors_handled < bio_sectors(bio)) { 1519 one_write_done(r10_bio); 1520 /* We need another r10_bio. It has already been counted 1521 * in bio->bi_phys_segments. 1522 */ 1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1524 1525 r10_bio->master_bio = bio; 1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1527 1528 r10_bio->mddev = mddev; 1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1530 r10_bio->state = 0; 1531 goto retry_write; 1532 } 1533 one_write_done(r10_bio); 1534 } 1535 1536 static void make_request(struct mddev *mddev, struct bio *bio) 1537 { 1538 struct r10conf *conf = mddev->private; 1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1540 int chunk_sects = chunk_mask + 1; 1541 1542 struct bio *split; 1543 1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1545 md_flush_request(mddev, bio); 1546 return; 1547 } 1548 1549 md_write_start(mddev, bio); 1550 1551 do { 1552 1553 /* 1554 * If this request crosses a chunk boundary, we need to split 1555 * it. 1556 */ 1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1558 bio_sectors(bio) > chunk_sects 1559 && (conf->geo.near_copies < conf->geo.raid_disks 1560 || conf->prev.near_copies < 1561 conf->prev.raid_disks))) { 1562 split = bio_split(bio, chunk_sects - 1563 (bio->bi_iter.bi_sector & 1564 (chunk_sects - 1)), 1565 GFP_NOIO, fs_bio_set); 1566 bio_chain(split, bio); 1567 } else { 1568 split = bio; 1569 } 1570 1571 __make_request(mddev, split); 1572 } while (split != bio); 1573 1574 /* In case raid10d snuck in to freeze_array */ 1575 wake_up(&conf->wait_barrier); 1576 } 1577 1578 static void status(struct seq_file *seq, struct mddev *mddev) 1579 { 1580 struct r10conf *conf = mddev->private; 1581 int i; 1582 1583 if (conf->geo.near_copies < conf->geo.raid_disks) 1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1585 if (conf->geo.near_copies > 1) 1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1587 if (conf->geo.far_copies > 1) { 1588 if (conf->geo.far_offset) 1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1590 else 1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1592 } 1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1594 conf->geo.raid_disks - mddev->degraded); 1595 for (i = 0; i < conf->geo.raid_disks; i++) 1596 seq_printf(seq, "%s", 1597 conf->mirrors[i].rdev && 1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1599 seq_printf(seq, "]"); 1600 } 1601 1602 /* check if there are enough drives for 1603 * every block to appear on atleast one. 1604 * Don't consider the device numbered 'ignore' 1605 * as we might be about to remove it. 1606 */ 1607 static int _enough(struct r10conf *conf, int previous, int ignore) 1608 { 1609 int first = 0; 1610 int has_enough = 0; 1611 int disks, ncopies; 1612 if (previous) { 1613 disks = conf->prev.raid_disks; 1614 ncopies = conf->prev.near_copies; 1615 } else { 1616 disks = conf->geo.raid_disks; 1617 ncopies = conf->geo.near_copies; 1618 } 1619 1620 rcu_read_lock(); 1621 do { 1622 int n = conf->copies; 1623 int cnt = 0; 1624 int this = first; 1625 while (n--) { 1626 struct md_rdev *rdev; 1627 if (this != ignore && 1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1629 test_bit(In_sync, &rdev->flags)) 1630 cnt++; 1631 this = (this+1) % disks; 1632 } 1633 if (cnt == 0) 1634 goto out; 1635 first = (first + ncopies) % disks; 1636 } while (first != 0); 1637 has_enough = 1; 1638 out: 1639 rcu_read_unlock(); 1640 return has_enough; 1641 } 1642 1643 static int enough(struct r10conf *conf, int ignore) 1644 { 1645 /* when calling 'enough', both 'prev' and 'geo' must 1646 * be stable. 1647 * This is ensured if ->reconfig_mutex or ->device_lock 1648 * is held. 1649 */ 1650 return _enough(conf, 0, ignore) && 1651 _enough(conf, 1, ignore); 1652 } 1653 1654 static void error(struct mddev *mddev, struct md_rdev *rdev) 1655 { 1656 char b[BDEVNAME_SIZE]; 1657 struct r10conf *conf = mddev->private; 1658 unsigned long flags; 1659 1660 /* 1661 * If it is not operational, then we have already marked it as dead 1662 * else if it is the last working disks, ignore the error, let the 1663 * next level up know. 1664 * else mark the drive as failed 1665 */ 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 if (test_bit(In_sync, &rdev->flags) 1668 && !enough(conf, rdev->raid_disk)) { 1669 /* 1670 * Don't fail the drive, just return an IO error. 1671 */ 1672 spin_unlock_irqrestore(&conf->device_lock, flags); 1673 return; 1674 } 1675 if (test_and_clear_bit(In_sync, &rdev->flags)) 1676 mddev->degraded++; 1677 /* 1678 * If recovery is running, make sure it aborts. 1679 */ 1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1681 set_bit(Blocked, &rdev->flags); 1682 set_bit(Faulty, &rdev->flags); 1683 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1684 spin_unlock_irqrestore(&conf->device_lock, flags); 1685 printk(KERN_ALERT 1686 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1687 "md/raid10:%s: Operation continuing on %d devices.\n", 1688 mdname(mddev), bdevname(rdev->bdev, b), 1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1690 } 1691 1692 static void print_conf(struct r10conf *conf) 1693 { 1694 int i; 1695 struct raid10_info *tmp; 1696 1697 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1698 if (!conf) { 1699 printk(KERN_DEBUG "(!conf)\n"); 1700 return; 1701 } 1702 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1703 conf->geo.raid_disks); 1704 1705 for (i = 0; i < conf->geo.raid_disks; i++) { 1706 char b[BDEVNAME_SIZE]; 1707 tmp = conf->mirrors + i; 1708 if (tmp->rdev) 1709 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1710 i, !test_bit(In_sync, &tmp->rdev->flags), 1711 !test_bit(Faulty, &tmp->rdev->flags), 1712 bdevname(tmp->rdev->bdev,b)); 1713 } 1714 } 1715 1716 static void close_sync(struct r10conf *conf) 1717 { 1718 wait_barrier(conf); 1719 allow_barrier(conf); 1720 1721 mempool_destroy(conf->r10buf_pool); 1722 conf->r10buf_pool = NULL; 1723 } 1724 1725 static int raid10_spare_active(struct mddev *mddev) 1726 { 1727 int i; 1728 struct r10conf *conf = mddev->private; 1729 struct raid10_info *tmp; 1730 int count = 0; 1731 unsigned long flags; 1732 1733 /* 1734 * Find all non-in_sync disks within the RAID10 configuration 1735 * and mark them in_sync 1736 */ 1737 for (i = 0; i < conf->geo.raid_disks; i++) { 1738 tmp = conf->mirrors + i; 1739 if (tmp->replacement 1740 && tmp->replacement->recovery_offset == MaxSector 1741 && !test_bit(Faulty, &tmp->replacement->flags) 1742 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1743 /* Replacement has just become active */ 1744 if (!tmp->rdev 1745 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1746 count++; 1747 if (tmp->rdev) { 1748 /* Replaced device not technically faulty, 1749 * but we need to be sure it gets removed 1750 * and never re-added. 1751 */ 1752 set_bit(Faulty, &tmp->rdev->flags); 1753 sysfs_notify_dirent_safe( 1754 tmp->rdev->sysfs_state); 1755 } 1756 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1757 } else if (tmp->rdev 1758 && tmp->rdev->recovery_offset == MaxSector 1759 && !test_bit(Faulty, &tmp->rdev->flags) 1760 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1761 count++; 1762 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1763 } 1764 } 1765 spin_lock_irqsave(&conf->device_lock, flags); 1766 mddev->degraded -= count; 1767 spin_unlock_irqrestore(&conf->device_lock, flags); 1768 1769 print_conf(conf); 1770 return count; 1771 } 1772 1773 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1774 { 1775 struct r10conf *conf = mddev->private; 1776 int err = -EEXIST; 1777 int mirror; 1778 int first = 0; 1779 int last = conf->geo.raid_disks - 1; 1780 struct request_queue *q = bdev_get_queue(rdev->bdev); 1781 1782 if (mddev->recovery_cp < MaxSector) 1783 /* only hot-add to in-sync arrays, as recovery is 1784 * very different from resync 1785 */ 1786 return -EBUSY; 1787 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1788 return -EINVAL; 1789 1790 if (rdev->raid_disk >= 0) 1791 first = last = rdev->raid_disk; 1792 1793 if (q->merge_bvec_fn) { 1794 set_bit(Unmerged, &rdev->flags); 1795 mddev->merge_check_needed = 1; 1796 } 1797 1798 if (rdev->saved_raid_disk >= first && 1799 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1800 mirror = rdev->saved_raid_disk; 1801 else 1802 mirror = first; 1803 for ( ; mirror <= last ; mirror++) { 1804 struct raid10_info *p = &conf->mirrors[mirror]; 1805 if (p->recovery_disabled == mddev->recovery_disabled) 1806 continue; 1807 if (p->rdev) { 1808 if (!test_bit(WantReplacement, &p->rdev->flags) || 1809 p->replacement != NULL) 1810 continue; 1811 clear_bit(In_sync, &rdev->flags); 1812 set_bit(Replacement, &rdev->flags); 1813 rdev->raid_disk = mirror; 1814 err = 0; 1815 if (mddev->gendisk) 1816 disk_stack_limits(mddev->gendisk, rdev->bdev, 1817 rdev->data_offset << 9); 1818 conf->fullsync = 1; 1819 rcu_assign_pointer(p->replacement, rdev); 1820 break; 1821 } 1822 1823 if (mddev->gendisk) 1824 disk_stack_limits(mddev->gendisk, rdev->bdev, 1825 rdev->data_offset << 9); 1826 1827 p->head_position = 0; 1828 p->recovery_disabled = mddev->recovery_disabled - 1; 1829 rdev->raid_disk = mirror; 1830 err = 0; 1831 if (rdev->saved_raid_disk != mirror) 1832 conf->fullsync = 1; 1833 rcu_assign_pointer(p->rdev, rdev); 1834 break; 1835 } 1836 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1837 /* Some requests might not have seen this new 1838 * merge_bvec_fn. We must wait for them to complete 1839 * before merging the device fully. 1840 * First we make sure any code which has tested 1841 * our function has submitted the request, then 1842 * we wait for all outstanding requests to complete. 1843 */ 1844 synchronize_sched(); 1845 freeze_array(conf, 0); 1846 unfreeze_array(conf); 1847 clear_bit(Unmerged, &rdev->flags); 1848 } 1849 md_integrity_add_rdev(rdev, mddev); 1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1851 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1852 1853 print_conf(conf); 1854 return err; 1855 } 1856 1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1858 { 1859 struct r10conf *conf = mddev->private; 1860 int err = 0; 1861 int number = rdev->raid_disk; 1862 struct md_rdev **rdevp; 1863 struct raid10_info *p = conf->mirrors + number; 1864 1865 print_conf(conf); 1866 if (rdev == p->rdev) 1867 rdevp = &p->rdev; 1868 else if (rdev == p->replacement) 1869 rdevp = &p->replacement; 1870 else 1871 return 0; 1872 1873 if (test_bit(In_sync, &rdev->flags) || 1874 atomic_read(&rdev->nr_pending)) { 1875 err = -EBUSY; 1876 goto abort; 1877 } 1878 /* Only remove faulty devices if recovery 1879 * is not possible. 1880 */ 1881 if (!test_bit(Faulty, &rdev->flags) && 1882 mddev->recovery_disabled != p->recovery_disabled && 1883 (!p->replacement || p->replacement == rdev) && 1884 number < conf->geo.raid_disks && 1885 enough(conf, -1)) { 1886 err = -EBUSY; 1887 goto abort; 1888 } 1889 *rdevp = NULL; 1890 synchronize_rcu(); 1891 if (atomic_read(&rdev->nr_pending)) { 1892 /* lost the race, try later */ 1893 err = -EBUSY; 1894 *rdevp = rdev; 1895 goto abort; 1896 } else if (p->replacement) { 1897 /* We must have just cleared 'rdev' */ 1898 p->rdev = p->replacement; 1899 clear_bit(Replacement, &p->replacement->flags); 1900 smp_mb(); /* Make sure other CPUs may see both as identical 1901 * but will never see neither -- if they are careful. 1902 */ 1903 p->replacement = NULL; 1904 clear_bit(WantReplacement, &rdev->flags); 1905 } else 1906 /* We might have just remove the Replacement as faulty 1907 * Clear the flag just in case 1908 */ 1909 clear_bit(WantReplacement, &rdev->flags); 1910 1911 err = md_integrity_register(mddev); 1912 1913 abort: 1914 1915 print_conf(conf); 1916 return err; 1917 } 1918 1919 static void end_sync_read(struct bio *bio, int error) 1920 { 1921 struct r10bio *r10_bio = bio->bi_private; 1922 struct r10conf *conf = r10_bio->mddev->private; 1923 int d; 1924 1925 if (bio == r10_bio->master_bio) { 1926 /* this is a reshape read */ 1927 d = r10_bio->read_slot; /* really the read dev */ 1928 } else 1929 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1930 1931 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1932 set_bit(R10BIO_Uptodate, &r10_bio->state); 1933 else 1934 /* The write handler will notice the lack of 1935 * R10BIO_Uptodate and record any errors etc 1936 */ 1937 atomic_add(r10_bio->sectors, 1938 &conf->mirrors[d].rdev->corrected_errors); 1939 1940 /* for reconstruct, we always reschedule after a read. 1941 * for resync, only after all reads 1942 */ 1943 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1944 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1945 atomic_dec_and_test(&r10_bio->remaining)) { 1946 /* we have read all the blocks, 1947 * do the comparison in process context in raid10d 1948 */ 1949 reschedule_retry(r10_bio); 1950 } 1951 } 1952 1953 static void end_sync_request(struct r10bio *r10_bio) 1954 { 1955 struct mddev *mddev = r10_bio->mddev; 1956 1957 while (atomic_dec_and_test(&r10_bio->remaining)) { 1958 if (r10_bio->master_bio == NULL) { 1959 /* the primary of several recovery bios */ 1960 sector_t s = r10_bio->sectors; 1961 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1962 test_bit(R10BIO_WriteError, &r10_bio->state)) 1963 reschedule_retry(r10_bio); 1964 else 1965 put_buf(r10_bio); 1966 md_done_sync(mddev, s, 1); 1967 break; 1968 } else { 1969 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1970 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1971 test_bit(R10BIO_WriteError, &r10_bio->state)) 1972 reschedule_retry(r10_bio); 1973 else 1974 put_buf(r10_bio); 1975 r10_bio = r10_bio2; 1976 } 1977 } 1978 } 1979 1980 static void end_sync_write(struct bio *bio, int error) 1981 { 1982 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1983 struct r10bio *r10_bio = bio->bi_private; 1984 struct mddev *mddev = r10_bio->mddev; 1985 struct r10conf *conf = mddev->private; 1986 int d; 1987 sector_t first_bad; 1988 int bad_sectors; 1989 int slot; 1990 int repl; 1991 struct md_rdev *rdev = NULL; 1992 1993 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1994 if (repl) 1995 rdev = conf->mirrors[d].replacement; 1996 else 1997 rdev = conf->mirrors[d].rdev; 1998 1999 if (!uptodate) { 2000 if (repl) 2001 md_error(mddev, rdev); 2002 else { 2003 set_bit(WriteErrorSeen, &rdev->flags); 2004 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2005 set_bit(MD_RECOVERY_NEEDED, 2006 &rdev->mddev->recovery); 2007 set_bit(R10BIO_WriteError, &r10_bio->state); 2008 } 2009 } else if (is_badblock(rdev, 2010 r10_bio->devs[slot].addr, 2011 r10_bio->sectors, 2012 &first_bad, &bad_sectors)) 2013 set_bit(R10BIO_MadeGood, &r10_bio->state); 2014 2015 rdev_dec_pending(rdev, mddev); 2016 2017 end_sync_request(r10_bio); 2018 } 2019 2020 /* 2021 * Note: sync and recover and handled very differently for raid10 2022 * This code is for resync. 2023 * For resync, we read through virtual addresses and read all blocks. 2024 * If there is any error, we schedule a write. The lowest numbered 2025 * drive is authoritative. 2026 * However requests come for physical address, so we need to map. 2027 * For every physical address there are raid_disks/copies virtual addresses, 2028 * which is always are least one, but is not necessarly an integer. 2029 * This means that a physical address can span multiple chunks, so we may 2030 * have to submit multiple io requests for a single sync request. 2031 */ 2032 /* 2033 * We check if all blocks are in-sync and only write to blocks that 2034 * aren't in sync 2035 */ 2036 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2037 { 2038 struct r10conf *conf = mddev->private; 2039 int i, first; 2040 struct bio *tbio, *fbio; 2041 int vcnt; 2042 2043 atomic_set(&r10_bio->remaining, 1); 2044 2045 /* find the first device with a block */ 2046 for (i=0; i<conf->copies; i++) 2047 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2048 break; 2049 2050 if (i == conf->copies) 2051 goto done; 2052 2053 first = i; 2054 fbio = r10_bio->devs[i].bio; 2055 2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2057 /* now find blocks with errors */ 2058 for (i=0 ; i < conf->copies ; i++) { 2059 int j, d; 2060 2061 tbio = r10_bio->devs[i].bio; 2062 2063 if (tbio->bi_end_io != end_sync_read) 2064 continue; 2065 if (i == first) 2066 continue; 2067 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2068 /* We know that the bi_io_vec layout is the same for 2069 * both 'first' and 'i', so we just compare them. 2070 * All vec entries are PAGE_SIZE; 2071 */ 2072 int sectors = r10_bio->sectors; 2073 for (j = 0; j < vcnt; j++) { 2074 int len = PAGE_SIZE; 2075 if (sectors < (len / 512)) 2076 len = sectors * 512; 2077 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2078 page_address(tbio->bi_io_vec[j].bv_page), 2079 len)) 2080 break; 2081 sectors -= len/512; 2082 } 2083 if (j == vcnt) 2084 continue; 2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2087 /* Don't fix anything. */ 2088 continue; 2089 } 2090 /* Ok, we need to write this bio, either to correct an 2091 * inconsistency or to correct an unreadable block. 2092 * First we need to fixup bv_offset, bv_len and 2093 * bi_vecs, as the read request might have corrupted these 2094 */ 2095 bio_reset(tbio); 2096 2097 tbio->bi_vcnt = vcnt; 2098 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 2099 tbio->bi_rw = WRITE; 2100 tbio->bi_private = r10_bio; 2101 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2102 2103 for (j=0; j < vcnt ; j++) { 2104 tbio->bi_io_vec[j].bv_offset = 0; 2105 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2106 2107 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2108 page_address(fbio->bi_io_vec[j].bv_page), 2109 PAGE_SIZE); 2110 } 2111 tbio->bi_end_io = end_sync_write; 2112 2113 d = r10_bio->devs[i].devnum; 2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2115 atomic_inc(&r10_bio->remaining); 2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2117 2118 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2119 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2120 generic_make_request(tbio); 2121 } 2122 2123 /* Now write out to any replacement devices 2124 * that are active 2125 */ 2126 for (i = 0; i < conf->copies; i++) { 2127 int j, d; 2128 2129 tbio = r10_bio->devs[i].repl_bio; 2130 if (!tbio || !tbio->bi_end_io) 2131 continue; 2132 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2133 && r10_bio->devs[i].bio != fbio) 2134 for (j = 0; j < vcnt; j++) 2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2136 page_address(fbio->bi_io_vec[j].bv_page), 2137 PAGE_SIZE); 2138 d = r10_bio->devs[i].devnum; 2139 atomic_inc(&r10_bio->remaining); 2140 md_sync_acct(conf->mirrors[d].replacement->bdev, 2141 bio_sectors(tbio)); 2142 generic_make_request(tbio); 2143 } 2144 2145 done: 2146 if (atomic_dec_and_test(&r10_bio->remaining)) { 2147 md_done_sync(mddev, r10_bio->sectors, 1); 2148 put_buf(r10_bio); 2149 } 2150 } 2151 2152 /* 2153 * Now for the recovery code. 2154 * Recovery happens across physical sectors. 2155 * We recover all non-is_sync drives by finding the virtual address of 2156 * each, and then choose a working drive that also has that virt address. 2157 * There is a separate r10_bio for each non-in_sync drive. 2158 * Only the first two slots are in use. The first for reading, 2159 * The second for writing. 2160 * 2161 */ 2162 static void fix_recovery_read_error(struct r10bio *r10_bio) 2163 { 2164 /* We got a read error during recovery. 2165 * We repeat the read in smaller page-sized sections. 2166 * If a read succeeds, write it to the new device or record 2167 * a bad block if we cannot. 2168 * If a read fails, record a bad block on both old and 2169 * new devices. 2170 */ 2171 struct mddev *mddev = r10_bio->mddev; 2172 struct r10conf *conf = mddev->private; 2173 struct bio *bio = r10_bio->devs[0].bio; 2174 sector_t sect = 0; 2175 int sectors = r10_bio->sectors; 2176 int idx = 0; 2177 int dr = r10_bio->devs[0].devnum; 2178 int dw = r10_bio->devs[1].devnum; 2179 2180 while (sectors) { 2181 int s = sectors; 2182 struct md_rdev *rdev; 2183 sector_t addr; 2184 int ok; 2185 2186 if (s > (PAGE_SIZE>>9)) 2187 s = PAGE_SIZE >> 9; 2188 2189 rdev = conf->mirrors[dr].rdev; 2190 addr = r10_bio->devs[0].addr + sect, 2191 ok = sync_page_io(rdev, 2192 addr, 2193 s << 9, 2194 bio->bi_io_vec[idx].bv_page, 2195 READ, false); 2196 if (ok) { 2197 rdev = conf->mirrors[dw].rdev; 2198 addr = r10_bio->devs[1].addr + sect; 2199 ok = sync_page_io(rdev, 2200 addr, 2201 s << 9, 2202 bio->bi_io_vec[idx].bv_page, 2203 WRITE, false); 2204 if (!ok) { 2205 set_bit(WriteErrorSeen, &rdev->flags); 2206 if (!test_and_set_bit(WantReplacement, 2207 &rdev->flags)) 2208 set_bit(MD_RECOVERY_NEEDED, 2209 &rdev->mddev->recovery); 2210 } 2211 } 2212 if (!ok) { 2213 /* We don't worry if we cannot set a bad block - 2214 * it really is bad so there is no loss in not 2215 * recording it yet 2216 */ 2217 rdev_set_badblocks(rdev, addr, s, 0); 2218 2219 if (rdev != conf->mirrors[dw].rdev) { 2220 /* need bad block on destination too */ 2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2222 addr = r10_bio->devs[1].addr + sect; 2223 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2224 if (!ok) { 2225 /* just abort the recovery */ 2226 printk(KERN_NOTICE 2227 "md/raid10:%s: recovery aborted" 2228 " due to read error\n", 2229 mdname(mddev)); 2230 2231 conf->mirrors[dw].recovery_disabled 2232 = mddev->recovery_disabled; 2233 set_bit(MD_RECOVERY_INTR, 2234 &mddev->recovery); 2235 break; 2236 } 2237 } 2238 } 2239 2240 sectors -= s; 2241 sect += s; 2242 idx++; 2243 } 2244 } 2245 2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2247 { 2248 struct r10conf *conf = mddev->private; 2249 int d; 2250 struct bio *wbio, *wbio2; 2251 2252 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2253 fix_recovery_read_error(r10_bio); 2254 end_sync_request(r10_bio); 2255 return; 2256 } 2257 2258 /* 2259 * share the pages with the first bio 2260 * and submit the write request 2261 */ 2262 d = r10_bio->devs[1].devnum; 2263 wbio = r10_bio->devs[1].bio; 2264 wbio2 = r10_bio->devs[1].repl_bio; 2265 /* Need to test wbio2->bi_end_io before we call 2266 * generic_make_request as if the former is NULL, 2267 * the latter is free to free wbio2. 2268 */ 2269 if (wbio2 && !wbio2->bi_end_io) 2270 wbio2 = NULL; 2271 if (wbio->bi_end_io) { 2272 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2273 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2274 generic_make_request(wbio); 2275 } 2276 if (wbio2) { 2277 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2278 md_sync_acct(conf->mirrors[d].replacement->bdev, 2279 bio_sectors(wbio2)); 2280 generic_make_request(wbio2); 2281 } 2282 } 2283 2284 /* 2285 * Used by fix_read_error() to decay the per rdev read_errors. 2286 * We halve the read error count for every hour that has elapsed 2287 * since the last recorded read error. 2288 * 2289 */ 2290 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2291 { 2292 struct timespec cur_time_mon; 2293 unsigned long hours_since_last; 2294 unsigned int read_errors = atomic_read(&rdev->read_errors); 2295 2296 ktime_get_ts(&cur_time_mon); 2297 2298 if (rdev->last_read_error.tv_sec == 0 && 2299 rdev->last_read_error.tv_nsec == 0) { 2300 /* first time we've seen a read error */ 2301 rdev->last_read_error = cur_time_mon; 2302 return; 2303 } 2304 2305 hours_since_last = (cur_time_mon.tv_sec - 2306 rdev->last_read_error.tv_sec) / 3600; 2307 2308 rdev->last_read_error = cur_time_mon; 2309 2310 /* 2311 * if hours_since_last is > the number of bits in read_errors 2312 * just set read errors to 0. We do this to avoid 2313 * overflowing the shift of read_errors by hours_since_last. 2314 */ 2315 if (hours_since_last >= 8 * sizeof(read_errors)) 2316 atomic_set(&rdev->read_errors, 0); 2317 else 2318 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2319 } 2320 2321 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2322 int sectors, struct page *page, int rw) 2323 { 2324 sector_t first_bad; 2325 int bad_sectors; 2326 2327 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2328 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2329 return -1; 2330 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2331 /* success */ 2332 return 1; 2333 if (rw == WRITE) { 2334 set_bit(WriteErrorSeen, &rdev->flags); 2335 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2336 set_bit(MD_RECOVERY_NEEDED, 2337 &rdev->mddev->recovery); 2338 } 2339 /* need to record an error - either for the block or the device */ 2340 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2341 md_error(rdev->mddev, rdev); 2342 return 0; 2343 } 2344 2345 /* 2346 * This is a kernel thread which: 2347 * 2348 * 1. Retries failed read operations on working mirrors. 2349 * 2. Updates the raid superblock when problems encounter. 2350 * 3. Performs writes following reads for array synchronising. 2351 */ 2352 2353 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2354 { 2355 int sect = 0; /* Offset from r10_bio->sector */ 2356 int sectors = r10_bio->sectors; 2357 struct md_rdev*rdev; 2358 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2359 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2360 2361 /* still own a reference to this rdev, so it cannot 2362 * have been cleared recently. 2363 */ 2364 rdev = conf->mirrors[d].rdev; 2365 2366 if (test_bit(Faulty, &rdev->flags)) 2367 /* drive has already been failed, just ignore any 2368 more fix_read_error() attempts */ 2369 return; 2370 2371 check_decay_read_errors(mddev, rdev); 2372 atomic_inc(&rdev->read_errors); 2373 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2374 char b[BDEVNAME_SIZE]; 2375 bdevname(rdev->bdev, b); 2376 2377 printk(KERN_NOTICE 2378 "md/raid10:%s: %s: Raid device exceeded " 2379 "read_error threshold [cur %d:max %d]\n", 2380 mdname(mddev), b, 2381 atomic_read(&rdev->read_errors), max_read_errors); 2382 printk(KERN_NOTICE 2383 "md/raid10:%s: %s: Failing raid device\n", 2384 mdname(mddev), b); 2385 md_error(mddev, conf->mirrors[d].rdev); 2386 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2387 return; 2388 } 2389 2390 while(sectors) { 2391 int s = sectors; 2392 int sl = r10_bio->read_slot; 2393 int success = 0; 2394 int start; 2395 2396 if (s > (PAGE_SIZE>>9)) 2397 s = PAGE_SIZE >> 9; 2398 2399 rcu_read_lock(); 2400 do { 2401 sector_t first_bad; 2402 int bad_sectors; 2403 2404 d = r10_bio->devs[sl].devnum; 2405 rdev = rcu_dereference(conf->mirrors[d].rdev); 2406 if (rdev && 2407 !test_bit(Unmerged, &rdev->flags) && 2408 test_bit(In_sync, &rdev->flags) && 2409 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2410 &first_bad, &bad_sectors) == 0) { 2411 atomic_inc(&rdev->nr_pending); 2412 rcu_read_unlock(); 2413 success = sync_page_io(rdev, 2414 r10_bio->devs[sl].addr + 2415 sect, 2416 s<<9, 2417 conf->tmppage, READ, false); 2418 rdev_dec_pending(rdev, mddev); 2419 rcu_read_lock(); 2420 if (success) 2421 break; 2422 } 2423 sl++; 2424 if (sl == conf->copies) 2425 sl = 0; 2426 } while (!success && sl != r10_bio->read_slot); 2427 rcu_read_unlock(); 2428 2429 if (!success) { 2430 /* Cannot read from anywhere, just mark the block 2431 * as bad on the first device to discourage future 2432 * reads. 2433 */ 2434 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2435 rdev = conf->mirrors[dn].rdev; 2436 2437 if (!rdev_set_badblocks( 2438 rdev, 2439 r10_bio->devs[r10_bio->read_slot].addr 2440 + sect, 2441 s, 0)) { 2442 md_error(mddev, rdev); 2443 r10_bio->devs[r10_bio->read_slot].bio 2444 = IO_BLOCKED; 2445 } 2446 break; 2447 } 2448 2449 start = sl; 2450 /* write it back and re-read */ 2451 rcu_read_lock(); 2452 while (sl != r10_bio->read_slot) { 2453 char b[BDEVNAME_SIZE]; 2454 2455 if (sl==0) 2456 sl = conf->copies; 2457 sl--; 2458 d = r10_bio->devs[sl].devnum; 2459 rdev = rcu_dereference(conf->mirrors[d].rdev); 2460 if (!rdev || 2461 test_bit(Unmerged, &rdev->flags) || 2462 !test_bit(In_sync, &rdev->flags)) 2463 continue; 2464 2465 atomic_inc(&rdev->nr_pending); 2466 rcu_read_unlock(); 2467 if (r10_sync_page_io(rdev, 2468 r10_bio->devs[sl].addr + 2469 sect, 2470 s, conf->tmppage, WRITE) 2471 == 0) { 2472 /* Well, this device is dead */ 2473 printk(KERN_NOTICE 2474 "md/raid10:%s: read correction " 2475 "write failed" 2476 " (%d sectors at %llu on %s)\n", 2477 mdname(mddev), s, 2478 (unsigned long long)( 2479 sect + 2480 choose_data_offset(r10_bio, 2481 rdev)), 2482 bdevname(rdev->bdev, b)); 2483 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2484 "drive\n", 2485 mdname(mddev), 2486 bdevname(rdev->bdev, b)); 2487 } 2488 rdev_dec_pending(rdev, mddev); 2489 rcu_read_lock(); 2490 } 2491 sl = start; 2492 while (sl != r10_bio->read_slot) { 2493 char b[BDEVNAME_SIZE]; 2494 2495 if (sl==0) 2496 sl = conf->copies; 2497 sl--; 2498 d = r10_bio->devs[sl].devnum; 2499 rdev = rcu_dereference(conf->mirrors[d].rdev); 2500 if (!rdev || 2501 !test_bit(In_sync, &rdev->flags)) 2502 continue; 2503 2504 atomic_inc(&rdev->nr_pending); 2505 rcu_read_unlock(); 2506 switch (r10_sync_page_io(rdev, 2507 r10_bio->devs[sl].addr + 2508 sect, 2509 s, conf->tmppage, 2510 READ)) { 2511 case 0: 2512 /* Well, this device is dead */ 2513 printk(KERN_NOTICE 2514 "md/raid10:%s: unable to read back " 2515 "corrected sectors" 2516 " (%d sectors at %llu on %s)\n", 2517 mdname(mddev), s, 2518 (unsigned long long)( 2519 sect + 2520 choose_data_offset(r10_bio, rdev)), 2521 bdevname(rdev->bdev, b)); 2522 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2523 "drive\n", 2524 mdname(mddev), 2525 bdevname(rdev->bdev, b)); 2526 break; 2527 case 1: 2528 printk(KERN_INFO 2529 "md/raid10:%s: read error corrected" 2530 " (%d sectors at %llu on %s)\n", 2531 mdname(mddev), s, 2532 (unsigned long long)( 2533 sect + 2534 choose_data_offset(r10_bio, rdev)), 2535 bdevname(rdev->bdev, b)); 2536 atomic_add(s, &rdev->corrected_errors); 2537 } 2538 2539 rdev_dec_pending(rdev, mddev); 2540 rcu_read_lock(); 2541 } 2542 rcu_read_unlock(); 2543 2544 sectors -= s; 2545 sect += s; 2546 } 2547 } 2548 2549 static int narrow_write_error(struct r10bio *r10_bio, int i) 2550 { 2551 struct bio *bio = r10_bio->master_bio; 2552 struct mddev *mddev = r10_bio->mddev; 2553 struct r10conf *conf = mddev->private; 2554 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2555 /* bio has the data to be written to slot 'i' where 2556 * we just recently had a write error. 2557 * We repeatedly clone the bio and trim down to one block, 2558 * then try the write. Where the write fails we record 2559 * a bad block. 2560 * It is conceivable that the bio doesn't exactly align with 2561 * blocks. We must handle this. 2562 * 2563 * We currently own a reference to the rdev. 2564 */ 2565 2566 int block_sectors; 2567 sector_t sector; 2568 int sectors; 2569 int sect_to_write = r10_bio->sectors; 2570 int ok = 1; 2571 2572 if (rdev->badblocks.shift < 0) 2573 return 0; 2574 2575 block_sectors = roundup(1 << rdev->badblocks.shift, 2576 bdev_logical_block_size(rdev->bdev) >> 9); 2577 sector = r10_bio->sector; 2578 sectors = ((r10_bio->sector + block_sectors) 2579 & ~(sector_t)(block_sectors - 1)) 2580 - sector; 2581 2582 while (sect_to_write) { 2583 struct bio *wbio; 2584 if (sectors > sect_to_write) 2585 sectors = sect_to_write; 2586 /* Write at 'sector' for 'sectors' */ 2587 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2588 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2589 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2590 choose_data_offset(r10_bio, rdev) + 2591 (sector - r10_bio->sector)); 2592 wbio->bi_bdev = rdev->bdev; 2593 if (submit_bio_wait(WRITE, wbio) == 0) 2594 /* Failure! */ 2595 ok = rdev_set_badblocks(rdev, sector, 2596 sectors, 0) 2597 && ok; 2598 2599 bio_put(wbio); 2600 sect_to_write -= sectors; 2601 sector += sectors; 2602 sectors = block_sectors; 2603 } 2604 return ok; 2605 } 2606 2607 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2608 { 2609 int slot = r10_bio->read_slot; 2610 struct bio *bio; 2611 struct r10conf *conf = mddev->private; 2612 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2613 char b[BDEVNAME_SIZE]; 2614 unsigned long do_sync; 2615 int max_sectors; 2616 2617 /* we got a read error. Maybe the drive is bad. Maybe just 2618 * the block and we can fix it. 2619 * We freeze all other IO, and try reading the block from 2620 * other devices. When we find one, we re-write 2621 * and check it that fixes the read error. 2622 * This is all done synchronously while the array is 2623 * frozen. 2624 */ 2625 bio = r10_bio->devs[slot].bio; 2626 bdevname(bio->bi_bdev, b); 2627 bio_put(bio); 2628 r10_bio->devs[slot].bio = NULL; 2629 2630 if (mddev->ro == 0) { 2631 freeze_array(conf, 1); 2632 fix_read_error(conf, mddev, r10_bio); 2633 unfreeze_array(conf); 2634 } else 2635 r10_bio->devs[slot].bio = IO_BLOCKED; 2636 2637 rdev_dec_pending(rdev, mddev); 2638 2639 read_more: 2640 rdev = read_balance(conf, r10_bio, &max_sectors); 2641 if (rdev == NULL) { 2642 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2643 " read error for block %llu\n", 2644 mdname(mddev), b, 2645 (unsigned long long)r10_bio->sector); 2646 raid_end_bio_io(r10_bio); 2647 return; 2648 } 2649 2650 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2651 slot = r10_bio->read_slot; 2652 printk_ratelimited( 2653 KERN_ERR 2654 "md/raid10:%s: %s: redirecting " 2655 "sector %llu to another mirror\n", 2656 mdname(mddev), 2657 bdevname(rdev->bdev, b), 2658 (unsigned long long)r10_bio->sector); 2659 bio = bio_clone_mddev(r10_bio->master_bio, 2660 GFP_NOIO, mddev); 2661 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2662 r10_bio->devs[slot].bio = bio; 2663 r10_bio->devs[slot].rdev = rdev; 2664 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2665 + choose_data_offset(r10_bio, rdev); 2666 bio->bi_bdev = rdev->bdev; 2667 bio->bi_rw = READ | do_sync; 2668 bio->bi_private = r10_bio; 2669 bio->bi_end_io = raid10_end_read_request; 2670 if (max_sectors < r10_bio->sectors) { 2671 /* Drat - have to split this up more */ 2672 struct bio *mbio = r10_bio->master_bio; 2673 int sectors_handled = 2674 r10_bio->sector + max_sectors 2675 - mbio->bi_iter.bi_sector; 2676 r10_bio->sectors = max_sectors; 2677 spin_lock_irq(&conf->device_lock); 2678 if (mbio->bi_phys_segments == 0) 2679 mbio->bi_phys_segments = 2; 2680 else 2681 mbio->bi_phys_segments++; 2682 spin_unlock_irq(&conf->device_lock); 2683 generic_make_request(bio); 2684 2685 r10_bio = mempool_alloc(conf->r10bio_pool, 2686 GFP_NOIO); 2687 r10_bio->master_bio = mbio; 2688 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2689 r10_bio->state = 0; 2690 set_bit(R10BIO_ReadError, 2691 &r10_bio->state); 2692 r10_bio->mddev = mddev; 2693 r10_bio->sector = mbio->bi_iter.bi_sector 2694 + sectors_handled; 2695 2696 goto read_more; 2697 } else 2698 generic_make_request(bio); 2699 } 2700 2701 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2702 { 2703 /* Some sort of write request has finished and it 2704 * succeeded in writing where we thought there was a 2705 * bad block. So forget the bad block. 2706 * Or possibly if failed and we need to record 2707 * a bad block. 2708 */ 2709 int m; 2710 struct md_rdev *rdev; 2711 2712 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2713 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2714 for (m = 0; m < conf->copies; m++) { 2715 int dev = r10_bio->devs[m].devnum; 2716 rdev = conf->mirrors[dev].rdev; 2717 if (r10_bio->devs[m].bio == NULL) 2718 continue; 2719 if (test_bit(BIO_UPTODATE, 2720 &r10_bio->devs[m].bio->bi_flags)) { 2721 rdev_clear_badblocks( 2722 rdev, 2723 r10_bio->devs[m].addr, 2724 r10_bio->sectors, 0); 2725 } else { 2726 if (!rdev_set_badblocks( 2727 rdev, 2728 r10_bio->devs[m].addr, 2729 r10_bio->sectors, 0)) 2730 md_error(conf->mddev, rdev); 2731 } 2732 rdev = conf->mirrors[dev].replacement; 2733 if (r10_bio->devs[m].repl_bio == NULL) 2734 continue; 2735 if (test_bit(BIO_UPTODATE, 2736 &r10_bio->devs[m].repl_bio->bi_flags)) { 2737 rdev_clear_badblocks( 2738 rdev, 2739 r10_bio->devs[m].addr, 2740 r10_bio->sectors, 0); 2741 } else { 2742 if (!rdev_set_badblocks( 2743 rdev, 2744 r10_bio->devs[m].addr, 2745 r10_bio->sectors, 0)) 2746 md_error(conf->mddev, rdev); 2747 } 2748 } 2749 put_buf(r10_bio); 2750 } else { 2751 for (m = 0; m < conf->copies; m++) { 2752 int dev = r10_bio->devs[m].devnum; 2753 struct bio *bio = r10_bio->devs[m].bio; 2754 rdev = conf->mirrors[dev].rdev; 2755 if (bio == IO_MADE_GOOD) { 2756 rdev_clear_badblocks( 2757 rdev, 2758 r10_bio->devs[m].addr, 2759 r10_bio->sectors, 0); 2760 rdev_dec_pending(rdev, conf->mddev); 2761 } else if (bio != NULL && 2762 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2763 if (!narrow_write_error(r10_bio, m)) { 2764 md_error(conf->mddev, rdev); 2765 set_bit(R10BIO_Degraded, 2766 &r10_bio->state); 2767 } 2768 rdev_dec_pending(rdev, conf->mddev); 2769 } 2770 bio = r10_bio->devs[m].repl_bio; 2771 rdev = conf->mirrors[dev].replacement; 2772 if (rdev && bio == IO_MADE_GOOD) { 2773 rdev_clear_badblocks( 2774 rdev, 2775 r10_bio->devs[m].addr, 2776 r10_bio->sectors, 0); 2777 rdev_dec_pending(rdev, conf->mddev); 2778 } 2779 } 2780 if (test_bit(R10BIO_WriteError, 2781 &r10_bio->state)) 2782 close_write(r10_bio); 2783 raid_end_bio_io(r10_bio); 2784 } 2785 } 2786 2787 static void raid10d(struct md_thread *thread) 2788 { 2789 struct mddev *mddev = thread->mddev; 2790 struct r10bio *r10_bio; 2791 unsigned long flags; 2792 struct r10conf *conf = mddev->private; 2793 struct list_head *head = &conf->retry_list; 2794 struct blk_plug plug; 2795 2796 md_check_recovery(mddev); 2797 2798 blk_start_plug(&plug); 2799 for (;;) { 2800 2801 flush_pending_writes(conf); 2802 2803 spin_lock_irqsave(&conf->device_lock, flags); 2804 if (list_empty(head)) { 2805 spin_unlock_irqrestore(&conf->device_lock, flags); 2806 break; 2807 } 2808 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2809 list_del(head->prev); 2810 conf->nr_queued--; 2811 spin_unlock_irqrestore(&conf->device_lock, flags); 2812 2813 mddev = r10_bio->mddev; 2814 conf = mddev->private; 2815 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2816 test_bit(R10BIO_WriteError, &r10_bio->state)) 2817 handle_write_completed(conf, r10_bio); 2818 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2819 reshape_request_write(mddev, r10_bio); 2820 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2821 sync_request_write(mddev, r10_bio); 2822 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2823 recovery_request_write(mddev, r10_bio); 2824 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2825 handle_read_error(mddev, r10_bio); 2826 else { 2827 /* just a partial read to be scheduled from a 2828 * separate context 2829 */ 2830 int slot = r10_bio->read_slot; 2831 generic_make_request(r10_bio->devs[slot].bio); 2832 } 2833 2834 cond_resched(); 2835 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2836 md_check_recovery(mddev); 2837 } 2838 blk_finish_plug(&plug); 2839 } 2840 2841 static int init_resync(struct r10conf *conf) 2842 { 2843 int buffs; 2844 int i; 2845 2846 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2847 BUG_ON(conf->r10buf_pool); 2848 conf->have_replacement = 0; 2849 for (i = 0; i < conf->geo.raid_disks; i++) 2850 if (conf->mirrors[i].replacement) 2851 conf->have_replacement = 1; 2852 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2853 if (!conf->r10buf_pool) 2854 return -ENOMEM; 2855 conf->next_resync = 0; 2856 return 0; 2857 } 2858 2859 /* 2860 * perform a "sync" on one "block" 2861 * 2862 * We need to make sure that no normal I/O request - particularly write 2863 * requests - conflict with active sync requests. 2864 * 2865 * This is achieved by tracking pending requests and a 'barrier' concept 2866 * that can be installed to exclude normal IO requests. 2867 * 2868 * Resync and recovery are handled very differently. 2869 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2870 * 2871 * For resync, we iterate over virtual addresses, read all copies, 2872 * and update if there are differences. If only one copy is live, 2873 * skip it. 2874 * For recovery, we iterate over physical addresses, read a good 2875 * value for each non-in_sync drive, and over-write. 2876 * 2877 * So, for recovery we may have several outstanding complex requests for a 2878 * given address, one for each out-of-sync device. We model this by allocating 2879 * a number of r10_bio structures, one for each out-of-sync device. 2880 * As we setup these structures, we collect all bio's together into a list 2881 * which we then process collectively to add pages, and then process again 2882 * to pass to generic_make_request. 2883 * 2884 * The r10_bio structures are linked using a borrowed master_bio pointer. 2885 * This link is counted in ->remaining. When the r10_bio that points to NULL 2886 * has its remaining count decremented to 0, the whole complex operation 2887 * is complete. 2888 * 2889 */ 2890 2891 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2892 int *skipped) 2893 { 2894 struct r10conf *conf = mddev->private; 2895 struct r10bio *r10_bio; 2896 struct bio *biolist = NULL, *bio; 2897 sector_t max_sector, nr_sectors; 2898 int i; 2899 int max_sync; 2900 sector_t sync_blocks; 2901 sector_t sectors_skipped = 0; 2902 int chunks_skipped = 0; 2903 sector_t chunk_mask = conf->geo.chunk_mask; 2904 2905 if (!conf->r10buf_pool) 2906 if (init_resync(conf)) 2907 return 0; 2908 2909 /* 2910 * Allow skipping a full rebuild for incremental assembly 2911 * of a clean array, like RAID1 does. 2912 */ 2913 if (mddev->bitmap == NULL && 2914 mddev->recovery_cp == MaxSector && 2915 mddev->reshape_position == MaxSector && 2916 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2917 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2918 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2919 conf->fullsync == 0) { 2920 *skipped = 1; 2921 return mddev->dev_sectors - sector_nr; 2922 } 2923 2924 skipped: 2925 max_sector = mddev->dev_sectors; 2926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2927 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2928 max_sector = mddev->resync_max_sectors; 2929 if (sector_nr >= max_sector) { 2930 /* If we aborted, we need to abort the 2931 * sync on the 'current' bitmap chucks (there can 2932 * be several when recovering multiple devices). 2933 * as we may have started syncing it but not finished. 2934 * We can find the current address in 2935 * mddev->curr_resync, but for recovery, 2936 * we need to convert that to several 2937 * virtual addresses. 2938 */ 2939 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2940 end_reshape(conf); 2941 close_sync(conf); 2942 return 0; 2943 } 2944 2945 if (mddev->curr_resync < max_sector) { /* aborted */ 2946 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2947 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2948 &sync_blocks, 1); 2949 else for (i = 0; i < conf->geo.raid_disks; i++) { 2950 sector_t sect = 2951 raid10_find_virt(conf, mddev->curr_resync, i); 2952 bitmap_end_sync(mddev->bitmap, sect, 2953 &sync_blocks, 1); 2954 } 2955 } else { 2956 /* completed sync */ 2957 if ((!mddev->bitmap || conf->fullsync) 2958 && conf->have_replacement 2959 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2960 /* Completed a full sync so the replacements 2961 * are now fully recovered. 2962 */ 2963 for (i = 0; i < conf->geo.raid_disks; i++) 2964 if (conf->mirrors[i].replacement) 2965 conf->mirrors[i].replacement 2966 ->recovery_offset 2967 = MaxSector; 2968 } 2969 conf->fullsync = 0; 2970 } 2971 bitmap_close_sync(mddev->bitmap); 2972 close_sync(conf); 2973 *skipped = 1; 2974 return sectors_skipped; 2975 } 2976 2977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2978 return reshape_request(mddev, sector_nr, skipped); 2979 2980 if (chunks_skipped >= conf->geo.raid_disks) { 2981 /* if there has been nothing to do on any drive, 2982 * then there is nothing to do at all.. 2983 */ 2984 *skipped = 1; 2985 return (max_sector - sector_nr) + sectors_skipped; 2986 } 2987 2988 if (max_sector > mddev->resync_max) 2989 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2990 2991 /* make sure whole request will fit in a chunk - if chunks 2992 * are meaningful 2993 */ 2994 if (conf->geo.near_copies < conf->geo.raid_disks && 2995 max_sector > (sector_nr | chunk_mask)) 2996 max_sector = (sector_nr | chunk_mask) + 1; 2997 2998 /* Again, very different code for resync and recovery. 2999 * Both must result in an r10bio with a list of bios that 3000 * have bi_end_io, bi_sector, bi_bdev set, 3001 * and bi_private set to the r10bio. 3002 * For recovery, we may actually create several r10bios 3003 * with 2 bios in each, that correspond to the bios in the main one. 3004 * In this case, the subordinate r10bios link back through a 3005 * borrowed master_bio pointer, and the counter in the master 3006 * includes a ref from each subordinate. 3007 */ 3008 /* First, we decide what to do and set ->bi_end_io 3009 * To end_sync_read if we want to read, and 3010 * end_sync_write if we will want to write. 3011 */ 3012 3013 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3014 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3015 /* recovery... the complicated one */ 3016 int j; 3017 r10_bio = NULL; 3018 3019 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3020 int still_degraded; 3021 struct r10bio *rb2; 3022 sector_t sect; 3023 int must_sync; 3024 int any_working; 3025 struct raid10_info *mirror = &conf->mirrors[i]; 3026 3027 if ((mirror->rdev == NULL || 3028 test_bit(In_sync, &mirror->rdev->flags)) 3029 && 3030 (mirror->replacement == NULL || 3031 test_bit(Faulty, 3032 &mirror->replacement->flags))) 3033 continue; 3034 3035 still_degraded = 0; 3036 /* want to reconstruct this device */ 3037 rb2 = r10_bio; 3038 sect = raid10_find_virt(conf, sector_nr, i); 3039 if (sect >= mddev->resync_max_sectors) { 3040 /* last stripe is not complete - don't 3041 * try to recover this sector. 3042 */ 3043 continue; 3044 } 3045 /* Unless we are doing a full sync, or a replacement 3046 * we only need to recover the block if it is set in 3047 * the bitmap 3048 */ 3049 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3050 &sync_blocks, 1); 3051 if (sync_blocks < max_sync) 3052 max_sync = sync_blocks; 3053 if (!must_sync && 3054 mirror->replacement == NULL && 3055 !conf->fullsync) { 3056 /* yep, skip the sync_blocks here, but don't assume 3057 * that there will never be anything to do here 3058 */ 3059 chunks_skipped = -1; 3060 continue; 3061 } 3062 3063 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3064 r10_bio->state = 0; 3065 raise_barrier(conf, rb2 != NULL); 3066 atomic_set(&r10_bio->remaining, 0); 3067 3068 r10_bio->master_bio = (struct bio*)rb2; 3069 if (rb2) 3070 atomic_inc(&rb2->remaining); 3071 r10_bio->mddev = mddev; 3072 set_bit(R10BIO_IsRecover, &r10_bio->state); 3073 r10_bio->sector = sect; 3074 3075 raid10_find_phys(conf, r10_bio); 3076 3077 /* Need to check if the array will still be 3078 * degraded 3079 */ 3080 for (j = 0; j < conf->geo.raid_disks; j++) 3081 if (conf->mirrors[j].rdev == NULL || 3082 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3083 still_degraded = 1; 3084 break; 3085 } 3086 3087 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3088 &sync_blocks, still_degraded); 3089 3090 any_working = 0; 3091 for (j=0; j<conf->copies;j++) { 3092 int k; 3093 int d = r10_bio->devs[j].devnum; 3094 sector_t from_addr, to_addr; 3095 struct md_rdev *rdev; 3096 sector_t sector, first_bad; 3097 int bad_sectors; 3098 if (!conf->mirrors[d].rdev || 3099 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3100 continue; 3101 /* This is where we read from */ 3102 any_working = 1; 3103 rdev = conf->mirrors[d].rdev; 3104 sector = r10_bio->devs[j].addr; 3105 3106 if (is_badblock(rdev, sector, max_sync, 3107 &first_bad, &bad_sectors)) { 3108 if (first_bad > sector) 3109 max_sync = first_bad - sector; 3110 else { 3111 bad_sectors -= (sector 3112 - first_bad); 3113 if (max_sync > bad_sectors) 3114 max_sync = bad_sectors; 3115 continue; 3116 } 3117 } 3118 bio = r10_bio->devs[0].bio; 3119 bio_reset(bio); 3120 bio->bi_next = biolist; 3121 biolist = bio; 3122 bio->bi_private = r10_bio; 3123 bio->bi_end_io = end_sync_read; 3124 bio->bi_rw = READ; 3125 from_addr = r10_bio->devs[j].addr; 3126 bio->bi_iter.bi_sector = from_addr + 3127 rdev->data_offset; 3128 bio->bi_bdev = rdev->bdev; 3129 atomic_inc(&rdev->nr_pending); 3130 /* and we write to 'i' (if not in_sync) */ 3131 3132 for (k=0; k<conf->copies; k++) 3133 if (r10_bio->devs[k].devnum == i) 3134 break; 3135 BUG_ON(k == conf->copies); 3136 to_addr = r10_bio->devs[k].addr; 3137 r10_bio->devs[0].devnum = d; 3138 r10_bio->devs[0].addr = from_addr; 3139 r10_bio->devs[1].devnum = i; 3140 r10_bio->devs[1].addr = to_addr; 3141 3142 rdev = mirror->rdev; 3143 if (!test_bit(In_sync, &rdev->flags)) { 3144 bio = r10_bio->devs[1].bio; 3145 bio_reset(bio); 3146 bio->bi_next = biolist; 3147 biolist = bio; 3148 bio->bi_private = r10_bio; 3149 bio->bi_end_io = end_sync_write; 3150 bio->bi_rw = WRITE; 3151 bio->bi_iter.bi_sector = to_addr 3152 + rdev->data_offset; 3153 bio->bi_bdev = rdev->bdev; 3154 atomic_inc(&r10_bio->remaining); 3155 } else 3156 r10_bio->devs[1].bio->bi_end_io = NULL; 3157 3158 /* and maybe write to replacement */ 3159 bio = r10_bio->devs[1].repl_bio; 3160 if (bio) 3161 bio->bi_end_io = NULL; 3162 rdev = mirror->replacement; 3163 /* Note: if rdev != NULL, then bio 3164 * cannot be NULL as r10buf_pool_alloc will 3165 * have allocated it. 3166 * So the second test here is pointless. 3167 * But it keeps semantic-checkers happy, and 3168 * this comment keeps human reviewers 3169 * happy. 3170 */ 3171 if (rdev == NULL || bio == NULL || 3172 test_bit(Faulty, &rdev->flags)) 3173 break; 3174 bio_reset(bio); 3175 bio->bi_next = biolist; 3176 biolist = bio; 3177 bio->bi_private = r10_bio; 3178 bio->bi_end_io = end_sync_write; 3179 bio->bi_rw = WRITE; 3180 bio->bi_iter.bi_sector = to_addr + 3181 rdev->data_offset; 3182 bio->bi_bdev = rdev->bdev; 3183 atomic_inc(&r10_bio->remaining); 3184 break; 3185 } 3186 if (j == conf->copies) { 3187 /* Cannot recover, so abort the recovery or 3188 * record a bad block */ 3189 if (any_working) { 3190 /* problem is that there are bad blocks 3191 * on other device(s) 3192 */ 3193 int k; 3194 for (k = 0; k < conf->copies; k++) 3195 if (r10_bio->devs[k].devnum == i) 3196 break; 3197 if (!test_bit(In_sync, 3198 &mirror->rdev->flags) 3199 && !rdev_set_badblocks( 3200 mirror->rdev, 3201 r10_bio->devs[k].addr, 3202 max_sync, 0)) 3203 any_working = 0; 3204 if (mirror->replacement && 3205 !rdev_set_badblocks( 3206 mirror->replacement, 3207 r10_bio->devs[k].addr, 3208 max_sync, 0)) 3209 any_working = 0; 3210 } 3211 if (!any_working) { 3212 if (!test_and_set_bit(MD_RECOVERY_INTR, 3213 &mddev->recovery)) 3214 printk(KERN_INFO "md/raid10:%s: insufficient " 3215 "working devices for recovery.\n", 3216 mdname(mddev)); 3217 mirror->recovery_disabled 3218 = mddev->recovery_disabled; 3219 } 3220 put_buf(r10_bio); 3221 if (rb2) 3222 atomic_dec(&rb2->remaining); 3223 r10_bio = rb2; 3224 break; 3225 } 3226 } 3227 if (biolist == NULL) { 3228 while (r10_bio) { 3229 struct r10bio *rb2 = r10_bio; 3230 r10_bio = (struct r10bio*) rb2->master_bio; 3231 rb2->master_bio = NULL; 3232 put_buf(rb2); 3233 } 3234 goto giveup; 3235 } 3236 } else { 3237 /* resync. Schedule a read for every block at this virt offset */ 3238 int count = 0; 3239 3240 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3241 3242 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3243 &sync_blocks, mddev->degraded) && 3244 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3245 &mddev->recovery)) { 3246 /* We can skip this block */ 3247 *skipped = 1; 3248 return sync_blocks + sectors_skipped; 3249 } 3250 if (sync_blocks < max_sync) 3251 max_sync = sync_blocks; 3252 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3253 r10_bio->state = 0; 3254 3255 r10_bio->mddev = mddev; 3256 atomic_set(&r10_bio->remaining, 0); 3257 raise_barrier(conf, 0); 3258 conf->next_resync = sector_nr; 3259 3260 r10_bio->master_bio = NULL; 3261 r10_bio->sector = sector_nr; 3262 set_bit(R10BIO_IsSync, &r10_bio->state); 3263 raid10_find_phys(conf, r10_bio); 3264 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3265 3266 for (i = 0; i < conf->copies; i++) { 3267 int d = r10_bio->devs[i].devnum; 3268 sector_t first_bad, sector; 3269 int bad_sectors; 3270 3271 if (r10_bio->devs[i].repl_bio) 3272 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3273 3274 bio = r10_bio->devs[i].bio; 3275 bio_reset(bio); 3276 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3277 if (conf->mirrors[d].rdev == NULL || 3278 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3279 continue; 3280 sector = r10_bio->devs[i].addr; 3281 if (is_badblock(conf->mirrors[d].rdev, 3282 sector, max_sync, 3283 &first_bad, &bad_sectors)) { 3284 if (first_bad > sector) 3285 max_sync = first_bad - sector; 3286 else { 3287 bad_sectors -= (sector - first_bad); 3288 if (max_sync > bad_sectors) 3289 max_sync = bad_sectors; 3290 continue; 3291 } 3292 } 3293 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3294 atomic_inc(&r10_bio->remaining); 3295 bio->bi_next = biolist; 3296 biolist = bio; 3297 bio->bi_private = r10_bio; 3298 bio->bi_end_io = end_sync_read; 3299 bio->bi_rw = READ; 3300 bio->bi_iter.bi_sector = sector + 3301 conf->mirrors[d].rdev->data_offset; 3302 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3303 count++; 3304 3305 if (conf->mirrors[d].replacement == NULL || 3306 test_bit(Faulty, 3307 &conf->mirrors[d].replacement->flags)) 3308 continue; 3309 3310 /* Need to set up for writing to the replacement */ 3311 bio = r10_bio->devs[i].repl_bio; 3312 bio_reset(bio); 3313 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3314 3315 sector = r10_bio->devs[i].addr; 3316 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3317 bio->bi_next = biolist; 3318 biolist = bio; 3319 bio->bi_private = r10_bio; 3320 bio->bi_end_io = end_sync_write; 3321 bio->bi_rw = WRITE; 3322 bio->bi_iter.bi_sector = sector + 3323 conf->mirrors[d].replacement->data_offset; 3324 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3325 count++; 3326 } 3327 3328 if (count < 2) { 3329 for (i=0; i<conf->copies; i++) { 3330 int d = r10_bio->devs[i].devnum; 3331 if (r10_bio->devs[i].bio->bi_end_io) 3332 rdev_dec_pending(conf->mirrors[d].rdev, 3333 mddev); 3334 if (r10_bio->devs[i].repl_bio && 3335 r10_bio->devs[i].repl_bio->bi_end_io) 3336 rdev_dec_pending( 3337 conf->mirrors[d].replacement, 3338 mddev); 3339 } 3340 put_buf(r10_bio); 3341 biolist = NULL; 3342 goto giveup; 3343 } 3344 } 3345 3346 nr_sectors = 0; 3347 if (sector_nr + max_sync < max_sector) 3348 max_sector = sector_nr + max_sync; 3349 do { 3350 struct page *page; 3351 int len = PAGE_SIZE; 3352 if (sector_nr + (len>>9) > max_sector) 3353 len = (max_sector - sector_nr) << 9; 3354 if (len == 0) 3355 break; 3356 for (bio= biolist ; bio ; bio=bio->bi_next) { 3357 struct bio *bio2; 3358 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3359 if (bio_add_page(bio, page, len, 0)) 3360 continue; 3361 3362 /* stop here */ 3363 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3364 for (bio2 = biolist; 3365 bio2 && bio2 != bio; 3366 bio2 = bio2->bi_next) { 3367 /* remove last page from this bio */ 3368 bio2->bi_vcnt--; 3369 bio2->bi_iter.bi_size -= len; 3370 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags); 3371 } 3372 goto bio_full; 3373 } 3374 nr_sectors += len>>9; 3375 sector_nr += len>>9; 3376 } while (biolist->bi_vcnt < RESYNC_PAGES); 3377 bio_full: 3378 r10_bio->sectors = nr_sectors; 3379 3380 while (biolist) { 3381 bio = biolist; 3382 biolist = biolist->bi_next; 3383 3384 bio->bi_next = NULL; 3385 r10_bio = bio->bi_private; 3386 r10_bio->sectors = nr_sectors; 3387 3388 if (bio->bi_end_io == end_sync_read) { 3389 md_sync_acct(bio->bi_bdev, nr_sectors); 3390 set_bit(BIO_UPTODATE, &bio->bi_flags); 3391 generic_make_request(bio); 3392 } 3393 } 3394 3395 if (sectors_skipped) 3396 /* pretend they weren't skipped, it makes 3397 * no important difference in this case 3398 */ 3399 md_done_sync(mddev, sectors_skipped, 1); 3400 3401 return sectors_skipped + nr_sectors; 3402 giveup: 3403 /* There is nowhere to write, so all non-sync 3404 * drives must be failed or in resync, all drives 3405 * have a bad block, so try the next chunk... 3406 */ 3407 if (sector_nr + max_sync < max_sector) 3408 max_sector = sector_nr + max_sync; 3409 3410 sectors_skipped += (max_sector - sector_nr); 3411 chunks_skipped ++; 3412 sector_nr = max_sector; 3413 goto skipped; 3414 } 3415 3416 static sector_t 3417 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3418 { 3419 sector_t size; 3420 struct r10conf *conf = mddev->private; 3421 3422 if (!raid_disks) 3423 raid_disks = min(conf->geo.raid_disks, 3424 conf->prev.raid_disks); 3425 if (!sectors) 3426 sectors = conf->dev_sectors; 3427 3428 size = sectors >> conf->geo.chunk_shift; 3429 sector_div(size, conf->geo.far_copies); 3430 size = size * raid_disks; 3431 sector_div(size, conf->geo.near_copies); 3432 3433 return size << conf->geo.chunk_shift; 3434 } 3435 3436 static void calc_sectors(struct r10conf *conf, sector_t size) 3437 { 3438 /* Calculate the number of sectors-per-device that will 3439 * actually be used, and set conf->dev_sectors and 3440 * conf->stride 3441 */ 3442 3443 size = size >> conf->geo.chunk_shift; 3444 sector_div(size, conf->geo.far_copies); 3445 size = size * conf->geo.raid_disks; 3446 sector_div(size, conf->geo.near_copies); 3447 /* 'size' is now the number of chunks in the array */ 3448 /* calculate "used chunks per device" */ 3449 size = size * conf->copies; 3450 3451 /* We need to round up when dividing by raid_disks to 3452 * get the stride size. 3453 */ 3454 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3455 3456 conf->dev_sectors = size << conf->geo.chunk_shift; 3457 3458 if (conf->geo.far_offset) 3459 conf->geo.stride = 1 << conf->geo.chunk_shift; 3460 else { 3461 sector_div(size, conf->geo.far_copies); 3462 conf->geo.stride = size << conf->geo.chunk_shift; 3463 } 3464 } 3465 3466 enum geo_type {geo_new, geo_old, geo_start}; 3467 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3468 { 3469 int nc, fc, fo; 3470 int layout, chunk, disks; 3471 switch (new) { 3472 case geo_old: 3473 layout = mddev->layout; 3474 chunk = mddev->chunk_sectors; 3475 disks = mddev->raid_disks - mddev->delta_disks; 3476 break; 3477 case geo_new: 3478 layout = mddev->new_layout; 3479 chunk = mddev->new_chunk_sectors; 3480 disks = mddev->raid_disks; 3481 break; 3482 default: /* avoid 'may be unused' warnings */ 3483 case geo_start: /* new when starting reshape - raid_disks not 3484 * updated yet. */ 3485 layout = mddev->new_layout; 3486 chunk = mddev->new_chunk_sectors; 3487 disks = mddev->raid_disks + mddev->delta_disks; 3488 break; 3489 } 3490 if (layout >> 18) 3491 return -1; 3492 if (chunk < (PAGE_SIZE >> 9) || 3493 !is_power_of_2(chunk)) 3494 return -2; 3495 nc = layout & 255; 3496 fc = (layout >> 8) & 255; 3497 fo = layout & (1<<16); 3498 geo->raid_disks = disks; 3499 geo->near_copies = nc; 3500 geo->far_copies = fc; 3501 geo->far_offset = fo; 3502 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3503 geo->chunk_mask = chunk - 1; 3504 geo->chunk_shift = ffz(~chunk); 3505 return nc*fc; 3506 } 3507 3508 static struct r10conf *setup_conf(struct mddev *mddev) 3509 { 3510 struct r10conf *conf = NULL; 3511 int err = -EINVAL; 3512 struct geom geo; 3513 int copies; 3514 3515 copies = setup_geo(&geo, mddev, geo_new); 3516 3517 if (copies == -2) { 3518 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3519 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3520 mdname(mddev), PAGE_SIZE); 3521 goto out; 3522 } 3523 3524 if (copies < 2 || copies > mddev->raid_disks) { 3525 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3526 mdname(mddev), mddev->new_layout); 3527 goto out; 3528 } 3529 3530 err = -ENOMEM; 3531 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3532 if (!conf) 3533 goto out; 3534 3535 /* FIXME calc properly */ 3536 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3537 max(0,-mddev->delta_disks)), 3538 GFP_KERNEL); 3539 if (!conf->mirrors) 3540 goto out; 3541 3542 conf->tmppage = alloc_page(GFP_KERNEL); 3543 if (!conf->tmppage) 3544 goto out; 3545 3546 conf->geo = geo; 3547 conf->copies = copies; 3548 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3549 r10bio_pool_free, conf); 3550 if (!conf->r10bio_pool) 3551 goto out; 3552 3553 calc_sectors(conf, mddev->dev_sectors); 3554 if (mddev->reshape_position == MaxSector) { 3555 conf->prev = conf->geo; 3556 conf->reshape_progress = MaxSector; 3557 } else { 3558 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3559 err = -EINVAL; 3560 goto out; 3561 } 3562 conf->reshape_progress = mddev->reshape_position; 3563 if (conf->prev.far_offset) 3564 conf->prev.stride = 1 << conf->prev.chunk_shift; 3565 else 3566 /* far_copies must be 1 */ 3567 conf->prev.stride = conf->dev_sectors; 3568 } 3569 spin_lock_init(&conf->device_lock); 3570 INIT_LIST_HEAD(&conf->retry_list); 3571 3572 spin_lock_init(&conf->resync_lock); 3573 init_waitqueue_head(&conf->wait_barrier); 3574 3575 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3576 if (!conf->thread) 3577 goto out; 3578 3579 conf->mddev = mddev; 3580 return conf; 3581 3582 out: 3583 if (err == -ENOMEM) 3584 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3585 mdname(mddev)); 3586 if (conf) { 3587 if (conf->r10bio_pool) 3588 mempool_destroy(conf->r10bio_pool); 3589 kfree(conf->mirrors); 3590 safe_put_page(conf->tmppage); 3591 kfree(conf); 3592 } 3593 return ERR_PTR(err); 3594 } 3595 3596 static int run(struct mddev *mddev) 3597 { 3598 struct r10conf *conf; 3599 int i, disk_idx, chunk_size; 3600 struct raid10_info *disk; 3601 struct md_rdev *rdev; 3602 sector_t size; 3603 sector_t min_offset_diff = 0; 3604 int first = 1; 3605 bool discard_supported = false; 3606 3607 if (mddev->private == NULL) { 3608 conf = setup_conf(mddev); 3609 if (IS_ERR(conf)) 3610 return PTR_ERR(conf); 3611 mddev->private = conf; 3612 } 3613 conf = mddev->private; 3614 if (!conf) 3615 goto out; 3616 3617 mddev->thread = conf->thread; 3618 conf->thread = NULL; 3619 3620 chunk_size = mddev->chunk_sectors << 9; 3621 if (mddev->queue) { 3622 blk_queue_max_discard_sectors(mddev->queue, 3623 mddev->chunk_sectors); 3624 blk_queue_max_write_same_sectors(mddev->queue, 0); 3625 blk_queue_io_min(mddev->queue, chunk_size); 3626 if (conf->geo.raid_disks % conf->geo.near_copies) 3627 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3628 else 3629 blk_queue_io_opt(mddev->queue, chunk_size * 3630 (conf->geo.raid_disks / conf->geo.near_copies)); 3631 } 3632 3633 rdev_for_each(rdev, mddev) { 3634 long long diff; 3635 struct request_queue *q; 3636 3637 disk_idx = rdev->raid_disk; 3638 if (disk_idx < 0) 3639 continue; 3640 if (disk_idx >= conf->geo.raid_disks && 3641 disk_idx >= conf->prev.raid_disks) 3642 continue; 3643 disk = conf->mirrors + disk_idx; 3644 3645 if (test_bit(Replacement, &rdev->flags)) { 3646 if (disk->replacement) 3647 goto out_free_conf; 3648 disk->replacement = rdev; 3649 } else { 3650 if (disk->rdev) 3651 goto out_free_conf; 3652 disk->rdev = rdev; 3653 } 3654 q = bdev_get_queue(rdev->bdev); 3655 if (q->merge_bvec_fn) 3656 mddev->merge_check_needed = 1; 3657 diff = (rdev->new_data_offset - rdev->data_offset); 3658 if (!mddev->reshape_backwards) 3659 diff = -diff; 3660 if (diff < 0) 3661 diff = 0; 3662 if (first || diff < min_offset_diff) 3663 min_offset_diff = diff; 3664 3665 if (mddev->gendisk) 3666 disk_stack_limits(mddev->gendisk, rdev->bdev, 3667 rdev->data_offset << 9); 3668 3669 disk->head_position = 0; 3670 3671 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3672 discard_supported = true; 3673 } 3674 3675 if (mddev->queue) { 3676 if (discard_supported) 3677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3678 mddev->queue); 3679 else 3680 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3681 mddev->queue); 3682 } 3683 /* need to check that every block has at least one working mirror */ 3684 if (!enough(conf, -1)) { 3685 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3686 mdname(mddev)); 3687 goto out_free_conf; 3688 } 3689 3690 if (conf->reshape_progress != MaxSector) { 3691 /* must ensure that shape change is supported */ 3692 if (conf->geo.far_copies != 1 && 3693 conf->geo.far_offset == 0) 3694 goto out_free_conf; 3695 if (conf->prev.far_copies != 1 && 3696 conf->prev.far_offset == 0) 3697 goto out_free_conf; 3698 } 3699 3700 mddev->degraded = 0; 3701 for (i = 0; 3702 i < conf->geo.raid_disks 3703 || i < conf->prev.raid_disks; 3704 i++) { 3705 3706 disk = conf->mirrors + i; 3707 3708 if (!disk->rdev && disk->replacement) { 3709 /* The replacement is all we have - use it */ 3710 disk->rdev = disk->replacement; 3711 disk->replacement = NULL; 3712 clear_bit(Replacement, &disk->rdev->flags); 3713 } 3714 3715 if (!disk->rdev || 3716 !test_bit(In_sync, &disk->rdev->flags)) { 3717 disk->head_position = 0; 3718 mddev->degraded++; 3719 if (disk->rdev && 3720 disk->rdev->saved_raid_disk < 0) 3721 conf->fullsync = 1; 3722 } 3723 disk->recovery_disabled = mddev->recovery_disabled - 1; 3724 } 3725 3726 if (mddev->recovery_cp != MaxSector) 3727 printk(KERN_NOTICE "md/raid10:%s: not clean" 3728 " -- starting background reconstruction\n", 3729 mdname(mddev)); 3730 printk(KERN_INFO 3731 "md/raid10:%s: active with %d out of %d devices\n", 3732 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3733 conf->geo.raid_disks); 3734 /* 3735 * Ok, everything is just fine now 3736 */ 3737 mddev->dev_sectors = conf->dev_sectors; 3738 size = raid10_size(mddev, 0, 0); 3739 md_set_array_sectors(mddev, size); 3740 mddev->resync_max_sectors = size; 3741 3742 if (mddev->queue) { 3743 int stripe = conf->geo.raid_disks * 3744 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3745 3746 /* Calculate max read-ahead size. 3747 * We need to readahead at least twice a whole stripe.... 3748 * maybe... 3749 */ 3750 stripe /= conf->geo.near_copies; 3751 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3752 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3753 } 3754 3755 if (md_integrity_register(mddev)) 3756 goto out_free_conf; 3757 3758 if (conf->reshape_progress != MaxSector) { 3759 unsigned long before_length, after_length; 3760 3761 before_length = ((1 << conf->prev.chunk_shift) * 3762 conf->prev.far_copies); 3763 after_length = ((1 << conf->geo.chunk_shift) * 3764 conf->geo.far_copies); 3765 3766 if (max(before_length, after_length) > min_offset_diff) { 3767 /* This cannot work */ 3768 printk("md/raid10: offset difference not enough to continue reshape\n"); 3769 goto out_free_conf; 3770 } 3771 conf->offset_diff = min_offset_diff; 3772 3773 conf->reshape_safe = conf->reshape_progress; 3774 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3775 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3776 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3777 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3778 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3779 "reshape"); 3780 } 3781 3782 return 0; 3783 3784 out_free_conf: 3785 md_unregister_thread(&mddev->thread); 3786 if (conf->r10bio_pool) 3787 mempool_destroy(conf->r10bio_pool); 3788 safe_put_page(conf->tmppage); 3789 kfree(conf->mirrors); 3790 kfree(conf); 3791 mddev->private = NULL; 3792 out: 3793 return -EIO; 3794 } 3795 3796 static void raid10_free(struct mddev *mddev, void *priv) 3797 { 3798 struct r10conf *conf = priv; 3799 3800 if (conf->r10bio_pool) 3801 mempool_destroy(conf->r10bio_pool); 3802 safe_put_page(conf->tmppage); 3803 kfree(conf->mirrors); 3804 kfree(conf->mirrors_old); 3805 kfree(conf->mirrors_new); 3806 kfree(conf); 3807 } 3808 3809 static void raid10_quiesce(struct mddev *mddev, int state) 3810 { 3811 struct r10conf *conf = mddev->private; 3812 3813 switch(state) { 3814 case 1: 3815 raise_barrier(conf, 0); 3816 break; 3817 case 0: 3818 lower_barrier(conf); 3819 break; 3820 } 3821 } 3822 3823 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3824 { 3825 /* Resize of 'far' arrays is not supported. 3826 * For 'near' and 'offset' arrays we can set the 3827 * number of sectors used to be an appropriate multiple 3828 * of the chunk size. 3829 * For 'offset', this is far_copies*chunksize. 3830 * For 'near' the multiplier is the LCM of 3831 * near_copies and raid_disks. 3832 * So if far_copies > 1 && !far_offset, fail. 3833 * Else find LCM(raid_disks, near_copy)*far_copies and 3834 * multiply by chunk_size. Then round to this number. 3835 * This is mostly done by raid10_size() 3836 */ 3837 struct r10conf *conf = mddev->private; 3838 sector_t oldsize, size; 3839 3840 if (mddev->reshape_position != MaxSector) 3841 return -EBUSY; 3842 3843 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3844 return -EINVAL; 3845 3846 oldsize = raid10_size(mddev, 0, 0); 3847 size = raid10_size(mddev, sectors, 0); 3848 if (mddev->external_size && 3849 mddev->array_sectors > size) 3850 return -EINVAL; 3851 if (mddev->bitmap) { 3852 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3853 if (ret) 3854 return ret; 3855 } 3856 md_set_array_sectors(mddev, size); 3857 set_capacity(mddev->gendisk, mddev->array_sectors); 3858 revalidate_disk(mddev->gendisk); 3859 if (sectors > mddev->dev_sectors && 3860 mddev->recovery_cp > oldsize) { 3861 mddev->recovery_cp = oldsize; 3862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3863 } 3864 calc_sectors(conf, sectors); 3865 mddev->dev_sectors = conf->dev_sectors; 3866 mddev->resync_max_sectors = size; 3867 return 0; 3868 } 3869 3870 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3871 { 3872 struct md_rdev *rdev; 3873 struct r10conf *conf; 3874 3875 if (mddev->degraded > 0) { 3876 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3877 mdname(mddev)); 3878 return ERR_PTR(-EINVAL); 3879 } 3880 sector_div(size, devs); 3881 3882 /* Set new parameters */ 3883 mddev->new_level = 10; 3884 /* new layout: far_copies = 1, near_copies = 2 */ 3885 mddev->new_layout = (1<<8) + 2; 3886 mddev->new_chunk_sectors = mddev->chunk_sectors; 3887 mddev->delta_disks = mddev->raid_disks; 3888 mddev->raid_disks *= 2; 3889 /* make sure it will be not marked as dirty */ 3890 mddev->recovery_cp = MaxSector; 3891 mddev->dev_sectors = size; 3892 3893 conf = setup_conf(mddev); 3894 if (!IS_ERR(conf)) { 3895 rdev_for_each(rdev, mddev) 3896 if (rdev->raid_disk >= 0) { 3897 rdev->new_raid_disk = rdev->raid_disk * 2; 3898 rdev->sectors = size; 3899 } 3900 conf->barrier = 1; 3901 } 3902 3903 return conf; 3904 } 3905 3906 static void *raid10_takeover(struct mddev *mddev) 3907 { 3908 struct r0conf *raid0_conf; 3909 3910 /* raid10 can take over: 3911 * raid0 - providing it has only two drives 3912 */ 3913 if (mddev->level == 0) { 3914 /* for raid0 takeover only one zone is supported */ 3915 raid0_conf = mddev->private; 3916 if (raid0_conf->nr_strip_zones > 1) { 3917 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3918 " with more than one zone.\n", 3919 mdname(mddev)); 3920 return ERR_PTR(-EINVAL); 3921 } 3922 return raid10_takeover_raid0(mddev, 3923 raid0_conf->strip_zone->zone_end, 3924 raid0_conf->strip_zone->nb_dev); 3925 } 3926 return ERR_PTR(-EINVAL); 3927 } 3928 3929 static int raid10_check_reshape(struct mddev *mddev) 3930 { 3931 /* Called when there is a request to change 3932 * - layout (to ->new_layout) 3933 * - chunk size (to ->new_chunk_sectors) 3934 * - raid_disks (by delta_disks) 3935 * or when trying to restart a reshape that was ongoing. 3936 * 3937 * We need to validate the request and possibly allocate 3938 * space if that might be an issue later. 3939 * 3940 * Currently we reject any reshape of a 'far' mode array, 3941 * allow chunk size to change if new is generally acceptable, 3942 * allow raid_disks to increase, and allow 3943 * a switch between 'near' mode and 'offset' mode. 3944 */ 3945 struct r10conf *conf = mddev->private; 3946 struct geom geo; 3947 3948 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3949 return -EINVAL; 3950 3951 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3952 /* mustn't change number of copies */ 3953 return -EINVAL; 3954 if (geo.far_copies > 1 && !geo.far_offset) 3955 /* Cannot switch to 'far' mode */ 3956 return -EINVAL; 3957 3958 if (mddev->array_sectors & geo.chunk_mask) 3959 /* not factor of array size */ 3960 return -EINVAL; 3961 3962 if (!enough(conf, -1)) 3963 return -EINVAL; 3964 3965 kfree(conf->mirrors_new); 3966 conf->mirrors_new = NULL; 3967 if (mddev->delta_disks > 0) { 3968 /* allocate new 'mirrors' list */ 3969 conf->mirrors_new = kzalloc( 3970 sizeof(struct raid10_info) 3971 *(mddev->raid_disks + 3972 mddev->delta_disks), 3973 GFP_KERNEL); 3974 if (!conf->mirrors_new) 3975 return -ENOMEM; 3976 } 3977 return 0; 3978 } 3979 3980 /* 3981 * Need to check if array has failed when deciding whether to: 3982 * - start an array 3983 * - remove non-faulty devices 3984 * - add a spare 3985 * - allow a reshape 3986 * This determination is simple when no reshape is happening. 3987 * However if there is a reshape, we need to carefully check 3988 * both the before and after sections. 3989 * This is because some failed devices may only affect one 3990 * of the two sections, and some non-in_sync devices may 3991 * be insync in the section most affected by failed devices. 3992 */ 3993 static int calc_degraded(struct r10conf *conf) 3994 { 3995 int degraded, degraded2; 3996 int i; 3997 3998 rcu_read_lock(); 3999 degraded = 0; 4000 /* 'prev' section first */ 4001 for (i = 0; i < conf->prev.raid_disks; i++) { 4002 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4003 if (!rdev || test_bit(Faulty, &rdev->flags)) 4004 degraded++; 4005 else if (!test_bit(In_sync, &rdev->flags)) 4006 /* When we can reduce the number of devices in 4007 * an array, this might not contribute to 4008 * 'degraded'. It does now. 4009 */ 4010 degraded++; 4011 } 4012 rcu_read_unlock(); 4013 if (conf->geo.raid_disks == conf->prev.raid_disks) 4014 return degraded; 4015 rcu_read_lock(); 4016 degraded2 = 0; 4017 for (i = 0; i < conf->geo.raid_disks; i++) { 4018 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4019 if (!rdev || test_bit(Faulty, &rdev->flags)) 4020 degraded2++; 4021 else if (!test_bit(In_sync, &rdev->flags)) { 4022 /* If reshape is increasing the number of devices, 4023 * this section has already been recovered, so 4024 * it doesn't contribute to degraded. 4025 * else it does. 4026 */ 4027 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4028 degraded2++; 4029 } 4030 } 4031 rcu_read_unlock(); 4032 if (degraded2 > degraded) 4033 return degraded2; 4034 return degraded; 4035 } 4036 4037 static int raid10_start_reshape(struct mddev *mddev) 4038 { 4039 /* A 'reshape' has been requested. This commits 4040 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4041 * This also checks if there are enough spares and adds them 4042 * to the array. 4043 * We currently require enough spares to make the final 4044 * array non-degraded. We also require that the difference 4045 * between old and new data_offset - on each device - is 4046 * enough that we never risk over-writing. 4047 */ 4048 4049 unsigned long before_length, after_length; 4050 sector_t min_offset_diff = 0; 4051 int first = 1; 4052 struct geom new; 4053 struct r10conf *conf = mddev->private; 4054 struct md_rdev *rdev; 4055 int spares = 0; 4056 int ret; 4057 4058 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4059 return -EBUSY; 4060 4061 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4062 return -EINVAL; 4063 4064 before_length = ((1 << conf->prev.chunk_shift) * 4065 conf->prev.far_copies); 4066 after_length = ((1 << conf->geo.chunk_shift) * 4067 conf->geo.far_copies); 4068 4069 rdev_for_each(rdev, mddev) { 4070 if (!test_bit(In_sync, &rdev->flags) 4071 && !test_bit(Faulty, &rdev->flags)) 4072 spares++; 4073 if (rdev->raid_disk >= 0) { 4074 long long diff = (rdev->new_data_offset 4075 - rdev->data_offset); 4076 if (!mddev->reshape_backwards) 4077 diff = -diff; 4078 if (diff < 0) 4079 diff = 0; 4080 if (first || diff < min_offset_diff) 4081 min_offset_diff = diff; 4082 } 4083 } 4084 4085 if (max(before_length, after_length) > min_offset_diff) 4086 return -EINVAL; 4087 4088 if (spares < mddev->delta_disks) 4089 return -EINVAL; 4090 4091 conf->offset_diff = min_offset_diff; 4092 spin_lock_irq(&conf->device_lock); 4093 if (conf->mirrors_new) { 4094 memcpy(conf->mirrors_new, conf->mirrors, 4095 sizeof(struct raid10_info)*conf->prev.raid_disks); 4096 smp_mb(); 4097 kfree(conf->mirrors_old); 4098 conf->mirrors_old = conf->mirrors; 4099 conf->mirrors = conf->mirrors_new; 4100 conf->mirrors_new = NULL; 4101 } 4102 setup_geo(&conf->geo, mddev, geo_start); 4103 smp_mb(); 4104 if (mddev->reshape_backwards) { 4105 sector_t size = raid10_size(mddev, 0, 0); 4106 if (size < mddev->array_sectors) { 4107 spin_unlock_irq(&conf->device_lock); 4108 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4109 mdname(mddev)); 4110 return -EINVAL; 4111 } 4112 mddev->resync_max_sectors = size; 4113 conf->reshape_progress = size; 4114 } else 4115 conf->reshape_progress = 0; 4116 spin_unlock_irq(&conf->device_lock); 4117 4118 if (mddev->delta_disks && mddev->bitmap) { 4119 ret = bitmap_resize(mddev->bitmap, 4120 raid10_size(mddev, 0, 4121 conf->geo.raid_disks), 4122 0, 0); 4123 if (ret) 4124 goto abort; 4125 } 4126 if (mddev->delta_disks > 0) { 4127 rdev_for_each(rdev, mddev) 4128 if (rdev->raid_disk < 0 && 4129 !test_bit(Faulty, &rdev->flags)) { 4130 if (raid10_add_disk(mddev, rdev) == 0) { 4131 if (rdev->raid_disk >= 4132 conf->prev.raid_disks) 4133 set_bit(In_sync, &rdev->flags); 4134 else 4135 rdev->recovery_offset = 0; 4136 4137 if (sysfs_link_rdev(mddev, rdev)) 4138 /* Failure here is OK */; 4139 } 4140 } else if (rdev->raid_disk >= conf->prev.raid_disks 4141 && !test_bit(Faulty, &rdev->flags)) { 4142 /* This is a spare that was manually added */ 4143 set_bit(In_sync, &rdev->flags); 4144 } 4145 } 4146 /* When a reshape changes the number of devices, 4147 * ->degraded is measured against the larger of the 4148 * pre and post numbers. 4149 */ 4150 spin_lock_irq(&conf->device_lock); 4151 mddev->degraded = calc_degraded(conf); 4152 spin_unlock_irq(&conf->device_lock); 4153 mddev->raid_disks = conf->geo.raid_disks; 4154 mddev->reshape_position = conf->reshape_progress; 4155 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4156 4157 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4158 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4159 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4160 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4161 4162 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4163 "reshape"); 4164 if (!mddev->sync_thread) { 4165 ret = -EAGAIN; 4166 goto abort; 4167 } 4168 conf->reshape_checkpoint = jiffies; 4169 md_wakeup_thread(mddev->sync_thread); 4170 md_new_event(mddev); 4171 return 0; 4172 4173 abort: 4174 mddev->recovery = 0; 4175 spin_lock_irq(&conf->device_lock); 4176 conf->geo = conf->prev; 4177 mddev->raid_disks = conf->geo.raid_disks; 4178 rdev_for_each(rdev, mddev) 4179 rdev->new_data_offset = rdev->data_offset; 4180 smp_wmb(); 4181 conf->reshape_progress = MaxSector; 4182 mddev->reshape_position = MaxSector; 4183 spin_unlock_irq(&conf->device_lock); 4184 return ret; 4185 } 4186 4187 /* Calculate the last device-address that could contain 4188 * any block from the chunk that includes the array-address 's' 4189 * and report the next address. 4190 * i.e. the address returned will be chunk-aligned and after 4191 * any data that is in the chunk containing 's'. 4192 */ 4193 static sector_t last_dev_address(sector_t s, struct geom *geo) 4194 { 4195 s = (s | geo->chunk_mask) + 1; 4196 s >>= geo->chunk_shift; 4197 s *= geo->near_copies; 4198 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4199 s *= geo->far_copies; 4200 s <<= geo->chunk_shift; 4201 return s; 4202 } 4203 4204 /* Calculate the first device-address that could contain 4205 * any block from the chunk that includes the array-address 's'. 4206 * This too will be the start of a chunk 4207 */ 4208 static sector_t first_dev_address(sector_t s, struct geom *geo) 4209 { 4210 s >>= geo->chunk_shift; 4211 s *= geo->near_copies; 4212 sector_div(s, geo->raid_disks); 4213 s *= geo->far_copies; 4214 s <<= geo->chunk_shift; 4215 return s; 4216 } 4217 4218 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4219 int *skipped) 4220 { 4221 /* We simply copy at most one chunk (smallest of old and new) 4222 * at a time, possibly less if that exceeds RESYNC_PAGES, 4223 * or we hit a bad block or something. 4224 * This might mean we pause for normal IO in the middle of 4225 * a chunk, but that is not a problem was mddev->reshape_position 4226 * can record any location. 4227 * 4228 * If we will want to write to a location that isn't 4229 * yet recorded as 'safe' (i.e. in metadata on disk) then 4230 * we need to flush all reshape requests and update the metadata. 4231 * 4232 * When reshaping forwards (e.g. to more devices), we interpret 4233 * 'safe' as the earliest block which might not have been copied 4234 * down yet. We divide this by previous stripe size and multiply 4235 * by previous stripe length to get lowest device offset that we 4236 * cannot write to yet. 4237 * We interpret 'sector_nr' as an address that we want to write to. 4238 * From this we use last_device_address() to find where we might 4239 * write to, and first_device_address on the 'safe' position. 4240 * If this 'next' write position is after the 'safe' position, 4241 * we must update the metadata to increase the 'safe' position. 4242 * 4243 * When reshaping backwards, we round in the opposite direction 4244 * and perform the reverse test: next write position must not be 4245 * less than current safe position. 4246 * 4247 * In all this the minimum difference in data offsets 4248 * (conf->offset_diff - always positive) allows a bit of slack, 4249 * so next can be after 'safe', but not by more than offset_disk 4250 * 4251 * We need to prepare all the bios here before we start any IO 4252 * to ensure the size we choose is acceptable to all devices. 4253 * The means one for each copy for write-out and an extra one for 4254 * read-in. 4255 * We store the read-in bio in ->master_bio and the others in 4256 * ->devs[x].bio and ->devs[x].repl_bio. 4257 */ 4258 struct r10conf *conf = mddev->private; 4259 struct r10bio *r10_bio; 4260 sector_t next, safe, last; 4261 int max_sectors; 4262 int nr_sectors; 4263 int s; 4264 struct md_rdev *rdev; 4265 int need_flush = 0; 4266 struct bio *blist; 4267 struct bio *bio, *read_bio; 4268 int sectors_done = 0; 4269 4270 if (sector_nr == 0) { 4271 /* If restarting in the middle, skip the initial sectors */ 4272 if (mddev->reshape_backwards && 4273 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4274 sector_nr = (raid10_size(mddev, 0, 0) 4275 - conf->reshape_progress); 4276 } else if (!mddev->reshape_backwards && 4277 conf->reshape_progress > 0) 4278 sector_nr = conf->reshape_progress; 4279 if (sector_nr) { 4280 mddev->curr_resync_completed = sector_nr; 4281 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4282 *skipped = 1; 4283 return sector_nr; 4284 } 4285 } 4286 4287 /* We don't use sector_nr to track where we are up to 4288 * as that doesn't work well for ->reshape_backwards. 4289 * So just use ->reshape_progress. 4290 */ 4291 if (mddev->reshape_backwards) { 4292 /* 'next' is the earliest device address that we might 4293 * write to for this chunk in the new layout 4294 */ 4295 next = first_dev_address(conf->reshape_progress - 1, 4296 &conf->geo); 4297 4298 /* 'safe' is the last device address that we might read from 4299 * in the old layout after a restart 4300 */ 4301 safe = last_dev_address(conf->reshape_safe - 1, 4302 &conf->prev); 4303 4304 if (next + conf->offset_diff < safe) 4305 need_flush = 1; 4306 4307 last = conf->reshape_progress - 1; 4308 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4309 & conf->prev.chunk_mask); 4310 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4311 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4312 } else { 4313 /* 'next' is after the last device address that we 4314 * might write to for this chunk in the new layout 4315 */ 4316 next = last_dev_address(conf->reshape_progress, &conf->geo); 4317 4318 /* 'safe' is the earliest device address that we might 4319 * read from in the old layout after a restart 4320 */ 4321 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4322 4323 /* Need to update metadata if 'next' might be beyond 'safe' 4324 * as that would possibly corrupt data 4325 */ 4326 if (next > safe + conf->offset_diff) 4327 need_flush = 1; 4328 4329 sector_nr = conf->reshape_progress; 4330 last = sector_nr | (conf->geo.chunk_mask 4331 & conf->prev.chunk_mask); 4332 4333 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4334 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4335 } 4336 4337 if (need_flush || 4338 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4339 /* Need to update reshape_position in metadata */ 4340 wait_barrier(conf); 4341 mddev->reshape_position = conf->reshape_progress; 4342 if (mddev->reshape_backwards) 4343 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4344 - conf->reshape_progress; 4345 else 4346 mddev->curr_resync_completed = conf->reshape_progress; 4347 conf->reshape_checkpoint = jiffies; 4348 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4349 md_wakeup_thread(mddev->thread); 4350 wait_event(mddev->sb_wait, mddev->flags == 0 || 4351 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4352 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4353 allow_barrier(conf); 4354 return sectors_done; 4355 } 4356 conf->reshape_safe = mddev->reshape_position; 4357 allow_barrier(conf); 4358 } 4359 4360 read_more: 4361 /* Now schedule reads for blocks from sector_nr to last */ 4362 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4363 r10_bio->state = 0; 4364 raise_barrier(conf, sectors_done != 0); 4365 atomic_set(&r10_bio->remaining, 0); 4366 r10_bio->mddev = mddev; 4367 r10_bio->sector = sector_nr; 4368 set_bit(R10BIO_IsReshape, &r10_bio->state); 4369 r10_bio->sectors = last - sector_nr + 1; 4370 rdev = read_balance(conf, r10_bio, &max_sectors); 4371 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4372 4373 if (!rdev) { 4374 /* Cannot read from here, so need to record bad blocks 4375 * on all the target devices. 4376 */ 4377 // FIXME 4378 mempool_free(r10_bio, conf->r10buf_pool); 4379 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4380 return sectors_done; 4381 } 4382 4383 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4384 4385 read_bio->bi_bdev = rdev->bdev; 4386 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4387 + rdev->data_offset); 4388 read_bio->bi_private = r10_bio; 4389 read_bio->bi_end_io = end_sync_read; 4390 read_bio->bi_rw = READ; 4391 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4392 __set_bit(BIO_UPTODATE, &read_bio->bi_flags); 4393 read_bio->bi_vcnt = 0; 4394 read_bio->bi_iter.bi_size = 0; 4395 r10_bio->master_bio = read_bio; 4396 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4397 4398 /* Now find the locations in the new layout */ 4399 __raid10_find_phys(&conf->geo, r10_bio); 4400 4401 blist = read_bio; 4402 read_bio->bi_next = NULL; 4403 4404 for (s = 0; s < conf->copies*2; s++) { 4405 struct bio *b; 4406 int d = r10_bio->devs[s/2].devnum; 4407 struct md_rdev *rdev2; 4408 if (s&1) { 4409 rdev2 = conf->mirrors[d].replacement; 4410 b = r10_bio->devs[s/2].repl_bio; 4411 } else { 4412 rdev2 = conf->mirrors[d].rdev; 4413 b = r10_bio->devs[s/2].bio; 4414 } 4415 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4416 continue; 4417 4418 bio_reset(b); 4419 b->bi_bdev = rdev2->bdev; 4420 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4421 rdev2->new_data_offset; 4422 b->bi_private = r10_bio; 4423 b->bi_end_io = end_reshape_write; 4424 b->bi_rw = WRITE; 4425 b->bi_next = blist; 4426 blist = b; 4427 } 4428 4429 /* Now add as many pages as possible to all of these bios. */ 4430 4431 nr_sectors = 0; 4432 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4433 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4434 int len = (max_sectors - s) << 9; 4435 if (len > PAGE_SIZE) 4436 len = PAGE_SIZE; 4437 for (bio = blist; bio ; bio = bio->bi_next) { 4438 struct bio *bio2; 4439 if (bio_add_page(bio, page, len, 0)) 4440 continue; 4441 4442 /* Didn't fit, must stop */ 4443 for (bio2 = blist; 4444 bio2 && bio2 != bio; 4445 bio2 = bio2->bi_next) { 4446 /* Remove last page from this bio */ 4447 bio2->bi_vcnt--; 4448 bio2->bi_iter.bi_size -= len; 4449 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags); 4450 } 4451 goto bio_full; 4452 } 4453 sector_nr += len >> 9; 4454 nr_sectors += len >> 9; 4455 } 4456 bio_full: 4457 r10_bio->sectors = nr_sectors; 4458 4459 /* Now submit the read */ 4460 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4461 atomic_inc(&r10_bio->remaining); 4462 read_bio->bi_next = NULL; 4463 generic_make_request(read_bio); 4464 sector_nr += nr_sectors; 4465 sectors_done += nr_sectors; 4466 if (sector_nr <= last) 4467 goto read_more; 4468 4469 /* Now that we have done the whole section we can 4470 * update reshape_progress 4471 */ 4472 if (mddev->reshape_backwards) 4473 conf->reshape_progress -= sectors_done; 4474 else 4475 conf->reshape_progress += sectors_done; 4476 4477 return sectors_done; 4478 } 4479 4480 static void end_reshape_request(struct r10bio *r10_bio); 4481 static int handle_reshape_read_error(struct mddev *mddev, 4482 struct r10bio *r10_bio); 4483 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4484 { 4485 /* Reshape read completed. Hopefully we have a block 4486 * to write out. 4487 * If we got a read error then we do sync 1-page reads from 4488 * elsewhere until we find the data - or give up. 4489 */ 4490 struct r10conf *conf = mddev->private; 4491 int s; 4492 4493 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4494 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4495 /* Reshape has been aborted */ 4496 md_done_sync(mddev, r10_bio->sectors, 0); 4497 return; 4498 } 4499 4500 /* We definitely have the data in the pages, schedule the 4501 * writes. 4502 */ 4503 atomic_set(&r10_bio->remaining, 1); 4504 for (s = 0; s < conf->copies*2; s++) { 4505 struct bio *b; 4506 int d = r10_bio->devs[s/2].devnum; 4507 struct md_rdev *rdev; 4508 if (s&1) { 4509 rdev = conf->mirrors[d].replacement; 4510 b = r10_bio->devs[s/2].repl_bio; 4511 } else { 4512 rdev = conf->mirrors[d].rdev; 4513 b = r10_bio->devs[s/2].bio; 4514 } 4515 if (!rdev || test_bit(Faulty, &rdev->flags)) 4516 continue; 4517 atomic_inc(&rdev->nr_pending); 4518 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4519 atomic_inc(&r10_bio->remaining); 4520 b->bi_next = NULL; 4521 generic_make_request(b); 4522 } 4523 end_reshape_request(r10_bio); 4524 } 4525 4526 static void end_reshape(struct r10conf *conf) 4527 { 4528 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4529 return; 4530 4531 spin_lock_irq(&conf->device_lock); 4532 conf->prev = conf->geo; 4533 md_finish_reshape(conf->mddev); 4534 smp_wmb(); 4535 conf->reshape_progress = MaxSector; 4536 spin_unlock_irq(&conf->device_lock); 4537 4538 /* read-ahead size must cover two whole stripes, which is 4539 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4540 */ 4541 if (conf->mddev->queue) { 4542 int stripe = conf->geo.raid_disks * 4543 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4544 stripe /= conf->geo.near_copies; 4545 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4546 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4547 } 4548 conf->fullsync = 0; 4549 } 4550 4551 static int handle_reshape_read_error(struct mddev *mddev, 4552 struct r10bio *r10_bio) 4553 { 4554 /* Use sync reads to get the blocks from somewhere else */ 4555 int sectors = r10_bio->sectors; 4556 struct r10conf *conf = mddev->private; 4557 struct { 4558 struct r10bio r10_bio; 4559 struct r10dev devs[conf->copies]; 4560 } on_stack; 4561 struct r10bio *r10b = &on_stack.r10_bio; 4562 int slot = 0; 4563 int idx = 0; 4564 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4565 4566 r10b->sector = r10_bio->sector; 4567 __raid10_find_phys(&conf->prev, r10b); 4568 4569 while (sectors) { 4570 int s = sectors; 4571 int success = 0; 4572 int first_slot = slot; 4573 4574 if (s > (PAGE_SIZE >> 9)) 4575 s = PAGE_SIZE >> 9; 4576 4577 while (!success) { 4578 int d = r10b->devs[slot].devnum; 4579 struct md_rdev *rdev = conf->mirrors[d].rdev; 4580 sector_t addr; 4581 if (rdev == NULL || 4582 test_bit(Faulty, &rdev->flags) || 4583 !test_bit(In_sync, &rdev->flags)) 4584 goto failed; 4585 4586 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4587 success = sync_page_io(rdev, 4588 addr, 4589 s << 9, 4590 bvec[idx].bv_page, 4591 READ, false); 4592 if (success) 4593 break; 4594 failed: 4595 slot++; 4596 if (slot >= conf->copies) 4597 slot = 0; 4598 if (slot == first_slot) 4599 break; 4600 } 4601 if (!success) { 4602 /* couldn't read this block, must give up */ 4603 set_bit(MD_RECOVERY_INTR, 4604 &mddev->recovery); 4605 return -EIO; 4606 } 4607 sectors -= s; 4608 idx++; 4609 } 4610 return 0; 4611 } 4612 4613 static void end_reshape_write(struct bio *bio, int error) 4614 { 4615 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4616 struct r10bio *r10_bio = bio->bi_private; 4617 struct mddev *mddev = r10_bio->mddev; 4618 struct r10conf *conf = mddev->private; 4619 int d; 4620 int slot; 4621 int repl; 4622 struct md_rdev *rdev = NULL; 4623 4624 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4625 if (repl) 4626 rdev = conf->mirrors[d].replacement; 4627 if (!rdev) { 4628 smp_mb(); 4629 rdev = conf->mirrors[d].rdev; 4630 } 4631 4632 if (!uptodate) { 4633 /* FIXME should record badblock */ 4634 md_error(mddev, rdev); 4635 } 4636 4637 rdev_dec_pending(rdev, mddev); 4638 end_reshape_request(r10_bio); 4639 } 4640 4641 static void end_reshape_request(struct r10bio *r10_bio) 4642 { 4643 if (!atomic_dec_and_test(&r10_bio->remaining)) 4644 return; 4645 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4646 bio_put(r10_bio->master_bio); 4647 put_buf(r10_bio); 4648 } 4649 4650 static void raid10_finish_reshape(struct mddev *mddev) 4651 { 4652 struct r10conf *conf = mddev->private; 4653 4654 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4655 return; 4656 4657 if (mddev->delta_disks > 0) { 4658 sector_t size = raid10_size(mddev, 0, 0); 4659 md_set_array_sectors(mddev, size); 4660 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4661 mddev->recovery_cp = mddev->resync_max_sectors; 4662 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4663 } 4664 mddev->resync_max_sectors = size; 4665 set_capacity(mddev->gendisk, mddev->array_sectors); 4666 revalidate_disk(mddev->gendisk); 4667 } else { 4668 int d; 4669 for (d = conf->geo.raid_disks ; 4670 d < conf->geo.raid_disks - mddev->delta_disks; 4671 d++) { 4672 struct md_rdev *rdev = conf->mirrors[d].rdev; 4673 if (rdev) 4674 clear_bit(In_sync, &rdev->flags); 4675 rdev = conf->mirrors[d].replacement; 4676 if (rdev) 4677 clear_bit(In_sync, &rdev->flags); 4678 } 4679 } 4680 mddev->layout = mddev->new_layout; 4681 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4682 mddev->reshape_position = MaxSector; 4683 mddev->delta_disks = 0; 4684 mddev->reshape_backwards = 0; 4685 } 4686 4687 static struct md_personality raid10_personality = 4688 { 4689 .name = "raid10", 4690 .level = 10, 4691 .owner = THIS_MODULE, 4692 .make_request = make_request, 4693 .run = run, 4694 .free = raid10_free, 4695 .status = status, 4696 .error_handler = error, 4697 .hot_add_disk = raid10_add_disk, 4698 .hot_remove_disk= raid10_remove_disk, 4699 .spare_active = raid10_spare_active, 4700 .sync_request = sync_request, 4701 .quiesce = raid10_quiesce, 4702 .size = raid10_size, 4703 .resize = raid10_resize, 4704 .takeover = raid10_takeover, 4705 .check_reshape = raid10_check_reshape, 4706 .start_reshape = raid10_start_reshape, 4707 .finish_reshape = raid10_finish_reshape, 4708 .congested = raid10_congested, 4709 .mergeable_bvec = raid10_mergeable_bvec, 4710 }; 4711 4712 static int __init raid_init(void) 4713 { 4714 return register_md_personality(&raid10_personality); 4715 } 4716 4717 static void raid_exit(void) 4718 { 4719 unregister_md_personality(&raid10_personality); 4720 } 4721 4722 module_init(raid_init); 4723 module_exit(raid_exit); 4724 MODULE_LICENSE("GPL"); 4725 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4726 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4727 MODULE_ALIAS("md-raid10"); 4728 MODULE_ALIAS("md-level-10"); 4729 4730 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4731