1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include "md.h" 28 #include "raid10.h" 29 #include "raid0.h" 30 #include "bitmap.h" 31 32 /* 33 * RAID10 provides a combination of RAID0 and RAID1 functionality. 34 * The layout of data is defined by 35 * chunk_size 36 * raid_disks 37 * near_copies (stored in low byte of layout) 38 * far_copies (stored in second byte of layout) 39 * far_offset (stored in bit 16 of layout ) 40 * 41 * The data to be stored is divided into chunks using chunksize. 42 * Each device is divided into far_copies sections. 43 * In each section, chunks are laid out in a style similar to raid0, but 44 * near_copies copies of each chunk is stored (each on a different drive). 45 * The starting device for each section is offset near_copies from the starting 46 * device of the previous section. 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 48 * drive. 49 * near_copies and far_copies must be at least one, and their product is at most 50 * raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of be very far apart 54 * on disk, there are adjacent stripes. 55 */ 56 57 /* 58 * Number of guaranteed r10bios in case of extreme VM load: 59 */ 60 #define NR_RAID10_BIOS 256 61 62 /* When there are this many requests queue to be written by 63 * the raid10 thread, we become 'congested' to provide back-pressure 64 * for writeback. 65 */ 66 static int max_queued_requests = 1024; 67 68 static void allow_barrier(struct r10conf *conf); 69 static void lower_barrier(struct r10conf *conf); 70 static int enough(struct r10conf *conf, int ignore); 71 72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct r10conf *conf = data; 75 int size = offsetof(struct r10bio, devs[conf->copies]); 76 77 /* allocate a r10bio with room for raid_disks entries in the 78 * bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r10bio_pool_free(void *r10_bio, void *data) 83 { 84 kfree(r10_bio); 85 } 86 87 /* Maximum size of each resync request */ 88 #define RESYNC_BLOCK_SIZE (64*1024) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 /* amount of memory to reserve for resync requests */ 91 #define RESYNC_WINDOW (1024*1024) 92 /* maximum number of concurrent requests, memory permitting */ 93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 94 95 /* 96 * When performing a resync, we need to read and compare, so 97 * we need as many pages are there are copies. 98 * When performing a recovery, we need 2 bios, one for read, 99 * one for write (we recover only one drive per r10buf) 100 * 101 */ 102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 103 { 104 struct r10conf *conf = data; 105 struct page *page; 106 struct r10bio *r10_bio; 107 struct bio *bio; 108 int i, j; 109 int nalloc; 110 111 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 112 if (!r10_bio) 113 return NULL; 114 115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 116 nalloc = conf->copies; /* resync */ 117 else 118 nalloc = 2; /* recovery */ 119 120 /* 121 * Allocate bios. 122 */ 123 for (j = nalloc ; j-- ; ) { 124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 125 if (!bio) 126 goto out_free_bio; 127 r10_bio->devs[j].bio = bio; 128 if (!conf->have_replacement) 129 continue; 130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 131 if (!bio) 132 goto out_free_bio; 133 r10_bio->devs[j].repl_bio = bio; 134 } 135 /* 136 * Allocate RESYNC_PAGES data pages and attach them 137 * where needed. 138 */ 139 for (j = 0 ; j < nalloc; j++) { 140 struct bio *rbio = r10_bio->devs[j].repl_bio; 141 bio = r10_bio->devs[j].bio; 142 for (i = 0; i < RESYNC_PAGES; i++) { 143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 144 &conf->mddev->recovery)) { 145 /* we can share bv_page's during recovery */ 146 struct bio *rbio = r10_bio->devs[0].bio; 147 page = rbio->bi_io_vec[i].bv_page; 148 get_page(page); 149 } else 150 page = alloc_page(gfp_flags); 151 if (unlikely(!page)) 152 goto out_free_pages; 153 154 bio->bi_io_vec[i].bv_page = page; 155 if (rbio) 156 rbio->bi_io_vec[i].bv_page = page; 157 } 158 } 159 160 return r10_bio; 161 162 out_free_pages: 163 for ( ; i > 0 ; i--) 164 safe_put_page(bio->bi_io_vec[i-1].bv_page); 165 while (j--) 166 for (i = 0; i < RESYNC_PAGES ; i++) 167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 168 j = -1; 169 out_free_bio: 170 while (++j < nalloc) { 171 bio_put(r10_bio->devs[j].bio); 172 if (r10_bio->devs[j].repl_bio) 173 bio_put(r10_bio->devs[j].repl_bio); 174 } 175 r10bio_pool_free(r10_bio, conf); 176 return NULL; 177 } 178 179 static void r10buf_pool_free(void *__r10_bio, void *data) 180 { 181 int i; 182 struct r10conf *conf = data; 183 struct r10bio *r10bio = __r10_bio; 184 int j; 185 186 for (j=0; j < conf->copies; j++) { 187 struct bio *bio = r10bio->devs[j].bio; 188 if (bio) { 189 for (i = 0; i < RESYNC_PAGES; i++) { 190 safe_put_page(bio->bi_io_vec[i].bv_page); 191 bio->bi_io_vec[i].bv_page = NULL; 192 } 193 bio_put(bio); 194 } 195 bio = r10bio->devs[j].repl_bio; 196 if (bio) 197 bio_put(bio); 198 } 199 r10bio_pool_free(r10bio, conf); 200 } 201 202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 203 { 204 int i; 205 206 for (i = 0; i < conf->copies; i++) { 207 struct bio **bio = & r10_bio->devs[i].bio; 208 if (!BIO_SPECIAL(*bio)) 209 bio_put(*bio); 210 *bio = NULL; 211 bio = &r10_bio->devs[i].repl_bio; 212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 213 bio_put(*bio); 214 *bio = NULL; 215 } 216 } 217 218 static void free_r10bio(struct r10bio *r10_bio) 219 { 220 struct r10conf *conf = r10_bio->mddev->private; 221 222 put_all_bios(conf, r10_bio); 223 mempool_free(r10_bio, conf->r10bio_pool); 224 } 225 226 static void put_buf(struct r10bio *r10_bio) 227 { 228 struct r10conf *conf = r10_bio->mddev->private; 229 230 mempool_free(r10_bio, conf->r10buf_pool); 231 232 lower_barrier(conf); 233 } 234 235 static void reschedule_retry(struct r10bio *r10_bio) 236 { 237 unsigned long flags; 238 struct mddev *mddev = r10_bio->mddev; 239 struct r10conf *conf = mddev->private; 240 241 spin_lock_irqsave(&conf->device_lock, flags); 242 list_add(&r10_bio->retry_list, &conf->retry_list); 243 conf->nr_queued ++; 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 246 /* wake up frozen array... */ 247 wake_up(&conf->wait_barrier); 248 249 md_wakeup_thread(mddev->thread); 250 } 251 252 /* 253 * raid_end_bio_io() is called when we have finished servicing a mirrored 254 * operation and are ready to return a success/failure code to the buffer 255 * cache layer. 256 */ 257 static void raid_end_bio_io(struct r10bio *r10_bio) 258 { 259 struct bio *bio = r10_bio->master_bio; 260 int done; 261 struct r10conf *conf = r10_bio->mddev->private; 262 263 if (bio->bi_phys_segments) { 264 unsigned long flags; 265 spin_lock_irqsave(&conf->device_lock, flags); 266 bio->bi_phys_segments--; 267 done = (bio->bi_phys_segments == 0); 268 spin_unlock_irqrestore(&conf->device_lock, flags); 269 } else 270 done = 1; 271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 272 clear_bit(BIO_UPTODATE, &bio->bi_flags); 273 if (done) { 274 bio_endio(bio, 0); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf); 280 } 281 free_r10bio(r10_bio); 282 } 283 284 /* 285 * Update disk head position estimator based on IRQ completion info. 286 */ 287 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 288 { 289 struct r10conf *conf = r10_bio->mddev->private; 290 291 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 292 r10_bio->devs[slot].addr + (r10_bio->sectors); 293 } 294 295 /* 296 * Find the disk number which triggered given bio 297 */ 298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 299 struct bio *bio, int *slotp, int *replp) 300 { 301 int slot; 302 int repl = 0; 303 304 for (slot = 0; slot < conf->copies; slot++) { 305 if (r10_bio->devs[slot].bio == bio) 306 break; 307 if (r10_bio->devs[slot].repl_bio == bio) { 308 repl = 1; 309 break; 310 } 311 } 312 313 BUG_ON(slot == conf->copies); 314 update_head_pos(slot, r10_bio); 315 316 if (slotp) 317 *slotp = slot; 318 if (replp) 319 *replp = repl; 320 return r10_bio->devs[slot].devnum; 321 } 322 323 static void raid10_end_read_request(struct bio *bio, int error) 324 { 325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 326 struct r10bio *r10_bio = bio->bi_private; 327 int slot, dev; 328 struct md_rdev *rdev; 329 struct r10conf *conf = r10_bio->mddev->private; 330 331 332 slot = r10_bio->read_slot; 333 dev = r10_bio->devs[slot].devnum; 334 rdev = r10_bio->devs[slot].rdev; 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(slot, r10_bio); 339 340 if (uptodate) { 341 /* 342 * Set R10BIO_Uptodate in our master bio, so that 343 * we will return a good error code to the higher 344 * levels even if IO on some other mirrored buffer fails. 345 * 346 * The 'master' represents the composite IO operation to 347 * user-side. So if something waits for IO, then it will 348 * wait for the 'master' bio. 349 */ 350 set_bit(R10BIO_Uptodate, &r10_bio->state); 351 } else { 352 /* If all other devices that store this block have 353 * failed, we want to return the error upwards rather 354 * than fail the last device. Here we redefine 355 * "uptodate" to mean "Don't want to retry" 356 */ 357 unsigned long flags; 358 spin_lock_irqsave(&conf->device_lock, flags); 359 if (!enough(conf, rdev->raid_disk)) 360 uptodate = 1; 361 spin_unlock_irqrestore(&conf->device_lock, flags); 362 } 363 if (uptodate) { 364 raid_end_bio_io(r10_bio); 365 rdev_dec_pending(rdev, conf->mddev); 366 } else { 367 /* 368 * oops, read error - keep the refcount on the rdev 369 */ 370 char b[BDEVNAME_SIZE]; 371 printk_ratelimited(KERN_ERR 372 "md/raid10:%s: %s: rescheduling sector %llu\n", 373 mdname(conf->mddev), 374 bdevname(rdev->bdev, b), 375 (unsigned long long)r10_bio->sector); 376 set_bit(R10BIO_ReadError, &r10_bio->state); 377 reschedule_retry(r10_bio); 378 } 379 } 380 381 static void close_write(struct r10bio *r10_bio) 382 { 383 /* clear the bitmap if all writes complete successfully */ 384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 385 r10_bio->sectors, 386 !test_bit(R10BIO_Degraded, &r10_bio->state), 387 0); 388 md_write_end(r10_bio->mddev); 389 } 390 391 static void one_write_done(struct r10bio *r10_bio) 392 { 393 if (atomic_dec_and_test(&r10_bio->remaining)) { 394 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 395 reschedule_retry(r10_bio); 396 else { 397 close_write(r10_bio); 398 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 399 reschedule_retry(r10_bio); 400 else 401 raid_end_bio_io(r10_bio); 402 } 403 } 404 } 405 406 static void raid10_end_write_request(struct bio *bio, int error) 407 { 408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 409 struct r10bio *r10_bio = bio->bi_private; 410 int dev; 411 int dec_rdev = 1; 412 struct r10conf *conf = r10_bio->mddev->private; 413 int slot, repl; 414 struct md_rdev *rdev = NULL; 415 416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 417 418 if (repl) 419 rdev = conf->mirrors[dev].replacement; 420 if (!rdev) { 421 smp_rmb(); 422 repl = 0; 423 rdev = conf->mirrors[dev].rdev; 424 } 425 /* 426 * this branch is our 'one mirror IO has finished' event handler: 427 */ 428 if (!uptodate) { 429 if (repl) 430 /* Never record new bad blocks to replacement, 431 * just fail it. 432 */ 433 md_error(rdev->mddev, rdev); 434 else { 435 set_bit(WriteErrorSeen, &rdev->flags); 436 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 437 set_bit(MD_RECOVERY_NEEDED, 438 &rdev->mddev->recovery); 439 set_bit(R10BIO_WriteError, &r10_bio->state); 440 dec_rdev = 0; 441 } 442 } else { 443 /* 444 * Set R10BIO_Uptodate in our master bio, so that 445 * we will return a good error code for to the higher 446 * levels even if IO on some other mirrored buffer fails. 447 * 448 * The 'master' represents the composite IO operation to 449 * user-side. So if something waits for IO, then it will 450 * wait for the 'master' bio. 451 */ 452 sector_t first_bad; 453 int bad_sectors; 454 455 set_bit(R10BIO_Uptodate, &r10_bio->state); 456 457 /* Maybe we can clear some bad blocks. */ 458 if (is_badblock(rdev, 459 r10_bio->devs[slot].addr, 460 r10_bio->sectors, 461 &first_bad, &bad_sectors)) { 462 bio_put(bio); 463 if (repl) 464 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 465 else 466 r10_bio->devs[slot].bio = IO_MADE_GOOD; 467 dec_rdev = 0; 468 set_bit(R10BIO_MadeGood, &r10_bio->state); 469 } 470 } 471 472 /* 473 * 474 * Let's see if all mirrored write operations have finished 475 * already. 476 */ 477 one_write_done(r10_bio); 478 if (dec_rdev) 479 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 480 } 481 482 /* 483 * RAID10 layout manager 484 * As well as the chunksize and raid_disks count, there are two 485 * parameters: near_copies and far_copies. 486 * near_copies * far_copies must be <= raid_disks. 487 * Normally one of these will be 1. 488 * If both are 1, we get raid0. 489 * If near_copies == raid_disks, we get raid1. 490 * 491 * Chunks are laid out in raid0 style with near_copies copies of the 492 * first chunk, followed by near_copies copies of the next chunk and 493 * so on. 494 * If far_copies > 1, then after 1/far_copies of the array has been assigned 495 * as described above, we start again with a device offset of near_copies. 496 * So we effectively have another copy of the whole array further down all 497 * the drives, but with blocks on different drives. 498 * With this layout, and block is never stored twice on the one device. 499 * 500 * raid10_find_phys finds the sector offset of a given virtual sector 501 * on each device that it is on. 502 * 503 * raid10_find_virt does the reverse mapping, from a device and a 504 * sector offset to a virtual address 505 */ 506 507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 508 { 509 int n,f; 510 sector_t sector; 511 sector_t chunk; 512 sector_t stripe; 513 int dev; 514 515 int slot = 0; 516 517 /* now calculate first sector/dev */ 518 chunk = r10bio->sector >> conf->chunk_shift; 519 sector = r10bio->sector & conf->chunk_mask; 520 521 chunk *= conf->near_copies; 522 stripe = chunk; 523 dev = sector_div(stripe, conf->raid_disks); 524 if (conf->far_offset) 525 stripe *= conf->far_copies; 526 527 sector += stripe << conf->chunk_shift; 528 529 /* and calculate all the others */ 530 for (n=0; n < conf->near_copies; n++) { 531 int d = dev; 532 sector_t s = sector; 533 r10bio->devs[slot].addr = sector; 534 r10bio->devs[slot].devnum = d; 535 slot++; 536 537 for (f = 1; f < conf->far_copies; f++) { 538 d += conf->near_copies; 539 if (d >= conf->raid_disks) 540 d -= conf->raid_disks; 541 s += conf->stride; 542 r10bio->devs[slot].devnum = d; 543 r10bio->devs[slot].addr = s; 544 slot++; 545 } 546 dev++; 547 if (dev >= conf->raid_disks) { 548 dev = 0; 549 sector += (conf->chunk_mask + 1); 550 } 551 } 552 BUG_ON(slot != conf->copies); 553 } 554 555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 556 { 557 sector_t offset, chunk, vchunk; 558 559 offset = sector & conf->chunk_mask; 560 if (conf->far_offset) { 561 int fc; 562 chunk = sector >> conf->chunk_shift; 563 fc = sector_div(chunk, conf->far_copies); 564 dev -= fc * conf->near_copies; 565 if (dev < 0) 566 dev += conf->raid_disks; 567 } else { 568 while (sector >= conf->stride) { 569 sector -= conf->stride; 570 if (dev < conf->near_copies) 571 dev += conf->raid_disks - conf->near_copies; 572 else 573 dev -= conf->near_copies; 574 } 575 chunk = sector >> conf->chunk_shift; 576 } 577 vchunk = chunk * conf->raid_disks + dev; 578 sector_div(vchunk, conf->near_copies); 579 return (vchunk << conf->chunk_shift) + offset; 580 } 581 582 /** 583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 584 * @q: request queue 585 * @bvm: properties of new bio 586 * @biovec: the request that could be merged to it. 587 * 588 * Return amount of bytes we can accept at this offset 589 * This requires checking for end-of-chunk if near_copies != raid_disks, 590 * and for subordinate merge_bvec_fns if merge_check_needed. 591 */ 592 static int raid10_mergeable_bvec(struct request_queue *q, 593 struct bvec_merge_data *bvm, 594 struct bio_vec *biovec) 595 { 596 struct mddev *mddev = q->queuedata; 597 struct r10conf *conf = mddev->private; 598 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 599 int max; 600 unsigned int chunk_sectors = mddev->chunk_sectors; 601 unsigned int bio_sectors = bvm->bi_size >> 9; 602 603 if (conf->near_copies < conf->raid_disks) { 604 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 605 + bio_sectors)) << 9; 606 if (max < 0) 607 /* bio_add cannot handle a negative return */ 608 max = 0; 609 if (max <= biovec->bv_len && bio_sectors == 0) 610 return biovec->bv_len; 611 } else 612 max = biovec->bv_len; 613 614 if (mddev->merge_check_needed) { 615 struct r10bio r10_bio; 616 int s; 617 r10_bio.sector = sector; 618 raid10_find_phys(conf, &r10_bio); 619 rcu_read_lock(); 620 for (s = 0; s < conf->copies; s++) { 621 int disk = r10_bio.devs[s].devnum; 622 struct md_rdev *rdev = rcu_dereference( 623 conf->mirrors[disk].rdev); 624 if (rdev && !test_bit(Faulty, &rdev->flags)) { 625 struct request_queue *q = 626 bdev_get_queue(rdev->bdev); 627 if (q->merge_bvec_fn) { 628 bvm->bi_sector = r10_bio.devs[s].addr 629 + rdev->data_offset; 630 bvm->bi_bdev = rdev->bdev; 631 max = min(max, q->merge_bvec_fn( 632 q, bvm, biovec)); 633 } 634 } 635 rdev = rcu_dereference(conf->mirrors[disk].replacement); 636 if (rdev && !test_bit(Faulty, &rdev->flags)) { 637 struct request_queue *q = 638 bdev_get_queue(rdev->bdev); 639 if (q->merge_bvec_fn) { 640 bvm->bi_sector = r10_bio.devs[s].addr 641 + rdev->data_offset; 642 bvm->bi_bdev = rdev->bdev; 643 max = min(max, q->merge_bvec_fn( 644 q, bvm, biovec)); 645 } 646 } 647 } 648 rcu_read_unlock(); 649 } 650 return max; 651 } 652 653 /* 654 * This routine returns the disk from which the requested read should 655 * be done. There is a per-array 'next expected sequential IO' sector 656 * number - if this matches on the next IO then we use the last disk. 657 * There is also a per-disk 'last know head position' sector that is 658 * maintained from IRQ contexts, both the normal and the resync IO 659 * completion handlers update this position correctly. If there is no 660 * perfect sequential match then we pick the disk whose head is closest. 661 * 662 * If there are 2 mirrors in the same 2 devices, performance degrades 663 * because position is mirror, not device based. 664 * 665 * The rdev for the device selected will have nr_pending incremented. 666 */ 667 668 /* 669 * FIXME: possibly should rethink readbalancing and do it differently 670 * depending on near_copies / far_copies geometry. 671 */ 672 static struct md_rdev *read_balance(struct r10conf *conf, 673 struct r10bio *r10_bio, 674 int *max_sectors) 675 { 676 const sector_t this_sector = r10_bio->sector; 677 int disk, slot; 678 int sectors = r10_bio->sectors; 679 int best_good_sectors; 680 sector_t new_distance, best_dist; 681 struct md_rdev *rdev, *best_rdev; 682 int do_balance; 683 int best_slot; 684 685 raid10_find_phys(conf, r10_bio); 686 rcu_read_lock(); 687 retry: 688 sectors = r10_bio->sectors; 689 best_slot = -1; 690 best_rdev = NULL; 691 best_dist = MaxSector; 692 best_good_sectors = 0; 693 do_balance = 1; 694 /* 695 * Check if we can balance. We can balance on the whole 696 * device if no resync is going on (recovery is ok), or below 697 * the resync window. We take the first readable disk when 698 * above the resync window. 699 */ 700 if (conf->mddev->recovery_cp < MaxSector 701 && (this_sector + sectors >= conf->next_resync)) 702 do_balance = 0; 703 704 for (slot = 0; slot < conf->copies ; slot++) { 705 sector_t first_bad; 706 int bad_sectors; 707 sector_t dev_sector; 708 709 if (r10_bio->devs[slot].bio == IO_BLOCKED) 710 continue; 711 disk = r10_bio->devs[slot].devnum; 712 rdev = rcu_dereference(conf->mirrors[disk].replacement); 713 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 714 test_bit(Unmerged, &rdev->flags) || 715 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 716 rdev = rcu_dereference(conf->mirrors[disk].rdev); 717 if (rdev == NULL || 718 test_bit(Faulty, &rdev->flags) || 719 test_bit(Unmerged, &rdev->flags)) 720 continue; 721 if (!test_bit(In_sync, &rdev->flags) && 722 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 723 continue; 724 725 dev_sector = r10_bio->devs[slot].addr; 726 if (is_badblock(rdev, dev_sector, sectors, 727 &first_bad, &bad_sectors)) { 728 if (best_dist < MaxSector) 729 /* Already have a better slot */ 730 continue; 731 if (first_bad <= dev_sector) { 732 /* Cannot read here. If this is the 733 * 'primary' device, then we must not read 734 * beyond 'bad_sectors' from another device. 735 */ 736 bad_sectors -= (dev_sector - first_bad); 737 if (!do_balance && sectors > bad_sectors) 738 sectors = bad_sectors; 739 if (best_good_sectors > sectors) 740 best_good_sectors = sectors; 741 } else { 742 sector_t good_sectors = 743 first_bad - dev_sector; 744 if (good_sectors > best_good_sectors) { 745 best_good_sectors = good_sectors; 746 best_slot = slot; 747 best_rdev = rdev; 748 } 749 if (!do_balance) 750 /* Must read from here */ 751 break; 752 } 753 continue; 754 } else 755 best_good_sectors = sectors; 756 757 if (!do_balance) 758 break; 759 760 /* This optimisation is debatable, and completely destroys 761 * sequential read speed for 'far copies' arrays. So only 762 * keep it for 'near' arrays, and review those later. 763 */ 764 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 765 break; 766 767 /* for far > 1 always use the lowest address */ 768 if (conf->far_copies > 1) 769 new_distance = r10_bio->devs[slot].addr; 770 else 771 new_distance = abs(r10_bio->devs[slot].addr - 772 conf->mirrors[disk].head_position); 773 if (new_distance < best_dist) { 774 best_dist = new_distance; 775 best_slot = slot; 776 best_rdev = rdev; 777 } 778 } 779 if (slot >= conf->copies) { 780 slot = best_slot; 781 rdev = best_rdev; 782 } 783 784 if (slot >= 0) { 785 atomic_inc(&rdev->nr_pending); 786 if (test_bit(Faulty, &rdev->flags)) { 787 /* Cannot risk returning a device that failed 788 * before we inc'ed nr_pending 789 */ 790 rdev_dec_pending(rdev, conf->mddev); 791 goto retry; 792 } 793 r10_bio->read_slot = slot; 794 } else 795 rdev = NULL; 796 rcu_read_unlock(); 797 *max_sectors = best_good_sectors; 798 799 return rdev; 800 } 801 802 static int raid10_congested(void *data, int bits) 803 { 804 struct mddev *mddev = data; 805 struct r10conf *conf = mddev->private; 806 int i, ret = 0; 807 808 if ((bits & (1 << BDI_async_congested)) && 809 conf->pending_count >= max_queued_requests) 810 return 1; 811 812 if (mddev_congested(mddev, bits)) 813 return 1; 814 rcu_read_lock(); 815 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 816 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 817 if (rdev && !test_bit(Faulty, &rdev->flags)) { 818 struct request_queue *q = bdev_get_queue(rdev->bdev); 819 820 ret |= bdi_congested(&q->backing_dev_info, bits); 821 } 822 } 823 rcu_read_unlock(); 824 return ret; 825 } 826 827 static void flush_pending_writes(struct r10conf *conf) 828 { 829 /* Any writes that have been queued but are awaiting 830 * bitmap updates get flushed here. 831 */ 832 spin_lock_irq(&conf->device_lock); 833 834 if (conf->pending_bio_list.head) { 835 struct bio *bio; 836 bio = bio_list_get(&conf->pending_bio_list); 837 conf->pending_count = 0; 838 spin_unlock_irq(&conf->device_lock); 839 /* flush any pending bitmap writes to disk 840 * before proceeding w/ I/O */ 841 bitmap_unplug(conf->mddev->bitmap); 842 wake_up(&conf->wait_barrier); 843 844 while (bio) { /* submit pending writes */ 845 struct bio *next = bio->bi_next; 846 bio->bi_next = NULL; 847 generic_make_request(bio); 848 bio = next; 849 } 850 } else 851 spin_unlock_irq(&conf->device_lock); 852 } 853 854 /* Barriers.... 855 * Sometimes we need to suspend IO while we do something else, 856 * either some resync/recovery, or reconfigure the array. 857 * To do this we raise a 'barrier'. 858 * The 'barrier' is a counter that can be raised multiple times 859 * to count how many activities are happening which preclude 860 * normal IO. 861 * We can only raise the barrier if there is no pending IO. 862 * i.e. if nr_pending == 0. 863 * We choose only to raise the barrier if no-one is waiting for the 864 * barrier to go down. This means that as soon as an IO request 865 * is ready, no other operations which require a barrier will start 866 * until the IO request has had a chance. 867 * 868 * So: regular IO calls 'wait_barrier'. When that returns there 869 * is no backgroup IO happening, It must arrange to call 870 * allow_barrier when it has finished its IO. 871 * backgroup IO calls must call raise_barrier. Once that returns 872 * there is no normal IO happeing. It must arrange to call 873 * lower_barrier when the particular background IO completes. 874 */ 875 876 static void raise_barrier(struct r10conf *conf, int force) 877 { 878 BUG_ON(force && !conf->barrier); 879 spin_lock_irq(&conf->resync_lock); 880 881 /* Wait until no block IO is waiting (unless 'force') */ 882 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 883 conf->resync_lock, ); 884 885 /* block any new IO from starting */ 886 conf->barrier++; 887 888 /* Now wait for all pending IO to complete */ 889 wait_event_lock_irq(conf->wait_barrier, 890 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 891 conf->resync_lock, ); 892 893 spin_unlock_irq(&conf->resync_lock); 894 } 895 896 static void lower_barrier(struct r10conf *conf) 897 { 898 unsigned long flags; 899 spin_lock_irqsave(&conf->resync_lock, flags); 900 conf->barrier--; 901 spin_unlock_irqrestore(&conf->resync_lock, flags); 902 wake_up(&conf->wait_barrier); 903 } 904 905 static void wait_barrier(struct r10conf *conf) 906 { 907 spin_lock_irq(&conf->resync_lock); 908 if (conf->barrier) { 909 conf->nr_waiting++; 910 /* Wait for the barrier to drop. 911 * However if there are already pending 912 * requests (preventing the barrier from 913 * rising completely), and the 914 * pre-process bio queue isn't empty, 915 * then don't wait, as we need to empty 916 * that queue to get the nr_pending 917 * count down. 918 */ 919 wait_event_lock_irq(conf->wait_barrier, 920 !conf->barrier || 921 (conf->nr_pending && 922 current->bio_list && 923 !bio_list_empty(current->bio_list)), 924 conf->resync_lock, 925 ); 926 conf->nr_waiting--; 927 } 928 conf->nr_pending++; 929 spin_unlock_irq(&conf->resync_lock); 930 } 931 932 static void allow_barrier(struct r10conf *conf) 933 { 934 unsigned long flags; 935 spin_lock_irqsave(&conf->resync_lock, flags); 936 conf->nr_pending--; 937 spin_unlock_irqrestore(&conf->resync_lock, flags); 938 wake_up(&conf->wait_barrier); 939 } 940 941 static void freeze_array(struct r10conf *conf) 942 { 943 /* stop syncio and normal IO and wait for everything to 944 * go quiet. 945 * We increment barrier and nr_waiting, and then 946 * wait until nr_pending match nr_queued+1 947 * This is called in the context of one normal IO request 948 * that has failed. Thus any sync request that might be pending 949 * will be blocked by nr_pending, and we need to wait for 950 * pending IO requests to complete or be queued for re-try. 951 * Thus the number queued (nr_queued) plus this request (1) 952 * must match the number of pending IOs (nr_pending) before 953 * we continue. 954 */ 955 spin_lock_irq(&conf->resync_lock); 956 conf->barrier++; 957 conf->nr_waiting++; 958 wait_event_lock_irq(conf->wait_barrier, 959 conf->nr_pending == conf->nr_queued+1, 960 conf->resync_lock, 961 flush_pending_writes(conf)); 962 963 spin_unlock_irq(&conf->resync_lock); 964 } 965 966 static void unfreeze_array(struct r10conf *conf) 967 { 968 /* reverse the effect of the freeze */ 969 spin_lock_irq(&conf->resync_lock); 970 conf->barrier--; 971 conf->nr_waiting--; 972 wake_up(&conf->wait_barrier); 973 spin_unlock_irq(&conf->resync_lock); 974 } 975 976 static void make_request(struct mddev *mddev, struct bio * bio) 977 { 978 struct r10conf *conf = mddev->private; 979 struct r10bio *r10_bio; 980 struct bio *read_bio; 981 int i; 982 int chunk_sects = conf->chunk_mask + 1; 983 const int rw = bio_data_dir(bio); 984 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 985 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 986 unsigned long flags; 987 struct md_rdev *blocked_rdev; 988 int plugged; 989 int sectors_handled; 990 int max_sectors; 991 992 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 993 md_flush_request(mddev, bio); 994 return; 995 } 996 997 /* If this request crosses a chunk boundary, we need to 998 * split it. This will only happen for 1 PAGE (or less) requests. 999 */ 1000 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 1001 > chunk_sects && 1002 conf->near_copies < conf->raid_disks)) { 1003 struct bio_pair *bp; 1004 /* Sanity check -- queue functions should prevent this happening */ 1005 if (bio->bi_vcnt != 1 || 1006 bio->bi_idx != 0) 1007 goto bad_map; 1008 /* This is a one page bio that upper layers 1009 * refuse to split for us, so we need to split it. 1010 */ 1011 bp = bio_split(bio, 1012 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1013 1014 /* Each of these 'make_request' calls will call 'wait_barrier'. 1015 * If the first succeeds but the second blocks due to the resync 1016 * thread raising the barrier, we will deadlock because the 1017 * IO to the underlying device will be queued in generic_make_request 1018 * and will never complete, so will never reduce nr_pending. 1019 * So increment nr_waiting here so no new raise_barriers will 1020 * succeed, and so the second wait_barrier cannot block. 1021 */ 1022 spin_lock_irq(&conf->resync_lock); 1023 conf->nr_waiting++; 1024 spin_unlock_irq(&conf->resync_lock); 1025 1026 make_request(mddev, &bp->bio1); 1027 make_request(mddev, &bp->bio2); 1028 1029 spin_lock_irq(&conf->resync_lock); 1030 conf->nr_waiting--; 1031 wake_up(&conf->wait_barrier); 1032 spin_unlock_irq(&conf->resync_lock); 1033 1034 bio_pair_release(bp); 1035 return; 1036 bad_map: 1037 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1038 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1039 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1040 1041 bio_io_error(bio); 1042 return; 1043 } 1044 1045 md_write_start(mddev, bio); 1046 1047 /* 1048 * Register the new request and wait if the reconstruction 1049 * thread has put up a bar for new requests. 1050 * Continue immediately if no resync is active currently. 1051 */ 1052 wait_barrier(conf); 1053 1054 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1055 1056 r10_bio->master_bio = bio; 1057 r10_bio->sectors = bio->bi_size >> 9; 1058 1059 r10_bio->mddev = mddev; 1060 r10_bio->sector = bio->bi_sector; 1061 r10_bio->state = 0; 1062 1063 /* We might need to issue multiple reads to different 1064 * devices if there are bad blocks around, so we keep 1065 * track of the number of reads in bio->bi_phys_segments. 1066 * If this is 0, there is only one r10_bio and no locking 1067 * will be needed when the request completes. If it is 1068 * non-zero, then it is the number of not-completed requests. 1069 */ 1070 bio->bi_phys_segments = 0; 1071 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1072 1073 if (rw == READ) { 1074 /* 1075 * read balancing logic: 1076 */ 1077 struct md_rdev *rdev; 1078 int slot; 1079 1080 read_again: 1081 rdev = read_balance(conf, r10_bio, &max_sectors); 1082 if (!rdev) { 1083 raid_end_bio_io(r10_bio); 1084 return; 1085 } 1086 slot = r10_bio->read_slot; 1087 1088 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1089 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1090 max_sectors); 1091 1092 r10_bio->devs[slot].bio = read_bio; 1093 r10_bio->devs[slot].rdev = rdev; 1094 1095 read_bio->bi_sector = r10_bio->devs[slot].addr + 1096 rdev->data_offset; 1097 read_bio->bi_bdev = rdev->bdev; 1098 read_bio->bi_end_io = raid10_end_read_request; 1099 read_bio->bi_rw = READ | do_sync; 1100 read_bio->bi_private = r10_bio; 1101 1102 if (max_sectors < r10_bio->sectors) { 1103 /* Could not read all from this device, so we will 1104 * need another r10_bio. 1105 */ 1106 sectors_handled = (r10_bio->sectors + max_sectors 1107 - bio->bi_sector); 1108 r10_bio->sectors = max_sectors; 1109 spin_lock_irq(&conf->device_lock); 1110 if (bio->bi_phys_segments == 0) 1111 bio->bi_phys_segments = 2; 1112 else 1113 bio->bi_phys_segments++; 1114 spin_unlock(&conf->device_lock); 1115 /* Cannot call generic_make_request directly 1116 * as that will be queued in __generic_make_request 1117 * and subsequent mempool_alloc might block 1118 * waiting for it. so hand bio over to raid10d. 1119 */ 1120 reschedule_retry(r10_bio); 1121 1122 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1123 1124 r10_bio->master_bio = bio; 1125 r10_bio->sectors = ((bio->bi_size >> 9) 1126 - sectors_handled); 1127 r10_bio->state = 0; 1128 r10_bio->mddev = mddev; 1129 r10_bio->sector = bio->bi_sector + sectors_handled; 1130 goto read_again; 1131 } else 1132 generic_make_request(read_bio); 1133 return; 1134 } 1135 1136 /* 1137 * WRITE: 1138 */ 1139 if (conf->pending_count >= max_queued_requests) { 1140 md_wakeup_thread(mddev->thread); 1141 wait_event(conf->wait_barrier, 1142 conf->pending_count < max_queued_requests); 1143 } 1144 /* first select target devices under rcu_lock and 1145 * inc refcount on their rdev. Record them by setting 1146 * bios[x] to bio 1147 * If there are known/acknowledged bad blocks on any device 1148 * on which we have seen a write error, we want to avoid 1149 * writing to those blocks. This potentially requires several 1150 * writes to write around the bad blocks. Each set of writes 1151 * gets its own r10_bio with a set of bios attached. The number 1152 * of r10_bios is recored in bio->bi_phys_segments just as with 1153 * the read case. 1154 */ 1155 plugged = mddev_check_plugged(mddev); 1156 1157 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1158 raid10_find_phys(conf, r10_bio); 1159 retry_write: 1160 blocked_rdev = NULL; 1161 rcu_read_lock(); 1162 max_sectors = r10_bio->sectors; 1163 1164 for (i = 0; i < conf->copies; i++) { 1165 int d = r10_bio->devs[i].devnum; 1166 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1167 struct md_rdev *rrdev = rcu_dereference( 1168 conf->mirrors[d].replacement); 1169 if (rdev == rrdev) 1170 rrdev = NULL; 1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1172 atomic_inc(&rdev->nr_pending); 1173 blocked_rdev = rdev; 1174 break; 1175 } 1176 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1177 atomic_inc(&rrdev->nr_pending); 1178 blocked_rdev = rrdev; 1179 break; 1180 } 1181 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1182 || test_bit(Unmerged, &rrdev->flags))) 1183 rrdev = NULL; 1184 1185 r10_bio->devs[i].bio = NULL; 1186 r10_bio->devs[i].repl_bio = NULL; 1187 if (!rdev || test_bit(Faulty, &rdev->flags) || 1188 test_bit(Unmerged, &rdev->flags)) { 1189 set_bit(R10BIO_Degraded, &r10_bio->state); 1190 continue; 1191 } 1192 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1193 sector_t first_bad; 1194 sector_t dev_sector = r10_bio->devs[i].addr; 1195 int bad_sectors; 1196 int is_bad; 1197 1198 is_bad = is_badblock(rdev, dev_sector, 1199 max_sectors, 1200 &first_bad, &bad_sectors); 1201 if (is_bad < 0) { 1202 /* Mustn't write here until the bad block 1203 * is acknowledged 1204 */ 1205 atomic_inc(&rdev->nr_pending); 1206 set_bit(BlockedBadBlocks, &rdev->flags); 1207 blocked_rdev = rdev; 1208 break; 1209 } 1210 if (is_bad && first_bad <= dev_sector) { 1211 /* Cannot write here at all */ 1212 bad_sectors -= (dev_sector - first_bad); 1213 if (bad_sectors < max_sectors) 1214 /* Mustn't write more than bad_sectors 1215 * to other devices yet 1216 */ 1217 max_sectors = bad_sectors; 1218 /* We don't set R10BIO_Degraded as that 1219 * only applies if the disk is missing, 1220 * so it might be re-added, and we want to 1221 * know to recover this chunk. 1222 * In this case the device is here, and the 1223 * fact that this chunk is not in-sync is 1224 * recorded in the bad block log. 1225 */ 1226 continue; 1227 } 1228 if (is_bad) { 1229 int good_sectors = first_bad - dev_sector; 1230 if (good_sectors < max_sectors) 1231 max_sectors = good_sectors; 1232 } 1233 } 1234 r10_bio->devs[i].bio = bio; 1235 atomic_inc(&rdev->nr_pending); 1236 if (rrdev) { 1237 r10_bio->devs[i].repl_bio = bio; 1238 atomic_inc(&rrdev->nr_pending); 1239 } 1240 } 1241 rcu_read_unlock(); 1242 1243 if (unlikely(blocked_rdev)) { 1244 /* Have to wait for this device to get unblocked, then retry */ 1245 int j; 1246 int d; 1247 1248 for (j = 0; j < i; j++) { 1249 if (r10_bio->devs[j].bio) { 1250 d = r10_bio->devs[j].devnum; 1251 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1252 } 1253 if (r10_bio->devs[j].repl_bio) { 1254 struct md_rdev *rdev; 1255 d = r10_bio->devs[j].devnum; 1256 rdev = conf->mirrors[d].replacement; 1257 if (!rdev) { 1258 /* Race with remove_disk */ 1259 smp_mb(); 1260 rdev = conf->mirrors[d].rdev; 1261 } 1262 rdev_dec_pending(rdev, mddev); 1263 } 1264 } 1265 allow_barrier(conf); 1266 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1267 wait_barrier(conf); 1268 goto retry_write; 1269 } 1270 1271 if (max_sectors < r10_bio->sectors) { 1272 /* We are splitting this into multiple parts, so 1273 * we need to prepare for allocating another r10_bio. 1274 */ 1275 r10_bio->sectors = max_sectors; 1276 spin_lock_irq(&conf->device_lock); 1277 if (bio->bi_phys_segments == 0) 1278 bio->bi_phys_segments = 2; 1279 else 1280 bio->bi_phys_segments++; 1281 spin_unlock_irq(&conf->device_lock); 1282 } 1283 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1284 1285 atomic_set(&r10_bio->remaining, 1); 1286 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1287 1288 for (i = 0; i < conf->copies; i++) { 1289 struct bio *mbio; 1290 int d = r10_bio->devs[i].devnum; 1291 if (!r10_bio->devs[i].bio) 1292 continue; 1293 1294 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1295 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1296 max_sectors); 1297 r10_bio->devs[i].bio = mbio; 1298 1299 mbio->bi_sector = (r10_bio->devs[i].addr+ 1300 conf->mirrors[d].rdev->data_offset); 1301 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1302 mbio->bi_end_io = raid10_end_write_request; 1303 mbio->bi_rw = WRITE | do_sync | do_fua; 1304 mbio->bi_private = r10_bio; 1305 1306 atomic_inc(&r10_bio->remaining); 1307 spin_lock_irqsave(&conf->device_lock, flags); 1308 bio_list_add(&conf->pending_bio_list, mbio); 1309 conf->pending_count++; 1310 spin_unlock_irqrestore(&conf->device_lock, flags); 1311 1312 if (!r10_bio->devs[i].repl_bio) 1313 continue; 1314 1315 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1316 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1317 max_sectors); 1318 r10_bio->devs[i].repl_bio = mbio; 1319 1320 /* We are actively writing to the original device 1321 * so it cannot disappear, so the replacement cannot 1322 * become NULL here 1323 */ 1324 mbio->bi_sector = (r10_bio->devs[i].addr+ 1325 conf->mirrors[d].replacement->data_offset); 1326 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1327 mbio->bi_end_io = raid10_end_write_request; 1328 mbio->bi_rw = WRITE | do_sync | do_fua; 1329 mbio->bi_private = r10_bio; 1330 1331 atomic_inc(&r10_bio->remaining); 1332 spin_lock_irqsave(&conf->device_lock, flags); 1333 bio_list_add(&conf->pending_bio_list, mbio); 1334 conf->pending_count++; 1335 spin_unlock_irqrestore(&conf->device_lock, flags); 1336 } 1337 1338 /* Don't remove the bias on 'remaining' (one_write_done) until 1339 * after checking if we need to go around again. 1340 */ 1341 1342 if (sectors_handled < (bio->bi_size >> 9)) { 1343 one_write_done(r10_bio); 1344 /* We need another r10_bio. It has already been counted 1345 * in bio->bi_phys_segments. 1346 */ 1347 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1348 1349 r10_bio->master_bio = bio; 1350 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1351 1352 r10_bio->mddev = mddev; 1353 r10_bio->sector = bio->bi_sector + sectors_handled; 1354 r10_bio->state = 0; 1355 goto retry_write; 1356 } 1357 one_write_done(r10_bio); 1358 1359 /* In case raid10d snuck in to freeze_array */ 1360 wake_up(&conf->wait_barrier); 1361 1362 if (do_sync || !mddev->bitmap || !plugged) 1363 md_wakeup_thread(mddev->thread); 1364 } 1365 1366 static void status(struct seq_file *seq, struct mddev *mddev) 1367 { 1368 struct r10conf *conf = mddev->private; 1369 int i; 1370 1371 if (conf->near_copies < conf->raid_disks) 1372 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1373 if (conf->near_copies > 1) 1374 seq_printf(seq, " %d near-copies", conf->near_copies); 1375 if (conf->far_copies > 1) { 1376 if (conf->far_offset) 1377 seq_printf(seq, " %d offset-copies", conf->far_copies); 1378 else 1379 seq_printf(seq, " %d far-copies", conf->far_copies); 1380 } 1381 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1382 conf->raid_disks - mddev->degraded); 1383 for (i = 0; i < conf->raid_disks; i++) 1384 seq_printf(seq, "%s", 1385 conf->mirrors[i].rdev && 1386 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1387 seq_printf(seq, "]"); 1388 } 1389 1390 /* check if there are enough drives for 1391 * every block to appear on atleast one. 1392 * Don't consider the device numbered 'ignore' 1393 * as we might be about to remove it. 1394 */ 1395 static int enough(struct r10conf *conf, int ignore) 1396 { 1397 int first = 0; 1398 1399 do { 1400 int n = conf->copies; 1401 int cnt = 0; 1402 while (n--) { 1403 if (conf->mirrors[first].rdev && 1404 first != ignore) 1405 cnt++; 1406 first = (first+1) % conf->raid_disks; 1407 } 1408 if (cnt == 0) 1409 return 0; 1410 } while (first != 0); 1411 return 1; 1412 } 1413 1414 static void error(struct mddev *mddev, struct md_rdev *rdev) 1415 { 1416 char b[BDEVNAME_SIZE]; 1417 struct r10conf *conf = mddev->private; 1418 1419 /* 1420 * If it is not operational, then we have already marked it as dead 1421 * else if it is the last working disks, ignore the error, let the 1422 * next level up know. 1423 * else mark the drive as failed 1424 */ 1425 if (test_bit(In_sync, &rdev->flags) 1426 && !enough(conf, rdev->raid_disk)) 1427 /* 1428 * Don't fail the drive, just return an IO error. 1429 */ 1430 return; 1431 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1432 unsigned long flags; 1433 spin_lock_irqsave(&conf->device_lock, flags); 1434 mddev->degraded++; 1435 spin_unlock_irqrestore(&conf->device_lock, flags); 1436 /* 1437 * if recovery is running, make sure it aborts. 1438 */ 1439 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1440 } 1441 set_bit(Blocked, &rdev->flags); 1442 set_bit(Faulty, &rdev->flags); 1443 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1444 printk(KERN_ALERT 1445 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1446 "md/raid10:%s: Operation continuing on %d devices.\n", 1447 mdname(mddev), bdevname(rdev->bdev, b), 1448 mdname(mddev), conf->raid_disks - mddev->degraded); 1449 } 1450 1451 static void print_conf(struct r10conf *conf) 1452 { 1453 int i; 1454 struct mirror_info *tmp; 1455 1456 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1457 if (!conf) { 1458 printk(KERN_DEBUG "(!conf)\n"); 1459 return; 1460 } 1461 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1462 conf->raid_disks); 1463 1464 for (i = 0; i < conf->raid_disks; i++) { 1465 char b[BDEVNAME_SIZE]; 1466 tmp = conf->mirrors + i; 1467 if (tmp->rdev) 1468 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1469 i, !test_bit(In_sync, &tmp->rdev->flags), 1470 !test_bit(Faulty, &tmp->rdev->flags), 1471 bdevname(tmp->rdev->bdev,b)); 1472 } 1473 } 1474 1475 static void close_sync(struct r10conf *conf) 1476 { 1477 wait_barrier(conf); 1478 allow_barrier(conf); 1479 1480 mempool_destroy(conf->r10buf_pool); 1481 conf->r10buf_pool = NULL; 1482 } 1483 1484 static int raid10_spare_active(struct mddev *mddev) 1485 { 1486 int i; 1487 struct r10conf *conf = mddev->private; 1488 struct mirror_info *tmp; 1489 int count = 0; 1490 unsigned long flags; 1491 1492 /* 1493 * Find all non-in_sync disks within the RAID10 configuration 1494 * and mark them in_sync 1495 */ 1496 for (i = 0; i < conf->raid_disks; i++) { 1497 tmp = conf->mirrors + i; 1498 if (tmp->replacement 1499 && tmp->replacement->recovery_offset == MaxSector 1500 && !test_bit(Faulty, &tmp->replacement->flags) 1501 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1502 /* Replacement has just become active */ 1503 if (!tmp->rdev 1504 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1505 count++; 1506 if (tmp->rdev) { 1507 /* Replaced device not technically faulty, 1508 * but we need to be sure it gets removed 1509 * and never re-added. 1510 */ 1511 set_bit(Faulty, &tmp->rdev->flags); 1512 sysfs_notify_dirent_safe( 1513 tmp->rdev->sysfs_state); 1514 } 1515 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1516 } else if (tmp->rdev 1517 && !test_bit(Faulty, &tmp->rdev->flags) 1518 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1519 count++; 1520 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1521 } 1522 } 1523 spin_lock_irqsave(&conf->device_lock, flags); 1524 mddev->degraded -= count; 1525 spin_unlock_irqrestore(&conf->device_lock, flags); 1526 1527 print_conf(conf); 1528 return count; 1529 } 1530 1531 1532 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1533 { 1534 struct r10conf *conf = mddev->private; 1535 int err = -EEXIST; 1536 int mirror; 1537 int first = 0; 1538 int last = conf->raid_disks - 1; 1539 struct request_queue *q = bdev_get_queue(rdev->bdev); 1540 1541 if (mddev->recovery_cp < MaxSector) 1542 /* only hot-add to in-sync arrays, as recovery is 1543 * very different from resync 1544 */ 1545 return -EBUSY; 1546 if (rdev->saved_raid_disk < 0 && !enough(conf, -1)) 1547 return -EINVAL; 1548 1549 if (rdev->raid_disk >= 0) 1550 first = last = rdev->raid_disk; 1551 1552 if (q->merge_bvec_fn) { 1553 set_bit(Unmerged, &rdev->flags); 1554 mddev->merge_check_needed = 1; 1555 } 1556 1557 if (rdev->saved_raid_disk >= first && 1558 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1559 mirror = rdev->saved_raid_disk; 1560 else 1561 mirror = first; 1562 for ( ; mirror <= last ; mirror++) { 1563 struct mirror_info *p = &conf->mirrors[mirror]; 1564 if (p->recovery_disabled == mddev->recovery_disabled) 1565 continue; 1566 if (p->rdev) { 1567 if (!test_bit(WantReplacement, &p->rdev->flags) || 1568 p->replacement != NULL) 1569 continue; 1570 clear_bit(In_sync, &rdev->flags); 1571 set_bit(Replacement, &rdev->flags); 1572 rdev->raid_disk = mirror; 1573 err = 0; 1574 disk_stack_limits(mddev->gendisk, rdev->bdev, 1575 rdev->data_offset << 9); 1576 conf->fullsync = 1; 1577 rcu_assign_pointer(p->replacement, rdev); 1578 break; 1579 } 1580 1581 disk_stack_limits(mddev->gendisk, rdev->bdev, 1582 rdev->data_offset << 9); 1583 1584 p->head_position = 0; 1585 p->recovery_disabled = mddev->recovery_disabled - 1; 1586 rdev->raid_disk = mirror; 1587 err = 0; 1588 if (rdev->saved_raid_disk != mirror) 1589 conf->fullsync = 1; 1590 rcu_assign_pointer(p->rdev, rdev); 1591 break; 1592 } 1593 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1594 /* Some requests might not have seen this new 1595 * merge_bvec_fn. We must wait for them to complete 1596 * before merging the device fully. 1597 * First we make sure any code which has tested 1598 * our function has submitted the request, then 1599 * we wait for all outstanding requests to complete. 1600 */ 1601 synchronize_sched(); 1602 raise_barrier(conf, 0); 1603 lower_barrier(conf); 1604 clear_bit(Unmerged, &rdev->flags); 1605 } 1606 md_integrity_add_rdev(rdev, mddev); 1607 print_conf(conf); 1608 return err; 1609 } 1610 1611 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1612 { 1613 struct r10conf *conf = mddev->private; 1614 int err = 0; 1615 int number = rdev->raid_disk; 1616 struct md_rdev **rdevp; 1617 struct mirror_info *p = conf->mirrors + number; 1618 1619 print_conf(conf); 1620 if (rdev == p->rdev) 1621 rdevp = &p->rdev; 1622 else if (rdev == p->replacement) 1623 rdevp = &p->replacement; 1624 else 1625 return 0; 1626 1627 if (test_bit(In_sync, &rdev->flags) || 1628 atomic_read(&rdev->nr_pending)) { 1629 err = -EBUSY; 1630 goto abort; 1631 } 1632 /* Only remove faulty devices if recovery 1633 * is not possible. 1634 */ 1635 if (!test_bit(Faulty, &rdev->flags) && 1636 mddev->recovery_disabled != p->recovery_disabled && 1637 (!p->replacement || p->replacement == rdev) && 1638 enough(conf, -1)) { 1639 err = -EBUSY; 1640 goto abort; 1641 } 1642 *rdevp = NULL; 1643 synchronize_rcu(); 1644 if (atomic_read(&rdev->nr_pending)) { 1645 /* lost the race, try later */ 1646 err = -EBUSY; 1647 *rdevp = rdev; 1648 goto abort; 1649 } else if (p->replacement) { 1650 /* We must have just cleared 'rdev' */ 1651 p->rdev = p->replacement; 1652 clear_bit(Replacement, &p->replacement->flags); 1653 smp_mb(); /* Make sure other CPUs may see both as identical 1654 * but will never see neither -- if they are careful. 1655 */ 1656 p->replacement = NULL; 1657 clear_bit(WantReplacement, &rdev->flags); 1658 } else 1659 /* We might have just remove the Replacement as faulty 1660 * Clear the flag just in case 1661 */ 1662 clear_bit(WantReplacement, &rdev->flags); 1663 1664 err = md_integrity_register(mddev); 1665 1666 abort: 1667 1668 print_conf(conf); 1669 return err; 1670 } 1671 1672 1673 static void end_sync_read(struct bio *bio, int error) 1674 { 1675 struct r10bio *r10_bio = bio->bi_private; 1676 struct r10conf *conf = r10_bio->mddev->private; 1677 int d; 1678 1679 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1680 1681 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1682 set_bit(R10BIO_Uptodate, &r10_bio->state); 1683 else 1684 /* The write handler will notice the lack of 1685 * R10BIO_Uptodate and record any errors etc 1686 */ 1687 atomic_add(r10_bio->sectors, 1688 &conf->mirrors[d].rdev->corrected_errors); 1689 1690 /* for reconstruct, we always reschedule after a read. 1691 * for resync, only after all reads 1692 */ 1693 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1694 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1695 atomic_dec_and_test(&r10_bio->remaining)) { 1696 /* we have read all the blocks, 1697 * do the comparison in process context in raid10d 1698 */ 1699 reschedule_retry(r10_bio); 1700 } 1701 } 1702 1703 static void end_sync_request(struct r10bio *r10_bio) 1704 { 1705 struct mddev *mddev = r10_bio->mddev; 1706 1707 while (atomic_dec_and_test(&r10_bio->remaining)) { 1708 if (r10_bio->master_bio == NULL) { 1709 /* the primary of several recovery bios */ 1710 sector_t s = r10_bio->sectors; 1711 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1712 test_bit(R10BIO_WriteError, &r10_bio->state)) 1713 reschedule_retry(r10_bio); 1714 else 1715 put_buf(r10_bio); 1716 md_done_sync(mddev, s, 1); 1717 break; 1718 } else { 1719 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1720 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1721 test_bit(R10BIO_WriteError, &r10_bio->state)) 1722 reschedule_retry(r10_bio); 1723 else 1724 put_buf(r10_bio); 1725 r10_bio = r10_bio2; 1726 } 1727 } 1728 } 1729 1730 static void end_sync_write(struct bio *bio, int error) 1731 { 1732 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1733 struct r10bio *r10_bio = bio->bi_private; 1734 struct mddev *mddev = r10_bio->mddev; 1735 struct r10conf *conf = mddev->private; 1736 int d; 1737 sector_t first_bad; 1738 int bad_sectors; 1739 int slot; 1740 int repl; 1741 struct md_rdev *rdev = NULL; 1742 1743 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1744 if (repl) 1745 rdev = conf->mirrors[d].replacement; 1746 else 1747 rdev = conf->mirrors[d].rdev; 1748 1749 if (!uptodate) { 1750 if (repl) 1751 md_error(mddev, rdev); 1752 else { 1753 set_bit(WriteErrorSeen, &rdev->flags); 1754 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1755 set_bit(MD_RECOVERY_NEEDED, 1756 &rdev->mddev->recovery); 1757 set_bit(R10BIO_WriteError, &r10_bio->state); 1758 } 1759 } else if (is_badblock(rdev, 1760 r10_bio->devs[slot].addr, 1761 r10_bio->sectors, 1762 &first_bad, &bad_sectors)) 1763 set_bit(R10BIO_MadeGood, &r10_bio->state); 1764 1765 rdev_dec_pending(rdev, mddev); 1766 1767 end_sync_request(r10_bio); 1768 } 1769 1770 /* 1771 * Note: sync and recover and handled very differently for raid10 1772 * This code is for resync. 1773 * For resync, we read through virtual addresses and read all blocks. 1774 * If there is any error, we schedule a write. The lowest numbered 1775 * drive is authoritative. 1776 * However requests come for physical address, so we need to map. 1777 * For every physical address there are raid_disks/copies virtual addresses, 1778 * which is always are least one, but is not necessarly an integer. 1779 * This means that a physical address can span multiple chunks, so we may 1780 * have to submit multiple io requests for a single sync request. 1781 */ 1782 /* 1783 * We check if all blocks are in-sync and only write to blocks that 1784 * aren't in sync 1785 */ 1786 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1787 { 1788 struct r10conf *conf = mddev->private; 1789 int i, first; 1790 struct bio *tbio, *fbio; 1791 int vcnt; 1792 1793 atomic_set(&r10_bio->remaining, 1); 1794 1795 /* find the first device with a block */ 1796 for (i=0; i<conf->copies; i++) 1797 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1798 break; 1799 1800 if (i == conf->copies) 1801 goto done; 1802 1803 first = i; 1804 fbio = r10_bio->devs[i].bio; 1805 1806 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1807 /* now find blocks with errors */ 1808 for (i=0 ; i < conf->copies ; i++) { 1809 int j, d; 1810 1811 tbio = r10_bio->devs[i].bio; 1812 1813 if (tbio->bi_end_io != end_sync_read) 1814 continue; 1815 if (i == first) 1816 continue; 1817 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1818 /* We know that the bi_io_vec layout is the same for 1819 * both 'first' and 'i', so we just compare them. 1820 * All vec entries are PAGE_SIZE; 1821 */ 1822 for (j = 0; j < vcnt; j++) 1823 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1824 page_address(tbio->bi_io_vec[j].bv_page), 1825 fbio->bi_io_vec[j].bv_len)) 1826 break; 1827 if (j == vcnt) 1828 continue; 1829 mddev->resync_mismatches += r10_bio->sectors; 1830 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1831 /* Don't fix anything. */ 1832 continue; 1833 } 1834 /* Ok, we need to write this bio, either to correct an 1835 * inconsistency or to correct an unreadable block. 1836 * First we need to fixup bv_offset, bv_len and 1837 * bi_vecs, as the read request might have corrupted these 1838 */ 1839 tbio->bi_vcnt = vcnt; 1840 tbio->bi_size = r10_bio->sectors << 9; 1841 tbio->bi_idx = 0; 1842 tbio->bi_phys_segments = 0; 1843 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1844 tbio->bi_flags |= 1 << BIO_UPTODATE; 1845 tbio->bi_next = NULL; 1846 tbio->bi_rw = WRITE; 1847 tbio->bi_private = r10_bio; 1848 tbio->bi_sector = r10_bio->devs[i].addr; 1849 1850 for (j=0; j < vcnt ; j++) { 1851 tbio->bi_io_vec[j].bv_offset = 0; 1852 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1853 1854 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1855 page_address(fbio->bi_io_vec[j].bv_page), 1856 PAGE_SIZE); 1857 } 1858 tbio->bi_end_io = end_sync_write; 1859 1860 d = r10_bio->devs[i].devnum; 1861 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1862 atomic_inc(&r10_bio->remaining); 1863 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1864 1865 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1866 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1867 generic_make_request(tbio); 1868 } 1869 1870 /* Now write out to any replacement devices 1871 * that are active 1872 */ 1873 for (i = 0; i < conf->copies; i++) { 1874 int j, d; 1875 1876 tbio = r10_bio->devs[i].repl_bio; 1877 if (!tbio || !tbio->bi_end_io) 1878 continue; 1879 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 1880 && r10_bio->devs[i].bio != fbio) 1881 for (j = 0; j < vcnt; j++) 1882 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1883 page_address(fbio->bi_io_vec[j].bv_page), 1884 PAGE_SIZE); 1885 d = r10_bio->devs[i].devnum; 1886 atomic_inc(&r10_bio->remaining); 1887 md_sync_acct(conf->mirrors[d].replacement->bdev, 1888 tbio->bi_size >> 9); 1889 generic_make_request(tbio); 1890 } 1891 1892 done: 1893 if (atomic_dec_and_test(&r10_bio->remaining)) { 1894 md_done_sync(mddev, r10_bio->sectors, 1); 1895 put_buf(r10_bio); 1896 } 1897 } 1898 1899 /* 1900 * Now for the recovery code. 1901 * Recovery happens across physical sectors. 1902 * We recover all non-is_sync drives by finding the virtual address of 1903 * each, and then choose a working drive that also has that virt address. 1904 * There is a separate r10_bio for each non-in_sync drive. 1905 * Only the first two slots are in use. The first for reading, 1906 * The second for writing. 1907 * 1908 */ 1909 static void fix_recovery_read_error(struct r10bio *r10_bio) 1910 { 1911 /* We got a read error during recovery. 1912 * We repeat the read in smaller page-sized sections. 1913 * If a read succeeds, write it to the new device or record 1914 * a bad block if we cannot. 1915 * If a read fails, record a bad block on both old and 1916 * new devices. 1917 */ 1918 struct mddev *mddev = r10_bio->mddev; 1919 struct r10conf *conf = mddev->private; 1920 struct bio *bio = r10_bio->devs[0].bio; 1921 sector_t sect = 0; 1922 int sectors = r10_bio->sectors; 1923 int idx = 0; 1924 int dr = r10_bio->devs[0].devnum; 1925 int dw = r10_bio->devs[1].devnum; 1926 1927 while (sectors) { 1928 int s = sectors; 1929 struct md_rdev *rdev; 1930 sector_t addr; 1931 int ok; 1932 1933 if (s > (PAGE_SIZE>>9)) 1934 s = PAGE_SIZE >> 9; 1935 1936 rdev = conf->mirrors[dr].rdev; 1937 addr = r10_bio->devs[0].addr + sect, 1938 ok = sync_page_io(rdev, 1939 addr, 1940 s << 9, 1941 bio->bi_io_vec[idx].bv_page, 1942 READ, false); 1943 if (ok) { 1944 rdev = conf->mirrors[dw].rdev; 1945 addr = r10_bio->devs[1].addr + sect; 1946 ok = sync_page_io(rdev, 1947 addr, 1948 s << 9, 1949 bio->bi_io_vec[idx].bv_page, 1950 WRITE, false); 1951 if (!ok) { 1952 set_bit(WriteErrorSeen, &rdev->flags); 1953 if (!test_and_set_bit(WantReplacement, 1954 &rdev->flags)) 1955 set_bit(MD_RECOVERY_NEEDED, 1956 &rdev->mddev->recovery); 1957 } 1958 } 1959 if (!ok) { 1960 /* We don't worry if we cannot set a bad block - 1961 * it really is bad so there is no loss in not 1962 * recording it yet 1963 */ 1964 rdev_set_badblocks(rdev, addr, s, 0); 1965 1966 if (rdev != conf->mirrors[dw].rdev) { 1967 /* need bad block on destination too */ 1968 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 1969 addr = r10_bio->devs[1].addr + sect; 1970 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1971 if (!ok) { 1972 /* just abort the recovery */ 1973 printk(KERN_NOTICE 1974 "md/raid10:%s: recovery aborted" 1975 " due to read error\n", 1976 mdname(mddev)); 1977 1978 conf->mirrors[dw].recovery_disabled 1979 = mddev->recovery_disabled; 1980 set_bit(MD_RECOVERY_INTR, 1981 &mddev->recovery); 1982 break; 1983 } 1984 } 1985 } 1986 1987 sectors -= s; 1988 sect += s; 1989 idx++; 1990 } 1991 } 1992 1993 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1994 { 1995 struct r10conf *conf = mddev->private; 1996 int d; 1997 struct bio *wbio, *wbio2; 1998 1999 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2000 fix_recovery_read_error(r10_bio); 2001 end_sync_request(r10_bio); 2002 return; 2003 } 2004 2005 /* 2006 * share the pages with the first bio 2007 * and submit the write request 2008 */ 2009 d = r10_bio->devs[1].devnum; 2010 wbio = r10_bio->devs[1].bio; 2011 wbio2 = r10_bio->devs[1].repl_bio; 2012 if (wbio->bi_end_io) { 2013 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2014 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2015 generic_make_request(wbio); 2016 } 2017 if (wbio2 && wbio2->bi_end_io) { 2018 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2019 md_sync_acct(conf->mirrors[d].replacement->bdev, 2020 wbio2->bi_size >> 9); 2021 generic_make_request(wbio2); 2022 } 2023 } 2024 2025 2026 /* 2027 * Used by fix_read_error() to decay the per rdev read_errors. 2028 * We halve the read error count for every hour that has elapsed 2029 * since the last recorded read error. 2030 * 2031 */ 2032 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2033 { 2034 struct timespec cur_time_mon; 2035 unsigned long hours_since_last; 2036 unsigned int read_errors = atomic_read(&rdev->read_errors); 2037 2038 ktime_get_ts(&cur_time_mon); 2039 2040 if (rdev->last_read_error.tv_sec == 0 && 2041 rdev->last_read_error.tv_nsec == 0) { 2042 /* first time we've seen a read error */ 2043 rdev->last_read_error = cur_time_mon; 2044 return; 2045 } 2046 2047 hours_since_last = (cur_time_mon.tv_sec - 2048 rdev->last_read_error.tv_sec) / 3600; 2049 2050 rdev->last_read_error = cur_time_mon; 2051 2052 /* 2053 * if hours_since_last is > the number of bits in read_errors 2054 * just set read errors to 0. We do this to avoid 2055 * overflowing the shift of read_errors by hours_since_last. 2056 */ 2057 if (hours_since_last >= 8 * sizeof(read_errors)) 2058 atomic_set(&rdev->read_errors, 0); 2059 else 2060 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2061 } 2062 2063 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2064 int sectors, struct page *page, int rw) 2065 { 2066 sector_t first_bad; 2067 int bad_sectors; 2068 2069 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2070 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2071 return -1; 2072 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2073 /* success */ 2074 return 1; 2075 if (rw == WRITE) { 2076 set_bit(WriteErrorSeen, &rdev->flags); 2077 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2078 set_bit(MD_RECOVERY_NEEDED, 2079 &rdev->mddev->recovery); 2080 } 2081 /* need to record an error - either for the block or the device */ 2082 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2083 md_error(rdev->mddev, rdev); 2084 return 0; 2085 } 2086 2087 /* 2088 * This is a kernel thread which: 2089 * 2090 * 1. Retries failed read operations on working mirrors. 2091 * 2. Updates the raid superblock when problems encounter. 2092 * 3. Performs writes following reads for array synchronising. 2093 */ 2094 2095 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2096 { 2097 int sect = 0; /* Offset from r10_bio->sector */ 2098 int sectors = r10_bio->sectors; 2099 struct md_rdev*rdev; 2100 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2101 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2102 2103 /* still own a reference to this rdev, so it cannot 2104 * have been cleared recently. 2105 */ 2106 rdev = conf->mirrors[d].rdev; 2107 2108 if (test_bit(Faulty, &rdev->flags)) 2109 /* drive has already been failed, just ignore any 2110 more fix_read_error() attempts */ 2111 return; 2112 2113 check_decay_read_errors(mddev, rdev); 2114 atomic_inc(&rdev->read_errors); 2115 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2116 char b[BDEVNAME_SIZE]; 2117 bdevname(rdev->bdev, b); 2118 2119 printk(KERN_NOTICE 2120 "md/raid10:%s: %s: Raid device exceeded " 2121 "read_error threshold [cur %d:max %d]\n", 2122 mdname(mddev), b, 2123 atomic_read(&rdev->read_errors), max_read_errors); 2124 printk(KERN_NOTICE 2125 "md/raid10:%s: %s: Failing raid device\n", 2126 mdname(mddev), b); 2127 md_error(mddev, conf->mirrors[d].rdev); 2128 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2129 return; 2130 } 2131 2132 while(sectors) { 2133 int s = sectors; 2134 int sl = r10_bio->read_slot; 2135 int success = 0; 2136 int start; 2137 2138 if (s > (PAGE_SIZE>>9)) 2139 s = PAGE_SIZE >> 9; 2140 2141 rcu_read_lock(); 2142 do { 2143 sector_t first_bad; 2144 int bad_sectors; 2145 2146 d = r10_bio->devs[sl].devnum; 2147 rdev = rcu_dereference(conf->mirrors[d].rdev); 2148 if (rdev && 2149 !test_bit(Unmerged, &rdev->flags) && 2150 test_bit(In_sync, &rdev->flags) && 2151 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2152 &first_bad, &bad_sectors) == 0) { 2153 atomic_inc(&rdev->nr_pending); 2154 rcu_read_unlock(); 2155 success = sync_page_io(rdev, 2156 r10_bio->devs[sl].addr + 2157 sect, 2158 s<<9, 2159 conf->tmppage, READ, false); 2160 rdev_dec_pending(rdev, mddev); 2161 rcu_read_lock(); 2162 if (success) 2163 break; 2164 } 2165 sl++; 2166 if (sl == conf->copies) 2167 sl = 0; 2168 } while (!success && sl != r10_bio->read_slot); 2169 rcu_read_unlock(); 2170 2171 if (!success) { 2172 /* Cannot read from anywhere, just mark the block 2173 * as bad on the first device to discourage future 2174 * reads. 2175 */ 2176 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2177 rdev = conf->mirrors[dn].rdev; 2178 2179 if (!rdev_set_badblocks( 2180 rdev, 2181 r10_bio->devs[r10_bio->read_slot].addr 2182 + sect, 2183 s, 0)) { 2184 md_error(mddev, rdev); 2185 r10_bio->devs[r10_bio->read_slot].bio 2186 = IO_BLOCKED; 2187 } 2188 break; 2189 } 2190 2191 start = sl; 2192 /* write it back and re-read */ 2193 rcu_read_lock(); 2194 while (sl != r10_bio->read_slot) { 2195 char b[BDEVNAME_SIZE]; 2196 2197 if (sl==0) 2198 sl = conf->copies; 2199 sl--; 2200 d = r10_bio->devs[sl].devnum; 2201 rdev = rcu_dereference(conf->mirrors[d].rdev); 2202 if (!rdev || 2203 test_bit(Unmerged, &rdev->flags) || 2204 !test_bit(In_sync, &rdev->flags)) 2205 continue; 2206 2207 atomic_inc(&rdev->nr_pending); 2208 rcu_read_unlock(); 2209 if (r10_sync_page_io(rdev, 2210 r10_bio->devs[sl].addr + 2211 sect, 2212 s<<9, conf->tmppage, WRITE) 2213 == 0) { 2214 /* Well, this device is dead */ 2215 printk(KERN_NOTICE 2216 "md/raid10:%s: read correction " 2217 "write failed" 2218 " (%d sectors at %llu on %s)\n", 2219 mdname(mddev), s, 2220 (unsigned long long)( 2221 sect + rdev->data_offset), 2222 bdevname(rdev->bdev, b)); 2223 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2224 "drive\n", 2225 mdname(mddev), 2226 bdevname(rdev->bdev, b)); 2227 } 2228 rdev_dec_pending(rdev, mddev); 2229 rcu_read_lock(); 2230 } 2231 sl = start; 2232 while (sl != r10_bio->read_slot) { 2233 char b[BDEVNAME_SIZE]; 2234 2235 if (sl==0) 2236 sl = conf->copies; 2237 sl--; 2238 d = r10_bio->devs[sl].devnum; 2239 rdev = rcu_dereference(conf->mirrors[d].rdev); 2240 if (!rdev || 2241 !test_bit(In_sync, &rdev->flags)) 2242 continue; 2243 2244 atomic_inc(&rdev->nr_pending); 2245 rcu_read_unlock(); 2246 switch (r10_sync_page_io(rdev, 2247 r10_bio->devs[sl].addr + 2248 sect, 2249 s<<9, conf->tmppage, 2250 READ)) { 2251 case 0: 2252 /* Well, this device is dead */ 2253 printk(KERN_NOTICE 2254 "md/raid10:%s: unable to read back " 2255 "corrected sectors" 2256 " (%d sectors at %llu on %s)\n", 2257 mdname(mddev), s, 2258 (unsigned long long)( 2259 sect + rdev->data_offset), 2260 bdevname(rdev->bdev, b)); 2261 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2262 "drive\n", 2263 mdname(mddev), 2264 bdevname(rdev->bdev, b)); 2265 break; 2266 case 1: 2267 printk(KERN_INFO 2268 "md/raid10:%s: read error corrected" 2269 " (%d sectors at %llu on %s)\n", 2270 mdname(mddev), s, 2271 (unsigned long long)( 2272 sect + rdev->data_offset), 2273 bdevname(rdev->bdev, b)); 2274 atomic_add(s, &rdev->corrected_errors); 2275 } 2276 2277 rdev_dec_pending(rdev, mddev); 2278 rcu_read_lock(); 2279 } 2280 rcu_read_unlock(); 2281 2282 sectors -= s; 2283 sect += s; 2284 } 2285 } 2286 2287 static void bi_complete(struct bio *bio, int error) 2288 { 2289 complete((struct completion *)bio->bi_private); 2290 } 2291 2292 static int submit_bio_wait(int rw, struct bio *bio) 2293 { 2294 struct completion event; 2295 rw |= REQ_SYNC; 2296 2297 init_completion(&event); 2298 bio->bi_private = &event; 2299 bio->bi_end_io = bi_complete; 2300 submit_bio(rw, bio); 2301 wait_for_completion(&event); 2302 2303 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2304 } 2305 2306 static int narrow_write_error(struct r10bio *r10_bio, int i) 2307 { 2308 struct bio *bio = r10_bio->master_bio; 2309 struct mddev *mddev = r10_bio->mddev; 2310 struct r10conf *conf = mddev->private; 2311 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2312 /* bio has the data to be written to slot 'i' where 2313 * we just recently had a write error. 2314 * We repeatedly clone the bio and trim down to one block, 2315 * then try the write. Where the write fails we record 2316 * a bad block. 2317 * It is conceivable that the bio doesn't exactly align with 2318 * blocks. We must handle this. 2319 * 2320 * We currently own a reference to the rdev. 2321 */ 2322 2323 int block_sectors; 2324 sector_t sector; 2325 int sectors; 2326 int sect_to_write = r10_bio->sectors; 2327 int ok = 1; 2328 2329 if (rdev->badblocks.shift < 0) 2330 return 0; 2331 2332 block_sectors = 1 << rdev->badblocks.shift; 2333 sector = r10_bio->sector; 2334 sectors = ((r10_bio->sector + block_sectors) 2335 & ~(sector_t)(block_sectors - 1)) 2336 - sector; 2337 2338 while (sect_to_write) { 2339 struct bio *wbio; 2340 if (sectors > sect_to_write) 2341 sectors = sect_to_write; 2342 /* Write at 'sector' for 'sectors' */ 2343 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2344 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2345 wbio->bi_sector = (r10_bio->devs[i].addr+ 2346 rdev->data_offset+ 2347 (sector - r10_bio->sector)); 2348 wbio->bi_bdev = rdev->bdev; 2349 if (submit_bio_wait(WRITE, wbio) == 0) 2350 /* Failure! */ 2351 ok = rdev_set_badblocks(rdev, sector, 2352 sectors, 0) 2353 && ok; 2354 2355 bio_put(wbio); 2356 sect_to_write -= sectors; 2357 sector += sectors; 2358 sectors = block_sectors; 2359 } 2360 return ok; 2361 } 2362 2363 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2364 { 2365 int slot = r10_bio->read_slot; 2366 struct bio *bio; 2367 struct r10conf *conf = mddev->private; 2368 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2369 char b[BDEVNAME_SIZE]; 2370 unsigned long do_sync; 2371 int max_sectors; 2372 2373 /* we got a read error. Maybe the drive is bad. Maybe just 2374 * the block and we can fix it. 2375 * We freeze all other IO, and try reading the block from 2376 * other devices. When we find one, we re-write 2377 * and check it that fixes the read error. 2378 * This is all done synchronously while the array is 2379 * frozen. 2380 */ 2381 bio = r10_bio->devs[slot].bio; 2382 bdevname(bio->bi_bdev, b); 2383 bio_put(bio); 2384 r10_bio->devs[slot].bio = NULL; 2385 2386 if (mddev->ro == 0) { 2387 freeze_array(conf); 2388 fix_read_error(conf, mddev, r10_bio); 2389 unfreeze_array(conf); 2390 } else 2391 r10_bio->devs[slot].bio = IO_BLOCKED; 2392 2393 rdev_dec_pending(rdev, mddev); 2394 2395 read_more: 2396 rdev = read_balance(conf, r10_bio, &max_sectors); 2397 if (rdev == NULL) { 2398 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2399 " read error for block %llu\n", 2400 mdname(mddev), b, 2401 (unsigned long long)r10_bio->sector); 2402 raid_end_bio_io(r10_bio); 2403 return; 2404 } 2405 2406 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2407 slot = r10_bio->read_slot; 2408 printk_ratelimited( 2409 KERN_ERR 2410 "md/raid10:%s: %s: redirecting" 2411 "sector %llu to another mirror\n", 2412 mdname(mddev), 2413 bdevname(rdev->bdev, b), 2414 (unsigned long long)r10_bio->sector); 2415 bio = bio_clone_mddev(r10_bio->master_bio, 2416 GFP_NOIO, mddev); 2417 md_trim_bio(bio, 2418 r10_bio->sector - bio->bi_sector, 2419 max_sectors); 2420 r10_bio->devs[slot].bio = bio; 2421 r10_bio->devs[slot].rdev = rdev; 2422 bio->bi_sector = r10_bio->devs[slot].addr 2423 + rdev->data_offset; 2424 bio->bi_bdev = rdev->bdev; 2425 bio->bi_rw = READ | do_sync; 2426 bio->bi_private = r10_bio; 2427 bio->bi_end_io = raid10_end_read_request; 2428 if (max_sectors < r10_bio->sectors) { 2429 /* Drat - have to split this up more */ 2430 struct bio *mbio = r10_bio->master_bio; 2431 int sectors_handled = 2432 r10_bio->sector + max_sectors 2433 - mbio->bi_sector; 2434 r10_bio->sectors = max_sectors; 2435 spin_lock_irq(&conf->device_lock); 2436 if (mbio->bi_phys_segments == 0) 2437 mbio->bi_phys_segments = 2; 2438 else 2439 mbio->bi_phys_segments++; 2440 spin_unlock_irq(&conf->device_lock); 2441 generic_make_request(bio); 2442 2443 r10_bio = mempool_alloc(conf->r10bio_pool, 2444 GFP_NOIO); 2445 r10_bio->master_bio = mbio; 2446 r10_bio->sectors = (mbio->bi_size >> 9) 2447 - sectors_handled; 2448 r10_bio->state = 0; 2449 set_bit(R10BIO_ReadError, 2450 &r10_bio->state); 2451 r10_bio->mddev = mddev; 2452 r10_bio->sector = mbio->bi_sector 2453 + sectors_handled; 2454 2455 goto read_more; 2456 } else 2457 generic_make_request(bio); 2458 } 2459 2460 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2461 { 2462 /* Some sort of write request has finished and it 2463 * succeeded in writing where we thought there was a 2464 * bad block. So forget the bad block. 2465 * Or possibly if failed and we need to record 2466 * a bad block. 2467 */ 2468 int m; 2469 struct md_rdev *rdev; 2470 2471 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2472 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2473 for (m = 0; m < conf->copies; m++) { 2474 int dev = r10_bio->devs[m].devnum; 2475 rdev = conf->mirrors[dev].rdev; 2476 if (r10_bio->devs[m].bio == NULL) 2477 continue; 2478 if (test_bit(BIO_UPTODATE, 2479 &r10_bio->devs[m].bio->bi_flags)) { 2480 rdev_clear_badblocks( 2481 rdev, 2482 r10_bio->devs[m].addr, 2483 r10_bio->sectors); 2484 } else { 2485 if (!rdev_set_badblocks( 2486 rdev, 2487 r10_bio->devs[m].addr, 2488 r10_bio->sectors, 0)) 2489 md_error(conf->mddev, rdev); 2490 } 2491 rdev = conf->mirrors[dev].replacement; 2492 if (r10_bio->devs[m].repl_bio == NULL) 2493 continue; 2494 if (test_bit(BIO_UPTODATE, 2495 &r10_bio->devs[m].repl_bio->bi_flags)) { 2496 rdev_clear_badblocks( 2497 rdev, 2498 r10_bio->devs[m].addr, 2499 r10_bio->sectors); 2500 } else { 2501 if (!rdev_set_badblocks( 2502 rdev, 2503 r10_bio->devs[m].addr, 2504 r10_bio->sectors, 0)) 2505 md_error(conf->mddev, rdev); 2506 } 2507 } 2508 put_buf(r10_bio); 2509 } else { 2510 for (m = 0; m < conf->copies; m++) { 2511 int dev = r10_bio->devs[m].devnum; 2512 struct bio *bio = r10_bio->devs[m].bio; 2513 rdev = conf->mirrors[dev].rdev; 2514 if (bio == IO_MADE_GOOD) { 2515 rdev_clear_badblocks( 2516 rdev, 2517 r10_bio->devs[m].addr, 2518 r10_bio->sectors); 2519 rdev_dec_pending(rdev, conf->mddev); 2520 } else if (bio != NULL && 2521 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2522 if (!narrow_write_error(r10_bio, m)) { 2523 md_error(conf->mddev, rdev); 2524 set_bit(R10BIO_Degraded, 2525 &r10_bio->state); 2526 } 2527 rdev_dec_pending(rdev, conf->mddev); 2528 } 2529 bio = r10_bio->devs[m].repl_bio; 2530 rdev = conf->mirrors[dev].replacement; 2531 if (rdev && bio == IO_MADE_GOOD) { 2532 rdev_clear_badblocks( 2533 rdev, 2534 r10_bio->devs[m].addr, 2535 r10_bio->sectors); 2536 rdev_dec_pending(rdev, conf->mddev); 2537 } 2538 } 2539 if (test_bit(R10BIO_WriteError, 2540 &r10_bio->state)) 2541 close_write(r10_bio); 2542 raid_end_bio_io(r10_bio); 2543 } 2544 } 2545 2546 static void raid10d(struct mddev *mddev) 2547 { 2548 struct r10bio *r10_bio; 2549 unsigned long flags; 2550 struct r10conf *conf = mddev->private; 2551 struct list_head *head = &conf->retry_list; 2552 struct blk_plug plug; 2553 2554 md_check_recovery(mddev); 2555 2556 blk_start_plug(&plug); 2557 for (;;) { 2558 2559 flush_pending_writes(conf); 2560 2561 spin_lock_irqsave(&conf->device_lock, flags); 2562 if (list_empty(head)) { 2563 spin_unlock_irqrestore(&conf->device_lock, flags); 2564 break; 2565 } 2566 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2567 list_del(head->prev); 2568 conf->nr_queued--; 2569 spin_unlock_irqrestore(&conf->device_lock, flags); 2570 2571 mddev = r10_bio->mddev; 2572 conf = mddev->private; 2573 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2574 test_bit(R10BIO_WriteError, &r10_bio->state)) 2575 handle_write_completed(conf, r10_bio); 2576 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2577 sync_request_write(mddev, r10_bio); 2578 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2579 recovery_request_write(mddev, r10_bio); 2580 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2581 handle_read_error(mddev, r10_bio); 2582 else { 2583 /* just a partial read to be scheduled from a 2584 * separate context 2585 */ 2586 int slot = r10_bio->read_slot; 2587 generic_make_request(r10_bio->devs[slot].bio); 2588 } 2589 2590 cond_resched(); 2591 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2592 md_check_recovery(mddev); 2593 } 2594 blk_finish_plug(&plug); 2595 } 2596 2597 2598 static int init_resync(struct r10conf *conf) 2599 { 2600 int buffs; 2601 int i; 2602 2603 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2604 BUG_ON(conf->r10buf_pool); 2605 conf->have_replacement = 0; 2606 for (i = 0; i < conf->raid_disks; i++) 2607 if (conf->mirrors[i].replacement) 2608 conf->have_replacement = 1; 2609 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2610 if (!conf->r10buf_pool) 2611 return -ENOMEM; 2612 conf->next_resync = 0; 2613 return 0; 2614 } 2615 2616 /* 2617 * perform a "sync" on one "block" 2618 * 2619 * We need to make sure that no normal I/O request - particularly write 2620 * requests - conflict with active sync requests. 2621 * 2622 * This is achieved by tracking pending requests and a 'barrier' concept 2623 * that can be installed to exclude normal IO requests. 2624 * 2625 * Resync and recovery are handled very differently. 2626 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2627 * 2628 * For resync, we iterate over virtual addresses, read all copies, 2629 * and update if there are differences. If only one copy is live, 2630 * skip it. 2631 * For recovery, we iterate over physical addresses, read a good 2632 * value for each non-in_sync drive, and over-write. 2633 * 2634 * So, for recovery we may have several outstanding complex requests for a 2635 * given address, one for each out-of-sync device. We model this by allocating 2636 * a number of r10_bio structures, one for each out-of-sync device. 2637 * As we setup these structures, we collect all bio's together into a list 2638 * which we then process collectively to add pages, and then process again 2639 * to pass to generic_make_request. 2640 * 2641 * The r10_bio structures are linked using a borrowed master_bio pointer. 2642 * This link is counted in ->remaining. When the r10_bio that points to NULL 2643 * has its remaining count decremented to 0, the whole complex operation 2644 * is complete. 2645 * 2646 */ 2647 2648 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2649 int *skipped, int go_faster) 2650 { 2651 struct r10conf *conf = mddev->private; 2652 struct r10bio *r10_bio; 2653 struct bio *biolist = NULL, *bio; 2654 sector_t max_sector, nr_sectors; 2655 int i; 2656 int max_sync; 2657 sector_t sync_blocks; 2658 sector_t sectors_skipped = 0; 2659 int chunks_skipped = 0; 2660 2661 if (!conf->r10buf_pool) 2662 if (init_resync(conf)) 2663 return 0; 2664 2665 skipped: 2666 max_sector = mddev->dev_sectors; 2667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2668 max_sector = mddev->resync_max_sectors; 2669 if (sector_nr >= max_sector) { 2670 /* If we aborted, we need to abort the 2671 * sync on the 'current' bitmap chucks (there can 2672 * be several when recovering multiple devices). 2673 * as we may have started syncing it but not finished. 2674 * We can find the current address in 2675 * mddev->curr_resync, but for recovery, 2676 * we need to convert that to several 2677 * virtual addresses. 2678 */ 2679 if (mddev->curr_resync < max_sector) { /* aborted */ 2680 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2681 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2682 &sync_blocks, 1); 2683 else for (i=0; i<conf->raid_disks; i++) { 2684 sector_t sect = 2685 raid10_find_virt(conf, mddev->curr_resync, i); 2686 bitmap_end_sync(mddev->bitmap, sect, 2687 &sync_blocks, 1); 2688 } 2689 } else { 2690 /* completed sync */ 2691 if ((!mddev->bitmap || conf->fullsync) 2692 && conf->have_replacement 2693 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2694 /* Completed a full sync so the replacements 2695 * are now fully recovered. 2696 */ 2697 for (i = 0; i < conf->raid_disks; i++) 2698 if (conf->mirrors[i].replacement) 2699 conf->mirrors[i].replacement 2700 ->recovery_offset 2701 = MaxSector; 2702 } 2703 conf->fullsync = 0; 2704 } 2705 bitmap_close_sync(mddev->bitmap); 2706 close_sync(conf); 2707 *skipped = 1; 2708 return sectors_skipped; 2709 } 2710 if (chunks_skipped >= conf->raid_disks) { 2711 /* if there has been nothing to do on any drive, 2712 * then there is nothing to do at all.. 2713 */ 2714 *skipped = 1; 2715 return (max_sector - sector_nr) + sectors_skipped; 2716 } 2717 2718 if (max_sector > mddev->resync_max) 2719 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2720 2721 /* make sure whole request will fit in a chunk - if chunks 2722 * are meaningful 2723 */ 2724 if (conf->near_copies < conf->raid_disks && 2725 max_sector > (sector_nr | conf->chunk_mask)) 2726 max_sector = (sector_nr | conf->chunk_mask) + 1; 2727 /* 2728 * If there is non-resync activity waiting for us then 2729 * put in a delay to throttle resync. 2730 */ 2731 if (!go_faster && conf->nr_waiting) 2732 msleep_interruptible(1000); 2733 2734 /* Again, very different code for resync and recovery. 2735 * Both must result in an r10bio with a list of bios that 2736 * have bi_end_io, bi_sector, bi_bdev set, 2737 * and bi_private set to the r10bio. 2738 * For recovery, we may actually create several r10bios 2739 * with 2 bios in each, that correspond to the bios in the main one. 2740 * In this case, the subordinate r10bios link back through a 2741 * borrowed master_bio pointer, and the counter in the master 2742 * includes a ref from each subordinate. 2743 */ 2744 /* First, we decide what to do and set ->bi_end_io 2745 * To end_sync_read if we want to read, and 2746 * end_sync_write if we will want to write. 2747 */ 2748 2749 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2750 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2751 /* recovery... the complicated one */ 2752 int j; 2753 r10_bio = NULL; 2754 2755 for (i=0 ; i<conf->raid_disks; i++) { 2756 int still_degraded; 2757 struct r10bio *rb2; 2758 sector_t sect; 2759 int must_sync; 2760 int any_working; 2761 struct mirror_info *mirror = &conf->mirrors[i]; 2762 2763 if ((mirror->rdev == NULL || 2764 test_bit(In_sync, &mirror->rdev->flags)) 2765 && 2766 (mirror->replacement == NULL || 2767 test_bit(Faulty, 2768 &mirror->replacement->flags))) 2769 continue; 2770 2771 still_degraded = 0; 2772 /* want to reconstruct this device */ 2773 rb2 = r10_bio; 2774 sect = raid10_find_virt(conf, sector_nr, i); 2775 /* Unless we are doing a full sync, or a replacement 2776 * we only need to recover the block if it is set in 2777 * the bitmap 2778 */ 2779 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2780 &sync_blocks, 1); 2781 if (sync_blocks < max_sync) 2782 max_sync = sync_blocks; 2783 if (!must_sync && 2784 mirror->replacement == NULL && 2785 !conf->fullsync) { 2786 /* yep, skip the sync_blocks here, but don't assume 2787 * that there will never be anything to do here 2788 */ 2789 chunks_skipped = -1; 2790 continue; 2791 } 2792 2793 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2794 raise_barrier(conf, rb2 != NULL); 2795 atomic_set(&r10_bio->remaining, 0); 2796 2797 r10_bio->master_bio = (struct bio*)rb2; 2798 if (rb2) 2799 atomic_inc(&rb2->remaining); 2800 r10_bio->mddev = mddev; 2801 set_bit(R10BIO_IsRecover, &r10_bio->state); 2802 r10_bio->sector = sect; 2803 2804 raid10_find_phys(conf, r10_bio); 2805 2806 /* Need to check if the array will still be 2807 * degraded 2808 */ 2809 for (j=0; j<conf->raid_disks; j++) 2810 if (conf->mirrors[j].rdev == NULL || 2811 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2812 still_degraded = 1; 2813 break; 2814 } 2815 2816 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2817 &sync_blocks, still_degraded); 2818 2819 any_working = 0; 2820 for (j=0; j<conf->copies;j++) { 2821 int k; 2822 int d = r10_bio->devs[j].devnum; 2823 sector_t from_addr, to_addr; 2824 struct md_rdev *rdev; 2825 sector_t sector, first_bad; 2826 int bad_sectors; 2827 if (!conf->mirrors[d].rdev || 2828 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2829 continue; 2830 /* This is where we read from */ 2831 any_working = 1; 2832 rdev = conf->mirrors[d].rdev; 2833 sector = r10_bio->devs[j].addr; 2834 2835 if (is_badblock(rdev, sector, max_sync, 2836 &first_bad, &bad_sectors)) { 2837 if (first_bad > sector) 2838 max_sync = first_bad - sector; 2839 else { 2840 bad_sectors -= (sector 2841 - first_bad); 2842 if (max_sync > bad_sectors) 2843 max_sync = bad_sectors; 2844 continue; 2845 } 2846 } 2847 bio = r10_bio->devs[0].bio; 2848 bio->bi_next = biolist; 2849 biolist = bio; 2850 bio->bi_private = r10_bio; 2851 bio->bi_end_io = end_sync_read; 2852 bio->bi_rw = READ; 2853 from_addr = r10_bio->devs[j].addr; 2854 bio->bi_sector = from_addr + rdev->data_offset; 2855 bio->bi_bdev = rdev->bdev; 2856 atomic_inc(&rdev->nr_pending); 2857 /* and we write to 'i' (if not in_sync) */ 2858 2859 for (k=0; k<conf->copies; k++) 2860 if (r10_bio->devs[k].devnum == i) 2861 break; 2862 BUG_ON(k == conf->copies); 2863 to_addr = r10_bio->devs[k].addr; 2864 r10_bio->devs[0].devnum = d; 2865 r10_bio->devs[0].addr = from_addr; 2866 r10_bio->devs[1].devnum = i; 2867 r10_bio->devs[1].addr = to_addr; 2868 2869 rdev = mirror->rdev; 2870 if (!test_bit(In_sync, &rdev->flags)) { 2871 bio = r10_bio->devs[1].bio; 2872 bio->bi_next = biolist; 2873 biolist = bio; 2874 bio->bi_private = r10_bio; 2875 bio->bi_end_io = end_sync_write; 2876 bio->bi_rw = WRITE; 2877 bio->bi_sector = to_addr 2878 + rdev->data_offset; 2879 bio->bi_bdev = rdev->bdev; 2880 atomic_inc(&r10_bio->remaining); 2881 } else 2882 r10_bio->devs[1].bio->bi_end_io = NULL; 2883 2884 /* and maybe write to replacement */ 2885 bio = r10_bio->devs[1].repl_bio; 2886 if (bio) 2887 bio->bi_end_io = NULL; 2888 rdev = mirror->replacement; 2889 /* Note: if rdev != NULL, then bio 2890 * cannot be NULL as r10buf_pool_alloc will 2891 * have allocated it. 2892 * So the second test here is pointless. 2893 * But it keeps semantic-checkers happy, and 2894 * this comment keeps human reviewers 2895 * happy. 2896 */ 2897 if (rdev == NULL || bio == NULL || 2898 test_bit(Faulty, &rdev->flags)) 2899 break; 2900 bio->bi_next = biolist; 2901 biolist = bio; 2902 bio->bi_private = r10_bio; 2903 bio->bi_end_io = end_sync_write; 2904 bio->bi_rw = WRITE; 2905 bio->bi_sector = to_addr + rdev->data_offset; 2906 bio->bi_bdev = rdev->bdev; 2907 atomic_inc(&r10_bio->remaining); 2908 break; 2909 } 2910 if (j == conf->copies) { 2911 /* Cannot recover, so abort the recovery or 2912 * record a bad block */ 2913 put_buf(r10_bio); 2914 if (rb2) 2915 atomic_dec(&rb2->remaining); 2916 r10_bio = rb2; 2917 if (any_working) { 2918 /* problem is that there are bad blocks 2919 * on other device(s) 2920 */ 2921 int k; 2922 for (k = 0; k < conf->copies; k++) 2923 if (r10_bio->devs[k].devnum == i) 2924 break; 2925 if (!test_bit(In_sync, 2926 &mirror->rdev->flags) 2927 && !rdev_set_badblocks( 2928 mirror->rdev, 2929 r10_bio->devs[k].addr, 2930 max_sync, 0)) 2931 any_working = 0; 2932 if (mirror->replacement && 2933 !rdev_set_badblocks( 2934 mirror->replacement, 2935 r10_bio->devs[k].addr, 2936 max_sync, 0)) 2937 any_working = 0; 2938 } 2939 if (!any_working) { 2940 if (!test_and_set_bit(MD_RECOVERY_INTR, 2941 &mddev->recovery)) 2942 printk(KERN_INFO "md/raid10:%s: insufficient " 2943 "working devices for recovery.\n", 2944 mdname(mddev)); 2945 mirror->recovery_disabled 2946 = mddev->recovery_disabled; 2947 } 2948 break; 2949 } 2950 } 2951 if (biolist == NULL) { 2952 while (r10_bio) { 2953 struct r10bio *rb2 = r10_bio; 2954 r10_bio = (struct r10bio*) rb2->master_bio; 2955 rb2->master_bio = NULL; 2956 put_buf(rb2); 2957 } 2958 goto giveup; 2959 } 2960 } else { 2961 /* resync. Schedule a read for every block at this virt offset */ 2962 int count = 0; 2963 2964 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2965 2966 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2967 &sync_blocks, mddev->degraded) && 2968 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2969 &mddev->recovery)) { 2970 /* We can skip this block */ 2971 *skipped = 1; 2972 return sync_blocks + sectors_skipped; 2973 } 2974 if (sync_blocks < max_sync) 2975 max_sync = sync_blocks; 2976 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2977 2978 r10_bio->mddev = mddev; 2979 atomic_set(&r10_bio->remaining, 0); 2980 raise_barrier(conf, 0); 2981 conf->next_resync = sector_nr; 2982 2983 r10_bio->master_bio = NULL; 2984 r10_bio->sector = sector_nr; 2985 set_bit(R10BIO_IsSync, &r10_bio->state); 2986 raid10_find_phys(conf, r10_bio); 2987 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2988 2989 for (i=0; i<conf->copies; i++) { 2990 int d = r10_bio->devs[i].devnum; 2991 sector_t first_bad, sector; 2992 int bad_sectors; 2993 2994 if (r10_bio->devs[i].repl_bio) 2995 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 2996 2997 bio = r10_bio->devs[i].bio; 2998 bio->bi_end_io = NULL; 2999 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3000 if (conf->mirrors[d].rdev == NULL || 3001 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3002 continue; 3003 sector = r10_bio->devs[i].addr; 3004 if (is_badblock(conf->mirrors[d].rdev, 3005 sector, max_sync, 3006 &first_bad, &bad_sectors)) { 3007 if (first_bad > sector) 3008 max_sync = first_bad - sector; 3009 else { 3010 bad_sectors -= (sector - first_bad); 3011 if (max_sync > bad_sectors) 3012 max_sync = max_sync; 3013 continue; 3014 } 3015 } 3016 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3017 atomic_inc(&r10_bio->remaining); 3018 bio->bi_next = biolist; 3019 biolist = bio; 3020 bio->bi_private = r10_bio; 3021 bio->bi_end_io = end_sync_read; 3022 bio->bi_rw = READ; 3023 bio->bi_sector = sector + 3024 conf->mirrors[d].rdev->data_offset; 3025 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3026 count++; 3027 3028 if (conf->mirrors[d].replacement == NULL || 3029 test_bit(Faulty, 3030 &conf->mirrors[d].replacement->flags)) 3031 continue; 3032 3033 /* Need to set up for writing to the replacement */ 3034 bio = r10_bio->devs[i].repl_bio; 3035 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3036 3037 sector = r10_bio->devs[i].addr; 3038 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3039 bio->bi_next = biolist; 3040 biolist = bio; 3041 bio->bi_private = r10_bio; 3042 bio->bi_end_io = end_sync_write; 3043 bio->bi_rw = WRITE; 3044 bio->bi_sector = sector + 3045 conf->mirrors[d].replacement->data_offset; 3046 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3047 count++; 3048 } 3049 3050 if (count < 2) { 3051 for (i=0; i<conf->copies; i++) { 3052 int d = r10_bio->devs[i].devnum; 3053 if (r10_bio->devs[i].bio->bi_end_io) 3054 rdev_dec_pending(conf->mirrors[d].rdev, 3055 mddev); 3056 if (r10_bio->devs[i].repl_bio && 3057 r10_bio->devs[i].repl_bio->bi_end_io) 3058 rdev_dec_pending( 3059 conf->mirrors[d].replacement, 3060 mddev); 3061 } 3062 put_buf(r10_bio); 3063 biolist = NULL; 3064 goto giveup; 3065 } 3066 } 3067 3068 for (bio = biolist; bio ; bio=bio->bi_next) { 3069 3070 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3071 if (bio->bi_end_io) 3072 bio->bi_flags |= 1 << BIO_UPTODATE; 3073 bio->bi_vcnt = 0; 3074 bio->bi_idx = 0; 3075 bio->bi_phys_segments = 0; 3076 bio->bi_size = 0; 3077 } 3078 3079 nr_sectors = 0; 3080 if (sector_nr + max_sync < max_sector) 3081 max_sector = sector_nr + max_sync; 3082 do { 3083 struct page *page; 3084 int len = PAGE_SIZE; 3085 if (sector_nr + (len>>9) > max_sector) 3086 len = (max_sector - sector_nr) << 9; 3087 if (len == 0) 3088 break; 3089 for (bio= biolist ; bio ; bio=bio->bi_next) { 3090 struct bio *bio2; 3091 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3092 if (bio_add_page(bio, page, len, 0)) 3093 continue; 3094 3095 /* stop here */ 3096 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3097 for (bio2 = biolist; 3098 bio2 && bio2 != bio; 3099 bio2 = bio2->bi_next) { 3100 /* remove last page from this bio */ 3101 bio2->bi_vcnt--; 3102 bio2->bi_size -= len; 3103 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3104 } 3105 goto bio_full; 3106 } 3107 nr_sectors += len>>9; 3108 sector_nr += len>>9; 3109 } while (biolist->bi_vcnt < RESYNC_PAGES); 3110 bio_full: 3111 r10_bio->sectors = nr_sectors; 3112 3113 while (biolist) { 3114 bio = biolist; 3115 biolist = biolist->bi_next; 3116 3117 bio->bi_next = NULL; 3118 r10_bio = bio->bi_private; 3119 r10_bio->sectors = nr_sectors; 3120 3121 if (bio->bi_end_io == end_sync_read) { 3122 md_sync_acct(bio->bi_bdev, nr_sectors); 3123 generic_make_request(bio); 3124 } 3125 } 3126 3127 if (sectors_skipped) 3128 /* pretend they weren't skipped, it makes 3129 * no important difference in this case 3130 */ 3131 md_done_sync(mddev, sectors_skipped, 1); 3132 3133 return sectors_skipped + nr_sectors; 3134 giveup: 3135 /* There is nowhere to write, so all non-sync 3136 * drives must be failed or in resync, all drives 3137 * have a bad block, so try the next chunk... 3138 */ 3139 if (sector_nr + max_sync < max_sector) 3140 max_sector = sector_nr + max_sync; 3141 3142 sectors_skipped += (max_sector - sector_nr); 3143 chunks_skipped ++; 3144 sector_nr = max_sector; 3145 goto skipped; 3146 } 3147 3148 static sector_t 3149 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3150 { 3151 sector_t size; 3152 struct r10conf *conf = mddev->private; 3153 3154 if (!raid_disks) 3155 raid_disks = conf->raid_disks; 3156 if (!sectors) 3157 sectors = conf->dev_sectors; 3158 3159 size = sectors >> conf->chunk_shift; 3160 sector_div(size, conf->far_copies); 3161 size = size * raid_disks; 3162 sector_div(size, conf->near_copies); 3163 3164 return size << conf->chunk_shift; 3165 } 3166 3167 static void calc_sectors(struct r10conf *conf, sector_t size) 3168 { 3169 /* Calculate the number of sectors-per-device that will 3170 * actually be used, and set conf->dev_sectors and 3171 * conf->stride 3172 */ 3173 3174 size = size >> conf->chunk_shift; 3175 sector_div(size, conf->far_copies); 3176 size = size * conf->raid_disks; 3177 sector_div(size, conf->near_copies); 3178 /* 'size' is now the number of chunks in the array */ 3179 /* calculate "used chunks per device" */ 3180 size = size * conf->copies; 3181 3182 /* We need to round up when dividing by raid_disks to 3183 * get the stride size. 3184 */ 3185 size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks); 3186 3187 conf->dev_sectors = size << conf->chunk_shift; 3188 3189 if (conf->far_offset) 3190 conf->stride = 1 << conf->chunk_shift; 3191 else { 3192 sector_div(size, conf->near_copies); 3193 conf->stride = size << conf->chunk_shift; 3194 } 3195 } 3196 3197 static struct r10conf *setup_conf(struct mddev *mddev) 3198 { 3199 struct r10conf *conf = NULL; 3200 int nc, fc, fo; 3201 int err = -EINVAL; 3202 3203 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 3204 !is_power_of_2(mddev->new_chunk_sectors)) { 3205 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3206 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3207 mdname(mddev), PAGE_SIZE); 3208 goto out; 3209 } 3210 3211 nc = mddev->new_layout & 255; 3212 fc = (mddev->new_layout >> 8) & 255; 3213 fo = mddev->new_layout & (1<<16); 3214 3215 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 3216 (mddev->new_layout >> 17)) { 3217 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3218 mdname(mddev), mddev->new_layout); 3219 goto out; 3220 } 3221 3222 err = -ENOMEM; 3223 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3224 if (!conf) 3225 goto out; 3226 3227 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 3228 GFP_KERNEL); 3229 if (!conf->mirrors) 3230 goto out; 3231 3232 conf->tmppage = alloc_page(GFP_KERNEL); 3233 if (!conf->tmppage) 3234 goto out; 3235 3236 3237 conf->raid_disks = mddev->raid_disks; 3238 conf->near_copies = nc; 3239 conf->far_copies = fc; 3240 conf->copies = nc*fc; 3241 conf->far_offset = fo; 3242 conf->chunk_mask = mddev->new_chunk_sectors - 1; 3243 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 3244 3245 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3246 r10bio_pool_free, conf); 3247 if (!conf->r10bio_pool) 3248 goto out; 3249 3250 calc_sectors(conf, mddev->dev_sectors); 3251 3252 spin_lock_init(&conf->device_lock); 3253 INIT_LIST_HEAD(&conf->retry_list); 3254 3255 spin_lock_init(&conf->resync_lock); 3256 init_waitqueue_head(&conf->wait_barrier); 3257 3258 conf->thread = md_register_thread(raid10d, mddev, NULL); 3259 if (!conf->thread) 3260 goto out; 3261 3262 conf->mddev = mddev; 3263 return conf; 3264 3265 out: 3266 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3267 mdname(mddev)); 3268 if (conf) { 3269 if (conf->r10bio_pool) 3270 mempool_destroy(conf->r10bio_pool); 3271 kfree(conf->mirrors); 3272 safe_put_page(conf->tmppage); 3273 kfree(conf); 3274 } 3275 return ERR_PTR(err); 3276 } 3277 3278 static int run(struct mddev *mddev) 3279 { 3280 struct r10conf *conf; 3281 int i, disk_idx, chunk_size; 3282 struct mirror_info *disk; 3283 struct md_rdev *rdev; 3284 sector_t size; 3285 3286 /* 3287 * copy the already verified devices into our private RAID10 3288 * bookkeeping area. [whatever we allocate in run(), 3289 * should be freed in stop()] 3290 */ 3291 3292 if (mddev->private == NULL) { 3293 conf = setup_conf(mddev); 3294 if (IS_ERR(conf)) 3295 return PTR_ERR(conf); 3296 mddev->private = conf; 3297 } 3298 conf = mddev->private; 3299 if (!conf) 3300 goto out; 3301 3302 mddev->thread = conf->thread; 3303 conf->thread = NULL; 3304 3305 chunk_size = mddev->chunk_sectors << 9; 3306 blk_queue_io_min(mddev->queue, chunk_size); 3307 if (conf->raid_disks % conf->near_copies) 3308 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 3309 else 3310 blk_queue_io_opt(mddev->queue, chunk_size * 3311 (conf->raid_disks / conf->near_copies)); 3312 3313 rdev_for_each(rdev, mddev) { 3314 3315 disk_idx = rdev->raid_disk; 3316 if (disk_idx >= conf->raid_disks 3317 || disk_idx < 0) 3318 continue; 3319 disk = conf->mirrors + disk_idx; 3320 3321 if (test_bit(Replacement, &rdev->flags)) { 3322 if (disk->replacement) 3323 goto out_free_conf; 3324 disk->replacement = rdev; 3325 } else { 3326 if (disk->rdev) 3327 goto out_free_conf; 3328 disk->rdev = rdev; 3329 } 3330 3331 disk_stack_limits(mddev->gendisk, rdev->bdev, 3332 rdev->data_offset << 9); 3333 3334 disk->head_position = 0; 3335 } 3336 /* need to check that every block has at least one working mirror */ 3337 if (!enough(conf, -1)) { 3338 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3339 mdname(mddev)); 3340 goto out_free_conf; 3341 } 3342 3343 mddev->degraded = 0; 3344 for (i = 0; i < conf->raid_disks; i++) { 3345 3346 disk = conf->mirrors + i; 3347 3348 if (!disk->rdev && disk->replacement) { 3349 /* The replacement is all we have - use it */ 3350 disk->rdev = disk->replacement; 3351 disk->replacement = NULL; 3352 clear_bit(Replacement, &disk->rdev->flags); 3353 } 3354 3355 if (!disk->rdev || 3356 !test_bit(In_sync, &disk->rdev->flags)) { 3357 disk->head_position = 0; 3358 mddev->degraded++; 3359 if (disk->rdev) 3360 conf->fullsync = 1; 3361 } 3362 disk->recovery_disabled = mddev->recovery_disabled - 1; 3363 } 3364 3365 if (mddev->recovery_cp != MaxSector) 3366 printk(KERN_NOTICE "md/raid10:%s: not clean" 3367 " -- starting background reconstruction\n", 3368 mdname(mddev)); 3369 printk(KERN_INFO 3370 "md/raid10:%s: active with %d out of %d devices\n", 3371 mdname(mddev), conf->raid_disks - mddev->degraded, 3372 conf->raid_disks); 3373 /* 3374 * Ok, everything is just fine now 3375 */ 3376 mddev->dev_sectors = conf->dev_sectors; 3377 size = raid10_size(mddev, 0, 0); 3378 md_set_array_sectors(mddev, size); 3379 mddev->resync_max_sectors = size; 3380 3381 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3382 mddev->queue->backing_dev_info.congested_data = mddev; 3383 3384 /* Calculate max read-ahead size. 3385 * We need to readahead at least twice a whole stripe.... 3386 * maybe... 3387 */ 3388 { 3389 int stripe = conf->raid_disks * 3390 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3391 stripe /= conf->near_copies; 3392 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 3393 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 3394 } 3395 3396 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3397 3398 if (md_integrity_register(mddev)) 3399 goto out_free_conf; 3400 3401 return 0; 3402 3403 out_free_conf: 3404 md_unregister_thread(&mddev->thread); 3405 if (conf->r10bio_pool) 3406 mempool_destroy(conf->r10bio_pool); 3407 safe_put_page(conf->tmppage); 3408 kfree(conf->mirrors); 3409 kfree(conf); 3410 mddev->private = NULL; 3411 out: 3412 return -EIO; 3413 } 3414 3415 static int stop(struct mddev *mddev) 3416 { 3417 struct r10conf *conf = mddev->private; 3418 3419 raise_barrier(conf, 0); 3420 lower_barrier(conf); 3421 3422 md_unregister_thread(&mddev->thread); 3423 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3424 if (conf->r10bio_pool) 3425 mempool_destroy(conf->r10bio_pool); 3426 kfree(conf->mirrors); 3427 kfree(conf); 3428 mddev->private = NULL; 3429 return 0; 3430 } 3431 3432 static void raid10_quiesce(struct mddev *mddev, int state) 3433 { 3434 struct r10conf *conf = mddev->private; 3435 3436 switch(state) { 3437 case 1: 3438 raise_barrier(conf, 0); 3439 break; 3440 case 0: 3441 lower_barrier(conf); 3442 break; 3443 } 3444 } 3445 3446 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3447 { 3448 /* Resize of 'far' arrays is not supported. 3449 * For 'near' and 'offset' arrays we can set the 3450 * number of sectors used to be an appropriate multiple 3451 * of the chunk size. 3452 * For 'offset', this is far_copies*chunksize. 3453 * For 'near' the multiplier is the LCM of 3454 * near_copies and raid_disks. 3455 * So if far_copies > 1 && !far_offset, fail. 3456 * Else find LCM(raid_disks, near_copy)*far_copies and 3457 * multiply by chunk_size. Then round to this number. 3458 * This is mostly done by raid10_size() 3459 */ 3460 struct r10conf *conf = mddev->private; 3461 sector_t oldsize, size; 3462 3463 if (conf->far_copies > 1 && !conf->far_offset) 3464 return -EINVAL; 3465 3466 oldsize = raid10_size(mddev, 0, 0); 3467 size = raid10_size(mddev, sectors, 0); 3468 md_set_array_sectors(mddev, size); 3469 if (mddev->array_sectors > size) 3470 return -EINVAL; 3471 set_capacity(mddev->gendisk, mddev->array_sectors); 3472 revalidate_disk(mddev->gendisk); 3473 if (sectors > mddev->dev_sectors && 3474 mddev->recovery_cp > oldsize) { 3475 mddev->recovery_cp = oldsize; 3476 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3477 } 3478 calc_sectors(conf, sectors); 3479 mddev->dev_sectors = conf->dev_sectors; 3480 mddev->resync_max_sectors = size; 3481 return 0; 3482 } 3483 3484 static void *raid10_takeover_raid0(struct mddev *mddev) 3485 { 3486 struct md_rdev *rdev; 3487 struct r10conf *conf; 3488 3489 if (mddev->degraded > 0) { 3490 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3491 mdname(mddev)); 3492 return ERR_PTR(-EINVAL); 3493 } 3494 3495 /* Set new parameters */ 3496 mddev->new_level = 10; 3497 /* new layout: far_copies = 1, near_copies = 2 */ 3498 mddev->new_layout = (1<<8) + 2; 3499 mddev->new_chunk_sectors = mddev->chunk_sectors; 3500 mddev->delta_disks = mddev->raid_disks; 3501 mddev->raid_disks *= 2; 3502 /* make sure it will be not marked as dirty */ 3503 mddev->recovery_cp = MaxSector; 3504 3505 conf = setup_conf(mddev); 3506 if (!IS_ERR(conf)) { 3507 rdev_for_each(rdev, mddev) 3508 if (rdev->raid_disk >= 0) 3509 rdev->new_raid_disk = rdev->raid_disk * 2; 3510 conf->barrier = 1; 3511 } 3512 3513 return conf; 3514 } 3515 3516 static void *raid10_takeover(struct mddev *mddev) 3517 { 3518 struct r0conf *raid0_conf; 3519 3520 /* raid10 can take over: 3521 * raid0 - providing it has only two drives 3522 */ 3523 if (mddev->level == 0) { 3524 /* for raid0 takeover only one zone is supported */ 3525 raid0_conf = mddev->private; 3526 if (raid0_conf->nr_strip_zones > 1) { 3527 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3528 " with more than one zone.\n", 3529 mdname(mddev)); 3530 return ERR_PTR(-EINVAL); 3531 } 3532 return raid10_takeover_raid0(mddev); 3533 } 3534 return ERR_PTR(-EINVAL); 3535 } 3536 3537 static struct md_personality raid10_personality = 3538 { 3539 .name = "raid10", 3540 .level = 10, 3541 .owner = THIS_MODULE, 3542 .make_request = make_request, 3543 .run = run, 3544 .stop = stop, 3545 .status = status, 3546 .error_handler = error, 3547 .hot_add_disk = raid10_add_disk, 3548 .hot_remove_disk= raid10_remove_disk, 3549 .spare_active = raid10_spare_active, 3550 .sync_request = sync_request, 3551 .quiesce = raid10_quiesce, 3552 .size = raid10_size, 3553 .resize = raid10_resize, 3554 .takeover = raid10_takeover, 3555 }; 3556 3557 static int __init raid_init(void) 3558 { 3559 return register_md_personality(&raid10_personality); 3560 } 3561 3562 static void raid_exit(void) 3563 { 3564 unregister_md_personality(&raid10_personality); 3565 } 3566 3567 module_init(raid_init); 3568 module_exit(raid_exit); 3569 MODULE_LICENSE("GPL"); 3570 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3571 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3572 MODULE_ALIAS("md-raid10"); 3573 MODULE_ALIAS("md-level-10"); 3574 3575 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3576