xref: /openbmc/linux/drivers/md/raid10.c (revision 63dc02bd)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31 
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56 
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define	NR_RAID10_BIOS 256
61 
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67 
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
71 
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 	struct r10conf *conf = data;
75 	int size = offsetof(struct r10bio, devs[conf->copies]);
76 
77 	/* allocate a r10bio with room for raid_disks entries in the
78 	 * bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r10bio_pool_free(void *r10_bio, void *data)
83 {
84 	kfree(r10_bio);
85 }
86 
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94 
95 /*
96  * When performing a resync, we need to read and compare, so
97  * we need as many pages are there are copies.
98  * When performing a recovery, we need 2 bios, one for read,
99  * one for write (we recover only one drive per r10buf)
100  *
101  */
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 	struct r10conf *conf = data;
105 	struct page *page;
106 	struct r10bio *r10_bio;
107 	struct bio *bio;
108 	int i, j;
109 	int nalloc;
110 
111 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 	if (!r10_bio)
113 		return NULL;
114 
115 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 		nalloc = conf->copies; /* resync */
117 	else
118 		nalloc = 2; /* recovery */
119 
120 	/*
121 	 * Allocate bios.
122 	 */
123 	for (j = nalloc ; j-- ; ) {
124 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 		if (!bio)
126 			goto out_free_bio;
127 		r10_bio->devs[j].bio = bio;
128 		if (!conf->have_replacement)
129 			continue;
130 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 		if (!bio)
132 			goto out_free_bio;
133 		r10_bio->devs[j].repl_bio = bio;
134 	}
135 	/*
136 	 * Allocate RESYNC_PAGES data pages and attach them
137 	 * where needed.
138 	 */
139 	for (j = 0 ; j < nalloc; j++) {
140 		struct bio *rbio = r10_bio->devs[j].repl_bio;
141 		bio = r10_bio->devs[j].bio;
142 		for (i = 0; i < RESYNC_PAGES; i++) {
143 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 						&conf->mddev->recovery)) {
145 				/* we can share bv_page's during recovery */
146 				struct bio *rbio = r10_bio->devs[0].bio;
147 				page = rbio->bi_io_vec[i].bv_page;
148 				get_page(page);
149 			} else
150 				page = alloc_page(gfp_flags);
151 			if (unlikely(!page))
152 				goto out_free_pages;
153 
154 			bio->bi_io_vec[i].bv_page = page;
155 			if (rbio)
156 				rbio->bi_io_vec[i].bv_page = page;
157 		}
158 	}
159 
160 	return r10_bio;
161 
162 out_free_pages:
163 	for ( ; i > 0 ; i--)
164 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 	while (j--)
166 		for (i = 0; i < RESYNC_PAGES ; i++)
167 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 	j = -1;
169 out_free_bio:
170 	while (++j < nalloc) {
171 		bio_put(r10_bio->devs[j].bio);
172 		if (r10_bio->devs[j].repl_bio)
173 			bio_put(r10_bio->devs[j].repl_bio);
174 	}
175 	r10bio_pool_free(r10_bio, conf);
176 	return NULL;
177 }
178 
179 static void r10buf_pool_free(void *__r10_bio, void *data)
180 {
181 	int i;
182 	struct r10conf *conf = data;
183 	struct r10bio *r10bio = __r10_bio;
184 	int j;
185 
186 	for (j=0; j < conf->copies; j++) {
187 		struct bio *bio = r10bio->devs[j].bio;
188 		if (bio) {
189 			for (i = 0; i < RESYNC_PAGES; i++) {
190 				safe_put_page(bio->bi_io_vec[i].bv_page);
191 				bio->bi_io_vec[i].bv_page = NULL;
192 			}
193 			bio_put(bio);
194 		}
195 		bio = r10bio->devs[j].repl_bio;
196 		if (bio)
197 			bio_put(bio);
198 	}
199 	r10bio_pool_free(r10bio, conf);
200 }
201 
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
203 {
204 	int i;
205 
206 	for (i = 0; i < conf->copies; i++) {
207 		struct bio **bio = & r10_bio->devs[i].bio;
208 		if (!BIO_SPECIAL(*bio))
209 			bio_put(*bio);
210 		*bio = NULL;
211 		bio = &r10_bio->devs[i].repl_bio;
212 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 			bio_put(*bio);
214 		*bio = NULL;
215 	}
216 }
217 
218 static void free_r10bio(struct r10bio *r10_bio)
219 {
220 	struct r10conf *conf = r10_bio->mddev->private;
221 
222 	put_all_bios(conf, r10_bio);
223 	mempool_free(r10_bio, conf->r10bio_pool);
224 }
225 
226 static void put_buf(struct r10bio *r10_bio)
227 {
228 	struct r10conf *conf = r10_bio->mddev->private;
229 
230 	mempool_free(r10_bio, conf->r10buf_pool);
231 
232 	lower_barrier(conf);
233 }
234 
235 static void reschedule_retry(struct r10bio *r10_bio)
236 {
237 	unsigned long flags;
238 	struct mddev *mddev = r10_bio->mddev;
239 	struct r10conf *conf = mddev->private;
240 
241 	spin_lock_irqsave(&conf->device_lock, flags);
242 	list_add(&r10_bio->retry_list, &conf->retry_list);
243 	conf->nr_queued ++;
244 	spin_unlock_irqrestore(&conf->device_lock, flags);
245 
246 	/* wake up frozen array... */
247 	wake_up(&conf->wait_barrier);
248 
249 	md_wakeup_thread(mddev->thread);
250 }
251 
252 /*
253  * raid_end_bio_io() is called when we have finished servicing a mirrored
254  * operation and are ready to return a success/failure code to the buffer
255  * cache layer.
256  */
257 static void raid_end_bio_io(struct r10bio *r10_bio)
258 {
259 	struct bio *bio = r10_bio->master_bio;
260 	int done;
261 	struct r10conf *conf = r10_bio->mddev->private;
262 
263 	if (bio->bi_phys_segments) {
264 		unsigned long flags;
265 		spin_lock_irqsave(&conf->device_lock, flags);
266 		bio->bi_phys_segments--;
267 		done = (bio->bi_phys_segments == 0);
268 		spin_unlock_irqrestore(&conf->device_lock, flags);
269 	} else
270 		done = 1;
271 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 	if (done) {
274 		bio_endio(bio, 0);
275 		/*
276 		 * Wake up any possible resync thread that waits for the device
277 		 * to go idle.
278 		 */
279 		allow_barrier(conf);
280 	}
281 	free_r10bio(r10_bio);
282 }
283 
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
288 {
289 	struct r10conf *conf = r10_bio->mddev->private;
290 
291 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 		r10_bio->devs[slot].addr + (r10_bio->sectors);
293 }
294 
295 /*
296  * Find the disk number which triggered given bio
297  */
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 			 struct bio *bio, int *slotp, int *replp)
300 {
301 	int slot;
302 	int repl = 0;
303 
304 	for (slot = 0; slot < conf->copies; slot++) {
305 		if (r10_bio->devs[slot].bio == bio)
306 			break;
307 		if (r10_bio->devs[slot].repl_bio == bio) {
308 			repl = 1;
309 			break;
310 		}
311 	}
312 
313 	BUG_ON(slot == conf->copies);
314 	update_head_pos(slot, r10_bio);
315 
316 	if (slotp)
317 		*slotp = slot;
318 	if (replp)
319 		*replp = repl;
320 	return r10_bio->devs[slot].devnum;
321 }
322 
323 static void raid10_end_read_request(struct bio *bio, int error)
324 {
325 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 	struct r10bio *r10_bio = bio->bi_private;
327 	int slot, dev;
328 	struct md_rdev *rdev;
329 	struct r10conf *conf = r10_bio->mddev->private;
330 
331 
332 	slot = r10_bio->read_slot;
333 	dev = r10_bio->devs[slot].devnum;
334 	rdev = r10_bio->devs[slot].rdev;
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(slot, r10_bio);
339 
340 	if (uptodate) {
341 		/*
342 		 * Set R10BIO_Uptodate in our master bio, so that
343 		 * we will return a good error code to the higher
344 		 * levels even if IO on some other mirrored buffer fails.
345 		 *
346 		 * The 'master' represents the composite IO operation to
347 		 * user-side. So if something waits for IO, then it will
348 		 * wait for the 'master' bio.
349 		 */
350 		set_bit(R10BIO_Uptodate, &r10_bio->state);
351 	} else {
352 		/* If all other devices that store this block have
353 		 * failed, we want to return the error upwards rather
354 		 * than fail the last device.  Here we redefine
355 		 * "uptodate" to mean "Don't want to retry"
356 		 */
357 		unsigned long flags;
358 		spin_lock_irqsave(&conf->device_lock, flags);
359 		if (!enough(conf, rdev->raid_disk))
360 			uptodate = 1;
361 		spin_unlock_irqrestore(&conf->device_lock, flags);
362 	}
363 	if (uptodate) {
364 		raid_end_bio_io(r10_bio);
365 		rdev_dec_pending(rdev, conf->mddev);
366 	} else {
367 		/*
368 		 * oops, read error - keep the refcount on the rdev
369 		 */
370 		char b[BDEVNAME_SIZE];
371 		printk_ratelimited(KERN_ERR
372 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
373 				   mdname(conf->mddev),
374 				   bdevname(rdev->bdev, b),
375 				   (unsigned long long)r10_bio->sector);
376 		set_bit(R10BIO_ReadError, &r10_bio->state);
377 		reschedule_retry(r10_bio);
378 	}
379 }
380 
381 static void close_write(struct r10bio *r10_bio)
382 {
383 	/* clear the bitmap if all writes complete successfully */
384 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 			r10_bio->sectors,
386 			!test_bit(R10BIO_Degraded, &r10_bio->state),
387 			0);
388 	md_write_end(r10_bio->mddev);
389 }
390 
391 static void one_write_done(struct r10bio *r10_bio)
392 {
393 	if (atomic_dec_and_test(&r10_bio->remaining)) {
394 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 			reschedule_retry(r10_bio);
396 		else {
397 			close_write(r10_bio);
398 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 				reschedule_retry(r10_bio);
400 			else
401 				raid_end_bio_io(r10_bio);
402 		}
403 	}
404 }
405 
406 static void raid10_end_write_request(struct bio *bio, int error)
407 {
408 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 	struct r10bio *r10_bio = bio->bi_private;
410 	int dev;
411 	int dec_rdev = 1;
412 	struct r10conf *conf = r10_bio->mddev->private;
413 	int slot, repl;
414 	struct md_rdev *rdev = NULL;
415 
416 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
417 
418 	if (repl)
419 		rdev = conf->mirrors[dev].replacement;
420 	if (!rdev) {
421 		smp_rmb();
422 		repl = 0;
423 		rdev = conf->mirrors[dev].rdev;
424 	}
425 	/*
426 	 * this branch is our 'one mirror IO has finished' event handler:
427 	 */
428 	if (!uptodate) {
429 		if (repl)
430 			/* Never record new bad blocks to replacement,
431 			 * just fail it.
432 			 */
433 			md_error(rdev->mddev, rdev);
434 		else {
435 			set_bit(WriteErrorSeen,	&rdev->flags);
436 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 				set_bit(MD_RECOVERY_NEEDED,
438 					&rdev->mddev->recovery);
439 			set_bit(R10BIO_WriteError, &r10_bio->state);
440 			dec_rdev = 0;
441 		}
442 	} else {
443 		/*
444 		 * Set R10BIO_Uptodate in our master bio, so that
445 		 * we will return a good error code for to the higher
446 		 * levels even if IO on some other mirrored buffer fails.
447 		 *
448 		 * The 'master' represents the composite IO operation to
449 		 * user-side. So if something waits for IO, then it will
450 		 * wait for the 'master' bio.
451 		 */
452 		sector_t first_bad;
453 		int bad_sectors;
454 
455 		set_bit(R10BIO_Uptodate, &r10_bio->state);
456 
457 		/* Maybe we can clear some bad blocks. */
458 		if (is_badblock(rdev,
459 				r10_bio->devs[slot].addr,
460 				r10_bio->sectors,
461 				&first_bad, &bad_sectors)) {
462 			bio_put(bio);
463 			if (repl)
464 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465 			else
466 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
467 			dec_rdev = 0;
468 			set_bit(R10BIO_MadeGood, &r10_bio->state);
469 		}
470 	}
471 
472 	/*
473 	 *
474 	 * Let's see if all mirrored write operations have finished
475 	 * already.
476 	 */
477 	one_write_done(r10_bio);
478 	if (dec_rdev)
479 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
480 }
481 
482 /*
483  * RAID10 layout manager
484  * As well as the chunksize and raid_disks count, there are two
485  * parameters: near_copies and far_copies.
486  * near_copies * far_copies must be <= raid_disks.
487  * Normally one of these will be 1.
488  * If both are 1, we get raid0.
489  * If near_copies == raid_disks, we get raid1.
490  *
491  * Chunks are laid out in raid0 style with near_copies copies of the
492  * first chunk, followed by near_copies copies of the next chunk and
493  * so on.
494  * If far_copies > 1, then after 1/far_copies of the array has been assigned
495  * as described above, we start again with a device offset of near_copies.
496  * So we effectively have another copy of the whole array further down all
497  * the drives, but with blocks on different drives.
498  * With this layout, and block is never stored twice on the one device.
499  *
500  * raid10_find_phys finds the sector offset of a given virtual sector
501  * on each device that it is on.
502  *
503  * raid10_find_virt does the reverse mapping, from a device and a
504  * sector offset to a virtual address
505  */
506 
507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
508 {
509 	int n,f;
510 	sector_t sector;
511 	sector_t chunk;
512 	sector_t stripe;
513 	int dev;
514 
515 	int slot = 0;
516 
517 	/* now calculate first sector/dev */
518 	chunk = r10bio->sector >> conf->chunk_shift;
519 	sector = r10bio->sector & conf->chunk_mask;
520 
521 	chunk *= conf->near_copies;
522 	stripe = chunk;
523 	dev = sector_div(stripe, conf->raid_disks);
524 	if (conf->far_offset)
525 		stripe *= conf->far_copies;
526 
527 	sector += stripe << conf->chunk_shift;
528 
529 	/* and calculate all the others */
530 	for (n=0; n < conf->near_copies; n++) {
531 		int d = dev;
532 		sector_t s = sector;
533 		r10bio->devs[slot].addr = sector;
534 		r10bio->devs[slot].devnum = d;
535 		slot++;
536 
537 		for (f = 1; f < conf->far_copies; f++) {
538 			d += conf->near_copies;
539 			if (d >= conf->raid_disks)
540 				d -= conf->raid_disks;
541 			s += conf->stride;
542 			r10bio->devs[slot].devnum = d;
543 			r10bio->devs[slot].addr = s;
544 			slot++;
545 		}
546 		dev++;
547 		if (dev >= conf->raid_disks) {
548 			dev = 0;
549 			sector += (conf->chunk_mask + 1);
550 		}
551 	}
552 	BUG_ON(slot != conf->copies);
553 }
554 
555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
556 {
557 	sector_t offset, chunk, vchunk;
558 
559 	offset = sector & conf->chunk_mask;
560 	if (conf->far_offset) {
561 		int fc;
562 		chunk = sector >> conf->chunk_shift;
563 		fc = sector_div(chunk, conf->far_copies);
564 		dev -= fc * conf->near_copies;
565 		if (dev < 0)
566 			dev += conf->raid_disks;
567 	} else {
568 		while (sector >= conf->stride) {
569 			sector -= conf->stride;
570 			if (dev < conf->near_copies)
571 				dev += conf->raid_disks - conf->near_copies;
572 			else
573 				dev -= conf->near_copies;
574 		}
575 		chunk = sector >> conf->chunk_shift;
576 	}
577 	vchunk = chunk * conf->raid_disks + dev;
578 	sector_div(vchunk, conf->near_copies);
579 	return (vchunk << conf->chunk_shift) + offset;
580 }
581 
582 /**
583  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
584  *	@q: request queue
585  *	@bvm: properties of new bio
586  *	@biovec: the request that could be merged to it.
587  *
588  *	Return amount of bytes we can accept at this offset
589  *	This requires checking for end-of-chunk if near_copies != raid_disks,
590  *	and for subordinate merge_bvec_fns if merge_check_needed.
591  */
592 static int raid10_mergeable_bvec(struct request_queue *q,
593 				 struct bvec_merge_data *bvm,
594 				 struct bio_vec *biovec)
595 {
596 	struct mddev *mddev = q->queuedata;
597 	struct r10conf *conf = mddev->private;
598 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
599 	int max;
600 	unsigned int chunk_sectors = mddev->chunk_sectors;
601 	unsigned int bio_sectors = bvm->bi_size >> 9;
602 
603 	if (conf->near_copies < conf->raid_disks) {
604 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
605 					+ bio_sectors)) << 9;
606 		if (max < 0)
607 			/* bio_add cannot handle a negative return */
608 			max = 0;
609 		if (max <= biovec->bv_len && bio_sectors == 0)
610 			return biovec->bv_len;
611 	} else
612 		max = biovec->bv_len;
613 
614 	if (mddev->merge_check_needed) {
615 		struct r10bio r10_bio;
616 		int s;
617 		r10_bio.sector = sector;
618 		raid10_find_phys(conf, &r10_bio);
619 		rcu_read_lock();
620 		for (s = 0; s < conf->copies; s++) {
621 			int disk = r10_bio.devs[s].devnum;
622 			struct md_rdev *rdev = rcu_dereference(
623 				conf->mirrors[disk].rdev);
624 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
625 				struct request_queue *q =
626 					bdev_get_queue(rdev->bdev);
627 				if (q->merge_bvec_fn) {
628 					bvm->bi_sector = r10_bio.devs[s].addr
629 						+ rdev->data_offset;
630 					bvm->bi_bdev = rdev->bdev;
631 					max = min(max, q->merge_bvec_fn(
632 							  q, bvm, biovec));
633 				}
634 			}
635 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
636 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
637 				struct request_queue *q =
638 					bdev_get_queue(rdev->bdev);
639 				if (q->merge_bvec_fn) {
640 					bvm->bi_sector = r10_bio.devs[s].addr
641 						+ rdev->data_offset;
642 					bvm->bi_bdev = rdev->bdev;
643 					max = min(max, q->merge_bvec_fn(
644 							  q, bvm, biovec));
645 				}
646 			}
647 		}
648 		rcu_read_unlock();
649 	}
650 	return max;
651 }
652 
653 /*
654  * This routine returns the disk from which the requested read should
655  * be done. There is a per-array 'next expected sequential IO' sector
656  * number - if this matches on the next IO then we use the last disk.
657  * There is also a per-disk 'last know head position' sector that is
658  * maintained from IRQ contexts, both the normal and the resync IO
659  * completion handlers update this position correctly. If there is no
660  * perfect sequential match then we pick the disk whose head is closest.
661  *
662  * If there are 2 mirrors in the same 2 devices, performance degrades
663  * because position is mirror, not device based.
664  *
665  * The rdev for the device selected will have nr_pending incremented.
666  */
667 
668 /*
669  * FIXME: possibly should rethink readbalancing and do it differently
670  * depending on near_copies / far_copies geometry.
671  */
672 static struct md_rdev *read_balance(struct r10conf *conf,
673 				    struct r10bio *r10_bio,
674 				    int *max_sectors)
675 {
676 	const sector_t this_sector = r10_bio->sector;
677 	int disk, slot;
678 	int sectors = r10_bio->sectors;
679 	int best_good_sectors;
680 	sector_t new_distance, best_dist;
681 	struct md_rdev *rdev, *best_rdev;
682 	int do_balance;
683 	int best_slot;
684 
685 	raid10_find_phys(conf, r10_bio);
686 	rcu_read_lock();
687 retry:
688 	sectors = r10_bio->sectors;
689 	best_slot = -1;
690 	best_rdev = NULL;
691 	best_dist = MaxSector;
692 	best_good_sectors = 0;
693 	do_balance = 1;
694 	/*
695 	 * Check if we can balance. We can balance on the whole
696 	 * device if no resync is going on (recovery is ok), or below
697 	 * the resync window. We take the first readable disk when
698 	 * above the resync window.
699 	 */
700 	if (conf->mddev->recovery_cp < MaxSector
701 	    && (this_sector + sectors >= conf->next_resync))
702 		do_balance = 0;
703 
704 	for (slot = 0; slot < conf->copies ; slot++) {
705 		sector_t first_bad;
706 		int bad_sectors;
707 		sector_t dev_sector;
708 
709 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
710 			continue;
711 		disk = r10_bio->devs[slot].devnum;
712 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
713 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
714 		    test_bit(Unmerged, &rdev->flags) ||
715 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
716 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
717 		if (rdev == NULL ||
718 		    test_bit(Faulty, &rdev->flags) ||
719 		    test_bit(Unmerged, &rdev->flags))
720 			continue;
721 		if (!test_bit(In_sync, &rdev->flags) &&
722 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
723 			continue;
724 
725 		dev_sector = r10_bio->devs[slot].addr;
726 		if (is_badblock(rdev, dev_sector, sectors,
727 				&first_bad, &bad_sectors)) {
728 			if (best_dist < MaxSector)
729 				/* Already have a better slot */
730 				continue;
731 			if (first_bad <= dev_sector) {
732 				/* Cannot read here.  If this is the
733 				 * 'primary' device, then we must not read
734 				 * beyond 'bad_sectors' from another device.
735 				 */
736 				bad_sectors -= (dev_sector - first_bad);
737 				if (!do_balance && sectors > bad_sectors)
738 					sectors = bad_sectors;
739 				if (best_good_sectors > sectors)
740 					best_good_sectors = sectors;
741 			} else {
742 				sector_t good_sectors =
743 					first_bad - dev_sector;
744 				if (good_sectors > best_good_sectors) {
745 					best_good_sectors = good_sectors;
746 					best_slot = slot;
747 					best_rdev = rdev;
748 				}
749 				if (!do_balance)
750 					/* Must read from here */
751 					break;
752 			}
753 			continue;
754 		} else
755 			best_good_sectors = sectors;
756 
757 		if (!do_balance)
758 			break;
759 
760 		/* This optimisation is debatable, and completely destroys
761 		 * sequential read speed for 'far copies' arrays.  So only
762 		 * keep it for 'near' arrays, and review those later.
763 		 */
764 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
765 			break;
766 
767 		/* for far > 1 always use the lowest address */
768 		if (conf->far_copies > 1)
769 			new_distance = r10_bio->devs[slot].addr;
770 		else
771 			new_distance = abs(r10_bio->devs[slot].addr -
772 					   conf->mirrors[disk].head_position);
773 		if (new_distance < best_dist) {
774 			best_dist = new_distance;
775 			best_slot = slot;
776 			best_rdev = rdev;
777 		}
778 	}
779 	if (slot >= conf->copies) {
780 		slot = best_slot;
781 		rdev = best_rdev;
782 	}
783 
784 	if (slot >= 0) {
785 		atomic_inc(&rdev->nr_pending);
786 		if (test_bit(Faulty, &rdev->flags)) {
787 			/* Cannot risk returning a device that failed
788 			 * before we inc'ed nr_pending
789 			 */
790 			rdev_dec_pending(rdev, conf->mddev);
791 			goto retry;
792 		}
793 		r10_bio->read_slot = slot;
794 	} else
795 		rdev = NULL;
796 	rcu_read_unlock();
797 	*max_sectors = best_good_sectors;
798 
799 	return rdev;
800 }
801 
802 static int raid10_congested(void *data, int bits)
803 {
804 	struct mddev *mddev = data;
805 	struct r10conf *conf = mddev->private;
806 	int i, ret = 0;
807 
808 	if ((bits & (1 << BDI_async_congested)) &&
809 	    conf->pending_count >= max_queued_requests)
810 		return 1;
811 
812 	if (mddev_congested(mddev, bits))
813 		return 1;
814 	rcu_read_lock();
815 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
816 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
817 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
818 			struct request_queue *q = bdev_get_queue(rdev->bdev);
819 
820 			ret |= bdi_congested(&q->backing_dev_info, bits);
821 		}
822 	}
823 	rcu_read_unlock();
824 	return ret;
825 }
826 
827 static void flush_pending_writes(struct r10conf *conf)
828 {
829 	/* Any writes that have been queued but are awaiting
830 	 * bitmap updates get flushed here.
831 	 */
832 	spin_lock_irq(&conf->device_lock);
833 
834 	if (conf->pending_bio_list.head) {
835 		struct bio *bio;
836 		bio = bio_list_get(&conf->pending_bio_list);
837 		conf->pending_count = 0;
838 		spin_unlock_irq(&conf->device_lock);
839 		/* flush any pending bitmap writes to disk
840 		 * before proceeding w/ I/O */
841 		bitmap_unplug(conf->mddev->bitmap);
842 		wake_up(&conf->wait_barrier);
843 
844 		while (bio) { /* submit pending writes */
845 			struct bio *next = bio->bi_next;
846 			bio->bi_next = NULL;
847 			generic_make_request(bio);
848 			bio = next;
849 		}
850 	} else
851 		spin_unlock_irq(&conf->device_lock);
852 }
853 
854 /* Barriers....
855  * Sometimes we need to suspend IO while we do something else,
856  * either some resync/recovery, or reconfigure the array.
857  * To do this we raise a 'barrier'.
858  * The 'barrier' is a counter that can be raised multiple times
859  * to count how many activities are happening which preclude
860  * normal IO.
861  * We can only raise the barrier if there is no pending IO.
862  * i.e. if nr_pending == 0.
863  * We choose only to raise the barrier if no-one is waiting for the
864  * barrier to go down.  This means that as soon as an IO request
865  * is ready, no other operations which require a barrier will start
866  * until the IO request has had a chance.
867  *
868  * So: regular IO calls 'wait_barrier'.  When that returns there
869  *    is no backgroup IO happening,  It must arrange to call
870  *    allow_barrier when it has finished its IO.
871  * backgroup IO calls must call raise_barrier.  Once that returns
872  *    there is no normal IO happeing.  It must arrange to call
873  *    lower_barrier when the particular background IO completes.
874  */
875 
876 static void raise_barrier(struct r10conf *conf, int force)
877 {
878 	BUG_ON(force && !conf->barrier);
879 	spin_lock_irq(&conf->resync_lock);
880 
881 	/* Wait until no block IO is waiting (unless 'force') */
882 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
883 			    conf->resync_lock, );
884 
885 	/* block any new IO from starting */
886 	conf->barrier++;
887 
888 	/* Now wait for all pending IO to complete */
889 	wait_event_lock_irq(conf->wait_barrier,
890 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
891 			    conf->resync_lock, );
892 
893 	spin_unlock_irq(&conf->resync_lock);
894 }
895 
896 static void lower_barrier(struct r10conf *conf)
897 {
898 	unsigned long flags;
899 	spin_lock_irqsave(&conf->resync_lock, flags);
900 	conf->barrier--;
901 	spin_unlock_irqrestore(&conf->resync_lock, flags);
902 	wake_up(&conf->wait_barrier);
903 }
904 
905 static void wait_barrier(struct r10conf *conf)
906 {
907 	spin_lock_irq(&conf->resync_lock);
908 	if (conf->barrier) {
909 		conf->nr_waiting++;
910 		/* Wait for the barrier to drop.
911 		 * However if there are already pending
912 		 * requests (preventing the barrier from
913 		 * rising completely), and the
914 		 * pre-process bio queue isn't empty,
915 		 * then don't wait, as we need to empty
916 		 * that queue to get the nr_pending
917 		 * count down.
918 		 */
919 		wait_event_lock_irq(conf->wait_barrier,
920 				    !conf->barrier ||
921 				    (conf->nr_pending &&
922 				     current->bio_list &&
923 				     !bio_list_empty(current->bio_list)),
924 				    conf->resync_lock,
925 			);
926 		conf->nr_waiting--;
927 	}
928 	conf->nr_pending++;
929 	spin_unlock_irq(&conf->resync_lock);
930 }
931 
932 static void allow_barrier(struct r10conf *conf)
933 {
934 	unsigned long flags;
935 	spin_lock_irqsave(&conf->resync_lock, flags);
936 	conf->nr_pending--;
937 	spin_unlock_irqrestore(&conf->resync_lock, flags);
938 	wake_up(&conf->wait_barrier);
939 }
940 
941 static void freeze_array(struct r10conf *conf)
942 {
943 	/* stop syncio and normal IO and wait for everything to
944 	 * go quiet.
945 	 * We increment barrier and nr_waiting, and then
946 	 * wait until nr_pending match nr_queued+1
947 	 * This is called in the context of one normal IO request
948 	 * that has failed. Thus any sync request that might be pending
949 	 * will be blocked by nr_pending, and we need to wait for
950 	 * pending IO requests to complete or be queued for re-try.
951 	 * Thus the number queued (nr_queued) plus this request (1)
952 	 * must match the number of pending IOs (nr_pending) before
953 	 * we continue.
954 	 */
955 	spin_lock_irq(&conf->resync_lock);
956 	conf->barrier++;
957 	conf->nr_waiting++;
958 	wait_event_lock_irq(conf->wait_barrier,
959 			    conf->nr_pending == conf->nr_queued+1,
960 			    conf->resync_lock,
961 			    flush_pending_writes(conf));
962 
963 	spin_unlock_irq(&conf->resync_lock);
964 }
965 
966 static void unfreeze_array(struct r10conf *conf)
967 {
968 	/* reverse the effect of the freeze */
969 	spin_lock_irq(&conf->resync_lock);
970 	conf->barrier--;
971 	conf->nr_waiting--;
972 	wake_up(&conf->wait_barrier);
973 	spin_unlock_irq(&conf->resync_lock);
974 }
975 
976 static void make_request(struct mddev *mddev, struct bio * bio)
977 {
978 	struct r10conf *conf = mddev->private;
979 	struct r10bio *r10_bio;
980 	struct bio *read_bio;
981 	int i;
982 	int chunk_sects = conf->chunk_mask + 1;
983 	const int rw = bio_data_dir(bio);
984 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
985 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
986 	unsigned long flags;
987 	struct md_rdev *blocked_rdev;
988 	int plugged;
989 	int sectors_handled;
990 	int max_sectors;
991 
992 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
993 		md_flush_request(mddev, bio);
994 		return;
995 	}
996 
997 	/* If this request crosses a chunk boundary, we need to
998 	 * split it.  This will only happen for 1 PAGE (or less) requests.
999 	 */
1000 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
1001 		      > chunk_sects &&
1002 		    conf->near_copies < conf->raid_disks)) {
1003 		struct bio_pair *bp;
1004 		/* Sanity check -- queue functions should prevent this happening */
1005 		if (bio->bi_vcnt != 1 ||
1006 		    bio->bi_idx != 0)
1007 			goto bad_map;
1008 		/* This is a one page bio that upper layers
1009 		 * refuse to split for us, so we need to split it.
1010 		 */
1011 		bp = bio_split(bio,
1012 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1013 
1014 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1015 		 * If the first succeeds but the second blocks due to the resync
1016 		 * thread raising the barrier, we will deadlock because the
1017 		 * IO to the underlying device will be queued in generic_make_request
1018 		 * and will never complete, so will never reduce nr_pending.
1019 		 * So increment nr_waiting here so no new raise_barriers will
1020 		 * succeed, and so the second wait_barrier cannot block.
1021 		 */
1022 		spin_lock_irq(&conf->resync_lock);
1023 		conf->nr_waiting++;
1024 		spin_unlock_irq(&conf->resync_lock);
1025 
1026 		make_request(mddev, &bp->bio1);
1027 		make_request(mddev, &bp->bio2);
1028 
1029 		spin_lock_irq(&conf->resync_lock);
1030 		conf->nr_waiting--;
1031 		wake_up(&conf->wait_barrier);
1032 		spin_unlock_irq(&conf->resync_lock);
1033 
1034 		bio_pair_release(bp);
1035 		return;
1036 	bad_map:
1037 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1038 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1039 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1040 
1041 		bio_io_error(bio);
1042 		return;
1043 	}
1044 
1045 	md_write_start(mddev, bio);
1046 
1047 	/*
1048 	 * Register the new request and wait if the reconstruction
1049 	 * thread has put up a bar for new requests.
1050 	 * Continue immediately if no resync is active currently.
1051 	 */
1052 	wait_barrier(conf);
1053 
1054 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1055 
1056 	r10_bio->master_bio = bio;
1057 	r10_bio->sectors = bio->bi_size >> 9;
1058 
1059 	r10_bio->mddev = mddev;
1060 	r10_bio->sector = bio->bi_sector;
1061 	r10_bio->state = 0;
1062 
1063 	/* We might need to issue multiple reads to different
1064 	 * devices if there are bad blocks around, so we keep
1065 	 * track of the number of reads in bio->bi_phys_segments.
1066 	 * If this is 0, there is only one r10_bio and no locking
1067 	 * will be needed when the request completes.  If it is
1068 	 * non-zero, then it is the number of not-completed requests.
1069 	 */
1070 	bio->bi_phys_segments = 0;
1071 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1072 
1073 	if (rw == READ) {
1074 		/*
1075 		 * read balancing logic:
1076 		 */
1077 		struct md_rdev *rdev;
1078 		int slot;
1079 
1080 read_again:
1081 		rdev = read_balance(conf, r10_bio, &max_sectors);
1082 		if (!rdev) {
1083 			raid_end_bio_io(r10_bio);
1084 			return;
1085 		}
1086 		slot = r10_bio->read_slot;
1087 
1088 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1089 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1090 			    max_sectors);
1091 
1092 		r10_bio->devs[slot].bio = read_bio;
1093 		r10_bio->devs[slot].rdev = rdev;
1094 
1095 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1096 			rdev->data_offset;
1097 		read_bio->bi_bdev = rdev->bdev;
1098 		read_bio->bi_end_io = raid10_end_read_request;
1099 		read_bio->bi_rw = READ | do_sync;
1100 		read_bio->bi_private = r10_bio;
1101 
1102 		if (max_sectors < r10_bio->sectors) {
1103 			/* Could not read all from this device, so we will
1104 			 * need another r10_bio.
1105 			 */
1106 			sectors_handled = (r10_bio->sectors + max_sectors
1107 					   - bio->bi_sector);
1108 			r10_bio->sectors = max_sectors;
1109 			spin_lock_irq(&conf->device_lock);
1110 			if (bio->bi_phys_segments == 0)
1111 				bio->bi_phys_segments = 2;
1112 			else
1113 				bio->bi_phys_segments++;
1114 			spin_unlock(&conf->device_lock);
1115 			/* Cannot call generic_make_request directly
1116 			 * as that will be queued in __generic_make_request
1117 			 * and subsequent mempool_alloc might block
1118 			 * waiting for it.  so hand bio over to raid10d.
1119 			 */
1120 			reschedule_retry(r10_bio);
1121 
1122 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1123 
1124 			r10_bio->master_bio = bio;
1125 			r10_bio->sectors = ((bio->bi_size >> 9)
1126 					    - sectors_handled);
1127 			r10_bio->state = 0;
1128 			r10_bio->mddev = mddev;
1129 			r10_bio->sector = bio->bi_sector + sectors_handled;
1130 			goto read_again;
1131 		} else
1132 			generic_make_request(read_bio);
1133 		return;
1134 	}
1135 
1136 	/*
1137 	 * WRITE:
1138 	 */
1139 	if (conf->pending_count >= max_queued_requests) {
1140 		md_wakeup_thread(mddev->thread);
1141 		wait_event(conf->wait_barrier,
1142 			   conf->pending_count < max_queued_requests);
1143 	}
1144 	/* first select target devices under rcu_lock and
1145 	 * inc refcount on their rdev.  Record them by setting
1146 	 * bios[x] to bio
1147 	 * If there are known/acknowledged bad blocks on any device
1148 	 * on which we have seen a write error, we want to avoid
1149 	 * writing to those blocks.  This potentially requires several
1150 	 * writes to write around the bad blocks.  Each set of writes
1151 	 * gets its own r10_bio with a set of bios attached.  The number
1152 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1153 	 * the read case.
1154 	 */
1155 	plugged = mddev_check_plugged(mddev);
1156 
1157 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1158 	raid10_find_phys(conf, r10_bio);
1159 retry_write:
1160 	blocked_rdev = NULL;
1161 	rcu_read_lock();
1162 	max_sectors = r10_bio->sectors;
1163 
1164 	for (i = 0;  i < conf->copies; i++) {
1165 		int d = r10_bio->devs[i].devnum;
1166 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1167 		struct md_rdev *rrdev = rcu_dereference(
1168 			conf->mirrors[d].replacement);
1169 		if (rdev == rrdev)
1170 			rrdev = NULL;
1171 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 			atomic_inc(&rdev->nr_pending);
1173 			blocked_rdev = rdev;
1174 			break;
1175 		}
1176 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1177 			atomic_inc(&rrdev->nr_pending);
1178 			blocked_rdev = rrdev;
1179 			break;
1180 		}
1181 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1182 			      || test_bit(Unmerged, &rrdev->flags)))
1183 			rrdev = NULL;
1184 
1185 		r10_bio->devs[i].bio = NULL;
1186 		r10_bio->devs[i].repl_bio = NULL;
1187 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1188 		    test_bit(Unmerged, &rdev->flags)) {
1189 			set_bit(R10BIO_Degraded, &r10_bio->state);
1190 			continue;
1191 		}
1192 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1193 			sector_t first_bad;
1194 			sector_t dev_sector = r10_bio->devs[i].addr;
1195 			int bad_sectors;
1196 			int is_bad;
1197 
1198 			is_bad = is_badblock(rdev, dev_sector,
1199 					     max_sectors,
1200 					     &first_bad, &bad_sectors);
1201 			if (is_bad < 0) {
1202 				/* Mustn't write here until the bad block
1203 				 * is acknowledged
1204 				 */
1205 				atomic_inc(&rdev->nr_pending);
1206 				set_bit(BlockedBadBlocks, &rdev->flags);
1207 				blocked_rdev = rdev;
1208 				break;
1209 			}
1210 			if (is_bad && first_bad <= dev_sector) {
1211 				/* Cannot write here at all */
1212 				bad_sectors -= (dev_sector - first_bad);
1213 				if (bad_sectors < max_sectors)
1214 					/* Mustn't write more than bad_sectors
1215 					 * to other devices yet
1216 					 */
1217 					max_sectors = bad_sectors;
1218 				/* We don't set R10BIO_Degraded as that
1219 				 * only applies if the disk is missing,
1220 				 * so it might be re-added, and we want to
1221 				 * know to recover this chunk.
1222 				 * In this case the device is here, and the
1223 				 * fact that this chunk is not in-sync is
1224 				 * recorded in the bad block log.
1225 				 */
1226 				continue;
1227 			}
1228 			if (is_bad) {
1229 				int good_sectors = first_bad - dev_sector;
1230 				if (good_sectors < max_sectors)
1231 					max_sectors = good_sectors;
1232 			}
1233 		}
1234 		r10_bio->devs[i].bio = bio;
1235 		atomic_inc(&rdev->nr_pending);
1236 		if (rrdev) {
1237 			r10_bio->devs[i].repl_bio = bio;
1238 			atomic_inc(&rrdev->nr_pending);
1239 		}
1240 	}
1241 	rcu_read_unlock();
1242 
1243 	if (unlikely(blocked_rdev)) {
1244 		/* Have to wait for this device to get unblocked, then retry */
1245 		int j;
1246 		int d;
1247 
1248 		for (j = 0; j < i; j++) {
1249 			if (r10_bio->devs[j].bio) {
1250 				d = r10_bio->devs[j].devnum;
1251 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1252 			}
1253 			if (r10_bio->devs[j].repl_bio) {
1254 				struct md_rdev *rdev;
1255 				d = r10_bio->devs[j].devnum;
1256 				rdev = conf->mirrors[d].replacement;
1257 				if (!rdev) {
1258 					/* Race with remove_disk */
1259 					smp_mb();
1260 					rdev = conf->mirrors[d].rdev;
1261 				}
1262 				rdev_dec_pending(rdev, mddev);
1263 			}
1264 		}
1265 		allow_barrier(conf);
1266 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1267 		wait_barrier(conf);
1268 		goto retry_write;
1269 	}
1270 
1271 	if (max_sectors < r10_bio->sectors) {
1272 		/* We are splitting this into multiple parts, so
1273 		 * we need to prepare for allocating another r10_bio.
1274 		 */
1275 		r10_bio->sectors = max_sectors;
1276 		spin_lock_irq(&conf->device_lock);
1277 		if (bio->bi_phys_segments == 0)
1278 			bio->bi_phys_segments = 2;
1279 		else
1280 			bio->bi_phys_segments++;
1281 		spin_unlock_irq(&conf->device_lock);
1282 	}
1283 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1284 
1285 	atomic_set(&r10_bio->remaining, 1);
1286 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1287 
1288 	for (i = 0; i < conf->copies; i++) {
1289 		struct bio *mbio;
1290 		int d = r10_bio->devs[i].devnum;
1291 		if (!r10_bio->devs[i].bio)
1292 			continue;
1293 
1294 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1295 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1296 			    max_sectors);
1297 		r10_bio->devs[i].bio = mbio;
1298 
1299 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1300 				   conf->mirrors[d].rdev->data_offset);
1301 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1302 		mbio->bi_end_io	= raid10_end_write_request;
1303 		mbio->bi_rw = WRITE | do_sync | do_fua;
1304 		mbio->bi_private = r10_bio;
1305 
1306 		atomic_inc(&r10_bio->remaining);
1307 		spin_lock_irqsave(&conf->device_lock, flags);
1308 		bio_list_add(&conf->pending_bio_list, mbio);
1309 		conf->pending_count++;
1310 		spin_unlock_irqrestore(&conf->device_lock, flags);
1311 
1312 		if (!r10_bio->devs[i].repl_bio)
1313 			continue;
1314 
1315 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1316 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1317 			    max_sectors);
1318 		r10_bio->devs[i].repl_bio = mbio;
1319 
1320 		/* We are actively writing to the original device
1321 		 * so it cannot disappear, so the replacement cannot
1322 		 * become NULL here
1323 		 */
1324 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1325 				   conf->mirrors[d].replacement->data_offset);
1326 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1327 		mbio->bi_end_io	= raid10_end_write_request;
1328 		mbio->bi_rw = WRITE | do_sync | do_fua;
1329 		mbio->bi_private = r10_bio;
1330 
1331 		atomic_inc(&r10_bio->remaining);
1332 		spin_lock_irqsave(&conf->device_lock, flags);
1333 		bio_list_add(&conf->pending_bio_list, mbio);
1334 		conf->pending_count++;
1335 		spin_unlock_irqrestore(&conf->device_lock, flags);
1336 	}
1337 
1338 	/* Don't remove the bias on 'remaining' (one_write_done) until
1339 	 * after checking if we need to go around again.
1340 	 */
1341 
1342 	if (sectors_handled < (bio->bi_size >> 9)) {
1343 		one_write_done(r10_bio);
1344 		/* We need another r10_bio.  It has already been counted
1345 		 * in bio->bi_phys_segments.
1346 		 */
1347 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1348 
1349 		r10_bio->master_bio = bio;
1350 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1351 
1352 		r10_bio->mddev = mddev;
1353 		r10_bio->sector = bio->bi_sector + sectors_handled;
1354 		r10_bio->state = 0;
1355 		goto retry_write;
1356 	}
1357 	one_write_done(r10_bio);
1358 
1359 	/* In case raid10d snuck in to freeze_array */
1360 	wake_up(&conf->wait_barrier);
1361 
1362 	if (do_sync || !mddev->bitmap || !plugged)
1363 		md_wakeup_thread(mddev->thread);
1364 }
1365 
1366 static void status(struct seq_file *seq, struct mddev *mddev)
1367 {
1368 	struct r10conf *conf = mddev->private;
1369 	int i;
1370 
1371 	if (conf->near_copies < conf->raid_disks)
1372 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1373 	if (conf->near_copies > 1)
1374 		seq_printf(seq, " %d near-copies", conf->near_copies);
1375 	if (conf->far_copies > 1) {
1376 		if (conf->far_offset)
1377 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1378 		else
1379 			seq_printf(seq, " %d far-copies", conf->far_copies);
1380 	}
1381 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1382 					conf->raid_disks - mddev->degraded);
1383 	for (i = 0; i < conf->raid_disks; i++)
1384 		seq_printf(seq, "%s",
1385 			      conf->mirrors[i].rdev &&
1386 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1387 	seq_printf(seq, "]");
1388 }
1389 
1390 /* check if there are enough drives for
1391  * every block to appear on atleast one.
1392  * Don't consider the device numbered 'ignore'
1393  * as we might be about to remove it.
1394  */
1395 static int enough(struct r10conf *conf, int ignore)
1396 {
1397 	int first = 0;
1398 
1399 	do {
1400 		int n = conf->copies;
1401 		int cnt = 0;
1402 		while (n--) {
1403 			if (conf->mirrors[first].rdev &&
1404 			    first != ignore)
1405 				cnt++;
1406 			first = (first+1) % conf->raid_disks;
1407 		}
1408 		if (cnt == 0)
1409 			return 0;
1410 	} while (first != 0);
1411 	return 1;
1412 }
1413 
1414 static void error(struct mddev *mddev, struct md_rdev *rdev)
1415 {
1416 	char b[BDEVNAME_SIZE];
1417 	struct r10conf *conf = mddev->private;
1418 
1419 	/*
1420 	 * If it is not operational, then we have already marked it as dead
1421 	 * else if it is the last working disks, ignore the error, let the
1422 	 * next level up know.
1423 	 * else mark the drive as failed
1424 	 */
1425 	if (test_bit(In_sync, &rdev->flags)
1426 	    && !enough(conf, rdev->raid_disk))
1427 		/*
1428 		 * Don't fail the drive, just return an IO error.
1429 		 */
1430 		return;
1431 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1432 		unsigned long flags;
1433 		spin_lock_irqsave(&conf->device_lock, flags);
1434 		mddev->degraded++;
1435 		spin_unlock_irqrestore(&conf->device_lock, flags);
1436 		/*
1437 		 * if recovery is running, make sure it aborts.
1438 		 */
1439 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1440 	}
1441 	set_bit(Blocked, &rdev->flags);
1442 	set_bit(Faulty, &rdev->flags);
1443 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1444 	printk(KERN_ALERT
1445 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1446 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1447 	       mdname(mddev), bdevname(rdev->bdev, b),
1448 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1449 }
1450 
1451 static void print_conf(struct r10conf *conf)
1452 {
1453 	int i;
1454 	struct mirror_info *tmp;
1455 
1456 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1457 	if (!conf) {
1458 		printk(KERN_DEBUG "(!conf)\n");
1459 		return;
1460 	}
1461 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1462 		conf->raid_disks);
1463 
1464 	for (i = 0; i < conf->raid_disks; i++) {
1465 		char b[BDEVNAME_SIZE];
1466 		tmp = conf->mirrors + i;
1467 		if (tmp->rdev)
1468 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1469 				i, !test_bit(In_sync, &tmp->rdev->flags),
1470 			        !test_bit(Faulty, &tmp->rdev->flags),
1471 				bdevname(tmp->rdev->bdev,b));
1472 	}
1473 }
1474 
1475 static void close_sync(struct r10conf *conf)
1476 {
1477 	wait_barrier(conf);
1478 	allow_barrier(conf);
1479 
1480 	mempool_destroy(conf->r10buf_pool);
1481 	conf->r10buf_pool = NULL;
1482 }
1483 
1484 static int raid10_spare_active(struct mddev *mddev)
1485 {
1486 	int i;
1487 	struct r10conf *conf = mddev->private;
1488 	struct mirror_info *tmp;
1489 	int count = 0;
1490 	unsigned long flags;
1491 
1492 	/*
1493 	 * Find all non-in_sync disks within the RAID10 configuration
1494 	 * and mark them in_sync
1495 	 */
1496 	for (i = 0; i < conf->raid_disks; i++) {
1497 		tmp = conf->mirrors + i;
1498 		if (tmp->replacement
1499 		    && tmp->replacement->recovery_offset == MaxSector
1500 		    && !test_bit(Faulty, &tmp->replacement->flags)
1501 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1502 			/* Replacement has just become active */
1503 			if (!tmp->rdev
1504 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1505 				count++;
1506 			if (tmp->rdev) {
1507 				/* Replaced device not technically faulty,
1508 				 * but we need to be sure it gets removed
1509 				 * and never re-added.
1510 				 */
1511 				set_bit(Faulty, &tmp->rdev->flags);
1512 				sysfs_notify_dirent_safe(
1513 					tmp->rdev->sysfs_state);
1514 			}
1515 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1516 		} else if (tmp->rdev
1517 			   && !test_bit(Faulty, &tmp->rdev->flags)
1518 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1519 			count++;
1520 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1521 		}
1522 	}
1523 	spin_lock_irqsave(&conf->device_lock, flags);
1524 	mddev->degraded -= count;
1525 	spin_unlock_irqrestore(&conf->device_lock, flags);
1526 
1527 	print_conf(conf);
1528 	return count;
1529 }
1530 
1531 
1532 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1533 {
1534 	struct r10conf *conf = mddev->private;
1535 	int err = -EEXIST;
1536 	int mirror;
1537 	int first = 0;
1538 	int last = conf->raid_disks - 1;
1539 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1540 
1541 	if (mddev->recovery_cp < MaxSector)
1542 		/* only hot-add to in-sync arrays, as recovery is
1543 		 * very different from resync
1544 		 */
1545 		return -EBUSY;
1546 	if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
1547 		return -EINVAL;
1548 
1549 	if (rdev->raid_disk >= 0)
1550 		first = last = rdev->raid_disk;
1551 
1552 	if (q->merge_bvec_fn) {
1553 		set_bit(Unmerged, &rdev->flags);
1554 		mddev->merge_check_needed = 1;
1555 	}
1556 
1557 	if (rdev->saved_raid_disk >= first &&
1558 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1559 		mirror = rdev->saved_raid_disk;
1560 	else
1561 		mirror = first;
1562 	for ( ; mirror <= last ; mirror++) {
1563 		struct mirror_info *p = &conf->mirrors[mirror];
1564 		if (p->recovery_disabled == mddev->recovery_disabled)
1565 			continue;
1566 		if (p->rdev) {
1567 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1568 			    p->replacement != NULL)
1569 				continue;
1570 			clear_bit(In_sync, &rdev->flags);
1571 			set_bit(Replacement, &rdev->flags);
1572 			rdev->raid_disk = mirror;
1573 			err = 0;
1574 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1575 					  rdev->data_offset << 9);
1576 			conf->fullsync = 1;
1577 			rcu_assign_pointer(p->replacement, rdev);
1578 			break;
1579 		}
1580 
1581 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1582 				  rdev->data_offset << 9);
1583 
1584 		p->head_position = 0;
1585 		p->recovery_disabled = mddev->recovery_disabled - 1;
1586 		rdev->raid_disk = mirror;
1587 		err = 0;
1588 		if (rdev->saved_raid_disk != mirror)
1589 			conf->fullsync = 1;
1590 		rcu_assign_pointer(p->rdev, rdev);
1591 		break;
1592 	}
1593 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1594 		/* Some requests might not have seen this new
1595 		 * merge_bvec_fn.  We must wait for them to complete
1596 		 * before merging the device fully.
1597 		 * First we make sure any code which has tested
1598 		 * our function has submitted the request, then
1599 		 * we wait for all outstanding requests to complete.
1600 		 */
1601 		synchronize_sched();
1602 		raise_barrier(conf, 0);
1603 		lower_barrier(conf);
1604 		clear_bit(Unmerged, &rdev->flags);
1605 	}
1606 	md_integrity_add_rdev(rdev, mddev);
1607 	print_conf(conf);
1608 	return err;
1609 }
1610 
1611 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1612 {
1613 	struct r10conf *conf = mddev->private;
1614 	int err = 0;
1615 	int number = rdev->raid_disk;
1616 	struct md_rdev **rdevp;
1617 	struct mirror_info *p = conf->mirrors + number;
1618 
1619 	print_conf(conf);
1620 	if (rdev == p->rdev)
1621 		rdevp = &p->rdev;
1622 	else if (rdev == p->replacement)
1623 		rdevp = &p->replacement;
1624 	else
1625 		return 0;
1626 
1627 	if (test_bit(In_sync, &rdev->flags) ||
1628 	    atomic_read(&rdev->nr_pending)) {
1629 		err = -EBUSY;
1630 		goto abort;
1631 	}
1632 	/* Only remove faulty devices if recovery
1633 	 * is not possible.
1634 	 */
1635 	if (!test_bit(Faulty, &rdev->flags) &&
1636 	    mddev->recovery_disabled != p->recovery_disabled &&
1637 	    (!p->replacement || p->replacement == rdev) &&
1638 	    enough(conf, -1)) {
1639 		err = -EBUSY;
1640 		goto abort;
1641 	}
1642 	*rdevp = NULL;
1643 	synchronize_rcu();
1644 	if (atomic_read(&rdev->nr_pending)) {
1645 		/* lost the race, try later */
1646 		err = -EBUSY;
1647 		*rdevp = rdev;
1648 		goto abort;
1649 	} else if (p->replacement) {
1650 		/* We must have just cleared 'rdev' */
1651 		p->rdev = p->replacement;
1652 		clear_bit(Replacement, &p->replacement->flags);
1653 		smp_mb(); /* Make sure other CPUs may see both as identical
1654 			   * but will never see neither -- if they are careful.
1655 			   */
1656 		p->replacement = NULL;
1657 		clear_bit(WantReplacement, &rdev->flags);
1658 	} else
1659 		/* We might have just remove the Replacement as faulty
1660 		 * Clear the flag just in case
1661 		 */
1662 		clear_bit(WantReplacement, &rdev->flags);
1663 
1664 	err = md_integrity_register(mddev);
1665 
1666 abort:
1667 
1668 	print_conf(conf);
1669 	return err;
1670 }
1671 
1672 
1673 static void end_sync_read(struct bio *bio, int error)
1674 {
1675 	struct r10bio *r10_bio = bio->bi_private;
1676 	struct r10conf *conf = r10_bio->mddev->private;
1677 	int d;
1678 
1679 	d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1680 
1681 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1682 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1683 	else
1684 		/* The write handler will notice the lack of
1685 		 * R10BIO_Uptodate and record any errors etc
1686 		 */
1687 		atomic_add(r10_bio->sectors,
1688 			   &conf->mirrors[d].rdev->corrected_errors);
1689 
1690 	/* for reconstruct, we always reschedule after a read.
1691 	 * for resync, only after all reads
1692 	 */
1693 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1694 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1695 	    atomic_dec_and_test(&r10_bio->remaining)) {
1696 		/* we have read all the blocks,
1697 		 * do the comparison in process context in raid10d
1698 		 */
1699 		reschedule_retry(r10_bio);
1700 	}
1701 }
1702 
1703 static void end_sync_request(struct r10bio *r10_bio)
1704 {
1705 	struct mddev *mddev = r10_bio->mddev;
1706 
1707 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1708 		if (r10_bio->master_bio == NULL) {
1709 			/* the primary of several recovery bios */
1710 			sector_t s = r10_bio->sectors;
1711 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1712 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1713 				reschedule_retry(r10_bio);
1714 			else
1715 				put_buf(r10_bio);
1716 			md_done_sync(mddev, s, 1);
1717 			break;
1718 		} else {
1719 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1720 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1721 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1722 				reschedule_retry(r10_bio);
1723 			else
1724 				put_buf(r10_bio);
1725 			r10_bio = r10_bio2;
1726 		}
1727 	}
1728 }
1729 
1730 static void end_sync_write(struct bio *bio, int error)
1731 {
1732 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1733 	struct r10bio *r10_bio = bio->bi_private;
1734 	struct mddev *mddev = r10_bio->mddev;
1735 	struct r10conf *conf = mddev->private;
1736 	int d;
1737 	sector_t first_bad;
1738 	int bad_sectors;
1739 	int slot;
1740 	int repl;
1741 	struct md_rdev *rdev = NULL;
1742 
1743 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1744 	if (repl)
1745 		rdev = conf->mirrors[d].replacement;
1746 	else
1747 		rdev = conf->mirrors[d].rdev;
1748 
1749 	if (!uptodate) {
1750 		if (repl)
1751 			md_error(mddev, rdev);
1752 		else {
1753 			set_bit(WriteErrorSeen, &rdev->flags);
1754 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1755 				set_bit(MD_RECOVERY_NEEDED,
1756 					&rdev->mddev->recovery);
1757 			set_bit(R10BIO_WriteError, &r10_bio->state);
1758 		}
1759 	} else if (is_badblock(rdev,
1760 			     r10_bio->devs[slot].addr,
1761 			     r10_bio->sectors,
1762 			     &first_bad, &bad_sectors))
1763 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1764 
1765 	rdev_dec_pending(rdev, mddev);
1766 
1767 	end_sync_request(r10_bio);
1768 }
1769 
1770 /*
1771  * Note: sync and recover and handled very differently for raid10
1772  * This code is for resync.
1773  * For resync, we read through virtual addresses and read all blocks.
1774  * If there is any error, we schedule a write.  The lowest numbered
1775  * drive is authoritative.
1776  * However requests come for physical address, so we need to map.
1777  * For every physical address there are raid_disks/copies virtual addresses,
1778  * which is always are least one, but is not necessarly an integer.
1779  * This means that a physical address can span multiple chunks, so we may
1780  * have to submit multiple io requests for a single sync request.
1781  */
1782 /*
1783  * We check if all blocks are in-sync and only write to blocks that
1784  * aren't in sync
1785  */
1786 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1787 {
1788 	struct r10conf *conf = mddev->private;
1789 	int i, first;
1790 	struct bio *tbio, *fbio;
1791 	int vcnt;
1792 
1793 	atomic_set(&r10_bio->remaining, 1);
1794 
1795 	/* find the first device with a block */
1796 	for (i=0; i<conf->copies; i++)
1797 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1798 			break;
1799 
1800 	if (i == conf->copies)
1801 		goto done;
1802 
1803 	first = i;
1804 	fbio = r10_bio->devs[i].bio;
1805 
1806 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1807 	/* now find blocks with errors */
1808 	for (i=0 ; i < conf->copies ; i++) {
1809 		int  j, d;
1810 
1811 		tbio = r10_bio->devs[i].bio;
1812 
1813 		if (tbio->bi_end_io != end_sync_read)
1814 			continue;
1815 		if (i == first)
1816 			continue;
1817 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1818 			/* We know that the bi_io_vec layout is the same for
1819 			 * both 'first' and 'i', so we just compare them.
1820 			 * All vec entries are PAGE_SIZE;
1821 			 */
1822 			for (j = 0; j < vcnt; j++)
1823 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1824 					   page_address(tbio->bi_io_vec[j].bv_page),
1825 					   fbio->bi_io_vec[j].bv_len))
1826 					break;
1827 			if (j == vcnt)
1828 				continue;
1829 			mddev->resync_mismatches += r10_bio->sectors;
1830 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1831 				/* Don't fix anything. */
1832 				continue;
1833 		}
1834 		/* Ok, we need to write this bio, either to correct an
1835 		 * inconsistency or to correct an unreadable block.
1836 		 * First we need to fixup bv_offset, bv_len and
1837 		 * bi_vecs, as the read request might have corrupted these
1838 		 */
1839 		tbio->bi_vcnt = vcnt;
1840 		tbio->bi_size = r10_bio->sectors << 9;
1841 		tbio->bi_idx = 0;
1842 		tbio->bi_phys_segments = 0;
1843 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1844 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1845 		tbio->bi_next = NULL;
1846 		tbio->bi_rw = WRITE;
1847 		tbio->bi_private = r10_bio;
1848 		tbio->bi_sector = r10_bio->devs[i].addr;
1849 
1850 		for (j=0; j < vcnt ; j++) {
1851 			tbio->bi_io_vec[j].bv_offset = 0;
1852 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1853 
1854 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1855 			       page_address(fbio->bi_io_vec[j].bv_page),
1856 			       PAGE_SIZE);
1857 		}
1858 		tbio->bi_end_io = end_sync_write;
1859 
1860 		d = r10_bio->devs[i].devnum;
1861 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1862 		atomic_inc(&r10_bio->remaining);
1863 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1864 
1865 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1866 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1867 		generic_make_request(tbio);
1868 	}
1869 
1870 	/* Now write out to any replacement devices
1871 	 * that are active
1872 	 */
1873 	for (i = 0; i < conf->copies; i++) {
1874 		int j, d;
1875 
1876 		tbio = r10_bio->devs[i].repl_bio;
1877 		if (!tbio || !tbio->bi_end_io)
1878 			continue;
1879 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1880 		    && r10_bio->devs[i].bio != fbio)
1881 			for (j = 0; j < vcnt; j++)
1882 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1883 				       page_address(fbio->bi_io_vec[j].bv_page),
1884 				       PAGE_SIZE);
1885 		d = r10_bio->devs[i].devnum;
1886 		atomic_inc(&r10_bio->remaining);
1887 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1888 			     tbio->bi_size >> 9);
1889 		generic_make_request(tbio);
1890 	}
1891 
1892 done:
1893 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1894 		md_done_sync(mddev, r10_bio->sectors, 1);
1895 		put_buf(r10_bio);
1896 	}
1897 }
1898 
1899 /*
1900  * Now for the recovery code.
1901  * Recovery happens across physical sectors.
1902  * We recover all non-is_sync drives by finding the virtual address of
1903  * each, and then choose a working drive that also has that virt address.
1904  * There is a separate r10_bio for each non-in_sync drive.
1905  * Only the first two slots are in use. The first for reading,
1906  * The second for writing.
1907  *
1908  */
1909 static void fix_recovery_read_error(struct r10bio *r10_bio)
1910 {
1911 	/* We got a read error during recovery.
1912 	 * We repeat the read in smaller page-sized sections.
1913 	 * If a read succeeds, write it to the new device or record
1914 	 * a bad block if we cannot.
1915 	 * If a read fails, record a bad block on both old and
1916 	 * new devices.
1917 	 */
1918 	struct mddev *mddev = r10_bio->mddev;
1919 	struct r10conf *conf = mddev->private;
1920 	struct bio *bio = r10_bio->devs[0].bio;
1921 	sector_t sect = 0;
1922 	int sectors = r10_bio->sectors;
1923 	int idx = 0;
1924 	int dr = r10_bio->devs[0].devnum;
1925 	int dw = r10_bio->devs[1].devnum;
1926 
1927 	while (sectors) {
1928 		int s = sectors;
1929 		struct md_rdev *rdev;
1930 		sector_t addr;
1931 		int ok;
1932 
1933 		if (s > (PAGE_SIZE>>9))
1934 			s = PAGE_SIZE >> 9;
1935 
1936 		rdev = conf->mirrors[dr].rdev;
1937 		addr = r10_bio->devs[0].addr + sect,
1938 		ok = sync_page_io(rdev,
1939 				  addr,
1940 				  s << 9,
1941 				  bio->bi_io_vec[idx].bv_page,
1942 				  READ, false);
1943 		if (ok) {
1944 			rdev = conf->mirrors[dw].rdev;
1945 			addr = r10_bio->devs[1].addr + sect;
1946 			ok = sync_page_io(rdev,
1947 					  addr,
1948 					  s << 9,
1949 					  bio->bi_io_vec[idx].bv_page,
1950 					  WRITE, false);
1951 			if (!ok) {
1952 				set_bit(WriteErrorSeen, &rdev->flags);
1953 				if (!test_and_set_bit(WantReplacement,
1954 						      &rdev->flags))
1955 					set_bit(MD_RECOVERY_NEEDED,
1956 						&rdev->mddev->recovery);
1957 			}
1958 		}
1959 		if (!ok) {
1960 			/* We don't worry if we cannot set a bad block -
1961 			 * it really is bad so there is no loss in not
1962 			 * recording it yet
1963 			 */
1964 			rdev_set_badblocks(rdev, addr, s, 0);
1965 
1966 			if (rdev != conf->mirrors[dw].rdev) {
1967 				/* need bad block on destination too */
1968 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1969 				addr = r10_bio->devs[1].addr + sect;
1970 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1971 				if (!ok) {
1972 					/* just abort the recovery */
1973 					printk(KERN_NOTICE
1974 					       "md/raid10:%s: recovery aborted"
1975 					       " due to read error\n",
1976 					       mdname(mddev));
1977 
1978 					conf->mirrors[dw].recovery_disabled
1979 						= mddev->recovery_disabled;
1980 					set_bit(MD_RECOVERY_INTR,
1981 						&mddev->recovery);
1982 					break;
1983 				}
1984 			}
1985 		}
1986 
1987 		sectors -= s;
1988 		sect += s;
1989 		idx++;
1990 	}
1991 }
1992 
1993 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1994 {
1995 	struct r10conf *conf = mddev->private;
1996 	int d;
1997 	struct bio *wbio, *wbio2;
1998 
1999 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2000 		fix_recovery_read_error(r10_bio);
2001 		end_sync_request(r10_bio);
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * share the pages with the first bio
2007 	 * and submit the write request
2008 	 */
2009 	d = r10_bio->devs[1].devnum;
2010 	wbio = r10_bio->devs[1].bio;
2011 	wbio2 = r10_bio->devs[1].repl_bio;
2012 	if (wbio->bi_end_io) {
2013 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2014 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2015 		generic_make_request(wbio);
2016 	}
2017 	if (wbio2 && wbio2->bi_end_io) {
2018 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2019 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2020 			     wbio2->bi_size >> 9);
2021 		generic_make_request(wbio2);
2022 	}
2023 }
2024 
2025 
2026 /*
2027  * Used by fix_read_error() to decay the per rdev read_errors.
2028  * We halve the read error count for every hour that has elapsed
2029  * since the last recorded read error.
2030  *
2031  */
2032 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2033 {
2034 	struct timespec cur_time_mon;
2035 	unsigned long hours_since_last;
2036 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2037 
2038 	ktime_get_ts(&cur_time_mon);
2039 
2040 	if (rdev->last_read_error.tv_sec == 0 &&
2041 	    rdev->last_read_error.tv_nsec == 0) {
2042 		/* first time we've seen a read error */
2043 		rdev->last_read_error = cur_time_mon;
2044 		return;
2045 	}
2046 
2047 	hours_since_last = (cur_time_mon.tv_sec -
2048 			    rdev->last_read_error.tv_sec) / 3600;
2049 
2050 	rdev->last_read_error = cur_time_mon;
2051 
2052 	/*
2053 	 * if hours_since_last is > the number of bits in read_errors
2054 	 * just set read errors to 0. We do this to avoid
2055 	 * overflowing the shift of read_errors by hours_since_last.
2056 	 */
2057 	if (hours_since_last >= 8 * sizeof(read_errors))
2058 		atomic_set(&rdev->read_errors, 0);
2059 	else
2060 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2061 }
2062 
2063 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2064 			    int sectors, struct page *page, int rw)
2065 {
2066 	sector_t first_bad;
2067 	int bad_sectors;
2068 
2069 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2070 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2071 		return -1;
2072 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2073 		/* success */
2074 		return 1;
2075 	if (rw == WRITE) {
2076 		set_bit(WriteErrorSeen, &rdev->flags);
2077 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2078 			set_bit(MD_RECOVERY_NEEDED,
2079 				&rdev->mddev->recovery);
2080 	}
2081 	/* need to record an error - either for the block or the device */
2082 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2083 		md_error(rdev->mddev, rdev);
2084 	return 0;
2085 }
2086 
2087 /*
2088  * This is a kernel thread which:
2089  *
2090  *	1.	Retries failed read operations on working mirrors.
2091  *	2.	Updates the raid superblock when problems encounter.
2092  *	3.	Performs writes following reads for array synchronising.
2093  */
2094 
2095 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2096 {
2097 	int sect = 0; /* Offset from r10_bio->sector */
2098 	int sectors = r10_bio->sectors;
2099 	struct md_rdev*rdev;
2100 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2101 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2102 
2103 	/* still own a reference to this rdev, so it cannot
2104 	 * have been cleared recently.
2105 	 */
2106 	rdev = conf->mirrors[d].rdev;
2107 
2108 	if (test_bit(Faulty, &rdev->flags))
2109 		/* drive has already been failed, just ignore any
2110 		   more fix_read_error() attempts */
2111 		return;
2112 
2113 	check_decay_read_errors(mddev, rdev);
2114 	atomic_inc(&rdev->read_errors);
2115 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2116 		char b[BDEVNAME_SIZE];
2117 		bdevname(rdev->bdev, b);
2118 
2119 		printk(KERN_NOTICE
2120 		       "md/raid10:%s: %s: Raid device exceeded "
2121 		       "read_error threshold [cur %d:max %d]\n",
2122 		       mdname(mddev), b,
2123 		       atomic_read(&rdev->read_errors), max_read_errors);
2124 		printk(KERN_NOTICE
2125 		       "md/raid10:%s: %s: Failing raid device\n",
2126 		       mdname(mddev), b);
2127 		md_error(mddev, conf->mirrors[d].rdev);
2128 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2129 		return;
2130 	}
2131 
2132 	while(sectors) {
2133 		int s = sectors;
2134 		int sl = r10_bio->read_slot;
2135 		int success = 0;
2136 		int start;
2137 
2138 		if (s > (PAGE_SIZE>>9))
2139 			s = PAGE_SIZE >> 9;
2140 
2141 		rcu_read_lock();
2142 		do {
2143 			sector_t first_bad;
2144 			int bad_sectors;
2145 
2146 			d = r10_bio->devs[sl].devnum;
2147 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2148 			if (rdev &&
2149 			    !test_bit(Unmerged, &rdev->flags) &&
2150 			    test_bit(In_sync, &rdev->flags) &&
2151 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2152 					&first_bad, &bad_sectors) == 0) {
2153 				atomic_inc(&rdev->nr_pending);
2154 				rcu_read_unlock();
2155 				success = sync_page_io(rdev,
2156 						       r10_bio->devs[sl].addr +
2157 						       sect,
2158 						       s<<9,
2159 						       conf->tmppage, READ, false);
2160 				rdev_dec_pending(rdev, mddev);
2161 				rcu_read_lock();
2162 				if (success)
2163 					break;
2164 			}
2165 			sl++;
2166 			if (sl == conf->copies)
2167 				sl = 0;
2168 		} while (!success && sl != r10_bio->read_slot);
2169 		rcu_read_unlock();
2170 
2171 		if (!success) {
2172 			/* Cannot read from anywhere, just mark the block
2173 			 * as bad on the first device to discourage future
2174 			 * reads.
2175 			 */
2176 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2177 			rdev = conf->mirrors[dn].rdev;
2178 
2179 			if (!rdev_set_badblocks(
2180 				    rdev,
2181 				    r10_bio->devs[r10_bio->read_slot].addr
2182 				    + sect,
2183 				    s, 0)) {
2184 				md_error(mddev, rdev);
2185 				r10_bio->devs[r10_bio->read_slot].bio
2186 					= IO_BLOCKED;
2187 			}
2188 			break;
2189 		}
2190 
2191 		start = sl;
2192 		/* write it back and re-read */
2193 		rcu_read_lock();
2194 		while (sl != r10_bio->read_slot) {
2195 			char b[BDEVNAME_SIZE];
2196 
2197 			if (sl==0)
2198 				sl = conf->copies;
2199 			sl--;
2200 			d = r10_bio->devs[sl].devnum;
2201 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2202 			if (!rdev ||
2203 			    test_bit(Unmerged, &rdev->flags) ||
2204 			    !test_bit(In_sync, &rdev->flags))
2205 				continue;
2206 
2207 			atomic_inc(&rdev->nr_pending);
2208 			rcu_read_unlock();
2209 			if (r10_sync_page_io(rdev,
2210 					     r10_bio->devs[sl].addr +
2211 					     sect,
2212 					     s<<9, conf->tmppage, WRITE)
2213 			    == 0) {
2214 				/* Well, this device is dead */
2215 				printk(KERN_NOTICE
2216 				       "md/raid10:%s: read correction "
2217 				       "write failed"
2218 				       " (%d sectors at %llu on %s)\n",
2219 				       mdname(mddev), s,
2220 				       (unsigned long long)(
2221 					       sect + rdev->data_offset),
2222 				       bdevname(rdev->bdev, b));
2223 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2224 				       "drive\n",
2225 				       mdname(mddev),
2226 				       bdevname(rdev->bdev, b));
2227 			}
2228 			rdev_dec_pending(rdev, mddev);
2229 			rcu_read_lock();
2230 		}
2231 		sl = start;
2232 		while (sl != r10_bio->read_slot) {
2233 			char b[BDEVNAME_SIZE];
2234 
2235 			if (sl==0)
2236 				sl = conf->copies;
2237 			sl--;
2238 			d = r10_bio->devs[sl].devnum;
2239 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2240 			if (!rdev ||
2241 			    !test_bit(In_sync, &rdev->flags))
2242 				continue;
2243 
2244 			atomic_inc(&rdev->nr_pending);
2245 			rcu_read_unlock();
2246 			switch (r10_sync_page_io(rdev,
2247 					     r10_bio->devs[sl].addr +
2248 					     sect,
2249 					     s<<9, conf->tmppage,
2250 						 READ)) {
2251 			case 0:
2252 				/* Well, this device is dead */
2253 				printk(KERN_NOTICE
2254 				       "md/raid10:%s: unable to read back "
2255 				       "corrected sectors"
2256 				       " (%d sectors at %llu on %s)\n",
2257 				       mdname(mddev), s,
2258 				       (unsigned long long)(
2259 					       sect + rdev->data_offset),
2260 				       bdevname(rdev->bdev, b));
2261 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2262 				       "drive\n",
2263 				       mdname(mddev),
2264 				       bdevname(rdev->bdev, b));
2265 				break;
2266 			case 1:
2267 				printk(KERN_INFO
2268 				       "md/raid10:%s: read error corrected"
2269 				       " (%d sectors at %llu on %s)\n",
2270 				       mdname(mddev), s,
2271 				       (unsigned long long)(
2272 					       sect + rdev->data_offset),
2273 				       bdevname(rdev->bdev, b));
2274 				atomic_add(s, &rdev->corrected_errors);
2275 			}
2276 
2277 			rdev_dec_pending(rdev, mddev);
2278 			rcu_read_lock();
2279 		}
2280 		rcu_read_unlock();
2281 
2282 		sectors -= s;
2283 		sect += s;
2284 	}
2285 }
2286 
2287 static void bi_complete(struct bio *bio, int error)
2288 {
2289 	complete((struct completion *)bio->bi_private);
2290 }
2291 
2292 static int submit_bio_wait(int rw, struct bio *bio)
2293 {
2294 	struct completion event;
2295 	rw |= REQ_SYNC;
2296 
2297 	init_completion(&event);
2298 	bio->bi_private = &event;
2299 	bio->bi_end_io = bi_complete;
2300 	submit_bio(rw, bio);
2301 	wait_for_completion(&event);
2302 
2303 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2304 }
2305 
2306 static int narrow_write_error(struct r10bio *r10_bio, int i)
2307 {
2308 	struct bio *bio = r10_bio->master_bio;
2309 	struct mddev *mddev = r10_bio->mddev;
2310 	struct r10conf *conf = mddev->private;
2311 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2312 	/* bio has the data to be written to slot 'i' where
2313 	 * we just recently had a write error.
2314 	 * We repeatedly clone the bio and trim down to one block,
2315 	 * then try the write.  Where the write fails we record
2316 	 * a bad block.
2317 	 * It is conceivable that the bio doesn't exactly align with
2318 	 * blocks.  We must handle this.
2319 	 *
2320 	 * We currently own a reference to the rdev.
2321 	 */
2322 
2323 	int block_sectors;
2324 	sector_t sector;
2325 	int sectors;
2326 	int sect_to_write = r10_bio->sectors;
2327 	int ok = 1;
2328 
2329 	if (rdev->badblocks.shift < 0)
2330 		return 0;
2331 
2332 	block_sectors = 1 << rdev->badblocks.shift;
2333 	sector = r10_bio->sector;
2334 	sectors = ((r10_bio->sector + block_sectors)
2335 		   & ~(sector_t)(block_sectors - 1))
2336 		- sector;
2337 
2338 	while (sect_to_write) {
2339 		struct bio *wbio;
2340 		if (sectors > sect_to_write)
2341 			sectors = sect_to_write;
2342 		/* Write at 'sector' for 'sectors' */
2343 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2344 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2345 		wbio->bi_sector = (r10_bio->devs[i].addr+
2346 				   rdev->data_offset+
2347 				   (sector - r10_bio->sector));
2348 		wbio->bi_bdev = rdev->bdev;
2349 		if (submit_bio_wait(WRITE, wbio) == 0)
2350 			/* Failure! */
2351 			ok = rdev_set_badblocks(rdev, sector,
2352 						sectors, 0)
2353 				&& ok;
2354 
2355 		bio_put(wbio);
2356 		sect_to_write -= sectors;
2357 		sector += sectors;
2358 		sectors = block_sectors;
2359 	}
2360 	return ok;
2361 }
2362 
2363 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365 	int slot = r10_bio->read_slot;
2366 	struct bio *bio;
2367 	struct r10conf *conf = mddev->private;
2368 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2369 	char b[BDEVNAME_SIZE];
2370 	unsigned long do_sync;
2371 	int max_sectors;
2372 
2373 	/* we got a read error. Maybe the drive is bad.  Maybe just
2374 	 * the block and we can fix it.
2375 	 * We freeze all other IO, and try reading the block from
2376 	 * other devices.  When we find one, we re-write
2377 	 * and check it that fixes the read error.
2378 	 * This is all done synchronously while the array is
2379 	 * frozen.
2380 	 */
2381 	bio = r10_bio->devs[slot].bio;
2382 	bdevname(bio->bi_bdev, b);
2383 	bio_put(bio);
2384 	r10_bio->devs[slot].bio = NULL;
2385 
2386 	if (mddev->ro == 0) {
2387 		freeze_array(conf);
2388 		fix_read_error(conf, mddev, r10_bio);
2389 		unfreeze_array(conf);
2390 	} else
2391 		r10_bio->devs[slot].bio = IO_BLOCKED;
2392 
2393 	rdev_dec_pending(rdev, mddev);
2394 
2395 read_more:
2396 	rdev = read_balance(conf, r10_bio, &max_sectors);
2397 	if (rdev == NULL) {
2398 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2399 		       " read error for block %llu\n",
2400 		       mdname(mddev), b,
2401 		       (unsigned long long)r10_bio->sector);
2402 		raid_end_bio_io(r10_bio);
2403 		return;
2404 	}
2405 
2406 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2407 	slot = r10_bio->read_slot;
2408 	printk_ratelimited(
2409 		KERN_ERR
2410 		"md/raid10:%s: %s: redirecting"
2411 		"sector %llu to another mirror\n",
2412 		mdname(mddev),
2413 		bdevname(rdev->bdev, b),
2414 		(unsigned long long)r10_bio->sector);
2415 	bio = bio_clone_mddev(r10_bio->master_bio,
2416 			      GFP_NOIO, mddev);
2417 	md_trim_bio(bio,
2418 		    r10_bio->sector - bio->bi_sector,
2419 		    max_sectors);
2420 	r10_bio->devs[slot].bio = bio;
2421 	r10_bio->devs[slot].rdev = rdev;
2422 	bio->bi_sector = r10_bio->devs[slot].addr
2423 		+ rdev->data_offset;
2424 	bio->bi_bdev = rdev->bdev;
2425 	bio->bi_rw = READ | do_sync;
2426 	bio->bi_private = r10_bio;
2427 	bio->bi_end_io = raid10_end_read_request;
2428 	if (max_sectors < r10_bio->sectors) {
2429 		/* Drat - have to split this up more */
2430 		struct bio *mbio = r10_bio->master_bio;
2431 		int sectors_handled =
2432 			r10_bio->sector + max_sectors
2433 			- mbio->bi_sector;
2434 		r10_bio->sectors = max_sectors;
2435 		spin_lock_irq(&conf->device_lock);
2436 		if (mbio->bi_phys_segments == 0)
2437 			mbio->bi_phys_segments = 2;
2438 		else
2439 			mbio->bi_phys_segments++;
2440 		spin_unlock_irq(&conf->device_lock);
2441 		generic_make_request(bio);
2442 
2443 		r10_bio = mempool_alloc(conf->r10bio_pool,
2444 					GFP_NOIO);
2445 		r10_bio->master_bio = mbio;
2446 		r10_bio->sectors = (mbio->bi_size >> 9)
2447 			- sectors_handled;
2448 		r10_bio->state = 0;
2449 		set_bit(R10BIO_ReadError,
2450 			&r10_bio->state);
2451 		r10_bio->mddev = mddev;
2452 		r10_bio->sector = mbio->bi_sector
2453 			+ sectors_handled;
2454 
2455 		goto read_more;
2456 	} else
2457 		generic_make_request(bio);
2458 }
2459 
2460 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2461 {
2462 	/* Some sort of write request has finished and it
2463 	 * succeeded in writing where we thought there was a
2464 	 * bad block.  So forget the bad block.
2465 	 * Or possibly if failed and we need to record
2466 	 * a bad block.
2467 	 */
2468 	int m;
2469 	struct md_rdev *rdev;
2470 
2471 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2472 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2473 		for (m = 0; m < conf->copies; m++) {
2474 			int dev = r10_bio->devs[m].devnum;
2475 			rdev = conf->mirrors[dev].rdev;
2476 			if (r10_bio->devs[m].bio == NULL)
2477 				continue;
2478 			if (test_bit(BIO_UPTODATE,
2479 				     &r10_bio->devs[m].bio->bi_flags)) {
2480 				rdev_clear_badblocks(
2481 					rdev,
2482 					r10_bio->devs[m].addr,
2483 					r10_bio->sectors);
2484 			} else {
2485 				if (!rdev_set_badblocks(
2486 					    rdev,
2487 					    r10_bio->devs[m].addr,
2488 					    r10_bio->sectors, 0))
2489 					md_error(conf->mddev, rdev);
2490 			}
2491 			rdev = conf->mirrors[dev].replacement;
2492 			if (r10_bio->devs[m].repl_bio == NULL)
2493 				continue;
2494 			if (test_bit(BIO_UPTODATE,
2495 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2496 				rdev_clear_badblocks(
2497 					rdev,
2498 					r10_bio->devs[m].addr,
2499 					r10_bio->sectors);
2500 			} else {
2501 				if (!rdev_set_badblocks(
2502 					    rdev,
2503 					    r10_bio->devs[m].addr,
2504 					    r10_bio->sectors, 0))
2505 					md_error(conf->mddev, rdev);
2506 			}
2507 		}
2508 		put_buf(r10_bio);
2509 	} else {
2510 		for (m = 0; m < conf->copies; m++) {
2511 			int dev = r10_bio->devs[m].devnum;
2512 			struct bio *bio = r10_bio->devs[m].bio;
2513 			rdev = conf->mirrors[dev].rdev;
2514 			if (bio == IO_MADE_GOOD) {
2515 				rdev_clear_badblocks(
2516 					rdev,
2517 					r10_bio->devs[m].addr,
2518 					r10_bio->sectors);
2519 				rdev_dec_pending(rdev, conf->mddev);
2520 			} else if (bio != NULL &&
2521 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2522 				if (!narrow_write_error(r10_bio, m)) {
2523 					md_error(conf->mddev, rdev);
2524 					set_bit(R10BIO_Degraded,
2525 						&r10_bio->state);
2526 				}
2527 				rdev_dec_pending(rdev, conf->mddev);
2528 			}
2529 			bio = r10_bio->devs[m].repl_bio;
2530 			rdev = conf->mirrors[dev].replacement;
2531 			if (rdev && bio == IO_MADE_GOOD) {
2532 				rdev_clear_badblocks(
2533 					rdev,
2534 					r10_bio->devs[m].addr,
2535 					r10_bio->sectors);
2536 				rdev_dec_pending(rdev, conf->mddev);
2537 			}
2538 		}
2539 		if (test_bit(R10BIO_WriteError,
2540 			     &r10_bio->state))
2541 			close_write(r10_bio);
2542 		raid_end_bio_io(r10_bio);
2543 	}
2544 }
2545 
2546 static void raid10d(struct mddev *mddev)
2547 {
2548 	struct r10bio *r10_bio;
2549 	unsigned long flags;
2550 	struct r10conf *conf = mddev->private;
2551 	struct list_head *head = &conf->retry_list;
2552 	struct blk_plug plug;
2553 
2554 	md_check_recovery(mddev);
2555 
2556 	blk_start_plug(&plug);
2557 	for (;;) {
2558 
2559 		flush_pending_writes(conf);
2560 
2561 		spin_lock_irqsave(&conf->device_lock, flags);
2562 		if (list_empty(head)) {
2563 			spin_unlock_irqrestore(&conf->device_lock, flags);
2564 			break;
2565 		}
2566 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2567 		list_del(head->prev);
2568 		conf->nr_queued--;
2569 		spin_unlock_irqrestore(&conf->device_lock, flags);
2570 
2571 		mddev = r10_bio->mddev;
2572 		conf = mddev->private;
2573 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2574 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2575 			handle_write_completed(conf, r10_bio);
2576 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2577 			sync_request_write(mddev, r10_bio);
2578 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2579 			recovery_request_write(mddev, r10_bio);
2580 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2581 			handle_read_error(mddev, r10_bio);
2582 		else {
2583 			/* just a partial read to be scheduled from a
2584 			 * separate context
2585 			 */
2586 			int slot = r10_bio->read_slot;
2587 			generic_make_request(r10_bio->devs[slot].bio);
2588 		}
2589 
2590 		cond_resched();
2591 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2592 			md_check_recovery(mddev);
2593 	}
2594 	blk_finish_plug(&plug);
2595 }
2596 
2597 
2598 static int init_resync(struct r10conf *conf)
2599 {
2600 	int buffs;
2601 	int i;
2602 
2603 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2604 	BUG_ON(conf->r10buf_pool);
2605 	conf->have_replacement = 0;
2606 	for (i = 0; i < conf->raid_disks; i++)
2607 		if (conf->mirrors[i].replacement)
2608 			conf->have_replacement = 1;
2609 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2610 	if (!conf->r10buf_pool)
2611 		return -ENOMEM;
2612 	conf->next_resync = 0;
2613 	return 0;
2614 }
2615 
2616 /*
2617  * perform a "sync" on one "block"
2618  *
2619  * We need to make sure that no normal I/O request - particularly write
2620  * requests - conflict with active sync requests.
2621  *
2622  * This is achieved by tracking pending requests and a 'barrier' concept
2623  * that can be installed to exclude normal IO requests.
2624  *
2625  * Resync and recovery are handled very differently.
2626  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2627  *
2628  * For resync, we iterate over virtual addresses, read all copies,
2629  * and update if there are differences.  If only one copy is live,
2630  * skip it.
2631  * For recovery, we iterate over physical addresses, read a good
2632  * value for each non-in_sync drive, and over-write.
2633  *
2634  * So, for recovery we may have several outstanding complex requests for a
2635  * given address, one for each out-of-sync device.  We model this by allocating
2636  * a number of r10_bio structures, one for each out-of-sync device.
2637  * As we setup these structures, we collect all bio's together into a list
2638  * which we then process collectively to add pages, and then process again
2639  * to pass to generic_make_request.
2640  *
2641  * The r10_bio structures are linked using a borrowed master_bio pointer.
2642  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2643  * has its remaining count decremented to 0, the whole complex operation
2644  * is complete.
2645  *
2646  */
2647 
2648 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2649 			     int *skipped, int go_faster)
2650 {
2651 	struct r10conf *conf = mddev->private;
2652 	struct r10bio *r10_bio;
2653 	struct bio *biolist = NULL, *bio;
2654 	sector_t max_sector, nr_sectors;
2655 	int i;
2656 	int max_sync;
2657 	sector_t sync_blocks;
2658 	sector_t sectors_skipped = 0;
2659 	int chunks_skipped = 0;
2660 
2661 	if (!conf->r10buf_pool)
2662 		if (init_resync(conf))
2663 			return 0;
2664 
2665  skipped:
2666 	max_sector = mddev->dev_sectors;
2667 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2668 		max_sector = mddev->resync_max_sectors;
2669 	if (sector_nr >= max_sector) {
2670 		/* If we aborted, we need to abort the
2671 		 * sync on the 'current' bitmap chucks (there can
2672 		 * be several when recovering multiple devices).
2673 		 * as we may have started syncing it but not finished.
2674 		 * We can find the current address in
2675 		 * mddev->curr_resync, but for recovery,
2676 		 * we need to convert that to several
2677 		 * virtual addresses.
2678 		 */
2679 		if (mddev->curr_resync < max_sector) { /* aborted */
2680 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2681 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2682 						&sync_blocks, 1);
2683 			else for (i=0; i<conf->raid_disks; i++) {
2684 				sector_t sect =
2685 					raid10_find_virt(conf, mddev->curr_resync, i);
2686 				bitmap_end_sync(mddev->bitmap, sect,
2687 						&sync_blocks, 1);
2688 			}
2689 		} else {
2690 			/* completed sync */
2691 			if ((!mddev->bitmap || conf->fullsync)
2692 			    && conf->have_replacement
2693 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2694 				/* Completed a full sync so the replacements
2695 				 * are now fully recovered.
2696 				 */
2697 				for (i = 0; i < conf->raid_disks; i++)
2698 					if (conf->mirrors[i].replacement)
2699 						conf->mirrors[i].replacement
2700 							->recovery_offset
2701 							= MaxSector;
2702 			}
2703 			conf->fullsync = 0;
2704 		}
2705 		bitmap_close_sync(mddev->bitmap);
2706 		close_sync(conf);
2707 		*skipped = 1;
2708 		return sectors_skipped;
2709 	}
2710 	if (chunks_skipped >= conf->raid_disks) {
2711 		/* if there has been nothing to do on any drive,
2712 		 * then there is nothing to do at all..
2713 		 */
2714 		*skipped = 1;
2715 		return (max_sector - sector_nr) + sectors_skipped;
2716 	}
2717 
2718 	if (max_sector > mddev->resync_max)
2719 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2720 
2721 	/* make sure whole request will fit in a chunk - if chunks
2722 	 * are meaningful
2723 	 */
2724 	if (conf->near_copies < conf->raid_disks &&
2725 	    max_sector > (sector_nr | conf->chunk_mask))
2726 		max_sector = (sector_nr | conf->chunk_mask) + 1;
2727 	/*
2728 	 * If there is non-resync activity waiting for us then
2729 	 * put in a delay to throttle resync.
2730 	 */
2731 	if (!go_faster && conf->nr_waiting)
2732 		msleep_interruptible(1000);
2733 
2734 	/* Again, very different code for resync and recovery.
2735 	 * Both must result in an r10bio with a list of bios that
2736 	 * have bi_end_io, bi_sector, bi_bdev set,
2737 	 * and bi_private set to the r10bio.
2738 	 * For recovery, we may actually create several r10bios
2739 	 * with 2 bios in each, that correspond to the bios in the main one.
2740 	 * In this case, the subordinate r10bios link back through a
2741 	 * borrowed master_bio pointer, and the counter in the master
2742 	 * includes a ref from each subordinate.
2743 	 */
2744 	/* First, we decide what to do and set ->bi_end_io
2745 	 * To end_sync_read if we want to read, and
2746 	 * end_sync_write if we will want to write.
2747 	 */
2748 
2749 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2750 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2751 		/* recovery... the complicated one */
2752 		int j;
2753 		r10_bio = NULL;
2754 
2755 		for (i=0 ; i<conf->raid_disks; i++) {
2756 			int still_degraded;
2757 			struct r10bio *rb2;
2758 			sector_t sect;
2759 			int must_sync;
2760 			int any_working;
2761 			struct mirror_info *mirror = &conf->mirrors[i];
2762 
2763 			if ((mirror->rdev == NULL ||
2764 			     test_bit(In_sync, &mirror->rdev->flags))
2765 			    &&
2766 			    (mirror->replacement == NULL ||
2767 			     test_bit(Faulty,
2768 				      &mirror->replacement->flags)))
2769 				continue;
2770 
2771 			still_degraded = 0;
2772 			/* want to reconstruct this device */
2773 			rb2 = r10_bio;
2774 			sect = raid10_find_virt(conf, sector_nr, i);
2775 			/* Unless we are doing a full sync, or a replacement
2776 			 * we only need to recover the block if it is set in
2777 			 * the bitmap
2778 			 */
2779 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2780 						      &sync_blocks, 1);
2781 			if (sync_blocks < max_sync)
2782 				max_sync = sync_blocks;
2783 			if (!must_sync &&
2784 			    mirror->replacement == NULL &&
2785 			    !conf->fullsync) {
2786 				/* yep, skip the sync_blocks here, but don't assume
2787 				 * that there will never be anything to do here
2788 				 */
2789 				chunks_skipped = -1;
2790 				continue;
2791 			}
2792 
2793 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2794 			raise_barrier(conf, rb2 != NULL);
2795 			atomic_set(&r10_bio->remaining, 0);
2796 
2797 			r10_bio->master_bio = (struct bio*)rb2;
2798 			if (rb2)
2799 				atomic_inc(&rb2->remaining);
2800 			r10_bio->mddev = mddev;
2801 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2802 			r10_bio->sector = sect;
2803 
2804 			raid10_find_phys(conf, r10_bio);
2805 
2806 			/* Need to check if the array will still be
2807 			 * degraded
2808 			 */
2809 			for (j=0; j<conf->raid_disks; j++)
2810 				if (conf->mirrors[j].rdev == NULL ||
2811 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2812 					still_degraded = 1;
2813 					break;
2814 				}
2815 
2816 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2817 						      &sync_blocks, still_degraded);
2818 
2819 			any_working = 0;
2820 			for (j=0; j<conf->copies;j++) {
2821 				int k;
2822 				int d = r10_bio->devs[j].devnum;
2823 				sector_t from_addr, to_addr;
2824 				struct md_rdev *rdev;
2825 				sector_t sector, first_bad;
2826 				int bad_sectors;
2827 				if (!conf->mirrors[d].rdev ||
2828 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2829 					continue;
2830 				/* This is where we read from */
2831 				any_working = 1;
2832 				rdev = conf->mirrors[d].rdev;
2833 				sector = r10_bio->devs[j].addr;
2834 
2835 				if (is_badblock(rdev, sector, max_sync,
2836 						&first_bad, &bad_sectors)) {
2837 					if (first_bad > sector)
2838 						max_sync = first_bad - sector;
2839 					else {
2840 						bad_sectors -= (sector
2841 								- first_bad);
2842 						if (max_sync > bad_sectors)
2843 							max_sync = bad_sectors;
2844 						continue;
2845 					}
2846 				}
2847 				bio = r10_bio->devs[0].bio;
2848 				bio->bi_next = biolist;
2849 				biolist = bio;
2850 				bio->bi_private = r10_bio;
2851 				bio->bi_end_io = end_sync_read;
2852 				bio->bi_rw = READ;
2853 				from_addr = r10_bio->devs[j].addr;
2854 				bio->bi_sector = from_addr + rdev->data_offset;
2855 				bio->bi_bdev = rdev->bdev;
2856 				atomic_inc(&rdev->nr_pending);
2857 				/* and we write to 'i' (if not in_sync) */
2858 
2859 				for (k=0; k<conf->copies; k++)
2860 					if (r10_bio->devs[k].devnum == i)
2861 						break;
2862 				BUG_ON(k == conf->copies);
2863 				to_addr = r10_bio->devs[k].addr;
2864 				r10_bio->devs[0].devnum = d;
2865 				r10_bio->devs[0].addr = from_addr;
2866 				r10_bio->devs[1].devnum = i;
2867 				r10_bio->devs[1].addr = to_addr;
2868 
2869 				rdev = mirror->rdev;
2870 				if (!test_bit(In_sync, &rdev->flags)) {
2871 					bio = r10_bio->devs[1].bio;
2872 					bio->bi_next = biolist;
2873 					biolist = bio;
2874 					bio->bi_private = r10_bio;
2875 					bio->bi_end_io = end_sync_write;
2876 					bio->bi_rw = WRITE;
2877 					bio->bi_sector = to_addr
2878 						+ rdev->data_offset;
2879 					bio->bi_bdev = rdev->bdev;
2880 					atomic_inc(&r10_bio->remaining);
2881 				} else
2882 					r10_bio->devs[1].bio->bi_end_io = NULL;
2883 
2884 				/* and maybe write to replacement */
2885 				bio = r10_bio->devs[1].repl_bio;
2886 				if (bio)
2887 					bio->bi_end_io = NULL;
2888 				rdev = mirror->replacement;
2889 				/* Note: if rdev != NULL, then bio
2890 				 * cannot be NULL as r10buf_pool_alloc will
2891 				 * have allocated it.
2892 				 * So the second test here is pointless.
2893 				 * But it keeps semantic-checkers happy, and
2894 				 * this comment keeps human reviewers
2895 				 * happy.
2896 				 */
2897 				if (rdev == NULL || bio == NULL ||
2898 				    test_bit(Faulty, &rdev->flags))
2899 					break;
2900 				bio->bi_next = biolist;
2901 				biolist = bio;
2902 				bio->bi_private = r10_bio;
2903 				bio->bi_end_io = end_sync_write;
2904 				bio->bi_rw = WRITE;
2905 				bio->bi_sector = to_addr + rdev->data_offset;
2906 				bio->bi_bdev = rdev->bdev;
2907 				atomic_inc(&r10_bio->remaining);
2908 				break;
2909 			}
2910 			if (j == conf->copies) {
2911 				/* Cannot recover, so abort the recovery or
2912 				 * record a bad block */
2913 				put_buf(r10_bio);
2914 				if (rb2)
2915 					atomic_dec(&rb2->remaining);
2916 				r10_bio = rb2;
2917 				if (any_working) {
2918 					/* problem is that there are bad blocks
2919 					 * on other device(s)
2920 					 */
2921 					int k;
2922 					for (k = 0; k < conf->copies; k++)
2923 						if (r10_bio->devs[k].devnum == i)
2924 							break;
2925 					if (!test_bit(In_sync,
2926 						      &mirror->rdev->flags)
2927 					    && !rdev_set_badblocks(
2928 						    mirror->rdev,
2929 						    r10_bio->devs[k].addr,
2930 						    max_sync, 0))
2931 						any_working = 0;
2932 					if (mirror->replacement &&
2933 					    !rdev_set_badblocks(
2934 						    mirror->replacement,
2935 						    r10_bio->devs[k].addr,
2936 						    max_sync, 0))
2937 						any_working = 0;
2938 				}
2939 				if (!any_working)  {
2940 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2941 							      &mddev->recovery))
2942 						printk(KERN_INFO "md/raid10:%s: insufficient "
2943 						       "working devices for recovery.\n",
2944 						       mdname(mddev));
2945 					mirror->recovery_disabled
2946 						= mddev->recovery_disabled;
2947 				}
2948 				break;
2949 			}
2950 		}
2951 		if (biolist == NULL) {
2952 			while (r10_bio) {
2953 				struct r10bio *rb2 = r10_bio;
2954 				r10_bio = (struct r10bio*) rb2->master_bio;
2955 				rb2->master_bio = NULL;
2956 				put_buf(rb2);
2957 			}
2958 			goto giveup;
2959 		}
2960 	} else {
2961 		/* resync. Schedule a read for every block at this virt offset */
2962 		int count = 0;
2963 
2964 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2965 
2966 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2967 				       &sync_blocks, mddev->degraded) &&
2968 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2969 						 &mddev->recovery)) {
2970 			/* We can skip this block */
2971 			*skipped = 1;
2972 			return sync_blocks + sectors_skipped;
2973 		}
2974 		if (sync_blocks < max_sync)
2975 			max_sync = sync_blocks;
2976 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2977 
2978 		r10_bio->mddev = mddev;
2979 		atomic_set(&r10_bio->remaining, 0);
2980 		raise_barrier(conf, 0);
2981 		conf->next_resync = sector_nr;
2982 
2983 		r10_bio->master_bio = NULL;
2984 		r10_bio->sector = sector_nr;
2985 		set_bit(R10BIO_IsSync, &r10_bio->state);
2986 		raid10_find_phys(conf, r10_bio);
2987 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2988 
2989 		for (i=0; i<conf->copies; i++) {
2990 			int d = r10_bio->devs[i].devnum;
2991 			sector_t first_bad, sector;
2992 			int bad_sectors;
2993 
2994 			if (r10_bio->devs[i].repl_bio)
2995 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2996 
2997 			bio = r10_bio->devs[i].bio;
2998 			bio->bi_end_io = NULL;
2999 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3000 			if (conf->mirrors[d].rdev == NULL ||
3001 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3002 				continue;
3003 			sector = r10_bio->devs[i].addr;
3004 			if (is_badblock(conf->mirrors[d].rdev,
3005 					sector, max_sync,
3006 					&first_bad, &bad_sectors)) {
3007 				if (first_bad > sector)
3008 					max_sync = first_bad - sector;
3009 				else {
3010 					bad_sectors -= (sector - first_bad);
3011 					if (max_sync > bad_sectors)
3012 						max_sync = max_sync;
3013 					continue;
3014 				}
3015 			}
3016 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3017 			atomic_inc(&r10_bio->remaining);
3018 			bio->bi_next = biolist;
3019 			biolist = bio;
3020 			bio->bi_private = r10_bio;
3021 			bio->bi_end_io = end_sync_read;
3022 			bio->bi_rw = READ;
3023 			bio->bi_sector = sector +
3024 				conf->mirrors[d].rdev->data_offset;
3025 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3026 			count++;
3027 
3028 			if (conf->mirrors[d].replacement == NULL ||
3029 			    test_bit(Faulty,
3030 				     &conf->mirrors[d].replacement->flags))
3031 				continue;
3032 
3033 			/* Need to set up for writing to the replacement */
3034 			bio = r10_bio->devs[i].repl_bio;
3035 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3036 
3037 			sector = r10_bio->devs[i].addr;
3038 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3039 			bio->bi_next = biolist;
3040 			biolist = bio;
3041 			bio->bi_private = r10_bio;
3042 			bio->bi_end_io = end_sync_write;
3043 			bio->bi_rw = WRITE;
3044 			bio->bi_sector = sector +
3045 				conf->mirrors[d].replacement->data_offset;
3046 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3047 			count++;
3048 		}
3049 
3050 		if (count < 2) {
3051 			for (i=0; i<conf->copies; i++) {
3052 				int d = r10_bio->devs[i].devnum;
3053 				if (r10_bio->devs[i].bio->bi_end_io)
3054 					rdev_dec_pending(conf->mirrors[d].rdev,
3055 							 mddev);
3056 				if (r10_bio->devs[i].repl_bio &&
3057 				    r10_bio->devs[i].repl_bio->bi_end_io)
3058 					rdev_dec_pending(
3059 						conf->mirrors[d].replacement,
3060 						mddev);
3061 			}
3062 			put_buf(r10_bio);
3063 			biolist = NULL;
3064 			goto giveup;
3065 		}
3066 	}
3067 
3068 	for (bio = biolist; bio ; bio=bio->bi_next) {
3069 
3070 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3071 		if (bio->bi_end_io)
3072 			bio->bi_flags |= 1 << BIO_UPTODATE;
3073 		bio->bi_vcnt = 0;
3074 		bio->bi_idx = 0;
3075 		bio->bi_phys_segments = 0;
3076 		bio->bi_size = 0;
3077 	}
3078 
3079 	nr_sectors = 0;
3080 	if (sector_nr + max_sync < max_sector)
3081 		max_sector = sector_nr + max_sync;
3082 	do {
3083 		struct page *page;
3084 		int len = PAGE_SIZE;
3085 		if (sector_nr + (len>>9) > max_sector)
3086 			len = (max_sector - sector_nr) << 9;
3087 		if (len == 0)
3088 			break;
3089 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3090 			struct bio *bio2;
3091 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3092 			if (bio_add_page(bio, page, len, 0))
3093 				continue;
3094 
3095 			/* stop here */
3096 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3097 			for (bio2 = biolist;
3098 			     bio2 && bio2 != bio;
3099 			     bio2 = bio2->bi_next) {
3100 				/* remove last page from this bio */
3101 				bio2->bi_vcnt--;
3102 				bio2->bi_size -= len;
3103 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3104 			}
3105 			goto bio_full;
3106 		}
3107 		nr_sectors += len>>9;
3108 		sector_nr += len>>9;
3109 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3110  bio_full:
3111 	r10_bio->sectors = nr_sectors;
3112 
3113 	while (biolist) {
3114 		bio = biolist;
3115 		biolist = biolist->bi_next;
3116 
3117 		bio->bi_next = NULL;
3118 		r10_bio = bio->bi_private;
3119 		r10_bio->sectors = nr_sectors;
3120 
3121 		if (bio->bi_end_io == end_sync_read) {
3122 			md_sync_acct(bio->bi_bdev, nr_sectors);
3123 			generic_make_request(bio);
3124 		}
3125 	}
3126 
3127 	if (sectors_skipped)
3128 		/* pretend they weren't skipped, it makes
3129 		 * no important difference in this case
3130 		 */
3131 		md_done_sync(mddev, sectors_skipped, 1);
3132 
3133 	return sectors_skipped + nr_sectors;
3134  giveup:
3135 	/* There is nowhere to write, so all non-sync
3136 	 * drives must be failed or in resync, all drives
3137 	 * have a bad block, so try the next chunk...
3138 	 */
3139 	if (sector_nr + max_sync < max_sector)
3140 		max_sector = sector_nr + max_sync;
3141 
3142 	sectors_skipped += (max_sector - sector_nr);
3143 	chunks_skipped ++;
3144 	sector_nr = max_sector;
3145 	goto skipped;
3146 }
3147 
3148 static sector_t
3149 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3150 {
3151 	sector_t size;
3152 	struct r10conf *conf = mddev->private;
3153 
3154 	if (!raid_disks)
3155 		raid_disks = conf->raid_disks;
3156 	if (!sectors)
3157 		sectors = conf->dev_sectors;
3158 
3159 	size = sectors >> conf->chunk_shift;
3160 	sector_div(size, conf->far_copies);
3161 	size = size * raid_disks;
3162 	sector_div(size, conf->near_copies);
3163 
3164 	return size << conf->chunk_shift;
3165 }
3166 
3167 static void calc_sectors(struct r10conf *conf, sector_t size)
3168 {
3169 	/* Calculate the number of sectors-per-device that will
3170 	 * actually be used, and set conf->dev_sectors and
3171 	 * conf->stride
3172 	 */
3173 
3174 	size = size >> conf->chunk_shift;
3175 	sector_div(size, conf->far_copies);
3176 	size = size * conf->raid_disks;
3177 	sector_div(size, conf->near_copies);
3178 	/* 'size' is now the number of chunks in the array */
3179 	/* calculate "used chunks per device" */
3180 	size = size * conf->copies;
3181 
3182 	/* We need to round up when dividing by raid_disks to
3183 	 * get the stride size.
3184 	 */
3185 	size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks);
3186 
3187 	conf->dev_sectors = size << conf->chunk_shift;
3188 
3189 	if (conf->far_offset)
3190 		conf->stride = 1 << conf->chunk_shift;
3191 	else {
3192 		sector_div(size, conf->near_copies);
3193 		conf->stride = size << conf->chunk_shift;
3194 	}
3195 }
3196 
3197 static struct r10conf *setup_conf(struct mddev *mddev)
3198 {
3199 	struct r10conf *conf = NULL;
3200 	int nc, fc, fo;
3201 	int err = -EINVAL;
3202 
3203 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3204 	    !is_power_of_2(mddev->new_chunk_sectors)) {
3205 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3206 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3207 		       mdname(mddev), PAGE_SIZE);
3208 		goto out;
3209 	}
3210 
3211 	nc = mddev->new_layout & 255;
3212 	fc = (mddev->new_layout >> 8) & 255;
3213 	fo = mddev->new_layout & (1<<16);
3214 
3215 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3216 	    (mddev->new_layout >> 17)) {
3217 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3218 		       mdname(mddev), mddev->new_layout);
3219 		goto out;
3220 	}
3221 
3222 	err = -ENOMEM;
3223 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3224 	if (!conf)
3225 		goto out;
3226 
3227 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3228 				GFP_KERNEL);
3229 	if (!conf->mirrors)
3230 		goto out;
3231 
3232 	conf->tmppage = alloc_page(GFP_KERNEL);
3233 	if (!conf->tmppage)
3234 		goto out;
3235 
3236 
3237 	conf->raid_disks = mddev->raid_disks;
3238 	conf->near_copies = nc;
3239 	conf->far_copies = fc;
3240 	conf->copies = nc*fc;
3241 	conf->far_offset = fo;
3242 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
3243 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3244 
3245 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3246 					   r10bio_pool_free, conf);
3247 	if (!conf->r10bio_pool)
3248 		goto out;
3249 
3250 	calc_sectors(conf, mddev->dev_sectors);
3251 
3252 	spin_lock_init(&conf->device_lock);
3253 	INIT_LIST_HEAD(&conf->retry_list);
3254 
3255 	spin_lock_init(&conf->resync_lock);
3256 	init_waitqueue_head(&conf->wait_barrier);
3257 
3258 	conf->thread = md_register_thread(raid10d, mddev, NULL);
3259 	if (!conf->thread)
3260 		goto out;
3261 
3262 	conf->mddev = mddev;
3263 	return conf;
3264 
3265  out:
3266 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3267 	       mdname(mddev));
3268 	if (conf) {
3269 		if (conf->r10bio_pool)
3270 			mempool_destroy(conf->r10bio_pool);
3271 		kfree(conf->mirrors);
3272 		safe_put_page(conf->tmppage);
3273 		kfree(conf);
3274 	}
3275 	return ERR_PTR(err);
3276 }
3277 
3278 static int run(struct mddev *mddev)
3279 {
3280 	struct r10conf *conf;
3281 	int i, disk_idx, chunk_size;
3282 	struct mirror_info *disk;
3283 	struct md_rdev *rdev;
3284 	sector_t size;
3285 
3286 	/*
3287 	 * copy the already verified devices into our private RAID10
3288 	 * bookkeeping area. [whatever we allocate in run(),
3289 	 * should be freed in stop()]
3290 	 */
3291 
3292 	if (mddev->private == NULL) {
3293 		conf = setup_conf(mddev);
3294 		if (IS_ERR(conf))
3295 			return PTR_ERR(conf);
3296 		mddev->private = conf;
3297 	}
3298 	conf = mddev->private;
3299 	if (!conf)
3300 		goto out;
3301 
3302 	mddev->thread = conf->thread;
3303 	conf->thread = NULL;
3304 
3305 	chunk_size = mddev->chunk_sectors << 9;
3306 	blk_queue_io_min(mddev->queue, chunk_size);
3307 	if (conf->raid_disks % conf->near_copies)
3308 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3309 	else
3310 		blk_queue_io_opt(mddev->queue, chunk_size *
3311 				 (conf->raid_disks / conf->near_copies));
3312 
3313 	rdev_for_each(rdev, mddev) {
3314 
3315 		disk_idx = rdev->raid_disk;
3316 		if (disk_idx >= conf->raid_disks
3317 		    || disk_idx < 0)
3318 			continue;
3319 		disk = conf->mirrors + disk_idx;
3320 
3321 		if (test_bit(Replacement, &rdev->flags)) {
3322 			if (disk->replacement)
3323 				goto out_free_conf;
3324 			disk->replacement = rdev;
3325 		} else {
3326 			if (disk->rdev)
3327 				goto out_free_conf;
3328 			disk->rdev = rdev;
3329 		}
3330 
3331 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3332 				  rdev->data_offset << 9);
3333 
3334 		disk->head_position = 0;
3335 	}
3336 	/* need to check that every block has at least one working mirror */
3337 	if (!enough(conf, -1)) {
3338 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3339 		       mdname(mddev));
3340 		goto out_free_conf;
3341 	}
3342 
3343 	mddev->degraded = 0;
3344 	for (i = 0; i < conf->raid_disks; i++) {
3345 
3346 		disk = conf->mirrors + i;
3347 
3348 		if (!disk->rdev && disk->replacement) {
3349 			/* The replacement is all we have - use it */
3350 			disk->rdev = disk->replacement;
3351 			disk->replacement = NULL;
3352 			clear_bit(Replacement, &disk->rdev->flags);
3353 		}
3354 
3355 		if (!disk->rdev ||
3356 		    !test_bit(In_sync, &disk->rdev->flags)) {
3357 			disk->head_position = 0;
3358 			mddev->degraded++;
3359 			if (disk->rdev)
3360 				conf->fullsync = 1;
3361 		}
3362 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3363 	}
3364 
3365 	if (mddev->recovery_cp != MaxSector)
3366 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3367 		       " -- starting background reconstruction\n",
3368 		       mdname(mddev));
3369 	printk(KERN_INFO
3370 		"md/raid10:%s: active with %d out of %d devices\n",
3371 		mdname(mddev), conf->raid_disks - mddev->degraded,
3372 		conf->raid_disks);
3373 	/*
3374 	 * Ok, everything is just fine now
3375 	 */
3376 	mddev->dev_sectors = conf->dev_sectors;
3377 	size = raid10_size(mddev, 0, 0);
3378 	md_set_array_sectors(mddev, size);
3379 	mddev->resync_max_sectors = size;
3380 
3381 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3382 	mddev->queue->backing_dev_info.congested_data = mddev;
3383 
3384 	/* Calculate max read-ahead size.
3385 	 * We need to readahead at least twice a whole stripe....
3386 	 * maybe...
3387 	 */
3388 	{
3389 		int stripe = conf->raid_disks *
3390 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3391 		stripe /= conf->near_copies;
3392 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3393 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3394 	}
3395 
3396 	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3397 
3398 	if (md_integrity_register(mddev))
3399 		goto out_free_conf;
3400 
3401 	return 0;
3402 
3403 out_free_conf:
3404 	md_unregister_thread(&mddev->thread);
3405 	if (conf->r10bio_pool)
3406 		mempool_destroy(conf->r10bio_pool);
3407 	safe_put_page(conf->tmppage);
3408 	kfree(conf->mirrors);
3409 	kfree(conf);
3410 	mddev->private = NULL;
3411 out:
3412 	return -EIO;
3413 }
3414 
3415 static int stop(struct mddev *mddev)
3416 {
3417 	struct r10conf *conf = mddev->private;
3418 
3419 	raise_barrier(conf, 0);
3420 	lower_barrier(conf);
3421 
3422 	md_unregister_thread(&mddev->thread);
3423 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3424 	if (conf->r10bio_pool)
3425 		mempool_destroy(conf->r10bio_pool);
3426 	kfree(conf->mirrors);
3427 	kfree(conf);
3428 	mddev->private = NULL;
3429 	return 0;
3430 }
3431 
3432 static void raid10_quiesce(struct mddev *mddev, int state)
3433 {
3434 	struct r10conf *conf = mddev->private;
3435 
3436 	switch(state) {
3437 	case 1:
3438 		raise_barrier(conf, 0);
3439 		break;
3440 	case 0:
3441 		lower_barrier(conf);
3442 		break;
3443 	}
3444 }
3445 
3446 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3447 {
3448 	/* Resize of 'far' arrays is not supported.
3449 	 * For 'near' and 'offset' arrays we can set the
3450 	 * number of sectors used to be an appropriate multiple
3451 	 * of the chunk size.
3452 	 * For 'offset', this is far_copies*chunksize.
3453 	 * For 'near' the multiplier is the LCM of
3454 	 * near_copies and raid_disks.
3455 	 * So if far_copies > 1 && !far_offset, fail.
3456 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3457 	 * multiply by chunk_size.  Then round to this number.
3458 	 * This is mostly done by raid10_size()
3459 	 */
3460 	struct r10conf *conf = mddev->private;
3461 	sector_t oldsize, size;
3462 
3463 	if (conf->far_copies > 1 && !conf->far_offset)
3464 		return -EINVAL;
3465 
3466 	oldsize = raid10_size(mddev, 0, 0);
3467 	size = raid10_size(mddev, sectors, 0);
3468 	md_set_array_sectors(mddev, size);
3469 	if (mddev->array_sectors > size)
3470 		return -EINVAL;
3471 	set_capacity(mddev->gendisk, mddev->array_sectors);
3472 	revalidate_disk(mddev->gendisk);
3473 	if (sectors > mddev->dev_sectors &&
3474 	    mddev->recovery_cp > oldsize) {
3475 		mddev->recovery_cp = oldsize;
3476 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3477 	}
3478 	calc_sectors(conf, sectors);
3479 	mddev->dev_sectors = conf->dev_sectors;
3480 	mddev->resync_max_sectors = size;
3481 	return 0;
3482 }
3483 
3484 static void *raid10_takeover_raid0(struct mddev *mddev)
3485 {
3486 	struct md_rdev *rdev;
3487 	struct r10conf *conf;
3488 
3489 	if (mddev->degraded > 0) {
3490 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3491 		       mdname(mddev));
3492 		return ERR_PTR(-EINVAL);
3493 	}
3494 
3495 	/* Set new parameters */
3496 	mddev->new_level = 10;
3497 	/* new layout: far_copies = 1, near_copies = 2 */
3498 	mddev->new_layout = (1<<8) + 2;
3499 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3500 	mddev->delta_disks = mddev->raid_disks;
3501 	mddev->raid_disks *= 2;
3502 	/* make sure it will be not marked as dirty */
3503 	mddev->recovery_cp = MaxSector;
3504 
3505 	conf = setup_conf(mddev);
3506 	if (!IS_ERR(conf)) {
3507 		rdev_for_each(rdev, mddev)
3508 			if (rdev->raid_disk >= 0)
3509 				rdev->new_raid_disk = rdev->raid_disk * 2;
3510 		conf->barrier = 1;
3511 	}
3512 
3513 	return conf;
3514 }
3515 
3516 static void *raid10_takeover(struct mddev *mddev)
3517 {
3518 	struct r0conf *raid0_conf;
3519 
3520 	/* raid10 can take over:
3521 	 *  raid0 - providing it has only two drives
3522 	 */
3523 	if (mddev->level == 0) {
3524 		/* for raid0 takeover only one zone is supported */
3525 		raid0_conf = mddev->private;
3526 		if (raid0_conf->nr_strip_zones > 1) {
3527 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3528 			       " with more than one zone.\n",
3529 			       mdname(mddev));
3530 			return ERR_PTR(-EINVAL);
3531 		}
3532 		return raid10_takeover_raid0(mddev);
3533 	}
3534 	return ERR_PTR(-EINVAL);
3535 }
3536 
3537 static struct md_personality raid10_personality =
3538 {
3539 	.name		= "raid10",
3540 	.level		= 10,
3541 	.owner		= THIS_MODULE,
3542 	.make_request	= make_request,
3543 	.run		= run,
3544 	.stop		= stop,
3545 	.status		= status,
3546 	.error_handler	= error,
3547 	.hot_add_disk	= raid10_add_disk,
3548 	.hot_remove_disk= raid10_remove_disk,
3549 	.spare_active	= raid10_spare_active,
3550 	.sync_request	= sync_request,
3551 	.quiesce	= raid10_quiesce,
3552 	.size		= raid10_size,
3553 	.resize		= raid10_resize,
3554 	.takeover	= raid10_takeover,
3555 };
3556 
3557 static int __init raid_init(void)
3558 {
3559 	return register_md_personality(&raid10_personality);
3560 }
3561 
3562 static void raid_exit(void)
3563 {
3564 	unregister_md_personality(&raid10_personality);
3565 }
3566 
3567 module_init(raid_init);
3568 module_exit(raid_exit);
3569 MODULE_LICENSE("GPL");
3570 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3571 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3572 MODULE_ALIAS("md-raid10");
3573 MODULE_ALIAS("md-level-10");
3574 
3575 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3576