xref: /openbmc/linux/drivers/md/raid10.c (revision 62e7ca52)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct r10bio *r10_bio = bio->bi_private;
446 	int dev;
447 	int dec_rdev = 1;
448 	struct r10conf *conf = r10_bio->mddev->private;
449 	int slot, repl;
450 	struct md_rdev *rdev = NULL;
451 
452 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 
454 	if (repl)
455 		rdev = conf->mirrors[dev].replacement;
456 	if (!rdev) {
457 		smp_rmb();
458 		repl = 0;
459 		rdev = conf->mirrors[dev].rdev;
460 	}
461 	/*
462 	 * this branch is our 'one mirror IO has finished' event handler:
463 	 */
464 	if (!uptodate) {
465 		if (repl)
466 			/* Never record new bad blocks to replacement,
467 			 * just fail it.
468 			 */
469 			md_error(rdev->mddev, rdev);
470 		else {
471 			set_bit(WriteErrorSeen,	&rdev->flags);
472 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 				set_bit(MD_RECOVERY_NEEDED,
474 					&rdev->mddev->recovery);
475 			set_bit(R10BIO_WriteError, &r10_bio->state);
476 			dec_rdev = 0;
477 		}
478 	} else {
479 		/*
480 		 * Set R10BIO_Uptodate in our master bio, so that
481 		 * we will return a good error code for to the higher
482 		 * levels even if IO on some other mirrored buffer fails.
483 		 *
484 		 * The 'master' represents the composite IO operation to
485 		 * user-side. So if something waits for IO, then it will
486 		 * wait for the 'master' bio.
487 		 */
488 		sector_t first_bad;
489 		int bad_sectors;
490 
491 		/*
492 		 * Do not set R10BIO_Uptodate if the current device is
493 		 * rebuilding or Faulty. This is because we cannot use
494 		 * such device for properly reading the data back (we could
495 		 * potentially use it, if the current write would have felt
496 		 * before rdev->recovery_offset, but for simplicity we don't
497 		 * check this here.
498 		 */
499 		if (test_bit(In_sync, &rdev->flags) &&
500 		    !test_bit(Faulty, &rdev->flags))
501 			set_bit(R10BIO_Uptodate, &r10_bio->state);
502 
503 		/* Maybe we can clear some bad blocks. */
504 		if (is_badblock(rdev,
505 				r10_bio->devs[slot].addr,
506 				r10_bio->sectors,
507 				&first_bad, &bad_sectors)) {
508 			bio_put(bio);
509 			if (repl)
510 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 			else
512 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 			dec_rdev = 0;
514 			set_bit(R10BIO_MadeGood, &r10_bio->state);
515 		}
516 	}
517 
518 	/*
519 	 *
520 	 * Let's see if all mirrored write operations have finished
521 	 * already.
522 	 */
523 	one_write_done(r10_bio);
524 	if (dec_rdev)
525 		rdev_dec_pending(rdev, conf->mddev);
526 }
527 
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552 
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 	int n,f;
556 	sector_t sector;
557 	sector_t chunk;
558 	sector_t stripe;
559 	int dev;
560 	int slot = 0;
561 	int last_far_set_start, last_far_set_size;
562 
563 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 	last_far_set_start *= geo->far_set_size;
565 
566 	last_far_set_size = geo->far_set_size;
567 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 
569 	/* now calculate first sector/dev */
570 	chunk = r10bio->sector >> geo->chunk_shift;
571 	sector = r10bio->sector & geo->chunk_mask;
572 
573 	chunk *= geo->near_copies;
574 	stripe = chunk;
575 	dev = sector_div(stripe, geo->raid_disks);
576 	if (geo->far_offset)
577 		stripe *= geo->far_copies;
578 
579 	sector += stripe << geo->chunk_shift;
580 
581 	/* and calculate all the others */
582 	for (n = 0; n < geo->near_copies; n++) {
583 		int d = dev;
584 		int set;
585 		sector_t s = sector;
586 		r10bio->devs[slot].devnum = d;
587 		r10bio->devs[slot].addr = s;
588 		slot++;
589 
590 		for (f = 1; f < geo->far_copies; f++) {
591 			set = d / geo->far_set_size;
592 			d += geo->near_copies;
593 
594 			if ((geo->raid_disks % geo->far_set_size) &&
595 			    (d > last_far_set_start)) {
596 				d -= last_far_set_start;
597 				d %= last_far_set_size;
598 				d += last_far_set_start;
599 			} else {
600 				d %= geo->far_set_size;
601 				d += geo->far_set_size * set;
602 			}
603 			s += geo->stride;
604 			r10bio->devs[slot].devnum = d;
605 			r10bio->devs[slot].addr = s;
606 			slot++;
607 		}
608 		dev++;
609 		if (dev >= geo->raid_disks) {
610 			dev = 0;
611 			sector += (geo->chunk_mask + 1);
612 		}
613 	}
614 }
615 
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 	struct geom *geo = &conf->geo;
619 
620 	if (conf->reshape_progress != MaxSector &&
621 	    ((r10bio->sector >= conf->reshape_progress) !=
622 	     conf->mddev->reshape_backwards)) {
623 		set_bit(R10BIO_Previous, &r10bio->state);
624 		geo = &conf->prev;
625 	} else
626 		clear_bit(R10BIO_Previous, &r10bio->state);
627 
628 	__raid10_find_phys(geo, r10bio);
629 }
630 
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 	sector_t offset, chunk, vchunk;
634 	/* Never use conf->prev as this is only called during resync
635 	 * or recovery, so reshape isn't happening
636 	 */
637 	struct geom *geo = &conf->geo;
638 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 	int far_set_size = geo->far_set_size;
640 	int last_far_set_start;
641 
642 	if (geo->raid_disks % geo->far_set_size) {
643 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 		last_far_set_start *= geo->far_set_size;
645 
646 		if (dev >= last_far_set_start) {
647 			far_set_size = geo->far_set_size;
648 			far_set_size += (geo->raid_disks % geo->far_set_size);
649 			far_set_start = last_far_set_start;
650 		}
651 	}
652 
653 	offset = sector & geo->chunk_mask;
654 	if (geo->far_offset) {
655 		int fc;
656 		chunk = sector >> geo->chunk_shift;
657 		fc = sector_div(chunk, geo->far_copies);
658 		dev -= fc * geo->near_copies;
659 		if (dev < far_set_start)
660 			dev += far_set_size;
661 	} else {
662 		while (sector >= geo->stride) {
663 			sector -= geo->stride;
664 			if (dev < (geo->near_copies + far_set_start))
665 				dev += far_set_size - geo->near_copies;
666 			else
667 				dev -= geo->near_copies;
668 		}
669 		chunk = sector >> geo->chunk_shift;
670 	}
671 	vchunk = chunk * geo->raid_disks + dev;
672 	sector_div(vchunk, geo->near_copies);
673 	return (vchunk << geo->chunk_shift) + offset;
674 }
675 
676 /**
677  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *	@q: request queue
679  *	@bvm: properties of new bio
680  *	@biovec: the request that could be merged to it.
681  *
682  *	Return amount of bytes we can accept at this offset
683  *	This requires checking for end-of-chunk if near_copies != raid_disks,
684  *	and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 				 struct bvec_merge_data *bvm,
688 				 struct bio_vec *biovec)
689 {
690 	struct mddev *mddev = q->queuedata;
691 	struct r10conf *conf = mddev->private;
692 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 	int max;
694 	unsigned int chunk_sectors;
695 	unsigned int bio_sectors = bvm->bi_size >> 9;
696 	struct geom *geo = &conf->geo;
697 
698 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 	if (conf->reshape_progress != MaxSector &&
700 	    ((sector >= conf->reshape_progress) !=
701 	     conf->mddev->reshape_backwards))
702 		geo = &conf->prev;
703 
704 	if (geo->near_copies < geo->raid_disks) {
705 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 					+ bio_sectors)) << 9;
707 		if (max < 0)
708 			/* bio_add cannot handle a negative return */
709 			max = 0;
710 		if (max <= biovec->bv_len && bio_sectors == 0)
711 			return biovec->bv_len;
712 	} else
713 		max = biovec->bv_len;
714 
715 	if (mddev->merge_check_needed) {
716 		struct {
717 			struct r10bio r10_bio;
718 			struct r10dev devs[conf->copies];
719 		} on_stack;
720 		struct r10bio *r10_bio = &on_stack.r10_bio;
721 		int s;
722 		if (conf->reshape_progress != MaxSector) {
723 			/* Cannot give any guidance during reshape */
724 			if (max <= biovec->bv_len && bio_sectors == 0)
725 				return biovec->bv_len;
726 			return 0;
727 		}
728 		r10_bio->sector = sector;
729 		raid10_find_phys(conf, r10_bio);
730 		rcu_read_lock();
731 		for (s = 0; s < conf->copies; s++) {
732 			int disk = r10_bio->devs[s].devnum;
733 			struct md_rdev *rdev = rcu_dereference(
734 				conf->mirrors[disk].rdev);
735 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 				struct request_queue *q =
737 					bdev_get_queue(rdev->bdev);
738 				if (q->merge_bvec_fn) {
739 					bvm->bi_sector = r10_bio->devs[s].addr
740 						+ rdev->data_offset;
741 					bvm->bi_bdev = rdev->bdev;
742 					max = min(max, q->merge_bvec_fn(
743 							  q, bvm, biovec));
744 				}
745 			}
746 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 				struct request_queue *q =
749 					bdev_get_queue(rdev->bdev);
750 				if (q->merge_bvec_fn) {
751 					bvm->bi_sector = r10_bio->devs[s].addr
752 						+ rdev->data_offset;
753 					bvm->bi_bdev = rdev->bdev;
754 					max = min(max, q->merge_bvec_fn(
755 							  q, bvm, biovec));
756 				}
757 			}
758 		}
759 		rcu_read_unlock();
760 	}
761 	return max;
762 }
763 
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778 
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 				    struct r10bio *r10_bio,
785 				    int *max_sectors)
786 {
787 	const sector_t this_sector = r10_bio->sector;
788 	int disk, slot;
789 	int sectors = r10_bio->sectors;
790 	int best_good_sectors;
791 	sector_t new_distance, best_dist;
792 	struct md_rdev *best_rdev, *rdev = NULL;
793 	int do_balance;
794 	int best_slot;
795 	struct geom *geo = &conf->geo;
796 
797 	raid10_find_phys(conf, r10_bio);
798 	rcu_read_lock();
799 retry:
800 	sectors = r10_bio->sectors;
801 	best_slot = -1;
802 	best_rdev = NULL;
803 	best_dist = MaxSector;
804 	best_good_sectors = 0;
805 	do_balance = 1;
806 	/*
807 	 * Check if we can balance. We can balance on the whole
808 	 * device if no resync is going on (recovery is ok), or below
809 	 * the resync window. We take the first readable disk when
810 	 * above the resync window.
811 	 */
812 	if (conf->mddev->recovery_cp < MaxSector
813 	    && (this_sector + sectors >= conf->next_resync))
814 		do_balance = 0;
815 
816 	for (slot = 0; slot < conf->copies ; slot++) {
817 		sector_t first_bad;
818 		int bad_sectors;
819 		sector_t dev_sector;
820 
821 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 			continue;
823 		disk = r10_bio->devs[slot].devnum;
824 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 		    test_bit(Unmerged, &rdev->flags) ||
827 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 		if (rdev == NULL ||
830 		    test_bit(Faulty, &rdev->flags) ||
831 		    test_bit(Unmerged, &rdev->flags))
832 			continue;
833 		if (!test_bit(In_sync, &rdev->flags) &&
834 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 			continue;
836 
837 		dev_sector = r10_bio->devs[slot].addr;
838 		if (is_badblock(rdev, dev_sector, sectors,
839 				&first_bad, &bad_sectors)) {
840 			if (best_dist < MaxSector)
841 				/* Already have a better slot */
842 				continue;
843 			if (first_bad <= dev_sector) {
844 				/* Cannot read here.  If this is the
845 				 * 'primary' device, then we must not read
846 				 * beyond 'bad_sectors' from another device.
847 				 */
848 				bad_sectors -= (dev_sector - first_bad);
849 				if (!do_balance && sectors > bad_sectors)
850 					sectors = bad_sectors;
851 				if (best_good_sectors > sectors)
852 					best_good_sectors = sectors;
853 			} else {
854 				sector_t good_sectors =
855 					first_bad - dev_sector;
856 				if (good_sectors > best_good_sectors) {
857 					best_good_sectors = good_sectors;
858 					best_slot = slot;
859 					best_rdev = rdev;
860 				}
861 				if (!do_balance)
862 					/* Must read from here */
863 					break;
864 			}
865 			continue;
866 		} else
867 			best_good_sectors = sectors;
868 
869 		if (!do_balance)
870 			break;
871 
872 		/* This optimisation is debatable, and completely destroys
873 		 * sequential read speed for 'far copies' arrays.  So only
874 		 * keep it for 'near' arrays, and review those later.
875 		 */
876 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 			break;
878 
879 		/* for far > 1 always use the lowest address */
880 		if (geo->far_copies > 1)
881 			new_distance = r10_bio->devs[slot].addr;
882 		else
883 			new_distance = abs(r10_bio->devs[slot].addr -
884 					   conf->mirrors[disk].head_position);
885 		if (new_distance < best_dist) {
886 			best_dist = new_distance;
887 			best_slot = slot;
888 			best_rdev = rdev;
889 		}
890 	}
891 	if (slot >= conf->copies) {
892 		slot = best_slot;
893 		rdev = best_rdev;
894 	}
895 
896 	if (slot >= 0) {
897 		atomic_inc(&rdev->nr_pending);
898 		if (test_bit(Faulty, &rdev->flags)) {
899 			/* Cannot risk returning a device that failed
900 			 * before we inc'ed nr_pending
901 			 */
902 			rdev_dec_pending(rdev, conf->mddev);
903 			goto retry;
904 		}
905 		r10_bio->read_slot = slot;
906 	} else
907 		rdev = NULL;
908 	rcu_read_unlock();
909 	*max_sectors = best_good_sectors;
910 
911 	return rdev;
912 }
913 
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 	struct r10conf *conf = mddev->private;
917 	int i, ret = 0;
918 
919 	if ((bits & (1 << BDI_async_congested)) &&
920 	    conf->pending_count >= max_queued_requests)
921 		return 1;
922 
923 	rcu_read_lock();
924 	for (i = 0;
925 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 		     && ret == 0;
927 	     i++) {
928 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 			struct request_queue *q = bdev_get_queue(rdev->bdev);
931 
932 			ret |= bdi_congested(&q->backing_dev_info, bits);
933 		}
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939 
940 static int raid10_congested(void *data, int bits)
941 {
942 	struct mddev *mddev = data;
943 
944 	return mddev_congested(mddev, bits) ||
945 		md_raid10_congested(mddev, bits);
946 }
947 
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 	/* Any writes that have been queued but are awaiting
951 	 * bitmap updates get flushed here.
952 	 */
953 	spin_lock_irq(&conf->device_lock);
954 
955 	if (conf->pending_bio_list.head) {
956 		struct bio *bio;
957 		bio = bio_list_get(&conf->pending_bio_list);
958 		conf->pending_count = 0;
959 		spin_unlock_irq(&conf->device_lock);
960 		/* flush any pending bitmap writes to disk
961 		 * before proceeding w/ I/O */
962 		bitmap_unplug(conf->mddev->bitmap);
963 		wake_up(&conf->wait_barrier);
964 
965 		while (bio) { /* submit pending writes */
966 			struct bio *next = bio->bi_next;
967 			bio->bi_next = NULL;
968 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 				/* Just ignore it */
971 				bio_endio(bio, 0);
972 			else
973 				generic_make_request(bio);
974 			bio = next;
975 		}
976 	} else
977 		spin_unlock_irq(&conf->device_lock);
978 }
979 
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001 
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 	BUG_ON(force && !conf->barrier);
1005 	spin_lock_irq(&conf->resync_lock);
1006 
1007 	/* Wait until no block IO is waiting (unless 'force') */
1008 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 			    conf->resync_lock);
1010 
1011 	/* block any new IO from starting */
1012 	conf->barrier++;
1013 
1014 	/* Now wait for all pending IO to complete */
1015 	wait_event_lock_irq(conf->wait_barrier,
1016 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 			    conf->resync_lock);
1018 
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 	unsigned long flags;
1025 	spin_lock_irqsave(&conf->resync_lock, flags);
1026 	conf->barrier--;
1027 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 	spin_lock_irq(&conf->resync_lock);
1034 	if (conf->barrier) {
1035 		conf->nr_waiting++;
1036 		/* Wait for the barrier to drop.
1037 		 * However if there are already pending
1038 		 * requests (preventing the barrier from
1039 		 * rising completely), and the
1040 		 * pre-process bio queue isn't empty,
1041 		 * then don't wait, as we need to empty
1042 		 * that queue to get the nr_pending
1043 		 * count down.
1044 		 */
1045 		wait_event_lock_irq(conf->wait_barrier,
1046 				    !conf->barrier ||
1047 				    (conf->nr_pending &&
1048 				     current->bio_list &&
1049 				     !bio_list_empty(current->bio_list)),
1050 				    conf->resync_lock);
1051 		conf->nr_waiting--;
1052 	}
1053 	conf->nr_pending++;
1054 	spin_unlock_irq(&conf->resync_lock);
1055 }
1056 
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	unsigned long flags;
1060 	spin_lock_irqsave(&conf->resync_lock, flags);
1061 	conf->nr_pending--;
1062 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->barrier++;
1082 	conf->nr_waiting++;
1083 	wait_event_lock_irq_cmd(conf->wait_barrier,
1084 				conf->nr_pending == conf->nr_queued+extra,
1085 				conf->resync_lock,
1086 				flush_pending_writes(conf));
1087 
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 	/* reverse the effect of the freeze */
1094 	spin_lock_irq(&conf->resync_lock);
1095 	conf->barrier--;
1096 	conf->nr_waiting--;
1097 	wake_up(&conf->wait_barrier);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 }
1100 
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 				   struct md_rdev *rdev)
1103 {
1104 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 	    test_bit(R10BIO_Previous, &r10_bio->state))
1106 		return rdev->data_offset;
1107 	else
1108 		return rdev->new_data_offset;
1109 }
1110 
1111 struct raid10_plug_cb {
1112 	struct blk_plug_cb	cb;
1113 	struct bio_list		pending;
1114 	int			pending_cnt;
1115 };
1116 
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 						   cb);
1121 	struct mddev *mddev = plug->cb.data;
1122 	struct r10conf *conf = mddev->private;
1123 	struct bio *bio;
1124 
1125 	if (from_schedule || current->bio_list) {
1126 		spin_lock_irq(&conf->device_lock);
1127 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 		conf->pending_count += plug->pending_cnt;
1129 		spin_unlock_irq(&conf->device_lock);
1130 		wake_up(&conf->wait_barrier);
1131 		md_wakeup_thread(mddev->thread);
1132 		kfree(plug);
1133 		return;
1134 	}
1135 
1136 	/* we aren't scheduling, so we can do the write-out directly. */
1137 	bio = bio_list_get(&plug->pending);
1138 	bitmap_unplug(mddev->bitmap);
1139 	wake_up(&conf->wait_barrier);
1140 
1141 	while (bio) { /* submit pending writes */
1142 		struct bio *next = bio->bi_next;
1143 		bio->bi_next = NULL;
1144 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio, 0);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static void __make_request(struct mddev *mddev, struct bio *bio)
1156 {
1157 	struct r10conf *conf = mddev->private;
1158 	struct r10bio *r10_bio;
1159 	struct bio *read_bio;
1160 	int i;
1161 	const int rw = bio_data_dir(bio);
1162 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164 	const unsigned long do_discard = (bio->bi_rw
1165 					  & (REQ_DISCARD | REQ_SECURE));
1166 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167 	unsigned long flags;
1168 	struct md_rdev *blocked_rdev;
1169 	struct blk_plug_cb *cb;
1170 	struct raid10_plug_cb *plug = NULL;
1171 	int sectors_handled;
1172 	int max_sectors;
1173 	int sectors;
1174 
1175 	/*
1176 	 * Register the new request and wait if the reconstruction
1177 	 * thread has put up a bar for new requests.
1178 	 * Continue immediately if no resync is active currently.
1179 	 */
1180 	wait_barrier(conf);
1181 
1182 	sectors = bio_sectors(bio);
1183 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1185 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186 		/* IO spans the reshape position.  Need to wait for
1187 		 * reshape to pass
1188 		 */
1189 		allow_barrier(conf);
1190 		wait_event(conf->wait_barrier,
1191 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1193 			   sectors);
1194 		wait_barrier(conf);
1195 	}
1196 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197 	    bio_data_dir(bio) == WRITE &&
1198 	    (mddev->reshape_backwards
1199 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203 		/* Need to update reshape_position in metadata */
1204 		mddev->reshape_position = conf->reshape_progress;
1205 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207 		md_wakeup_thread(mddev->thread);
1208 		wait_event(mddev->sb_wait,
1209 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210 
1211 		conf->reshape_safe = mddev->reshape_position;
1212 	}
1213 
1214 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215 
1216 	r10_bio->master_bio = bio;
1217 	r10_bio->sectors = sectors;
1218 
1219 	r10_bio->mddev = mddev;
1220 	r10_bio->sector = bio->bi_iter.bi_sector;
1221 	r10_bio->state = 0;
1222 
1223 	/* We might need to issue multiple reads to different
1224 	 * devices if there are bad blocks around, so we keep
1225 	 * track of the number of reads in bio->bi_phys_segments.
1226 	 * If this is 0, there is only one r10_bio and no locking
1227 	 * will be needed when the request completes.  If it is
1228 	 * non-zero, then it is the number of not-completed requests.
1229 	 */
1230 	bio->bi_phys_segments = 0;
1231 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232 
1233 	if (rw == READ) {
1234 		/*
1235 		 * read balancing logic:
1236 		 */
1237 		struct md_rdev *rdev;
1238 		int slot;
1239 
1240 read_again:
1241 		rdev = read_balance(conf, r10_bio, &max_sectors);
1242 		if (!rdev) {
1243 			raid_end_bio_io(r10_bio);
1244 			return;
1245 		}
1246 		slot = r10_bio->read_slot;
1247 
1248 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250 			 max_sectors);
1251 
1252 		r10_bio->devs[slot].bio = read_bio;
1253 		r10_bio->devs[slot].rdev = rdev;
1254 
1255 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256 			choose_data_offset(r10_bio, rdev);
1257 		read_bio->bi_bdev = rdev->bdev;
1258 		read_bio->bi_end_io = raid10_end_read_request;
1259 		read_bio->bi_rw = READ | do_sync;
1260 		read_bio->bi_private = r10_bio;
1261 
1262 		if (max_sectors < r10_bio->sectors) {
1263 			/* Could not read all from this device, so we will
1264 			 * need another r10_bio.
1265 			 */
1266 			sectors_handled = (r10_bio->sector + max_sectors
1267 					   - bio->bi_iter.bi_sector);
1268 			r10_bio->sectors = max_sectors;
1269 			spin_lock_irq(&conf->device_lock);
1270 			if (bio->bi_phys_segments == 0)
1271 				bio->bi_phys_segments = 2;
1272 			else
1273 				bio->bi_phys_segments++;
1274 			spin_unlock_irq(&conf->device_lock);
1275 			/* Cannot call generic_make_request directly
1276 			 * as that will be queued in __generic_make_request
1277 			 * and subsequent mempool_alloc might block
1278 			 * waiting for it.  so hand bio over to raid10d.
1279 			 */
1280 			reschedule_retry(r10_bio);
1281 
1282 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283 
1284 			r10_bio->master_bio = bio;
1285 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286 			r10_bio->state = 0;
1287 			r10_bio->mddev = mddev;
1288 			r10_bio->sector = bio->bi_iter.bi_sector +
1289 				sectors_handled;
1290 			goto read_again;
1291 		} else
1292 			generic_make_request(read_bio);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * WRITE:
1298 	 */
1299 	if (conf->pending_count >= max_queued_requests) {
1300 		md_wakeup_thread(mddev->thread);
1301 		wait_event(conf->wait_barrier,
1302 			   conf->pending_count < max_queued_requests);
1303 	}
1304 	/* first select target devices under rcu_lock and
1305 	 * inc refcount on their rdev.  Record them by setting
1306 	 * bios[x] to bio
1307 	 * If there are known/acknowledged bad blocks on any device
1308 	 * on which we have seen a write error, we want to avoid
1309 	 * writing to those blocks.  This potentially requires several
1310 	 * writes to write around the bad blocks.  Each set of writes
1311 	 * gets its own r10_bio with a set of bios attached.  The number
1312 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1313 	 * the read case.
1314 	 */
1315 
1316 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317 	raid10_find_phys(conf, r10_bio);
1318 retry_write:
1319 	blocked_rdev = NULL;
1320 	rcu_read_lock();
1321 	max_sectors = r10_bio->sectors;
1322 
1323 	for (i = 0;  i < conf->copies; i++) {
1324 		int d = r10_bio->devs[i].devnum;
1325 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326 		struct md_rdev *rrdev = rcu_dereference(
1327 			conf->mirrors[d].replacement);
1328 		if (rdev == rrdev)
1329 			rrdev = NULL;
1330 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331 			atomic_inc(&rdev->nr_pending);
1332 			blocked_rdev = rdev;
1333 			break;
1334 		}
1335 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336 			atomic_inc(&rrdev->nr_pending);
1337 			blocked_rdev = rrdev;
1338 			break;
1339 		}
1340 		if (rdev && (test_bit(Faulty, &rdev->flags)
1341 			     || test_bit(Unmerged, &rdev->flags)))
1342 			rdev = NULL;
1343 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344 			      || test_bit(Unmerged, &rrdev->flags)))
1345 			rrdev = NULL;
1346 
1347 		r10_bio->devs[i].bio = NULL;
1348 		r10_bio->devs[i].repl_bio = NULL;
1349 
1350 		if (!rdev && !rrdev) {
1351 			set_bit(R10BIO_Degraded, &r10_bio->state);
1352 			continue;
1353 		}
1354 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355 			sector_t first_bad;
1356 			sector_t dev_sector = r10_bio->devs[i].addr;
1357 			int bad_sectors;
1358 			int is_bad;
1359 
1360 			is_bad = is_badblock(rdev, dev_sector,
1361 					     max_sectors,
1362 					     &first_bad, &bad_sectors);
1363 			if (is_bad < 0) {
1364 				/* Mustn't write here until the bad block
1365 				 * is acknowledged
1366 				 */
1367 				atomic_inc(&rdev->nr_pending);
1368 				set_bit(BlockedBadBlocks, &rdev->flags);
1369 				blocked_rdev = rdev;
1370 				break;
1371 			}
1372 			if (is_bad && first_bad <= dev_sector) {
1373 				/* Cannot write here at all */
1374 				bad_sectors -= (dev_sector - first_bad);
1375 				if (bad_sectors < max_sectors)
1376 					/* Mustn't write more than bad_sectors
1377 					 * to other devices yet
1378 					 */
1379 					max_sectors = bad_sectors;
1380 				/* We don't set R10BIO_Degraded as that
1381 				 * only applies if the disk is missing,
1382 				 * so it might be re-added, and we want to
1383 				 * know to recover this chunk.
1384 				 * In this case the device is here, and the
1385 				 * fact that this chunk is not in-sync is
1386 				 * recorded in the bad block log.
1387 				 */
1388 				continue;
1389 			}
1390 			if (is_bad) {
1391 				int good_sectors = first_bad - dev_sector;
1392 				if (good_sectors < max_sectors)
1393 					max_sectors = good_sectors;
1394 			}
1395 		}
1396 		if (rdev) {
1397 			r10_bio->devs[i].bio = bio;
1398 			atomic_inc(&rdev->nr_pending);
1399 		}
1400 		if (rrdev) {
1401 			r10_bio->devs[i].repl_bio = bio;
1402 			atomic_inc(&rrdev->nr_pending);
1403 		}
1404 	}
1405 	rcu_read_unlock();
1406 
1407 	if (unlikely(blocked_rdev)) {
1408 		/* Have to wait for this device to get unblocked, then retry */
1409 		int j;
1410 		int d;
1411 
1412 		for (j = 0; j < i; j++) {
1413 			if (r10_bio->devs[j].bio) {
1414 				d = r10_bio->devs[j].devnum;
1415 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416 			}
1417 			if (r10_bio->devs[j].repl_bio) {
1418 				struct md_rdev *rdev;
1419 				d = r10_bio->devs[j].devnum;
1420 				rdev = conf->mirrors[d].replacement;
1421 				if (!rdev) {
1422 					/* Race with remove_disk */
1423 					smp_mb();
1424 					rdev = conf->mirrors[d].rdev;
1425 				}
1426 				rdev_dec_pending(rdev, mddev);
1427 			}
1428 		}
1429 		allow_barrier(conf);
1430 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 		wait_barrier(conf);
1432 		goto retry_write;
1433 	}
1434 
1435 	if (max_sectors < r10_bio->sectors) {
1436 		/* We are splitting this into multiple parts, so
1437 		 * we need to prepare for allocating another r10_bio.
1438 		 */
1439 		r10_bio->sectors = max_sectors;
1440 		spin_lock_irq(&conf->device_lock);
1441 		if (bio->bi_phys_segments == 0)
1442 			bio->bi_phys_segments = 2;
1443 		else
1444 			bio->bi_phys_segments++;
1445 		spin_unlock_irq(&conf->device_lock);
1446 	}
1447 	sectors_handled = r10_bio->sector + max_sectors -
1448 		bio->bi_iter.bi_sector;
1449 
1450 	atomic_set(&r10_bio->remaining, 1);
1451 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452 
1453 	for (i = 0; i < conf->copies; i++) {
1454 		struct bio *mbio;
1455 		int d = r10_bio->devs[i].devnum;
1456 		if (r10_bio->devs[i].bio) {
1457 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1458 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460 				 max_sectors);
1461 			r10_bio->devs[i].bio = mbio;
1462 
1463 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1464 					   choose_data_offset(r10_bio,
1465 							      rdev));
1466 			mbio->bi_bdev = rdev->bdev;
1467 			mbio->bi_end_io	= raid10_end_write_request;
1468 			mbio->bi_rw =
1469 				WRITE | do_sync | do_fua | do_discard | do_same;
1470 			mbio->bi_private = r10_bio;
1471 
1472 			atomic_inc(&r10_bio->remaining);
1473 
1474 			cb = blk_check_plugged(raid10_unplug, mddev,
1475 					       sizeof(*plug));
1476 			if (cb)
1477 				plug = container_of(cb, struct raid10_plug_cb,
1478 						    cb);
1479 			else
1480 				plug = NULL;
1481 			spin_lock_irqsave(&conf->device_lock, flags);
1482 			if (plug) {
1483 				bio_list_add(&plug->pending, mbio);
1484 				plug->pending_cnt++;
1485 			} else {
1486 				bio_list_add(&conf->pending_bio_list, mbio);
1487 				conf->pending_count++;
1488 			}
1489 			spin_unlock_irqrestore(&conf->device_lock, flags);
1490 			if (!plug)
1491 				md_wakeup_thread(mddev->thread);
1492 		}
1493 
1494 		if (r10_bio->devs[i].repl_bio) {
1495 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1496 			if (rdev == NULL) {
1497 				/* Replacement just got moved to main 'rdev' */
1498 				smp_mb();
1499 				rdev = conf->mirrors[d].rdev;
1500 			}
1501 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503 				 max_sectors);
1504 			r10_bio->devs[i].repl_bio = mbio;
1505 
1506 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1507 					   choose_data_offset(
1508 						   r10_bio, rdev));
1509 			mbio->bi_bdev = rdev->bdev;
1510 			mbio->bi_end_io	= raid10_end_write_request;
1511 			mbio->bi_rw =
1512 				WRITE | do_sync | do_fua | do_discard | do_same;
1513 			mbio->bi_private = r10_bio;
1514 
1515 			atomic_inc(&r10_bio->remaining);
1516 			spin_lock_irqsave(&conf->device_lock, flags);
1517 			bio_list_add(&conf->pending_bio_list, mbio);
1518 			conf->pending_count++;
1519 			spin_unlock_irqrestore(&conf->device_lock, flags);
1520 			if (!mddev_check_plugged(mddev))
1521 				md_wakeup_thread(mddev->thread);
1522 		}
1523 	}
1524 
1525 	/* Don't remove the bias on 'remaining' (one_write_done) until
1526 	 * after checking if we need to go around again.
1527 	 */
1528 
1529 	if (sectors_handled < bio_sectors(bio)) {
1530 		one_write_done(r10_bio);
1531 		/* We need another r10_bio.  It has already been counted
1532 		 * in bio->bi_phys_segments.
1533 		 */
1534 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535 
1536 		r10_bio->master_bio = bio;
1537 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538 
1539 		r10_bio->mddev = mddev;
1540 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541 		r10_bio->state = 0;
1542 		goto retry_write;
1543 	}
1544 	one_write_done(r10_bio);
1545 }
1546 
1547 static void make_request(struct mddev *mddev, struct bio *bio)
1548 {
1549 	struct r10conf *conf = mddev->private;
1550 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551 	int chunk_sects = chunk_mask + 1;
1552 
1553 	struct bio *split;
1554 
1555 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556 		md_flush_request(mddev, bio);
1557 		return;
1558 	}
1559 
1560 	md_write_start(mddev, bio);
1561 
1562 
1563 	do {
1564 
1565 		/*
1566 		 * If this request crosses a chunk boundary, we need to split
1567 		 * it.
1568 		 */
1569 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570 			     bio_sectors(bio) > chunk_sects
1571 			     && (conf->geo.near_copies < conf->geo.raid_disks
1572 				 || conf->prev.near_copies <
1573 				 conf->prev.raid_disks))) {
1574 			split = bio_split(bio, chunk_sects -
1575 					  (bio->bi_iter.bi_sector &
1576 					   (chunk_sects - 1)),
1577 					  GFP_NOIO, fs_bio_set);
1578 			bio_chain(split, bio);
1579 		} else {
1580 			split = bio;
1581 		}
1582 
1583 		__make_request(mddev, split);
1584 	} while (split != bio);
1585 
1586 	/* In case raid10d snuck in to freeze_array */
1587 	wake_up(&conf->wait_barrier);
1588 }
1589 
1590 static void status(struct seq_file *seq, struct mddev *mddev)
1591 {
1592 	struct r10conf *conf = mddev->private;
1593 	int i;
1594 
1595 	if (conf->geo.near_copies < conf->geo.raid_disks)
1596 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597 	if (conf->geo.near_copies > 1)
1598 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599 	if (conf->geo.far_copies > 1) {
1600 		if (conf->geo.far_offset)
1601 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602 		else
1603 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1604 	}
1605 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 					conf->geo.raid_disks - mddev->degraded);
1607 	for (i = 0; i < conf->geo.raid_disks; i++)
1608 		seq_printf(seq, "%s",
1609 			      conf->mirrors[i].rdev &&
1610 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1611 	seq_printf(seq, "]");
1612 }
1613 
1614 /* check if there are enough drives for
1615  * every block to appear on atleast one.
1616  * Don't consider the device numbered 'ignore'
1617  * as we might be about to remove it.
1618  */
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1620 {
1621 	int first = 0;
1622 	int has_enough = 0;
1623 	int disks, ncopies;
1624 	if (previous) {
1625 		disks = conf->prev.raid_disks;
1626 		ncopies = conf->prev.near_copies;
1627 	} else {
1628 		disks = conf->geo.raid_disks;
1629 		ncopies = conf->geo.near_copies;
1630 	}
1631 
1632 	rcu_read_lock();
1633 	do {
1634 		int n = conf->copies;
1635 		int cnt = 0;
1636 		int this = first;
1637 		while (n--) {
1638 			struct md_rdev *rdev;
1639 			if (this != ignore &&
1640 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 			    test_bit(In_sync, &rdev->flags))
1642 				cnt++;
1643 			this = (this+1) % disks;
1644 		}
1645 		if (cnt == 0)
1646 			goto out;
1647 		first = (first + ncopies) % disks;
1648 	} while (first != 0);
1649 	has_enough = 1;
1650 out:
1651 	rcu_read_unlock();
1652 	return has_enough;
1653 }
1654 
1655 static int enough(struct r10conf *conf, int ignore)
1656 {
1657 	/* when calling 'enough', both 'prev' and 'geo' must
1658 	 * be stable.
1659 	 * This is ensured if ->reconfig_mutex or ->device_lock
1660 	 * is held.
1661 	 */
1662 	return _enough(conf, 0, ignore) &&
1663 		_enough(conf, 1, ignore);
1664 }
1665 
1666 static void error(struct mddev *mddev, struct md_rdev *rdev)
1667 {
1668 	char b[BDEVNAME_SIZE];
1669 	struct r10conf *conf = mddev->private;
1670 	unsigned long flags;
1671 
1672 	/*
1673 	 * If it is not operational, then we have already marked it as dead
1674 	 * else if it is the last working disks, ignore the error, let the
1675 	 * next level up know.
1676 	 * else mark the drive as failed
1677 	 */
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 	if (test_bit(In_sync, &rdev->flags)
1680 	    && !enough(conf, rdev->raid_disk)) {
1681 		/*
1682 		 * Don't fail the drive, just return an IO error.
1683 		 */
1684 		spin_unlock_irqrestore(&conf->device_lock, flags);
1685 		return;
1686 	}
1687 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1688 		mddev->degraded++;
1689 			/*
1690 		 * if recovery is running, make sure it aborts.
1691 		 */
1692 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693 	}
1694 	set_bit(Blocked, &rdev->flags);
1695 	set_bit(Faulty, &rdev->flags);
1696 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1697 	spin_unlock_irqrestore(&conf->device_lock, flags);
1698 	printk(KERN_ALERT
1699 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1700 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1701 	       mdname(mddev), bdevname(rdev->bdev, b),
1702 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1703 }
1704 
1705 static void print_conf(struct r10conf *conf)
1706 {
1707 	int i;
1708 	struct raid10_info *tmp;
1709 
1710 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1711 	if (!conf) {
1712 		printk(KERN_DEBUG "(!conf)\n");
1713 		return;
1714 	}
1715 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1716 		conf->geo.raid_disks);
1717 
1718 	for (i = 0; i < conf->geo.raid_disks; i++) {
1719 		char b[BDEVNAME_SIZE];
1720 		tmp = conf->mirrors + i;
1721 		if (tmp->rdev)
1722 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1723 				i, !test_bit(In_sync, &tmp->rdev->flags),
1724 			        !test_bit(Faulty, &tmp->rdev->flags),
1725 				bdevname(tmp->rdev->bdev,b));
1726 	}
1727 }
1728 
1729 static void close_sync(struct r10conf *conf)
1730 {
1731 	wait_barrier(conf);
1732 	allow_barrier(conf);
1733 
1734 	mempool_destroy(conf->r10buf_pool);
1735 	conf->r10buf_pool = NULL;
1736 }
1737 
1738 static int raid10_spare_active(struct mddev *mddev)
1739 {
1740 	int i;
1741 	struct r10conf *conf = mddev->private;
1742 	struct raid10_info *tmp;
1743 	int count = 0;
1744 	unsigned long flags;
1745 
1746 	/*
1747 	 * Find all non-in_sync disks within the RAID10 configuration
1748 	 * and mark them in_sync
1749 	 */
1750 	for (i = 0; i < conf->geo.raid_disks; i++) {
1751 		tmp = conf->mirrors + i;
1752 		if (tmp->replacement
1753 		    && tmp->replacement->recovery_offset == MaxSector
1754 		    && !test_bit(Faulty, &tmp->replacement->flags)
1755 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1756 			/* Replacement has just become active */
1757 			if (!tmp->rdev
1758 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1759 				count++;
1760 			if (tmp->rdev) {
1761 				/* Replaced device not technically faulty,
1762 				 * but we need to be sure it gets removed
1763 				 * and never re-added.
1764 				 */
1765 				set_bit(Faulty, &tmp->rdev->flags);
1766 				sysfs_notify_dirent_safe(
1767 					tmp->rdev->sysfs_state);
1768 			}
1769 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1770 		} else if (tmp->rdev
1771 			   && tmp->rdev->recovery_offset == MaxSector
1772 			   && !test_bit(Faulty, &tmp->rdev->flags)
1773 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1774 			count++;
1775 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1776 		}
1777 	}
1778 	spin_lock_irqsave(&conf->device_lock, flags);
1779 	mddev->degraded -= count;
1780 	spin_unlock_irqrestore(&conf->device_lock, flags);
1781 
1782 	print_conf(conf);
1783 	return count;
1784 }
1785 
1786 
1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789 	struct r10conf *conf = mddev->private;
1790 	int err = -EEXIST;
1791 	int mirror;
1792 	int first = 0;
1793 	int last = conf->geo.raid_disks - 1;
1794 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1795 
1796 	if (mddev->recovery_cp < MaxSector)
1797 		/* only hot-add to in-sync arrays, as recovery is
1798 		 * very different from resync
1799 		 */
1800 		return -EBUSY;
1801 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802 		return -EINVAL;
1803 
1804 	if (rdev->raid_disk >= 0)
1805 		first = last = rdev->raid_disk;
1806 
1807 	if (q->merge_bvec_fn) {
1808 		set_bit(Unmerged, &rdev->flags);
1809 		mddev->merge_check_needed = 1;
1810 	}
1811 
1812 	if (rdev->saved_raid_disk >= first &&
1813 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814 		mirror = rdev->saved_raid_disk;
1815 	else
1816 		mirror = first;
1817 	for ( ; mirror <= last ; mirror++) {
1818 		struct raid10_info *p = &conf->mirrors[mirror];
1819 		if (p->recovery_disabled == mddev->recovery_disabled)
1820 			continue;
1821 		if (p->rdev) {
1822 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823 			    p->replacement != NULL)
1824 				continue;
1825 			clear_bit(In_sync, &rdev->flags);
1826 			set_bit(Replacement, &rdev->flags);
1827 			rdev->raid_disk = mirror;
1828 			err = 0;
1829 			if (mddev->gendisk)
1830 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1831 						  rdev->data_offset << 9);
1832 			conf->fullsync = 1;
1833 			rcu_assign_pointer(p->replacement, rdev);
1834 			break;
1835 		}
1836 
1837 		if (mddev->gendisk)
1838 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1839 					  rdev->data_offset << 9);
1840 
1841 		p->head_position = 0;
1842 		p->recovery_disabled = mddev->recovery_disabled - 1;
1843 		rdev->raid_disk = mirror;
1844 		err = 0;
1845 		if (rdev->saved_raid_disk != mirror)
1846 			conf->fullsync = 1;
1847 		rcu_assign_pointer(p->rdev, rdev);
1848 		break;
1849 	}
1850 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1851 		/* Some requests might not have seen this new
1852 		 * merge_bvec_fn.  We must wait for them to complete
1853 		 * before merging the device fully.
1854 		 * First we make sure any code which has tested
1855 		 * our function has submitted the request, then
1856 		 * we wait for all outstanding requests to complete.
1857 		 */
1858 		synchronize_sched();
1859 		freeze_array(conf, 0);
1860 		unfreeze_array(conf);
1861 		clear_bit(Unmerged, &rdev->flags);
1862 	}
1863 	md_integrity_add_rdev(rdev, mddev);
1864 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1865 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1866 
1867 	print_conf(conf);
1868 	return err;
1869 }
1870 
1871 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1872 {
1873 	struct r10conf *conf = mddev->private;
1874 	int err = 0;
1875 	int number = rdev->raid_disk;
1876 	struct md_rdev **rdevp;
1877 	struct raid10_info *p = conf->mirrors + number;
1878 
1879 	print_conf(conf);
1880 	if (rdev == p->rdev)
1881 		rdevp = &p->rdev;
1882 	else if (rdev == p->replacement)
1883 		rdevp = &p->replacement;
1884 	else
1885 		return 0;
1886 
1887 	if (test_bit(In_sync, &rdev->flags) ||
1888 	    atomic_read(&rdev->nr_pending)) {
1889 		err = -EBUSY;
1890 		goto abort;
1891 	}
1892 	/* Only remove faulty devices if recovery
1893 	 * is not possible.
1894 	 */
1895 	if (!test_bit(Faulty, &rdev->flags) &&
1896 	    mddev->recovery_disabled != p->recovery_disabled &&
1897 	    (!p->replacement || p->replacement == rdev) &&
1898 	    number < conf->geo.raid_disks &&
1899 	    enough(conf, -1)) {
1900 		err = -EBUSY;
1901 		goto abort;
1902 	}
1903 	*rdevp = NULL;
1904 	synchronize_rcu();
1905 	if (atomic_read(&rdev->nr_pending)) {
1906 		/* lost the race, try later */
1907 		err = -EBUSY;
1908 		*rdevp = rdev;
1909 		goto abort;
1910 	} else if (p->replacement) {
1911 		/* We must have just cleared 'rdev' */
1912 		p->rdev = p->replacement;
1913 		clear_bit(Replacement, &p->replacement->flags);
1914 		smp_mb(); /* Make sure other CPUs may see both as identical
1915 			   * but will never see neither -- if they are careful.
1916 			   */
1917 		p->replacement = NULL;
1918 		clear_bit(WantReplacement, &rdev->flags);
1919 	} else
1920 		/* We might have just remove the Replacement as faulty
1921 		 * Clear the flag just in case
1922 		 */
1923 		clear_bit(WantReplacement, &rdev->flags);
1924 
1925 	err = md_integrity_register(mddev);
1926 
1927 abort:
1928 
1929 	print_conf(conf);
1930 	return err;
1931 }
1932 
1933 
1934 static void end_sync_read(struct bio *bio, int error)
1935 {
1936 	struct r10bio *r10_bio = bio->bi_private;
1937 	struct r10conf *conf = r10_bio->mddev->private;
1938 	int d;
1939 
1940 	if (bio == r10_bio->master_bio) {
1941 		/* this is a reshape read */
1942 		d = r10_bio->read_slot; /* really the read dev */
1943 	} else
1944 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1945 
1946 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1947 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1948 	else
1949 		/* The write handler will notice the lack of
1950 		 * R10BIO_Uptodate and record any errors etc
1951 		 */
1952 		atomic_add(r10_bio->sectors,
1953 			   &conf->mirrors[d].rdev->corrected_errors);
1954 
1955 	/* for reconstruct, we always reschedule after a read.
1956 	 * for resync, only after all reads
1957 	 */
1958 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1959 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1960 	    atomic_dec_and_test(&r10_bio->remaining)) {
1961 		/* we have read all the blocks,
1962 		 * do the comparison in process context in raid10d
1963 		 */
1964 		reschedule_retry(r10_bio);
1965 	}
1966 }
1967 
1968 static void end_sync_request(struct r10bio *r10_bio)
1969 {
1970 	struct mddev *mddev = r10_bio->mddev;
1971 
1972 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1973 		if (r10_bio->master_bio == NULL) {
1974 			/* the primary of several recovery bios */
1975 			sector_t s = r10_bio->sectors;
1976 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1978 				reschedule_retry(r10_bio);
1979 			else
1980 				put_buf(r10_bio);
1981 			md_done_sync(mddev, s, 1);
1982 			break;
1983 		} else {
1984 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1985 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1986 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1987 				reschedule_retry(r10_bio);
1988 			else
1989 				put_buf(r10_bio);
1990 			r10_bio = r10_bio2;
1991 		}
1992 	}
1993 }
1994 
1995 static void end_sync_write(struct bio *bio, int error)
1996 {
1997 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1998 	struct r10bio *r10_bio = bio->bi_private;
1999 	struct mddev *mddev = r10_bio->mddev;
2000 	struct r10conf *conf = mddev->private;
2001 	int d;
2002 	sector_t first_bad;
2003 	int bad_sectors;
2004 	int slot;
2005 	int repl;
2006 	struct md_rdev *rdev = NULL;
2007 
2008 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2009 	if (repl)
2010 		rdev = conf->mirrors[d].replacement;
2011 	else
2012 		rdev = conf->mirrors[d].rdev;
2013 
2014 	if (!uptodate) {
2015 		if (repl)
2016 			md_error(mddev, rdev);
2017 		else {
2018 			set_bit(WriteErrorSeen, &rdev->flags);
2019 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2020 				set_bit(MD_RECOVERY_NEEDED,
2021 					&rdev->mddev->recovery);
2022 			set_bit(R10BIO_WriteError, &r10_bio->state);
2023 		}
2024 	} else if (is_badblock(rdev,
2025 			     r10_bio->devs[slot].addr,
2026 			     r10_bio->sectors,
2027 			     &first_bad, &bad_sectors))
2028 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2029 
2030 	rdev_dec_pending(rdev, mddev);
2031 
2032 	end_sync_request(r10_bio);
2033 }
2034 
2035 /*
2036  * Note: sync and recover and handled very differently for raid10
2037  * This code is for resync.
2038  * For resync, we read through virtual addresses and read all blocks.
2039  * If there is any error, we schedule a write.  The lowest numbered
2040  * drive is authoritative.
2041  * However requests come for physical address, so we need to map.
2042  * For every physical address there are raid_disks/copies virtual addresses,
2043  * which is always are least one, but is not necessarly an integer.
2044  * This means that a physical address can span multiple chunks, so we may
2045  * have to submit multiple io requests for a single sync request.
2046  */
2047 /*
2048  * We check if all blocks are in-sync and only write to blocks that
2049  * aren't in sync
2050  */
2051 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2052 {
2053 	struct r10conf *conf = mddev->private;
2054 	int i, first;
2055 	struct bio *tbio, *fbio;
2056 	int vcnt;
2057 
2058 	atomic_set(&r10_bio->remaining, 1);
2059 
2060 	/* find the first device with a block */
2061 	for (i=0; i<conf->copies; i++)
2062 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2063 			break;
2064 
2065 	if (i == conf->copies)
2066 		goto done;
2067 
2068 	first = i;
2069 	fbio = r10_bio->devs[i].bio;
2070 
2071 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2072 	/* now find blocks with errors */
2073 	for (i=0 ; i < conf->copies ; i++) {
2074 		int  j, d;
2075 
2076 		tbio = r10_bio->devs[i].bio;
2077 
2078 		if (tbio->bi_end_io != end_sync_read)
2079 			continue;
2080 		if (i == first)
2081 			continue;
2082 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2083 			/* We know that the bi_io_vec layout is the same for
2084 			 * both 'first' and 'i', so we just compare them.
2085 			 * All vec entries are PAGE_SIZE;
2086 			 */
2087 			int sectors = r10_bio->sectors;
2088 			for (j = 0; j < vcnt; j++) {
2089 				int len = PAGE_SIZE;
2090 				if (sectors < (len / 512))
2091 					len = sectors * 512;
2092 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2093 					   page_address(tbio->bi_io_vec[j].bv_page),
2094 					   len))
2095 					break;
2096 				sectors -= len/512;
2097 			}
2098 			if (j == vcnt)
2099 				continue;
2100 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102 				/* Don't fix anything. */
2103 				continue;
2104 		}
2105 		/* Ok, we need to write this bio, either to correct an
2106 		 * inconsistency or to correct an unreadable block.
2107 		 * First we need to fixup bv_offset, bv_len and
2108 		 * bi_vecs, as the read request might have corrupted these
2109 		 */
2110 		bio_reset(tbio);
2111 
2112 		tbio->bi_vcnt = vcnt;
2113 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2114 		tbio->bi_rw = WRITE;
2115 		tbio->bi_private = r10_bio;
2116 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2117 
2118 		for (j=0; j < vcnt ; j++) {
2119 			tbio->bi_io_vec[j].bv_offset = 0;
2120 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2121 
2122 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2123 			       page_address(fbio->bi_io_vec[j].bv_page),
2124 			       PAGE_SIZE);
2125 		}
2126 		tbio->bi_end_io = end_sync_write;
2127 
2128 		d = r10_bio->devs[i].devnum;
2129 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130 		atomic_inc(&r10_bio->remaining);
2131 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132 
2133 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2135 		generic_make_request(tbio);
2136 	}
2137 
2138 	/* Now write out to any replacement devices
2139 	 * that are active
2140 	 */
2141 	for (i = 0; i < conf->copies; i++) {
2142 		int j, d;
2143 
2144 		tbio = r10_bio->devs[i].repl_bio;
2145 		if (!tbio || !tbio->bi_end_io)
2146 			continue;
2147 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148 		    && r10_bio->devs[i].bio != fbio)
2149 			for (j = 0; j < vcnt; j++)
2150 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2151 				       page_address(fbio->bi_io_vec[j].bv_page),
2152 				       PAGE_SIZE);
2153 		d = r10_bio->devs[i].devnum;
2154 		atomic_inc(&r10_bio->remaining);
2155 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2156 			     bio_sectors(tbio));
2157 		generic_make_request(tbio);
2158 	}
2159 
2160 done:
2161 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2162 		md_done_sync(mddev, r10_bio->sectors, 1);
2163 		put_buf(r10_bio);
2164 	}
2165 }
2166 
2167 /*
2168  * Now for the recovery code.
2169  * Recovery happens across physical sectors.
2170  * We recover all non-is_sync drives by finding the virtual address of
2171  * each, and then choose a working drive that also has that virt address.
2172  * There is a separate r10_bio for each non-in_sync drive.
2173  * Only the first two slots are in use. The first for reading,
2174  * The second for writing.
2175  *
2176  */
2177 static void fix_recovery_read_error(struct r10bio *r10_bio)
2178 {
2179 	/* We got a read error during recovery.
2180 	 * We repeat the read in smaller page-sized sections.
2181 	 * If a read succeeds, write it to the new device or record
2182 	 * a bad block if we cannot.
2183 	 * If a read fails, record a bad block on both old and
2184 	 * new devices.
2185 	 */
2186 	struct mddev *mddev = r10_bio->mddev;
2187 	struct r10conf *conf = mddev->private;
2188 	struct bio *bio = r10_bio->devs[0].bio;
2189 	sector_t sect = 0;
2190 	int sectors = r10_bio->sectors;
2191 	int idx = 0;
2192 	int dr = r10_bio->devs[0].devnum;
2193 	int dw = r10_bio->devs[1].devnum;
2194 
2195 	while (sectors) {
2196 		int s = sectors;
2197 		struct md_rdev *rdev;
2198 		sector_t addr;
2199 		int ok;
2200 
2201 		if (s > (PAGE_SIZE>>9))
2202 			s = PAGE_SIZE >> 9;
2203 
2204 		rdev = conf->mirrors[dr].rdev;
2205 		addr = r10_bio->devs[0].addr + sect,
2206 		ok = sync_page_io(rdev,
2207 				  addr,
2208 				  s << 9,
2209 				  bio->bi_io_vec[idx].bv_page,
2210 				  READ, false);
2211 		if (ok) {
2212 			rdev = conf->mirrors[dw].rdev;
2213 			addr = r10_bio->devs[1].addr + sect;
2214 			ok = sync_page_io(rdev,
2215 					  addr,
2216 					  s << 9,
2217 					  bio->bi_io_vec[idx].bv_page,
2218 					  WRITE, false);
2219 			if (!ok) {
2220 				set_bit(WriteErrorSeen, &rdev->flags);
2221 				if (!test_and_set_bit(WantReplacement,
2222 						      &rdev->flags))
2223 					set_bit(MD_RECOVERY_NEEDED,
2224 						&rdev->mddev->recovery);
2225 			}
2226 		}
2227 		if (!ok) {
2228 			/* We don't worry if we cannot set a bad block -
2229 			 * it really is bad so there is no loss in not
2230 			 * recording it yet
2231 			 */
2232 			rdev_set_badblocks(rdev, addr, s, 0);
2233 
2234 			if (rdev != conf->mirrors[dw].rdev) {
2235 				/* need bad block on destination too */
2236 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237 				addr = r10_bio->devs[1].addr + sect;
2238 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239 				if (!ok) {
2240 					/* just abort the recovery */
2241 					printk(KERN_NOTICE
2242 					       "md/raid10:%s: recovery aborted"
2243 					       " due to read error\n",
2244 					       mdname(mddev));
2245 
2246 					conf->mirrors[dw].recovery_disabled
2247 						= mddev->recovery_disabled;
2248 					set_bit(MD_RECOVERY_INTR,
2249 						&mddev->recovery);
2250 					break;
2251 				}
2252 			}
2253 		}
2254 
2255 		sectors -= s;
2256 		sect += s;
2257 		idx++;
2258 	}
2259 }
2260 
2261 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262 {
2263 	struct r10conf *conf = mddev->private;
2264 	int d;
2265 	struct bio *wbio, *wbio2;
2266 
2267 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268 		fix_recovery_read_error(r10_bio);
2269 		end_sync_request(r10_bio);
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * share the pages with the first bio
2275 	 * and submit the write request
2276 	 */
2277 	d = r10_bio->devs[1].devnum;
2278 	wbio = r10_bio->devs[1].bio;
2279 	wbio2 = r10_bio->devs[1].repl_bio;
2280 	/* Need to test wbio2->bi_end_io before we call
2281 	 * generic_make_request as if the former is NULL,
2282 	 * the latter is free to free wbio2.
2283 	 */
2284 	if (wbio2 && !wbio2->bi_end_io)
2285 		wbio2 = NULL;
2286 	if (wbio->bi_end_io) {
2287 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289 		generic_make_request(wbio);
2290 	}
2291 	if (wbio2) {
2292 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2294 			     bio_sectors(wbio2));
2295 		generic_make_request(wbio2);
2296 	}
2297 }
2298 
2299 
2300 /*
2301  * Used by fix_read_error() to decay the per rdev read_errors.
2302  * We halve the read error count for every hour that has elapsed
2303  * since the last recorded read error.
2304  *
2305  */
2306 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307 {
2308 	struct timespec cur_time_mon;
2309 	unsigned long hours_since_last;
2310 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2311 
2312 	ktime_get_ts(&cur_time_mon);
2313 
2314 	if (rdev->last_read_error.tv_sec == 0 &&
2315 	    rdev->last_read_error.tv_nsec == 0) {
2316 		/* first time we've seen a read error */
2317 		rdev->last_read_error = cur_time_mon;
2318 		return;
2319 	}
2320 
2321 	hours_since_last = (cur_time_mon.tv_sec -
2322 			    rdev->last_read_error.tv_sec) / 3600;
2323 
2324 	rdev->last_read_error = cur_time_mon;
2325 
2326 	/*
2327 	 * if hours_since_last is > the number of bits in read_errors
2328 	 * just set read errors to 0. We do this to avoid
2329 	 * overflowing the shift of read_errors by hours_since_last.
2330 	 */
2331 	if (hours_since_last >= 8 * sizeof(read_errors))
2332 		atomic_set(&rdev->read_errors, 0);
2333 	else
2334 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2335 }
2336 
2337 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2338 			    int sectors, struct page *page, int rw)
2339 {
2340 	sector_t first_bad;
2341 	int bad_sectors;
2342 
2343 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2344 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2345 		return -1;
2346 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2347 		/* success */
2348 		return 1;
2349 	if (rw == WRITE) {
2350 		set_bit(WriteErrorSeen, &rdev->flags);
2351 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2352 			set_bit(MD_RECOVERY_NEEDED,
2353 				&rdev->mddev->recovery);
2354 	}
2355 	/* need to record an error - either for the block or the device */
2356 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2357 		md_error(rdev->mddev, rdev);
2358 	return 0;
2359 }
2360 
2361 /*
2362  * This is a kernel thread which:
2363  *
2364  *	1.	Retries failed read operations on working mirrors.
2365  *	2.	Updates the raid superblock when problems encounter.
2366  *	3.	Performs writes following reads for array synchronising.
2367  */
2368 
2369 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2370 {
2371 	int sect = 0; /* Offset from r10_bio->sector */
2372 	int sectors = r10_bio->sectors;
2373 	struct md_rdev*rdev;
2374 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2375 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2376 
2377 	/* still own a reference to this rdev, so it cannot
2378 	 * have been cleared recently.
2379 	 */
2380 	rdev = conf->mirrors[d].rdev;
2381 
2382 	if (test_bit(Faulty, &rdev->flags))
2383 		/* drive has already been failed, just ignore any
2384 		   more fix_read_error() attempts */
2385 		return;
2386 
2387 	check_decay_read_errors(mddev, rdev);
2388 	atomic_inc(&rdev->read_errors);
2389 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2390 		char b[BDEVNAME_SIZE];
2391 		bdevname(rdev->bdev, b);
2392 
2393 		printk(KERN_NOTICE
2394 		       "md/raid10:%s: %s: Raid device exceeded "
2395 		       "read_error threshold [cur %d:max %d]\n",
2396 		       mdname(mddev), b,
2397 		       atomic_read(&rdev->read_errors), max_read_errors);
2398 		printk(KERN_NOTICE
2399 		       "md/raid10:%s: %s: Failing raid device\n",
2400 		       mdname(mddev), b);
2401 		md_error(mddev, conf->mirrors[d].rdev);
2402 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2403 		return;
2404 	}
2405 
2406 	while(sectors) {
2407 		int s = sectors;
2408 		int sl = r10_bio->read_slot;
2409 		int success = 0;
2410 		int start;
2411 
2412 		if (s > (PAGE_SIZE>>9))
2413 			s = PAGE_SIZE >> 9;
2414 
2415 		rcu_read_lock();
2416 		do {
2417 			sector_t first_bad;
2418 			int bad_sectors;
2419 
2420 			d = r10_bio->devs[sl].devnum;
2421 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2422 			if (rdev &&
2423 			    !test_bit(Unmerged, &rdev->flags) &&
2424 			    test_bit(In_sync, &rdev->flags) &&
2425 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2426 					&first_bad, &bad_sectors) == 0) {
2427 				atomic_inc(&rdev->nr_pending);
2428 				rcu_read_unlock();
2429 				success = sync_page_io(rdev,
2430 						       r10_bio->devs[sl].addr +
2431 						       sect,
2432 						       s<<9,
2433 						       conf->tmppage, READ, false);
2434 				rdev_dec_pending(rdev, mddev);
2435 				rcu_read_lock();
2436 				if (success)
2437 					break;
2438 			}
2439 			sl++;
2440 			if (sl == conf->copies)
2441 				sl = 0;
2442 		} while (!success && sl != r10_bio->read_slot);
2443 		rcu_read_unlock();
2444 
2445 		if (!success) {
2446 			/* Cannot read from anywhere, just mark the block
2447 			 * as bad on the first device to discourage future
2448 			 * reads.
2449 			 */
2450 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451 			rdev = conf->mirrors[dn].rdev;
2452 
2453 			if (!rdev_set_badblocks(
2454 				    rdev,
2455 				    r10_bio->devs[r10_bio->read_slot].addr
2456 				    + sect,
2457 				    s, 0)) {
2458 				md_error(mddev, rdev);
2459 				r10_bio->devs[r10_bio->read_slot].bio
2460 					= IO_BLOCKED;
2461 			}
2462 			break;
2463 		}
2464 
2465 		start = sl;
2466 		/* write it back and re-read */
2467 		rcu_read_lock();
2468 		while (sl != r10_bio->read_slot) {
2469 			char b[BDEVNAME_SIZE];
2470 
2471 			if (sl==0)
2472 				sl = conf->copies;
2473 			sl--;
2474 			d = r10_bio->devs[sl].devnum;
2475 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2476 			if (!rdev ||
2477 			    test_bit(Unmerged, &rdev->flags) ||
2478 			    !test_bit(In_sync, &rdev->flags))
2479 				continue;
2480 
2481 			atomic_inc(&rdev->nr_pending);
2482 			rcu_read_unlock();
2483 			if (r10_sync_page_io(rdev,
2484 					     r10_bio->devs[sl].addr +
2485 					     sect,
2486 					     s, conf->tmppage, WRITE)
2487 			    == 0) {
2488 				/* Well, this device is dead */
2489 				printk(KERN_NOTICE
2490 				       "md/raid10:%s: read correction "
2491 				       "write failed"
2492 				       " (%d sectors at %llu on %s)\n",
2493 				       mdname(mddev), s,
2494 				       (unsigned long long)(
2495 					       sect +
2496 					       choose_data_offset(r10_bio,
2497 								  rdev)),
2498 				       bdevname(rdev->bdev, b));
2499 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2500 				       "drive\n",
2501 				       mdname(mddev),
2502 				       bdevname(rdev->bdev, b));
2503 			}
2504 			rdev_dec_pending(rdev, mddev);
2505 			rcu_read_lock();
2506 		}
2507 		sl = start;
2508 		while (sl != r10_bio->read_slot) {
2509 			char b[BDEVNAME_SIZE];
2510 
2511 			if (sl==0)
2512 				sl = conf->copies;
2513 			sl--;
2514 			d = r10_bio->devs[sl].devnum;
2515 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2516 			if (!rdev ||
2517 			    !test_bit(In_sync, &rdev->flags))
2518 				continue;
2519 
2520 			atomic_inc(&rdev->nr_pending);
2521 			rcu_read_unlock();
2522 			switch (r10_sync_page_io(rdev,
2523 					     r10_bio->devs[sl].addr +
2524 					     sect,
2525 					     s, conf->tmppage,
2526 						 READ)) {
2527 			case 0:
2528 				/* Well, this device is dead */
2529 				printk(KERN_NOTICE
2530 				       "md/raid10:%s: unable to read back "
2531 				       "corrected sectors"
2532 				       " (%d sectors at %llu on %s)\n",
2533 				       mdname(mddev), s,
2534 				       (unsigned long long)(
2535 					       sect +
2536 					       choose_data_offset(r10_bio, rdev)),
2537 				       bdevname(rdev->bdev, b));
2538 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2539 				       "drive\n",
2540 				       mdname(mddev),
2541 				       bdevname(rdev->bdev, b));
2542 				break;
2543 			case 1:
2544 				printk(KERN_INFO
2545 				       "md/raid10:%s: read error corrected"
2546 				       " (%d sectors at %llu on %s)\n",
2547 				       mdname(mddev), s,
2548 				       (unsigned long long)(
2549 					       sect +
2550 					       choose_data_offset(r10_bio, rdev)),
2551 				       bdevname(rdev->bdev, b));
2552 				atomic_add(s, &rdev->corrected_errors);
2553 			}
2554 
2555 			rdev_dec_pending(rdev, mddev);
2556 			rcu_read_lock();
2557 		}
2558 		rcu_read_unlock();
2559 
2560 		sectors -= s;
2561 		sect += s;
2562 	}
2563 }
2564 
2565 static int narrow_write_error(struct r10bio *r10_bio, int i)
2566 {
2567 	struct bio *bio = r10_bio->master_bio;
2568 	struct mddev *mddev = r10_bio->mddev;
2569 	struct r10conf *conf = mddev->private;
2570 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2571 	/* bio has the data to be written to slot 'i' where
2572 	 * we just recently had a write error.
2573 	 * We repeatedly clone the bio and trim down to one block,
2574 	 * then try the write.  Where the write fails we record
2575 	 * a bad block.
2576 	 * It is conceivable that the bio doesn't exactly align with
2577 	 * blocks.  We must handle this.
2578 	 *
2579 	 * We currently own a reference to the rdev.
2580 	 */
2581 
2582 	int block_sectors;
2583 	sector_t sector;
2584 	int sectors;
2585 	int sect_to_write = r10_bio->sectors;
2586 	int ok = 1;
2587 
2588 	if (rdev->badblocks.shift < 0)
2589 		return 0;
2590 
2591 	block_sectors = 1 << rdev->badblocks.shift;
2592 	sector = r10_bio->sector;
2593 	sectors = ((r10_bio->sector + block_sectors)
2594 		   & ~(sector_t)(block_sectors - 1))
2595 		- sector;
2596 
2597 	while (sect_to_write) {
2598 		struct bio *wbio;
2599 		if (sectors > sect_to_write)
2600 			sectors = sect_to_write;
2601 		/* Write at 'sector' for 'sectors' */
2602 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2603 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2604 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2605 				   choose_data_offset(r10_bio, rdev) +
2606 				   (sector - r10_bio->sector));
2607 		wbio->bi_bdev = rdev->bdev;
2608 		if (submit_bio_wait(WRITE, wbio) == 0)
2609 			/* Failure! */
2610 			ok = rdev_set_badblocks(rdev, sector,
2611 						sectors, 0)
2612 				&& ok;
2613 
2614 		bio_put(wbio);
2615 		sect_to_write -= sectors;
2616 		sector += sectors;
2617 		sectors = block_sectors;
2618 	}
2619 	return ok;
2620 }
2621 
2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623 {
2624 	int slot = r10_bio->read_slot;
2625 	struct bio *bio;
2626 	struct r10conf *conf = mddev->private;
2627 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628 	char b[BDEVNAME_SIZE];
2629 	unsigned long do_sync;
2630 	int max_sectors;
2631 
2632 	/* we got a read error. Maybe the drive is bad.  Maybe just
2633 	 * the block and we can fix it.
2634 	 * We freeze all other IO, and try reading the block from
2635 	 * other devices.  When we find one, we re-write
2636 	 * and check it that fixes the read error.
2637 	 * This is all done synchronously while the array is
2638 	 * frozen.
2639 	 */
2640 	bio = r10_bio->devs[slot].bio;
2641 	bdevname(bio->bi_bdev, b);
2642 	bio_put(bio);
2643 	r10_bio->devs[slot].bio = NULL;
2644 
2645 	if (mddev->ro == 0) {
2646 		freeze_array(conf, 1);
2647 		fix_read_error(conf, mddev, r10_bio);
2648 		unfreeze_array(conf);
2649 	} else
2650 		r10_bio->devs[slot].bio = IO_BLOCKED;
2651 
2652 	rdev_dec_pending(rdev, mddev);
2653 
2654 read_more:
2655 	rdev = read_balance(conf, r10_bio, &max_sectors);
2656 	if (rdev == NULL) {
2657 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2658 		       " read error for block %llu\n",
2659 		       mdname(mddev), b,
2660 		       (unsigned long long)r10_bio->sector);
2661 		raid_end_bio_io(r10_bio);
2662 		return;
2663 	}
2664 
2665 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2666 	slot = r10_bio->read_slot;
2667 	printk_ratelimited(
2668 		KERN_ERR
2669 		"md/raid10:%s: %s: redirecting "
2670 		"sector %llu to another mirror\n",
2671 		mdname(mddev),
2672 		bdevname(rdev->bdev, b),
2673 		(unsigned long long)r10_bio->sector);
2674 	bio = bio_clone_mddev(r10_bio->master_bio,
2675 			      GFP_NOIO, mddev);
2676 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2677 	r10_bio->devs[slot].bio = bio;
2678 	r10_bio->devs[slot].rdev = rdev;
2679 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2680 		+ choose_data_offset(r10_bio, rdev);
2681 	bio->bi_bdev = rdev->bdev;
2682 	bio->bi_rw = READ | do_sync;
2683 	bio->bi_private = r10_bio;
2684 	bio->bi_end_io = raid10_end_read_request;
2685 	if (max_sectors < r10_bio->sectors) {
2686 		/* Drat - have to split this up more */
2687 		struct bio *mbio = r10_bio->master_bio;
2688 		int sectors_handled =
2689 			r10_bio->sector + max_sectors
2690 			- mbio->bi_iter.bi_sector;
2691 		r10_bio->sectors = max_sectors;
2692 		spin_lock_irq(&conf->device_lock);
2693 		if (mbio->bi_phys_segments == 0)
2694 			mbio->bi_phys_segments = 2;
2695 		else
2696 			mbio->bi_phys_segments++;
2697 		spin_unlock_irq(&conf->device_lock);
2698 		generic_make_request(bio);
2699 
2700 		r10_bio = mempool_alloc(conf->r10bio_pool,
2701 					GFP_NOIO);
2702 		r10_bio->master_bio = mbio;
2703 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2704 		r10_bio->state = 0;
2705 		set_bit(R10BIO_ReadError,
2706 			&r10_bio->state);
2707 		r10_bio->mddev = mddev;
2708 		r10_bio->sector = mbio->bi_iter.bi_sector
2709 			+ sectors_handled;
2710 
2711 		goto read_more;
2712 	} else
2713 		generic_make_request(bio);
2714 }
2715 
2716 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2717 {
2718 	/* Some sort of write request has finished and it
2719 	 * succeeded in writing where we thought there was a
2720 	 * bad block.  So forget the bad block.
2721 	 * Or possibly if failed and we need to record
2722 	 * a bad block.
2723 	 */
2724 	int m;
2725 	struct md_rdev *rdev;
2726 
2727 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2728 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2729 		for (m = 0; m < conf->copies; m++) {
2730 			int dev = r10_bio->devs[m].devnum;
2731 			rdev = conf->mirrors[dev].rdev;
2732 			if (r10_bio->devs[m].bio == NULL)
2733 				continue;
2734 			if (test_bit(BIO_UPTODATE,
2735 				     &r10_bio->devs[m].bio->bi_flags)) {
2736 				rdev_clear_badblocks(
2737 					rdev,
2738 					r10_bio->devs[m].addr,
2739 					r10_bio->sectors, 0);
2740 			} else {
2741 				if (!rdev_set_badblocks(
2742 					    rdev,
2743 					    r10_bio->devs[m].addr,
2744 					    r10_bio->sectors, 0))
2745 					md_error(conf->mddev, rdev);
2746 			}
2747 			rdev = conf->mirrors[dev].replacement;
2748 			if (r10_bio->devs[m].repl_bio == NULL)
2749 				continue;
2750 			if (test_bit(BIO_UPTODATE,
2751 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2752 				rdev_clear_badblocks(
2753 					rdev,
2754 					r10_bio->devs[m].addr,
2755 					r10_bio->sectors, 0);
2756 			} else {
2757 				if (!rdev_set_badblocks(
2758 					    rdev,
2759 					    r10_bio->devs[m].addr,
2760 					    r10_bio->sectors, 0))
2761 					md_error(conf->mddev, rdev);
2762 			}
2763 		}
2764 		put_buf(r10_bio);
2765 	} else {
2766 		for (m = 0; m < conf->copies; m++) {
2767 			int dev = r10_bio->devs[m].devnum;
2768 			struct bio *bio = r10_bio->devs[m].bio;
2769 			rdev = conf->mirrors[dev].rdev;
2770 			if (bio == IO_MADE_GOOD) {
2771 				rdev_clear_badblocks(
2772 					rdev,
2773 					r10_bio->devs[m].addr,
2774 					r10_bio->sectors, 0);
2775 				rdev_dec_pending(rdev, conf->mddev);
2776 			} else if (bio != NULL &&
2777 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2778 				if (!narrow_write_error(r10_bio, m)) {
2779 					md_error(conf->mddev, rdev);
2780 					set_bit(R10BIO_Degraded,
2781 						&r10_bio->state);
2782 				}
2783 				rdev_dec_pending(rdev, conf->mddev);
2784 			}
2785 			bio = r10_bio->devs[m].repl_bio;
2786 			rdev = conf->mirrors[dev].replacement;
2787 			if (rdev && bio == IO_MADE_GOOD) {
2788 				rdev_clear_badblocks(
2789 					rdev,
2790 					r10_bio->devs[m].addr,
2791 					r10_bio->sectors, 0);
2792 				rdev_dec_pending(rdev, conf->mddev);
2793 			}
2794 		}
2795 		if (test_bit(R10BIO_WriteError,
2796 			     &r10_bio->state))
2797 			close_write(r10_bio);
2798 		raid_end_bio_io(r10_bio);
2799 	}
2800 }
2801 
2802 static void raid10d(struct md_thread *thread)
2803 {
2804 	struct mddev *mddev = thread->mddev;
2805 	struct r10bio *r10_bio;
2806 	unsigned long flags;
2807 	struct r10conf *conf = mddev->private;
2808 	struct list_head *head = &conf->retry_list;
2809 	struct blk_plug plug;
2810 
2811 	md_check_recovery(mddev);
2812 
2813 	blk_start_plug(&plug);
2814 	for (;;) {
2815 
2816 		flush_pending_writes(conf);
2817 
2818 		spin_lock_irqsave(&conf->device_lock, flags);
2819 		if (list_empty(head)) {
2820 			spin_unlock_irqrestore(&conf->device_lock, flags);
2821 			break;
2822 		}
2823 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2824 		list_del(head->prev);
2825 		conf->nr_queued--;
2826 		spin_unlock_irqrestore(&conf->device_lock, flags);
2827 
2828 		mddev = r10_bio->mddev;
2829 		conf = mddev->private;
2830 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2831 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2832 			handle_write_completed(conf, r10_bio);
2833 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2834 			reshape_request_write(mddev, r10_bio);
2835 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2836 			sync_request_write(mddev, r10_bio);
2837 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2838 			recovery_request_write(mddev, r10_bio);
2839 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2840 			handle_read_error(mddev, r10_bio);
2841 		else {
2842 			/* just a partial read to be scheduled from a
2843 			 * separate context
2844 			 */
2845 			int slot = r10_bio->read_slot;
2846 			generic_make_request(r10_bio->devs[slot].bio);
2847 		}
2848 
2849 		cond_resched();
2850 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2851 			md_check_recovery(mddev);
2852 	}
2853 	blk_finish_plug(&plug);
2854 }
2855 
2856 
2857 static int init_resync(struct r10conf *conf)
2858 {
2859 	int buffs;
2860 	int i;
2861 
2862 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863 	BUG_ON(conf->r10buf_pool);
2864 	conf->have_replacement = 0;
2865 	for (i = 0; i < conf->geo.raid_disks; i++)
2866 		if (conf->mirrors[i].replacement)
2867 			conf->have_replacement = 1;
2868 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869 	if (!conf->r10buf_pool)
2870 		return -ENOMEM;
2871 	conf->next_resync = 0;
2872 	return 0;
2873 }
2874 
2875 /*
2876  * perform a "sync" on one "block"
2877  *
2878  * We need to make sure that no normal I/O request - particularly write
2879  * requests - conflict with active sync requests.
2880  *
2881  * This is achieved by tracking pending requests and a 'barrier' concept
2882  * that can be installed to exclude normal IO requests.
2883  *
2884  * Resync and recovery are handled very differently.
2885  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886  *
2887  * For resync, we iterate over virtual addresses, read all copies,
2888  * and update if there are differences.  If only one copy is live,
2889  * skip it.
2890  * For recovery, we iterate over physical addresses, read a good
2891  * value for each non-in_sync drive, and over-write.
2892  *
2893  * So, for recovery we may have several outstanding complex requests for a
2894  * given address, one for each out-of-sync device.  We model this by allocating
2895  * a number of r10_bio structures, one for each out-of-sync device.
2896  * As we setup these structures, we collect all bio's together into a list
2897  * which we then process collectively to add pages, and then process again
2898  * to pass to generic_make_request.
2899  *
2900  * The r10_bio structures are linked using a borrowed master_bio pointer.
2901  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902  * has its remaining count decremented to 0, the whole complex operation
2903  * is complete.
2904  *
2905  */
2906 
2907 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2908 			     int *skipped, int go_faster)
2909 {
2910 	struct r10conf *conf = mddev->private;
2911 	struct r10bio *r10_bio;
2912 	struct bio *biolist = NULL, *bio;
2913 	sector_t max_sector, nr_sectors;
2914 	int i;
2915 	int max_sync;
2916 	sector_t sync_blocks;
2917 	sector_t sectors_skipped = 0;
2918 	int chunks_skipped = 0;
2919 	sector_t chunk_mask = conf->geo.chunk_mask;
2920 
2921 	if (!conf->r10buf_pool)
2922 		if (init_resync(conf))
2923 			return 0;
2924 
2925 	/*
2926 	 * Allow skipping a full rebuild for incremental assembly
2927 	 * of a clean array, like RAID1 does.
2928 	 */
2929 	if (mddev->bitmap == NULL &&
2930 	    mddev->recovery_cp == MaxSector &&
2931 	    mddev->reshape_position == MaxSector &&
2932 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935 	    conf->fullsync == 0) {
2936 		*skipped = 1;
2937 		return mddev->dev_sectors - sector_nr;
2938 	}
2939 
2940  skipped:
2941 	max_sector = mddev->dev_sectors;
2942 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944 		max_sector = mddev->resync_max_sectors;
2945 	if (sector_nr >= max_sector) {
2946 		/* If we aborted, we need to abort the
2947 		 * sync on the 'current' bitmap chucks (there can
2948 		 * be several when recovering multiple devices).
2949 		 * as we may have started syncing it but not finished.
2950 		 * We can find the current address in
2951 		 * mddev->curr_resync, but for recovery,
2952 		 * we need to convert that to several
2953 		 * virtual addresses.
2954 		 */
2955 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2956 			end_reshape(conf);
2957 			return 0;
2958 		}
2959 
2960 		if (mddev->curr_resync < max_sector) { /* aborted */
2961 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963 						&sync_blocks, 1);
2964 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965 				sector_t sect =
2966 					raid10_find_virt(conf, mddev->curr_resync, i);
2967 				bitmap_end_sync(mddev->bitmap, sect,
2968 						&sync_blocks, 1);
2969 			}
2970 		} else {
2971 			/* completed sync */
2972 			if ((!mddev->bitmap || conf->fullsync)
2973 			    && conf->have_replacement
2974 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 				/* Completed a full sync so the replacements
2976 				 * are now fully recovered.
2977 				 */
2978 				for (i = 0; i < conf->geo.raid_disks; i++)
2979 					if (conf->mirrors[i].replacement)
2980 						conf->mirrors[i].replacement
2981 							->recovery_offset
2982 							= MaxSector;
2983 			}
2984 			conf->fullsync = 0;
2985 		}
2986 		bitmap_close_sync(mddev->bitmap);
2987 		close_sync(conf);
2988 		*skipped = 1;
2989 		return sectors_skipped;
2990 	}
2991 
2992 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993 		return reshape_request(mddev, sector_nr, skipped);
2994 
2995 	if (chunks_skipped >= conf->geo.raid_disks) {
2996 		/* if there has been nothing to do on any drive,
2997 		 * then there is nothing to do at all..
2998 		 */
2999 		*skipped = 1;
3000 		return (max_sector - sector_nr) + sectors_skipped;
3001 	}
3002 
3003 	if (max_sector > mddev->resync_max)
3004 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005 
3006 	/* make sure whole request will fit in a chunk - if chunks
3007 	 * are meaningful
3008 	 */
3009 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3010 	    max_sector > (sector_nr | chunk_mask))
3011 		max_sector = (sector_nr | chunk_mask) + 1;
3012 	/*
3013 	 * If there is non-resync activity waiting for us then
3014 	 * put in a delay to throttle resync.
3015 	 */
3016 	if (!go_faster && conf->nr_waiting)
3017 		msleep_interruptible(1000);
3018 
3019 	/* Again, very different code for resync and recovery.
3020 	 * Both must result in an r10bio with a list of bios that
3021 	 * have bi_end_io, bi_sector, bi_bdev set,
3022 	 * and bi_private set to the r10bio.
3023 	 * For recovery, we may actually create several r10bios
3024 	 * with 2 bios in each, that correspond to the bios in the main one.
3025 	 * In this case, the subordinate r10bios link back through a
3026 	 * borrowed master_bio pointer, and the counter in the master
3027 	 * includes a ref from each subordinate.
3028 	 */
3029 	/* First, we decide what to do and set ->bi_end_io
3030 	 * To end_sync_read if we want to read, and
3031 	 * end_sync_write if we will want to write.
3032 	 */
3033 
3034 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036 		/* recovery... the complicated one */
3037 		int j;
3038 		r10_bio = NULL;
3039 
3040 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041 			int still_degraded;
3042 			struct r10bio *rb2;
3043 			sector_t sect;
3044 			int must_sync;
3045 			int any_working;
3046 			struct raid10_info *mirror = &conf->mirrors[i];
3047 
3048 			if ((mirror->rdev == NULL ||
3049 			     test_bit(In_sync, &mirror->rdev->flags))
3050 			    &&
3051 			    (mirror->replacement == NULL ||
3052 			     test_bit(Faulty,
3053 				      &mirror->replacement->flags)))
3054 				continue;
3055 
3056 			still_degraded = 0;
3057 			/* want to reconstruct this device */
3058 			rb2 = r10_bio;
3059 			sect = raid10_find_virt(conf, sector_nr, i);
3060 			if (sect >= mddev->resync_max_sectors) {
3061 				/* last stripe is not complete - don't
3062 				 * try to recover this sector.
3063 				 */
3064 				continue;
3065 			}
3066 			/* Unless we are doing a full sync, or a replacement
3067 			 * we only need to recover the block if it is set in
3068 			 * the bitmap
3069 			 */
3070 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071 						      &sync_blocks, 1);
3072 			if (sync_blocks < max_sync)
3073 				max_sync = sync_blocks;
3074 			if (!must_sync &&
3075 			    mirror->replacement == NULL &&
3076 			    !conf->fullsync) {
3077 				/* yep, skip the sync_blocks here, but don't assume
3078 				 * that there will never be anything to do here
3079 				 */
3080 				chunks_skipped = -1;
3081 				continue;
3082 			}
3083 
3084 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3085 			raise_barrier(conf, rb2 != NULL);
3086 			atomic_set(&r10_bio->remaining, 0);
3087 
3088 			r10_bio->master_bio = (struct bio*)rb2;
3089 			if (rb2)
3090 				atomic_inc(&rb2->remaining);
3091 			r10_bio->mddev = mddev;
3092 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3093 			r10_bio->sector = sect;
3094 
3095 			raid10_find_phys(conf, r10_bio);
3096 
3097 			/* Need to check if the array will still be
3098 			 * degraded
3099 			 */
3100 			for (j = 0; j < conf->geo.raid_disks; j++)
3101 				if (conf->mirrors[j].rdev == NULL ||
3102 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3103 					still_degraded = 1;
3104 					break;
3105 				}
3106 
3107 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108 						      &sync_blocks, still_degraded);
3109 
3110 			any_working = 0;
3111 			for (j=0; j<conf->copies;j++) {
3112 				int k;
3113 				int d = r10_bio->devs[j].devnum;
3114 				sector_t from_addr, to_addr;
3115 				struct md_rdev *rdev;
3116 				sector_t sector, first_bad;
3117 				int bad_sectors;
3118 				if (!conf->mirrors[d].rdev ||
3119 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3120 					continue;
3121 				/* This is where we read from */
3122 				any_working = 1;
3123 				rdev = conf->mirrors[d].rdev;
3124 				sector = r10_bio->devs[j].addr;
3125 
3126 				if (is_badblock(rdev, sector, max_sync,
3127 						&first_bad, &bad_sectors)) {
3128 					if (first_bad > sector)
3129 						max_sync = first_bad - sector;
3130 					else {
3131 						bad_sectors -= (sector
3132 								- first_bad);
3133 						if (max_sync > bad_sectors)
3134 							max_sync = bad_sectors;
3135 						continue;
3136 					}
3137 				}
3138 				bio = r10_bio->devs[0].bio;
3139 				bio_reset(bio);
3140 				bio->bi_next = biolist;
3141 				biolist = bio;
3142 				bio->bi_private = r10_bio;
3143 				bio->bi_end_io = end_sync_read;
3144 				bio->bi_rw = READ;
3145 				from_addr = r10_bio->devs[j].addr;
3146 				bio->bi_iter.bi_sector = from_addr +
3147 					rdev->data_offset;
3148 				bio->bi_bdev = rdev->bdev;
3149 				atomic_inc(&rdev->nr_pending);
3150 				/* and we write to 'i' (if not in_sync) */
3151 
3152 				for (k=0; k<conf->copies; k++)
3153 					if (r10_bio->devs[k].devnum == i)
3154 						break;
3155 				BUG_ON(k == conf->copies);
3156 				to_addr = r10_bio->devs[k].addr;
3157 				r10_bio->devs[0].devnum = d;
3158 				r10_bio->devs[0].addr = from_addr;
3159 				r10_bio->devs[1].devnum = i;
3160 				r10_bio->devs[1].addr = to_addr;
3161 
3162 				rdev = mirror->rdev;
3163 				if (!test_bit(In_sync, &rdev->flags)) {
3164 					bio = r10_bio->devs[1].bio;
3165 					bio_reset(bio);
3166 					bio->bi_next = biolist;
3167 					biolist = bio;
3168 					bio->bi_private = r10_bio;
3169 					bio->bi_end_io = end_sync_write;
3170 					bio->bi_rw = WRITE;
3171 					bio->bi_iter.bi_sector = to_addr
3172 						+ rdev->data_offset;
3173 					bio->bi_bdev = rdev->bdev;
3174 					atomic_inc(&r10_bio->remaining);
3175 				} else
3176 					r10_bio->devs[1].bio->bi_end_io = NULL;
3177 
3178 				/* and maybe write to replacement */
3179 				bio = r10_bio->devs[1].repl_bio;
3180 				if (bio)
3181 					bio->bi_end_io = NULL;
3182 				rdev = mirror->replacement;
3183 				/* Note: if rdev != NULL, then bio
3184 				 * cannot be NULL as r10buf_pool_alloc will
3185 				 * have allocated it.
3186 				 * So the second test here is pointless.
3187 				 * But it keeps semantic-checkers happy, and
3188 				 * this comment keeps human reviewers
3189 				 * happy.
3190 				 */
3191 				if (rdev == NULL || bio == NULL ||
3192 				    test_bit(Faulty, &rdev->flags))
3193 					break;
3194 				bio_reset(bio);
3195 				bio->bi_next = biolist;
3196 				biolist = bio;
3197 				bio->bi_private = r10_bio;
3198 				bio->bi_end_io = end_sync_write;
3199 				bio->bi_rw = WRITE;
3200 				bio->bi_iter.bi_sector = to_addr +
3201 					rdev->data_offset;
3202 				bio->bi_bdev = rdev->bdev;
3203 				atomic_inc(&r10_bio->remaining);
3204 				break;
3205 			}
3206 			if (j == conf->copies) {
3207 				/* Cannot recover, so abort the recovery or
3208 				 * record a bad block */
3209 				if (any_working) {
3210 					/* problem is that there are bad blocks
3211 					 * on other device(s)
3212 					 */
3213 					int k;
3214 					for (k = 0; k < conf->copies; k++)
3215 						if (r10_bio->devs[k].devnum == i)
3216 							break;
3217 					if (!test_bit(In_sync,
3218 						      &mirror->rdev->flags)
3219 					    && !rdev_set_badblocks(
3220 						    mirror->rdev,
3221 						    r10_bio->devs[k].addr,
3222 						    max_sync, 0))
3223 						any_working = 0;
3224 					if (mirror->replacement &&
3225 					    !rdev_set_badblocks(
3226 						    mirror->replacement,
3227 						    r10_bio->devs[k].addr,
3228 						    max_sync, 0))
3229 						any_working = 0;
3230 				}
3231 				if (!any_working)  {
3232 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3233 							      &mddev->recovery))
3234 						printk(KERN_INFO "md/raid10:%s: insufficient "
3235 						       "working devices for recovery.\n",
3236 						       mdname(mddev));
3237 					mirror->recovery_disabled
3238 						= mddev->recovery_disabled;
3239 				}
3240 				put_buf(r10_bio);
3241 				if (rb2)
3242 					atomic_dec(&rb2->remaining);
3243 				r10_bio = rb2;
3244 				break;
3245 			}
3246 		}
3247 		if (biolist == NULL) {
3248 			while (r10_bio) {
3249 				struct r10bio *rb2 = r10_bio;
3250 				r10_bio = (struct r10bio*) rb2->master_bio;
3251 				rb2->master_bio = NULL;
3252 				put_buf(rb2);
3253 			}
3254 			goto giveup;
3255 		}
3256 	} else {
3257 		/* resync. Schedule a read for every block at this virt offset */
3258 		int count = 0;
3259 
3260 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3261 
3262 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3263 				       &sync_blocks, mddev->degraded) &&
3264 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3265 						 &mddev->recovery)) {
3266 			/* We can skip this block */
3267 			*skipped = 1;
3268 			return sync_blocks + sectors_skipped;
3269 		}
3270 		if (sync_blocks < max_sync)
3271 			max_sync = sync_blocks;
3272 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3273 
3274 		r10_bio->mddev = mddev;
3275 		atomic_set(&r10_bio->remaining, 0);
3276 		raise_barrier(conf, 0);
3277 		conf->next_resync = sector_nr;
3278 
3279 		r10_bio->master_bio = NULL;
3280 		r10_bio->sector = sector_nr;
3281 		set_bit(R10BIO_IsSync, &r10_bio->state);
3282 		raid10_find_phys(conf, r10_bio);
3283 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3284 
3285 		for (i = 0; i < conf->copies; i++) {
3286 			int d = r10_bio->devs[i].devnum;
3287 			sector_t first_bad, sector;
3288 			int bad_sectors;
3289 
3290 			if (r10_bio->devs[i].repl_bio)
3291 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3292 
3293 			bio = r10_bio->devs[i].bio;
3294 			bio_reset(bio);
3295 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3296 			if (conf->mirrors[d].rdev == NULL ||
3297 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3298 				continue;
3299 			sector = r10_bio->devs[i].addr;
3300 			if (is_badblock(conf->mirrors[d].rdev,
3301 					sector, max_sync,
3302 					&first_bad, &bad_sectors)) {
3303 				if (first_bad > sector)
3304 					max_sync = first_bad - sector;
3305 				else {
3306 					bad_sectors -= (sector - first_bad);
3307 					if (max_sync > bad_sectors)
3308 						max_sync = bad_sectors;
3309 					continue;
3310 				}
3311 			}
3312 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3313 			atomic_inc(&r10_bio->remaining);
3314 			bio->bi_next = biolist;
3315 			biolist = bio;
3316 			bio->bi_private = r10_bio;
3317 			bio->bi_end_io = end_sync_read;
3318 			bio->bi_rw = READ;
3319 			bio->bi_iter.bi_sector = sector +
3320 				conf->mirrors[d].rdev->data_offset;
3321 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3322 			count++;
3323 
3324 			if (conf->mirrors[d].replacement == NULL ||
3325 			    test_bit(Faulty,
3326 				     &conf->mirrors[d].replacement->flags))
3327 				continue;
3328 
3329 			/* Need to set up for writing to the replacement */
3330 			bio = r10_bio->devs[i].repl_bio;
3331 			bio_reset(bio);
3332 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3333 
3334 			sector = r10_bio->devs[i].addr;
3335 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3336 			bio->bi_next = biolist;
3337 			biolist = bio;
3338 			bio->bi_private = r10_bio;
3339 			bio->bi_end_io = end_sync_write;
3340 			bio->bi_rw = WRITE;
3341 			bio->bi_iter.bi_sector = sector +
3342 				conf->mirrors[d].replacement->data_offset;
3343 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3344 			count++;
3345 		}
3346 
3347 		if (count < 2) {
3348 			for (i=0; i<conf->copies; i++) {
3349 				int d = r10_bio->devs[i].devnum;
3350 				if (r10_bio->devs[i].bio->bi_end_io)
3351 					rdev_dec_pending(conf->mirrors[d].rdev,
3352 							 mddev);
3353 				if (r10_bio->devs[i].repl_bio &&
3354 				    r10_bio->devs[i].repl_bio->bi_end_io)
3355 					rdev_dec_pending(
3356 						conf->mirrors[d].replacement,
3357 						mddev);
3358 			}
3359 			put_buf(r10_bio);
3360 			biolist = NULL;
3361 			goto giveup;
3362 		}
3363 	}
3364 
3365 	nr_sectors = 0;
3366 	if (sector_nr + max_sync < max_sector)
3367 		max_sector = sector_nr + max_sync;
3368 	do {
3369 		struct page *page;
3370 		int len = PAGE_SIZE;
3371 		if (sector_nr + (len>>9) > max_sector)
3372 			len = (max_sector - sector_nr) << 9;
3373 		if (len == 0)
3374 			break;
3375 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3376 			struct bio *bio2;
3377 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3378 			if (bio_add_page(bio, page, len, 0))
3379 				continue;
3380 
3381 			/* stop here */
3382 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3383 			for (bio2 = biolist;
3384 			     bio2 && bio2 != bio;
3385 			     bio2 = bio2->bi_next) {
3386 				/* remove last page from this bio */
3387 				bio2->bi_vcnt--;
3388 				bio2->bi_iter.bi_size -= len;
3389 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3390 			}
3391 			goto bio_full;
3392 		}
3393 		nr_sectors += len>>9;
3394 		sector_nr += len>>9;
3395 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3396  bio_full:
3397 	r10_bio->sectors = nr_sectors;
3398 
3399 	while (biolist) {
3400 		bio = biolist;
3401 		biolist = biolist->bi_next;
3402 
3403 		bio->bi_next = NULL;
3404 		r10_bio = bio->bi_private;
3405 		r10_bio->sectors = nr_sectors;
3406 
3407 		if (bio->bi_end_io == end_sync_read) {
3408 			md_sync_acct(bio->bi_bdev, nr_sectors);
3409 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3410 			generic_make_request(bio);
3411 		}
3412 	}
3413 
3414 	if (sectors_skipped)
3415 		/* pretend they weren't skipped, it makes
3416 		 * no important difference in this case
3417 		 */
3418 		md_done_sync(mddev, sectors_skipped, 1);
3419 
3420 	return sectors_skipped + nr_sectors;
3421  giveup:
3422 	/* There is nowhere to write, so all non-sync
3423 	 * drives must be failed or in resync, all drives
3424 	 * have a bad block, so try the next chunk...
3425 	 */
3426 	if (sector_nr + max_sync < max_sector)
3427 		max_sector = sector_nr + max_sync;
3428 
3429 	sectors_skipped += (max_sector - sector_nr);
3430 	chunks_skipped ++;
3431 	sector_nr = max_sector;
3432 	goto skipped;
3433 }
3434 
3435 static sector_t
3436 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437 {
3438 	sector_t size;
3439 	struct r10conf *conf = mddev->private;
3440 
3441 	if (!raid_disks)
3442 		raid_disks = min(conf->geo.raid_disks,
3443 				 conf->prev.raid_disks);
3444 	if (!sectors)
3445 		sectors = conf->dev_sectors;
3446 
3447 	size = sectors >> conf->geo.chunk_shift;
3448 	sector_div(size, conf->geo.far_copies);
3449 	size = size * raid_disks;
3450 	sector_div(size, conf->geo.near_copies);
3451 
3452 	return size << conf->geo.chunk_shift;
3453 }
3454 
3455 static void calc_sectors(struct r10conf *conf, sector_t size)
3456 {
3457 	/* Calculate the number of sectors-per-device that will
3458 	 * actually be used, and set conf->dev_sectors and
3459 	 * conf->stride
3460 	 */
3461 
3462 	size = size >> conf->geo.chunk_shift;
3463 	sector_div(size, conf->geo.far_copies);
3464 	size = size * conf->geo.raid_disks;
3465 	sector_div(size, conf->geo.near_copies);
3466 	/* 'size' is now the number of chunks in the array */
3467 	/* calculate "used chunks per device" */
3468 	size = size * conf->copies;
3469 
3470 	/* We need to round up when dividing by raid_disks to
3471 	 * get the stride size.
3472 	 */
3473 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474 
3475 	conf->dev_sectors = size << conf->geo.chunk_shift;
3476 
3477 	if (conf->geo.far_offset)
3478 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3479 	else {
3480 		sector_div(size, conf->geo.far_copies);
3481 		conf->geo.stride = size << conf->geo.chunk_shift;
3482 	}
3483 }
3484 
3485 enum geo_type {geo_new, geo_old, geo_start};
3486 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487 {
3488 	int nc, fc, fo;
3489 	int layout, chunk, disks;
3490 	switch (new) {
3491 	case geo_old:
3492 		layout = mddev->layout;
3493 		chunk = mddev->chunk_sectors;
3494 		disks = mddev->raid_disks - mddev->delta_disks;
3495 		break;
3496 	case geo_new:
3497 		layout = mddev->new_layout;
3498 		chunk = mddev->new_chunk_sectors;
3499 		disks = mddev->raid_disks;
3500 		break;
3501 	default: /* avoid 'may be unused' warnings */
3502 	case geo_start: /* new when starting reshape - raid_disks not
3503 			 * updated yet. */
3504 		layout = mddev->new_layout;
3505 		chunk = mddev->new_chunk_sectors;
3506 		disks = mddev->raid_disks + mddev->delta_disks;
3507 		break;
3508 	}
3509 	if (layout >> 18)
3510 		return -1;
3511 	if (chunk < (PAGE_SIZE >> 9) ||
3512 	    !is_power_of_2(chunk))
3513 		return -2;
3514 	nc = layout & 255;
3515 	fc = (layout >> 8) & 255;
3516 	fo = layout & (1<<16);
3517 	geo->raid_disks = disks;
3518 	geo->near_copies = nc;
3519 	geo->far_copies = fc;
3520 	geo->far_offset = fo;
3521 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3522 	geo->chunk_mask = chunk - 1;
3523 	geo->chunk_shift = ffz(~chunk);
3524 	return nc*fc;
3525 }
3526 
3527 static struct r10conf *setup_conf(struct mddev *mddev)
3528 {
3529 	struct r10conf *conf = NULL;
3530 	int err = -EINVAL;
3531 	struct geom geo;
3532 	int copies;
3533 
3534 	copies = setup_geo(&geo, mddev, geo_new);
3535 
3536 	if (copies == -2) {
3537 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539 		       mdname(mddev), PAGE_SIZE);
3540 		goto out;
3541 	}
3542 
3543 	if (copies < 2 || copies > mddev->raid_disks) {
3544 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545 		       mdname(mddev), mddev->new_layout);
3546 		goto out;
3547 	}
3548 
3549 	err = -ENOMEM;
3550 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551 	if (!conf)
3552 		goto out;
3553 
3554 	/* FIXME calc properly */
3555 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556 							    max(0,-mddev->delta_disks)),
3557 				GFP_KERNEL);
3558 	if (!conf->mirrors)
3559 		goto out;
3560 
3561 	conf->tmppage = alloc_page(GFP_KERNEL);
3562 	if (!conf->tmppage)
3563 		goto out;
3564 
3565 	conf->geo = geo;
3566 	conf->copies = copies;
3567 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568 					   r10bio_pool_free, conf);
3569 	if (!conf->r10bio_pool)
3570 		goto out;
3571 
3572 	calc_sectors(conf, mddev->dev_sectors);
3573 	if (mddev->reshape_position == MaxSector) {
3574 		conf->prev = conf->geo;
3575 		conf->reshape_progress = MaxSector;
3576 	} else {
3577 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578 			err = -EINVAL;
3579 			goto out;
3580 		}
3581 		conf->reshape_progress = mddev->reshape_position;
3582 		if (conf->prev.far_offset)
3583 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3584 		else
3585 			/* far_copies must be 1 */
3586 			conf->prev.stride = conf->dev_sectors;
3587 	}
3588 	spin_lock_init(&conf->device_lock);
3589 	INIT_LIST_HEAD(&conf->retry_list);
3590 
3591 	spin_lock_init(&conf->resync_lock);
3592 	init_waitqueue_head(&conf->wait_barrier);
3593 
3594 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595 	if (!conf->thread)
3596 		goto out;
3597 
3598 	conf->mddev = mddev;
3599 	return conf;
3600 
3601  out:
3602 	if (err == -ENOMEM)
3603 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604 		       mdname(mddev));
3605 	if (conf) {
3606 		if (conf->r10bio_pool)
3607 			mempool_destroy(conf->r10bio_pool);
3608 		kfree(conf->mirrors);
3609 		safe_put_page(conf->tmppage);
3610 		kfree(conf);
3611 	}
3612 	return ERR_PTR(err);
3613 }
3614 
3615 static int run(struct mddev *mddev)
3616 {
3617 	struct r10conf *conf;
3618 	int i, disk_idx, chunk_size;
3619 	struct raid10_info *disk;
3620 	struct md_rdev *rdev;
3621 	sector_t size;
3622 	sector_t min_offset_diff = 0;
3623 	int first = 1;
3624 	bool discard_supported = false;
3625 
3626 	if (mddev->private == NULL) {
3627 		conf = setup_conf(mddev);
3628 		if (IS_ERR(conf))
3629 			return PTR_ERR(conf);
3630 		mddev->private = conf;
3631 	}
3632 	conf = mddev->private;
3633 	if (!conf)
3634 		goto out;
3635 
3636 	mddev->thread = conf->thread;
3637 	conf->thread = NULL;
3638 
3639 	chunk_size = mddev->chunk_sectors << 9;
3640 	if (mddev->queue) {
3641 		blk_queue_max_discard_sectors(mddev->queue,
3642 					      mddev->chunk_sectors);
3643 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3644 		blk_queue_io_min(mddev->queue, chunk_size);
3645 		if (conf->geo.raid_disks % conf->geo.near_copies)
3646 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647 		else
3648 			blk_queue_io_opt(mddev->queue, chunk_size *
3649 					 (conf->geo.raid_disks / conf->geo.near_copies));
3650 	}
3651 
3652 	rdev_for_each(rdev, mddev) {
3653 		long long diff;
3654 		struct request_queue *q;
3655 
3656 		disk_idx = rdev->raid_disk;
3657 		if (disk_idx < 0)
3658 			continue;
3659 		if (disk_idx >= conf->geo.raid_disks &&
3660 		    disk_idx >= conf->prev.raid_disks)
3661 			continue;
3662 		disk = conf->mirrors + disk_idx;
3663 
3664 		if (test_bit(Replacement, &rdev->flags)) {
3665 			if (disk->replacement)
3666 				goto out_free_conf;
3667 			disk->replacement = rdev;
3668 		} else {
3669 			if (disk->rdev)
3670 				goto out_free_conf;
3671 			disk->rdev = rdev;
3672 		}
3673 		q = bdev_get_queue(rdev->bdev);
3674 		if (q->merge_bvec_fn)
3675 			mddev->merge_check_needed = 1;
3676 		diff = (rdev->new_data_offset - rdev->data_offset);
3677 		if (!mddev->reshape_backwards)
3678 			diff = -diff;
3679 		if (diff < 0)
3680 			diff = 0;
3681 		if (first || diff < min_offset_diff)
3682 			min_offset_diff = diff;
3683 
3684 		if (mddev->gendisk)
3685 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3686 					  rdev->data_offset << 9);
3687 
3688 		disk->head_position = 0;
3689 
3690 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691 			discard_supported = true;
3692 	}
3693 
3694 	if (mddev->queue) {
3695 		if (discard_supported)
3696 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697 						mddev->queue);
3698 		else
3699 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700 						  mddev->queue);
3701 	}
3702 	/* need to check that every block has at least one working mirror */
3703 	if (!enough(conf, -1)) {
3704 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705 		       mdname(mddev));
3706 		goto out_free_conf;
3707 	}
3708 
3709 	if (conf->reshape_progress != MaxSector) {
3710 		/* must ensure that shape change is supported */
3711 		if (conf->geo.far_copies != 1 &&
3712 		    conf->geo.far_offset == 0)
3713 			goto out_free_conf;
3714 		if (conf->prev.far_copies != 1 &&
3715 		    conf->prev.far_offset == 0)
3716 			goto out_free_conf;
3717 	}
3718 
3719 	mddev->degraded = 0;
3720 	for (i = 0;
3721 	     i < conf->geo.raid_disks
3722 		     || i < conf->prev.raid_disks;
3723 	     i++) {
3724 
3725 		disk = conf->mirrors + i;
3726 
3727 		if (!disk->rdev && disk->replacement) {
3728 			/* The replacement is all we have - use it */
3729 			disk->rdev = disk->replacement;
3730 			disk->replacement = NULL;
3731 			clear_bit(Replacement, &disk->rdev->flags);
3732 		}
3733 
3734 		if (!disk->rdev ||
3735 		    !test_bit(In_sync, &disk->rdev->flags)) {
3736 			disk->head_position = 0;
3737 			mddev->degraded++;
3738 			if (disk->rdev &&
3739 			    disk->rdev->saved_raid_disk < 0)
3740 				conf->fullsync = 1;
3741 		}
3742 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3743 	}
3744 
3745 	if (mddev->recovery_cp != MaxSector)
3746 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3747 		       " -- starting background reconstruction\n",
3748 		       mdname(mddev));
3749 	printk(KERN_INFO
3750 		"md/raid10:%s: active with %d out of %d devices\n",
3751 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752 		conf->geo.raid_disks);
3753 	/*
3754 	 * Ok, everything is just fine now
3755 	 */
3756 	mddev->dev_sectors = conf->dev_sectors;
3757 	size = raid10_size(mddev, 0, 0);
3758 	md_set_array_sectors(mddev, size);
3759 	mddev->resync_max_sectors = size;
3760 
3761 	if (mddev->queue) {
3762 		int stripe = conf->geo.raid_disks *
3763 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765 		mddev->queue->backing_dev_info.congested_data = mddev;
3766 
3767 		/* Calculate max read-ahead size.
3768 		 * We need to readahead at least twice a whole stripe....
3769 		 * maybe...
3770 		 */
3771 		stripe /= conf->geo.near_copies;
3772 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775 	}
3776 
3777 
3778 	if (md_integrity_register(mddev))
3779 		goto out_free_conf;
3780 
3781 	if (conf->reshape_progress != MaxSector) {
3782 		unsigned long before_length, after_length;
3783 
3784 		before_length = ((1 << conf->prev.chunk_shift) *
3785 				 conf->prev.far_copies);
3786 		after_length = ((1 << conf->geo.chunk_shift) *
3787 				conf->geo.far_copies);
3788 
3789 		if (max(before_length, after_length) > min_offset_diff) {
3790 			/* This cannot work */
3791 			printk("md/raid10: offset difference not enough to continue reshape\n");
3792 			goto out_free_conf;
3793 		}
3794 		conf->offset_diff = min_offset_diff;
3795 
3796 		conf->reshape_safe = conf->reshape_progress;
3797 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802 							"reshape");
3803 	}
3804 
3805 	return 0;
3806 
3807 out_free_conf:
3808 	md_unregister_thread(&mddev->thread);
3809 	if (conf->r10bio_pool)
3810 		mempool_destroy(conf->r10bio_pool);
3811 	safe_put_page(conf->tmppage);
3812 	kfree(conf->mirrors);
3813 	kfree(conf);
3814 	mddev->private = NULL;
3815 out:
3816 	return -EIO;
3817 }
3818 
3819 static int stop(struct mddev *mddev)
3820 {
3821 	struct r10conf *conf = mddev->private;
3822 
3823 	raise_barrier(conf, 0);
3824 	lower_barrier(conf);
3825 
3826 	md_unregister_thread(&mddev->thread);
3827 	if (mddev->queue)
3828 		/* the unplug fn references 'conf'*/
3829 		blk_sync_queue(mddev->queue);
3830 
3831 	if (conf->r10bio_pool)
3832 		mempool_destroy(conf->r10bio_pool);
3833 	safe_put_page(conf->tmppage);
3834 	kfree(conf->mirrors);
3835 	kfree(conf);
3836 	mddev->private = NULL;
3837 	return 0;
3838 }
3839 
3840 static void raid10_quiesce(struct mddev *mddev, int state)
3841 {
3842 	struct r10conf *conf = mddev->private;
3843 
3844 	switch(state) {
3845 	case 1:
3846 		raise_barrier(conf, 0);
3847 		break;
3848 	case 0:
3849 		lower_barrier(conf);
3850 		break;
3851 	}
3852 }
3853 
3854 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855 {
3856 	/* Resize of 'far' arrays is not supported.
3857 	 * For 'near' and 'offset' arrays we can set the
3858 	 * number of sectors used to be an appropriate multiple
3859 	 * of the chunk size.
3860 	 * For 'offset', this is far_copies*chunksize.
3861 	 * For 'near' the multiplier is the LCM of
3862 	 * near_copies and raid_disks.
3863 	 * So if far_copies > 1 && !far_offset, fail.
3864 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3865 	 * multiply by chunk_size.  Then round to this number.
3866 	 * This is mostly done by raid10_size()
3867 	 */
3868 	struct r10conf *conf = mddev->private;
3869 	sector_t oldsize, size;
3870 
3871 	if (mddev->reshape_position != MaxSector)
3872 		return -EBUSY;
3873 
3874 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875 		return -EINVAL;
3876 
3877 	oldsize = raid10_size(mddev, 0, 0);
3878 	size = raid10_size(mddev, sectors, 0);
3879 	if (mddev->external_size &&
3880 	    mddev->array_sectors > size)
3881 		return -EINVAL;
3882 	if (mddev->bitmap) {
3883 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884 		if (ret)
3885 			return ret;
3886 	}
3887 	md_set_array_sectors(mddev, size);
3888 	set_capacity(mddev->gendisk, mddev->array_sectors);
3889 	revalidate_disk(mddev->gendisk);
3890 	if (sectors > mddev->dev_sectors &&
3891 	    mddev->recovery_cp > oldsize) {
3892 		mddev->recovery_cp = oldsize;
3893 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894 	}
3895 	calc_sectors(conf, sectors);
3896 	mddev->dev_sectors = conf->dev_sectors;
3897 	mddev->resync_max_sectors = size;
3898 	return 0;
3899 }
3900 
3901 static void *raid10_takeover_raid0(struct mddev *mddev)
3902 {
3903 	struct md_rdev *rdev;
3904 	struct r10conf *conf;
3905 
3906 	if (mddev->degraded > 0) {
3907 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908 		       mdname(mddev));
3909 		return ERR_PTR(-EINVAL);
3910 	}
3911 
3912 	/* Set new parameters */
3913 	mddev->new_level = 10;
3914 	/* new layout: far_copies = 1, near_copies = 2 */
3915 	mddev->new_layout = (1<<8) + 2;
3916 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3917 	mddev->delta_disks = mddev->raid_disks;
3918 	mddev->raid_disks *= 2;
3919 	/* make sure it will be not marked as dirty */
3920 	mddev->recovery_cp = MaxSector;
3921 
3922 	conf = setup_conf(mddev);
3923 	if (!IS_ERR(conf)) {
3924 		rdev_for_each(rdev, mddev)
3925 			if (rdev->raid_disk >= 0)
3926 				rdev->new_raid_disk = rdev->raid_disk * 2;
3927 		conf->barrier = 1;
3928 	}
3929 
3930 	return conf;
3931 }
3932 
3933 static void *raid10_takeover(struct mddev *mddev)
3934 {
3935 	struct r0conf *raid0_conf;
3936 
3937 	/* raid10 can take over:
3938 	 *  raid0 - providing it has only two drives
3939 	 */
3940 	if (mddev->level == 0) {
3941 		/* for raid0 takeover only one zone is supported */
3942 		raid0_conf = mddev->private;
3943 		if (raid0_conf->nr_strip_zones > 1) {
3944 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945 			       " with more than one zone.\n",
3946 			       mdname(mddev));
3947 			return ERR_PTR(-EINVAL);
3948 		}
3949 		return raid10_takeover_raid0(mddev);
3950 	}
3951 	return ERR_PTR(-EINVAL);
3952 }
3953 
3954 static int raid10_check_reshape(struct mddev *mddev)
3955 {
3956 	/* Called when there is a request to change
3957 	 * - layout (to ->new_layout)
3958 	 * - chunk size (to ->new_chunk_sectors)
3959 	 * - raid_disks (by delta_disks)
3960 	 * or when trying to restart a reshape that was ongoing.
3961 	 *
3962 	 * We need to validate the request and possibly allocate
3963 	 * space if that might be an issue later.
3964 	 *
3965 	 * Currently we reject any reshape of a 'far' mode array,
3966 	 * allow chunk size to change if new is generally acceptable,
3967 	 * allow raid_disks to increase, and allow
3968 	 * a switch between 'near' mode and 'offset' mode.
3969 	 */
3970 	struct r10conf *conf = mddev->private;
3971 	struct geom geo;
3972 
3973 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974 		return -EINVAL;
3975 
3976 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977 		/* mustn't change number of copies */
3978 		return -EINVAL;
3979 	if (geo.far_copies > 1 && !geo.far_offset)
3980 		/* Cannot switch to 'far' mode */
3981 		return -EINVAL;
3982 
3983 	if (mddev->array_sectors & geo.chunk_mask)
3984 			/* not factor of array size */
3985 			return -EINVAL;
3986 
3987 	if (!enough(conf, -1))
3988 		return -EINVAL;
3989 
3990 	kfree(conf->mirrors_new);
3991 	conf->mirrors_new = NULL;
3992 	if (mddev->delta_disks > 0) {
3993 		/* allocate new 'mirrors' list */
3994 		conf->mirrors_new = kzalloc(
3995 			sizeof(struct raid10_info)
3996 			*(mddev->raid_disks +
3997 			  mddev->delta_disks),
3998 			GFP_KERNEL);
3999 		if (!conf->mirrors_new)
4000 			return -ENOMEM;
4001 	}
4002 	return 0;
4003 }
4004 
4005 /*
4006  * Need to check if array has failed when deciding whether to:
4007  *  - start an array
4008  *  - remove non-faulty devices
4009  *  - add a spare
4010  *  - allow a reshape
4011  * This determination is simple when no reshape is happening.
4012  * However if there is a reshape, we need to carefully check
4013  * both the before and after sections.
4014  * This is because some failed devices may only affect one
4015  * of the two sections, and some non-in_sync devices may
4016  * be insync in the section most affected by failed devices.
4017  */
4018 static int calc_degraded(struct r10conf *conf)
4019 {
4020 	int degraded, degraded2;
4021 	int i;
4022 
4023 	rcu_read_lock();
4024 	degraded = 0;
4025 	/* 'prev' section first */
4026 	for (i = 0; i < conf->prev.raid_disks; i++) {
4027 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028 		if (!rdev || test_bit(Faulty, &rdev->flags))
4029 			degraded++;
4030 		else if (!test_bit(In_sync, &rdev->flags))
4031 			/* When we can reduce the number of devices in
4032 			 * an array, this might not contribute to
4033 			 * 'degraded'.  It does now.
4034 			 */
4035 			degraded++;
4036 	}
4037 	rcu_read_unlock();
4038 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4039 		return degraded;
4040 	rcu_read_lock();
4041 	degraded2 = 0;
4042 	for (i = 0; i < conf->geo.raid_disks; i++) {
4043 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044 		if (!rdev || test_bit(Faulty, &rdev->flags))
4045 			degraded2++;
4046 		else if (!test_bit(In_sync, &rdev->flags)) {
4047 			/* If reshape is increasing the number of devices,
4048 			 * this section has already been recovered, so
4049 			 * it doesn't contribute to degraded.
4050 			 * else it does.
4051 			 */
4052 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053 				degraded2++;
4054 		}
4055 	}
4056 	rcu_read_unlock();
4057 	if (degraded2 > degraded)
4058 		return degraded2;
4059 	return degraded;
4060 }
4061 
4062 static int raid10_start_reshape(struct mddev *mddev)
4063 {
4064 	/* A 'reshape' has been requested. This commits
4065 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066 	 * This also checks if there are enough spares and adds them
4067 	 * to the array.
4068 	 * We currently require enough spares to make the final
4069 	 * array non-degraded.  We also require that the difference
4070 	 * between old and new data_offset - on each device - is
4071 	 * enough that we never risk over-writing.
4072 	 */
4073 
4074 	unsigned long before_length, after_length;
4075 	sector_t min_offset_diff = 0;
4076 	int first = 1;
4077 	struct geom new;
4078 	struct r10conf *conf = mddev->private;
4079 	struct md_rdev *rdev;
4080 	int spares = 0;
4081 	int ret;
4082 
4083 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084 		return -EBUSY;
4085 
4086 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087 		return -EINVAL;
4088 
4089 	before_length = ((1 << conf->prev.chunk_shift) *
4090 			 conf->prev.far_copies);
4091 	after_length = ((1 << conf->geo.chunk_shift) *
4092 			conf->geo.far_copies);
4093 
4094 	rdev_for_each(rdev, mddev) {
4095 		if (!test_bit(In_sync, &rdev->flags)
4096 		    && !test_bit(Faulty, &rdev->flags))
4097 			spares++;
4098 		if (rdev->raid_disk >= 0) {
4099 			long long diff = (rdev->new_data_offset
4100 					  - rdev->data_offset);
4101 			if (!mddev->reshape_backwards)
4102 				diff = -diff;
4103 			if (diff < 0)
4104 				diff = 0;
4105 			if (first || diff < min_offset_diff)
4106 				min_offset_diff = diff;
4107 		}
4108 	}
4109 
4110 	if (max(before_length, after_length) > min_offset_diff)
4111 		return -EINVAL;
4112 
4113 	if (spares < mddev->delta_disks)
4114 		return -EINVAL;
4115 
4116 	conf->offset_diff = min_offset_diff;
4117 	spin_lock_irq(&conf->device_lock);
4118 	if (conf->mirrors_new) {
4119 		memcpy(conf->mirrors_new, conf->mirrors,
4120 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4121 		smp_mb();
4122 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123 		conf->mirrors_old = conf->mirrors;
4124 		conf->mirrors = conf->mirrors_new;
4125 		conf->mirrors_new = NULL;
4126 	}
4127 	setup_geo(&conf->geo, mddev, geo_start);
4128 	smp_mb();
4129 	if (mddev->reshape_backwards) {
4130 		sector_t size = raid10_size(mddev, 0, 0);
4131 		if (size < mddev->array_sectors) {
4132 			spin_unlock_irq(&conf->device_lock);
4133 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134 			       mdname(mddev));
4135 			return -EINVAL;
4136 		}
4137 		mddev->resync_max_sectors = size;
4138 		conf->reshape_progress = size;
4139 	} else
4140 		conf->reshape_progress = 0;
4141 	spin_unlock_irq(&conf->device_lock);
4142 
4143 	if (mddev->delta_disks && mddev->bitmap) {
4144 		ret = bitmap_resize(mddev->bitmap,
4145 				    raid10_size(mddev, 0,
4146 						conf->geo.raid_disks),
4147 				    0, 0);
4148 		if (ret)
4149 			goto abort;
4150 	}
4151 	if (mddev->delta_disks > 0) {
4152 		rdev_for_each(rdev, mddev)
4153 			if (rdev->raid_disk < 0 &&
4154 			    !test_bit(Faulty, &rdev->flags)) {
4155 				if (raid10_add_disk(mddev, rdev) == 0) {
4156 					if (rdev->raid_disk >=
4157 					    conf->prev.raid_disks)
4158 						set_bit(In_sync, &rdev->flags);
4159 					else
4160 						rdev->recovery_offset = 0;
4161 
4162 					if (sysfs_link_rdev(mddev, rdev))
4163 						/* Failure here  is OK */;
4164 				}
4165 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4166 				   && !test_bit(Faulty, &rdev->flags)) {
4167 				/* This is a spare that was manually added */
4168 				set_bit(In_sync, &rdev->flags);
4169 			}
4170 	}
4171 	/* When a reshape changes the number of devices,
4172 	 * ->degraded is measured against the larger of the
4173 	 * pre and  post numbers.
4174 	 */
4175 	spin_lock_irq(&conf->device_lock);
4176 	mddev->degraded = calc_degraded(conf);
4177 	spin_unlock_irq(&conf->device_lock);
4178 	mddev->raid_disks = conf->geo.raid_disks;
4179 	mddev->reshape_position = conf->reshape_progress;
4180 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181 
4182 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186 
4187 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188 						"reshape");
4189 	if (!mddev->sync_thread) {
4190 		ret = -EAGAIN;
4191 		goto abort;
4192 	}
4193 	conf->reshape_checkpoint = jiffies;
4194 	md_wakeup_thread(mddev->sync_thread);
4195 	md_new_event(mddev);
4196 	return 0;
4197 
4198 abort:
4199 	mddev->recovery = 0;
4200 	spin_lock_irq(&conf->device_lock);
4201 	conf->geo = conf->prev;
4202 	mddev->raid_disks = conf->geo.raid_disks;
4203 	rdev_for_each(rdev, mddev)
4204 		rdev->new_data_offset = rdev->data_offset;
4205 	smp_wmb();
4206 	conf->reshape_progress = MaxSector;
4207 	mddev->reshape_position = MaxSector;
4208 	spin_unlock_irq(&conf->device_lock);
4209 	return ret;
4210 }
4211 
4212 /* Calculate the last device-address that could contain
4213  * any block from the chunk that includes the array-address 's'
4214  * and report the next address.
4215  * i.e. the address returned will be chunk-aligned and after
4216  * any data that is in the chunk containing 's'.
4217  */
4218 static sector_t last_dev_address(sector_t s, struct geom *geo)
4219 {
4220 	s = (s | geo->chunk_mask) + 1;
4221 	s >>= geo->chunk_shift;
4222 	s *= geo->near_copies;
4223 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224 	s *= geo->far_copies;
4225 	s <<= geo->chunk_shift;
4226 	return s;
4227 }
4228 
4229 /* Calculate the first device-address that could contain
4230  * any block from the chunk that includes the array-address 's'.
4231  * This too will be the start of a chunk
4232  */
4233 static sector_t first_dev_address(sector_t s, struct geom *geo)
4234 {
4235 	s >>= geo->chunk_shift;
4236 	s *= geo->near_copies;
4237 	sector_div(s, geo->raid_disks);
4238 	s *= geo->far_copies;
4239 	s <<= geo->chunk_shift;
4240 	return s;
4241 }
4242 
4243 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244 				int *skipped)
4245 {
4246 	/* We simply copy at most one chunk (smallest of old and new)
4247 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4248 	 * or we hit a bad block or something.
4249 	 * This might mean we pause for normal IO in the middle of
4250 	 * a chunk, but that is not a problem was mddev->reshape_position
4251 	 * can record any location.
4252 	 *
4253 	 * If we will want to write to a location that isn't
4254 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4255 	 * we need to flush all reshape requests and update the metadata.
4256 	 *
4257 	 * When reshaping forwards (e.g. to more devices), we interpret
4258 	 * 'safe' as the earliest block which might not have been copied
4259 	 * down yet.  We divide this by previous stripe size and multiply
4260 	 * by previous stripe length to get lowest device offset that we
4261 	 * cannot write to yet.
4262 	 * We interpret 'sector_nr' as an address that we want to write to.
4263 	 * From this we use last_device_address() to find where we might
4264 	 * write to, and first_device_address on the  'safe' position.
4265 	 * If this 'next' write position is after the 'safe' position,
4266 	 * we must update the metadata to increase the 'safe' position.
4267 	 *
4268 	 * When reshaping backwards, we round in the opposite direction
4269 	 * and perform the reverse test:  next write position must not be
4270 	 * less than current safe position.
4271 	 *
4272 	 * In all this the minimum difference in data offsets
4273 	 * (conf->offset_diff - always positive) allows a bit of slack,
4274 	 * so next can be after 'safe', but not by more than offset_disk
4275 	 *
4276 	 * We need to prepare all the bios here before we start any IO
4277 	 * to ensure the size we choose is acceptable to all devices.
4278 	 * The means one for each copy for write-out and an extra one for
4279 	 * read-in.
4280 	 * We store the read-in bio in ->master_bio and the others in
4281 	 * ->devs[x].bio and ->devs[x].repl_bio.
4282 	 */
4283 	struct r10conf *conf = mddev->private;
4284 	struct r10bio *r10_bio;
4285 	sector_t next, safe, last;
4286 	int max_sectors;
4287 	int nr_sectors;
4288 	int s;
4289 	struct md_rdev *rdev;
4290 	int need_flush = 0;
4291 	struct bio *blist;
4292 	struct bio *bio, *read_bio;
4293 	int sectors_done = 0;
4294 
4295 	if (sector_nr == 0) {
4296 		/* If restarting in the middle, skip the initial sectors */
4297 		if (mddev->reshape_backwards &&
4298 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299 			sector_nr = (raid10_size(mddev, 0, 0)
4300 				     - conf->reshape_progress);
4301 		} else if (!mddev->reshape_backwards &&
4302 			   conf->reshape_progress > 0)
4303 			sector_nr = conf->reshape_progress;
4304 		if (sector_nr) {
4305 			mddev->curr_resync_completed = sector_nr;
4306 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307 			*skipped = 1;
4308 			return sector_nr;
4309 		}
4310 	}
4311 
4312 	/* We don't use sector_nr to track where we are up to
4313 	 * as that doesn't work well for ->reshape_backwards.
4314 	 * So just use ->reshape_progress.
4315 	 */
4316 	if (mddev->reshape_backwards) {
4317 		/* 'next' is the earliest device address that we might
4318 		 * write to for this chunk in the new layout
4319 		 */
4320 		next = first_dev_address(conf->reshape_progress - 1,
4321 					 &conf->geo);
4322 
4323 		/* 'safe' is the last device address that we might read from
4324 		 * in the old layout after a restart
4325 		 */
4326 		safe = last_dev_address(conf->reshape_safe - 1,
4327 					&conf->prev);
4328 
4329 		if (next + conf->offset_diff < safe)
4330 			need_flush = 1;
4331 
4332 		last = conf->reshape_progress - 1;
4333 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334 					       & conf->prev.chunk_mask);
4335 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337 	} else {
4338 		/* 'next' is after the last device address that we
4339 		 * might write to for this chunk in the new layout
4340 		 */
4341 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4342 
4343 		/* 'safe' is the earliest device address that we might
4344 		 * read from in the old layout after a restart
4345 		 */
4346 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347 
4348 		/* Need to update metadata if 'next' might be beyond 'safe'
4349 		 * as that would possibly corrupt data
4350 		 */
4351 		if (next > safe + conf->offset_diff)
4352 			need_flush = 1;
4353 
4354 		sector_nr = conf->reshape_progress;
4355 		last  = sector_nr | (conf->geo.chunk_mask
4356 				     & conf->prev.chunk_mask);
4357 
4358 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360 	}
4361 
4362 	if (need_flush ||
4363 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364 		/* Need to update reshape_position in metadata */
4365 		wait_barrier(conf);
4366 		mddev->reshape_position = conf->reshape_progress;
4367 		if (mddev->reshape_backwards)
4368 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369 				- conf->reshape_progress;
4370 		else
4371 			mddev->curr_resync_completed = conf->reshape_progress;
4372 		conf->reshape_checkpoint = jiffies;
4373 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374 		md_wakeup_thread(mddev->thread);
4375 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4377 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4378 			allow_barrier(conf);
4379 			return sectors_done;
4380 		}
4381 		conf->reshape_safe = mddev->reshape_position;
4382 		allow_barrier(conf);
4383 	}
4384 
4385 read_more:
4386 	/* Now schedule reads for blocks from sector_nr to last */
4387 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4388 	raise_barrier(conf, sectors_done != 0);
4389 	atomic_set(&r10_bio->remaining, 0);
4390 	r10_bio->mddev = mddev;
4391 	r10_bio->sector = sector_nr;
4392 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4393 	r10_bio->sectors = last - sector_nr + 1;
4394 	rdev = read_balance(conf, r10_bio, &max_sectors);
4395 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4396 
4397 	if (!rdev) {
4398 		/* Cannot read from here, so need to record bad blocks
4399 		 * on all the target devices.
4400 		 */
4401 		// FIXME
4402 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4403 		return sectors_done;
4404 	}
4405 
4406 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4407 
4408 	read_bio->bi_bdev = rdev->bdev;
4409 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4410 			       + rdev->data_offset);
4411 	read_bio->bi_private = r10_bio;
4412 	read_bio->bi_end_io = end_sync_read;
4413 	read_bio->bi_rw = READ;
4414 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4415 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4416 	read_bio->bi_vcnt = 0;
4417 	read_bio->bi_iter.bi_size = 0;
4418 	r10_bio->master_bio = read_bio;
4419 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4420 
4421 	/* Now find the locations in the new layout */
4422 	__raid10_find_phys(&conf->geo, r10_bio);
4423 
4424 	blist = read_bio;
4425 	read_bio->bi_next = NULL;
4426 
4427 	for (s = 0; s < conf->copies*2; s++) {
4428 		struct bio *b;
4429 		int d = r10_bio->devs[s/2].devnum;
4430 		struct md_rdev *rdev2;
4431 		if (s&1) {
4432 			rdev2 = conf->mirrors[d].replacement;
4433 			b = r10_bio->devs[s/2].repl_bio;
4434 		} else {
4435 			rdev2 = conf->mirrors[d].rdev;
4436 			b = r10_bio->devs[s/2].bio;
4437 		}
4438 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4439 			continue;
4440 
4441 		bio_reset(b);
4442 		b->bi_bdev = rdev2->bdev;
4443 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4444 			rdev2->new_data_offset;
4445 		b->bi_private = r10_bio;
4446 		b->bi_end_io = end_reshape_write;
4447 		b->bi_rw = WRITE;
4448 		b->bi_next = blist;
4449 		blist = b;
4450 	}
4451 
4452 	/* Now add as many pages as possible to all of these bios. */
4453 
4454 	nr_sectors = 0;
4455 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457 		int len = (max_sectors - s) << 9;
4458 		if (len > PAGE_SIZE)
4459 			len = PAGE_SIZE;
4460 		for (bio = blist; bio ; bio = bio->bi_next) {
4461 			struct bio *bio2;
4462 			if (bio_add_page(bio, page, len, 0))
4463 				continue;
4464 
4465 			/* Didn't fit, must stop */
4466 			for (bio2 = blist;
4467 			     bio2 && bio2 != bio;
4468 			     bio2 = bio2->bi_next) {
4469 				/* Remove last page from this bio */
4470 				bio2->bi_vcnt--;
4471 				bio2->bi_iter.bi_size -= len;
4472 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473 			}
4474 			goto bio_full;
4475 		}
4476 		sector_nr += len >> 9;
4477 		nr_sectors += len >> 9;
4478 	}
4479 bio_full:
4480 	r10_bio->sectors = nr_sectors;
4481 
4482 	/* Now submit the read */
4483 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484 	atomic_inc(&r10_bio->remaining);
4485 	read_bio->bi_next = NULL;
4486 	generic_make_request(read_bio);
4487 	sector_nr += nr_sectors;
4488 	sectors_done += nr_sectors;
4489 	if (sector_nr <= last)
4490 		goto read_more;
4491 
4492 	/* Now that we have done the whole section we can
4493 	 * update reshape_progress
4494 	 */
4495 	if (mddev->reshape_backwards)
4496 		conf->reshape_progress -= sectors_done;
4497 	else
4498 		conf->reshape_progress += sectors_done;
4499 
4500 	return sectors_done;
4501 }
4502 
4503 static void end_reshape_request(struct r10bio *r10_bio);
4504 static int handle_reshape_read_error(struct mddev *mddev,
4505 				     struct r10bio *r10_bio);
4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507 {
4508 	/* Reshape read completed.  Hopefully we have a block
4509 	 * to write out.
4510 	 * If we got a read error then we do sync 1-page reads from
4511 	 * elsewhere until we find the data - or give up.
4512 	 */
4513 	struct r10conf *conf = mddev->private;
4514 	int s;
4515 
4516 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518 			/* Reshape has been aborted */
4519 			md_done_sync(mddev, r10_bio->sectors, 0);
4520 			return;
4521 		}
4522 
4523 	/* We definitely have the data in the pages, schedule the
4524 	 * writes.
4525 	 */
4526 	atomic_set(&r10_bio->remaining, 1);
4527 	for (s = 0; s < conf->copies*2; s++) {
4528 		struct bio *b;
4529 		int d = r10_bio->devs[s/2].devnum;
4530 		struct md_rdev *rdev;
4531 		if (s&1) {
4532 			rdev = conf->mirrors[d].replacement;
4533 			b = r10_bio->devs[s/2].repl_bio;
4534 		} else {
4535 			rdev = conf->mirrors[d].rdev;
4536 			b = r10_bio->devs[s/2].bio;
4537 		}
4538 		if (!rdev || test_bit(Faulty, &rdev->flags))
4539 			continue;
4540 		atomic_inc(&rdev->nr_pending);
4541 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542 		atomic_inc(&r10_bio->remaining);
4543 		b->bi_next = NULL;
4544 		generic_make_request(b);
4545 	}
4546 	end_reshape_request(r10_bio);
4547 }
4548 
4549 static void end_reshape(struct r10conf *conf)
4550 {
4551 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552 		return;
4553 
4554 	spin_lock_irq(&conf->device_lock);
4555 	conf->prev = conf->geo;
4556 	md_finish_reshape(conf->mddev);
4557 	smp_wmb();
4558 	conf->reshape_progress = MaxSector;
4559 	spin_unlock_irq(&conf->device_lock);
4560 
4561 	/* read-ahead size must cover two whole stripes, which is
4562 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563 	 */
4564 	if (conf->mddev->queue) {
4565 		int stripe = conf->geo.raid_disks *
4566 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567 		stripe /= conf->geo.near_copies;
4568 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570 	}
4571 	conf->fullsync = 0;
4572 }
4573 
4574 
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576 				     struct r10bio *r10_bio)
4577 {
4578 	/* Use sync reads to get the blocks from somewhere else */
4579 	int sectors = r10_bio->sectors;
4580 	struct r10conf *conf = mddev->private;
4581 	struct {
4582 		struct r10bio r10_bio;
4583 		struct r10dev devs[conf->copies];
4584 	} on_stack;
4585 	struct r10bio *r10b = &on_stack.r10_bio;
4586 	int slot = 0;
4587 	int idx = 0;
4588 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589 
4590 	r10b->sector = r10_bio->sector;
4591 	__raid10_find_phys(&conf->prev, r10b);
4592 
4593 	while (sectors) {
4594 		int s = sectors;
4595 		int success = 0;
4596 		int first_slot = slot;
4597 
4598 		if (s > (PAGE_SIZE >> 9))
4599 			s = PAGE_SIZE >> 9;
4600 
4601 		while (!success) {
4602 			int d = r10b->devs[slot].devnum;
4603 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4604 			sector_t addr;
4605 			if (rdev == NULL ||
4606 			    test_bit(Faulty, &rdev->flags) ||
4607 			    !test_bit(In_sync, &rdev->flags))
4608 				goto failed;
4609 
4610 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611 			success = sync_page_io(rdev,
4612 					       addr,
4613 					       s << 9,
4614 					       bvec[idx].bv_page,
4615 					       READ, false);
4616 			if (success)
4617 				break;
4618 		failed:
4619 			slot++;
4620 			if (slot >= conf->copies)
4621 				slot = 0;
4622 			if (slot == first_slot)
4623 				break;
4624 		}
4625 		if (!success) {
4626 			/* couldn't read this block, must give up */
4627 			set_bit(MD_RECOVERY_INTR,
4628 				&mddev->recovery);
4629 			return -EIO;
4630 		}
4631 		sectors -= s;
4632 		idx++;
4633 	}
4634 	return 0;
4635 }
4636 
4637 static void end_reshape_write(struct bio *bio, int error)
4638 {
4639 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640 	struct r10bio *r10_bio = bio->bi_private;
4641 	struct mddev *mddev = r10_bio->mddev;
4642 	struct r10conf *conf = mddev->private;
4643 	int d;
4644 	int slot;
4645 	int repl;
4646 	struct md_rdev *rdev = NULL;
4647 
4648 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649 	if (repl)
4650 		rdev = conf->mirrors[d].replacement;
4651 	if (!rdev) {
4652 		smp_mb();
4653 		rdev = conf->mirrors[d].rdev;
4654 	}
4655 
4656 	if (!uptodate) {
4657 		/* FIXME should record badblock */
4658 		md_error(mddev, rdev);
4659 	}
4660 
4661 	rdev_dec_pending(rdev, mddev);
4662 	end_reshape_request(r10_bio);
4663 }
4664 
4665 static void end_reshape_request(struct r10bio *r10_bio)
4666 {
4667 	if (!atomic_dec_and_test(&r10_bio->remaining))
4668 		return;
4669 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670 	bio_put(r10_bio->master_bio);
4671 	put_buf(r10_bio);
4672 }
4673 
4674 static void raid10_finish_reshape(struct mddev *mddev)
4675 {
4676 	struct r10conf *conf = mddev->private;
4677 
4678 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679 		return;
4680 
4681 	if (mddev->delta_disks > 0) {
4682 		sector_t size = raid10_size(mddev, 0, 0);
4683 		md_set_array_sectors(mddev, size);
4684 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685 			mddev->recovery_cp = mddev->resync_max_sectors;
4686 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687 		}
4688 		mddev->resync_max_sectors = size;
4689 		set_capacity(mddev->gendisk, mddev->array_sectors);
4690 		revalidate_disk(mddev->gendisk);
4691 	} else {
4692 		int d;
4693 		for (d = conf->geo.raid_disks ;
4694 		     d < conf->geo.raid_disks - mddev->delta_disks;
4695 		     d++) {
4696 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4697 			if (rdev)
4698 				clear_bit(In_sync, &rdev->flags);
4699 			rdev = conf->mirrors[d].replacement;
4700 			if (rdev)
4701 				clear_bit(In_sync, &rdev->flags);
4702 		}
4703 	}
4704 	mddev->layout = mddev->new_layout;
4705 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706 	mddev->reshape_position = MaxSector;
4707 	mddev->delta_disks = 0;
4708 	mddev->reshape_backwards = 0;
4709 }
4710 
4711 static struct md_personality raid10_personality =
4712 {
4713 	.name		= "raid10",
4714 	.level		= 10,
4715 	.owner		= THIS_MODULE,
4716 	.make_request	= make_request,
4717 	.run		= run,
4718 	.stop		= stop,
4719 	.status		= status,
4720 	.error_handler	= error,
4721 	.hot_add_disk	= raid10_add_disk,
4722 	.hot_remove_disk= raid10_remove_disk,
4723 	.spare_active	= raid10_spare_active,
4724 	.sync_request	= sync_request,
4725 	.quiesce	= raid10_quiesce,
4726 	.size		= raid10_size,
4727 	.resize		= raid10_resize,
4728 	.takeover	= raid10_takeover,
4729 	.check_reshape	= raid10_check_reshape,
4730 	.start_reshape	= raid10_start_reshape,
4731 	.finish_reshape	= raid10_finish_reshape,
4732 };
4733 
4734 static int __init raid_init(void)
4735 {
4736 	return register_md_personality(&raid10_personality);
4737 }
4738 
4739 static void raid_exit(void)
4740 {
4741 	unregister_md_personality(&raid10_personality);
4742 }
4743 
4744 module_init(raid_init);
4745 module_exit(raid_exit);
4746 MODULE_LICENSE("GPL");
4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749 MODULE_ALIAS("md-raid10");
4750 MODULE_ALIAS("md-level-10");
4751 
4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4753