1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio, int error) 443 { 444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct r10bio *r10_bio = bio->bi_private; 446 int dev; 447 int dec_rdev = 1; 448 struct r10conf *conf = r10_bio->mddev->private; 449 int slot, repl; 450 struct md_rdev *rdev = NULL; 451 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 453 454 if (repl) 455 rdev = conf->mirrors[dev].replacement; 456 if (!rdev) { 457 smp_rmb(); 458 repl = 0; 459 rdev = conf->mirrors[dev].rdev; 460 } 461 /* 462 * this branch is our 'one mirror IO has finished' event handler: 463 */ 464 if (!uptodate) { 465 if (repl) 466 /* Never record new bad blocks to replacement, 467 * just fail it. 468 */ 469 md_error(rdev->mddev, rdev); 470 else { 471 set_bit(WriteErrorSeen, &rdev->flags); 472 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 473 set_bit(MD_RECOVERY_NEEDED, 474 &rdev->mddev->recovery); 475 set_bit(R10BIO_WriteError, &r10_bio->state); 476 dec_rdev = 0; 477 } 478 } else { 479 /* 480 * Set R10BIO_Uptodate in our master bio, so that 481 * we will return a good error code for to the higher 482 * levels even if IO on some other mirrored buffer fails. 483 * 484 * The 'master' represents the composite IO operation to 485 * user-side. So if something waits for IO, then it will 486 * wait for the 'master' bio. 487 */ 488 sector_t first_bad; 489 int bad_sectors; 490 491 /* 492 * Do not set R10BIO_Uptodate if the current device is 493 * rebuilding or Faulty. This is because we cannot use 494 * such device for properly reading the data back (we could 495 * potentially use it, if the current write would have felt 496 * before rdev->recovery_offset, but for simplicity we don't 497 * check this here. 498 */ 499 if (test_bit(In_sync, &rdev->flags) && 500 !test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_Uptodate, &r10_bio->state); 502 503 /* Maybe we can clear some bad blocks. */ 504 if (is_badblock(rdev, 505 r10_bio->devs[slot].addr, 506 r10_bio->sectors, 507 &first_bad, &bad_sectors)) { 508 bio_put(bio); 509 if (repl) 510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 511 else 512 r10_bio->devs[slot].bio = IO_MADE_GOOD; 513 dec_rdev = 0; 514 set_bit(R10BIO_MadeGood, &r10_bio->state); 515 } 516 } 517 518 /* 519 * 520 * Let's see if all mirrored write operations have finished 521 * already. 522 */ 523 one_write_done(r10_bio); 524 if (dec_rdev) 525 rdev_dec_pending(rdev, conf->mddev); 526 } 527 528 /* 529 * RAID10 layout manager 530 * As well as the chunksize and raid_disks count, there are two 531 * parameters: near_copies and far_copies. 532 * near_copies * far_copies must be <= raid_disks. 533 * Normally one of these will be 1. 534 * If both are 1, we get raid0. 535 * If near_copies == raid_disks, we get raid1. 536 * 537 * Chunks are laid out in raid0 style with near_copies copies of the 538 * first chunk, followed by near_copies copies of the next chunk and 539 * so on. 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned 541 * as described above, we start again with a device offset of near_copies. 542 * So we effectively have another copy of the whole array further down all 543 * the drives, but with blocks on different drives. 544 * With this layout, and block is never stored twice on the one device. 545 * 546 * raid10_find_phys finds the sector offset of a given virtual sector 547 * on each device that it is on. 548 * 549 * raid10_find_virt does the reverse mapping, from a device and a 550 * sector offset to a virtual address 551 */ 552 553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 554 { 555 int n,f; 556 sector_t sector; 557 sector_t chunk; 558 sector_t stripe; 559 int dev; 560 int slot = 0; 561 int last_far_set_start, last_far_set_size; 562 563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 564 last_far_set_start *= geo->far_set_size; 565 566 last_far_set_size = geo->far_set_size; 567 last_far_set_size += (geo->raid_disks % geo->far_set_size); 568 569 /* now calculate first sector/dev */ 570 chunk = r10bio->sector >> geo->chunk_shift; 571 sector = r10bio->sector & geo->chunk_mask; 572 573 chunk *= geo->near_copies; 574 stripe = chunk; 575 dev = sector_div(stripe, geo->raid_disks); 576 if (geo->far_offset) 577 stripe *= geo->far_copies; 578 579 sector += stripe << geo->chunk_shift; 580 581 /* and calculate all the others */ 582 for (n = 0; n < geo->near_copies; n++) { 583 int d = dev; 584 int set; 585 sector_t s = sector; 586 r10bio->devs[slot].devnum = d; 587 r10bio->devs[slot].addr = s; 588 slot++; 589 590 for (f = 1; f < geo->far_copies; f++) { 591 set = d / geo->far_set_size; 592 d += geo->near_copies; 593 594 if ((geo->raid_disks % geo->far_set_size) && 595 (d > last_far_set_start)) { 596 d -= last_far_set_start; 597 d %= last_far_set_size; 598 d += last_far_set_start; 599 } else { 600 d %= geo->far_set_size; 601 d += geo->far_set_size * set; 602 } 603 s += geo->stride; 604 r10bio->devs[slot].devnum = d; 605 r10bio->devs[slot].addr = s; 606 slot++; 607 } 608 dev++; 609 if (dev >= geo->raid_disks) { 610 dev = 0; 611 sector += (geo->chunk_mask + 1); 612 } 613 } 614 } 615 616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 617 { 618 struct geom *geo = &conf->geo; 619 620 if (conf->reshape_progress != MaxSector && 621 ((r10bio->sector >= conf->reshape_progress) != 622 conf->mddev->reshape_backwards)) { 623 set_bit(R10BIO_Previous, &r10bio->state); 624 geo = &conf->prev; 625 } else 626 clear_bit(R10BIO_Previous, &r10bio->state); 627 628 __raid10_find_phys(geo, r10bio); 629 } 630 631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 632 { 633 sector_t offset, chunk, vchunk; 634 /* Never use conf->prev as this is only called during resync 635 * or recovery, so reshape isn't happening 636 */ 637 struct geom *geo = &conf->geo; 638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 639 int far_set_size = geo->far_set_size; 640 int last_far_set_start; 641 642 if (geo->raid_disks % geo->far_set_size) { 643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 644 last_far_set_start *= geo->far_set_size; 645 646 if (dev >= last_far_set_start) { 647 far_set_size = geo->far_set_size; 648 far_set_size += (geo->raid_disks % geo->far_set_size); 649 far_set_start = last_far_set_start; 650 } 651 } 652 653 offset = sector & geo->chunk_mask; 654 if (geo->far_offset) { 655 int fc; 656 chunk = sector >> geo->chunk_shift; 657 fc = sector_div(chunk, geo->far_copies); 658 dev -= fc * geo->near_copies; 659 if (dev < far_set_start) 660 dev += far_set_size; 661 } else { 662 while (sector >= geo->stride) { 663 sector -= geo->stride; 664 if (dev < (geo->near_copies + far_set_start)) 665 dev += far_set_size - geo->near_copies; 666 else 667 dev -= geo->near_copies; 668 } 669 chunk = sector >> geo->chunk_shift; 670 } 671 vchunk = chunk * geo->raid_disks + dev; 672 sector_div(vchunk, geo->near_copies); 673 return (vchunk << geo->chunk_shift) + offset; 674 } 675 676 /** 677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 678 * @q: request queue 679 * @bvm: properties of new bio 680 * @biovec: the request that could be merged to it. 681 * 682 * Return amount of bytes we can accept at this offset 683 * This requires checking for end-of-chunk if near_copies != raid_disks, 684 * and for subordinate merge_bvec_fns if merge_check_needed. 685 */ 686 static int raid10_mergeable_bvec(struct request_queue *q, 687 struct bvec_merge_data *bvm, 688 struct bio_vec *biovec) 689 { 690 struct mddev *mddev = q->queuedata; 691 struct r10conf *conf = mddev->private; 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 693 int max; 694 unsigned int chunk_sectors; 695 unsigned int bio_sectors = bvm->bi_size >> 9; 696 struct geom *geo = &conf->geo; 697 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 699 if (conf->reshape_progress != MaxSector && 700 ((sector >= conf->reshape_progress) != 701 conf->mddev->reshape_backwards)) 702 geo = &conf->prev; 703 704 if (geo->near_copies < geo->raid_disks) { 705 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 706 + bio_sectors)) << 9; 707 if (max < 0) 708 /* bio_add cannot handle a negative return */ 709 max = 0; 710 if (max <= biovec->bv_len && bio_sectors == 0) 711 return biovec->bv_len; 712 } else 713 max = biovec->bv_len; 714 715 if (mddev->merge_check_needed) { 716 struct { 717 struct r10bio r10_bio; 718 struct r10dev devs[conf->copies]; 719 } on_stack; 720 struct r10bio *r10_bio = &on_stack.r10_bio; 721 int s; 722 if (conf->reshape_progress != MaxSector) { 723 /* Cannot give any guidance during reshape */ 724 if (max <= biovec->bv_len && bio_sectors == 0) 725 return biovec->bv_len; 726 return 0; 727 } 728 r10_bio->sector = sector; 729 raid10_find_phys(conf, r10_bio); 730 rcu_read_lock(); 731 for (s = 0; s < conf->copies; s++) { 732 int disk = r10_bio->devs[s].devnum; 733 struct md_rdev *rdev = rcu_dereference( 734 conf->mirrors[disk].rdev); 735 if (rdev && !test_bit(Faulty, &rdev->flags)) { 736 struct request_queue *q = 737 bdev_get_queue(rdev->bdev); 738 if (q->merge_bvec_fn) { 739 bvm->bi_sector = r10_bio->devs[s].addr 740 + rdev->data_offset; 741 bvm->bi_bdev = rdev->bdev; 742 max = min(max, q->merge_bvec_fn( 743 q, bvm, biovec)); 744 } 745 } 746 rdev = rcu_dereference(conf->mirrors[disk].replacement); 747 if (rdev && !test_bit(Faulty, &rdev->flags)) { 748 struct request_queue *q = 749 bdev_get_queue(rdev->bdev); 750 if (q->merge_bvec_fn) { 751 bvm->bi_sector = r10_bio->devs[s].addr 752 + rdev->data_offset; 753 bvm->bi_bdev = rdev->bdev; 754 max = min(max, q->merge_bvec_fn( 755 q, bvm, biovec)); 756 } 757 } 758 } 759 rcu_read_unlock(); 760 } 761 return max; 762 } 763 764 /* 765 * This routine returns the disk from which the requested read should 766 * be done. There is a per-array 'next expected sequential IO' sector 767 * number - if this matches on the next IO then we use the last disk. 768 * There is also a per-disk 'last know head position' sector that is 769 * maintained from IRQ contexts, both the normal and the resync IO 770 * completion handlers update this position correctly. If there is no 771 * perfect sequential match then we pick the disk whose head is closest. 772 * 773 * If there are 2 mirrors in the same 2 devices, performance degrades 774 * because position is mirror, not device based. 775 * 776 * The rdev for the device selected will have nr_pending incremented. 777 */ 778 779 /* 780 * FIXME: possibly should rethink readbalancing and do it differently 781 * depending on near_copies / far_copies geometry. 782 */ 783 static struct md_rdev *read_balance(struct r10conf *conf, 784 struct r10bio *r10_bio, 785 int *max_sectors) 786 { 787 const sector_t this_sector = r10_bio->sector; 788 int disk, slot; 789 int sectors = r10_bio->sectors; 790 int best_good_sectors; 791 sector_t new_distance, best_dist; 792 struct md_rdev *best_rdev, *rdev = NULL; 793 int do_balance; 794 int best_slot; 795 struct geom *geo = &conf->geo; 796 797 raid10_find_phys(conf, r10_bio); 798 rcu_read_lock(); 799 retry: 800 sectors = r10_bio->sectors; 801 best_slot = -1; 802 best_rdev = NULL; 803 best_dist = MaxSector; 804 best_good_sectors = 0; 805 do_balance = 1; 806 /* 807 * Check if we can balance. We can balance on the whole 808 * device if no resync is going on (recovery is ok), or below 809 * the resync window. We take the first readable disk when 810 * above the resync window. 811 */ 812 if (conf->mddev->recovery_cp < MaxSector 813 && (this_sector + sectors >= conf->next_resync)) 814 do_balance = 0; 815 816 for (slot = 0; slot < conf->copies ; slot++) { 817 sector_t first_bad; 818 int bad_sectors; 819 sector_t dev_sector; 820 821 if (r10_bio->devs[slot].bio == IO_BLOCKED) 822 continue; 823 disk = r10_bio->devs[slot].devnum; 824 rdev = rcu_dereference(conf->mirrors[disk].replacement); 825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 826 test_bit(Unmerged, &rdev->flags) || 827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 828 rdev = rcu_dereference(conf->mirrors[disk].rdev); 829 if (rdev == NULL || 830 test_bit(Faulty, &rdev->flags) || 831 test_bit(Unmerged, &rdev->flags)) 832 continue; 833 if (!test_bit(In_sync, &rdev->flags) && 834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 835 continue; 836 837 dev_sector = r10_bio->devs[slot].addr; 838 if (is_badblock(rdev, dev_sector, sectors, 839 &first_bad, &bad_sectors)) { 840 if (best_dist < MaxSector) 841 /* Already have a better slot */ 842 continue; 843 if (first_bad <= dev_sector) { 844 /* Cannot read here. If this is the 845 * 'primary' device, then we must not read 846 * beyond 'bad_sectors' from another device. 847 */ 848 bad_sectors -= (dev_sector - first_bad); 849 if (!do_balance && sectors > bad_sectors) 850 sectors = bad_sectors; 851 if (best_good_sectors > sectors) 852 best_good_sectors = sectors; 853 } else { 854 sector_t good_sectors = 855 first_bad - dev_sector; 856 if (good_sectors > best_good_sectors) { 857 best_good_sectors = good_sectors; 858 best_slot = slot; 859 best_rdev = rdev; 860 } 861 if (!do_balance) 862 /* Must read from here */ 863 break; 864 } 865 continue; 866 } else 867 best_good_sectors = sectors; 868 869 if (!do_balance) 870 break; 871 872 /* This optimisation is debatable, and completely destroys 873 * sequential read speed for 'far copies' arrays. So only 874 * keep it for 'near' arrays, and review those later. 875 */ 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 877 break; 878 879 /* for far > 1 always use the lowest address */ 880 if (geo->far_copies > 1) 881 new_distance = r10_bio->devs[slot].addr; 882 else 883 new_distance = abs(r10_bio->devs[slot].addr - 884 conf->mirrors[disk].head_position); 885 if (new_distance < best_dist) { 886 best_dist = new_distance; 887 best_slot = slot; 888 best_rdev = rdev; 889 } 890 } 891 if (slot >= conf->copies) { 892 slot = best_slot; 893 rdev = best_rdev; 894 } 895 896 if (slot >= 0) { 897 atomic_inc(&rdev->nr_pending); 898 if (test_bit(Faulty, &rdev->flags)) { 899 /* Cannot risk returning a device that failed 900 * before we inc'ed nr_pending 901 */ 902 rdev_dec_pending(rdev, conf->mddev); 903 goto retry; 904 } 905 r10_bio->read_slot = slot; 906 } else 907 rdev = NULL; 908 rcu_read_unlock(); 909 *max_sectors = best_good_sectors; 910 911 return rdev; 912 } 913 914 int md_raid10_congested(struct mddev *mddev, int bits) 915 { 916 struct r10conf *conf = mddev->private; 917 int i, ret = 0; 918 919 if ((bits & (1 << BDI_async_congested)) && 920 conf->pending_count >= max_queued_requests) 921 return 1; 922 923 rcu_read_lock(); 924 for (i = 0; 925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 926 && ret == 0; 927 i++) { 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 struct request_queue *q = bdev_get_queue(rdev->bdev); 931 932 ret |= bdi_congested(&q->backing_dev_info, bits); 933 } 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(md_raid10_congested); 939 940 static int raid10_congested(void *data, int bits) 941 { 942 struct mddev *mddev = data; 943 944 return mddev_congested(mddev, bits) || 945 md_raid10_congested(mddev, bits); 946 } 947 948 static void flush_pending_writes(struct r10conf *conf) 949 { 950 /* Any writes that have been queued but are awaiting 951 * bitmap updates get flushed here. 952 */ 953 spin_lock_irq(&conf->device_lock); 954 955 if (conf->pending_bio_list.head) { 956 struct bio *bio; 957 bio = bio_list_get(&conf->pending_bio_list); 958 conf->pending_count = 0; 959 spin_unlock_irq(&conf->device_lock); 960 /* flush any pending bitmap writes to disk 961 * before proceeding w/ I/O */ 962 bitmap_unplug(conf->mddev->bitmap); 963 wake_up(&conf->wait_barrier); 964 965 while (bio) { /* submit pending writes */ 966 struct bio *next = bio->bi_next; 967 bio->bi_next = NULL; 968 if (unlikely((bio->bi_rw & REQ_DISCARD) && 969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 970 /* Just ignore it */ 971 bio_endio(bio, 0); 972 else 973 generic_make_request(bio); 974 bio = next; 975 } 976 } else 977 spin_unlock_irq(&conf->device_lock); 978 } 979 980 /* Barriers.... 981 * Sometimes we need to suspend IO while we do something else, 982 * either some resync/recovery, or reconfigure the array. 983 * To do this we raise a 'barrier'. 984 * The 'barrier' is a counter that can be raised multiple times 985 * to count how many activities are happening which preclude 986 * normal IO. 987 * We can only raise the barrier if there is no pending IO. 988 * i.e. if nr_pending == 0. 989 * We choose only to raise the barrier if no-one is waiting for the 990 * barrier to go down. This means that as soon as an IO request 991 * is ready, no other operations which require a barrier will start 992 * until the IO request has had a chance. 993 * 994 * So: regular IO calls 'wait_barrier'. When that returns there 995 * is no backgroup IO happening, It must arrange to call 996 * allow_barrier when it has finished its IO. 997 * backgroup IO calls must call raise_barrier. Once that returns 998 * there is no normal IO happeing. It must arrange to call 999 * lower_barrier when the particular background IO completes. 1000 */ 1001 1002 static void raise_barrier(struct r10conf *conf, int force) 1003 { 1004 BUG_ON(force && !conf->barrier); 1005 spin_lock_irq(&conf->resync_lock); 1006 1007 /* Wait until no block IO is waiting (unless 'force') */ 1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1009 conf->resync_lock); 1010 1011 /* block any new IO from starting */ 1012 conf->barrier++; 1013 1014 /* Now wait for all pending IO to complete */ 1015 wait_event_lock_irq(conf->wait_barrier, 1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1017 conf->resync_lock); 1018 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void lower_barrier(struct r10conf *conf) 1023 { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->resync_lock, flags); 1026 conf->barrier--; 1027 spin_unlock_irqrestore(&conf->resync_lock, flags); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static void wait_barrier(struct r10conf *conf) 1032 { 1033 spin_lock_irq(&conf->resync_lock); 1034 if (conf->barrier) { 1035 conf->nr_waiting++; 1036 /* Wait for the barrier to drop. 1037 * However if there are already pending 1038 * requests (preventing the barrier from 1039 * rising completely), and the 1040 * pre-process bio queue isn't empty, 1041 * then don't wait, as we need to empty 1042 * that queue to get the nr_pending 1043 * count down. 1044 */ 1045 wait_event_lock_irq(conf->wait_barrier, 1046 !conf->barrier || 1047 (conf->nr_pending && 1048 current->bio_list && 1049 !bio_list_empty(current->bio_list)), 1050 conf->resync_lock); 1051 conf->nr_waiting--; 1052 } 1053 conf->nr_pending++; 1054 spin_unlock_irq(&conf->resync_lock); 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->resync_lock, flags); 1061 conf->nr_pending--; 1062 spin_unlock_irqrestore(&conf->resync_lock, flags); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->barrier++; 1082 conf->nr_waiting++; 1083 wait_event_lock_irq_cmd(conf->wait_barrier, 1084 conf->nr_pending == conf->nr_queued+extra, 1085 conf->resync_lock, 1086 flush_pending_writes(conf)); 1087 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 1091 static void unfreeze_array(struct r10conf *conf) 1092 { 1093 /* reverse the effect of the freeze */ 1094 spin_lock_irq(&conf->resync_lock); 1095 conf->barrier--; 1096 conf->nr_waiting--; 1097 wake_up(&conf->wait_barrier); 1098 spin_unlock_irq(&conf->resync_lock); 1099 } 1100 1101 static sector_t choose_data_offset(struct r10bio *r10_bio, 1102 struct md_rdev *rdev) 1103 { 1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1105 test_bit(R10BIO_Previous, &r10_bio->state)) 1106 return rdev->data_offset; 1107 else 1108 return rdev->new_data_offset; 1109 } 1110 1111 struct raid10_plug_cb { 1112 struct blk_plug_cb cb; 1113 struct bio_list pending; 1114 int pending_cnt; 1115 }; 1116 1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1118 { 1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1120 cb); 1121 struct mddev *mddev = plug->cb.data; 1122 struct r10conf *conf = mddev->private; 1123 struct bio *bio; 1124 1125 if (from_schedule || current->bio_list) { 1126 spin_lock_irq(&conf->device_lock); 1127 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1128 conf->pending_count += plug->pending_cnt; 1129 spin_unlock_irq(&conf->device_lock); 1130 wake_up(&conf->wait_barrier); 1131 md_wakeup_thread(mddev->thread); 1132 kfree(plug); 1133 return; 1134 } 1135 1136 /* we aren't scheduling, so we can do the write-out directly. */ 1137 bio = bio_list_get(&plug->pending); 1138 bitmap_unplug(mddev->bitmap); 1139 wake_up(&conf->wait_barrier); 1140 1141 while (bio) { /* submit pending writes */ 1142 struct bio *next = bio->bi_next; 1143 bio->bi_next = NULL; 1144 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio, 0); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static void __make_request(struct mddev *mddev, struct bio *bio) 1156 { 1157 struct r10conf *conf = mddev->private; 1158 struct r10bio *r10_bio; 1159 struct bio *read_bio; 1160 int i; 1161 const int rw = bio_data_dir(bio); 1162 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1163 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1164 const unsigned long do_discard = (bio->bi_rw 1165 & (REQ_DISCARD | REQ_SECURE)); 1166 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1167 unsigned long flags; 1168 struct md_rdev *blocked_rdev; 1169 struct blk_plug_cb *cb; 1170 struct raid10_plug_cb *plug = NULL; 1171 int sectors_handled; 1172 int max_sectors; 1173 int sectors; 1174 1175 /* 1176 * Register the new request and wait if the reconstruction 1177 * thread has put up a bar for new requests. 1178 * Continue immediately if no resync is active currently. 1179 */ 1180 wait_barrier(conf); 1181 1182 sectors = bio_sectors(bio); 1183 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1184 bio->bi_iter.bi_sector < conf->reshape_progress && 1185 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1186 /* IO spans the reshape position. Need to wait for 1187 * reshape to pass 1188 */ 1189 allow_barrier(conf); 1190 wait_event(conf->wait_barrier, 1191 conf->reshape_progress <= bio->bi_iter.bi_sector || 1192 conf->reshape_progress >= bio->bi_iter.bi_sector + 1193 sectors); 1194 wait_barrier(conf); 1195 } 1196 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1197 bio_data_dir(bio) == WRITE && 1198 (mddev->reshape_backwards 1199 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1200 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1201 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1202 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1203 /* Need to update reshape_position in metadata */ 1204 mddev->reshape_position = conf->reshape_progress; 1205 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1206 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1207 md_wakeup_thread(mddev->thread); 1208 wait_event(mddev->sb_wait, 1209 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1210 1211 conf->reshape_safe = mddev->reshape_position; 1212 } 1213 1214 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1215 1216 r10_bio->master_bio = bio; 1217 r10_bio->sectors = sectors; 1218 1219 r10_bio->mddev = mddev; 1220 r10_bio->sector = bio->bi_iter.bi_sector; 1221 r10_bio->state = 0; 1222 1223 /* We might need to issue multiple reads to different 1224 * devices if there are bad blocks around, so we keep 1225 * track of the number of reads in bio->bi_phys_segments. 1226 * If this is 0, there is only one r10_bio and no locking 1227 * will be needed when the request completes. If it is 1228 * non-zero, then it is the number of not-completed requests. 1229 */ 1230 bio->bi_phys_segments = 0; 1231 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1232 1233 if (rw == READ) { 1234 /* 1235 * read balancing logic: 1236 */ 1237 struct md_rdev *rdev; 1238 int slot; 1239 1240 read_again: 1241 rdev = read_balance(conf, r10_bio, &max_sectors); 1242 if (!rdev) { 1243 raid_end_bio_io(r10_bio); 1244 return; 1245 } 1246 slot = r10_bio->read_slot; 1247 1248 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1249 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1250 max_sectors); 1251 1252 r10_bio->devs[slot].bio = read_bio; 1253 r10_bio->devs[slot].rdev = rdev; 1254 1255 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1256 choose_data_offset(r10_bio, rdev); 1257 read_bio->bi_bdev = rdev->bdev; 1258 read_bio->bi_end_io = raid10_end_read_request; 1259 read_bio->bi_rw = READ | do_sync; 1260 read_bio->bi_private = r10_bio; 1261 1262 if (max_sectors < r10_bio->sectors) { 1263 /* Could not read all from this device, so we will 1264 * need another r10_bio. 1265 */ 1266 sectors_handled = (r10_bio->sector + max_sectors 1267 - bio->bi_iter.bi_sector); 1268 r10_bio->sectors = max_sectors; 1269 spin_lock_irq(&conf->device_lock); 1270 if (bio->bi_phys_segments == 0) 1271 bio->bi_phys_segments = 2; 1272 else 1273 bio->bi_phys_segments++; 1274 spin_unlock_irq(&conf->device_lock); 1275 /* Cannot call generic_make_request directly 1276 * as that will be queued in __generic_make_request 1277 * and subsequent mempool_alloc might block 1278 * waiting for it. so hand bio over to raid10d. 1279 */ 1280 reschedule_retry(r10_bio); 1281 1282 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1283 1284 r10_bio->master_bio = bio; 1285 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1286 r10_bio->state = 0; 1287 r10_bio->mddev = mddev; 1288 r10_bio->sector = bio->bi_iter.bi_sector + 1289 sectors_handled; 1290 goto read_again; 1291 } else 1292 generic_make_request(read_bio); 1293 return; 1294 } 1295 1296 /* 1297 * WRITE: 1298 */ 1299 if (conf->pending_count >= max_queued_requests) { 1300 md_wakeup_thread(mddev->thread); 1301 wait_event(conf->wait_barrier, 1302 conf->pending_count < max_queued_requests); 1303 } 1304 /* first select target devices under rcu_lock and 1305 * inc refcount on their rdev. Record them by setting 1306 * bios[x] to bio 1307 * If there are known/acknowledged bad blocks on any device 1308 * on which we have seen a write error, we want to avoid 1309 * writing to those blocks. This potentially requires several 1310 * writes to write around the bad blocks. Each set of writes 1311 * gets its own r10_bio with a set of bios attached. The number 1312 * of r10_bios is recored in bio->bi_phys_segments just as with 1313 * the read case. 1314 */ 1315 1316 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1317 raid10_find_phys(conf, r10_bio); 1318 retry_write: 1319 blocked_rdev = NULL; 1320 rcu_read_lock(); 1321 max_sectors = r10_bio->sectors; 1322 1323 for (i = 0; i < conf->copies; i++) { 1324 int d = r10_bio->devs[i].devnum; 1325 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1326 struct md_rdev *rrdev = rcu_dereference( 1327 conf->mirrors[d].replacement); 1328 if (rdev == rrdev) 1329 rrdev = NULL; 1330 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1331 atomic_inc(&rdev->nr_pending); 1332 blocked_rdev = rdev; 1333 break; 1334 } 1335 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1336 atomic_inc(&rrdev->nr_pending); 1337 blocked_rdev = rrdev; 1338 break; 1339 } 1340 if (rdev && (test_bit(Faulty, &rdev->flags) 1341 || test_bit(Unmerged, &rdev->flags))) 1342 rdev = NULL; 1343 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1344 || test_bit(Unmerged, &rrdev->flags))) 1345 rrdev = NULL; 1346 1347 r10_bio->devs[i].bio = NULL; 1348 r10_bio->devs[i].repl_bio = NULL; 1349 1350 if (!rdev && !rrdev) { 1351 set_bit(R10BIO_Degraded, &r10_bio->state); 1352 continue; 1353 } 1354 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1355 sector_t first_bad; 1356 sector_t dev_sector = r10_bio->devs[i].addr; 1357 int bad_sectors; 1358 int is_bad; 1359 1360 is_bad = is_badblock(rdev, dev_sector, 1361 max_sectors, 1362 &first_bad, &bad_sectors); 1363 if (is_bad < 0) { 1364 /* Mustn't write here until the bad block 1365 * is acknowledged 1366 */ 1367 atomic_inc(&rdev->nr_pending); 1368 set_bit(BlockedBadBlocks, &rdev->flags); 1369 blocked_rdev = rdev; 1370 break; 1371 } 1372 if (is_bad && first_bad <= dev_sector) { 1373 /* Cannot write here at all */ 1374 bad_sectors -= (dev_sector - first_bad); 1375 if (bad_sectors < max_sectors) 1376 /* Mustn't write more than bad_sectors 1377 * to other devices yet 1378 */ 1379 max_sectors = bad_sectors; 1380 /* We don't set R10BIO_Degraded as that 1381 * only applies if the disk is missing, 1382 * so it might be re-added, and we want to 1383 * know to recover this chunk. 1384 * In this case the device is here, and the 1385 * fact that this chunk is not in-sync is 1386 * recorded in the bad block log. 1387 */ 1388 continue; 1389 } 1390 if (is_bad) { 1391 int good_sectors = first_bad - dev_sector; 1392 if (good_sectors < max_sectors) 1393 max_sectors = good_sectors; 1394 } 1395 } 1396 if (rdev) { 1397 r10_bio->devs[i].bio = bio; 1398 atomic_inc(&rdev->nr_pending); 1399 } 1400 if (rrdev) { 1401 r10_bio->devs[i].repl_bio = bio; 1402 atomic_inc(&rrdev->nr_pending); 1403 } 1404 } 1405 rcu_read_unlock(); 1406 1407 if (unlikely(blocked_rdev)) { 1408 /* Have to wait for this device to get unblocked, then retry */ 1409 int j; 1410 int d; 1411 1412 for (j = 0; j < i; j++) { 1413 if (r10_bio->devs[j].bio) { 1414 d = r10_bio->devs[j].devnum; 1415 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1416 } 1417 if (r10_bio->devs[j].repl_bio) { 1418 struct md_rdev *rdev; 1419 d = r10_bio->devs[j].devnum; 1420 rdev = conf->mirrors[d].replacement; 1421 if (!rdev) { 1422 /* Race with remove_disk */ 1423 smp_mb(); 1424 rdev = conf->mirrors[d].rdev; 1425 } 1426 rdev_dec_pending(rdev, mddev); 1427 } 1428 } 1429 allow_barrier(conf); 1430 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1431 wait_barrier(conf); 1432 goto retry_write; 1433 } 1434 1435 if (max_sectors < r10_bio->sectors) { 1436 /* We are splitting this into multiple parts, so 1437 * we need to prepare for allocating another r10_bio. 1438 */ 1439 r10_bio->sectors = max_sectors; 1440 spin_lock_irq(&conf->device_lock); 1441 if (bio->bi_phys_segments == 0) 1442 bio->bi_phys_segments = 2; 1443 else 1444 bio->bi_phys_segments++; 1445 spin_unlock_irq(&conf->device_lock); 1446 } 1447 sectors_handled = r10_bio->sector + max_sectors - 1448 bio->bi_iter.bi_sector; 1449 1450 atomic_set(&r10_bio->remaining, 1); 1451 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1452 1453 for (i = 0; i < conf->copies; i++) { 1454 struct bio *mbio; 1455 int d = r10_bio->devs[i].devnum; 1456 if (r10_bio->devs[i].bio) { 1457 struct md_rdev *rdev = conf->mirrors[d].rdev; 1458 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1459 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1460 max_sectors); 1461 r10_bio->devs[i].bio = mbio; 1462 1463 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1464 choose_data_offset(r10_bio, 1465 rdev)); 1466 mbio->bi_bdev = rdev->bdev; 1467 mbio->bi_end_io = raid10_end_write_request; 1468 mbio->bi_rw = 1469 WRITE | do_sync | do_fua | do_discard | do_same; 1470 mbio->bi_private = r10_bio; 1471 1472 atomic_inc(&r10_bio->remaining); 1473 1474 cb = blk_check_plugged(raid10_unplug, mddev, 1475 sizeof(*plug)); 1476 if (cb) 1477 plug = container_of(cb, struct raid10_plug_cb, 1478 cb); 1479 else 1480 plug = NULL; 1481 spin_lock_irqsave(&conf->device_lock, flags); 1482 if (plug) { 1483 bio_list_add(&plug->pending, mbio); 1484 plug->pending_cnt++; 1485 } else { 1486 bio_list_add(&conf->pending_bio_list, mbio); 1487 conf->pending_count++; 1488 } 1489 spin_unlock_irqrestore(&conf->device_lock, flags); 1490 if (!plug) 1491 md_wakeup_thread(mddev->thread); 1492 } 1493 1494 if (r10_bio->devs[i].repl_bio) { 1495 struct md_rdev *rdev = conf->mirrors[d].replacement; 1496 if (rdev == NULL) { 1497 /* Replacement just got moved to main 'rdev' */ 1498 smp_mb(); 1499 rdev = conf->mirrors[d].rdev; 1500 } 1501 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1502 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1503 max_sectors); 1504 r10_bio->devs[i].repl_bio = mbio; 1505 1506 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1507 choose_data_offset( 1508 r10_bio, rdev)); 1509 mbio->bi_bdev = rdev->bdev; 1510 mbio->bi_end_io = raid10_end_write_request; 1511 mbio->bi_rw = 1512 WRITE | do_sync | do_fua | do_discard | do_same; 1513 mbio->bi_private = r10_bio; 1514 1515 atomic_inc(&r10_bio->remaining); 1516 spin_lock_irqsave(&conf->device_lock, flags); 1517 bio_list_add(&conf->pending_bio_list, mbio); 1518 conf->pending_count++; 1519 spin_unlock_irqrestore(&conf->device_lock, flags); 1520 if (!mddev_check_plugged(mddev)) 1521 md_wakeup_thread(mddev->thread); 1522 } 1523 } 1524 1525 /* Don't remove the bias on 'remaining' (one_write_done) until 1526 * after checking if we need to go around again. 1527 */ 1528 1529 if (sectors_handled < bio_sectors(bio)) { 1530 one_write_done(r10_bio); 1531 /* We need another r10_bio. It has already been counted 1532 * in bio->bi_phys_segments. 1533 */ 1534 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1535 1536 r10_bio->master_bio = bio; 1537 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1538 1539 r10_bio->mddev = mddev; 1540 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1541 r10_bio->state = 0; 1542 goto retry_write; 1543 } 1544 one_write_done(r10_bio); 1545 } 1546 1547 static void make_request(struct mddev *mddev, struct bio *bio) 1548 { 1549 struct r10conf *conf = mddev->private; 1550 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1551 int chunk_sects = chunk_mask + 1; 1552 1553 struct bio *split; 1554 1555 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1556 md_flush_request(mddev, bio); 1557 return; 1558 } 1559 1560 md_write_start(mddev, bio); 1561 1562 1563 do { 1564 1565 /* 1566 * If this request crosses a chunk boundary, we need to split 1567 * it. 1568 */ 1569 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1570 bio_sectors(bio) > chunk_sects 1571 && (conf->geo.near_copies < conf->geo.raid_disks 1572 || conf->prev.near_copies < 1573 conf->prev.raid_disks))) { 1574 split = bio_split(bio, chunk_sects - 1575 (bio->bi_iter.bi_sector & 1576 (chunk_sects - 1)), 1577 GFP_NOIO, fs_bio_set); 1578 bio_chain(split, bio); 1579 } else { 1580 split = bio; 1581 } 1582 1583 __make_request(mddev, split); 1584 } while (split != bio); 1585 1586 /* In case raid10d snuck in to freeze_array */ 1587 wake_up(&conf->wait_barrier); 1588 } 1589 1590 static void status(struct seq_file *seq, struct mddev *mddev) 1591 { 1592 struct r10conf *conf = mddev->private; 1593 int i; 1594 1595 if (conf->geo.near_copies < conf->geo.raid_disks) 1596 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1597 if (conf->geo.near_copies > 1) 1598 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1599 if (conf->geo.far_copies > 1) { 1600 if (conf->geo.far_offset) 1601 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1602 else 1603 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1604 } 1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1606 conf->geo.raid_disks - mddev->degraded); 1607 for (i = 0; i < conf->geo.raid_disks; i++) 1608 seq_printf(seq, "%s", 1609 conf->mirrors[i].rdev && 1610 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1611 seq_printf(seq, "]"); 1612 } 1613 1614 /* check if there are enough drives for 1615 * every block to appear on atleast one. 1616 * Don't consider the device numbered 'ignore' 1617 * as we might be about to remove it. 1618 */ 1619 static int _enough(struct r10conf *conf, int previous, int ignore) 1620 { 1621 int first = 0; 1622 int has_enough = 0; 1623 int disks, ncopies; 1624 if (previous) { 1625 disks = conf->prev.raid_disks; 1626 ncopies = conf->prev.near_copies; 1627 } else { 1628 disks = conf->geo.raid_disks; 1629 ncopies = conf->geo.near_copies; 1630 } 1631 1632 rcu_read_lock(); 1633 do { 1634 int n = conf->copies; 1635 int cnt = 0; 1636 int this = first; 1637 while (n--) { 1638 struct md_rdev *rdev; 1639 if (this != ignore && 1640 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1641 test_bit(In_sync, &rdev->flags)) 1642 cnt++; 1643 this = (this+1) % disks; 1644 } 1645 if (cnt == 0) 1646 goto out; 1647 first = (first + ncopies) % disks; 1648 } while (first != 0); 1649 has_enough = 1; 1650 out: 1651 rcu_read_unlock(); 1652 return has_enough; 1653 } 1654 1655 static int enough(struct r10conf *conf, int ignore) 1656 { 1657 /* when calling 'enough', both 'prev' and 'geo' must 1658 * be stable. 1659 * This is ensured if ->reconfig_mutex or ->device_lock 1660 * is held. 1661 */ 1662 return _enough(conf, 0, ignore) && 1663 _enough(conf, 1, ignore); 1664 } 1665 1666 static void error(struct mddev *mddev, struct md_rdev *rdev) 1667 { 1668 char b[BDEVNAME_SIZE]; 1669 struct r10conf *conf = mddev->private; 1670 unsigned long flags; 1671 1672 /* 1673 * If it is not operational, then we have already marked it as dead 1674 * else if it is the last working disks, ignore the error, let the 1675 * next level up know. 1676 * else mark the drive as failed 1677 */ 1678 spin_lock_irqsave(&conf->device_lock, flags); 1679 if (test_bit(In_sync, &rdev->flags) 1680 && !enough(conf, rdev->raid_disk)) { 1681 /* 1682 * Don't fail the drive, just return an IO error. 1683 */ 1684 spin_unlock_irqrestore(&conf->device_lock, flags); 1685 return; 1686 } 1687 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1688 mddev->degraded++; 1689 /* 1690 * if recovery is running, make sure it aborts. 1691 */ 1692 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1693 } 1694 set_bit(Blocked, &rdev->flags); 1695 set_bit(Faulty, &rdev->flags); 1696 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1697 spin_unlock_irqrestore(&conf->device_lock, flags); 1698 printk(KERN_ALERT 1699 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1700 "md/raid10:%s: Operation continuing on %d devices.\n", 1701 mdname(mddev), bdevname(rdev->bdev, b), 1702 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1703 } 1704 1705 static void print_conf(struct r10conf *conf) 1706 { 1707 int i; 1708 struct raid10_info *tmp; 1709 1710 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1711 if (!conf) { 1712 printk(KERN_DEBUG "(!conf)\n"); 1713 return; 1714 } 1715 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1716 conf->geo.raid_disks); 1717 1718 for (i = 0; i < conf->geo.raid_disks; i++) { 1719 char b[BDEVNAME_SIZE]; 1720 tmp = conf->mirrors + i; 1721 if (tmp->rdev) 1722 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1723 i, !test_bit(In_sync, &tmp->rdev->flags), 1724 !test_bit(Faulty, &tmp->rdev->flags), 1725 bdevname(tmp->rdev->bdev,b)); 1726 } 1727 } 1728 1729 static void close_sync(struct r10conf *conf) 1730 { 1731 wait_barrier(conf); 1732 allow_barrier(conf); 1733 1734 mempool_destroy(conf->r10buf_pool); 1735 conf->r10buf_pool = NULL; 1736 } 1737 1738 static int raid10_spare_active(struct mddev *mddev) 1739 { 1740 int i; 1741 struct r10conf *conf = mddev->private; 1742 struct raid10_info *tmp; 1743 int count = 0; 1744 unsigned long flags; 1745 1746 /* 1747 * Find all non-in_sync disks within the RAID10 configuration 1748 * and mark them in_sync 1749 */ 1750 for (i = 0; i < conf->geo.raid_disks; i++) { 1751 tmp = conf->mirrors + i; 1752 if (tmp->replacement 1753 && tmp->replacement->recovery_offset == MaxSector 1754 && !test_bit(Faulty, &tmp->replacement->flags) 1755 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1756 /* Replacement has just become active */ 1757 if (!tmp->rdev 1758 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1759 count++; 1760 if (tmp->rdev) { 1761 /* Replaced device not technically faulty, 1762 * but we need to be sure it gets removed 1763 * and never re-added. 1764 */ 1765 set_bit(Faulty, &tmp->rdev->flags); 1766 sysfs_notify_dirent_safe( 1767 tmp->rdev->sysfs_state); 1768 } 1769 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1770 } else if (tmp->rdev 1771 && tmp->rdev->recovery_offset == MaxSector 1772 && !test_bit(Faulty, &tmp->rdev->flags) 1773 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1774 count++; 1775 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1776 } 1777 } 1778 spin_lock_irqsave(&conf->device_lock, flags); 1779 mddev->degraded -= count; 1780 spin_unlock_irqrestore(&conf->device_lock, flags); 1781 1782 print_conf(conf); 1783 return count; 1784 } 1785 1786 1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1788 { 1789 struct r10conf *conf = mddev->private; 1790 int err = -EEXIST; 1791 int mirror; 1792 int first = 0; 1793 int last = conf->geo.raid_disks - 1; 1794 struct request_queue *q = bdev_get_queue(rdev->bdev); 1795 1796 if (mddev->recovery_cp < MaxSector) 1797 /* only hot-add to in-sync arrays, as recovery is 1798 * very different from resync 1799 */ 1800 return -EBUSY; 1801 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1802 return -EINVAL; 1803 1804 if (rdev->raid_disk >= 0) 1805 first = last = rdev->raid_disk; 1806 1807 if (q->merge_bvec_fn) { 1808 set_bit(Unmerged, &rdev->flags); 1809 mddev->merge_check_needed = 1; 1810 } 1811 1812 if (rdev->saved_raid_disk >= first && 1813 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1814 mirror = rdev->saved_raid_disk; 1815 else 1816 mirror = first; 1817 for ( ; mirror <= last ; mirror++) { 1818 struct raid10_info *p = &conf->mirrors[mirror]; 1819 if (p->recovery_disabled == mddev->recovery_disabled) 1820 continue; 1821 if (p->rdev) { 1822 if (!test_bit(WantReplacement, &p->rdev->flags) || 1823 p->replacement != NULL) 1824 continue; 1825 clear_bit(In_sync, &rdev->flags); 1826 set_bit(Replacement, &rdev->flags); 1827 rdev->raid_disk = mirror; 1828 err = 0; 1829 if (mddev->gendisk) 1830 disk_stack_limits(mddev->gendisk, rdev->bdev, 1831 rdev->data_offset << 9); 1832 conf->fullsync = 1; 1833 rcu_assign_pointer(p->replacement, rdev); 1834 break; 1835 } 1836 1837 if (mddev->gendisk) 1838 disk_stack_limits(mddev->gendisk, rdev->bdev, 1839 rdev->data_offset << 9); 1840 1841 p->head_position = 0; 1842 p->recovery_disabled = mddev->recovery_disabled - 1; 1843 rdev->raid_disk = mirror; 1844 err = 0; 1845 if (rdev->saved_raid_disk != mirror) 1846 conf->fullsync = 1; 1847 rcu_assign_pointer(p->rdev, rdev); 1848 break; 1849 } 1850 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1851 /* Some requests might not have seen this new 1852 * merge_bvec_fn. We must wait for them to complete 1853 * before merging the device fully. 1854 * First we make sure any code which has tested 1855 * our function has submitted the request, then 1856 * we wait for all outstanding requests to complete. 1857 */ 1858 synchronize_sched(); 1859 freeze_array(conf, 0); 1860 unfreeze_array(conf); 1861 clear_bit(Unmerged, &rdev->flags); 1862 } 1863 md_integrity_add_rdev(rdev, mddev); 1864 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1865 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1866 1867 print_conf(conf); 1868 return err; 1869 } 1870 1871 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1872 { 1873 struct r10conf *conf = mddev->private; 1874 int err = 0; 1875 int number = rdev->raid_disk; 1876 struct md_rdev **rdevp; 1877 struct raid10_info *p = conf->mirrors + number; 1878 1879 print_conf(conf); 1880 if (rdev == p->rdev) 1881 rdevp = &p->rdev; 1882 else if (rdev == p->replacement) 1883 rdevp = &p->replacement; 1884 else 1885 return 0; 1886 1887 if (test_bit(In_sync, &rdev->flags) || 1888 atomic_read(&rdev->nr_pending)) { 1889 err = -EBUSY; 1890 goto abort; 1891 } 1892 /* Only remove faulty devices if recovery 1893 * is not possible. 1894 */ 1895 if (!test_bit(Faulty, &rdev->flags) && 1896 mddev->recovery_disabled != p->recovery_disabled && 1897 (!p->replacement || p->replacement == rdev) && 1898 number < conf->geo.raid_disks && 1899 enough(conf, -1)) { 1900 err = -EBUSY; 1901 goto abort; 1902 } 1903 *rdevp = NULL; 1904 synchronize_rcu(); 1905 if (atomic_read(&rdev->nr_pending)) { 1906 /* lost the race, try later */ 1907 err = -EBUSY; 1908 *rdevp = rdev; 1909 goto abort; 1910 } else if (p->replacement) { 1911 /* We must have just cleared 'rdev' */ 1912 p->rdev = p->replacement; 1913 clear_bit(Replacement, &p->replacement->flags); 1914 smp_mb(); /* Make sure other CPUs may see both as identical 1915 * but will never see neither -- if they are careful. 1916 */ 1917 p->replacement = NULL; 1918 clear_bit(WantReplacement, &rdev->flags); 1919 } else 1920 /* We might have just remove the Replacement as faulty 1921 * Clear the flag just in case 1922 */ 1923 clear_bit(WantReplacement, &rdev->flags); 1924 1925 err = md_integrity_register(mddev); 1926 1927 abort: 1928 1929 print_conf(conf); 1930 return err; 1931 } 1932 1933 1934 static void end_sync_read(struct bio *bio, int error) 1935 { 1936 struct r10bio *r10_bio = bio->bi_private; 1937 struct r10conf *conf = r10_bio->mddev->private; 1938 int d; 1939 1940 if (bio == r10_bio->master_bio) { 1941 /* this is a reshape read */ 1942 d = r10_bio->read_slot; /* really the read dev */ 1943 } else 1944 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1945 1946 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1947 set_bit(R10BIO_Uptodate, &r10_bio->state); 1948 else 1949 /* The write handler will notice the lack of 1950 * R10BIO_Uptodate and record any errors etc 1951 */ 1952 atomic_add(r10_bio->sectors, 1953 &conf->mirrors[d].rdev->corrected_errors); 1954 1955 /* for reconstruct, we always reschedule after a read. 1956 * for resync, only after all reads 1957 */ 1958 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1959 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1960 atomic_dec_and_test(&r10_bio->remaining)) { 1961 /* we have read all the blocks, 1962 * do the comparison in process context in raid10d 1963 */ 1964 reschedule_retry(r10_bio); 1965 } 1966 } 1967 1968 static void end_sync_request(struct r10bio *r10_bio) 1969 { 1970 struct mddev *mddev = r10_bio->mddev; 1971 1972 while (atomic_dec_and_test(&r10_bio->remaining)) { 1973 if (r10_bio->master_bio == NULL) { 1974 /* the primary of several recovery bios */ 1975 sector_t s = r10_bio->sectors; 1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1977 test_bit(R10BIO_WriteError, &r10_bio->state)) 1978 reschedule_retry(r10_bio); 1979 else 1980 put_buf(r10_bio); 1981 md_done_sync(mddev, s, 1); 1982 break; 1983 } else { 1984 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1985 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1986 test_bit(R10BIO_WriteError, &r10_bio->state)) 1987 reschedule_retry(r10_bio); 1988 else 1989 put_buf(r10_bio); 1990 r10_bio = r10_bio2; 1991 } 1992 } 1993 } 1994 1995 static void end_sync_write(struct bio *bio, int error) 1996 { 1997 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1998 struct r10bio *r10_bio = bio->bi_private; 1999 struct mddev *mddev = r10_bio->mddev; 2000 struct r10conf *conf = mddev->private; 2001 int d; 2002 sector_t first_bad; 2003 int bad_sectors; 2004 int slot; 2005 int repl; 2006 struct md_rdev *rdev = NULL; 2007 2008 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2009 if (repl) 2010 rdev = conf->mirrors[d].replacement; 2011 else 2012 rdev = conf->mirrors[d].rdev; 2013 2014 if (!uptodate) { 2015 if (repl) 2016 md_error(mddev, rdev); 2017 else { 2018 set_bit(WriteErrorSeen, &rdev->flags); 2019 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2020 set_bit(MD_RECOVERY_NEEDED, 2021 &rdev->mddev->recovery); 2022 set_bit(R10BIO_WriteError, &r10_bio->state); 2023 } 2024 } else if (is_badblock(rdev, 2025 r10_bio->devs[slot].addr, 2026 r10_bio->sectors, 2027 &first_bad, &bad_sectors)) 2028 set_bit(R10BIO_MadeGood, &r10_bio->state); 2029 2030 rdev_dec_pending(rdev, mddev); 2031 2032 end_sync_request(r10_bio); 2033 } 2034 2035 /* 2036 * Note: sync and recover and handled very differently for raid10 2037 * This code is for resync. 2038 * For resync, we read through virtual addresses and read all blocks. 2039 * If there is any error, we schedule a write. The lowest numbered 2040 * drive is authoritative. 2041 * However requests come for physical address, so we need to map. 2042 * For every physical address there are raid_disks/copies virtual addresses, 2043 * which is always are least one, but is not necessarly an integer. 2044 * This means that a physical address can span multiple chunks, so we may 2045 * have to submit multiple io requests for a single sync request. 2046 */ 2047 /* 2048 * We check if all blocks are in-sync and only write to blocks that 2049 * aren't in sync 2050 */ 2051 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2052 { 2053 struct r10conf *conf = mddev->private; 2054 int i, first; 2055 struct bio *tbio, *fbio; 2056 int vcnt; 2057 2058 atomic_set(&r10_bio->remaining, 1); 2059 2060 /* find the first device with a block */ 2061 for (i=0; i<conf->copies; i++) 2062 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2063 break; 2064 2065 if (i == conf->copies) 2066 goto done; 2067 2068 first = i; 2069 fbio = r10_bio->devs[i].bio; 2070 2071 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2072 /* now find blocks with errors */ 2073 for (i=0 ; i < conf->copies ; i++) { 2074 int j, d; 2075 2076 tbio = r10_bio->devs[i].bio; 2077 2078 if (tbio->bi_end_io != end_sync_read) 2079 continue; 2080 if (i == first) 2081 continue; 2082 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2083 /* We know that the bi_io_vec layout is the same for 2084 * both 'first' and 'i', so we just compare them. 2085 * All vec entries are PAGE_SIZE; 2086 */ 2087 int sectors = r10_bio->sectors; 2088 for (j = 0; j < vcnt; j++) { 2089 int len = PAGE_SIZE; 2090 if (sectors < (len / 512)) 2091 len = sectors * 512; 2092 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2093 page_address(tbio->bi_io_vec[j].bv_page), 2094 len)) 2095 break; 2096 sectors -= len/512; 2097 } 2098 if (j == vcnt) 2099 continue; 2100 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2101 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2102 /* Don't fix anything. */ 2103 continue; 2104 } 2105 /* Ok, we need to write this bio, either to correct an 2106 * inconsistency or to correct an unreadable block. 2107 * First we need to fixup bv_offset, bv_len and 2108 * bi_vecs, as the read request might have corrupted these 2109 */ 2110 bio_reset(tbio); 2111 2112 tbio->bi_vcnt = vcnt; 2113 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 2114 tbio->bi_rw = WRITE; 2115 tbio->bi_private = r10_bio; 2116 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2117 2118 for (j=0; j < vcnt ; j++) { 2119 tbio->bi_io_vec[j].bv_offset = 0; 2120 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2121 2122 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2123 page_address(fbio->bi_io_vec[j].bv_page), 2124 PAGE_SIZE); 2125 } 2126 tbio->bi_end_io = end_sync_write; 2127 2128 d = r10_bio->devs[i].devnum; 2129 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2130 atomic_inc(&r10_bio->remaining); 2131 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2132 2133 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2134 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2135 generic_make_request(tbio); 2136 } 2137 2138 /* Now write out to any replacement devices 2139 * that are active 2140 */ 2141 for (i = 0; i < conf->copies; i++) { 2142 int j, d; 2143 2144 tbio = r10_bio->devs[i].repl_bio; 2145 if (!tbio || !tbio->bi_end_io) 2146 continue; 2147 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2148 && r10_bio->devs[i].bio != fbio) 2149 for (j = 0; j < vcnt; j++) 2150 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2151 page_address(fbio->bi_io_vec[j].bv_page), 2152 PAGE_SIZE); 2153 d = r10_bio->devs[i].devnum; 2154 atomic_inc(&r10_bio->remaining); 2155 md_sync_acct(conf->mirrors[d].replacement->bdev, 2156 bio_sectors(tbio)); 2157 generic_make_request(tbio); 2158 } 2159 2160 done: 2161 if (atomic_dec_and_test(&r10_bio->remaining)) { 2162 md_done_sync(mddev, r10_bio->sectors, 1); 2163 put_buf(r10_bio); 2164 } 2165 } 2166 2167 /* 2168 * Now for the recovery code. 2169 * Recovery happens across physical sectors. 2170 * We recover all non-is_sync drives by finding the virtual address of 2171 * each, and then choose a working drive that also has that virt address. 2172 * There is a separate r10_bio for each non-in_sync drive. 2173 * Only the first two slots are in use. The first for reading, 2174 * The second for writing. 2175 * 2176 */ 2177 static void fix_recovery_read_error(struct r10bio *r10_bio) 2178 { 2179 /* We got a read error during recovery. 2180 * We repeat the read in smaller page-sized sections. 2181 * If a read succeeds, write it to the new device or record 2182 * a bad block if we cannot. 2183 * If a read fails, record a bad block on both old and 2184 * new devices. 2185 */ 2186 struct mddev *mddev = r10_bio->mddev; 2187 struct r10conf *conf = mddev->private; 2188 struct bio *bio = r10_bio->devs[0].bio; 2189 sector_t sect = 0; 2190 int sectors = r10_bio->sectors; 2191 int idx = 0; 2192 int dr = r10_bio->devs[0].devnum; 2193 int dw = r10_bio->devs[1].devnum; 2194 2195 while (sectors) { 2196 int s = sectors; 2197 struct md_rdev *rdev; 2198 sector_t addr; 2199 int ok; 2200 2201 if (s > (PAGE_SIZE>>9)) 2202 s = PAGE_SIZE >> 9; 2203 2204 rdev = conf->mirrors[dr].rdev; 2205 addr = r10_bio->devs[0].addr + sect, 2206 ok = sync_page_io(rdev, 2207 addr, 2208 s << 9, 2209 bio->bi_io_vec[idx].bv_page, 2210 READ, false); 2211 if (ok) { 2212 rdev = conf->mirrors[dw].rdev; 2213 addr = r10_bio->devs[1].addr + sect; 2214 ok = sync_page_io(rdev, 2215 addr, 2216 s << 9, 2217 bio->bi_io_vec[idx].bv_page, 2218 WRITE, false); 2219 if (!ok) { 2220 set_bit(WriteErrorSeen, &rdev->flags); 2221 if (!test_and_set_bit(WantReplacement, 2222 &rdev->flags)) 2223 set_bit(MD_RECOVERY_NEEDED, 2224 &rdev->mddev->recovery); 2225 } 2226 } 2227 if (!ok) { 2228 /* We don't worry if we cannot set a bad block - 2229 * it really is bad so there is no loss in not 2230 * recording it yet 2231 */ 2232 rdev_set_badblocks(rdev, addr, s, 0); 2233 2234 if (rdev != conf->mirrors[dw].rdev) { 2235 /* need bad block on destination too */ 2236 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2237 addr = r10_bio->devs[1].addr + sect; 2238 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2239 if (!ok) { 2240 /* just abort the recovery */ 2241 printk(KERN_NOTICE 2242 "md/raid10:%s: recovery aborted" 2243 " due to read error\n", 2244 mdname(mddev)); 2245 2246 conf->mirrors[dw].recovery_disabled 2247 = mddev->recovery_disabled; 2248 set_bit(MD_RECOVERY_INTR, 2249 &mddev->recovery); 2250 break; 2251 } 2252 } 2253 } 2254 2255 sectors -= s; 2256 sect += s; 2257 idx++; 2258 } 2259 } 2260 2261 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2262 { 2263 struct r10conf *conf = mddev->private; 2264 int d; 2265 struct bio *wbio, *wbio2; 2266 2267 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2268 fix_recovery_read_error(r10_bio); 2269 end_sync_request(r10_bio); 2270 return; 2271 } 2272 2273 /* 2274 * share the pages with the first bio 2275 * and submit the write request 2276 */ 2277 d = r10_bio->devs[1].devnum; 2278 wbio = r10_bio->devs[1].bio; 2279 wbio2 = r10_bio->devs[1].repl_bio; 2280 /* Need to test wbio2->bi_end_io before we call 2281 * generic_make_request as if the former is NULL, 2282 * the latter is free to free wbio2. 2283 */ 2284 if (wbio2 && !wbio2->bi_end_io) 2285 wbio2 = NULL; 2286 if (wbio->bi_end_io) { 2287 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2288 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2289 generic_make_request(wbio); 2290 } 2291 if (wbio2) { 2292 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2293 md_sync_acct(conf->mirrors[d].replacement->bdev, 2294 bio_sectors(wbio2)); 2295 generic_make_request(wbio2); 2296 } 2297 } 2298 2299 2300 /* 2301 * Used by fix_read_error() to decay the per rdev read_errors. 2302 * We halve the read error count for every hour that has elapsed 2303 * since the last recorded read error. 2304 * 2305 */ 2306 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2307 { 2308 struct timespec cur_time_mon; 2309 unsigned long hours_since_last; 2310 unsigned int read_errors = atomic_read(&rdev->read_errors); 2311 2312 ktime_get_ts(&cur_time_mon); 2313 2314 if (rdev->last_read_error.tv_sec == 0 && 2315 rdev->last_read_error.tv_nsec == 0) { 2316 /* first time we've seen a read error */ 2317 rdev->last_read_error = cur_time_mon; 2318 return; 2319 } 2320 2321 hours_since_last = (cur_time_mon.tv_sec - 2322 rdev->last_read_error.tv_sec) / 3600; 2323 2324 rdev->last_read_error = cur_time_mon; 2325 2326 /* 2327 * if hours_since_last is > the number of bits in read_errors 2328 * just set read errors to 0. We do this to avoid 2329 * overflowing the shift of read_errors by hours_since_last. 2330 */ 2331 if (hours_since_last >= 8 * sizeof(read_errors)) 2332 atomic_set(&rdev->read_errors, 0); 2333 else 2334 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2335 } 2336 2337 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2338 int sectors, struct page *page, int rw) 2339 { 2340 sector_t first_bad; 2341 int bad_sectors; 2342 2343 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2344 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2345 return -1; 2346 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2347 /* success */ 2348 return 1; 2349 if (rw == WRITE) { 2350 set_bit(WriteErrorSeen, &rdev->flags); 2351 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2352 set_bit(MD_RECOVERY_NEEDED, 2353 &rdev->mddev->recovery); 2354 } 2355 /* need to record an error - either for the block or the device */ 2356 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2357 md_error(rdev->mddev, rdev); 2358 return 0; 2359 } 2360 2361 /* 2362 * This is a kernel thread which: 2363 * 2364 * 1. Retries failed read operations on working mirrors. 2365 * 2. Updates the raid superblock when problems encounter. 2366 * 3. Performs writes following reads for array synchronising. 2367 */ 2368 2369 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2370 { 2371 int sect = 0; /* Offset from r10_bio->sector */ 2372 int sectors = r10_bio->sectors; 2373 struct md_rdev*rdev; 2374 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2375 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2376 2377 /* still own a reference to this rdev, so it cannot 2378 * have been cleared recently. 2379 */ 2380 rdev = conf->mirrors[d].rdev; 2381 2382 if (test_bit(Faulty, &rdev->flags)) 2383 /* drive has already been failed, just ignore any 2384 more fix_read_error() attempts */ 2385 return; 2386 2387 check_decay_read_errors(mddev, rdev); 2388 atomic_inc(&rdev->read_errors); 2389 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2390 char b[BDEVNAME_SIZE]; 2391 bdevname(rdev->bdev, b); 2392 2393 printk(KERN_NOTICE 2394 "md/raid10:%s: %s: Raid device exceeded " 2395 "read_error threshold [cur %d:max %d]\n", 2396 mdname(mddev), b, 2397 atomic_read(&rdev->read_errors), max_read_errors); 2398 printk(KERN_NOTICE 2399 "md/raid10:%s: %s: Failing raid device\n", 2400 mdname(mddev), b); 2401 md_error(mddev, conf->mirrors[d].rdev); 2402 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2403 return; 2404 } 2405 2406 while(sectors) { 2407 int s = sectors; 2408 int sl = r10_bio->read_slot; 2409 int success = 0; 2410 int start; 2411 2412 if (s > (PAGE_SIZE>>9)) 2413 s = PAGE_SIZE >> 9; 2414 2415 rcu_read_lock(); 2416 do { 2417 sector_t first_bad; 2418 int bad_sectors; 2419 2420 d = r10_bio->devs[sl].devnum; 2421 rdev = rcu_dereference(conf->mirrors[d].rdev); 2422 if (rdev && 2423 !test_bit(Unmerged, &rdev->flags) && 2424 test_bit(In_sync, &rdev->flags) && 2425 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2426 &first_bad, &bad_sectors) == 0) { 2427 atomic_inc(&rdev->nr_pending); 2428 rcu_read_unlock(); 2429 success = sync_page_io(rdev, 2430 r10_bio->devs[sl].addr + 2431 sect, 2432 s<<9, 2433 conf->tmppage, READ, false); 2434 rdev_dec_pending(rdev, mddev); 2435 rcu_read_lock(); 2436 if (success) 2437 break; 2438 } 2439 sl++; 2440 if (sl == conf->copies) 2441 sl = 0; 2442 } while (!success && sl != r10_bio->read_slot); 2443 rcu_read_unlock(); 2444 2445 if (!success) { 2446 /* Cannot read from anywhere, just mark the block 2447 * as bad on the first device to discourage future 2448 * reads. 2449 */ 2450 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2451 rdev = conf->mirrors[dn].rdev; 2452 2453 if (!rdev_set_badblocks( 2454 rdev, 2455 r10_bio->devs[r10_bio->read_slot].addr 2456 + sect, 2457 s, 0)) { 2458 md_error(mddev, rdev); 2459 r10_bio->devs[r10_bio->read_slot].bio 2460 = IO_BLOCKED; 2461 } 2462 break; 2463 } 2464 2465 start = sl; 2466 /* write it back and re-read */ 2467 rcu_read_lock(); 2468 while (sl != r10_bio->read_slot) { 2469 char b[BDEVNAME_SIZE]; 2470 2471 if (sl==0) 2472 sl = conf->copies; 2473 sl--; 2474 d = r10_bio->devs[sl].devnum; 2475 rdev = rcu_dereference(conf->mirrors[d].rdev); 2476 if (!rdev || 2477 test_bit(Unmerged, &rdev->flags) || 2478 !test_bit(In_sync, &rdev->flags)) 2479 continue; 2480 2481 atomic_inc(&rdev->nr_pending); 2482 rcu_read_unlock(); 2483 if (r10_sync_page_io(rdev, 2484 r10_bio->devs[sl].addr + 2485 sect, 2486 s, conf->tmppage, WRITE) 2487 == 0) { 2488 /* Well, this device is dead */ 2489 printk(KERN_NOTICE 2490 "md/raid10:%s: read correction " 2491 "write failed" 2492 " (%d sectors at %llu on %s)\n", 2493 mdname(mddev), s, 2494 (unsigned long long)( 2495 sect + 2496 choose_data_offset(r10_bio, 2497 rdev)), 2498 bdevname(rdev->bdev, b)); 2499 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2500 "drive\n", 2501 mdname(mddev), 2502 bdevname(rdev->bdev, b)); 2503 } 2504 rdev_dec_pending(rdev, mddev); 2505 rcu_read_lock(); 2506 } 2507 sl = start; 2508 while (sl != r10_bio->read_slot) { 2509 char b[BDEVNAME_SIZE]; 2510 2511 if (sl==0) 2512 sl = conf->copies; 2513 sl--; 2514 d = r10_bio->devs[sl].devnum; 2515 rdev = rcu_dereference(conf->mirrors[d].rdev); 2516 if (!rdev || 2517 !test_bit(In_sync, &rdev->flags)) 2518 continue; 2519 2520 atomic_inc(&rdev->nr_pending); 2521 rcu_read_unlock(); 2522 switch (r10_sync_page_io(rdev, 2523 r10_bio->devs[sl].addr + 2524 sect, 2525 s, conf->tmppage, 2526 READ)) { 2527 case 0: 2528 /* Well, this device is dead */ 2529 printk(KERN_NOTICE 2530 "md/raid10:%s: unable to read back " 2531 "corrected sectors" 2532 " (%d sectors at %llu on %s)\n", 2533 mdname(mddev), s, 2534 (unsigned long long)( 2535 sect + 2536 choose_data_offset(r10_bio, rdev)), 2537 bdevname(rdev->bdev, b)); 2538 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2539 "drive\n", 2540 mdname(mddev), 2541 bdevname(rdev->bdev, b)); 2542 break; 2543 case 1: 2544 printk(KERN_INFO 2545 "md/raid10:%s: read error corrected" 2546 " (%d sectors at %llu on %s)\n", 2547 mdname(mddev), s, 2548 (unsigned long long)( 2549 sect + 2550 choose_data_offset(r10_bio, rdev)), 2551 bdevname(rdev->bdev, b)); 2552 atomic_add(s, &rdev->corrected_errors); 2553 } 2554 2555 rdev_dec_pending(rdev, mddev); 2556 rcu_read_lock(); 2557 } 2558 rcu_read_unlock(); 2559 2560 sectors -= s; 2561 sect += s; 2562 } 2563 } 2564 2565 static int narrow_write_error(struct r10bio *r10_bio, int i) 2566 { 2567 struct bio *bio = r10_bio->master_bio; 2568 struct mddev *mddev = r10_bio->mddev; 2569 struct r10conf *conf = mddev->private; 2570 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2571 /* bio has the data to be written to slot 'i' where 2572 * we just recently had a write error. 2573 * We repeatedly clone the bio and trim down to one block, 2574 * then try the write. Where the write fails we record 2575 * a bad block. 2576 * It is conceivable that the bio doesn't exactly align with 2577 * blocks. We must handle this. 2578 * 2579 * We currently own a reference to the rdev. 2580 */ 2581 2582 int block_sectors; 2583 sector_t sector; 2584 int sectors; 2585 int sect_to_write = r10_bio->sectors; 2586 int ok = 1; 2587 2588 if (rdev->badblocks.shift < 0) 2589 return 0; 2590 2591 block_sectors = 1 << rdev->badblocks.shift; 2592 sector = r10_bio->sector; 2593 sectors = ((r10_bio->sector + block_sectors) 2594 & ~(sector_t)(block_sectors - 1)) 2595 - sector; 2596 2597 while (sect_to_write) { 2598 struct bio *wbio; 2599 if (sectors > sect_to_write) 2600 sectors = sect_to_write; 2601 /* Write at 'sector' for 'sectors' */ 2602 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2603 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2604 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2605 choose_data_offset(r10_bio, rdev) + 2606 (sector - r10_bio->sector)); 2607 wbio->bi_bdev = rdev->bdev; 2608 if (submit_bio_wait(WRITE, wbio) == 0) 2609 /* Failure! */ 2610 ok = rdev_set_badblocks(rdev, sector, 2611 sectors, 0) 2612 && ok; 2613 2614 bio_put(wbio); 2615 sect_to_write -= sectors; 2616 sector += sectors; 2617 sectors = block_sectors; 2618 } 2619 return ok; 2620 } 2621 2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2623 { 2624 int slot = r10_bio->read_slot; 2625 struct bio *bio; 2626 struct r10conf *conf = mddev->private; 2627 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2628 char b[BDEVNAME_SIZE]; 2629 unsigned long do_sync; 2630 int max_sectors; 2631 2632 /* we got a read error. Maybe the drive is bad. Maybe just 2633 * the block and we can fix it. 2634 * We freeze all other IO, and try reading the block from 2635 * other devices. When we find one, we re-write 2636 * and check it that fixes the read error. 2637 * This is all done synchronously while the array is 2638 * frozen. 2639 */ 2640 bio = r10_bio->devs[slot].bio; 2641 bdevname(bio->bi_bdev, b); 2642 bio_put(bio); 2643 r10_bio->devs[slot].bio = NULL; 2644 2645 if (mddev->ro == 0) { 2646 freeze_array(conf, 1); 2647 fix_read_error(conf, mddev, r10_bio); 2648 unfreeze_array(conf); 2649 } else 2650 r10_bio->devs[slot].bio = IO_BLOCKED; 2651 2652 rdev_dec_pending(rdev, mddev); 2653 2654 read_more: 2655 rdev = read_balance(conf, r10_bio, &max_sectors); 2656 if (rdev == NULL) { 2657 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2658 " read error for block %llu\n", 2659 mdname(mddev), b, 2660 (unsigned long long)r10_bio->sector); 2661 raid_end_bio_io(r10_bio); 2662 return; 2663 } 2664 2665 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2666 slot = r10_bio->read_slot; 2667 printk_ratelimited( 2668 KERN_ERR 2669 "md/raid10:%s: %s: redirecting " 2670 "sector %llu to another mirror\n", 2671 mdname(mddev), 2672 bdevname(rdev->bdev, b), 2673 (unsigned long long)r10_bio->sector); 2674 bio = bio_clone_mddev(r10_bio->master_bio, 2675 GFP_NOIO, mddev); 2676 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2677 r10_bio->devs[slot].bio = bio; 2678 r10_bio->devs[slot].rdev = rdev; 2679 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2680 + choose_data_offset(r10_bio, rdev); 2681 bio->bi_bdev = rdev->bdev; 2682 bio->bi_rw = READ | do_sync; 2683 bio->bi_private = r10_bio; 2684 bio->bi_end_io = raid10_end_read_request; 2685 if (max_sectors < r10_bio->sectors) { 2686 /* Drat - have to split this up more */ 2687 struct bio *mbio = r10_bio->master_bio; 2688 int sectors_handled = 2689 r10_bio->sector + max_sectors 2690 - mbio->bi_iter.bi_sector; 2691 r10_bio->sectors = max_sectors; 2692 spin_lock_irq(&conf->device_lock); 2693 if (mbio->bi_phys_segments == 0) 2694 mbio->bi_phys_segments = 2; 2695 else 2696 mbio->bi_phys_segments++; 2697 spin_unlock_irq(&conf->device_lock); 2698 generic_make_request(bio); 2699 2700 r10_bio = mempool_alloc(conf->r10bio_pool, 2701 GFP_NOIO); 2702 r10_bio->master_bio = mbio; 2703 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2704 r10_bio->state = 0; 2705 set_bit(R10BIO_ReadError, 2706 &r10_bio->state); 2707 r10_bio->mddev = mddev; 2708 r10_bio->sector = mbio->bi_iter.bi_sector 2709 + sectors_handled; 2710 2711 goto read_more; 2712 } else 2713 generic_make_request(bio); 2714 } 2715 2716 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2717 { 2718 /* Some sort of write request has finished and it 2719 * succeeded in writing where we thought there was a 2720 * bad block. So forget the bad block. 2721 * Or possibly if failed and we need to record 2722 * a bad block. 2723 */ 2724 int m; 2725 struct md_rdev *rdev; 2726 2727 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2728 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2729 for (m = 0; m < conf->copies; m++) { 2730 int dev = r10_bio->devs[m].devnum; 2731 rdev = conf->mirrors[dev].rdev; 2732 if (r10_bio->devs[m].bio == NULL) 2733 continue; 2734 if (test_bit(BIO_UPTODATE, 2735 &r10_bio->devs[m].bio->bi_flags)) { 2736 rdev_clear_badblocks( 2737 rdev, 2738 r10_bio->devs[m].addr, 2739 r10_bio->sectors, 0); 2740 } else { 2741 if (!rdev_set_badblocks( 2742 rdev, 2743 r10_bio->devs[m].addr, 2744 r10_bio->sectors, 0)) 2745 md_error(conf->mddev, rdev); 2746 } 2747 rdev = conf->mirrors[dev].replacement; 2748 if (r10_bio->devs[m].repl_bio == NULL) 2749 continue; 2750 if (test_bit(BIO_UPTODATE, 2751 &r10_bio->devs[m].repl_bio->bi_flags)) { 2752 rdev_clear_badblocks( 2753 rdev, 2754 r10_bio->devs[m].addr, 2755 r10_bio->sectors, 0); 2756 } else { 2757 if (!rdev_set_badblocks( 2758 rdev, 2759 r10_bio->devs[m].addr, 2760 r10_bio->sectors, 0)) 2761 md_error(conf->mddev, rdev); 2762 } 2763 } 2764 put_buf(r10_bio); 2765 } else { 2766 for (m = 0; m < conf->copies; m++) { 2767 int dev = r10_bio->devs[m].devnum; 2768 struct bio *bio = r10_bio->devs[m].bio; 2769 rdev = conf->mirrors[dev].rdev; 2770 if (bio == IO_MADE_GOOD) { 2771 rdev_clear_badblocks( 2772 rdev, 2773 r10_bio->devs[m].addr, 2774 r10_bio->sectors, 0); 2775 rdev_dec_pending(rdev, conf->mddev); 2776 } else if (bio != NULL && 2777 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2778 if (!narrow_write_error(r10_bio, m)) { 2779 md_error(conf->mddev, rdev); 2780 set_bit(R10BIO_Degraded, 2781 &r10_bio->state); 2782 } 2783 rdev_dec_pending(rdev, conf->mddev); 2784 } 2785 bio = r10_bio->devs[m].repl_bio; 2786 rdev = conf->mirrors[dev].replacement; 2787 if (rdev && bio == IO_MADE_GOOD) { 2788 rdev_clear_badblocks( 2789 rdev, 2790 r10_bio->devs[m].addr, 2791 r10_bio->sectors, 0); 2792 rdev_dec_pending(rdev, conf->mddev); 2793 } 2794 } 2795 if (test_bit(R10BIO_WriteError, 2796 &r10_bio->state)) 2797 close_write(r10_bio); 2798 raid_end_bio_io(r10_bio); 2799 } 2800 } 2801 2802 static void raid10d(struct md_thread *thread) 2803 { 2804 struct mddev *mddev = thread->mddev; 2805 struct r10bio *r10_bio; 2806 unsigned long flags; 2807 struct r10conf *conf = mddev->private; 2808 struct list_head *head = &conf->retry_list; 2809 struct blk_plug plug; 2810 2811 md_check_recovery(mddev); 2812 2813 blk_start_plug(&plug); 2814 for (;;) { 2815 2816 flush_pending_writes(conf); 2817 2818 spin_lock_irqsave(&conf->device_lock, flags); 2819 if (list_empty(head)) { 2820 spin_unlock_irqrestore(&conf->device_lock, flags); 2821 break; 2822 } 2823 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2824 list_del(head->prev); 2825 conf->nr_queued--; 2826 spin_unlock_irqrestore(&conf->device_lock, flags); 2827 2828 mddev = r10_bio->mddev; 2829 conf = mddev->private; 2830 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2831 test_bit(R10BIO_WriteError, &r10_bio->state)) 2832 handle_write_completed(conf, r10_bio); 2833 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2834 reshape_request_write(mddev, r10_bio); 2835 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2836 sync_request_write(mddev, r10_bio); 2837 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2838 recovery_request_write(mddev, r10_bio); 2839 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2840 handle_read_error(mddev, r10_bio); 2841 else { 2842 /* just a partial read to be scheduled from a 2843 * separate context 2844 */ 2845 int slot = r10_bio->read_slot; 2846 generic_make_request(r10_bio->devs[slot].bio); 2847 } 2848 2849 cond_resched(); 2850 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2851 md_check_recovery(mddev); 2852 } 2853 blk_finish_plug(&plug); 2854 } 2855 2856 2857 static int init_resync(struct r10conf *conf) 2858 { 2859 int buffs; 2860 int i; 2861 2862 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2863 BUG_ON(conf->r10buf_pool); 2864 conf->have_replacement = 0; 2865 for (i = 0; i < conf->geo.raid_disks; i++) 2866 if (conf->mirrors[i].replacement) 2867 conf->have_replacement = 1; 2868 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2869 if (!conf->r10buf_pool) 2870 return -ENOMEM; 2871 conf->next_resync = 0; 2872 return 0; 2873 } 2874 2875 /* 2876 * perform a "sync" on one "block" 2877 * 2878 * We need to make sure that no normal I/O request - particularly write 2879 * requests - conflict with active sync requests. 2880 * 2881 * This is achieved by tracking pending requests and a 'barrier' concept 2882 * that can be installed to exclude normal IO requests. 2883 * 2884 * Resync and recovery are handled very differently. 2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2886 * 2887 * For resync, we iterate over virtual addresses, read all copies, 2888 * and update if there are differences. If only one copy is live, 2889 * skip it. 2890 * For recovery, we iterate over physical addresses, read a good 2891 * value for each non-in_sync drive, and over-write. 2892 * 2893 * So, for recovery we may have several outstanding complex requests for a 2894 * given address, one for each out-of-sync device. We model this by allocating 2895 * a number of r10_bio structures, one for each out-of-sync device. 2896 * As we setup these structures, we collect all bio's together into a list 2897 * which we then process collectively to add pages, and then process again 2898 * to pass to generic_make_request. 2899 * 2900 * The r10_bio structures are linked using a borrowed master_bio pointer. 2901 * This link is counted in ->remaining. When the r10_bio that points to NULL 2902 * has its remaining count decremented to 0, the whole complex operation 2903 * is complete. 2904 * 2905 */ 2906 2907 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2908 int *skipped, int go_faster) 2909 { 2910 struct r10conf *conf = mddev->private; 2911 struct r10bio *r10_bio; 2912 struct bio *biolist = NULL, *bio; 2913 sector_t max_sector, nr_sectors; 2914 int i; 2915 int max_sync; 2916 sector_t sync_blocks; 2917 sector_t sectors_skipped = 0; 2918 int chunks_skipped = 0; 2919 sector_t chunk_mask = conf->geo.chunk_mask; 2920 2921 if (!conf->r10buf_pool) 2922 if (init_resync(conf)) 2923 return 0; 2924 2925 /* 2926 * Allow skipping a full rebuild for incremental assembly 2927 * of a clean array, like RAID1 does. 2928 */ 2929 if (mddev->bitmap == NULL && 2930 mddev->recovery_cp == MaxSector && 2931 mddev->reshape_position == MaxSector && 2932 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2933 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2934 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2935 conf->fullsync == 0) { 2936 *skipped = 1; 2937 return mddev->dev_sectors - sector_nr; 2938 } 2939 2940 skipped: 2941 max_sector = mddev->dev_sectors; 2942 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2943 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2944 max_sector = mddev->resync_max_sectors; 2945 if (sector_nr >= max_sector) { 2946 /* If we aborted, we need to abort the 2947 * sync on the 'current' bitmap chucks (there can 2948 * be several when recovering multiple devices). 2949 * as we may have started syncing it but not finished. 2950 * We can find the current address in 2951 * mddev->curr_resync, but for recovery, 2952 * we need to convert that to several 2953 * virtual addresses. 2954 */ 2955 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2956 end_reshape(conf); 2957 return 0; 2958 } 2959 2960 if (mddev->curr_resync < max_sector) { /* aborted */ 2961 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2962 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2963 &sync_blocks, 1); 2964 else for (i = 0; i < conf->geo.raid_disks; i++) { 2965 sector_t sect = 2966 raid10_find_virt(conf, mddev->curr_resync, i); 2967 bitmap_end_sync(mddev->bitmap, sect, 2968 &sync_blocks, 1); 2969 } 2970 } else { 2971 /* completed sync */ 2972 if ((!mddev->bitmap || conf->fullsync) 2973 && conf->have_replacement 2974 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2975 /* Completed a full sync so the replacements 2976 * are now fully recovered. 2977 */ 2978 for (i = 0; i < conf->geo.raid_disks; i++) 2979 if (conf->mirrors[i].replacement) 2980 conf->mirrors[i].replacement 2981 ->recovery_offset 2982 = MaxSector; 2983 } 2984 conf->fullsync = 0; 2985 } 2986 bitmap_close_sync(mddev->bitmap); 2987 close_sync(conf); 2988 *skipped = 1; 2989 return sectors_skipped; 2990 } 2991 2992 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2993 return reshape_request(mddev, sector_nr, skipped); 2994 2995 if (chunks_skipped >= conf->geo.raid_disks) { 2996 /* if there has been nothing to do on any drive, 2997 * then there is nothing to do at all.. 2998 */ 2999 *skipped = 1; 3000 return (max_sector - sector_nr) + sectors_skipped; 3001 } 3002 3003 if (max_sector > mddev->resync_max) 3004 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3005 3006 /* make sure whole request will fit in a chunk - if chunks 3007 * are meaningful 3008 */ 3009 if (conf->geo.near_copies < conf->geo.raid_disks && 3010 max_sector > (sector_nr | chunk_mask)) 3011 max_sector = (sector_nr | chunk_mask) + 1; 3012 /* 3013 * If there is non-resync activity waiting for us then 3014 * put in a delay to throttle resync. 3015 */ 3016 if (!go_faster && conf->nr_waiting) 3017 msleep_interruptible(1000); 3018 3019 /* Again, very different code for resync and recovery. 3020 * Both must result in an r10bio with a list of bios that 3021 * have bi_end_io, bi_sector, bi_bdev set, 3022 * and bi_private set to the r10bio. 3023 * For recovery, we may actually create several r10bios 3024 * with 2 bios in each, that correspond to the bios in the main one. 3025 * In this case, the subordinate r10bios link back through a 3026 * borrowed master_bio pointer, and the counter in the master 3027 * includes a ref from each subordinate. 3028 */ 3029 /* First, we decide what to do and set ->bi_end_io 3030 * To end_sync_read if we want to read, and 3031 * end_sync_write if we will want to write. 3032 */ 3033 3034 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3035 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3036 /* recovery... the complicated one */ 3037 int j; 3038 r10_bio = NULL; 3039 3040 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3041 int still_degraded; 3042 struct r10bio *rb2; 3043 sector_t sect; 3044 int must_sync; 3045 int any_working; 3046 struct raid10_info *mirror = &conf->mirrors[i]; 3047 3048 if ((mirror->rdev == NULL || 3049 test_bit(In_sync, &mirror->rdev->flags)) 3050 && 3051 (mirror->replacement == NULL || 3052 test_bit(Faulty, 3053 &mirror->replacement->flags))) 3054 continue; 3055 3056 still_degraded = 0; 3057 /* want to reconstruct this device */ 3058 rb2 = r10_bio; 3059 sect = raid10_find_virt(conf, sector_nr, i); 3060 if (sect >= mddev->resync_max_sectors) { 3061 /* last stripe is not complete - don't 3062 * try to recover this sector. 3063 */ 3064 continue; 3065 } 3066 /* Unless we are doing a full sync, or a replacement 3067 * we only need to recover the block if it is set in 3068 * the bitmap 3069 */ 3070 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3071 &sync_blocks, 1); 3072 if (sync_blocks < max_sync) 3073 max_sync = sync_blocks; 3074 if (!must_sync && 3075 mirror->replacement == NULL && 3076 !conf->fullsync) { 3077 /* yep, skip the sync_blocks here, but don't assume 3078 * that there will never be anything to do here 3079 */ 3080 chunks_skipped = -1; 3081 continue; 3082 } 3083 3084 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3085 raise_barrier(conf, rb2 != NULL); 3086 atomic_set(&r10_bio->remaining, 0); 3087 3088 r10_bio->master_bio = (struct bio*)rb2; 3089 if (rb2) 3090 atomic_inc(&rb2->remaining); 3091 r10_bio->mddev = mddev; 3092 set_bit(R10BIO_IsRecover, &r10_bio->state); 3093 r10_bio->sector = sect; 3094 3095 raid10_find_phys(conf, r10_bio); 3096 3097 /* Need to check if the array will still be 3098 * degraded 3099 */ 3100 for (j = 0; j < conf->geo.raid_disks; j++) 3101 if (conf->mirrors[j].rdev == NULL || 3102 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3103 still_degraded = 1; 3104 break; 3105 } 3106 3107 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3108 &sync_blocks, still_degraded); 3109 3110 any_working = 0; 3111 for (j=0; j<conf->copies;j++) { 3112 int k; 3113 int d = r10_bio->devs[j].devnum; 3114 sector_t from_addr, to_addr; 3115 struct md_rdev *rdev; 3116 sector_t sector, first_bad; 3117 int bad_sectors; 3118 if (!conf->mirrors[d].rdev || 3119 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3120 continue; 3121 /* This is where we read from */ 3122 any_working = 1; 3123 rdev = conf->mirrors[d].rdev; 3124 sector = r10_bio->devs[j].addr; 3125 3126 if (is_badblock(rdev, sector, max_sync, 3127 &first_bad, &bad_sectors)) { 3128 if (first_bad > sector) 3129 max_sync = first_bad - sector; 3130 else { 3131 bad_sectors -= (sector 3132 - first_bad); 3133 if (max_sync > bad_sectors) 3134 max_sync = bad_sectors; 3135 continue; 3136 } 3137 } 3138 bio = r10_bio->devs[0].bio; 3139 bio_reset(bio); 3140 bio->bi_next = biolist; 3141 biolist = bio; 3142 bio->bi_private = r10_bio; 3143 bio->bi_end_io = end_sync_read; 3144 bio->bi_rw = READ; 3145 from_addr = r10_bio->devs[j].addr; 3146 bio->bi_iter.bi_sector = from_addr + 3147 rdev->data_offset; 3148 bio->bi_bdev = rdev->bdev; 3149 atomic_inc(&rdev->nr_pending); 3150 /* and we write to 'i' (if not in_sync) */ 3151 3152 for (k=0; k<conf->copies; k++) 3153 if (r10_bio->devs[k].devnum == i) 3154 break; 3155 BUG_ON(k == conf->copies); 3156 to_addr = r10_bio->devs[k].addr; 3157 r10_bio->devs[0].devnum = d; 3158 r10_bio->devs[0].addr = from_addr; 3159 r10_bio->devs[1].devnum = i; 3160 r10_bio->devs[1].addr = to_addr; 3161 3162 rdev = mirror->rdev; 3163 if (!test_bit(In_sync, &rdev->flags)) { 3164 bio = r10_bio->devs[1].bio; 3165 bio_reset(bio); 3166 bio->bi_next = biolist; 3167 biolist = bio; 3168 bio->bi_private = r10_bio; 3169 bio->bi_end_io = end_sync_write; 3170 bio->bi_rw = WRITE; 3171 bio->bi_iter.bi_sector = to_addr 3172 + rdev->data_offset; 3173 bio->bi_bdev = rdev->bdev; 3174 atomic_inc(&r10_bio->remaining); 3175 } else 3176 r10_bio->devs[1].bio->bi_end_io = NULL; 3177 3178 /* and maybe write to replacement */ 3179 bio = r10_bio->devs[1].repl_bio; 3180 if (bio) 3181 bio->bi_end_io = NULL; 3182 rdev = mirror->replacement; 3183 /* Note: if rdev != NULL, then bio 3184 * cannot be NULL as r10buf_pool_alloc will 3185 * have allocated it. 3186 * So the second test here is pointless. 3187 * But it keeps semantic-checkers happy, and 3188 * this comment keeps human reviewers 3189 * happy. 3190 */ 3191 if (rdev == NULL || bio == NULL || 3192 test_bit(Faulty, &rdev->flags)) 3193 break; 3194 bio_reset(bio); 3195 bio->bi_next = biolist; 3196 biolist = bio; 3197 bio->bi_private = r10_bio; 3198 bio->bi_end_io = end_sync_write; 3199 bio->bi_rw = WRITE; 3200 bio->bi_iter.bi_sector = to_addr + 3201 rdev->data_offset; 3202 bio->bi_bdev = rdev->bdev; 3203 atomic_inc(&r10_bio->remaining); 3204 break; 3205 } 3206 if (j == conf->copies) { 3207 /* Cannot recover, so abort the recovery or 3208 * record a bad block */ 3209 if (any_working) { 3210 /* problem is that there are bad blocks 3211 * on other device(s) 3212 */ 3213 int k; 3214 for (k = 0; k < conf->copies; k++) 3215 if (r10_bio->devs[k].devnum == i) 3216 break; 3217 if (!test_bit(In_sync, 3218 &mirror->rdev->flags) 3219 && !rdev_set_badblocks( 3220 mirror->rdev, 3221 r10_bio->devs[k].addr, 3222 max_sync, 0)) 3223 any_working = 0; 3224 if (mirror->replacement && 3225 !rdev_set_badblocks( 3226 mirror->replacement, 3227 r10_bio->devs[k].addr, 3228 max_sync, 0)) 3229 any_working = 0; 3230 } 3231 if (!any_working) { 3232 if (!test_and_set_bit(MD_RECOVERY_INTR, 3233 &mddev->recovery)) 3234 printk(KERN_INFO "md/raid10:%s: insufficient " 3235 "working devices for recovery.\n", 3236 mdname(mddev)); 3237 mirror->recovery_disabled 3238 = mddev->recovery_disabled; 3239 } 3240 put_buf(r10_bio); 3241 if (rb2) 3242 atomic_dec(&rb2->remaining); 3243 r10_bio = rb2; 3244 break; 3245 } 3246 } 3247 if (biolist == NULL) { 3248 while (r10_bio) { 3249 struct r10bio *rb2 = r10_bio; 3250 r10_bio = (struct r10bio*) rb2->master_bio; 3251 rb2->master_bio = NULL; 3252 put_buf(rb2); 3253 } 3254 goto giveup; 3255 } 3256 } else { 3257 /* resync. Schedule a read for every block at this virt offset */ 3258 int count = 0; 3259 3260 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3261 3262 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3263 &sync_blocks, mddev->degraded) && 3264 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3265 &mddev->recovery)) { 3266 /* We can skip this block */ 3267 *skipped = 1; 3268 return sync_blocks + sectors_skipped; 3269 } 3270 if (sync_blocks < max_sync) 3271 max_sync = sync_blocks; 3272 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3273 3274 r10_bio->mddev = mddev; 3275 atomic_set(&r10_bio->remaining, 0); 3276 raise_barrier(conf, 0); 3277 conf->next_resync = sector_nr; 3278 3279 r10_bio->master_bio = NULL; 3280 r10_bio->sector = sector_nr; 3281 set_bit(R10BIO_IsSync, &r10_bio->state); 3282 raid10_find_phys(conf, r10_bio); 3283 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3284 3285 for (i = 0; i < conf->copies; i++) { 3286 int d = r10_bio->devs[i].devnum; 3287 sector_t first_bad, sector; 3288 int bad_sectors; 3289 3290 if (r10_bio->devs[i].repl_bio) 3291 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3292 3293 bio = r10_bio->devs[i].bio; 3294 bio_reset(bio); 3295 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3296 if (conf->mirrors[d].rdev == NULL || 3297 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3298 continue; 3299 sector = r10_bio->devs[i].addr; 3300 if (is_badblock(conf->mirrors[d].rdev, 3301 sector, max_sync, 3302 &first_bad, &bad_sectors)) { 3303 if (first_bad > sector) 3304 max_sync = first_bad - sector; 3305 else { 3306 bad_sectors -= (sector - first_bad); 3307 if (max_sync > bad_sectors) 3308 max_sync = bad_sectors; 3309 continue; 3310 } 3311 } 3312 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3313 atomic_inc(&r10_bio->remaining); 3314 bio->bi_next = biolist; 3315 biolist = bio; 3316 bio->bi_private = r10_bio; 3317 bio->bi_end_io = end_sync_read; 3318 bio->bi_rw = READ; 3319 bio->bi_iter.bi_sector = sector + 3320 conf->mirrors[d].rdev->data_offset; 3321 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3322 count++; 3323 3324 if (conf->mirrors[d].replacement == NULL || 3325 test_bit(Faulty, 3326 &conf->mirrors[d].replacement->flags)) 3327 continue; 3328 3329 /* Need to set up for writing to the replacement */ 3330 bio = r10_bio->devs[i].repl_bio; 3331 bio_reset(bio); 3332 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3333 3334 sector = r10_bio->devs[i].addr; 3335 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3336 bio->bi_next = biolist; 3337 biolist = bio; 3338 bio->bi_private = r10_bio; 3339 bio->bi_end_io = end_sync_write; 3340 bio->bi_rw = WRITE; 3341 bio->bi_iter.bi_sector = sector + 3342 conf->mirrors[d].replacement->data_offset; 3343 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3344 count++; 3345 } 3346 3347 if (count < 2) { 3348 for (i=0; i<conf->copies; i++) { 3349 int d = r10_bio->devs[i].devnum; 3350 if (r10_bio->devs[i].bio->bi_end_io) 3351 rdev_dec_pending(conf->mirrors[d].rdev, 3352 mddev); 3353 if (r10_bio->devs[i].repl_bio && 3354 r10_bio->devs[i].repl_bio->bi_end_io) 3355 rdev_dec_pending( 3356 conf->mirrors[d].replacement, 3357 mddev); 3358 } 3359 put_buf(r10_bio); 3360 biolist = NULL; 3361 goto giveup; 3362 } 3363 } 3364 3365 nr_sectors = 0; 3366 if (sector_nr + max_sync < max_sector) 3367 max_sector = sector_nr + max_sync; 3368 do { 3369 struct page *page; 3370 int len = PAGE_SIZE; 3371 if (sector_nr + (len>>9) > max_sector) 3372 len = (max_sector - sector_nr) << 9; 3373 if (len == 0) 3374 break; 3375 for (bio= biolist ; bio ; bio=bio->bi_next) { 3376 struct bio *bio2; 3377 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3378 if (bio_add_page(bio, page, len, 0)) 3379 continue; 3380 3381 /* stop here */ 3382 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3383 for (bio2 = biolist; 3384 bio2 && bio2 != bio; 3385 bio2 = bio2->bi_next) { 3386 /* remove last page from this bio */ 3387 bio2->bi_vcnt--; 3388 bio2->bi_iter.bi_size -= len; 3389 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3390 } 3391 goto bio_full; 3392 } 3393 nr_sectors += len>>9; 3394 sector_nr += len>>9; 3395 } while (biolist->bi_vcnt < RESYNC_PAGES); 3396 bio_full: 3397 r10_bio->sectors = nr_sectors; 3398 3399 while (biolist) { 3400 bio = biolist; 3401 biolist = biolist->bi_next; 3402 3403 bio->bi_next = NULL; 3404 r10_bio = bio->bi_private; 3405 r10_bio->sectors = nr_sectors; 3406 3407 if (bio->bi_end_io == end_sync_read) { 3408 md_sync_acct(bio->bi_bdev, nr_sectors); 3409 set_bit(BIO_UPTODATE, &bio->bi_flags); 3410 generic_make_request(bio); 3411 } 3412 } 3413 3414 if (sectors_skipped) 3415 /* pretend they weren't skipped, it makes 3416 * no important difference in this case 3417 */ 3418 md_done_sync(mddev, sectors_skipped, 1); 3419 3420 return sectors_skipped + nr_sectors; 3421 giveup: 3422 /* There is nowhere to write, so all non-sync 3423 * drives must be failed or in resync, all drives 3424 * have a bad block, so try the next chunk... 3425 */ 3426 if (sector_nr + max_sync < max_sector) 3427 max_sector = sector_nr + max_sync; 3428 3429 sectors_skipped += (max_sector - sector_nr); 3430 chunks_skipped ++; 3431 sector_nr = max_sector; 3432 goto skipped; 3433 } 3434 3435 static sector_t 3436 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3437 { 3438 sector_t size; 3439 struct r10conf *conf = mddev->private; 3440 3441 if (!raid_disks) 3442 raid_disks = min(conf->geo.raid_disks, 3443 conf->prev.raid_disks); 3444 if (!sectors) 3445 sectors = conf->dev_sectors; 3446 3447 size = sectors >> conf->geo.chunk_shift; 3448 sector_div(size, conf->geo.far_copies); 3449 size = size * raid_disks; 3450 sector_div(size, conf->geo.near_copies); 3451 3452 return size << conf->geo.chunk_shift; 3453 } 3454 3455 static void calc_sectors(struct r10conf *conf, sector_t size) 3456 { 3457 /* Calculate the number of sectors-per-device that will 3458 * actually be used, and set conf->dev_sectors and 3459 * conf->stride 3460 */ 3461 3462 size = size >> conf->geo.chunk_shift; 3463 sector_div(size, conf->geo.far_copies); 3464 size = size * conf->geo.raid_disks; 3465 sector_div(size, conf->geo.near_copies); 3466 /* 'size' is now the number of chunks in the array */ 3467 /* calculate "used chunks per device" */ 3468 size = size * conf->copies; 3469 3470 /* We need to round up when dividing by raid_disks to 3471 * get the stride size. 3472 */ 3473 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3474 3475 conf->dev_sectors = size << conf->geo.chunk_shift; 3476 3477 if (conf->geo.far_offset) 3478 conf->geo.stride = 1 << conf->geo.chunk_shift; 3479 else { 3480 sector_div(size, conf->geo.far_copies); 3481 conf->geo.stride = size << conf->geo.chunk_shift; 3482 } 3483 } 3484 3485 enum geo_type {geo_new, geo_old, geo_start}; 3486 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3487 { 3488 int nc, fc, fo; 3489 int layout, chunk, disks; 3490 switch (new) { 3491 case geo_old: 3492 layout = mddev->layout; 3493 chunk = mddev->chunk_sectors; 3494 disks = mddev->raid_disks - mddev->delta_disks; 3495 break; 3496 case geo_new: 3497 layout = mddev->new_layout; 3498 chunk = mddev->new_chunk_sectors; 3499 disks = mddev->raid_disks; 3500 break; 3501 default: /* avoid 'may be unused' warnings */ 3502 case geo_start: /* new when starting reshape - raid_disks not 3503 * updated yet. */ 3504 layout = mddev->new_layout; 3505 chunk = mddev->new_chunk_sectors; 3506 disks = mddev->raid_disks + mddev->delta_disks; 3507 break; 3508 } 3509 if (layout >> 18) 3510 return -1; 3511 if (chunk < (PAGE_SIZE >> 9) || 3512 !is_power_of_2(chunk)) 3513 return -2; 3514 nc = layout & 255; 3515 fc = (layout >> 8) & 255; 3516 fo = layout & (1<<16); 3517 geo->raid_disks = disks; 3518 geo->near_copies = nc; 3519 geo->far_copies = fc; 3520 geo->far_offset = fo; 3521 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3522 geo->chunk_mask = chunk - 1; 3523 geo->chunk_shift = ffz(~chunk); 3524 return nc*fc; 3525 } 3526 3527 static struct r10conf *setup_conf(struct mddev *mddev) 3528 { 3529 struct r10conf *conf = NULL; 3530 int err = -EINVAL; 3531 struct geom geo; 3532 int copies; 3533 3534 copies = setup_geo(&geo, mddev, geo_new); 3535 3536 if (copies == -2) { 3537 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3538 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3539 mdname(mddev), PAGE_SIZE); 3540 goto out; 3541 } 3542 3543 if (copies < 2 || copies > mddev->raid_disks) { 3544 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3545 mdname(mddev), mddev->new_layout); 3546 goto out; 3547 } 3548 3549 err = -ENOMEM; 3550 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3551 if (!conf) 3552 goto out; 3553 3554 /* FIXME calc properly */ 3555 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3556 max(0,-mddev->delta_disks)), 3557 GFP_KERNEL); 3558 if (!conf->mirrors) 3559 goto out; 3560 3561 conf->tmppage = alloc_page(GFP_KERNEL); 3562 if (!conf->tmppage) 3563 goto out; 3564 3565 conf->geo = geo; 3566 conf->copies = copies; 3567 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3568 r10bio_pool_free, conf); 3569 if (!conf->r10bio_pool) 3570 goto out; 3571 3572 calc_sectors(conf, mddev->dev_sectors); 3573 if (mddev->reshape_position == MaxSector) { 3574 conf->prev = conf->geo; 3575 conf->reshape_progress = MaxSector; 3576 } else { 3577 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3578 err = -EINVAL; 3579 goto out; 3580 } 3581 conf->reshape_progress = mddev->reshape_position; 3582 if (conf->prev.far_offset) 3583 conf->prev.stride = 1 << conf->prev.chunk_shift; 3584 else 3585 /* far_copies must be 1 */ 3586 conf->prev.stride = conf->dev_sectors; 3587 } 3588 spin_lock_init(&conf->device_lock); 3589 INIT_LIST_HEAD(&conf->retry_list); 3590 3591 spin_lock_init(&conf->resync_lock); 3592 init_waitqueue_head(&conf->wait_barrier); 3593 3594 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3595 if (!conf->thread) 3596 goto out; 3597 3598 conf->mddev = mddev; 3599 return conf; 3600 3601 out: 3602 if (err == -ENOMEM) 3603 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3604 mdname(mddev)); 3605 if (conf) { 3606 if (conf->r10bio_pool) 3607 mempool_destroy(conf->r10bio_pool); 3608 kfree(conf->mirrors); 3609 safe_put_page(conf->tmppage); 3610 kfree(conf); 3611 } 3612 return ERR_PTR(err); 3613 } 3614 3615 static int run(struct mddev *mddev) 3616 { 3617 struct r10conf *conf; 3618 int i, disk_idx, chunk_size; 3619 struct raid10_info *disk; 3620 struct md_rdev *rdev; 3621 sector_t size; 3622 sector_t min_offset_diff = 0; 3623 int first = 1; 3624 bool discard_supported = false; 3625 3626 if (mddev->private == NULL) { 3627 conf = setup_conf(mddev); 3628 if (IS_ERR(conf)) 3629 return PTR_ERR(conf); 3630 mddev->private = conf; 3631 } 3632 conf = mddev->private; 3633 if (!conf) 3634 goto out; 3635 3636 mddev->thread = conf->thread; 3637 conf->thread = NULL; 3638 3639 chunk_size = mddev->chunk_sectors << 9; 3640 if (mddev->queue) { 3641 blk_queue_max_discard_sectors(mddev->queue, 3642 mddev->chunk_sectors); 3643 blk_queue_max_write_same_sectors(mddev->queue, 0); 3644 blk_queue_io_min(mddev->queue, chunk_size); 3645 if (conf->geo.raid_disks % conf->geo.near_copies) 3646 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3647 else 3648 blk_queue_io_opt(mddev->queue, chunk_size * 3649 (conf->geo.raid_disks / conf->geo.near_copies)); 3650 } 3651 3652 rdev_for_each(rdev, mddev) { 3653 long long diff; 3654 struct request_queue *q; 3655 3656 disk_idx = rdev->raid_disk; 3657 if (disk_idx < 0) 3658 continue; 3659 if (disk_idx >= conf->geo.raid_disks && 3660 disk_idx >= conf->prev.raid_disks) 3661 continue; 3662 disk = conf->mirrors + disk_idx; 3663 3664 if (test_bit(Replacement, &rdev->flags)) { 3665 if (disk->replacement) 3666 goto out_free_conf; 3667 disk->replacement = rdev; 3668 } else { 3669 if (disk->rdev) 3670 goto out_free_conf; 3671 disk->rdev = rdev; 3672 } 3673 q = bdev_get_queue(rdev->bdev); 3674 if (q->merge_bvec_fn) 3675 mddev->merge_check_needed = 1; 3676 diff = (rdev->new_data_offset - rdev->data_offset); 3677 if (!mddev->reshape_backwards) 3678 diff = -diff; 3679 if (diff < 0) 3680 diff = 0; 3681 if (first || diff < min_offset_diff) 3682 min_offset_diff = diff; 3683 3684 if (mddev->gendisk) 3685 disk_stack_limits(mddev->gendisk, rdev->bdev, 3686 rdev->data_offset << 9); 3687 3688 disk->head_position = 0; 3689 3690 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3691 discard_supported = true; 3692 } 3693 3694 if (mddev->queue) { 3695 if (discard_supported) 3696 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3697 mddev->queue); 3698 else 3699 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3700 mddev->queue); 3701 } 3702 /* need to check that every block has at least one working mirror */ 3703 if (!enough(conf, -1)) { 3704 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3705 mdname(mddev)); 3706 goto out_free_conf; 3707 } 3708 3709 if (conf->reshape_progress != MaxSector) { 3710 /* must ensure that shape change is supported */ 3711 if (conf->geo.far_copies != 1 && 3712 conf->geo.far_offset == 0) 3713 goto out_free_conf; 3714 if (conf->prev.far_copies != 1 && 3715 conf->prev.far_offset == 0) 3716 goto out_free_conf; 3717 } 3718 3719 mddev->degraded = 0; 3720 for (i = 0; 3721 i < conf->geo.raid_disks 3722 || i < conf->prev.raid_disks; 3723 i++) { 3724 3725 disk = conf->mirrors + i; 3726 3727 if (!disk->rdev && disk->replacement) { 3728 /* The replacement is all we have - use it */ 3729 disk->rdev = disk->replacement; 3730 disk->replacement = NULL; 3731 clear_bit(Replacement, &disk->rdev->flags); 3732 } 3733 3734 if (!disk->rdev || 3735 !test_bit(In_sync, &disk->rdev->flags)) { 3736 disk->head_position = 0; 3737 mddev->degraded++; 3738 if (disk->rdev && 3739 disk->rdev->saved_raid_disk < 0) 3740 conf->fullsync = 1; 3741 } 3742 disk->recovery_disabled = mddev->recovery_disabled - 1; 3743 } 3744 3745 if (mddev->recovery_cp != MaxSector) 3746 printk(KERN_NOTICE "md/raid10:%s: not clean" 3747 " -- starting background reconstruction\n", 3748 mdname(mddev)); 3749 printk(KERN_INFO 3750 "md/raid10:%s: active with %d out of %d devices\n", 3751 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3752 conf->geo.raid_disks); 3753 /* 3754 * Ok, everything is just fine now 3755 */ 3756 mddev->dev_sectors = conf->dev_sectors; 3757 size = raid10_size(mddev, 0, 0); 3758 md_set_array_sectors(mddev, size); 3759 mddev->resync_max_sectors = size; 3760 3761 if (mddev->queue) { 3762 int stripe = conf->geo.raid_disks * 3763 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3764 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3765 mddev->queue->backing_dev_info.congested_data = mddev; 3766 3767 /* Calculate max read-ahead size. 3768 * We need to readahead at least twice a whole stripe.... 3769 * maybe... 3770 */ 3771 stripe /= conf->geo.near_copies; 3772 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3773 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3774 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3775 } 3776 3777 3778 if (md_integrity_register(mddev)) 3779 goto out_free_conf; 3780 3781 if (conf->reshape_progress != MaxSector) { 3782 unsigned long before_length, after_length; 3783 3784 before_length = ((1 << conf->prev.chunk_shift) * 3785 conf->prev.far_copies); 3786 after_length = ((1 << conf->geo.chunk_shift) * 3787 conf->geo.far_copies); 3788 3789 if (max(before_length, after_length) > min_offset_diff) { 3790 /* This cannot work */ 3791 printk("md/raid10: offset difference not enough to continue reshape\n"); 3792 goto out_free_conf; 3793 } 3794 conf->offset_diff = min_offset_diff; 3795 3796 conf->reshape_safe = conf->reshape_progress; 3797 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3798 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3799 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3800 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3801 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3802 "reshape"); 3803 } 3804 3805 return 0; 3806 3807 out_free_conf: 3808 md_unregister_thread(&mddev->thread); 3809 if (conf->r10bio_pool) 3810 mempool_destroy(conf->r10bio_pool); 3811 safe_put_page(conf->tmppage); 3812 kfree(conf->mirrors); 3813 kfree(conf); 3814 mddev->private = NULL; 3815 out: 3816 return -EIO; 3817 } 3818 3819 static int stop(struct mddev *mddev) 3820 { 3821 struct r10conf *conf = mddev->private; 3822 3823 raise_barrier(conf, 0); 3824 lower_barrier(conf); 3825 3826 md_unregister_thread(&mddev->thread); 3827 if (mddev->queue) 3828 /* the unplug fn references 'conf'*/ 3829 blk_sync_queue(mddev->queue); 3830 3831 if (conf->r10bio_pool) 3832 mempool_destroy(conf->r10bio_pool); 3833 safe_put_page(conf->tmppage); 3834 kfree(conf->mirrors); 3835 kfree(conf); 3836 mddev->private = NULL; 3837 return 0; 3838 } 3839 3840 static void raid10_quiesce(struct mddev *mddev, int state) 3841 { 3842 struct r10conf *conf = mddev->private; 3843 3844 switch(state) { 3845 case 1: 3846 raise_barrier(conf, 0); 3847 break; 3848 case 0: 3849 lower_barrier(conf); 3850 break; 3851 } 3852 } 3853 3854 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3855 { 3856 /* Resize of 'far' arrays is not supported. 3857 * For 'near' and 'offset' arrays we can set the 3858 * number of sectors used to be an appropriate multiple 3859 * of the chunk size. 3860 * For 'offset', this is far_copies*chunksize. 3861 * For 'near' the multiplier is the LCM of 3862 * near_copies and raid_disks. 3863 * So if far_copies > 1 && !far_offset, fail. 3864 * Else find LCM(raid_disks, near_copy)*far_copies and 3865 * multiply by chunk_size. Then round to this number. 3866 * This is mostly done by raid10_size() 3867 */ 3868 struct r10conf *conf = mddev->private; 3869 sector_t oldsize, size; 3870 3871 if (mddev->reshape_position != MaxSector) 3872 return -EBUSY; 3873 3874 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3875 return -EINVAL; 3876 3877 oldsize = raid10_size(mddev, 0, 0); 3878 size = raid10_size(mddev, sectors, 0); 3879 if (mddev->external_size && 3880 mddev->array_sectors > size) 3881 return -EINVAL; 3882 if (mddev->bitmap) { 3883 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3884 if (ret) 3885 return ret; 3886 } 3887 md_set_array_sectors(mddev, size); 3888 set_capacity(mddev->gendisk, mddev->array_sectors); 3889 revalidate_disk(mddev->gendisk); 3890 if (sectors > mddev->dev_sectors && 3891 mddev->recovery_cp > oldsize) { 3892 mddev->recovery_cp = oldsize; 3893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3894 } 3895 calc_sectors(conf, sectors); 3896 mddev->dev_sectors = conf->dev_sectors; 3897 mddev->resync_max_sectors = size; 3898 return 0; 3899 } 3900 3901 static void *raid10_takeover_raid0(struct mddev *mddev) 3902 { 3903 struct md_rdev *rdev; 3904 struct r10conf *conf; 3905 3906 if (mddev->degraded > 0) { 3907 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3908 mdname(mddev)); 3909 return ERR_PTR(-EINVAL); 3910 } 3911 3912 /* Set new parameters */ 3913 mddev->new_level = 10; 3914 /* new layout: far_copies = 1, near_copies = 2 */ 3915 mddev->new_layout = (1<<8) + 2; 3916 mddev->new_chunk_sectors = mddev->chunk_sectors; 3917 mddev->delta_disks = mddev->raid_disks; 3918 mddev->raid_disks *= 2; 3919 /* make sure it will be not marked as dirty */ 3920 mddev->recovery_cp = MaxSector; 3921 3922 conf = setup_conf(mddev); 3923 if (!IS_ERR(conf)) { 3924 rdev_for_each(rdev, mddev) 3925 if (rdev->raid_disk >= 0) 3926 rdev->new_raid_disk = rdev->raid_disk * 2; 3927 conf->barrier = 1; 3928 } 3929 3930 return conf; 3931 } 3932 3933 static void *raid10_takeover(struct mddev *mddev) 3934 { 3935 struct r0conf *raid0_conf; 3936 3937 /* raid10 can take over: 3938 * raid0 - providing it has only two drives 3939 */ 3940 if (mddev->level == 0) { 3941 /* for raid0 takeover only one zone is supported */ 3942 raid0_conf = mddev->private; 3943 if (raid0_conf->nr_strip_zones > 1) { 3944 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3945 " with more than one zone.\n", 3946 mdname(mddev)); 3947 return ERR_PTR(-EINVAL); 3948 } 3949 return raid10_takeover_raid0(mddev); 3950 } 3951 return ERR_PTR(-EINVAL); 3952 } 3953 3954 static int raid10_check_reshape(struct mddev *mddev) 3955 { 3956 /* Called when there is a request to change 3957 * - layout (to ->new_layout) 3958 * - chunk size (to ->new_chunk_sectors) 3959 * - raid_disks (by delta_disks) 3960 * or when trying to restart a reshape that was ongoing. 3961 * 3962 * We need to validate the request and possibly allocate 3963 * space if that might be an issue later. 3964 * 3965 * Currently we reject any reshape of a 'far' mode array, 3966 * allow chunk size to change if new is generally acceptable, 3967 * allow raid_disks to increase, and allow 3968 * a switch between 'near' mode and 'offset' mode. 3969 */ 3970 struct r10conf *conf = mddev->private; 3971 struct geom geo; 3972 3973 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3974 return -EINVAL; 3975 3976 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3977 /* mustn't change number of copies */ 3978 return -EINVAL; 3979 if (geo.far_copies > 1 && !geo.far_offset) 3980 /* Cannot switch to 'far' mode */ 3981 return -EINVAL; 3982 3983 if (mddev->array_sectors & geo.chunk_mask) 3984 /* not factor of array size */ 3985 return -EINVAL; 3986 3987 if (!enough(conf, -1)) 3988 return -EINVAL; 3989 3990 kfree(conf->mirrors_new); 3991 conf->mirrors_new = NULL; 3992 if (mddev->delta_disks > 0) { 3993 /* allocate new 'mirrors' list */ 3994 conf->mirrors_new = kzalloc( 3995 sizeof(struct raid10_info) 3996 *(mddev->raid_disks + 3997 mddev->delta_disks), 3998 GFP_KERNEL); 3999 if (!conf->mirrors_new) 4000 return -ENOMEM; 4001 } 4002 return 0; 4003 } 4004 4005 /* 4006 * Need to check if array has failed when deciding whether to: 4007 * - start an array 4008 * - remove non-faulty devices 4009 * - add a spare 4010 * - allow a reshape 4011 * This determination is simple when no reshape is happening. 4012 * However if there is a reshape, we need to carefully check 4013 * both the before and after sections. 4014 * This is because some failed devices may only affect one 4015 * of the two sections, and some non-in_sync devices may 4016 * be insync in the section most affected by failed devices. 4017 */ 4018 static int calc_degraded(struct r10conf *conf) 4019 { 4020 int degraded, degraded2; 4021 int i; 4022 4023 rcu_read_lock(); 4024 degraded = 0; 4025 /* 'prev' section first */ 4026 for (i = 0; i < conf->prev.raid_disks; i++) { 4027 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4028 if (!rdev || test_bit(Faulty, &rdev->flags)) 4029 degraded++; 4030 else if (!test_bit(In_sync, &rdev->flags)) 4031 /* When we can reduce the number of devices in 4032 * an array, this might not contribute to 4033 * 'degraded'. It does now. 4034 */ 4035 degraded++; 4036 } 4037 rcu_read_unlock(); 4038 if (conf->geo.raid_disks == conf->prev.raid_disks) 4039 return degraded; 4040 rcu_read_lock(); 4041 degraded2 = 0; 4042 for (i = 0; i < conf->geo.raid_disks; i++) { 4043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4044 if (!rdev || test_bit(Faulty, &rdev->flags)) 4045 degraded2++; 4046 else if (!test_bit(In_sync, &rdev->flags)) { 4047 /* If reshape is increasing the number of devices, 4048 * this section has already been recovered, so 4049 * it doesn't contribute to degraded. 4050 * else it does. 4051 */ 4052 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4053 degraded2++; 4054 } 4055 } 4056 rcu_read_unlock(); 4057 if (degraded2 > degraded) 4058 return degraded2; 4059 return degraded; 4060 } 4061 4062 static int raid10_start_reshape(struct mddev *mddev) 4063 { 4064 /* A 'reshape' has been requested. This commits 4065 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4066 * This also checks if there are enough spares and adds them 4067 * to the array. 4068 * We currently require enough spares to make the final 4069 * array non-degraded. We also require that the difference 4070 * between old and new data_offset - on each device - is 4071 * enough that we never risk over-writing. 4072 */ 4073 4074 unsigned long before_length, after_length; 4075 sector_t min_offset_diff = 0; 4076 int first = 1; 4077 struct geom new; 4078 struct r10conf *conf = mddev->private; 4079 struct md_rdev *rdev; 4080 int spares = 0; 4081 int ret; 4082 4083 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4084 return -EBUSY; 4085 4086 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4087 return -EINVAL; 4088 4089 before_length = ((1 << conf->prev.chunk_shift) * 4090 conf->prev.far_copies); 4091 after_length = ((1 << conf->geo.chunk_shift) * 4092 conf->geo.far_copies); 4093 4094 rdev_for_each(rdev, mddev) { 4095 if (!test_bit(In_sync, &rdev->flags) 4096 && !test_bit(Faulty, &rdev->flags)) 4097 spares++; 4098 if (rdev->raid_disk >= 0) { 4099 long long diff = (rdev->new_data_offset 4100 - rdev->data_offset); 4101 if (!mddev->reshape_backwards) 4102 diff = -diff; 4103 if (diff < 0) 4104 diff = 0; 4105 if (first || diff < min_offset_diff) 4106 min_offset_diff = diff; 4107 } 4108 } 4109 4110 if (max(before_length, after_length) > min_offset_diff) 4111 return -EINVAL; 4112 4113 if (spares < mddev->delta_disks) 4114 return -EINVAL; 4115 4116 conf->offset_diff = min_offset_diff; 4117 spin_lock_irq(&conf->device_lock); 4118 if (conf->mirrors_new) { 4119 memcpy(conf->mirrors_new, conf->mirrors, 4120 sizeof(struct raid10_info)*conf->prev.raid_disks); 4121 smp_mb(); 4122 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4123 conf->mirrors_old = conf->mirrors; 4124 conf->mirrors = conf->mirrors_new; 4125 conf->mirrors_new = NULL; 4126 } 4127 setup_geo(&conf->geo, mddev, geo_start); 4128 smp_mb(); 4129 if (mddev->reshape_backwards) { 4130 sector_t size = raid10_size(mddev, 0, 0); 4131 if (size < mddev->array_sectors) { 4132 spin_unlock_irq(&conf->device_lock); 4133 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4134 mdname(mddev)); 4135 return -EINVAL; 4136 } 4137 mddev->resync_max_sectors = size; 4138 conf->reshape_progress = size; 4139 } else 4140 conf->reshape_progress = 0; 4141 spin_unlock_irq(&conf->device_lock); 4142 4143 if (mddev->delta_disks && mddev->bitmap) { 4144 ret = bitmap_resize(mddev->bitmap, 4145 raid10_size(mddev, 0, 4146 conf->geo.raid_disks), 4147 0, 0); 4148 if (ret) 4149 goto abort; 4150 } 4151 if (mddev->delta_disks > 0) { 4152 rdev_for_each(rdev, mddev) 4153 if (rdev->raid_disk < 0 && 4154 !test_bit(Faulty, &rdev->flags)) { 4155 if (raid10_add_disk(mddev, rdev) == 0) { 4156 if (rdev->raid_disk >= 4157 conf->prev.raid_disks) 4158 set_bit(In_sync, &rdev->flags); 4159 else 4160 rdev->recovery_offset = 0; 4161 4162 if (sysfs_link_rdev(mddev, rdev)) 4163 /* Failure here is OK */; 4164 } 4165 } else if (rdev->raid_disk >= conf->prev.raid_disks 4166 && !test_bit(Faulty, &rdev->flags)) { 4167 /* This is a spare that was manually added */ 4168 set_bit(In_sync, &rdev->flags); 4169 } 4170 } 4171 /* When a reshape changes the number of devices, 4172 * ->degraded is measured against the larger of the 4173 * pre and post numbers. 4174 */ 4175 spin_lock_irq(&conf->device_lock); 4176 mddev->degraded = calc_degraded(conf); 4177 spin_unlock_irq(&conf->device_lock); 4178 mddev->raid_disks = conf->geo.raid_disks; 4179 mddev->reshape_position = conf->reshape_progress; 4180 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4181 4182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4184 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4186 4187 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4188 "reshape"); 4189 if (!mddev->sync_thread) { 4190 ret = -EAGAIN; 4191 goto abort; 4192 } 4193 conf->reshape_checkpoint = jiffies; 4194 md_wakeup_thread(mddev->sync_thread); 4195 md_new_event(mddev); 4196 return 0; 4197 4198 abort: 4199 mddev->recovery = 0; 4200 spin_lock_irq(&conf->device_lock); 4201 conf->geo = conf->prev; 4202 mddev->raid_disks = conf->geo.raid_disks; 4203 rdev_for_each(rdev, mddev) 4204 rdev->new_data_offset = rdev->data_offset; 4205 smp_wmb(); 4206 conf->reshape_progress = MaxSector; 4207 mddev->reshape_position = MaxSector; 4208 spin_unlock_irq(&conf->device_lock); 4209 return ret; 4210 } 4211 4212 /* Calculate the last device-address that could contain 4213 * any block from the chunk that includes the array-address 's' 4214 * and report the next address. 4215 * i.e. the address returned will be chunk-aligned and after 4216 * any data that is in the chunk containing 's'. 4217 */ 4218 static sector_t last_dev_address(sector_t s, struct geom *geo) 4219 { 4220 s = (s | geo->chunk_mask) + 1; 4221 s >>= geo->chunk_shift; 4222 s *= geo->near_copies; 4223 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4224 s *= geo->far_copies; 4225 s <<= geo->chunk_shift; 4226 return s; 4227 } 4228 4229 /* Calculate the first device-address that could contain 4230 * any block from the chunk that includes the array-address 's'. 4231 * This too will be the start of a chunk 4232 */ 4233 static sector_t first_dev_address(sector_t s, struct geom *geo) 4234 { 4235 s >>= geo->chunk_shift; 4236 s *= geo->near_copies; 4237 sector_div(s, geo->raid_disks); 4238 s *= geo->far_copies; 4239 s <<= geo->chunk_shift; 4240 return s; 4241 } 4242 4243 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4244 int *skipped) 4245 { 4246 /* We simply copy at most one chunk (smallest of old and new) 4247 * at a time, possibly less if that exceeds RESYNC_PAGES, 4248 * or we hit a bad block or something. 4249 * This might mean we pause for normal IO in the middle of 4250 * a chunk, but that is not a problem was mddev->reshape_position 4251 * can record any location. 4252 * 4253 * If we will want to write to a location that isn't 4254 * yet recorded as 'safe' (i.e. in metadata on disk) then 4255 * we need to flush all reshape requests and update the metadata. 4256 * 4257 * When reshaping forwards (e.g. to more devices), we interpret 4258 * 'safe' as the earliest block which might not have been copied 4259 * down yet. We divide this by previous stripe size and multiply 4260 * by previous stripe length to get lowest device offset that we 4261 * cannot write to yet. 4262 * We interpret 'sector_nr' as an address that we want to write to. 4263 * From this we use last_device_address() to find where we might 4264 * write to, and first_device_address on the 'safe' position. 4265 * If this 'next' write position is after the 'safe' position, 4266 * we must update the metadata to increase the 'safe' position. 4267 * 4268 * When reshaping backwards, we round in the opposite direction 4269 * and perform the reverse test: next write position must not be 4270 * less than current safe position. 4271 * 4272 * In all this the minimum difference in data offsets 4273 * (conf->offset_diff - always positive) allows a bit of slack, 4274 * so next can be after 'safe', but not by more than offset_disk 4275 * 4276 * We need to prepare all the bios here before we start any IO 4277 * to ensure the size we choose is acceptable to all devices. 4278 * The means one for each copy for write-out and an extra one for 4279 * read-in. 4280 * We store the read-in bio in ->master_bio and the others in 4281 * ->devs[x].bio and ->devs[x].repl_bio. 4282 */ 4283 struct r10conf *conf = mddev->private; 4284 struct r10bio *r10_bio; 4285 sector_t next, safe, last; 4286 int max_sectors; 4287 int nr_sectors; 4288 int s; 4289 struct md_rdev *rdev; 4290 int need_flush = 0; 4291 struct bio *blist; 4292 struct bio *bio, *read_bio; 4293 int sectors_done = 0; 4294 4295 if (sector_nr == 0) { 4296 /* If restarting in the middle, skip the initial sectors */ 4297 if (mddev->reshape_backwards && 4298 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4299 sector_nr = (raid10_size(mddev, 0, 0) 4300 - conf->reshape_progress); 4301 } else if (!mddev->reshape_backwards && 4302 conf->reshape_progress > 0) 4303 sector_nr = conf->reshape_progress; 4304 if (sector_nr) { 4305 mddev->curr_resync_completed = sector_nr; 4306 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4307 *skipped = 1; 4308 return sector_nr; 4309 } 4310 } 4311 4312 /* We don't use sector_nr to track where we are up to 4313 * as that doesn't work well for ->reshape_backwards. 4314 * So just use ->reshape_progress. 4315 */ 4316 if (mddev->reshape_backwards) { 4317 /* 'next' is the earliest device address that we might 4318 * write to for this chunk in the new layout 4319 */ 4320 next = first_dev_address(conf->reshape_progress - 1, 4321 &conf->geo); 4322 4323 /* 'safe' is the last device address that we might read from 4324 * in the old layout after a restart 4325 */ 4326 safe = last_dev_address(conf->reshape_safe - 1, 4327 &conf->prev); 4328 4329 if (next + conf->offset_diff < safe) 4330 need_flush = 1; 4331 4332 last = conf->reshape_progress - 1; 4333 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4334 & conf->prev.chunk_mask); 4335 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4336 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4337 } else { 4338 /* 'next' is after the last device address that we 4339 * might write to for this chunk in the new layout 4340 */ 4341 next = last_dev_address(conf->reshape_progress, &conf->geo); 4342 4343 /* 'safe' is the earliest device address that we might 4344 * read from in the old layout after a restart 4345 */ 4346 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4347 4348 /* Need to update metadata if 'next' might be beyond 'safe' 4349 * as that would possibly corrupt data 4350 */ 4351 if (next > safe + conf->offset_diff) 4352 need_flush = 1; 4353 4354 sector_nr = conf->reshape_progress; 4355 last = sector_nr | (conf->geo.chunk_mask 4356 & conf->prev.chunk_mask); 4357 4358 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4359 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4360 } 4361 4362 if (need_flush || 4363 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4364 /* Need to update reshape_position in metadata */ 4365 wait_barrier(conf); 4366 mddev->reshape_position = conf->reshape_progress; 4367 if (mddev->reshape_backwards) 4368 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4369 - conf->reshape_progress; 4370 else 4371 mddev->curr_resync_completed = conf->reshape_progress; 4372 conf->reshape_checkpoint = jiffies; 4373 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4374 md_wakeup_thread(mddev->thread); 4375 wait_event(mddev->sb_wait, mddev->flags == 0 || 4376 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4377 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4378 allow_barrier(conf); 4379 return sectors_done; 4380 } 4381 conf->reshape_safe = mddev->reshape_position; 4382 allow_barrier(conf); 4383 } 4384 4385 read_more: 4386 /* Now schedule reads for blocks from sector_nr to last */ 4387 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4388 raise_barrier(conf, sectors_done != 0); 4389 atomic_set(&r10_bio->remaining, 0); 4390 r10_bio->mddev = mddev; 4391 r10_bio->sector = sector_nr; 4392 set_bit(R10BIO_IsReshape, &r10_bio->state); 4393 r10_bio->sectors = last - sector_nr + 1; 4394 rdev = read_balance(conf, r10_bio, &max_sectors); 4395 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4396 4397 if (!rdev) { 4398 /* Cannot read from here, so need to record bad blocks 4399 * on all the target devices. 4400 */ 4401 // FIXME 4402 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4403 return sectors_done; 4404 } 4405 4406 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4407 4408 read_bio->bi_bdev = rdev->bdev; 4409 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4410 + rdev->data_offset); 4411 read_bio->bi_private = r10_bio; 4412 read_bio->bi_end_io = end_sync_read; 4413 read_bio->bi_rw = READ; 4414 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4415 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4416 read_bio->bi_vcnt = 0; 4417 read_bio->bi_iter.bi_size = 0; 4418 r10_bio->master_bio = read_bio; 4419 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4420 4421 /* Now find the locations in the new layout */ 4422 __raid10_find_phys(&conf->geo, r10_bio); 4423 4424 blist = read_bio; 4425 read_bio->bi_next = NULL; 4426 4427 for (s = 0; s < conf->copies*2; s++) { 4428 struct bio *b; 4429 int d = r10_bio->devs[s/2].devnum; 4430 struct md_rdev *rdev2; 4431 if (s&1) { 4432 rdev2 = conf->mirrors[d].replacement; 4433 b = r10_bio->devs[s/2].repl_bio; 4434 } else { 4435 rdev2 = conf->mirrors[d].rdev; 4436 b = r10_bio->devs[s/2].bio; 4437 } 4438 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4439 continue; 4440 4441 bio_reset(b); 4442 b->bi_bdev = rdev2->bdev; 4443 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4444 rdev2->new_data_offset; 4445 b->bi_private = r10_bio; 4446 b->bi_end_io = end_reshape_write; 4447 b->bi_rw = WRITE; 4448 b->bi_next = blist; 4449 blist = b; 4450 } 4451 4452 /* Now add as many pages as possible to all of these bios. */ 4453 4454 nr_sectors = 0; 4455 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4456 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4457 int len = (max_sectors - s) << 9; 4458 if (len > PAGE_SIZE) 4459 len = PAGE_SIZE; 4460 for (bio = blist; bio ; bio = bio->bi_next) { 4461 struct bio *bio2; 4462 if (bio_add_page(bio, page, len, 0)) 4463 continue; 4464 4465 /* Didn't fit, must stop */ 4466 for (bio2 = blist; 4467 bio2 && bio2 != bio; 4468 bio2 = bio2->bi_next) { 4469 /* Remove last page from this bio */ 4470 bio2->bi_vcnt--; 4471 bio2->bi_iter.bi_size -= len; 4472 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4473 } 4474 goto bio_full; 4475 } 4476 sector_nr += len >> 9; 4477 nr_sectors += len >> 9; 4478 } 4479 bio_full: 4480 r10_bio->sectors = nr_sectors; 4481 4482 /* Now submit the read */ 4483 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4484 atomic_inc(&r10_bio->remaining); 4485 read_bio->bi_next = NULL; 4486 generic_make_request(read_bio); 4487 sector_nr += nr_sectors; 4488 sectors_done += nr_sectors; 4489 if (sector_nr <= last) 4490 goto read_more; 4491 4492 /* Now that we have done the whole section we can 4493 * update reshape_progress 4494 */ 4495 if (mddev->reshape_backwards) 4496 conf->reshape_progress -= sectors_done; 4497 else 4498 conf->reshape_progress += sectors_done; 4499 4500 return sectors_done; 4501 } 4502 4503 static void end_reshape_request(struct r10bio *r10_bio); 4504 static int handle_reshape_read_error(struct mddev *mddev, 4505 struct r10bio *r10_bio); 4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4507 { 4508 /* Reshape read completed. Hopefully we have a block 4509 * to write out. 4510 * If we got a read error then we do sync 1-page reads from 4511 * elsewhere until we find the data - or give up. 4512 */ 4513 struct r10conf *conf = mddev->private; 4514 int s; 4515 4516 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4517 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4518 /* Reshape has been aborted */ 4519 md_done_sync(mddev, r10_bio->sectors, 0); 4520 return; 4521 } 4522 4523 /* We definitely have the data in the pages, schedule the 4524 * writes. 4525 */ 4526 atomic_set(&r10_bio->remaining, 1); 4527 for (s = 0; s < conf->copies*2; s++) { 4528 struct bio *b; 4529 int d = r10_bio->devs[s/2].devnum; 4530 struct md_rdev *rdev; 4531 if (s&1) { 4532 rdev = conf->mirrors[d].replacement; 4533 b = r10_bio->devs[s/2].repl_bio; 4534 } else { 4535 rdev = conf->mirrors[d].rdev; 4536 b = r10_bio->devs[s/2].bio; 4537 } 4538 if (!rdev || test_bit(Faulty, &rdev->flags)) 4539 continue; 4540 atomic_inc(&rdev->nr_pending); 4541 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4542 atomic_inc(&r10_bio->remaining); 4543 b->bi_next = NULL; 4544 generic_make_request(b); 4545 } 4546 end_reshape_request(r10_bio); 4547 } 4548 4549 static void end_reshape(struct r10conf *conf) 4550 { 4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4552 return; 4553 4554 spin_lock_irq(&conf->device_lock); 4555 conf->prev = conf->geo; 4556 md_finish_reshape(conf->mddev); 4557 smp_wmb(); 4558 conf->reshape_progress = MaxSector; 4559 spin_unlock_irq(&conf->device_lock); 4560 4561 /* read-ahead size must cover two whole stripes, which is 4562 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4563 */ 4564 if (conf->mddev->queue) { 4565 int stripe = conf->geo.raid_disks * 4566 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4567 stripe /= conf->geo.near_copies; 4568 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4569 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4570 } 4571 conf->fullsync = 0; 4572 } 4573 4574 4575 static int handle_reshape_read_error(struct mddev *mddev, 4576 struct r10bio *r10_bio) 4577 { 4578 /* Use sync reads to get the blocks from somewhere else */ 4579 int sectors = r10_bio->sectors; 4580 struct r10conf *conf = mddev->private; 4581 struct { 4582 struct r10bio r10_bio; 4583 struct r10dev devs[conf->copies]; 4584 } on_stack; 4585 struct r10bio *r10b = &on_stack.r10_bio; 4586 int slot = 0; 4587 int idx = 0; 4588 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4589 4590 r10b->sector = r10_bio->sector; 4591 __raid10_find_phys(&conf->prev, r10b); 4592 4593 while (sectors) { 4594 int s = sectors; 4595 int success = 0; 4596 int first_slot = slot; 4597 4598 if (s > (PAGE_SIZE >> 9)) 4599 s = PAGE_SIZE >> 9; 4600 4601 while (!success) { 4602 int d = r10b->devs[slot].devnum; 4603 struct md_rdev *rdev = conf->mirrors[d].rdev; 4604 sector_t addr; 4605 if (rdev == NULL || 4606 test_bit(Faulty, &rdev->flags) || 4607 !test_bit(In_sync, &rdev->flags)) 4608 goto failed; 4609 4610 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4611 success = sync_page_io(rdev, 4612 addr, 4613 s << 9, 4614 bvec[idx].bv_page, 4615 READ, false); 4616 if (success) 4617 break; 4618 failed: 4619 slot++; 4620 if (slot >= conf->copies) 4621 slot = 0; 4622 if (slot == first_slot) 4623 break; 4624 } 4625 if (!success) { 4626 /* couldn't read this block, must give up */ 4627 set_bit(MD_RECOVERY_INTR, 4628 &mddev->recovery); 4629 return -EIO; 4630 } 4631 sectors -= s; 4632 idx++; 4633 } 4634 return 0; 4635 } 4636 4637 static void end_reshape_write(struct bio *bio, int error) 4638 { 4639 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4640 struct r10bio *r10_bio = bio->bi_private; 4641 struct mddev *mddev = r10_bio->mddev; 4642 struct r10conf *conf = mddev->private; 4643 int d; 4644 int slot; 4645 int repl; 4646 struct md_rdev *rdev = NULL; 4647 4648 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4649 if (repl) 4650 rdev = conf->mirrors[d].replacement; 4651 if (!rdev) { 4652 smp_mb(); 4653 rdev = conf->mirrors[d].rdev; 4654 } 4655 4656 if (!uptodate) { 4657 /* FIXME should record badblock */ 4658 md_error(mddev, rdev); 4659 } 4660 4661 rdev_dec_pending(rdev, mddev); 4662 end_reshape_request(r10_bio); 4663 } 4664 4665 static void end_reshape_request(struct r10bio *r10_bio) 4666 { 4667 if (!atomic_dec_and_test(&r10_bio->remaining)) 4668 return; 4669 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4670 bio_put(r10_bio->master_bio); 4671 put_buf(r10_bio); 4672 } 4673 4674 static void raid10_finish_reshape(struct mddev *mddev) 4675 { 4676 struct r10conf *conf = mddev->private; 4677 4678 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4679 return; 4680 4681 if (mddev->delta_disks > 0) { 4682 sector_t size = raid10_size(mddev, 0, 0); 4683 md_set_array_sectors(mddev, size); 4684 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4685 mddev->recovery_cp = mddev->resync_max_sectors; 4686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4687 } 4688 mddev->resync_max_sectors = size; 4689 set_capacity(mddev->gendisk, mddev->array_sectors); 4690 revalidate_disk(mddev->gendisk); 4691 } else { 4692 int d; 4693 for (d = conf->geo.raid_disks ; 4694 d < conf->geo.raid_disks - mddev->delta_disks; 4695 d++) { 4696 struct md_rdev *rdev = conf->mirrors[d].rdev; 4697 if (rdev) 4698 clear_bit(In_sync, &rdev->flags); 4699 rdev = conf->mirrors[d].replacement; 4700 if (rdev) 4701 clear_bit(In_sync, &rdev->flags); 4702 } 4703 } 4704 mddev->layout = mddev->new_layout; 4705 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4706 mddev->reshape_position = MaxSector; 4707 mddev->delta_disks = 0; 4708 mddev->reshape_backwards = 0; 4709 } 4710 4711 static struct md_personality raid10_personality = 4712 { 4713 .name = "raid10", 4714 .level = 10, 4715 .owner = THIS_MODULE, 4716 .make_request = make_request, 4717 .run = run, 4718 .stop = stop, 4719 .status = status, 4720 .error_handler = error, 4721 .hot_add_disk = raid10_add_disk, 4722 .hot_remove_disk= raid10_remove_disk, 4723 .spare_active = raid10_spare_active, 4724 .sync_request = sync_request, 4725 .quiesce = raid10_quiesce, 4726 .size = raid10_size, 4727 .resize = raid10_resize, 4728 .takeover = raid10_takeover, 4729 .check_reshape = raid10_check_reshape, 4730 .start_reshape = raid10_start_reshape, 4731 .finish_reshape = raid10_finish_reshape, 4732 }; 4733 4734 static int __init raid_init(void) 4735 { 4736 return register_md_personality(&raid10_personality); 4737 } 4738 4739 static void raid_exit(void) 4740 { 4741 unregister_md_personality(&raid10_personality); 4742 } 4743 4744 module_init(raid_init); 4745 module_exit(raid_exit); 4746 MODULE_LICENSE("GPL"); 4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4749 MODULE_ALIAS("md-raid10"); 4750 MODULE_ALIAS("md-level-10"); 4751 4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4753