xref: /openbmc/linux/drivers/md/raid10.c (revision 61cb9ac6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->geo.raid_disks; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 		bio_end_io_acct(bio, r10_bio->start_time);
302 	bio_endio(bio);
303 	/*
304 	 * Wake up any possible resync thread that waits for the device
305 	 * to go idle.
306 	 */
307 	allow_barrier(conf);
308 
309 	free_r10bio(r10_bio);
310 }
311 
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317 	struct r10conf *conf = r10_bio->mddev->private;
318 
319 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 		r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322 
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327 			 struct bio *bio, int *slotp, int *replp)
328 {
329 	int slot;
330 	int repl = 0;
331 
332 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333 		if (r10_bio->devs[slot].bio == bio)
334 			break;
335 		if (r10_bio->devs[slot].repl_bio == bio) {
336 			repl = 1;
337 			break;
338 		}
339 	}
340 
341 	update_head_pos(slot, r10_bio);
342 
343 	if (slotp)
344 		*slotp = slot;
345 	if (replp)
346 		*replp = repl;
347 	return r10_bio->devs[slot].devnum;
348 }
349 
350 static void raid10_end_read_request(struct bio *bio)
351 {
352 	int uptodate = !bio->bi_status;
353 	struct r10bio *r10_bio = bio->bi_private;
354 	int slot;
355 	struct md_rdev *rdev;
356 	struct r10conf *conf = r10_bio->mddev->private;
357 
358 	slot = r10_bio->read_slot;
359 	rdev = r10_bio->devs[slot].rdev;
360 	/*
361 	 * this branch is our 'one mirror IO has finished' event handler:
362 	 */
363 	update_head_pos(slot, r10_bio);
364 
365 	if (uptodate) {
366 		/*
367 		 * Set R10BIO_Uptodate in our master bio, so that
368 		 * we will return a good error code to the higher
369 		 * levels even if IO on some other mirrored buffer fails.
370 		 *
371 		 * The 'master' represents the composite IO operation to
372 		 * user-side. So if something waits for IO, then it will
373 		 * wait for the 'master' bio.
374 		 */
375 		set_bit(R10BIO_Uptodate, &r10_bio->state);
376 	} else {
377 		/* If all other devices that store this block have
378 		 * failed, we want to return the error upwards rather
379 		 * than fail the last device.  Here we redefine
380 		 * "uptodate" to mean "Don't want to retry"
381 		 */
382 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 			     rdev->raid_disk))
384 			uptodate = 1;
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 				   mdname(conf->mddev),
396 				   bdevname(rdev->bdev, b),
397 				   (unsigned long long)r10_bio->sector);
398 		set_bit(R10BIO_ReadError, &r10_bio->state);
399 		reschedule_retry(r10_bio);
400 	}
401 }
402 
403 static void close_write(struct r10bio *r10_bio)
404 {
405 	/* clear the bitmap if all writes complete successfully */
406 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 			   r10_bio->sectors,
408 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
409 			   0);
410 	md_write_end(r10_bio->mddev);
411 }
412 
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415 	if (atomic_dec_and_test(&r10_bio->remaining)) {
416 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 			reschedule_retry(r10_bio);
418 		else {
419 			close_write(r10_bio);
420 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 				reschedule_retry(r10_bio);
422 			else
423 				raid_end_bio_io(r10_bio);
424 		}
425 	}
426 }
427 
428 static void raid10_end_write_request(struct bio *bio)
429 {
430 	struct r10bio *r10_bio = bio->bi_private;
431 	int dev;
432 	int dec_rdev = 1;
433 	struct r10conf *conf = r10_bio->mddev->private;
434 	int slot, repl;
435 	struct md_rdev *rdev = NULL;
436 	struct bio *to_put = NULL;
437 	bool discard_error;
438 
439 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440 
441 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442 
443 	if (repl)
444 		rdev = conf->mirrors[dev].replacement;
445 	if (!rdev) {
446 		smp_rmb();
447 		repl = 0;
448 		rdev = conf->mirrors[dev].rdev;
449 	}
450 	/*
451 	 * this branch is our 'one mirror IO has finished' event handler:
452 	 */
453 	if (bio->bi_status && !discard_error) {
454 		if (repl)
455 			/* Never record new bad blocks to replacement,
456 			 * just fail it.
457 			 */
458 			md_error(rdev->mddev, rdev);
459 		else {
460 			set_bit(WriteErrorSeen,	&rdev->flags);
461 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 				set_bit(MD_RECOVERY_NEEDED,
463 					&rdev->mddev->recovery);
464 
465 			dec_rdev = 0;
466 			if (test_bit(FailFast, &rdev->flags) &&
467 			    (bio->bi_opf & MD_FAILFAST)) {
468 				md_error(rdev->mddev, rdev);
469 			}
470 
471 			/*
472 			 * When the device is faulty, it is not necessary to
473 			 * handle write error.
474 			 */
475 			if (!test_bit(Faulty, &rdev->flags))
476 				set_bit(R10BIO_WriteError, &r10_bio->state);
477 			else {
478 				/* Fail the request */
479 				set_bit(R10BIO_Degraded, &r10_bio->state);
480 				r10_bio->devs[slot].bio = NULL;
481 				to_put = bio;
482 				dec_rdev = 1;
483 			}
484 		}
485 	} else {
486 		/*
487 		 * Set R10BIO_Uptodate in our master bio, so that
488 		 * we will return a good error code for to the higher
489 		 * levels even if IO on some other mirrored buffer fails.
490 		 *
491 		 * The 'master' represents the composite IO operation to
492 		 * user-side. So if something waits for IO, then it will
493 		 * wait for the 'master' bio.
494 		 */
495 		sector_t first_bad;
496 		int bad_sectors;
497 
498 		/*
499 		 * Do not set R10BIO_Uptodate if the current device is
500 		 * rebuilding or Faulty. This is because we cannot use
501 		 * such device for properly reading the data back (we could
502 		 * potentially use it, if the current write would have felt
503 		 * before rdev->recovery_offset, but for simplicity we don't
504 		 * check this here.
505 		 */
506 		if (test_bit(In_sync, &rdev->flags) &&
507 		    !test_bit(Faulty, &rdev->flags))
508 			set_bit(R10BIO_Uptodate, &r10_bio->state);
509 
510 		/* Maybe we can clear some bad blocks. */
511 		if (is_badblock(rdev,
512 				r10_bio->devs[slot].addr,
513 				r10_bio->sectors,
514 				&first_bad, &bad_sectors) && !discard_error) {
515 			bio_put(bio);
516 			if (repl)
517 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 			else
519 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
520 			dec_rdev = 0;
521 			set_bit(R10BIO_MadeGood, &r10_bio->state);
522 		}
523 	}
524 
525 	/*
526 	 *
527 	 * Let's see if all mirrored write operations have finished
528 	 * already.
529 	 */
530 	one_write_done(r10_bio);
531 	if (dec_rdev)
532 		rdev_dec_pending(rdev, conf->mddev);
533 	if (to_put)
534 		bio_put(to_put);
535 }
536 
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561 
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564 	int n,f;
565 	sector_t sector;
566 	sector_t chunk;
567 	sector_t stripe;
568 	int dev;
569 	int slot = 0;
570 	int last_far_set_start, last_far_set_size;
571 
572 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 	last_far_set_start *= geo->far_set_size;
574 
575 	last_far_set_size = geo->far_set_size;
576 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
577 
578 	/* now calculate first sector/dev */
579 	chunk = r10bio->sector >> geo->chunk_shift;
580 	sector = r10bio->sector & geo->chunk_mask;
581 
582 	chunk *= geo->near_copies;
583 	stripe = chunk;
584 	dev = sector_div(stripe, geo->raid_disks);
585 	if (geo->far_offset)
586 		stripe *= geo->far_copies;
587 
588 	sector += stripe << geo->chunk_shift;
589 
590 	/* and calculate all the others */
591 	for (n = 0; n < geo->near_copies; n++) {
592 		int d = dev;
593 		int set;
594 		sector_t s = sector;
595 		r10bio->devs[slot].devnum = d;
596 		r10bio->devs[slot].addr = s;
597 		slot++;
598 
599 		for (f = 1; f < geo->far_copies; f++) {
600 			set = d / geo->far_set_size;
601 			d += geo->near_copies;
602 
603 			if ((geo->raid_disks % geo->far_set_size) &&
604 			    (d > last_far_set_start)) {
605 				d -= last_far_set_start;
606 				d %= last_far_set_size;
607 				d += last_far_set_start;
608 			} else {
609 				d %= geo->far_set_size;
610 				d += geo->far_set_size * set;
611 			}
612 			s += geo->stride;
613 			r10bio->devs[slot].devnum = d;
614 			r10bio->devs[slot].addr = s;
615 			slot++;
616 		}
617 		dev++;
618 		if (dev >= geo->raid_disks) {
619 			dev = 0;
620 			sector += (geo->chunk_mask + 1);
621 		}
622 	}
623 }
624 
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627 	struct geom *geo = &conf->geo;
628 
629 	if (conf->reshape_progress != MaxSector &&
630 	    ((r10bio->sector >= conf->reshape_progress) !=
631 	     conf->mddev->reshape_backwards)) {
632 		set_bit(R10BIO_Previous, &r10bio->state);
633 		geo = &conf->prev;
634 	} else
635 		clear_bit(R10BIO_Previous, &r10bio->state);
636 
637 	__raid10_find_phys(geo, r10bio);
638 }
639 
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642 	sector_t offset, chunk, vchunk;
643 	/* Never use conf->prev as this is only called during resync
644 	 * or recovery, so reshape isn't happening
645 	 */
646 	struct geom *geo = &conf->geo;
647 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 	int far_set_size = geo->far_set_size;
649 	int last_far_set_start;
650 
651 	if (geo->raid_disks % geo->far_set_size) {
652 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 		last_far_set_start *= geo->far_set_size;
654 
655 		if (dev >= last_far_set_start) {
656 			far_set_size = geo->far_set_size;
657 			far_set_size += (geo->raid_disks % geo->far_set_size);
658 			far_set_start = last_far_set_start;
659 		}
660 	}
661 
662 	offset = sector & geo->chunk_mask;
663 	if (geo->far_offset) {
664 		int fc;
665 		chunk = sector >> geo->chunk_shift;
666 		fc = sector_div(chunk, geo->far_copies);
667 		dev -= fc * geo->near_copies;
668 		if (dev < far_set_start)
669 			dev += far_set_size;
670 	} else {
671 		while (sector >= geo->stride) {
672 			sector -= geo->stride;
673 			if (dev < (geo->near_copies + far_set_start))
674 				dev += far_set_size - geo->near_copies;
675 			else
676 				dev -= geo->near_copies;
677 		}
678 		chunk = sector >> geo->chunk_shift;
679 	}
680 	vchunk = chunk * geo->raid_disks + dev;
681 	sector_div(vchunk, geo->near_copies);
682 	return (vchunk << geo->chunk_shift) + offset;
683 }
684 
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699 
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705 				    struct r10bio *r10_bio,
706 				    int *max_sectors)
707 {
708 	const sector_t this_sector = r10_bio->sector;
709 	int disk, slot;
710 	int sectors = r10_bio->sectors;
711 	int best_good_sectors;
712 	sector_t new_distance, best_dist;
713 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714 	int do_balance;
715 	int best_dist_slot, best_pending_slot;
716 	bool has_nonrot_disk = false;
717 	unsigned int min_pending;
718 	struct geom *geo = &conf->geo;
719 
720 	raid10_find_phys(conf, r10_bio);
721 	rcu_read_lock();
722 	best_dist_slot = -1;
723 	min_pending = UINT_MAX;
724 	best_dist_rdev = NULL;
725 	best_pending_rdev = NULL;
726 	best_dist = MaxSector;
727 	best_good_sectors = 0;
728 	do_balance = 1;
729 	clear_bit(R10BIO_FailFast, &r10_bio->state);
730 	/*
731 	 * Check if we can balance. We can balance on the whole
732 	 * device if no resync is going on (recovery is ok), or below
733 	 * the resync window. We take the first readable disk when
734 	 * above the resync window.
735 	 */
736 	if ((conf->mddev->recovery_cp < MaxSector
737 	     && (this_sector + sectors >= conf->next_resync)) ||
738 	    (mddev_is_clustered(conf->mddev) &&
739 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 					    this_sector + sectors)))
741 		do_balance = 0;
742 
743 	for (slot = 0; slot < conf->copies ; slot++) {
744 		sector_t first_bad;
745 		int bad_sectors;
746 		sector_t dev_sector;
747 		unsigned int pending;
748 		bool nonrot;
749 
750 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 			continue;
752 		disk = r10_bio->devs[slot].devnum;
753 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 		if (rdev == NULL ||
758 		    test_bit(Faulty, &rdev->flags))
759 			continue;
760 		if (!test_bit(In_sync, &rdev->flags) &&
761 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 			continue;
763 
764 		dev_sector = r10_bio->devs[slot].addr;
765 		if (is_badblock(rdev, dev_sector, sectors,
766 				&first_bad, &bad_sectors)) {
767 			if (best_dist < MaxSector)
768 				/* Already have a better slot */
769 				continue;
770 			if (first_bad <= dev_sector) {
771 				/* Cannot read here.  If this is the
772 				 * 'primary' device, then we must not read
773 				 * beyond 'bad_sectors' from another device.
774 				 */
775 				bad_sectors -= (dev_sector - first_bad);
776 				if (!do_balance && sectors > bad_sectors)
777 					sectors = bad_sectors;
778 				if (best_good_sectors > sectors)
779 					best_good_sectors = sectors;
780 			} else {
781 				sector_t good_sectors =
782 					first_bad - dev_sector;
783 				if (good_sectors > best_good_sectors) {
784 					best_good_sectors = good_sectors;
785 					best_dist_slot = slot;
786 					best_dist_rdev = rdev;
787 				}
788 				if (!do_balance)
789 					/* Must read from here */
790 					break;
791 			}
792 			continue;
793 		} else
794 			best_good_sectors = sectors;
795 
796 		if (!do_balance)
797 			break;
798 
799 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 		has_nonrot_disk |= nonrot;
801 		pending = atomic_read(&rdev->nr_pending);
802 		if (min_pending > pending && nonrot) {
803 			min_pending = pending;
804 			best_pending_slot = slot;
805 			best_pending_rdev = rdev;
806 		}
807 
808 		if (best_dist_slot >= 0)
809 			/* At least 2 disks to choose from so failfast is OK */
810 			set_bit(R10BIO_FailFast, &r10_bio->state);
811 		/* This optimisation is debatable, and completely destroys
812 		 * sequential read speed for 'far copies' arrays.  So only
813 		 * keep it for 'near' arrays, and review those later.
814 		 */
815 		if (geo->near_copies > 1 && !pending)
816 			new_distance = 0;
817 
818 		/* for far > 1 always use the lowest address */
819 		else if (geo->far_copies > 1)
820 			new_distance = r10_bio->devs[slot].addr;
821 		else
822 			new_distance = abs(r10_bio->devs[slot].addr -
823 					   conf->mirrors[disk].head_position);
824 
825 		if (new_distance < best_dist) {
826 			best_dist = new_distance;
827 			best_dist_slot = slot;
828 			best_dist_rdev = rdev;
829 		}
830 	}
831 	if (slot >= conf->copies) {
832 		if (has_nonrot_disk) {
833 			slot = best_pending_slot;
834 			rdev = best_pending_rdev;
835 		} else {
836 			slot = best_dist_slot;
837 			rdev = best_dist_rdev;
838 		}
839 	}
840 
841 	if (slot >= 0) {
842 		atomic_inc(&rdev->nr_pending);
843 		r10_bio->read_slot = slot;
844 	} else
845 		rdev = NULL;
846 	rcu_read_unlock();
847 	*max_sectors = best_good_sectors;
848 
849 	return rdev;
850 }
851 
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854 	/* Any writes that have been queued but are awaiting
855 	 * bitmap updates get flushed here.
856 	 */
857 	spin_lock_irq(&conf->device_lock);
858 
859 	if (conf->pending_bio_list.head) {
860 		struct blk_plug plug;
861 		struct bio *bio;
862 
863 		bio = bio_list_get(&conf->pending_bio_list);
864 		conf->pending_count = 0;
865 		spin_unlock_irq(&conf->device_lock);
866 
867 		/*
868 		 * As this is called in a wait_event() loop (see freeze_array),
869 		 * current->state might be TASK_UNINTERRUPTIBLE which will
870 		 * cause a warning when we prepare to wait again.  As it is
871 		 * rare that this path is taken, it is perfectly safe to force
872 		 * us to go around the wait_event() loop again, so the warning
873 		 * is a false-positive. Silence the warning by resetting
874 		 * thread state
875 		 */
876 		__set_current_state(TASK_RUNNING);
877 
878 		blk_start_plug(&plug);
879 		/* flush any pending bitmap writes to disk
880 		 * before proceeding w/ I/O */
881 		md_bitmap_unplug(conf->mddev->bitmap);
882 		wake_up(&conf->wait_barrier);
883 
884 		while (bio) { /* submit pending writes */
885 			struct bio *next = bio->bi_next;
886 			struct md_rdev *rdev = (void*)bio->bi_bdev;
887 			bio->bi_next = NULL;
888 			bio_set_dev(bio, rdev->bdev);
889 			if (test_bit(Faulty, &rdev->flags)) {
890 				bio_io_error(bio);
891 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
892 					    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893 				/* Just ignore it */
894 				bio_endio(bio);
895 			else
896 				submit_bio_noacct(bio);
897 			bio = next;
898 		}
899 		blk_finish_plug(&plug);
900 	} else
901 		spin_unlock_irq(&conf->device_lock);
902 }
903 
904 /* Barriers....
905  * Sometimes we need to suspend IO while we do something else,
906  * either some resync/recovery, or reconfigure the array.
907  * To do this we raise a 'barrier'.
908  * The 'barrier' is a counter that can be raised multiple times
909  * to count how many activities are happening which preclude
910  * normal IO.
911  * We can only raise the barrier if there is no pending IO.
912  * i.e. if nr_pending == 0.
913  * We choose only to raise the barrier if no-one is waiting for the
914  * barrier to go down.  This means that as soon as an IO request
915  * is ready, no other operations which require a barrier will start
916  * until the IO request has had a chance.
917  *
918  * So: regular IO calls 'wait_barrier'.  When that returns there
919  *    is no backgroup IO happening,  It must arrange to call
920  *    allow_barrier when it has finished its IO.
921  * backgroup IO calls must call raise_barrier.  Once that returns
922  *    there is no normal IO happeing.  It must arrange to call
923  *    lower_barrier when the particular background IO completes.
924  */
925 
926 static void raise_barrier(struct r10conf *conf, int force)
927 {
928 	BUG_ON(force && !conf->barrier);
929 	spin_lock_irq(&conf->resync_lock);
930 
931 	/* Wait until no block IO is waiting (unless 'force') */
932 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933 			    conf->resync_lock);
934 
935 	/* block any new IO from starting */
936 	conf->barrier++;
937 
938 	/* Now wait for all pending IO to complete */
939 	wait_event_lock_irq(conf->wait_barrier,
940 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941 			    conf->resync_lock);
942 
943 	spin_unlock_irq(&conf->resync_lock);
944 }
945 
946 static void lower_barrier(struct r10conf *conf)
947 {
948 	unsigned long flags;
949 	spin_lock_irqsave(&conf->resync_lock, flags);
950 	conf->barrier--;
951 	spin_unlock_irqrestore(&conf->resync_lock, flags);
952 	wake_up(&conf->wait_barrier);
953 }
954 
955 static void wait_barrier(struct r10conf *conf)
956 {
957 	spin_lock_irq(&conf->resync_lock);
958 	if (conf->barrier) {
959 		struct bio_list *bio_list = current->bio_list;
960 		conf->nr_waiting++;
961 		/* Wait for the barrier to drop.
962 		 * However if there are already pending
963 		 * requests (preventing the barrier from
964 		 * rising completely), and the
965 		 * pre-process bio queue isn't empty,
966 		 * then don't wait, as we need to empty
967 		 * that queue to get the nr_pending
968 		 * count down.
969 		 */
970 		raid10_log(conf->mddev, "wait barrier");
971 		wait_event_lock_irq(conf->wait_barrier,
972 				    !conf->barrier ||
973 				    (atomic_read(&conf->nr_pending) &&
974 				     bio_list &&
975 				     (!bio_list_empty(&bio_list[0]) ||
976 				      !bio_list_empty(&bio_list[1]))) ||
977 				     /* move on if recovery thread is
978 				      * blocked by us
979 				      */
980 				     (conf->mddev->thread->tsk == current &&
981 				      test_bit(MD_RECOVERY_RUNNING,
982 					       &conf->mddev->recovery) &&
983 				      conf->nr_queued > 0),
984 				    conf->resync_lock);
985 		conf->nr_waiting--;
986 		if (!conf->nr_waiting)
987 			wake_up(&conf->wait_barrier);
988 	}
989 	atomic_inc(&conf->nr_pending);
990 	spin_unlock_irq(&conf->resync_lock);
991 }
992 
993 static void allow_barrier(struct r10conf *conf)
994 {
995 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
996 			(conf->array_freeze_pending))
997 		wake_up(&conf->wait_barrier);
998 }
999 
1000 static void freeze_array(struct r10conf *conf, int extra)
1001 {
1002 	/* stop syncio and normal IO and wait for everything to
1003 	 * go quiet.
1004 	 * We increment barrier and nr_waiting, and then
1005 	 * wait until nr_pending match nr_queued+extra
1006 	 * This is called in the context of one normal IO request
1007 	 * that has failed. Thus any sync request that might be pending
1008 	 * will be blocked by nr_pending, and we need to wait for
1009 	 * pending IO requests to complete or be queued for re-try.
1010 	 * Thus the number queued (nr_queued) plus this request (extra)
1011 	 * must match the number of pending IOs (nr_pending) before
1012 	 * we continue.
1013 	 */
1014 	spin_lock_irq(&conf->resync_lock);
1015 	conf->array_freeze_pending++;
1016 	conf->barrier++;
1017 	conf->nr_waiting++;
1018 	wait_event_lock_irq_cmd(conf->wait_barrier,
1019 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020 				conf->resync_lock,
1021 				flush_pending_writes(conf));
1022 
1023 	conf->array_freeze_pending--;
1024 	spin_unlock_irq(&conf->resync_lock);
1025 }
1026 
1027 static void unfreeze_array(struct r10conf *conf)
1028 {
1029 	/* reverse the effect of the freeze */
1030 	spin_lock_irq(&conf->resync_lock);
1031 	conf->barrier--;
1032 	conf->nr_waiting--;
1033 	wake_up(&conf->wait_barrier);
1034 	spin_unlock_irq(&conf->resync_lock);
1035 }
1036 
1037 static sector_t choose_data_offset(struct r10bio *r10_bio,
1038 				   struct md_rdev *rdev)
1039 {
1040 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041 	    test_bit(R10BIO_Previous, &r10_bio->state))
1042 		return rdev->data_offset;
1043 	else
1044 		return rdev->new_data_offset;
1045 }
1046 
1047 struct raid10_plug_cb {
1048 	struct blk_plug_cb	cb;
1049 	struct bio_list		pending;
1050 	int			pending_cnt;
1051 };
1052 
1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054 {
1055 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056 						   cb);
1057 	struct mddev *mddev = plug->cb.data;
1058 	struct r10conf *conf = mddev->private;
1059 	struct bio *bio;
1060 
1061 	if (from_schedule || current->bio_list) {
1062 		spin_lock_irq(&conf->device_lock);
1063 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064 		conf->pending_count += plug->pending_cnt;
1065 		spin_unlock_irq(&conf->device_lock);
1066 		wake_up(&conf->wait_barrier);
1067 		md_wakeup_thread(mddev->thread);
1068 		kfree(plug);
1069 		return;
1070 	}
1071 
1072 	/* we aren't scheduling, so we can do the write-out directly. */
1073 	bio = bio_list_get(&plug->pending);
1074 	md_bitmap_unplug(mddev->bitmap);
1075 	wake_up(&conf->wait_barrier);
1076 
1077 	while (bio) { /* submit pending writes */
1078 		struct bio *next = bio->bi_next;
1079 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1080 		bio->bi_next = NULL;
1081 		bio_set_dev(bio, rdev->bdev);
1082 		if (test_bit(Faulty, &rdev->flags)) {
1083 			bio_io_error(bio);
1084 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086 			/* Just ignore it */
1087 			bio_endio(bio);
1088 		else
1089 			submit_bio_noacct(bio);
1090 		bio = next;
1091 	}
1092 	kfree(plug);
1093 }
1094 
1095 /*
1096  * 1. Register the new request and wait if the reconstruction thread has put
1097  * up a bar for new requests. Continue immediately if no resync is active
1098  * currently.
1099  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100  */
1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102 				 struct bio *bio, sector_t sectors)
1103 {
1104 	wait_barrier(conf);
1105 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1107 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108 		raid10_log(conf->mddev, "wait reshape");
1109 		allow_barrier(conf);
1110 		wait_event(conf->wait_barrier,
1111 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1113 			   sectors);
1114 		wait_barrier(conf);
1115 	}
1116 }
1117 
1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119 				struct r10bio *r10_bio)
1120 {
1121 	struct r10conf *conf = mddev->private;
1122 	struct bio *read_bio;
1123 	const int op = bio_op(bio);
1124 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125 	int max_sectors;
1126 	struct md_rdev *rdev;
1127 	char b[BDEVNAME_SIZE];
1128 	int slot = r10_bio->read_slot;
1129 	struct md_rdev *err_rdev = NULL;
1130 	gfp_t gfp = GFP_NOIO;
1131 
1132 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133 		/*
1134 		 * This is an error retry, but we cannot
1135 		 * safely dereference the rdev in the r10_bio,
1136 		 * we must use the one in conf.
1137 		 * If it has already been disconnected (unlikely)
1138 		 * we lose the device name in error messages.
1139 		 */
1140 		int disk;
1141 		/*
1142 		 * As we are blocking raid10, it is a little safer to
1143 		 * use __GFP_HIGH.
1144 		 */
1145 		gfp = GFP_NOIO | __GFP_HIGH;
1146 
1147 		rcu_read_lock();
1148 		disk = r10_bio->devs[slot].devnum;
1149 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150 		if (err_rdev)
1151 			bdevname(err_rdev->bdev, b);
1152 		else {
1153 			strcpy(b, "???");
1154 			/* This never gets dereferenced */
1155 			err_rdev = r10_bio->devs[slot].rdev;
1156 		}
1157 		rcu_read_unlock();
1158 	}
1159 
1160 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161 	rdev = read_balance(conf, r10_bio, &max_sectors);
1162 	if (!rdev) {
1163 		if (err_rdev) {
1164 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165 					    mdname(mddev), b,
1166 					    (unsigned long long)r10_bio->sector);
1167 		}
1168 		raid_end_bio_io(r10_bio);
1169 		return;
1170 	}
1171 	if (err_rdev)
1172 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173 				   mdname(mddev),
1174 				   bdevname(rdev->bdev, b),
1175 				   (unsigned long long)r10_bio->sector);
1176 	if (max_sectors < bio_sectors(bio)) {
1177 		struct bio *split = bio_split(bio, max_sectors,
1178 					      gfp, &conf->bio_split);
1179 		bio_chain(split, bio);
1180 		allow_barrier(conf);
1181 		submit_bio_noacct(bio);
1182 		wait_barrier(conf);
1183 		bio = split;
1184 		r10_bio->master_bio = bio;
1185 		r10_bio->sectors = max_sectors;
1186 	}
1187 	slot = r10_bio->read_slot;
1188 
1189 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190 		r10_bio->start_time = bio_start_io_acct(bio);
1191 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192 
1193 	r10_bio->devs[slot].bio = read_bio;
1194 	r10_bio->devs[slot].rdev = rdev;
1195 
1196 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197 		choose_data_offset(r10_bio, rdev);
1198 	bio_set_dev(read_bio, rdev->bdev);
1199 	read_bio->bi_end_io = raid10_end_read_request;
1200 	bio_set_op_attrs(read_bio, op, do_sync);
1201 	if (test_bit(FailFast, &rdev->flags) &&
1202 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1203 	        read_bio->bi_opf |= MD_FAILFAST;
1204 	read_bio->bi_private = r10_bio;
1205 
1206 	if (mddev->gendisk)
1207 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208 	                              r10_bio->sector);
1209 	submit_bio_noacct(read_bio);
1210 	return;
1211 }
1212 
1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214 				  struct bio *bio, bool replacement,
1215 				  int n_copy)
1216 {
1217 	const int op = bio_op(bio);
1218 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220 	unsigned long flags;
1221 	struct blk_plug_cb *cb;
1222 	struct raid10_plug_cb *plug = NULL;
1223 	struct r10conf *conf = mddev->private;
1224 	struct md_rdev *rdev;
1225 	int devnum = r10_bio->devs[n_copy].devnum;
1226 	struct bio *mbio;
1227 
1228 	if (replacement) {
1229 		rdev = conf->mirrors[devnum].replacement;
1230 		if (rdev == NULL) {
1231 			/* Replacement just got moved to main 'rdev' */
1232 			smp_mb();
1233 			rdev = conf->mirrors[devnum].rdev;
1234 		}
1235 	} else
1236 		rdev = conf->mirrors[devnum].rdev;
1237 
1238 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239 	if (replacement)
1240 		r10_bio->devs[n_copy].repl_bio = mbio;
1241 	else
1242 		r10_bio->devs[n_copy].bio = mbio;
1243 
1244 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1245 				   choose_data_offset(r10_bio, rdev));
1246 	bio_set_dev(mbio, rdev->bdev);
1247 	mbio->bi_end_io	= raid10_end_write_request;
1248 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249 	if (!replacement && test_bit(FailFast,
1250 				     &conf->mirrors[devnum].rdev->flags)
1251 			 && enough(conf, devnum))
1252 		mbio->bi_opf |= MD_FAILFAST;
1253 	mbio->bi_private = r10_bio;
1254 
1255 	if (conf->mddev->gendisk)
1256 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257 				      r10_bio->sector);
1258 	/* flush_pending_writes() needs access to the rdev so...*/
1259 	mbio->bi_bdev = (void *)rdev;
1260 
1261 	atomic_inc(&r10_bio->remaining);
1262 
1263 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264 	if (cb)
1265 		plug = container_of(cb, struct raid10_plug_cb, cb);
1266 	else
1267 		plug = NULL;
1268 	if (plug) {
1269 		bio_list_add(&plug->pending, mbio);
1270 		plug->pending_cnt++;
1271 	} else {
1272 		spin_lock_irqsave(&conf->device_lock, flags);
1273 		bio_list_add(&conf->pending_bio_list, mbio);
1274 		conf->pending_count++;
1275 		spin_unlock_irqrestore(&conf->device_lock, flags);
1276 		md_wakeup_thread(mddev->thread);
1277 	}
1278 }
1279 
1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281 {
1282 	int i;
1283 	struct r10conf *conf = mddev->private;
1284 	struct md_rdev *blocked_rdev;
1285 
1286 retry_wait:
1287 	blocked_rdev = NULL;
1288 	rcu_read_lock();
1289 	for (i = 0; i < conf->copies; i++) {
1290 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291 		struct md_rdev *rrdev = rcu_dereference(
1292 			conf->mirrors[i].replacement);
1293 		if (rdev == rrdev)
1294 			rrdev = NULL;
1295 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296 			atomic_inc(&rdev->nr_pending);
1297 			blocked_rdev = rdev;
1298 			break;
1299 		}
1300 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301 			atomic_inc(&rrdev->nr_pending);
1302 			blocked_rdev = rrdev;
1303 			break;
1304 		}
1305 
1306 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307 			sector_t first_bad;
1308 			sector_t dev_sector = r10_bio->devs[i].addr;
1309 			int bad_sectors;
1310 			int is_bad;
1311 
1312 			/*
1313 			 * Discard request doesn't care the write result
1314 			 * so it doesn't need to wait blocked disk here.
1315 			 */
1316 			if (!r10_bio->sectors)
1317 				continue;
1318 
1319 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320 					     &first_bad, &bad_sectors);
1321 			if (is_bad < 0) {
1322 				/*
1323 				 * Mustn't write here until the bad block
1324 				 * is acknowledged
1325 				 */
1326 				atomic_inc(&rdev->nr_pending);
1327 				set_bit(BlockedBadBlocks, &rdev->flags);
1328 				blocked_rdev = rdev;
1329 				break;
1330 			}
1331 		}
1332 	}
1333 	rcu_read_unlock();
1334 
1335 	if (unlikely(blocked_rdev)) {
1336 		/* Have to wait for this device to get unblocked, then retry */
1337 		allow_barrier(conf);
1338 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339 				__func__, blocked_rdev->raid_disk);
1340 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341 		wait_barrier(conf);
1342 		goto retry_wait;
1343 	}
1344 }
1345 
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347 				 struct r10bio *r10_bio)
1348 {
1349 	struct r10conf *conf = mddev->private;
1350 	int i;
1351 	sector_t sectors;
1352 	int max_sectors;
1353 
1354 	if ((mddev_is_clustered(mddev) &&
1355 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1356 					    bio->bi_iter.bi_sector,
1357 					    bio_end_sector(bio)))) {
1358 		DEFINE_WAIT(w);
1359 		for (;;) {
1360 			prepare_to_wait(&conf->wait_barrier,
1361 					&w, TASK_IDLE);
1362 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364 				break;
1365 			schedule();
1366 		}
1367 		finish_wait(&conf->wait_barrier, &w);
1368 	}
1369 
1370 	sectors = r10_bio->sectors;
1371 	regular_request_wait(mddev, conf, bio, sectors);
1372 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373 	    (mddev->reshape_backwards
1374 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378 		/* Need to update reshape_position in metadata */
1379 		mddev->reshape_position = conf->reshape_progress;
1380 		set_mask_bits(&mddev->sb_flags, 0,
1381 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382 		md_wakeup_thread(mddev->thread);
1383 		raid10_log(conf->mddev, "wait reshape metadata");
1384 		wait_event(mddev->sb_wait,
1385 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386 
1387 		conf->reshape_safe = mddev->reshape_position;
1388 	}
1389 
1390 	if (conf->pending_count >= max_queued_requests) {
1391 		md_wakeup_thread(mddev->thread);
1392 		raid10_log(mddev, "wait queued");
1393 		wait_event(conf->wait_barrier,
1394 			   conf->pending_count < max_queued_requests);
1395 	}
1396 	/* first select target devices under rcu_lock and
1397 	 * inc refcount on their rdev.  Record them by setting
1398 	 * bios[x] to bio
1399 	 * If there are known/acknowledged bad blocks on any device
1400 	 * on which we have seen a write error, we want to avoid
1401 	 * writing to those blocks.  This potentially requires several
1402 	 * writes to write around the bad blocks.  Each set of writes
1403 	 * gets its own r10_bio with a set of bios attached.
1404 	 */
1405 
1406 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407 	raid10_find_phys(conf, r10_bio);
1408 
1409 	wait_blocked_dev(mddev, r10_bio);
1410 
1411 	rcu_read_lock();
1412 	max_sectors = r10_bio->sectors;
1413 
1414 	for (i = 0;  i < conf->copies; i++) {
1415 		int d = r10_bio->devs[i].devnum;
1416 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417 		struct md_rdev *rrdev = rcu_dereference(
1418 			conf->mirrors[d].replacement);
1419 		if (rdev == rrdev)
1420 			rrdev = NULL;
1421 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1422 			rdev = NULL;
1423 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424 			rrdev = NULL;
1425 
1426 		r10_bio->devs[i].bio = NULL;
1427 		r10_bio->devs[i].repl_bio = NULL;
1428 
1429 		if (!rdev && !rrdev) {
1430 			set_bit(R10BIO_Degraded, &r10_bio->state);
1431 			continue;
1432 		}
1433 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434 			sector_t first_bad;
1435 			sector_t dev_sector = r10_bio->devs[i].addr;
1436 			int bad_sectors;
1437 			int is_bad;
1438 
1439 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440 					     &first_bad, &bad_sectors);
1441 			if (is_bad && first_bad <= dev_sector) {
1442 				/* Cannot write here at all */
1443 				bad_sectors -= (dev_sector - first_bad);
1444 				if (bad_sectors < max_sectors)
1445 					/* Mustn't write more than bad_sectors
1446 					 * to other devices yet
1447 					 */
1448 					max_sectors = bad_sectors;
1449 				/* We don't set R10BIO_Degraded as that
1450 				 * only applies if the disk is missing,
1451 				 * so it might be re-added, and we want to
1452 				 * know to recover this chunk.
1453 				 * In this case the device is here, and the
1454 				 * fact that this chunk is not in-sync is
1455 				 * recorded in the bad block log.
1456 				 */
1457 				continue;
1458 			}
1459 			if (is_bad) {
1460 				int good_sectors = first_bad - dev_sector;
1461 				if (good_sectors < max_sectors)
1462 					max_sectors = good_sectors;
1463 			}
1464 		}
1465 		if (rdev) {
1466 			r10_bio->devs[i].bio = bio;
1467 			atomic_inc(&rdev->nr_pending);
1468 		}
1469 		if (rrdev) {
1470 			r10_bio->devs[i].repl_bio = bio;
1471 			atomic_inc(&rrdev->nr_pending);
1472 		}
1473 	}
1474 	rcu_read_unlock();
1475 
1476 	if (max_sectors < r10_bio->sectors)
1477 		r10_bio->sectors = max_sectors;
1478 
1479 	if (r10_bio->sectors < bio_sectors(bio)) {
1480 		struct bio *split = bio_split(bio, r10_bio->sectors,
1481 					      GFP_NOIO, &conf->bio_split);
1482 		bio_chain(split, bio);
1483 		allow_barrier(conf);
1484 		submit_bio_noacct(bio);
1485 		wait_barrier(conf);
1486 		bio = split;
1487 		r10_bio->master_bio = bio;
1488 	}
1489 
1490 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491 		r10_bio->start_time = bio_start_io_acct(bio);
1492 	atomic_set(&r10_bio->remaining, 1);
1493 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494 
1495 	for (i = 0; i < conf->copies; i++) {
1496 		if (r10_bio->devs[i].bio)
1497 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498 		if (r10_bio->devs[i].repl_bio)
1499 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500 	}
1501 	one_write_done(r10_bio);
1502 }
1503 
1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505 {
1506 	struct r10conf *conf = mddev->private;
1507 	struct r10bio *r10_bio;
1508 
1509 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510 
1511 	r10_bio->master_bio = bio;
1512 	r10_bio->sectors = sectors;
1513 
1514 	r10_bio->mddev = mddev;
1515 	r10_bio->sector = bio->bi_iter.bi_sector;
1516 	r10_bio->state = 0;
1517 	r10_bio->read_slot = -1;
1518 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519 			conf->geo.raid_disks);
1520 
1521 	if (bio_data_dir(bio) == READ)
1522 		raid10_read_request(mddev, bio, r10_bio);
1523 	else
1524 		raid10_write_request(mddev, bio, r10_bio);
1525 }
1526 
1527 static void raid_end_discard_bio(struct r10bio *r10bio)
1528 {
1529 	struct r10conf *conf = r10bio->mddev->private;
1530 	struct r10bio *first_r10bio;
1531 
1532 	while (atomic_dec_and_test(&r10bio->remaining)) {
1533 
1534 		allow_barrier(conf);
1535 
1536 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1538 			free_r10bio(r10bio);
1539 			r10bio = first_r10bio;
1540 		} else {
1541 			md_write_end(r10bio->mddev);
1542 			bio_endio(r10bio->master_bio);
1543 			free_r10bio(r10bio);
1544 			break;
1545 		}
1546 	}
1547 }
1548 
1549 static void raid10_end_discard_request(struct bio *bio)
1550 {
1551 	struct r10bio *r10_bio = bio->bi_private;
1552 	struct r10conf *conf = r10_bio->mddev->private;
1553 	struct md_rdev *rdev = NULL;
1554 	int dev;
1555 	int slot, repl;
1556 
1557 	/*
1558 	 * We don't care the return value of discard bio
1559 	 */
1560 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1562 
1563 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564 	if (repl)
1565 		rdev = conf->mirrors[dev].replacement;
1566 	if (!rdev) {
1567 		/*
1568 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569 		 * replacement before setting replacement to NULL. It can read
1570 		 * rdev first without barrier protect even replacment is NULL
1571 		 */
1572 		smp_rmb();
1573 		rdev = conf->mirrors[dev].rdev;
1574 	}
1575 
1576 	raid_end_discard_bio(r10_bio);
1577 	rdev_dec_pending(rdev, conf->mddev);
1578 }
1579 
1580 /*
1581  * There are some limitations to handle discard bio
1582  * 1st, the discard size is bigger than stripe_size*2.
1583  * 2st, if the discard bio spans reshape progress, we use the old way to
1584  * handle discard bio
1585  */
1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587 {
1588 	struct r10conf *conf = mddev->private;
1589 	struct geom *geo = &conf->geo;
1590 	int far_copies = geo->far_copies;
1591 	bool first_copy = true;
1592 	struct r10bio *r10_bio, *first_r10bio;
1593 	struct bio *split;
1594 	int disk;
1595 	sector_t chunk;
1596 	unsigned int stripe_size;
1597 	unsigned int stripe_data_disks;
1598 	sector_t split_size;
1599 	sector_t bio_start, bio_end;
1600 	sector_t first_stripe_index, last_stripe_index;
1601 	sector_t start_disk_offset;
1602 	unsigned int start_disk_index;
1603 	sector_t end_disk_offset;
1604 	unsigned int end_disk_index;
1605 	unsigned int remainder;
1606 
1607 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608 		return -EAGAIN;
1609 
1610 	wait_barrier(conf);
1611 
1612 	/*
1613 	 * Check reshape again to avoid reshape happens after checking
1614 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1615 	 */
1616 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617 		goto out;
1618 
1619 	if (geo->near_copies)
1620 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1621 					geo->raid_disks % geo->near_copies;
1622 	else
1623 		stripe_data_disks = geo->raid_disks;
1624 
1625 	stripe_size = stripe_data_disks << geo->chunk_shift;
1626 
1627 	bio_start = bio->bi_iter.bi_sector;
1628 	bio_end = bio_end_sector(bio);
1629 
1630 	/*
1631 	 * Maybe one discard bio is smaller than strip size or across one
1632 	 * stripe and discard region is larger than one stripe size. For far
1633 	 * offset layout, if the discard region is not aligned with stripe
1634 	 * size, there is hole when we submit discard bio to member disk.
1635 	 * For simplicity, we only handle discard bio which discard region
1636 	 * is bigger than stripe_size * 2
1637 	 */
1638 	if (bio_sectors(bio) < stripe_size*2)
1639 		goto out;
1640 
1641 	/*
1642 	 * Keep bio aligned with strip size.
1643 	 */
1644 	div_u64_rem(bio_start, stripe_size, &remainder);
1645 	if (remainder) {
1646 		split_size = stripe_size - remainder;
1647 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648 		bio_chain(split, bio);
1649 		allow_barrier(conf);
1650 		/* Resend the fist split part */
1651 		submit_bio_noacct(split);
1652 		wait_barrier(conf);
1653 	}
1654 	div_u64_rem(bio_end, stripe_size, &remainder);
1655 	if (remainder) {
1656 		split_size = bio_sectors(bio) - remainder;
1657 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658 		bio_chain(split, bio);
1659 		allow_barrier(conf);
1660 		/* Resend the second split part */
1661 		submit_bio_noacct(bio);
1662 		bio = split;
1663 		wait_barrier(conf);
1664 	}
1665 
1666 	bio_start = bio->bi_iter.bi_sector;
1667 	bio_end = bio_end_sector(bio);
1668 
1669 	/*
1670 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671 	 * One stripe contains the chunks from all member disk (one chunk from
1672 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1673 	 */
1674 	chunk = bio_start >> geo->chunk_shift;
1675 	chunk *= geo->near_copies;
1676 	first_stripe_index = chunk;
1677 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678 	if (geo->far_offset)
1679 		first_stripe_index *= geo->far_copies;
1680 	start_disk_offset = (bio_start & geo->chunk_mask) +
1681 				(first_stripe_index << geo->chunk_shift);
1682 
1683 	chunk = bio_end >> geo->chunk_shift;
1684 	chunk *= geo->near_copies;
1685 	last_stripe_index = chunk;
1686 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687 	if (geo->far_offset)
1688 		last_stripe_index *= geo->far_copies;
1689 	end_disk_offset = (bio_end & geo->chunk_mask) +
1690 				(last_stripe_index << geo->chunk_shift);
1691 
1692 retry_discard:
1693 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694 	r10_bio->mddev = mddev;
1695 	r10_bio->state = 0;
1696 	r10_bio->sectors = 0;
1697 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698 	wait_blocked_dev(mddev, r10_bio);
1699 
1700 	/*
1701 	 * For far layout it needs more than one r10bio to cover all regions.
1702 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703 	 * to record the discard bio. Other r10bio->master_bio record the first
1704 	 * r10bio. The first r10bio only release after all other r10bios finish.
1705 	 * The discard bio returns only first r10bio finishes
1706 	 */
1707 	if (first_copy) {
1708 		r10_bio->master_bio = bio;
1709 		set_bit(R10BIO_Discard, &r10_bio->state);
1710 		first_copy = false;
1711 		first_r10bio = r10_bio;
1712 	} else
1713 		r10_bio->master_bio = (struct bio *)first_r10bio;
1714 
1715 	/*
1716 	 * first select target devices under rcu_lock and
1717 	 * inc refcount on their rdev.  Record them by setting
1718 	 * bios[x] to bio
1719 	 */
1720 	rcu_read_lock();
1721 	for (disk = 0; disk < geo->raid_disks; disk++) {
1722 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723 		struct md_rdev *rrdev = rcu_dereference(
1724 			conf->mirrors[disk].replacement);
1725 
1726 		r10_bio->devs[disk].bio = NULL;
1727 		r10_bio->devs[disk].repl_bio = NULL;
1728 
1729 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1730 			rdev = NULL;
1731 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732 			rrdev = NULL;
1733 		if (!rdev && !rrdev)
1734 			continue;
1735 
1736 		if (rdev) {
1737 			r10_bio->devs[disk].bio = bio;
1738 			atomic_inc(&rdev->nr_pending);
1739 		}
1740 		if (rrdev) {
1741 			r10_bio->devs[disk].repl_bio = bio;
1742 			atomic_inc(&rrdev->nr_pending);
1743 		}
1744 	}
1745 	rcu_read_unlock();
1746 
1747 	atomic_set(&r10_bio->remaining, 1);
1748 	for (disk = 0; disk < geo->raid_disks; disk++) {
1749 		sector_t dev_start, dev_end;
1750 		struct bio *mbio, *rbio = NULL;
1751 
1752 		/*
1753 		 * Now start to calculate the start and end address for each disk.
1754 		 * The space between dev_start and dev_end is the discard region.
1755 		 *
1756 		 * For dev_start, it needs to consider three conditions:
1757 		 * 1st, the disk is before start_disk, you can imagine the disk in
1758 		 * the next stripe. So the dev_start is the start address of next
1759 		 * stripe.
1760 		 * 2st, the disk is after start_disk, it means the disk is at the
1761 		 * same stripe of first disk
1762 		 * 3st, the first disk itself, we can use start_disk_offset directly
1763 		 */
1764 		if (disk < start_disk_index)
1765 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766 		else if (disk > start_disk_index)
1767 			dev_start = first_stripe_index * mddev->chunk_sectors;
1768 		else
1769 			dev_start = start_disk_offset;
1770 
1771 		if (disk < end_disk_index)
1772 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773 		else if (disk > end_disk_index)
1774 			dev_end = last_stripe_index * mddev->chunk_sectors;
1775 		else
1776 			dev_end = end_disk_offset;
1777 
1778 		/*
1779 		 * It only handles discard bio which size is >= stripe size, so
1780 		 * dev_end > dev_start all the time.
1781 		 * It doesn't need to use rcu lock to get rdev here. We already
1782 		 * add rdev->nr_pending in the first loop.
1783 		 */
1784 		if (r10_bio->devs[disk].bio) {
1785 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787 			mbio->bi_end_io = raid10_end_discard_request;
1788 			mbio->bi_private = r10_bio;
1789 			r10_bio->devs[disk].bio = mbio;
1790 			r10_bio->devs[disk].devnum = disk;
1791 			atomic_inc(&r10_bio->remaining);
1792 			md_submit_discard_bio(mddev, rdev, mbio,
1793 					dev_start + choose_data_offset(r10_bio, rdev),
1794 					dev_end - dev_start);
1795 			bio_endio(mbio);
1796 		}
1797 		if (r10_bio->devs[disk].repl_bio) {
1798 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799 			rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800 			rbio->bi_end_io = raid10_end_discard_request;
1801 			rbio->bi_private = r10_bio;
1802 			r10_bio->devs[disk].repl_bio = rbio;
1803 			r10_bio->devs[disk].devnum = disk;
1804 			atomic_inc(&r10_bio->remaining);
1805 			md_submit_discard_bio(mddev, rrdev, rbio,
1806 					dev_start + choose_data_offset(r10_bio, rrdev),
1807 					dev_end - dev_start);
1808 			bio_endio(rbio);
1809 		}
1810 	}
1811 
1812 	if (!geo->far_offset && --far_copies) {
1813 		first_stripe_index += geo->stride >> geo->chunk_shift;
1814 		start_disk_offset += geo->stride;
1815 		last_stripe_index += geo->stride >> geo->chunk_shift;
1816 		end_disk_offset += geo->stride;
1817 		atomic_inc(&first_r10bio->remaining);
1818 		raid_end_discard_bio(r10_bio);
1819 		wait_barrier(conf);
1820 		goto retry_discard;
1821 	}
1822 
1823 	raid_end_discard_bio(r10_bio);
1824 
1825 	return 0;
1826 out:
1827 	allow_barrier(conf);
1828 	return -EAGAIN;
1829 }
1830 
1831 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1832 {
1833 	struct r10conf *conf = mddev->private;
1834 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835 	int chunk_sects = chunk_mask + 1;
1836 	int sectors = bio_sectors(bio);
1837 
1838 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839 	    && md_flush_request(mddev, bio))
1840 		return true;
1841 
1842 	if (!md_write_start(mddev, bio))
1843 		return false;
1844 
1845 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846 		if (!raid10_handle_discard(mddev, bio))
1847 			return true;
1848 
1849 	/*
1850 	 * If this request crosses a chunk boundary, we need to split
1851 	 * it.
1852 	 */
1853 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854 		     sectors > chunk_sects
1855 		     && (conf->geo.near_copies < conf->geo.raid_disks
1856 			 || conf->prev.near_copies <
1857 			 conf->prev.raid_disks)))
1858 		sectors = chunk_sects -
1859 			(bio->bi_iter.bi_sector &
1860 			 (chunk_sects - 1));
1861 	__make_request(mddev, bio, sectors);
1862 
1863 	/* In case raid10d snuck in to freeze_array */
1864 	wake_up(&conf->wait_barrier);
1865 	return true;
1866 }
1867 
1868 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1869 {
1870 	struct r10conf *conf = mddev->private;
1871 	int i;
1872 
1873 	if (conf->geo.near_copies < conf->geo.raid_disks)
1874 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875 	if (conf->geo.near_copies > 1)
1876 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877 	if (conf->geo.far_copies > 1) {
1878 		if (conf->geo.far_offset)
1879 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880 		else
1881 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1883 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884 	}
1885 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886 					conf->geo.raid_disks - mddev->degraded);
1887 	rcu_read_lock();
1888 	for (i = 0; i < conf->geo.raid_disks; i++) {
1889 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891 	}
1892 	rcu_read_unlock();
1893 	seq_printf(seq, "]");
1894 }
1895 
1896 /* check if there are enough drives for
1897  * every block to appear on atleast one.
1898  * Don't consider the device numbered 'ignore'
1899  * as we might be about to remove it.
1900  */
1901 static int _enough(struct r10conf *conf, int previous, int ignore)
1902 {
1903 	int first = 0;
1904 	int has_enough = 0;
1905 	int disks, ncopies;
1906 	if (previous) {
1907 		disks = conf->prev.raid_disks;
1908 		ncopies = conf->prev.near_copies;
1909 	} else {
1910 		disks = conf->geo.raid_disks;
1911 		ncopies = conf->geo.near_copies;
1912 	}
1913 
1914 	rcu_read_lock();
1915 	do {
1916 		int n = conf->copies;
1917 		int cnt = 0;
1918 		int this = first;
1919 		while (n--) {
1920 			struct md_rdev *rdev;
1921 			if (this != ignore &&
1922 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923 			    test_bit(In_sync, &rdev->flags))
1924 				cnt++;
1925 			this = (this+1) % disks;
1926 		}
1927 		if (cnt == 0)
1928 			goto out;
1929 		first = (first + ncopies) % disks;
1930 	} while (first != 0);
1931 	has_enough = 1;
1932 out:
1933 	rcu_read_unlock();
1934 	return has_enough;
1935 }
1936 
1937 static int enough(struct r10conf *conf, int ignore)
1938 {
1939 	/* when calling 'enough', both 'prev' and 'geo' must
1940 	 * be stable.
1941 	 * This is ensured if ->reconfig_mutex or ->device_lock
1942 	 * is held.
1943 	 */
1944 	return _enough(conf, 0, ignore) &&
1945 		_enough(conf, 1, ignore);
1946 }
1947 
1948 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1949 {
1950 	char b[BDEVNAME_SIZE];
1951 	struct r10conf *conf = mddev->private;
1952 	unsigned long flags;
1953 
1954 	/*
1955 	 * If it is not operational, then we have already marked it as dead
1956 	 * else if it is the last working disks with "fail_last_dev == false",
1957 	 * ignore the error, let the next level up know.
1958 	 * else mark the drive as failed
1959 	 */
1960 	spin_lock_irqsave(&conf->device_lock, flags);
1961 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962 	    && !enough(conf, rdev->raid_disk)) {
1963 		/*
1964 		 * Don't fail the drive, just return an IO error.
1965 		 */
1966 		spin_unlock_irqrestore(&conf->device_lock, flags);
1967 		return;
1968 	}
1969 	if (test_and_clear_bit(In_sync, &rdev->flags))
1970 		mddev->degraded++;
1971 	/*
1972 	 * If recovery is running, make sure it aborts.
1973 	 */
1974 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975 	set_bit(Blocked, &rdev->flags);
1976 	set_bit(Faulty, &rdev->flags);
1977 	set_mask_bits(&mddev->sb_flags, 0,
1978 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979 	spin_unlock_irqrestore(&conf->device_lock, flags);
1980 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981 		"md/raid10:%s: Operation continuing on %d devices.\n",
1982 		mdname(mddev), bdevname(rdev->bdev, b),
1983 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1984 }
1985 
1986 static void print_conf(struct r10conf *conf)
1987 {
1988 	int i;
1989 	struct md_rdev *rdev;
1990 
1991 	pr_debug("RAID10 conf printout:\n");
1992 	if (!conf) {
1993 		pr_debug("(!conf)\n");
1994 		return;
1995 	}
1996 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997 		 conf->geo.raid_disks);
1998 
1999 	/* This is only called with ->reconfix_mutex held, so
2000 	 * rcu protection of rdev is not needed */
2001 	for (i = 0; i < conf->geo.raid_disks; i++) {
2002 		char b[BDEVNAME_SIZE];
2003 		rdev = conf->mirrors[i].rdev;
2004 		if (rdev)
2005 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006 				 i, !test_bit(In_sync, &rdev->flags),
2007 				 !test_bit(Faulty, &rdev->flags),
2008 				 bdevname(rdev->bdev,b));
2009 	}
2010 }
2011 
2012 static void close_sync(struct r10conf *conf)
2013 {
2014 	wait_barrier(conf);
2015 	allow_barrier(conf);
2016 
2017 	mempool_exit(&conf->r10buf_pool);
2018 }
2019 
2020 static int raid10_spare_active(struct mddev *mddev)
2021 {
2022 	int i;
2023 	struct r10conf *conf = mddev->private;
2024 	struct raid10_info *tmp;
2025 	int count = 0;
2026 	unsigned long flags;
2027 
2028 	/*
2029 	 * Find all non-in_sync disks within the RAID10 configuration
2030 	 * and mark them in_sync
2031 	 */
2032 	for (i = 0; i < conf->geo.raid_disks; i++) {
2033 		tmp = conf->mirrors + i;
2034 		if (tmp->replacement
2035 		    && tmp->replacement->recovery_offset == MaxSector
2036 		    && !test_bit(Faulty, &tmp->replacement->flags)
2037 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038 			/* Replacement has just become active */
2039 			if (!tmp->rdev
2040 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041 				count++;
2042 			if (tmp->rdev) {
2043 				/* Replaced device not technically faulty,
2044 				 * but we need to be sure it gets removed
2045 				 * and never re-added.
2046 				 */
2047 				set_bit(Faulty, &tmp->rdev->flags);
2048 				sysfs_notify_dirent_safe(
2049 					tmp->rdev->sysfs_state);
2050 			}
2051 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052 		} else if (tmp->rdev
2053 			   && tmp->rdev->recovery_offset == MaxSector
2054 			   && !test_bit(Faulty, &tmp->rdev->flags)
2055 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056 			count++;
2057 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058 		}
2059 	}
2060 	spin_lock_irqsave(&conf->device_lock, flags);
2061 	mddev->degraded -= count;
2062 	spin_unlock_irqrestore(&conf->device_lock, flags);
2063 
2064 	print_conf(conf);
2065 	return count;
2066 }
2067 
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069 {
2070 	struct r10conf *conf = mddev->private;
2071 	int err = -EEXIST;
2072 	int mirror;
2073 	int first = 0;
2074 	int last = conf->geo.raid_disks - 1;
2075 
2076 	if (mddev->recovery_cp < MaxSector)
2077 		/* only hot-add to in-sync arrays, as recovery is
2078 		 * very different from resync
2079 		 */
2080 		return -EBUSY;
2081 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2082 		return -EINVAL;
2083 
2084 	if (md_integrity_add_rdev(rdev, mddev))
2085 		return -ENXIO;
2086 
2087 	if (rdev->raid_disk >= 0)
2088 		first = last = rdev->raid_disk;
2089 
2090 	if (rdev->saved_raid_disk >= first &&
2091 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2092 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093 		mirror = rdev->saved_raid_disk;
2094 	else
2095 		mirror = first;
2096 	for ( ; mirror <= last ; mirror++) {
2097 		struct raid10_info *p = &conf->mirrors[mirror];
2098 		if (p->recovery_disabled == mddev->recovery_disabled)
2099 			continue;
2100 		if (p->rdev) {
2101 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102 			    p->replacement != NULL)
2103 				continue;
2104 			clear_bit(In_sync, &rdev->flags);
2105 			set_bit(Replacement, &rdev->flags);
2106 			rdev->raid_disk = mirror;
2107 			err = 0;
2108 			if (mddev->gendisk)
2109 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2110 						  rdev->data_offset << 9);
2111 			conf->fullsync = 1;
2112 			rcu_assign_pointer(p->replacement, rdev);
2113 			break;
2114 		}
2115 
2116 		if (mddev->gendisk)
2117 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2118 					  rdev->data_offset << 9);
2119 
2120 		p->head_position = 0;
2121 		p->recovery_disabled = mddev->recovery_disabled - 1;
2122 		rdev->raid_disk = mirror;
2123 		err = 0;
2124 		if (rdev->saved_raid_disk != mirror)
2125 			conf->fullsync = 1;
2126 		rcu_assign_pointer(p->rdev, rdev);
2127 		break;
2128 	}
2129 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2131 
2132 	print_conf(conf);
2133 	return err;
2134 }
2135 
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137 {
2138 	struct r10conf *conf = mddev->private;
2139 	int err = 0;
2140 	int number = rdev->raid_disk;
2141 	struct md_rdev **rdevp;
2142 	struct raid10_info *p = conf->mirrors + number;
2143 
2144 	print_conf(conf);
2145 	if (rdev == p->rdev)
2146 		rdevp = &p->rdev;
2147 	else if (rdev == p->replacement)
2148 		rdevp = &p->replacement;
2149 	else
2150 		return 0;
2151 
2152 	if (test_bit(In_sync, &rdev->flags) ||
2153 	    atomic_read(&rdev->nr_pending)) {
2154 		err = -EBUSY;
2155 		goto abort;
2156 	}
2157 	/* Only remove non-faulty devices if recovery
2158 	 * is not possible.
2159 	 */
2160 	if (!test_bit(Faulty, &rdev->flags) &&
2161 	    mddev->recovery_disabled != p->recovery_disabled &&
2162 	    (!p->replacement || p->replacement == rdev) &&
2163 	    number < conf->geo.raid_disks &&
2164 	    enough(conf, -1)) {
2165 		err = -EBUSY;
2166 		goto abort;
2167 	}
2168 	*rdevp = NULL;
2169 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2170 		synchronize_rcu();
2171 		if (atomic_read(&rdev->nr_pending)) {
2172 			/* lost the race, try later */
2173 			err = -EBUSY;
2174 			*rdevp = rdev;
2175 			goto abort;
2176 		}
2177 	}
2178 	if (p->replacement) {
2179 		/* We must have just cleared 'rdev' */
2180 		p->rdev = p->replacement;
2181 		clear_bit(Replacement, &p->replacement->flags);
2182 		smp_mb(); /* Make sure other CPUs may see both as identical
2183 			   * but will never see neither -- if they are careful.
2184 			   */
2185 		p->replacement = NULL;
2186 	}
2187 
2188 	clear_bit(WantReplacement, &rdev->flags);
2189 	err = md_integrity_register(mddev);
2190 
2191 abort:
2192 
2193 	print_conf(conf);
2194 	return err;
2195 }
2196 
2197 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2198 {
2199 	struct r10conf *conf = r10_bio->mddev->private;
2200 
2201 	if (!bio->bi_status)
2202 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2203 	else
2204 		/* The write handler will notice the lack of
2205 		 * R10BIO_Uptodate and record any errors etc
2206 		 */
2207 		atomic_add(r10_bio->sectors,
2208 			   &conf->mirrors[d].rdev->corrected_errors);
2209 
2210 	/* for reconstruct, we always reschedule after a read.
2211 	 * for resync, only after all reads
2212 	 */
2213 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2214 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215 	    atomic_dec_and_test(&r10_bio->remaining)) {
2216 		/* we have read all the blocks,
2217 		 * do the comparison in process context in raid10d
2218 		 */
2219 		reschedule_retry(r10_bio);
2220 	}
2221 }
2222 
2223 static void end_sync_read(struct bio *bio)
2224 {
2225 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2226 	struct r10conf *conf = r10_bio->mddev->private;
2227 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2228 
2229 	__end_sync_read(r10_bio, bio, d);
2230 }
2231 
2232 static void end_reshape_read(struct bio *bio)
2233 {
2234 	/* reshape read bio isn't allocated from r10buf_pool */
2235 	struct r10bio *r10_bio = bio->bi_private;
2236 
2237 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2238 }
2239 
2240 static void end_sync_request(struct r10bio *r10_bio)
2241 {
2242 	struct mddev *mddev = r10_bio->mddev;
2243 
2244 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2245 		if (r10_bio->master_bio == NULL) {
2246 			/* the primary of several recovery bios */
2247 			sector_t s = r10_bio->sectors;
2248 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2250 				reschedule_retry(r10_bio);
2251 			else
2252 				put_buf(r10_bio);
2253 			md_done_sync(mddev, s, 1);
2254 			break;
2255 		} else {
2256 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2257 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2259 				reschedule_retry(r10_bio);
2260 			else
2261 				put_buf(r10_bio);
2262 			r10_bio = r10_bio2;
2263 		}
2264 	}
2265 }
2266 
2267 static void end_sync_write(struct bio *bio)
2268 {
2269 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2270 	struct mddev *mddev = r10_bio->mddev;
2271 	struct r10conf *conf = mddev->private;
2272 	int d;
2273 	sector_t first_bad;
2274 	int bad_sectors;
2275 	int slot;
2276 	int repl;
2277 	struct md_rdev *rdev = NULL;
2278 
2279 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2280 	if (repl)
2281 		rdev = conf->mirrors[d].replacement;
2282 	else
2283 		rdev = conf->mirrors[d].rdev;
2284 
2285 	if (bio->bi_status) {
2286 		if (repl)
2287 			md_error(mddev, rdev);
2288 		else {
2289 			set_bit(WriteErrorSeen, &rdev->flags);
2290 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291 				set_bit(MD_RECOVERY_NEEDED,
2292 					&rdev->mddev->recovery);
2293 			set_bit(R10BIO_WriteError, &r10_bio->state);
2294 		}
2295 	} else if (is_badblock(rdev,
2296 			     r10_bio->devs[slot].addr,
2297 			     r10_bio->sectors,
2298 			     &first_bad, &bad_sectors))
2299 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2300 
2301 	rdev_dec_pending(rdev, mddev);
2302 
2303 	end_sync_request(r10_bio);
2304 }
2305 
2306 /*
2307  * Note: sync and recover and handled very differently for raid10
2308  * This code is for resync.
2309  * For resync, we read through virtual addresses and read all blocks.
2310  * If there is any error, we schedule a write.  The lowest numbered
2311  * drive is authoritative.
2312  * However requests come for physical address, so we need to map.
2313  * For every physical address there are raid_disks/copies virtual addresses,
2314  * which is always are least one, but is not necessarly an integer.
2315  * This means that a physical address can span multiple chunks, so we may
2316  * have to submit multiple io requests for a single sync request.
2317  */
2318 /*
2319  * We check if all blocks are in-sync and only write to blocks that
2320  * aren't in sync
2321  */
2322 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2323 {
2324 	struct r10conf *conf = mddev->private;
2325 	int i, first;
2326 	struct bio *tbio, *fbio;
2327 	int vcnt;
2328 	struct page **tpages, **fpages;
2329 
2330 	atomic_set(&r10_bio->remaining, 1);
2331 
2332 	/* find the first device with a block */
2333 	for (i=0; i<conf->copies; i++)
2334 		if (!r10_bio->devs[i].bio->bi_status)
2335 			break;
2336 
2337 	if (i == conf->copies)
2338 		goto done;
2339 
2340 	first = i;
2341 	fbio = r10_bio->devs[i].bio;
2342 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343 	fbio->bi_iter.bi_idx = 0;
2344 	fpages = get_resync_pages(fbio)->pages;
2345 
2346 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2347 	/* now find blocks with errors */
2348 	for (i=0 ; i < conf->copies ; i++) {
2349 		int  j, d;
2350 		struct md_rdev *rdev;
2351 		struct resync_pages *rp;
2352 
2353 		tbio = r10_bio->devs[i].bio;
2354 
2355 		if (tbio->bi_end_io != end_sync_read)
2356 			continue;
2357 		if (i == first)
2358 			continue;
2359 
2360 		tpages = get_resync_pages(tbio)->pages;
2361 		d = r10_bio->devs[i].devnum;
2362 		rdev = conf->mirrors[d].rdev;
2363 		if (!r10_bio->devs[i].bio->bi_status) {
2364 			/* We know that the bi_io_vec layout is the same for
2365 			 * both 'first' and 'i', so we just compare them.
2366 			 * All vec entries are PAGE_SIZE;
2367 			 */
2368 			int sectors = r10_bio->sectors;
2369 			for (j = 0; j < vcnt; j++) {
2370 				int len = PAGE_SIZE;
2371 				if (sectors < (len / 512))
2372 					len = sectors * 512;
2373 				if (memcmp(page_address(fpages[j]),
2374 					   page_address(tpages[j]),
2375 					   len))
2376 					break;
2377 				sectors -= len/512;
2378 			}
2379 			if (j == vcnt)
2380 				continue;
2381 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2382 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383 				/* Don't fix anything. */
2384 				continue;
2385 		} else if (test_bit(FailFast, &rdev->flags)) {
2386 			/* Just give up on this device */
2387 			md_error(rdev->mddev, rdev);
2388 			continue;
2389 		}
2390 		/* Ok, we need to write this bio, either to correct an
2391 		 * inconsistency or to correct an unreadable block.
2392 		 * First we need to fixup bv_offset, bv_len and
2393 		 * bi_vecs, as the read request might have corrupted these
2394 		 */
2395 		rp = get_resync_pages(tbio);
2396 		bio_reset(tbio);
2397 
2398 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2399 
2400 		rp->raid_bio = r10_bio;
2401 		tbio->bi_private = rp;
2402 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2403 		tbio->bi_end_io = end_sync_write;
2404 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2405 
2406 		bio_copy_data(tbio, fbio);
2407 
2408 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409 		atomic_inc(&r10_bio->remaining);
2410 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2411 
2412 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413 			tbio->bi_opf |= MD_FAILFAST;
2414 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2415 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2416 		submit_bio_noacct(tbio);
2417 	}
2418 
2419 	/* Now write out to any replacement devices
2420 	 * that are active
2421 	 */
2422 	for (i = 0; i < conf->copies; i++) {
2423 		int d;
2424 
2425 		tbio = r10_bio->devs[i].repl_bio;
2426 		if (!tbio || !tbio->bi_end_io)
2427 			continue;
2428 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429 		    && r10_bio->devs[i].bio != fbio)
2430 			bio_copy_data(tbio, fbio);
2431 		d = r10_bio->devs[i].devnum;
2432 		atomic_inc(&r10_bio->remaining);
2433 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2434 			     bio_sectors(tbio));
2435 		submit_bio_noacct(tbio);
2436 	}
2437 
2438 done:
2439 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2440 		md_done_sync(mddev, r10_bio->sectors, 1);
2441 		put_buf(r10_bio);
2442 	}
2443 }
2444 
2445 /*
2446  * Now for the recovery code.
2447  * Recovery happens across physical sectors.
2448  * We recover all non-is_sync drives by finding the virtual address of
2449  * each, and then choose a working drive that also has that virt address.
2450  * There is a separate r10_bio for each non-in_sync drive.
2451  * Only the first two slots are in use. The first for reading,
2452  * The second for writing.
2453  *
2454  */
2455 static void fix_recovery_read_error(struct r10bio *r10_bio)
2456 {
2457 	/* We got a read error during recovery.
2458 	 * We repeat the read in smaller page-sized sections.
2459 	 * If a read succeeds, write it to the new device or record
2460 	 * a bad block if we cannot.
2461 	 * If a read fails, record a bad block on both old and
2462 	 * new devices.
2463 	 */
2464 	struct mddev *mddev = r10_bio->mddev;
2465 	struct r10conf *conf = mddev->private;
2466 	struct bio *bio = r10_bio->devs[0].bio;
2467 	sector_t sect = 0;
2468 	int sectors = r10_bio->sectors;
2469 	int idx = 0;
2470 	int dr = r10_bio->devs[0].devnum;
2471 	int dw = r10_bio->devs[1].devnum;
2472 	struct page **pages = get_resync_pages(bio)->pages;
2473 
2474 	while (sectors) {
2475 		int s = sectors;
2476 		struct md_rdev *rdev;
2477 		sector_t addr;
2478 		int ok;
2479 
2480 		if (s > (PAGE_SIZE>>9))
2481 			s = PAGE_SIZE >> 9;
2482 
2483 		rdev = conf->mirrors[dr].rdev;
2484 		addr = r10_bio->devs[0].addr + sect,
2485 		ok = sync_page_io(rdev,
2486 				  addr,
2487 				  s << 9,
2488 				  pages[idx],
2489 				  REQ_OP_READ, 0, false);
2490 		if (ok) {
2491 			rdev = conf->mirrors[dw].rdev;
2492 			addr = r10_bio->devs[1].addr + sect;
2493 			ok = sync_page_io(rdev,
2494 					  addr,
2495 					  s << 9,
2496 					  pages[idx],
2497 					  REQ_OP_WRITE, 0, false);
2498 			if (!ok) {
2499 				set_bit(WriteErrorSeen, &rdev->flags);
2500 				if (!test_and_set_bit(WantReplacement,
2501 						      &rdev->flags))
2502 					set_bit(MD_RECOVERY_NEEDED,
2503 						&rdev->mddev->recovery);
2504 			}
2505 		}
2506 		if (!ok) {
2507 			/* We don't worry if we cannot set a bad block -
2508 			 * it really is bad so there is no loss in not
2509 			 * recording it yet
2510 			 */
2511 			rdev_set_badblocks(rdev, addr, s, 0);
2512 
2513 			if (rdev != conf->mirrors[dw].rdev) {
2514 				/* need bad block on destination too */
2515 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2516 				addr = r10_bio->devs[1].addr + sect;
2517 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2518 				if (!ok) {
2519 					/* just abort the recovery */
2520 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2521 						  mdname(mddev));
2522 
2523 					conf->mirrors[dw].recovery_disabled
2524 						= mddev->recovery_disabled;
2525 					set_bit(MD_RECOVERY_INTR,
2526 						&mddev->recovery);
2527 					break;
2528 				}
2529 			}
2530 		}
2531 
2532 		sectors -= s;
2533 		sect += s;
2534 		idx++;
2535 	}
2536 }
2537 
2538 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2539 {
2540 	struct r10conf *conf = mddev->private;
2541 	int d;
2542 	struct bio *wbio, *wbio2;
2543 
2544 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545 		fix_recovery_read_error(r10_bio);
2546 		end_sync_request(r10_bio);
2547 		return;
2548 	}
2549 
2550 	/*
2551 	 * share the pages with the first bio
2552 	 * and submit the write request
2553 	 */
2554 	d = r10_bio->devs[1].devnum;
2555 	wbio = r10_bio->devs[1].bio;
2556 	wbio2 = r10_bio->devs[1].repl_bio;
2557 	/* Need to test wbio2->bi_end_io before we call
2558 	 * submit_bio_noacct as if the former is NULL,
2559 	 * the latter is free to free wbio2.
2560 	 */
2561 	if (wbio2 && !wbio2->bi_end_io)
2562 		wbio2 = NULL;
2563 	if (wbio->bi_end_io) {
2564 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2565 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2566 		submit_bio_noacct(wbio);
2567 	}
2568 	if (wbio2) {
2569 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2571 			     bio_sectors(wbio2));
2572 		submit_bio_noacct(wbio2);
2573 	}
2574 }
2575 
2576 /*
2577  * Used by fix_read_error() to decay the per rdev read_errors.
2578  * We halve the read error count for every hour that has elapsed
2579  * since the last recorded read error.
2580  *
2581  */
2582 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2583 {
2584 	long cur_time_mon;
2585 	unsigned long hours_since_last;
2586 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2587 
2588 	cur_time_mon = ktime_get_seconds();
2589 
2590 	if (rdev->last_read_error == 0) {
2591 		/* first time we've seen a read error */
2592 		rdev->last_read_error = cur_time_mon;
2593 		return;
2594 	}
2595 
2596 	hours_since_last = (long)(cur_time_mon -
2597 			    rdev->last_read_error) / 3600;
2598 
2599 	rdev->last_read_error = cur_time_mon;
2600 
2601 	/*
2602 	 * if hours_since_last is > the number of bits in read_errors
2603 	 * just set read errors to 0. We do this to avoid
2604 	 * overflowing the shift of read_errors by hours_since_last.
2605 	 */
2606 	if (hours_since_last >= 8 * sizeof(read_errors))
2607 		atomic_set(&rdev->read_errors, 0);
2608 	else
2609 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2610 }
2611 
2612 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2613 			    int sectors, struct page *page, int rw)
2614 {
2615 	sector_t first_bad;
2616 	int bad_sectors;
2617 
2618 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2620 		return -1;
2621 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2622 		/* success */
2623 		return 1;
2624 	if (rw == WRITE) {
2625 		set_bit(WriteErrorSeen, &rdev->flags);
2626 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627 			set_bit(MD_RECOVERY_NEEDED,
2628 				&rdev->mddev->recovery);
2629 	}
2630 	/* need to record an error - either for the block or the device */
2631 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632 		md_error(rdev->mddev, rdev);
2633 	return 0;
2634 }
2635 
2636 /*
2637  * This is a kernel thread which:
2638  *
2639  *	1.	Retries failed read operations on working mirrors.
2640  *	2.	Updates the raid superblock when problems encounter.
2641  *	3.	Performs writes following reads for array synchronising.
2642  */
2643 
2644 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2645 {
2646 	int sect = 0; /* Offset from r10_bio->sector */
2647 	int sectors = r10_bio->sectors;
2648 	struct md_rdev *rdev;
2649 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2650 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2651 
2652 	/* still own a reference to this rdev, so it cannot
2653 	 * have been cleared recently.
2654 	 */
2655 	rdev = conf->mirrors[d].rdev;
2656 
2657 	if (test_bit(Faulty, &rdev->flags))
2658 		/* drive has already been failed, just ignore any
2659 		   more fix_read_error() attempts */
2660 		return;
2661 
2662 	check_decay_read_errors(mddev, rdev);
2663 	atomic_inc(&rdev->read_errors);
2664 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665 		char b[BDEVNAME_SIZE];
2666 		bdevname(rdev->bdev, b);
2667 
2668 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2669 			  mdname(mddev), b,
2670 			  atomic_read(&rdev->read_errors), max_read_errors);
2671 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2672 			  mdname(mddev), b);
2673 		md_error(mddev, rdev);
2674 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2675 		return;
2676 	}
2677 
2678 	while(sectors) {
2679 		int s = sectors;
2680 		int sl = r10_bio->read_slot;
2681 		int success = 0;
2682 		int start;
2683 
2684 		if (s > (PAGE_SIZE>>9))
2685 			s = PAGE_SIZE >> 9;
2686 
2687 		rcu_read_lock();
2688 		do {
2689 			sector_t first_bad;
2690 			int bad_sectors;
2691 
2692 			d = r10_bio->devs[sl].devnum;
2693 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2694 			if (rdev &&
2695 			    test_bit(In_sync, &rdev->flags) &&
2696 			    !test_bit(Faulty, &rdev->flags) &&
2697 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698 					&first_bad, &bad_sectors) == 0) {
2699 				atomic_inc(&rdev->nr_pending);
2700 				rcu_read_unlock();
2701 				success = sync_page_io(rdev,
2702 						       r10_bio->devs[sl].addr +
2703 						       sect,
2704 						       s<<9,
2705 						       conf->tmppage,
2706 						       REQ_OP_READ, 0, false);
2707 				rdev_dec_pending(rdev, mddev);
2708 				rcu_read_lock();
2709 				if (success)
2710 					break;
2711 			}
2712 			sl++;
2713 			if (sl == conf->copies)
2714 				sl = 0;
2715 		} while (!success && sl != r10_bio->read_slot);
2716 		rcu_read_unlock();
2717 
2718 		if (!success) {
2719 			/* Cannot read from anywhere, just mark the block
2720 			 * as bad on the first device to discourage future
2721 			 * reads.
2722 			 */
2723 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2724 			rdev = conf->mirrors[dn].rdev;
2725 
2726 			if (!rdev_set_badblocks(
2727 				    rdev,
2728 				    r10_bio->devs[r10_bio->read_slot].addr
2729 				    + sect,
2730 				    s, 0)) {
2731 				md_error(mddev, rdev);
2732 				r10_bio->devs[r10_bio->read_slot].bio
2733 					= IO_BLOCKED;
2734 			}
2735 			break;
2736 		}
2737 
2738 		start = sl;
2739 		/* write it back and re-read */
2740 		rcu_read_lock();
2741 		while (sl != r10_bio->read_slot) {
2742 			char b[BDEVNAME_SIZE];
2743 
2744 			if (sl==0)
2745 				sl = conf->copies;
2746 			sl--;
2747 			d = r10_bio->devs[sl].devnum;
2748 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2749 			if (!rdev ||
2750 			    test_bit(Faulty, &rdev->flags) ||
2751 			    !test_bit(In_sync, &rdev->flags))
2752 				continue;
2753 
2754 			atomic_inc(&rdev->nr_pending);
2755 			rcu_read_unlock();
2756 			if (r10_sync_page_io(rdev,
2757 					     r10_bio->devs[sl].addr +
2758 					     sect,
2759 					     s, conf->tmppage, WRITE)
2760 			    == 0) {
2761 				/* Well, this device is dead */
2762 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2763 					  mdname(mddev), s,
2764 					  (unsigned long long)(
2765 						  sect +
2766 						  choose_data_offset(r10_bio,
2767 								     rdev)),
2768 					  bdevname(rdev->bdev, b));
2769 				pr_notice("md/raid10:%s: %s: failing drive\n",
2770 					  mdname(mddev),
2771 					  bdevname(rdev->bdev, b));
2772 			}
2773 			rdev_dec_pending(rdev, mddev);
2774 			rcu_read_lock();
2775 		}
2776 		sl = start;
2777 		while (sl != r10_bio->read_slot) {
2778 			char b[BDEVNAME_SIZE];
2779 
2780 			if (sl==0)
2781 				sl = conf->copies;
2782 			sl--;
2783 			d = r10_bio->devs[sl].devnum;
2784 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2785 			if (!rdev ||
2786 			    test_bit(Faulty, &rdev->flags) ||
2787 			    !test_bit(In_sync, &rdev->flags))
2788 				continue;
2789 
2790 			atomic_inc(&rdev->nr_pending);
2791 			rcu_read_unlock();
2792 			switch (r10_sync_page_io(rdev,
2793 					     r10_bio->devs[sl].addr +
2794 					     sect,
2795 					     s, conf->tmppage,
2796 						 READ)) {
2797 			case 0:
2798 				/* Well, this device is dead */
2799 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2800 				       mdname(mddev), s,
2801 				       (unsigned long long)(
2802 					       sect +
2803 					       choose_data_offset(r10_bio, rdev)),
2804 				       bdevname(rdev->bdev, b));
2805 				pr_notice("md/raid10:%s: %s: failing drive\n",
2806 				       mdname(mddev),
2807 				       bdevname(rdev->bdev, b));
2808 				break;
2809 			case 1:
2810 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2811 				       mdname(mddev), s,
2812 				       (unsigned long long)(
2813 					       sect +
2814 					       choose_data_offset(r10_bio, rdev)),
2815 				       bdevname(rdev->bdev, b));
2816 				atomic_add(s, &rdev->corrected_errors);
2817 			}
2818 
2819 			rdev_dec_pending(rdev, mddev);
2820 			rcu_read_lock();
2821 		}
2822 		rcu_read_unlock();
2823 
2824 		sectors -= s;
2825 		sect += s;
2826 	}
2827 }
2828 
2829 static int narrow_write_error(struct r10bio *r10_bio, int i)
2830 {
2831 	struct bio *bio = r10_bio->master_bio;
2832 	struct mddev *mddev = r10_bio->mddev;
2833 	struct r10conf *conf = mddev->private;
2834 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2835 	/* bio has the data to be written to slot 'i' where
2836 	 * we just recently had a write error.
2837 	 * We repeatedly clone the bio and trim down to one block,
2838 	 * then try the write.  Where the write fails we record
2839 	 * a bad block.
2840 	 * It is conceivable that the bio doesn't exactly align with
2841 	 * blocks.  We must handle this.
2842 	 *
2843 	 * We currently own a reference to the rdev.
2844 	 */
2845 
2846 	int block_sectors;
2847 	sector_t sector;
2848 	int sectors;
2849 	int sect_to_write = r10_bio->sectors;
2850 	int ok = 1;
2851 
2852 	if (rdev->badblocks.shift < 0)
2853 		return 0;
2854 
2855 	block_sectors = roundup(1 << rdev->badblocks.shift,
2856 				bdev_logical_block_size(rdev->bdev) >> 9);
2857 	sector = r10_bio->sector;
2858 	sectors = ((r10_bio->sector + block_sectors)
2859 		   & ~(sector_t)(block_sectors - 1))
2860 		- sector;
2861 
2862 	while (sect_to_write) {
2863 		struct bio *wbio;
2864 		sector_t wsector;
2865 		if (sectors > sect_to_write)
2866 			sectors = sect_to_write;
2867 		/* Write at 'sector' for 'sectors' */
2868 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2869 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2870 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871 		wbio->bi_iter.bi_sector = wsector +
2872 				   choose_data_offset(r10_bio, rdev);
2873 		bio_set_dev(wbio, rdev->bdev);
2874 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2875 
2876 		if (submit_bio_wait(wbio) < 0)
2877 			/* Failure! */
2878 			ok = rdev_set_badblocks(rdev, wsector,
2879 						sectors, 0)
2880 				&& ok;
2881 
2882 		bio_put(wbio);
2883 		sect_to_write -= sectors;
2884 		sector += sectors;
2885 		sectors = block_sectors;
2886 	}
2887 	return ok;
2888 }
2889 
2890 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2891 {
2892 	int slot = r10_bio->read_slot;
2893 	struct bio *bio;
2894 	struct r10conf *conf = mddev->private;
2895 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2896 
2897 	/* we got a read error. Maybe the drive is bad.  Maybe just
2898 	 * the block and we can fix it.
2899 	 * We freeze all other IO, and try reading the block from
2900 	 * other devices.  When we find one, we re-write
2901 	 * and check it that fixes the read error.
2902 	 * This is all done synchronously while the array is
2903 	 * frozen.
2904 	 */
2905 	bio = r10_bio->devs[slot].bio;
2906 	bio_put(bio);
2907 	r10_bio->devs[slot].bio = NULL;
2908 
2909 	if (mddev->ro)
2910 		r10_bio->devs[slot].bio = IO_BLOCKED;
2911 	else if (!test_bit(FailFast, &rdev->flags)) {
2912 		freeze_array(conf, 1);
2913 		fix_read_error(conf, mddev, r10_bio);
2914 		unfreeze_array(conf);
2915 	} else
2916 		md_error(mddev, rdev);
2917 
2918 	rdev_dec_pending(rdev, mddev);
2919 	allow_barrier(conf);
2920 	r10_bio->state = 0;
2921 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2922 }
2923 
2924 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2925 {
2926 	/* Some sort of write request has finished and it
2927 	 * succeeded in writing where we thought there was a
2928 	 * bad block.  So forget the bad block.
2929 	 * Or possibly if failed and we need to record
2930 	 * a bad block.
2931 	 */
2932 	int m;
2933 	struct md_rdev *rdev;
2934 
2935 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2937 		for (m = 0; m < conf->copies; m++) {
2938 			int dev = r10_bio->devs[m].devnum;
2939 			rdev = conf->mirrors[dev].rdev;
2940 			if (r10_bio->devs[m].bio == NULL ||
2941 				r10_bio->devs[m].bio->bi_end_io == NULL)
2942 				continue;
2943 			if (!r10_bio->devs[m].bio->bi_status) {
2944 				rdev_clear_badblocks(
2945 					rdev,
2946 					r10_bio->devs[m].addr,
2947 					r10_bio->sectors, 0);
2948 			} else {
2949 				if (!rdev_set_badblocks(
2950 					    rdev,
2951 					    r10_bio->devs[m].addr,
2952 					    r10_bio->sectors, 0))
2953 					md_error(conf->mddev, rdev);
2954 			}
2955 			rdev = conf->mirrors[dev].replacement;
2956 			if (r10_bio->devs[m].repl_bio == NULL ||
2957 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2958 				continue;
2959 
2960 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2961 				rdev_clear_badblocks(
2962 					rdev,
2963 					r10_bio->devs[m].addr,
2964 					r10_bio->sectors, 0);
2965 			} else {
2966 				if (!rdev_set_badblocks(
2967 					    rdev,
2968 					    r10_bio->devs[m].addr,
2969 					    r10_bio->sectors, 0))
2970 					md_error(conf->mddev, rdev);
2971 			}
2972 		}
2973 		put_buf(r10_bio);
2974 	} else {
2975 		bool fail = false;
2976 		for (m = 0; m < conf->copies; m++) {
2977 			int dev = r10_bio->devs[m].devnum;
2978 			struct bio *bio = r10_bio->devs[m].bio;
2979 			rdev = conf->mirrors[dev].rdev;
2980 			if (bio == IO_MADE_GOOD) {
2981 				rdev_clear_badblocks(
2982 					rdev,
2983 					r10_bio->devs[m].addr,
2984 					r10_bio->sectors, 0);
2985 				rdev_dec_pending(rdev, conf->mddev);
2986 			} else if (bio != NULL && bio->bi_status) {
2987 				fail = true;
2988 				if (!narrow_write_error(r10_bio, m)) {
2989 					md_error(conf->mddev, rdev);
2990 					set_bit(R10BIO_Degraded,
2991 						&r10_bio->state);
2992 				}
2993 				rdev_dec_pending(rdev, conf->mddev);
2994 			}
2995 			bio = r10_bio->devs[m].repl_bio;
2996 			rdev = conf->mirrors[dev].replacement;
2997 			if (rdev && bio == IO_MADE_GOOD) {
2998 				rdev_clear_badblocks(
2999 					rdev,
3000 					r10_bio->devs[m].addr,
3001 					r10_bio->sectors, 0);
3002 				rdev_dec_pending(rdev, conf->mddev);
3003 			}
3004 		}
3005 		if (fail) {
3006 			spin_lock_irq(&conf->device_lock);
3007 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3008 			conf->nr_queued++;
3009 			spin_unlock_irq(&conf->device_lock);
3010 			/*
3011 			 * In case freeze_array() is waiting for condition
3012 			 * nr_pending == nr_queued + extra to be true.
3013 			 */
3014 			wake_up(&conf->wait_barrier);
3015 			md_wakeup_thread(conf->mddev->thread);
3016 		} else {
3017 			if (test_bit(R10BIO_WriteError,
3018 				     &r10_bio->state))
3019 				close_write(r10_bio);
3020 			raid_end_bio_io(r10_bio);
3021 		}
3022 	}
3023 }
3024 
3025 static void raid10d(struct md_thread *thread)
3026 {
3027 	struct mddev *mddev = thread->mddev;
3028 	struct r10bio *r10_bio;
3029 	unsigned long flags;
3030 	struct r10conf *conf = mddev->private;
3031 	struct list_head *head = &conf->retry_list;
3032 	struct blk_plug plug;
3033 
3034 	md_check_recovery(mddev);
3035 
3036 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3037 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3038 		LIST_HEAD(tmp);
3039 		spin_lock_irqsave(&conf->device_lock, flags);
3040 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041 			while (!list_empty(&conf->bio_end_io_list)) {
3042 				list_move(conf->bio_end_io_list.prev, &tmp);
3043 				conf->nr_queued--;
3044 			}
3045 		}
3046 		spin_unlock_irqrestore(&conf->device_lock, flags);
3047 		while (!list_empty(&tmp)) {
3048 			r10_bio = list_first_entry(&tmp, struct r10bio,
3049 						   retry_list);
3050 			list_del(&r10_bio->retry_list);
3051 			if (mddev->degraded)
3052 				set_bit(R10BIO_Degraded, &r10_bio->state);
3053 
3054 			if (test_bit(R10BIO_WriteError,
3055 				     &r10_bio->state))
3056 				close_write(r10_bio);
3057 			raid_end_bio_io(r10_bio);
3058 		}
3059 	}
3060 
3061 	blk_start_plug(&plug);
3062 	for (;;) {
3063 
3064 		flush_pending_writes(conf);
3065 
3066 		spin_lock_irqsave(&conf->device_lock, flags);
3067 		if (list_empty(head)) {
3068 			spin_unlock_irqrestore(&conf->device_lock, flags);
3069 			break;
3070 		}
3071 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3072 		list_del(head->prev);
3073 		conf->nr_queued--;
3074 		spin_unlock_irqrestore(&conf->device_lock, flags);
3075 
3076 		mddev = r10_bio->mddev;
3077 		conf = mddev->private;
3078 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3080 			handle_write_completed(conf, r10_bio);
3081 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082 			reshape_request_write(mddev, r10_bio);
3083 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3084 			sync_request_write(mddev, r10_bio);
3085 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3086 			recovery_request_write(mddev, r10_bio);
3087 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3088 			handle_read_error(mddev, r10_bio);
3089 		else
3090 			WARN_ON_ONCE(1);
3091 
3092 		cond_resched();
3093 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3094 			md_check_recovery(mddev);
3095 	}
3096 	blk_finish_plug(&plug);
3097 }
3098 
3099 static int init_resync(struct r10conf *conf)
3100 {
3101 	int ret, buffs, i;
3102 
3103 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3104 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3105 	conf->have_replacement = 0;
3106 	for (i = 0; i < conf->geo.raid_disks; i++)
3107 		if (conf->mirrors[i].replacement)
3108 			conf->have_replacement = 1;
3109 	ret = mempool_init(&conf->r10buf_pool, buffs,
3110 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3111 	if (ret)
3112 		return ret;
3113 	conf->next_resync = 0;
3114 	return 0;
3115 }
3116 
3117 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3118 {
3119 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3120 	struct rsync_pages *rp;
3121 	struct bio *bio;
3122 	int nalloc;
3123 	int i;
3124 
3125 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127 		nalloc = conf->copies; /* resync */
3128 	else
3129 		nalloc = 2; /* recovery */
3130 
3131 	for (i = 0; i < nalloc; i++) {
3132 		bio = r10bio->devs[i].bio;
3133 		rp = bio->bi_private;
3134 		bio_reset(bio);
3135 		bio->bi_private = rp;
3136 		bio = r10bio->devs[i].repl_bio;
3137 		if (bio) {
3138 			rp = bio->bi_private;
3139 			bio_reset(bio);
3140 			bio->bi_private = rp;
3141 		}
3142 	}
3143 	return r10bio;
3144 }
3145 
3146 /*
3147  * Set cluster_sync_high since we need other nodes to add the
3148  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3149  */
3150 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3151 {
3152 	sector_t window_size;
3153 	int extra_chunk, chunks;
3154 
3155 	/*
3156 	 * First, here we define "stripe" as a unit which across
3157 	 * all member devices one time, so we get chunks by use
3158 	 * raid_disks / near_copies. Otherwise, if near_copies is
3159 	 * close to raid_disks, then resync window could increases
3160 	 * linearly with the increase of raid_disks, which means
3161 	 * we will suspend a really large IO window while it is not
3162 	 * necessary. If raid_disks is not divisible by near_copies,
3163 	 * an extra chunk is needed to ensure the whole "stripe" is
3164 	 * covered.
3165 	 */
3166 
3167 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3169 		extra_chunk = 0;
3170 	else
3171 		extra_chunk = 1;
3172 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3173 
3174 	/*
3175 	 * At least use a 32M window to align with raid1's resync window
3176 	 */
3177 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3179 
3180 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3181 }
3182 
3183 /*
3184  * perform a "sync" on one "block"
3185  *
3186  * We need to make sure that no normal I/O request - particularly write
3187  * requests - conflict with active sync requests.
3188  *
3189  * This is achieved by tracking pending requests and a 'barrier' concept
3190  * that can be installed to exclude normal IO requests.
3191  *
3192  * Resync and recovery are handled very differently.
3193  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3194  *
3195  * For resync, we iterate over virtual addresses, read all copies,
3196  * and update if there are differences.  If only one copy is live,
3197  * skip it.
3198  * For recovery, we iterate over physical addresses, read a good
3199  * value for each non-in_sync drive, and over-write.
3200  *
3201  * So, for recovery we may have several outstanding complex requests for a
3202  * given address, one for each out-of-sync device.  We model this by allocating
3203  * a number of r10_bio structures, one for each out-of-sync device.
3204  * As we setup these structures, we collect all bio's together into a list
3205  * which we then process collectively to add pages, and then process again
3206  * to pass to submit_bio_noacct.
3207  *
3208  * The r10_bio structures are linked using a borrowed master_bio pointer.
3209  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3210  * has its remaining count decremented to 0, the whole complex operation
3211  * is complete.
3212  *
3213  */
3214 
3215 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3216 			     int *skipped)
3217 {
3218 	struct r10conf *conf = mddev->private;
3219 	struct r10bio *r10_bio;
3220 	struct bio *biolist = NULL, *bio;
3221 	sector_t max_sector, nr_sectors;
3222 	int i;
3223 	int max_sync;
3224 	sector_t sync_blocks;
3225 	sector_t sectors_skipped = 0;
3226 	int chunks_skipped = 0;
3227 	sector_t chunk_mask = conf->geo.chunk_mask;
3228 	int page_idx = 0;
3229 
3230 	if (!mempool_initialized(&conf->r10buf_pool))
3231 		if (init_resync(conf))
3232 			return 0;
3233 
3234 	/*
3235 	 * Allow skipping a full rebuild for incremental assembly
3236 	 * of a clean array, like RAID1 does.
3237 	 */
3238 	if (mddev->bitmap == NULL &&
3239 	    mddev->recovery_cp == MaxSector &&
3240 	    mddev->reshape_position == MaxSector &&
3241 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3242 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3243 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3244 	    conf->fullsync == 0) {
3245 		*skipped = 1;
3246 		return mddev->dev_sectors - sector_nr;
3247 	}
3248 
3249  skipped:
3250 	max_sector = mddev->dev_sectors;
3251 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253 		max_sector = mddev->resync_max_sectors;
3254 	if (sector_nr >= max_sector) {
3255 		conf->cluster_sync_low = 0;
3256 		conf->cluster_sync_high = 0;
3257 
3258 		/* If we aborted, we need to abort the
3259 		 * sync on the 'current' bitmap chucks (there can
3260 		 * be several when recovering multiple devices).
3261 		 * as we may have started syncing it but not finished.
3262 		 * We can find the current address in
3263 		 * mddev->curr_resync, but for recovery,
3264 		 * we need to convert that to several
3265 		 * virtual addresses.
3266 		 */
3267 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3268 			end_reshape(conf);
3269 			close_sync(conf);
3270 			return 0;
3271 		}
3272 
3273 		if (mddev->curr_resync < max_sector) { /* aborted */
3274 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3275 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3276 						   &sync_blocks, 1);
3277 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3278 				sector_t sect =
3279 					raid10_find_virt(conf, mddev->curr_resync, i);
3280 				md_bitmap_end_sync(mddev->bitmap, sect,
3281 						   &sync_blocks, 1);
3282 			}
3283 		} else {
3284 			/* completed sync */
3285 			if ((!mddev->bitmap || conf->fullsync)
3286 			    && conf->have_replacement
3287 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288 				/* Completed a full sync so the replacements
3289 				 * are now fully recovered.
3290 				 */
3291 				rcu_read_lock();
3292 				for (i = 0; i < conf->geo.raid_disks; i++) {
3293 					struct md_rdev *rdev =
3294 						rcu_dereference(conf->mirrors[i].replacement);
3295 					if (rdev)
3296 						rdev->recovery_offset = MaxSector;
3297 				}
3298 				rcu_read_unlock();
3299 			}
3300 			conf->fullsync = 0;
3301 		}
3302 		md_bitmap_close_sync(mddev->bitmap);
3303 		close_sync(conf);
3304 		*skipped = 1;
3305 		return sectors_skipped;
3306 	}
3307 
3308 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309 		return reshape_request(mddev, sector_nr, skipped);
3310 
3311 	if (chunks_skipped >= conf->geo.raid_disks) {
3312 		/* if there has been nothing to do on any drive,
3313 		 * then there is nothing to do at all..
3314 		 */
3315 		*skipped = 1;
3316 		return (max_sector - sector_nr) + sectors_skipped;
3317 	}
3318 
3319 	if (max_sector > mddev->resync_max)
3320 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3321 
3322 	/* make sure whole request will fit in a chunk - if chunks
3323 	 * are meaningful
3324 	 */
3325 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3326 	    max_sector > (sector_nr | chunk_mask))
3327 		max_sector = (sector_nr | chunk_mask) + 1;
3328 
3329 	/*
3330 	 * If there is non-resync activity waiting for a turn, then let it
3331 	 * though before starting on this new sync request.
3332 	 */
3333 	if (conf->nr_waiting)
3334 		schedule_timeout_uninterruptible(1);
3335 
3336 	/* Again, very different code for resync and recovery.
3337 	 * Both must result in an r10bio with a list of bios that
3338 	 * have bi_end_io, bi_sector, bi_bdev set,
3339 	 * and bi_private set to the r10bio.
3340 	 * For recovery, we may actually create several r10bios
3341 	 * with 2 bios in each, that correspond to the bios in the main one.
3342 	 * In this case, the subordinate r10bios link back through a
3343 	 * borrowed master_bio pointer, and the counter in the master
3344 	 * includes a ref from each subordinate.
3345 	 */
3346 	/* First, we decide what to do and set ->bi_end_io
3347 	 * To end_sync_read if we want to read, and
3348 	 * end_sync_write if we will want to write.
3349 	 */
3350 
3351 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3352 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353 		/* recovery... the complicated one */
3354 		int j;
3355 		r10_bio = NULL;
3356 
3357 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3358 			int still_degraded;
3359 			struct r10bio *rb2;
3360 			sector_t sect;
3361 			int must_sync;
3362 			int any_working;
3363 			int need_recover = 0;
3364 			int need_replace = 0;
3365 			struct raid10_info *mirror = &conf->mirrors[i];
3366 			struct md_rdev *mrdev, *mreplace;
3367 
3368 			rcu_read_lock();
3369 			mrdev = rcu_dereference(mirror->rdev);
3370 			mreplace = rcu_dereference(mirror->replacement);
3371 
3372 			if (mrdev != NULL &&
3373 			    !test_bit(Faulty, &mrdev->flags) &&
3374 			    !test_bit(In_sync, &mrdev->flags))
3375 				need_recover = 1;
3376 			if (mreplace != NULL &&
3377 			    !test_bit(Faulty, &mreplace->flags))
3378 				need_replace = 1;
3379 
3380 			if (!need_recover && !need_replace) {
3381 				rcu_read_unlock();
3382 				continue;
3383 			}
3384 
3385 			still_degraded = 0;
3386 			/* want to reconstruct this device */
3387 			rb2 = r10_bio;
3388 			sect = raid10_find_virt(conf, sector_nr, i);
3389 			if (sect >= mddev->resync_max_sectors) {
3390 				/* last stripe is not complete - don't
3391 				 * try to recover this sector.
3392 				 */
3393 				rcu_read_unlock();
3394 				continue;
3395 			}
3396 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3397 				mreplace = NULL;
3398 			/* Unless we are doing a full sync, or a replacement
3399 			 * we only need to recover the block if it is set in
3400 			 * the bitmap
3401 			 */
3402 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3403 							 &sync_blocks, 1);
3404 			if (sync_blocks < max_sync)
3405 				max_sync = sync_blocks;
3406 			if (!must_sync &&
3407 			    mreplace == NULL &&
3408 			    !conf->fullsync) {
3409 				/* yep, skip the sync_blocks here, but don't assume
3410 				 * that there will never be anything to do here
3411 				 */
3412 				chunks_skipped = -1;
3413 				rcu_read_unlock();
3414 				continue;
3415 			}
3416 			atomic_inc(&mrdev->nr_pending);
3417 			if (mreplace)
3418 				atomic_inc(&mreplace->nr_pending);
3419 			rcu_read_unlock();
3420 
3421 			r10_bio = raid10_alloc_init_r10buf(conf);
3422 			r10_bio->state = 0;
3423 			raise_barrier(conf, rb2 != NULL);
3424 			atomic_set(&r10_bio->remaining, 0);
3425 
3426 			r10_bio->master_bio = (struct bio*)rb2;
3427 			if (rb2)
3428 				atomic_inc(&rb2->remaining);
3429 			r10_bio->mddev = mddev;
3430 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3431 			r10_bio->sector = sect;
3432 
3433 			raid10_find_phys(conf, r10_bio);
3434 
3435 			/* Need to check if the array will still be
3436 			 * degraded
3437 			 */
3438 			rcu_read_lock();
3439 			for (j = 0; j < conf->geo.raid_disks; j++) {
3440 				struct md_rdev *rdev = rcu_dereference(
3441 					conf->mirrors[j].rdev);
3442 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3443 					still_degraded = 1;
3444 					break;
3445 				}
3446 			}
3447 
3448 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449 							 &sync_blocks, still_degraded);
3450 
3451 			any_working = 0;
3452 			for (j=0; j<conf->copies;j++) {
3453 				int k;
3454 				int d = r10_bio->devs[j].devnum;
3455 				sector_t from_addr, to_addr;
3456 				struct md_rdev *rdev =
3457 					rcu_dereference(conf->mirrors[d].rdev);
3458 				sector_t sector, first_bad;
3459 				int bad_sectors;
3460 				if (!rdev ||
3461 				    !test_bit(In_sync, &rdev->flags))
3462 					continue;
3463 				/* This is where we read from */
3464 				any_working = 1;
3465 				sector = r10_bio->devs[j].addr;
3466 
3467 				if (is_badblock(rdev, sector, max_sync,
3468 						&first_bad, &bad_sectors)) {
3469 					if (first_bad > sector)
3470 						max_sync = first_bad - sector;
3471 					else {
3472 						bad_sectors -= (sector
3473 								- first_bad);
3474 						if (max_sync > bad_sectors)
3475 							max_sync = bad_sectors;
3476 						continue;
3477 					}
3478 				}
3479 				bio = r10_bio->devs[0].bio;
3480 				bio->bi_next = biolist;
3481 				biolist = bio;
3482 				bio->bi_end_io = end_sync_read;
3483 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3484 				if (test_bit(FailFast, &rdev->flags))
3485 					bio->bi_opf |= MD_FAILFAST;
3486 				from_addr = r10_bio->devs[j].addr;
3487 				bio->bi_iter.bi_sector = from_addr +
3488 					rdev->data_offset;
3489 				bio_set_dev(bio, rdev->bdev);
3490 				atomic_inc(&rdev->nr_pending);
3491 				/* and we write to 'i' (if not in_sync) */
3492 
3493 				for (k=0; k<conf->copies; k++)
3494 					if (r10_bio->devs[k].devnum == i)
3495 						break;
3496 				BUG_ON(k == conf->copies);
3497 				to_addr = r10_bio->devs[k].addr;
3498 				r10_bio->devs[0].devnum = d;
3499 				r10_bio->devs[0].addr = from_addr;
3500 				r10_bio->devs[1].devnum = i;
3501 				r10_bio->devs[1].addr = to_addr;
3502 
3503 				if (need_recover) {
3504 					bio = r10_bio->devs[1].bio;
3505 					bio->bi_next = biolist;
3506 					biolist = bio;
3507 					bio->bi_end_io = end_sync_write;
3508 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3509 					bio->bi_iter.bi_sector = to_addr
3510 						+ mrdev->data_offset;
3511 					bio_set_dev(bio, mrdev->bdev);
3512 					atomic_inc(&r10_bio->remaining);
3513 				} else
3514 					r10_bio->devs[1].bio->bi_end_io = NULL;
3515 
3516 				/* and maybe write to replacement */
3517 				bio = r10_bio->devs[1].repl_bio;
3518 				if (bio)
3519 					bio->bi_end_io = NULL;
3520 				/* Note: if need_replace, then bio
3521 				 * cannot be NULL as r10buf_pool_alloc will
3522 				 * have allocated it.
3523 				 */
3524 				if (!need_replace)
3525 					break;
3526 				bio->bi_next = biolist;
3527 				biolist = bio;
3528 				bio->bi_end_io = end_sync_write;
3529 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530 				bio->bi_iter.bi_sector = to_addr +
3531 					mreplace->data_offset;
3532 				bio_set_dev(bio, mreplace->bdev);
3533 				atomic_inc(&r10_bio->remaining);
3534 				break;
3535 			}
3536 			rcu_read_unlock();
3537 			if (j == conf->copies) {
3538 				/* Cannot recover, so abort the recovery or
3539 				 * record a bad block */
3540 				if (any_working) {
3541 					/* problem is that there are bad blocks
3542 					 * on other device(s)
3543 					 */
3544 					int k;
3545 					for (k = 0; k < conf->copies; k++)
3546 						if (r10_bio->devs[k].devnum == i)
3547 							break;
3548 					if (!test_bit(In_sync,
3549 						      &mrdev->flags)
3550 					    && !rdev_set_badblocks(
3551 						    mrdev,
3552 						    r10_bio->devs[k].addr,
3553 						    max_sync, 0))
3554 						any_working = 0;
3555 					if (mreplace &&
3556 					    !rdev_set_badblocks(
3557 						    mreplace,
3558 						    r10_bio->devs[k].addr,
3559 						    max_sync, 0))
3560 						any_working = 0;
3561 				}
3562 				if (!any_working)  {
3563 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3564 							      &mddev->recovery))
3565 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3566 						       mdname(mddev));
3567 					mirror->recovery_disabled
3568 						= mddev->recovery_disabled;
3569 				}
3570 				put_buf(r10_bio);
3571 				if (rb2)
3572 					atomic_dec(&rb2->remaining);
3573 				r10_bio = rb2;
3574 				rdev_dec_pending(mrdev, mddev);
3575 				if (mreplace)
3576 					rdev_dec_pending(mreplace, mddev);
3577 				break;
3578 			}
3579 			rdev_dec_pending(mrdev, mddev);
3580 			if (mreplace)
3581 				rdev_dec_pending(mreplace, mddev);
3582 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583 				/* Only want this if there is elsewhere to
3584 				 * read from. 'j' is currently the first
3585 				 * readable copy.
3586 				 */
3587 				int targets = 1;
3588 				for (; j < conf->copies; j++) {
3589 					int d = r10_bio->devs[j].devnum;
3590 					if (conf->mirrors[d].rdev &&
3591 					    test_bit(In_sync,
3592 						      &conf->mirrors[d].rdev->flags))
3593 						targets++;
3594 				}
3595 				if (targets == 1)
3596 					r10_bio->devs[0].bio->bi_opf
3597 						&= ~MD_FAILFAST;
3598 			}
3599 		}
3600 		if (biolist == NULL) {
3601 			while (r10_bio) {
3602 				struct r10bio *rb2 = r10_bio;
3603 				r10_bio = (struct r10bio*) rb2->master_bio;
3604 				rb2->master_bio = NULL;
3605 				put_buf(rb2);
3606 			}
3607 			goto giveup;
3608 		}
3609 	} else {
3610 		/* resync. Schedule a read for every block at this virt offset */
3611 		int count = 0;
3612 
3613 		/*
3614 		 * Since curr_resync_completed could probably not update in
3615 		 * time, and we will set cluster_sync_low based on it.
3616 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617 		 * safety reason, which ensures curr_resync_completed is
3618 		 * updated in bitmap_cond_end_sync.
3619 		 */
3620 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621 					mddev_is_clustered(mddev) &&
3622 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3623 
3624 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625 					  &sync_blocks, mddev->degraded) &&
3626 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627 						 &mddev->recovery)) {
3628 			/* We can skip this block */
3629 			*skipped = 1;
3630 			return sync_blocks + sectors_skipped;
3631 		}
3632 		if (sync_blocks < max_sync)
3633 			max_sync = sync_blocks;
3634 		r10_bio = raid10_alloc_init_r10buf(conf);
3635 		r10_bio->state = 0;
3636 
3637 		r10_bio->mddev = mddev;
3638 		atomic_set(&r10_bio->remaining, 0);
3639 		raise_barrier(conf, 0);
3640 		conf->next_resync = sector_nr;
3641 
3642 		r10_bio->master_bio = NULL;
3643 		r10_bio->sector = sector_nr;
3644 		set_bit(R10BIO_IsSync, &r10_bio->state);
3645 		raid10_find_phys(conf, r10_bio);
3646 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3647 
3648 		for (i = 0; i < conf->copies; i++) {
3649 			int d = r10_bio->devs[i].devnum;
3650 			sector_t first_bad, sector;
3651 			int bad_sectors;
3652 			struct md_rdev *rdev;
3653 
3654 			if (r10_bio->devs[i].repl_bio)
3655 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3656 
3657 			bio = r10_bio->devs[i].bio;
3658 			bio->bi_status = BLK_STS_IOERR;
3659 			rcu_read_lock();
3660 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3661 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3662 				rcu_read_unlock();
3663 				continue;
3664 			}
3665 			sector = r10_bio->devs[i].addr;
3666 			if (is_badblock(rdev, sector, max_sync,
3667 					&first_bad, &bad_sectors)) {
3668 				if (first_bad > sector)
3669 					max_sync = first_bad - sector;
3670 				else {
3671 					bad_sectors -= (sector - first_bad);
3672 					if (max_sync > bad_sectors)
3673 						max_sync = bad_sectors;
3674 					rcu_read_unlock();
3675 					continue;
3676 				}
3677 			}
3678 			atomic_inc(&rdev->nr_pending);
3679 			atomic_inc(&r10_bio->remaining);
3680 			bio->bi_next = biolist;
3681 			biolist = bio;
3682 			bio->bi_end_io = end_sync_read;
3683 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3684 			if (test_bit(FailFast, &rdev->flags))
3685 				bio->bi_opf |= MD_FAILFAST;
3686 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687 			bio_set_dev(bio, rdev->bdev);
3688 			count++;
3689 
3690 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3691 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3692 				rcu_read_unlock();
3693 				continue;
3694 			}
3695 			atomic_inc(&rdev->nr_pending);
3696 
3697 			/* Need to set up for writing to the replacement */
3698 			bio = r10_bio->devs[i].repl_bio;
3699 			bio->bi_status = BLK_STS_IOERR;
3700 
3701 			sector = r10_bio->devs[i].addr;
3702 			bio->bi_next = biolist;
3703 			biolist = bio;
3704 			bio->bi_end_io = end_sync_write;
3705 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3706 			if (test_bit(FailFast, &rdev->flags))
3707 				bio->bi_opf |= MD_FAILFAST;
3708 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709 			bio_set_dev(bio, rdev->bdev);
3710 			count++;
3711 			rcu_read_unlock();
3712 		}
3713 
3714 		if (count < 2) {
3715 			for (i=0; i<conf->copies; i++) {
3716 				int d = r10_bio->devs[i].devnum;
3717 				if (r10_bio->devs[i].bio->bi_end_io)
3718 					rdev_dec_pending(conf->mirrors[d].rdev,
3719 							 mddev);
3720 				if (r10_bio->devs[i].repl_bio &&
3721 				    r10_bio->devs[i].repl_bio->bi_end_io)
3722 					rdev_dec_pending(
3723 						conf->mirrors[d].replacement,
3724 						mddev);
3725 			}
3726 			put_buf(r10_bio);
3727 			biolist = NULL;
3728 			goto giveup;
3729 		}
3730 	}
3731 
3732 	nr_sectors = 0;
3733 	if (sector_nr + max_sync < max_sector)
3734 		max_sector = sector_nr + max_sync;
3735 	do {
3736 		struct page *page;
3737 		int len = PAGE_SIZE;
3738 		if (sector_nr + (len>>9) > max_sector)
3739 			len = (max_sector - sector_nr) << 9;
3740 		if (len == 0)
3741 			break;
3742 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3743 			struct resync_pages *rp = get_resync_pages(bio);
3744 			page = resync_fetch_page(rp, page_idx);
3745 			/*
3746 			 * won't fail because the vec table is big enough
3747 			 * to hold all these pages
3748 			 */
3749 			bio_add_page(bio, page, len, 0);
3750 		}
3751 		nr_sectors += len>>9;
3752 		sector_nr += len>>9;
3753 	} while (++page_idx < RESYNC_PAGES);
3754 	r10_bio->sectors = nr_sectors;
3755 
3756 	if (mddev_is_clustered(mddev) &&
3757 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758 		/* It is resync not recovery */
3759 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760 			conf->cluster_sync_low = mddev->curr_resync_completed;
3761 			raid10_set_cluster_sync_high(conf);
3762 			/* Send resync message */
3763 			md_cluster_ops->resync_info_update(mddev,
3764 						conf->cluster_sync_low,
3765 						conf->cluster_sync_high);
3766 		}
3767 	} else if (mddev_is_clustered(mddev)) {
3768 		/* This is recovery not resync */
3769 		sector_t sect_va1, sect_va2;
3770 		bool broadcast_msg = false;
3771 
3772 		for (i = 0; i < conf->geo.raid_disks; i++) {
3773 			/*
3774 			 * sector_nr is a device address for recovery, so we
3775 			 * need translate it to array address before compare
3776 			 * with cluster_sync_high.
3777 			 */
3778 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3779 
3780 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781 				broadcast_msg = true;
3782 				/*
3783 				 * curr_resync_completed is similar as
3784 				 * sector_nr, so make the translation too.
3785 				 */
3786 				sect_va2 = raid10_find_virt(conf,
3787 					mddev->curr_resync_completed, i);
3788 
3789 				if (conf->cluster_sync_low == 0 ||
3790 				    conf->cluster_sync_low > sect_va2)
3791 					conf->cluster_sync_low = sect_va2;
3792 			}
3793 		}
3794 		if (broadcast_msg) {
3795 			raid10_set_cluster_sync_high(conf);
3796 			md_cluster_ops->resync_info_update(mddev,
3797 						conf->cluster_sync_low,
3798 						conf->cluster_sync_high);
3799 		}
3800 	}
3801 
3802 	while (biolist) {
3803 		bio = biolist;
3804 		biolist = biolist->bi_next;
3805 
3806 		bio->bi_next = NULL;
3807 		r10_bio = get_resync_r10bio(bio);
3808 		r10_bio->sectors = nr_sectors;
3809 
3810 		if (bio->bi_end_io == end_sync_read) {
3811 			md_sync_acct_bio(bio, nr_sectors);
3812 			bio->bi_status = 0;
3813 			submit_bio_noacct(bio);
3814 		}
3815 	}
3816 
3817 	if (sectors_skipped)
3818 		/* pretend they weren't skipped, it makes
3819 		 * no important difference in this case
3820 		 */
3821 		md_done_sync(mddev, sectors_skipped, 1);
3822 
3823 	return sectors_skipped + nr_sectors;
3824  giveup:
3825 	/* There is nowhere to write, so all non-sync
3826 	 * drives must be failed or in resync, all drives
3827 	 * have a bad block, so try the next chunk...
3828 	 */
3829 	if (sector_nr + max_sync < max_sector)
3830 		max_sector = sector_nr + max_sync;
3831 
3832 	sectors_skipped += (max_sector - sector_nr);
3833 	chunks_skipped ++;
3834 	sector_nr = max_sector;
3835 	goto skipped;
3836 }
3837 
3838 static sector_t
3839 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3840 {
3841 	sector_t size;
3842 	struct r10conf *conf = mddev->private;
3843 
3844 	if (!raid_disks)
3845 		raid_disks = min(conf->geo.raid_disks,
3846 				 conf->prev.raid_disks);
3847 	if (!sectors)
3848 		sectors = conf->dev_sectors;
3849 
3850 	size = sectors >> conf->geo.chunk_shift;
3851 	sector_div(size, conf->geo.far_copies);
3852 	size = size * raid_disks;
3853 	sector_div(size, conf->geo.near_copies);
3854 
3855 	return size << conf->geo.chunk_shift;
3856 }
3857 
3858 static void calc_sectors(struct r10conf *conf, sector_t size)
3859 {
3860 	/* Calculate the number of sectors-per-device that will
3861 	 * actually be used, and set conf->dev_sectors and
3862 	 * conf->stride
3863 	 */
3864 
3865 	size = size >> conf->geo.chunk_shift;
3866 	sector_div(size, conf->geo.far_copies);
3867 	size = size * conf->geo.raid_disks;
3868 	sector_div(size, conf->geo.near_copies);
3869 	/* 'size' is now the number of chunks in the array */
3870 	/* calculate "used chunks per device" */
3871 	size = size * conf->copies;
3872 
3873 	/* We need to round up when dividing by raid_disks to
3874 	 * get the stride size.
3875 	 */
3876 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3877 
3878 	conf->dev_sectors = size << conf->geo.chunk_shift;
3879 
3880 	if (conf->geo.far_offset)
3881 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3882 	else {
3883 		sector_div(size, conf->geo.far_copies);
3884 		conf->geo.stride = size << conf->geo.chunk_shift;
3885 	}
3886 }
3887 
3888 enum geo_type {geo_new, geo_old, geo_start};
3889 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3890 {
3891 	int nc, fc, fo;
3892 	int layout, chunk, disks;
3893 	switch (new) {
3894 	case geo_old:
3895 		layout = mddev->layout;
3896 		chunk = mddev->chunk_sectors;
3897 		disks = mddev->raid_disks - mddev->delta_disks;
3898 		break;
3899 	case geo_new:
3900 		layout = mddev->new_layout;
3901 		chunk = mddev->new_chunk_sectors;
3902 		disks = mddev->raid_disks;
3903 		break;
3904 	default: /* avoid 'may be unused' warnings */
3905 	case geo_start: /* new when starting reshape - raid_disks not
3906 			 * updated yet. */
3907 		layout = mddev->new_layout;
3908 		chunk = mddev->new_chunk_sectors;
3909 		disks = mddev->raid_disks + mddev->delta_disks;
3910 		break;
3911 	}
3912 	if (layout >> 19)
3913 		return -1;
3914 	if (chunk < (PAGE_SIZE >> 9) ||
3915 	    !is_power_of_2(chunk))
3916 		return -2;
3917 	nc = layout & 255;
3918 	fc = (layout >> 8) & 255;
3919 	fo = layout & (1<<16);
3920 	geo->raid_disks = disks;
3921 	geo->near_copies = nc;
3922 	geo->far_copies = fc;
3923 	geo->far_offset = fo;
3924 	switch (layout >> 17) {
3925 	case 0:	/* original layout.  simple but not always optimal */
3926 		geo->far_set_size = disks;
3927 		break;
3928 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3929 		 * actually using this, but leave code here just in case.*/
3930 		geo->far_set_size = disks/fc;
3931 		WARN(geo->far_set_size < fc,
3932 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3933 		break;
3934 	case 2: /* "improved" layout fixed to match documentation */
3935 		geo->far_set_size = fc * nc;
3936 		break;
3937 	default: /* Not a valid layout */
3938 		return -1;
3939 	}
3940 	geo->chunk_mask = chunk - 1;
3941 	geo->chunk_shift = ffz(~chunk);
3942 	return nc*fc;
3943 }
3944 
3945 static struct r10conf *setup_conf(struct mddev *mddev)
3946 {
3947 	struct r10conf *conf = NULL;
3948 	int err = -EINVAL;
3949 	struct geom geo;
3950 	int copies;
3951 
3952 	copies = setup_geo(&geo, mddev, geo_new);
3953 
3954 	if (copies == -2) {
3955 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956 			mdname(mddev), PAGE_SIZE);
3957 		goto out;
3958 	}
3959 
3960 	if (copies < 2 || copies > mddev->raid_disks) {
3961 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962 			mdname(mddev), mddev->new_layout);
3963 		goto out;
3964 	}
3965 
3966 	err = -ENOMEM;
3967 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3968 	if (!conf)
3969 		goto out;
3970 
3971 	/* FIXME calc properly */
3972 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973 				sizeof(struct raid10_info),
3974 				GFP_KERNEL);
3975 	if (!conf->mirrors)
3976 		goto out;
3977 
3978 	conf->tmppage = alloc_page(GFP_KERNEL);
3979 	if (!conf->tmppage)
3980 		goto out;
3981 
3982 	conf->geo = geo;
3983 	conf->copies = copies;
3984 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3985 			   rbio_pool_free, conf);
3986 	if (err)
3987 		goto out;
3988 
3989 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3990 	if (err)
3991 		goto out;
3992 
3993 	calc_sectors(conf, mddev->dev_sectors);
3994 	if (mddev->reshape_position == MaxSector) {
3995 		conf->prev = conf->geo;
3996 		conf->reshape_progress = MaxSector;
3997 	} else {
3998 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3999 			err = -EINVAL;
4000 			goto out;
4001 		}
4002 		conf->reshape_progress = mddev->reshape_position;
4003 		if (conf->prev.far_offset)
4004 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4005 		else
4006 			/* far_copies must be 1 */
4007 			conf->prev.stride = conf->dev_sectors;
4008 	}
4009 	conf->reshape_safe = conf->reshape_progress;
4010 	spin_lock_init(&conf->device_lock);
4011 	INIT_LIST_HEAD(&conf->retry_list);
4012 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4013 
4014 	spin_lock_init(&conf->resync_lock);
4015 	init_waitqueue_head(&conf->wait_barrier);
4016 	atomic_set(&conf->nr_pending, 0);
4017 
4018 	err = -ENOMEM;
4019 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4020 	if (!conf->thread)
4021 		goto out;
4022 
4023 	conf->mddev = mddev;
4024 	return conf;
4025 
4026  out:
4027 	if (conf) {
4028 		mempool_exit(&conf->r10bio_pool);
4029 		kfree(conf->mirrors);
4030 		safe_put_page(conf->tmppage);
4031 		bioset_exit(&conf->bio_split);
4032 		kfree(conf);
4033 	}
4034 	return ERR_PTR(err);
4035 }
4036 
4037 static void raid10_set_io_opt(struct r10conf *conf)
4038 {
4039 	int raid_disks = conf->geo.raid_disks;
4040 
4041 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042 		raid_disks /= conf->geo.near_copies;
4043 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4044 			 raid_disks);
4045 }
4046 
4047 static int raid10_run(struct mddev *mddev)
4048 {
4049 	struct r10conf *conf;
4050 	int i, disk_idx;
4051 	struct raid10_info *disk;
4052 	struct md_rdev *rdev;
4053 	sector_t size;
4054 	sector_t min_offset_diff = 0;
4055 	int first = 1;
4056 	bool discard_supported = false;
4057 
4058 	if (mddev_init_writes_pending(mddev) < 0)
4059 		return -ENOMEM;
4060 
4061 	if (mddev->private == NULL) {
4062 		conf = setup_conf(mddev);
4063 		if (IS_ERR(conf))
4064 			return PTR_ERR(conf);
4065 		mddev->private = conf;
4066 	}
4067 	conf = mddev->private;
4068 	if (!conf)
4069 		goto out;
4070 
4071 	if (mddev_is_clustered(conf->mddev)) {
4072 		int fc, fo;
4073 
4074 		fc = (mddev->layout >> 8) & 255;
4075 		fo = mddev->layout & (1<<16);
4076 		if (fc > 1 || fo > 0) {
4077 			pr_err("only near layout is supported by clustered"
4078 				" raid10\n");
4079 			goto out_free_conf;
4080 		}
4081 	}
4082 
4083 	mddev->thread = conf->thread;
4084 	conf->thread = NULL;
4085 
4086 	if (mddev->queue) {
4087 		blk_queue_max_discard_sectors(mddev->queue,
4088 					      UINT_MAX);
4089 		blk_queue_max_write_same_sectors(mddev->queue, 0);
4090 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4091 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092 		raid10_set_io_opt(conf);
4093 	}
4094 
4095 	rdev_for_each(rdev, mddev) {
4096 		long long diff;
4097 
4098 		disk_idx = rdev->raid_disk;
4099 		if (disk_idx < 0)
4100 			continue;
4101 		if (disk_idx >= conf->geo.raid_disks &&
4102 		    disk_idx >= conf->prev.raid_disks)
4103 			continue;
4104 		disk = conf->mirrors + disk_idx;
4105 
4106 		if (test_bit(Replacement, &rdev->flags)) {
4107 			if (disk->replacement)
4108 				goto out_free_conf;
4109 			disk->replacement = rdev;
4110 		} else {
4111 			if (disk->rdev)
4112 				goto out_free_conf;
4113 			disk->rdev = rdev;
4114 		}
4115 		diff = (rdev->new_data_offset - rdev->data_offset);
4116 		if (!mddev->reshape_backwards)
4117 			diff = -diff;
4118 		if (diff < 0)
4119 			diff = 0;
4120 		if (first || diff < min_offset_diff)
4121 			min_offset_diff = diff;
4122 
4123 		if (mddev->gendisk)
4124 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4125 					  rdev->data_offset << 9);
4126 
4127 		disk->head_position = 0;
4128 
4129 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130 			discard_supported = true;
4131 		first = 0;
4132 	}
4133 
4134 	if (mddev->queue) {
4135 		if (discard_supported)
4136 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4137 						mddev->queue);
4138 		else
4139 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4140 						  mddev->queue);
4141 	}
4142 	/* need to check that every block has at least one working mirror */
4143 	if (!enough(conf, -1)) {
4144 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4145 		       mdname(mddev));
4146 		goto out_free_conf;
4147 	}
4148 
4149 	if (conf->reshape_progress != MaxSector) {
4150 		/* must ensure that shape change is supported */
4151 		if (conf->geo.far_copies != 1 &&
4152 		    conf->geo.far_offset == 0)
4153 			goto out_free_conf;
4154 		if (conf->prev.far_copies != 1 &&
4155 		    conf->prev.far_offset == 0)
4156 			goto out_free_conf;
4157 	}
4158 
4159 	mddev->degraded = 0;
4160 	for (i = 0;
4161 	     i < conf->geo.raid_disks
4162 		     || i < conf->prev.raid_disks;
4163 	     i++) {
4164 
4165 		disk = conf->mirrors + i;
4166 
4167 		if (!disk->rdev && disk->replacement) {
4168 			/* The replacement is all we have - use it */
4169 			disk->rdev = disk->replacement;
4170 			disk->replacement = NULL;
4171 			clear_bit(Replacement, &disk->rdev->flags);
4172 		}
4173 
4174 		if (!disk->rdev ||
4175 		    !test_bit(In_sync, &disk->rdev->flags)) {
4176 			disk->head_position = 0;
4177 			mddev->degraded++;
4178 			if (disk->rdev &&
4179 			    disk->rdev->saved_raid_disk < 0)
4180 				conf->fullsync = 1;
4181 		}
4182 
4183 		if (disk->replacement &&
4184 		    !test_bit(In_sync, &disk->replacement->flags) &&
4185 		    disk->replacement->saved_raid_disk < 0) {
4186 			conf->fullsync = 1;
4187 		}
4188 
4189 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4190 	}
4191 
4192 	if (mddev->recovery_cp != MaxSector)
4193 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4194 			  mdname(mddev));
4195 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4196 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197 		conf->geo.raid_disks);
4198 	/*
4199 	 * Ok, everything is just fine now
4200 	 */
4201 	mddev->dev_sectors = conf->dev_sectors;
4202 	size = raid10_size(mddev, 0, 0);
4203 	md_set_array_sectors(mddev, size);
4204 	mddev->resync_max_sectors = size;
4205 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4206 
4207 	if (md_integrity_register(mddev))
4208 		goto out_free_conf;
4209 
4210 	if (conf->reshape_progress != MaxSector) {
4211 		unsigned long before_length, after_length;
4212 
4213 		before_length = ((1 << conf->prev.chunk_shift) *
4214 				 conf->prev.far_copies);
4215 		after_length = ((1 << conf->geo.chunk_shift) *
4216 				conf->geo.far_copies);
4217 
4218 		if (max(before_length, after_length) > min_offset_diff) {
4219 			/* This cannot work */
4220 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4221 			goto out_free_conf;
4222 		}
4223 		conf->offset_diff = min_offset_diff;
4224 
4225 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230 							"reshape");
4231 		if (!mddev->sync_thread)
4232 			goto out_free_conf;
4233 	}
4234 
4235 	return 0;
4236 
4237 out_free_conf:
4238 	md_unregister_thread(&mddev->thread);
4239 	mempool_exit(&conf->r10bio_pool);
4240 	safe_put_page(conf->tmppage);
4241 	kfree(conf->mirrors);
4242 	kfree(conf);
4243 	mddev->private = NULL;
4244 out:
4245 	return -EIO;
4246 }
4247 
4248 static void raid10_free(struct mddev *mddev, void *priv)
4249 {
4250 	struct r10conf *conf = priv;
4251 
4252 	mempool_exit(&conf->r10bio_pool);
4253 	safe_put_page(conf->tmppage);
4254 	kfree(conf->mirrors);
4255 	kfree(conf->mirrors_old);
4256 	kfree(conf->mirrors_new);
4257 	bioset_exit(&conf->bio_split);
4258 	kfree(conf);
4259 }
4260 
4261 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4262 {
4263 	struct r10conf *conf = mddev->private;
4264 
4265 	if (quiesce)
4266 		raise_barrier(conf, 0);
4267 	else
4268 		lower_barrier(conf);
4269 }
4270 
4271 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4272 {
4273 	/* Resize of 'far' arrays is not supported.
4274 	 * For 'near' and 'offset' arrays we can set the
4275 	 * number of sectors used to be an appropriate multiple
4276 	 * of the chunk size.
4277 	 * For 'offset', this is far_copies*chunksize.
4278 	 * For 'near' the multiplier is the LCM of
4279 	 * near_copies and raid_disks.
4280 	 * So if far_copies > 1 && !far_offset, fail.
4281 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4282 	 * multiply by chunk_size.  Then round to this number.
4283 	 * This is mostly done by raid10_size()
4284 	 */
4285 	struct r10conf *conf = mddev->private;
4286 	sector_t oldsize, size;
4287 
4288 	if (mddev->reshape_position != MaxSector)
4289 		return -EBUSY;
4290 
4291 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4292 		return -EINVAL;
4293 
4294 	oldsize = raid10_size(mddev, 0, 0);
4295 	size = raid10_size(mddev, sectors, 0);
4296 	if (mddev->external_size &&
4297 	    mddev->array_sectors > size)
4298 		return -EINVAL;
4299 	if (mddev->bitmap) {
4300 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4301 		if (ret)
4302 			return ret;
4303 	}
4304 	md_set_array_sectors(mddev, size);
4305 	if (sectors > mddev->dev_sectors &&
4306 	    mddev->recovery_cp > oldsize) {
4307 		mddev->recovery_cp = oldsize;
4308 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309 	}
4310 	calc_sectors(conf, sectors);
4311 	mddev->dev_sectors = conf->dev_sectors;
4312 	mddev->resync_max_sectors = size;
4313 	return 0;
4314 }
4315 
4316 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4317 {
4318 	struct md_rdev *rdev;
4319 	struct r10conf *conf;
4320 
4321 	if (mddev->degraded > 0) {
4322 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4323 			mdname(mddev));
4324 		return ERR_PTR(-EINVAL);
4325 	}
4326 	sector_div(size, devs);
4327 
4328 	/* Set new parameters */
4329 	mddev->new_level = 10;
4330 	/* new layout: far_copies = 1, near_copies = 2 */
4331 	mddev->new_layout = (1<<8) + 2;
4332 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4333 	mddev->delta_disks = mddev->raid_disks;
4334 	mddev->raid_disks *= 2;
4335 	/* make sure it will be not marked as dirty */
4336 	mddev->recovery_cp = MaxSector;
4337 	mddev->dev_sectors = size;
4338 
4339 	conf = setup_conf(mddev);
4340 	if (!IS_ERR(conf)) {
4341 		rdev_for_each(rdev, mddev)
4342 			if (rdev->raid_disk >= 0) {
4343 				rdev->new_raid_disk = rdev->raid_disk * 2;
4344 				rdev->sectors = size;
4345 			}
4346 		conf->barrier = 1;
4347 	}
4348 
4349 	return conf;
4350 }
4351 
4352 static void *raid10_takeover(struct mddev *mddev)
4353 {
4354 	struct r0conf *raid0_conf;
4355 
4356 	/* raid10 can take over:
4357 	 *  raid0 - providing it has only two drives
4358 	 */
4359 	if (mddev->level == 0) {
4360 		/* for raid0 takeover only one zone is supported */
4361 		raid0_conf = mddev->private;
4362 		if (raid0_conf->nr_strip_zones > 1) {
4363 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4364 				mdname(mddev));
4365 			return ERR_PTR(-EINVAL);
4366 		}
4367 		return raid10_takeover_raid0(mddev,
4368 			raid0_conf->strip_zone->zone_end,
4369 			raid0_conf->strip_zone->nb_dev);
4370 	}
4371 	return ERR_PTR(-EINVAL);
4372 }
4373 
4374 static int raid10_check_reshape(struct mddev *mddev)
4375 {
4376 	/* Called when there is a request to change
4377 	 * - layout (to ->new_layout)
4378 	 * - chunk size (to ->new_chunk_sectors)
4379 	 * - raid_disks (by delta_disks)
4380 	 * or when trying to restart a reshape that was ongoing.
4381 	 *
4382 	 * We need to validate the request and possibly allocate
4383 	 * space if that might be an issue later.
4384 	 *
4385 	 * Currently we reject any reshape of a 'far' mode array,
4386 	 * allow chunk size to change if new is generally acceptable,
4387 	 * allow raid_disks to increase, and allow
4388 	 * a switch between 'near' mode and 'offset' mode.
4389 	 */
4390 	struct r10conf *conf = mddev->private;
4391 	struct geom geo;
4392 
4393 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4394 		return -EINVAL;
4395 
4396 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397 		/* mustn't change number of copies */
4398 		return -EINVAL;
4399 	if (geo.far_copies > 1 && !geo.far_offset)
4400 		/* Cannot switch to 'far' mode */
4401 		return -EINVAL;
4402 
4403 	if (mddev->array_sectors & geo.chunk_mask)
4404 			/* not factor of array size */
4405 			return -EINVAL;
4406 
4407 	if (!enough(conf, -1))
4408 		return -EINVAL;
4409 
4410 	kfree(conf->mirrors_new);
4411 	conf->mirrors_new = NULL;
4412 	if (mddev->delta_disks > 0) {
4413 		/* allocate new 'mirrors' list */
4414 		conf->mirrors_new =
4415 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4416 				sizeof(struct raid10_info),
4417 				GFP_KERNEL);
4418 		if (!conf->mirrors_new)
4419 			return -ENOMEM;
4420 	}
4421 	return 0;
4422 }
4423 
4424 /*
4425  * Need to check if array has failed when deciding whether to:
4426  *  - start an array
4427  *  - remove non-faulty devices
4428  *  - add a spare
4429  *  - allow a reshape
4430  * This determination is simple when no reshape is happening.
4431  * However if there is a reshape, we need to carefully check
4432  * both the before and after sections.
4433  * This is because some failed devices may only affect one
4434  * of the two sections, and some non-in_sync devices may
4435  * be insync in the section most affected by failed devices.
4436  */
4437 static int calc_degraded(struct r10conf *conf)
4438 {
4439 	int degraded, degraded2;
4440 	int i;
4441 
4442 	rcu_read_lock();
4443 	degraded = 0;
4444 	/* 'prev' section first */
4445 	for (i = 0; i < conf->prev.raid_disks; i++) {
4446 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447 		if (!rdev || test_bit(Faulty, &rdev->flags))
4448 			degraded++;
4449 		else if (!test_bit(In_sync, &rdev->flags))
4450 			/* When we can reduce the number of devices in
4451 			 * an array, this might not contribute to
4452 			 * 'degraded'.  It does now.
4453 			 */
4454 			degraded++;
4455 	}
4456 	rcu_read_unlock();
4457 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4458 		return degraded;
4459 	rcu_read_lock();
4460 	degraded2 = 0;
4461 	for (i = 0; i < conf->geo.raid_disks; i++) {
4462 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463 		if (!rdev || test_bit(Faulty, &rdev->flags))
4464 			degraded2++;
4465 		else if (!test_bit(In_sync, &rdev->flags)) {
4466 			/* If reshape is increasing the number of devices,
4467 			 * this section has already been recovered, so
4468 			 * it doesn't contribute to degraded.
4469 			 * else it does.
4470 			 */
4471 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4472 				degraded2++;
4473 		}
4474 	}
4475 	rcu_read_unlock();
4476 	if (degraded2 > degraded)
4477 		return degraded2;
4478 	return degraded;
4479 }
4480 
4481 static int raid10_start_reshape(struct mddev *mddev)
4482 {
4483 	/* A 'reshape' has been requested. This commits
4484 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485 	 * This also checks if there are enough spares and adds them
4486 	 * to the array.
4487 	 * We currently require enough spares to make the final
4488 	 * array non-degraded.  We also require that the difference
4489 	 * between old and new data_offset - on each device - is
4490 	 * enough that we never risk over-writing.
4491 	 */
4492 
4493 	unsigned long before_length, after_length;
4494 	sector_t min_offset_diff = 0;
4495 	int first = 1;
4496 	struct geom new;
4497 	struct r10conf *conf = mddev->private;
4498 	struct md_rdev *rdev;
4499 	int spares = 0;
4500 	int ret;
4501 
4502 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503 		return -EBUSY;
4504 
4505 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4506 		return -EINVAL;
4507 
4508 	before_length = ((1 << conf->prev.chunk_shift) *
4509 			 conf->prev.far_copies);
4510 	after_length = ((1 << conf->geo.chunk_shift) *
4511 			conf->geo.far_copies);
4512 
4513 	rdev_for_each(rdev, mddev) {
4514 		if (!test_bit(In_sync, &rdev->flags)
4515 		    && !test_bit(Faulty, &rdev->flags))
4516 			spares++;
4517 		if (rdev->raid_disk >= 0) {
4518 			long long diff = (rdev->new_data_offset
4519 					  - rdev->data_offset);
4520 			if (!mddev->reshape_backwards)
4521 				diff = -diff;
4522 			if (diff < 0)
4523 				diff = 0;
4524 			if (first || diff < min_offset_diff)
4525 				min_offset_diff = diff;
4526 			first = 0;
4527 		}
4528 	}
4529 
4530 	if (max(before_length, after_length) > min_offset_diff)
4531 		return -EINVAL;
4532 
4533 	if (spares < mddev->delta_disks)
4534 		return -EINVAL;
4535 
4536 	conf->offset_diff = min_offset_diff;
4537 	spin_lock_irq(&conf->device_lock);
4538 	if (conf->mirrors_new) {
4539 		memcpy(conf->mirrors_new, conf->mirrors,
4540 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4541 		smp_mb();
4542 		kfree(conf->mirrors_old);
4543 		conf->mirrors_old = conf->mirrors;
4544 		conf->mirrors = conf->mirrors_new;
4545 		conf->mirrors_new = NULL;
4546 	}
4547 	setup_geo(&conf->geo, mddev, geo_start);
4548 	smp_mb();
4549 	if (mddev->reshape_backwards) {
4550 		sector_t size = raid10_size(mddev, 0, 0);
4551 		if (size < mddev->array_sectors) {
4552 			spin_unlock_irq(&conf->device_lock);
4553 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4554 				mdname(mddev));
4555 			return -EINVAL;
4556 		}
4557 		mddev->resync_max_sectors = size;
4558 		conf->reshape_progress = size;
4559 	} else
4560 		conf->reshape_progress = 0;
4561 	conf->reshape_safe = conf->reshape_progress;
4562 	spin_unlock_irq(&conf->device_lock);
4563 
4564 	if (mddev->delta_disks && mddev->bitmap) {
4565 		struct mdp_superblock_1 *sb = NULL;
4566 		sector_t oldsize, newsize;
4567 
4568 		oldsize = raid10_size(mddev, 0, 0);
4569 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4570 
4571 		if (!mddev_is_clustered(mddev)) {
4572 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573 			if (ret)
4574 				goto abort;
4575 			else
4576 				goto out;
4577 		}
4578 
4579 		rdev_for_each(rdev, mddev) {
4580 			if (rdev->raid_disk > -1 &&
4581 			    !test_bit(Faulty, &rdev->flags))
4582 				sb = page_address(rdev->sb_page);
4583 		}
4584 
4585 		/*
4586 		 * some node is already performing reshape, and no need to
4587 		 * call md_bitmap_resize again since it should be called when
4588 		 * receiving BITMAP_RESIZE msg
4589 		 */
4590 		if ((sb && (le32_to_cpu(sb->feature_map) &
4591 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4592 			goto out;
4593 
4594 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4595 		if (ret)
4596 			goto abort;
4597 
4598 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4599 		if (ret) {
4600 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4601 			goto abort;
4602 		}
4603 	}
4604 out:
4605 	if (mddev->delta_disks > 0) {
4606 		rdev_for_each(rdev, mddev)
4607 			if (rdev->raid_disk < 0 &&
4608 			    !test_bit(Faulty, &rdev->flags)) {
4609 				if (raid10_add_disk(mddev, rdev) == 0) {
4610 					if (rdev->raid_disk >=
4611 					    conf->prev.raid_disks)
4612 						set_bit(In_sync, &rdev->flags);
4613 					else
4614 						rdev->recovery_offset = 0;
4615 
4616 					/* Failure here is OK */
4617 					sysfs_link_rdev(mddev, rdev);
4618 				}
4619 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4620 				   && !test_bit(Faulty, &rdev->flags)) {
4621 				/* This is a spare that was manually added */
4622 				set_bit(In_sync, &rdev->flags);
4623 			}
4624 	}
4625 	/* When a reshape changes the number of devices,
4626 	 * ->degraded is measured against the larger of the
4627 	 * pre and  post numbers.
4628 	 */
4629 	spin_lock_irq(&conf->device_lock);
4630 	mddev->degraded = calc_degraded(conf);
4631 	spin_unlock_irq(&conf->device_lock);
4632 	mddev->raid_disks = conf->geo.raid_disks;
4633 	mddev->reshape_position = conf->reshape_progress;
4634 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4635 
4636 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4638 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4639 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4641 
4642 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4643 						"reshape");
4644 	if (!mddev->sync_thread) {
4645 		ret = -EAGAIN;
4646 		goto abort;
4647 	}
4648 	conf->reshape_checkpoint = jiffies;
4649 	md_wakeup_thread(mddev->sync_thread);
4650 	md_new_event(mddev);
4651 	return 0;
4652 
4653 abort:
4654 	mddev->recovery = 0;
4655 	spin_lock_irq(&conf->device_lock);
4656 	conf->geo = conf->prev;
4657 	mddev->raid_disks = conf->geo.raid_disks;
4658 	rdev_for_each(rdev, mddev)
4659 		rdev->new_data_offset = rdev->data_offset;
4660 	smp_wmb();
4661 	conf->reshape_progress = MaxSector;
4662 	conf->reshape_safe = MaxSector;
4663 	mddev->reshape_position = MaxSector;
4664 	spin_unlock_irq(&conf->device_lock);
4665 	return ret;
4666 }
4667 
4668 /* Calculate the last device-address that could contain
4669  * any block from the chunk that includes the array-address 's'
4670  * and report the next address.
4671  * i.e. the address returned will be chunk-aligned and after
4672  * any data that is in the chunk containing 's'.
4673  */
4674 static sector_t last_dev_address(sector_t s, struct geom *geo)
4675 {
4676 	s = (s | geo->chunk_mask) + 1;
4677 	s >>= geo->chunk_shift;
4678 	s *= geo->near_copies;
4679 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680 	s *= geo->far_copies;
4681 	s <<= geo->chunk_shift;
4682 	return s;
4683 }
4684 
4685 /* Calculate the first device-address that could contain
4686  * any block from the chunk that includes the array-address 's'.
4687  * This too will be the start of a chunk
4688  */
4689 static sector_t first_dev_address(sector_t s, struct geom *geo)
4690 {
4691 	s >>= geo->chunk_shift;
4692 	s *= geo->near_copies;
4693 	sector_div(s, geo->raid_disks);
4694 	s *= geo->far_copies;
4695 	s <<= geo->chunk_shift;
4696 	return s;
4697 }
4698 
4699 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4700 				int *skipped)
4701 {
4702 	/* We simply copy at most one chunk (smallest of old and new)
4703 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4704 	 * or we hit a bad block or something.
4705 	 * This might mean we pause for normal IO in the middle of
4706 	 * a chunk, but that is not a problem as mddev->reshape_position
4707 	 * can record any location.
4708 	 *
4709 	 * If we will want to write to a location that isn't
4710 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4711 	 * we need to flush all reshape requests and update the metadata.
4712 	 *
4713 	 * When reshaping forwards (e.g. to more devices), we interpret
4714 	 * 'safe' as the earliest block which might not have been copied
4715 	 * down yet.  We divide this by previous stripe size and multiply
4716 	 * by previous stripe length to get lowest device offset that we
4717 	 * cannot write to yet.
4718 	 * We interpret 'sector_nr' as an address that we want to write to.
4719 	 * From this we use last_device_address() to find where we might
4720 	 * write to, and first_device_address on the  'safe' position.
4721 	 * If this 'next' write position is after the 'safe' position,
4722 	 * we must update the metadata to increase the 'safe' position.
4723 	 *
4724 	 * When reshaping backwards, we round in the opposite direction
4725 	 * and perform the reverse test:  next write position must not be
4726 	 * less than current safe position.
4727 	 *
4728 	 * In all this the minimum difference in data offsets
4729 	 * (conf->offset_diff - always positive) allows a bit of slack,
4730 	 * so next can be after 'safe', but not by more than offset_diff
4731 	 *
4732 	 * We need to prepare all the bios here before we start any IO
4733 	 * to ensure the size we choose is acceptable to all devices.
4734 	 * The means one for each copy for write-out and an extra one for
4735 	 * read-in.
4736 	 * We store the read-in bio in ->master_bio and the others in
4737 	 * ->devs[x].bio and ->devs[x].repl_bio.
4738 	 */
4739 	struct r10conf *conf = mddev->private;
4740 	struct r10bio *r10_bio;
4741 	sector_t next, safe, last;
4742 	int max_sectors;
4743 	int nr_sectors;
4744 	int s;
4745 	struct md_rdev *rdev;
4746 	int need_flush = 0;
4747 	struct bio *blist;
4748 	struct bio *bio, *read_bio;
4749 	int sectors_done = 0;
4750 	struct page **pages;
4751 
4752 	if (sector_nr == 0) {
4753 		/* If restarting in the middle, skip the initial sectors */
4754 		if (mddev->reshape_backwards &&
4755 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756 			sector_nr = (raid10_size(mddev, 0, 0)
4757 				     - conf->reshape_progress);
4758 		} else if (!mddev->reshape_backwards &&
4759 			   conf->reshape_progress > 0)
4760 			sector_nr = conf->reshape_progress;
4761 		if (sector_nr) {
4762 			mddev->curr_resync_completed = sector_nr;
4763 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4764 			*skipped = 1;
4765 			return sector_nr;
4766 		}
4767 	}
4768 
4769 	/* We don't use sector_nr to track where we are up to
4770 	 * as that doesn't work well for ->reshape_backwards.
4771 	 * So just use ->reshape_progress.
4772 	 */
4773 	if (mddev->reshape_backwards) {
4774 		/* 'next' is the earliest device address that we might
4775 		 * write to for this chunk in the new layout
4776 		 */
4777 		next = first_dev_address(conf->reshape_progress - 1,
4778 					 &conf->geo);
4779 
4780 		/* 'safe' is the last device address that we might read from
4781 		 * in the old layout after a restart
4782 		 */
4783 		safe = last_dev_address(conf->reshape_safe - 1,
4784 					&conf->prev);
4785 
4786 		if (next + conf->offset_diff < safe)
4787 			need_flush = 1;
4788 
4789 		last = conf->reshape_progress - 1;
4790 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791 					       & conf->prev.chunk_mask);
4792 		if (sector_nr + RESYNC_SECTORS < last)
4793 			sector_nr = last + 1 - RESYNC_SECTORS;
4794 	} else {
4795 		/* 'next' is after the last device address that we
4796 		 * might write to for this chunk in the new layout
4797 		 */
4798 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4799 
4800 		/* 'safe' is the earliest device address that we might
4801 		 * read from in the old layout after a restart
4802 		 */
4803 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4804 
4805 		/* Need to update metadata if 'next' might be beyond 'safe'
4806 		 * as that would possibly corrupt data
4807 		 */
4808 		if (next > safe + conf->offset_diff)
4809 			need_flush = 1;
4810 
4811 		sector_nr = conf->reshape_progress;
4812 		last  = sector_nr | (conf->geo.chunk_mask
4813 				     & conf->prev.chunk_mask);
4814 
4815 		if (sector_nr + RESYNC_SECTORS <= last)
4816 			last = sector_nr + RESYNC_SECTORS - 1;
4817 	}
4818 
4819 	if (need_flush ||
4820 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821 		/* Need to update reshape_position in metadata */
4822 		wait_barrier(conf);
4823 		mddev->reshape_position = conf->reshape_progress;
4824 		if (mddev->reshape_backwards)
4825 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826 				- conf->reshape_progress;
4827 		else
4828 			mddev->curr_resync_completed = conf->reshape_progress;
4829 		conf->reshape_checkpoint = jiffies;
4830 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4831 		md_wakeup_thread(mddev->thread);
4832 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4833 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835 			allow_barrier(conf);
4836 			return sectors_done;
4837 		}
4838 		conf->reshape_safe = mddev->reshape_position;
4839 		allow_barrier(conf);
4840 	}
4841 
4842 	raise_barrier(conf, 0);
4843 read_more:
4844 	/* Now schedule reads for blocks from sector_nr to last */
4845 	r10_bio = raid10_alloc_init_r10buf(conf);
4846 	r10_bio->state = 0;
4847 	raise_barrier(conf, 1);
4848 	atomic_set(&r10_bio->remaining, 0);
4849 	r10_bio->mddev = mddev;
4850 	r10_bio->sector = sector_nr;
4851 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4852 	r10_bio->sectors = last - sector_nr + 1;
4853 	rdev = read_balance(conf, r10_bio, &max_sectors);
4854 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4855 
4856 	if (!rdev) {
4857 		/* Cannot read from here, so need to record bad blocks
4858 		 * on all the target devices.
4859 		 */
4860 		// FIXME
4861 		mempool_free(r10_bio, &conf->r10buf_pool);
4862 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863 		return sectors_done;
4864 	}
4865 
4866 	read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4867 
4868 	bio_set_dev(read_bio, rdev->bdev);
4869 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4870 			       + rdev->data_offset);
4871 	read_bio->bi_private = r10_bio;
4872 	read_bio->bi_end_io = end_reshape_read;
4873 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4874 	r10_bio->master_bio = read_bio;
4875 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4876 
4877 	/*
4878 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4879 	 * write to the region to avoid conflict.
4880 	*/
4881 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882 		struct mdp_superblock_1 *sb = NULL;
4883 		int sb_reshape_pos = 0;
4884 
4885 		conf->cluster_sync_low = sector_nr;
4886 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887 		sb = page_address(rdev->sb_page);
4888 		if (sb) {
4889 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4890 			/*
4891 			 * Set cluster_sync_low again if next address for array
4892 			 * reshape is less than cluster_sync_low. Since we can't
4893 			 * update cluster_sync_low until it has finished reshape.
4894 			 */
4895 			if (sb_reshape_pos < conf->cluster_sync_low)
4896 				conf->cluster_sync_low = sb_reshape_pos;
4897 		}
4898 
4899 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900 							  conf->cluster_sync_high);
4901 	}
4902 
4903 	/* Now find the locations in the new layout */
4904 	__raid10_find_phys(&conf->geo, r10_bio);
4905 
4906 	blist = read_bio;
4907 	read_bio->bi_next = NULL;
4908 
4909 	rcu_read_lock();
4910 	for (s = 0; s < conf->copies*2; s++) {
4911 		struct bio *b;
4912 		int d = r10_bio->devs[s/2].devnum;
4913 		struct md_rdev *rdev2;
4914 		if (s&1) {
4915 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4916 			b = r10_bio->devs[s/2].repl_bio;
4917 		} else {
4918 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4919 			b = r10_bio->devs[s/2].bio;
4920 		}
4921 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4922 			continue;
4923 
4924 		bio_set_dev(b, rdev2->bdev);
4925 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926 			rdev2->new_data_offset;
4927 		b->bi_end_io = end_reshape_write;
4928 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4929 		b->bi_next = blist;
4930 		blist = b;
4931 	}
4932 
4933 	/* Now add as many pages as possible to all of these bios. */
4934 
4935 	nr_sectors = 0;
4936 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4937 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4938 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4939 		int len = (max_sectors - s) << 9;
4940 		if (len > PAGE_SIZE)
4941 			len = PAGE_SIZE;
4942 		for (bio = blist; bio ; bio = bio->bi_next) {
4943 			/*
4944 			 * won't fail because the vec table is big enough
4945 			 * to hold all these pages
4946 			 */
4947 			bio_add_page(bio, page, len, 0);
4948 		}
4949 		sector_nr += len >> 9;
4950 		nr_sectors += len >> 9;
4951 	}
4952 	rcu_read_unlock();
4953 	r10_bio->sectors = nr_sectors;
4954 
4955 	/* Now submit the read */
4956 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4957 	atomic_inc(&r10_bio->remaining);
4958 	read_bio->bi_next = NULL;
4959 	submit_bio_noacct(read_bio);
4960 	sectors_done += nr_sectors;
4961 	if (sector_nr <= last)
4962 		goto read_more;
4963 
4964 	lower_barrier(conf);
4965 
4966 	/* Now that we have done the whole section we can
4967 	 * update reshape_progress
4968 	 */
4969 	if (mddev->reshape_backwards)
4970 		conf->reshape_progress -= sectors_done;
4971 	else
4972 		conf->reshape_progress += sectors_done;
4973 
4974 	return sectors_done;
4975 }
4976 
4977 static void end_reshape_request(struct r10bio *r10_bio);
4978 static int handle_reshape_read_error(struct mddev *mddev,
4979 				     struct r10bio *r10_bio);
4980 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4981 {
4982 	/* Reshape read completed.  Hopefully we have a block
4983 	 * to write out.
4984 	 * If we got a read error then we do sync 1-page reads from
4985 	 * elsewhere until we find the data - or give up.
4986 	 */
4987 	struct r10conf *conf = mddev->private;
4988 	int s;
4989 
4990 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992 			/* Reshape has been aborted */
4993 			md_done_sync(mddev, r10_bio->sectors, 0);
4994 			return;
4995 		}
4996 
4997 	/* We definitely have the data in the pages, schedule the
4998 	 * writes.
4999 	 */
5000 	atomic_set(&r10_bio->remaining, 1);
5001 	for (s = 0; s < conf->copies*2; s++) {
5002 		struct bio *b;
5003 		int d = r10_bio->devs[s/2].devnum;
5004 		struct md_rdev *rdev;
5005 		rcu_read_lock();
5006 		if (s&1) {
5007 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5008 			b = r10_bio->devs[s/2].repl_bio;
5009 		} else {
5010 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5011 			b = r10_bio->devs[s/2].bio;
5012 		}
5013 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5014 			rcu_read_unlock();
5015 			continue;
5016 		}
5017 		atomic_inc(&rdev->nr_pending);
5018 		rcu_read_unlock();
5019 		md_sync_acct_bio(b, r10_bio->sectors);
5020 		atomic_inc(&r10_bio->remaining);
5021 		b->bi_next = NULL;
5022 		submit_bio_noacct(b);
5023 	}
5024 	end_reshape_request(r10_bio);
5025 }
5026 
5027 static void end_reshape(struct r10conf *conf)
5028 {
5029 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5030 		return;
5031 
5032 	spin_lock_irq(&conf->device_lock);
5033 	conf->prev = conf->geo;
5034 	md_finish_reshape(conf->mddev);
5035 	smp_wmb();
5036 	conf->reshape_progress = MaxSector;
5037 	conf->reshape_safe = MaxSector;
5038 	spin_unlock_irq(&conf->device_lock);
5039 
5040 	if (conf->mddev->queue)
5041 		raid10_set_io_opt(conf);
5042 	conf->fullsync = 0;
5043 }
5044 
5045 static void raid10_update_reshape_pos(struct mddev *mddev)
5046 {
5047 	struct r10conf *conf = mddev->private;
5048 	sector_t lo, hi;
5049 
5050 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052 	    || mddev->reshape_position == MaxSector)
5053 		conf->reshape_progress = mddev->reshape_position;
5054 	else
5055 		WARN_ON_ONCE(1);
5056 }
5057 
5058 static int handle_reshape_read_error(struct mddev *mddev,
5059 				     struct r10bio *r10_bio)
5060 {
5061 	/* Use sync reads to get the blocks from somewhere else */
5062 	int sectors = r10_bio->sectors;
5063 	struct r10conf *conf = mddev->private;
5064 	struct r10bio *r10b;
5065 	int slot = 0;
5066 	int idx = 0;
5067 	struct page **pages;
5068 
5069 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5070 	if (!r10b) {
5071 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5072 		return -ENOMEM;
5073 	}
5074 
5075 	/* reshape IOs share pages from .devs[0].bio */
5076 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5077 
5078 	r10b->sector = r10_bio->sector;
5079 	__raid10_find_phys(&conf->prev, r10b);
5080 
5081 	while (sectors) {
5082 		int s = sectors;
5083 		int success = 0;
5084 		int first_slot = slot;
5085 
5086 		if (s > (PAGE_SIZE >> 9))
5087 			s = PAGE_SIZE >> 9;
5088 
5089 		rcu_read_lock();
5090 		while (!success) {
5091 			int d = r10b->devs[slot].devnum;
5092 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5093 			sector_t addr;
5094 			if (rdev == NULL ||
5095 			    test_bit(Faulty, &rdev->flags) ||
5096 			    !test_bit(In_sync, &rdev->flags))
5097 				goto failed;
5098 
5099 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5100 			atomic_inc(&rdev->nr_pending);
5101 			rcu_read_unlock();
5102 			success = sync_page_io(rdev,
5103 					       addr,
5104 					       s << 9,
5105 					       pages[idx],
5106 					       REQ_OP_READ, 0, false);
5107 			rdev_dec_pending(rdev, mddev);
5108 			rcu_read_lock();
5109 			if (success)
5110 				break;
5111 		failed:
5112 			slot++;
5113 			if (slot >= conf->copies)
5114 				slot = 0;
5115 			if (slot == first_slot)
5116 				break;
5117 		}
5118 		rcu_read_unlock();
5119 		if (!success) {
5120 			/* couldn't read this block, must give up */
5121 			set_bit(MD_RECOVERY_INTR,
5122 				&mddev->recovery);
5123 			kfree(r10b);
5124 			return -EIO;
5125 		}
5126 		sectors -= s;
5127 		idx++;
5128 	}
5129 	kfree(r10b);
5130 	return 0;
5131 }
5132 
5133 static void end_reshape_write(struct bio *bio)
5134 {
5135 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5136 	struct mddev *mddev = r10_bio->mddev;
5137 	struct r10conf *conf = mddev->private;
5138 	int d;
5139 	int slot;
5140 	int repl;
5141 	struct md_rdev *rdev = NULL;
5142 
5143 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5144 	if (repl)
5145 		rdev = conf->mirrors[d].replacement;
5146 	if (!rdev) {
5147 		smp_mb();
5148 		rdev = conf->mirrors[d].rdev;
5149 	}
5150 
5151 	if (bio->bi_status) {
5152 		/* FIXME should record badblock */
5153 		md_error(mddev, rdev);
5154 	}
5155 
5156 	rdev_dec_pending(rdev, mddev);
5157 	end_reshape_request(r10_bio);
5158 }
5159 
5160 static void end_reshape_request(struct r10bio *r10_bio)
5161 {
5162 	if (!atomic_dec_and_test(&r10_bio->remaining))
5163 		return;
5164 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165 	bio_put(r10_bio->master_bio);
5166 	put_buf(r10_bio);
5167 }
5168 
5169 static void raid10_finish_reshape(struct mddev *mddev)
5170 {
5171 	struct r10conf *conf = mddev->private;
5172 
5173 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5174 		return;
5175 
5176 	if (mddev->delta_disks > 0) {
5177 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178 			mddev->recovery_cp = mddev->resync_max_sectors;
5179 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5180 		}
5181 		mddev->resync_max_sectors = mddev->array_sectors;
5182 	} else {
5183 		int d;
5184 		rcu_read_lock();
5185 		for (d = conf->geo.raid_disks ;
5186 		     d < conf->geo.raid_disks - mddev->delta_disks;
5187 		     d++) {
5188 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5189 			if (rdev)
5190 				clear_bit(In_sync, &rdev->flags);
5191 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5192 			if (rdev)
5193 				clear_bit(In_sync, &rdev->flags);
5194 		}
5195 		rcu_read_unlock();
5196 	}
5197 	mddev->layout = mddev->new_layout;
5198 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199 	mddev->reshape_position = MaxSector;
5200 	mddev->delta_disks = 0;
5201 	mddev->reshape_backwards = 0;
5202 }
5203 
5204 static struct md_personality raid10_personality =
5205 {
5206 	.name		= "raid10",
5207 	.level		= 10,
5208 	.owner		= THIS_MODULE,
5209 	.make_request	= raid10_make_request,
5210 	.run		= raid10_run,
5211 	.free		= raid10_free,
5212 	.status		= raid10_status,
5213 	.error_handler	= raid10_error,
5214 	.hot_add_disk	= raid10_add_disk,
5215 	.hot_remove_disk= raid10_remove_disk,
5216 	.spare_active	= raid10_spare_active,
5217 	.sync_request	= raid10_sync_request,
5218 	.quiesce	= raid10_quiesce,
5219 	.size		= raid10_size,
5220 	.resize		= raid10_resize,
5221 	.takeover	= raid10_takeover,
5222 	.check_reshape	= raid10_check_reshape,
5223 	.start_reshape	= raid10_start_reshape,
5224 	.finish_reshape	= raid10_finish_reshape,
5225 	.update_reshape_pos = raid10_update_reshape_pos,
5226 };
5227 
5228 static int __init raid_init(void)
5229 {
5230 	return register_md_personality(&raid10_personality);
5231 }
5232 
5233 static void raid_exit(void)
5234 {
5235 	unregister_md_personality(&raid10_personality);
5236 }
5237 
5238 module_init(raid_init);
5239 module_exit(raid_exit);
5240 MODULE_LICENSE("GPL");
5241 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5242 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5243 MODULE_ALIAS("md-raid10");
5244 MODULE_ALIAS("md-level-10");
5245 
5246 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
5247