1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include "md.h" 28 #include "raid10.h" 29 #include "raid0.h" 30 #include "bitmap.h" 31 32 /* 33 * RAID10 provides a combination of RAID0 and RAID1 functionality. 34 * The layout of data is defined by 35 * chunk_size 36 * raid_disks 37 * near_copies (stored in low byte of layout) 38 * far_copies (stored in second byte of layout) 39 * far_offset (stored in bit 16 of layout ) 40 * 41 * The data to be stored is divided into chunks using chunksize. 42 * Each device is divided into far_copies sections. 43 * In each section, chunks are laid out in a style similar to raid0, but 44 * near_copies copies of each chunk is stored (each on a different drive). 45 * The starting device for each section is offset near_copies from the starting 46 * device of the previous section. 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 48 * drive. 49 * near_copies and far_copies must be at least one, and their product is at most 50 * raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of be very far apart 54 * on disk, there are adjacent stripes. 55 */ 56 57 /* 58 * Number of guaranteed r10bios in case of extreme VM load: 59 */ 60 #define NR_RAID10_BIOS 256 61 62 /* When there are this many requests queue to be written by 63 * the raid10 thread, we become 'congested' to provide back-pressure 64 * for writeback. 65 */ 66 static int max_queued_requests = 1024; 67 68 static void allow_barrier(struct r10conf *conf); 69 static void lower_barrier(struct r10conf *conf); 70 71 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 72 { 73 struct r10conf *conf = data; 74 int size = offsetof(struct r10bio, devs[conf->copies]); 75 76 /* allocate a r10bio with room for raid_disks entries in the bios array */ 77 return kzalloc(size, gfp_flags); 78 } 79 80 static void r10bio_pool_free(void *r10_bio, void *data) 81 { 82 kfree(r10_bio); 83 } 84 85 /* Maximum size of each resync request */ 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 88 /* amount of memory to reserve for resync requests */ 89 #define RESYNC_WINDOW (1024*1024) 90 /* maximum number of concurrent requests, memory permitting */ 91 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 92 93 /* 94 * When performing a resync, we need to read and compare, so 95 * we need as many pages are there are copies. 96 * When performing a recovery, we need 2 bios, one for read, 97 * one for write (we recover only one drive per r10buf) 98 * 99 */ 100 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 101 { 102 struct r10conf *conf = data; 103 struct page *page; 104 struct r10bio *r10_bio; 105 struct bio *bio; 106 int i, j; 107 int nalloc; 108 109 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 110 if (!r10_bio) 111 return NULL; 112 113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 114 nalloc = conf->copies; /* resync */ 115 else 116 nalloc = 2; /* recovery */ 117 118 /* 119 * Allocate bios. 120 */ 121 for (j = nalloc ; j-- ; ) { 122 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 123 if (!bio) 124 goto out_free_bio; 125 r10_bio->devs[j].bio = bio; 126 } 127 /* 128 * Allocate RESYNC_PAGES data pages and attach them 129 * where needed. 130 */ 131 for (j = 0 ; j < nalloc; j++) { 132 bio = r10_bio->devs[j].bio; 133 for (i = 0; i < RESYNC_PAGES; i++) { 134 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 135 &conf->mddev->recovery)) { 136 /* we can share bv_page's during recovery */ 137 struct bio *rbio = r10_bio->devs[0].bio; 138 page = rbio->bi_io_vec[i].bv_page; 139 get_page(page); 140 } else 141 page = alloc_page(gfp_flags); 142 if (unlikely(!page)) 143 goto out_free_pages; 144 145 bio->bi_io_vec[i].bv_page = page; 146 } 147 } 148 149 return r10_bio; 150 151 out_free_pages: 152 for ( ; i > 0 ; i--) 153 safe_put_page(bio->bi_io_vec[i-1].bv_page); 154 while (j--) 155 for (i = 0; i < RESYNC_PAGES ; i++) 156 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 157 j = -1; 158 out_free_bio: 159 while ( ++j < nalloc ) 160 bio_put(r10_bio->devs[j].bio); 161 r10bio_pool_free(r10_bio, conf); 162 return NULL; 163 } 164 165 static void r10buf_pool_free(void *__r10_bio, void *data) 166 { 167 int i; 168 struct r10conf *conf = data; 169 struct r10bio *r10bio = __r10_bio; 170 int j; 171 172 for (j=0; j < conf->copies; j++) { 173 struct bio *bio = r10bio->devs[j].bio; 174 if (bio) { 175 for (i = 0; i < RESYNC_PAGES; i++) { 176 safe_put_page(bio->bi_io_vec[i].bv_page); 177 bio->bi_io_vec[i].bv_page = NULL; 178 } 179 bio_put(bio); 180 } 181 } 182 r10bio_pool_free(r10bio, conf); 183 } 184 185 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 186 { 187 int i; 188 189 for (i = 0; i < conf->copies; i++) { 190 struct bio **bio = & r10_bio->devs[i].bio; 191 if (!BIO_SPECIAL(*bio)) 192 bio_put(*bio); 193 *bio = NULL; 194 } 195 } 196 197 static void free_r10bio(struct r10bio *r10_bio) 198 { 199 struct r10conf *conf = r10_bio->mddev->private; 200 201 put_all_bios(conf, r10_bio); 202 mempool_free(r10_bio, conf->r10bio_pool); 203 } 204 205 static void put_buf(struct r10bio *r10_bio) 206 { 207 struct r10conf *conf = r10_bio->mddev->private; 208 209 mempool_free(r10_bio, conf->r10buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(struct r10bio *r10_bio) 215 { 216 unsigned long flags; 217 struct mddev *mddev = r10_bio->mddev; 218 struct r10conf *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r10_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 /* wake up frozen array... */ 226 wake_up(&conf->wait_barrier); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(struct r10bio *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 int done; 240 struct r10conf *conf = r10_bio->mddev->private; 241 242 if (bio->bi_phys_segments) { 243 unsigned long flags; 244 spin_lock_irqsave(&conf->device_lock, flags); 245 bio->bi_phys_segments--; 246 done = (bio->bi_phys_segments == 0); 247 spin_unlock_irqrestore(&conf->device_lock, flags); 248 } else 249 done = 1; 250 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 251 clear_bit(BIO_UPTODATE, &bio->bi_flags); 252 if (done) { 253 bio_endio(bio, 0); 254 /* 255 * Wake up any possible resync thread that waits for the device 256 * to go idle. 257 */ 258 allow_barrier(conf); 259 } 260 free_r10bio(r10_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 267 { 268 struct r10conf *conf = r10_bio->mddev->private; 269 270 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 271 r10_bio->devs[slot].addr + (r10_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 278 struct bio *bio, int *slotp) 279 { 280 int slot; 281 282 for (slot = 0; slot < conf->copies; slot++) 283 if (r10_bio->devs[slot].bio == bio) 284 break; 285 286 BUG_ON(slot == conf->copies); 287 update_head_pos(slot, r10_bio); 288 289 if (slotp) 290 *slotp = slot; 291 return r10_bio->devs[slot].devnum; 292 } 293 294 static void raid10_end_read_request(struct bio *bio, int error) 295 { 296 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 297 struct r10bio *r10_bio = bio->bi_private; 298 int slot, dev; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 302 slot = r10_bio->read_slot; 303 dev = r10_bio->devs[slot].devnum; 304 /* 305 * this branch is our 'one mirror IO has finished' event handler: 306 */ 307 update_head_pos(slot, r10_bio); 308 309 if (uptodate) { 310 /* 311 * Set R10BIO_Uptodate in our master bio, so that 312 * we will return a good error code to the higher 313 * levels even if IO on some other mirrored buffer fails. 314 * 315 * The 'master' represents the composite IO operation to 316 * user-side. So if something waits for IO, then it will 317 * wait for the 'master' bio. 318 */ 319 set_bit(R10BIO_Uptodate, &r10_bio->state); 320 raid_end_bio_io(r10_bio); 321 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 322 } else { 323 /* 324 * oops, read error - keep the refcount on the rdev 325 */ 326 char b[BDEVNAME_SIZE]; 327 printk_ratelimited(KERN_ERR 328 "md/raid10:%s: %s: rescheduling sector %llu\n", 329 mdname(conf->mddev), 330 bdevname(conf->mirrors[dev].rdev->bdev, b), 331 (unsigned long long)r10_bio->sector); 332 set_bit(R10BIO_ReadError, &r10_bio->state); 333 reschedule_retry(r10_bio); 334 } 335 } 336 337 static void close_write(struct r10bio *r10_bio) 338 { 339 /* clear the bitmap if all writes complete successfully */ 340 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 341 r10_bio->sectors, 342 !test_bit(R10BIO_Degraded, &r10_bio->state), 343 0); 344 md_write_end(r10_bio->mddev); 345 } 346 347 static void one_write_done(struct r10bio *r10_bio) 348 { 349 if (atomic_dec_and_test(&r10_bio->remaining)) { 350 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 351 reschedule_retry(r10_bio); 352 else { 353 close_write(r10_bio); 354 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 355 reschedule_retry(r10_bio); 356 else 357 raid_end_bio_io(r10_bio); 358 } 359 } 360 } 361 362 static void raid10_end_write_request(struct bio *bio, int error) 363 { 364 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 365 struct r10bio *r10_bio = bio->bi_private; 366 int dev; 367 int dec_rdev = 1; 368 struct r10conf *conf = r10_bio->mddev->private; 369 int slot; 370 371 dev = find_bio_disk(conf, r10_bio, bio, &slot); 372 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 if (!uptodate) { 377 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags); 378 set_bit(R10BIO_WriteError, &r10_bio->state); 379 dec_rdev = 0; 380 } else { 381 /* 382 * Set R10BIO_Uptodate in our master bio, so that 383 * we will return a good error code for to the higher 384 * levels even if IO on some other mirrored buffer fails. 385 * 386 * The 'master' represents the composite IO operation to 387 * user-side. So if something waits for IO, then it will 388 * wait for the 'master' bio. 389 */ 390 sector_t first_bad; 391 int bad_sectors; 392 393 set_bit(R10BIO_Uptodate, &r10_bio->state); 394 395 /* Maybe we can clear some bad blocks. */ 396 if (is_badblock(conf->mirrors[dev].rdev, 397 r10_bio->devs[slot].addr, 398 r10_bio->sectors, 399 &first_bad, &bad_sectors)) { 400 bio_put(bio); 401 r10_bio->devs[slot].bio = IO_MADE_GOOD; 402 dec_rdev = 0; 403 set_bit(R10BIO_MadeGood, &r10_bio->state); 404 } 405 } 406 407 /* 408 * 409 * Let's see if all mirrored write operations have finished 410 * already. 411 */ 412 one_write_done(r10_bio); 413 if (dec_rdev) 414 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 415 } 416 417 418 /* 419 * RAID10 layout manager 420 * As well as the chunksize and raid_disks count, there are two 421 * parameters: near_copies and far_copies. 422 * near_copies * far_copies must be <= raid_disks. 423 * Normally one of these will be 1. 424 * If both are 1, we get raid0. 425 * If near_copies == raid_disks, we get raid1. 426 * 427 * Chunks are laid out in raid0 style with near_copies copies of the 428 * first chunk, followed by near_copies copies of the next chunk and 429 * so on. 430 * If far_copies > 1, then after 1/far_copies of the array has been assigned 431 * as described above, we start again with a device offset of near_copies. 432 * So we effectively have another copy of the whole array further down all 433 * the drives, but with blocks on different drives. 434 * With this layout, and block is never stored twice on the one device. 435 * 436 * raid10_find_phys finds the sector offset of a given virtual sector 437 * on each device that it is on. 438 * 439 * raid10_find_virt does the reverse mapping, from a device and a 440 * sector offset to a virtual address 441 */ 442 443 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 444 { 445 int n,f; 446 sector_t sector; 447 sector_t chunk; 448 sector_t stripe; 449 int dev; 450 451 int slot = 0; 452 453 /* now calculate first sector/dev */ 454 chunk = r10bio->sector >> conf->chunk_shift; 455 sector = r10bio->sector & conf->chunk_mask; 456 457 chunk *= conf->near_copies; 458 stripe = chunk; 459 dev = sector_div(stripe, conf->raid_disks); 460 if (conf->far_offset) 461 stripe *= conf->far_copies; 462 463 sector += stripe << conf->chunk_shift; 464 465 /* and calculate all the others */ 466 for (n=0; n < conf->near_copies; n++) { 467 int d = dev; 468 sector_t s = sector; 469 r10bio->devs[slot].addr = sector; 470 r10bio->devs[slot].devnum = d; 471 slot++; 472 473 for (f = 1; f < conf->far_copies; f++) { 474 d += conf->near_copies; 475 if (d >= conf->raid_disks) 476 d -= conf->raid_disks; 477 s += conf->stride; 478 r10bio->devs[slot].devnum = d; 479 r10bio->devs[slot].addr = s; 480 slot++; 481 } 482 dev++; 483 if (dev >= conf->raid_disks) { 484 dev = 0; 485 sector += (conf->chunk_mask + 1); 486 } 487 } 488 BUG_ON(slot != conf->copies); 489 } 490 491 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 492 { 493 sector_t offset, chunk, vchunk; 494 495 offset = sector & conf->chunk_mask; 496 if (conf->far_offset) { 497 int fc; 498 chunk = sector >> conf->chunk_shift; 499 fc = sector_div(chunk, conf->far_copies); 500 dev -= fc * conf->near_copies; 501 if (dev < 0) 502 dev += conf->raid_disks; 503 } else { 504 while (sector >= conf->stride) { 505 sector -= conf->stride; 506 if (dev < conf->near_copies) 507 dev += conf->raid_disks - conf->near_copies; 508 else 509 dev -= conf->near_copies; 510 } 511 chunk = sector >> conf->chunk_shift; 512 } 513 vchunk = chunk * conf->raid_disks + dev; 514 sector_div(vchunk, conf->near_copies); 515 return (vchunk << conf->chunk_shift) + offset; 516 } 517 518 /** 519 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 520 * @q: request queue 521 * @bvm: properties of new bio 522 * @biovec: the request that could be merged to it. 523 * 524 * Return amount of bytes we can accept at this offset 525 * If near_copies == raid_disk, there are no striping issues, 526 * but in that case, the function isn't called at all. 527 */ 528 static int raid10_mergeable_bvec(struct request_queue *q, 529 struct bvec_merge_data *bvm, 530 struct bio_vec *biovec) 531 { 532 struct mddev *mddev = q->queuedata; 533 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 534 int max; 535 unsigned int chunk_sectors = mddev->chunk_sectors; 536 unsigned int bio_sectors = bvm->bi_size >> 9; 537 538 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 539 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 540 if (max <= biovec->bv_len && bio_sectors == 0) 541 return biovec->bv_len; 542 else 543 return max; 544 } 545 546 /* 547 * This routine returns the disk from which the requested read should 548 * be done. There is a per-array 'next expected sequential IO' sector 549 * number - if this matches on the next IO then we use the last disk. 550 * There is also a per-disk 'last know head position' sector that is 551 * maintained from IRQ contexts, both the normal and the resync IO 552 * completion handlers update this position correctly. If there is no 553 * perfect sequential match then we pick the disk whose head is closest. 554 * 555 * If there are 2 mirrors in the same 2 devices, performance degrades 556 * because position is mirror, not device based. 557 * 558 * The rdev for the device selected will have nr_pending incremented. 559 */ 560 561 /* 562 * FIXME: possibly should rethink readbalancing and do it differently 563 * depending on near_copies / far_copies geometry. 564 */ 565 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors) 566 { 567 const sector_t this_sector = r10_bio->sector; 568 int disk, slot; 569 int sectors = r10_bio->sectors; 570 int best_good_sectors; 571 sector_t new_distance, best_dist; 572 struct md_rdev *rdev; 573 int do_balance; 574 int best_slot; 575 576 raid10_find_phys(conf, r10_bio); 577 rcu_read_lock(); 578 retry: 579 sectors = r10_bio->sectors; 580 best_slot = -1; 581 best_dist = MaxSector; 582 best_good_sectors = 0; 583 do_balance = 1; 584 /* 585 * Check if we can balance. We can balance on the whole 586 * device if no resync is going on (recovery is ok), or below 587 * the resync window. We take the first readable disk when 588 * above the resync window. 589 */ 590 if (conf->mddev->recovery_cp < MaxSector 591 && (this_sector + sectors >= conf->next_resync)) 592 do_balance = 0; 593 594 for (slot = 0; slot < conf->copies ; slot++) { 595 sector_t first_bad; 596 int bad_sectors; 597 sector_t dev_sector; 598 599 if (r10_bio->devs[slot].bio == IO_BLOCKED) 600 continue; 601 disk = r10_bio->devs[slot].devnum; 602 rdev = rcu_dereference(conf->mirrors[disk].rdev); 603 if (rdev == NULL) 604 continue; 605 if (!test_bit(In_sync, &rdev->flags)) 606 continue; 607 608 dev_sector = r10_bio->devs[slot].addr; 609 if (is_badblock(rdev, dev_sector, sectors, 610 &first_bad, &bad_sectors)) { 611 if (best_dist < MaxSector) 612 /* Already have a better slot */ 613 continue; 614 if (first_bad <= dev_sector) { 615 /* Cannot read here. If this is the 616 * 'primary' device, then we must not read 617 * beyond 'bad_sectors' from another device. 618 */ 619 bad_sectors -= (dev_sector - first_bad); 620 if (!do_balance && sectors > bad_sectors) 621 sectors = bad_sectors; 622 if (best_good_sectors > sectors) 623 best_good_sectors = sectors; 624 } else { 625 sector_t good_sectors = 626 first_bad - dev_sector; 627 if (good_sectors > best_good_sectors) { 628 best_good_sectors = good_sectors; 629 best_slot = slot; 630 } 631 if (!do_balance) 632 /* Must read from here */ 633 break; 634 } 635 continue; 636 } else 637 best_good_sectors = sectors; 638 639 if (!do_balance) 640 break; 641 642 /* This optimisation is debatable, and completely destroys 643 * sequential read speed for 'far copies' arrays. So only 644 * keep it for 'near' arrays, and review those later. 645 */ 646 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 647 break; 648 649 /* for far > 1 always use the lowest address */ 650 if (conf->far_copies > 1) 651 new_distance = r10_bio->devs[slot].addr; 652 else 653 new_distance = abs(r10_bio->devs[slot].addr - 654 conf->mirrors[disk].head_position); 655 if (new_distance < best_dist) { 656 best_dist = new_distance; 657 best_slot = slot; 658 } 659 } 660 if (slot == conf->copies) 661 slot = best_slot; 662 663 if (slot >= 0) { 664 disk = r10_bio->devs[slot].devnum; 665 rdev = rcu_dereference(conf->mirrors[disk].rdev); 666 if (!rdev) 667 goto retry; 668 atomic_inc(&rdev->nr_pending); 669 if (test_bit(Faulty, &rdev->flags)) { 670 /* Cannot risk returning a device that failed 671 * before we inc'ed nr_pending 672 */ 673 rdev_dec_pending(rdev, conf->mddev); 674 goto retry; 675 } 676 r10_bio->read_slot = slot; 677 } else 678 disk = -1; 679 rcu_read_unlock(); 680 *max_sectors = best_good_sectors; 681 682 return disk; 683 } 684 685 static int raid10_congested(void *data, int bits) 686 { 687 struct mddev *mddev = data; 688 struct r10conf *conf = mddev->private; 689 int i, ret = 0; 690 691 if ((bits & (1 << BDI_async_congested)) && 692 conf->pending_count >= max_queued_requests) 693 return 1; 694 695 if (mddev_congested(mddev, bits)) 696 return 1; 697 rcu_read_lock(); 698 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 699 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 700 if (rdev && !test_bit(Faulty, &rdev->flags)) { 701 struct request_queue *q = bdev_get_queue(rdev->bdev); 702 703 ret |= bdi_congested(&q->backing_dev_info, bits); 704 } 705 } 706 rcu_read_unlock(); 707 return ret; 708 } 709 710 static void flush_pending_writes(struct r10conf *conf) 711 { 712 /* Any writes that have been queued but are awaiting 713 * bitmap updates get flushed here. 714 */ 715 spin_lock_irq(&conf->device_lock); 716 717 if (conf->pending_bio_list.head) { 718 struct bio *bio; 719 bio = bio_list_get(&conf->pending_bio_list); 720 conf->pending_count = 0; 721 spin_unlock_irq(&conf->device_lock); 722 /* flush any pending bitmap writes to disk 723 * before proceeding w/ I/O */ 724 bitmap_unplug(conf->mddev->bitmap); 725 wake_up(&conf->wait_barrier); 726 727 while (bio) { /* submit pending writes */ 728 struct bio *next = bio->bi_next; 729 bio->bi_next = NULL; 730 generic_make_request(bio); 731 bio = next; 732 } 733 } else 734 spin_unlock_irq(&conf->device_lock); 735 } 736 737 /* Barriers.... 738 * Sometimes we need to suspend IO while we do something else, 739 * either some resync/recovery, or reconfigure the array. 740 * To do this we raise a 'barrier'. 741 * The 'barrier' is a counter that can be raised multiple times 742 * to count how many activities are happening which preclude 743 * normal IO. 744 * We can only raise the barrier if there is no pending IO. 745 * i.e. if nr_pending == 0. 746 * We choose only to raise the barrier if no-one is waiting for the 747 * barrier to go down. This means that as soon as an IO request 748 * is ready, no other operations which require a barrier will start 749 * until the IO request has had a chance. 750 * 751 * So: regular IO calls 'wait_barrier'. When that returns there 752 * is no backgroup IO happening, It must arrange to call 753 * allow_barrier when it has finished its IO. 754 * backgroup IO calls must call raise_barrier. Once that returns 755 * there is no normal IO happeing. It must arrange to call 756 * lower_barrier when the particular background IO completes. 757 */ 758 759 static void raise_barrier(struct r10conf *conf, int force) 760 { 761 BUG_ON(force && !conf->barrier); 762 spin_lock_irq(&conf->resync_lock); 763 764 /* Wait until no block IO is waiting (unless 'force') */ 765 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 766 conf->resync_lock, ); 767 768 /* block any new IO from starting */ 769 conf->barrier++; 770 771 /* Now wait for all pending IO to complete */ 772 wait_event_lock_irq(conf->wait_barrier, 773 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 774 conf->resync_lock, ); 775 776 spin_unlock_irq(&conf->resync_lock); 777 } 778 779 static void lower_barrier(struct r10conf *conf) 780 { 781 unsigned long flags; 782 spin_lock_irqsave(&conf->resync_lock, flags); 783 conf->barrier--; 784 spin_unlock_irqrestore(&conf->resync_lock, flags); 785 wake_up(&conf->wait_barrier); 786 } 787 788 static void wait_barrier(struct r10conf *conf) 789 { 790 spin_lock_irq(&conf->resync_lock); 791 if (conf->barrier) { 792 conf->nr_waiting++; 793 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 794 conf->resync_lock, 795 ); 796 conf->nr_waiting--; 797 } 798 conf->nr_pending++; 799 spin_unlock_irq(&conf->resync_lock); 800 } 801 802 static void allow_barrier(struct r10conf *conf) 803 { 804 unsigned long flags; 805 spin_lock_irqsave(&conf->resync_lock, flags); 806 conf->nr_pending--; 807 spin_unlock_irqrestore(&conf->resync_lock, flags); 808 wake_up(&conf->wait_barrier); 809 } 810 811 static void freeze_array(struct r10conf *conf) 812 { 813 /* stop syncio and normal IO and wait for everything to 814 * go quiet. 815 * We increment barrier and nr_waiting, and then 816 * wait until nr_pending match nr_queued+1 817 * This is called in the context of one normal IO request 818 * that has failed. Thus any sync request that might be pending 819 * will be blocked by nr_pending, and we need to wait for 820 * pending IO requests to complete or be queued for re-try. 821 * Thus the number queued (nr_queued) plus this request (1) 822 * must match the number of pending IOs (nr_pending) before 823 * we continue. 824 */ 825 spin_lock_irq(&conf->resync_lock); 826 conf->barrier++; 827 conf->nr_waiting++; 828 wait_event_lock_irq(conf->wait_barrier, 829 conf->nr_pending == conf->nr_queued+1, 830 conf->resync_lock, 831 flush_pending_writes(conf)); 832 833 spin_unlock_irq(&conf->resync_lock); 834 } 835 836 static void unfreeze_array(struct r10conf *conf) 837 { 838 /* reverse the effect of the freeze */ 839 spin_lock_irq(&conf->resync_lock); 840 conf->barrier--; 841 conf->nr_waiting--; 842 wake_up(&conf->wait_barrier); 843 spin_unlock_irq(&conf->resync_lock); 844 } 845 846 static void make_request(struct mddev *mddev, struct bio * bio) 847 { 848 struct r10conf *conf = mddev->private; 849 struct mirror_info *mirror; 850 struct r10bio *r10_bio; 851 struct bio *read_bio; 852 int i; 853 int chunk_sects = conf->chunk_mask + 1; 854 const int rw = bio_data_dir(bio); 855 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 856 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 857 unsigned long flags; 858 struct md_rdev *blocked_rdev; 859 int plugged; 860 int sectors_handled; 861 int max_sectors; 862 863 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 864 md_flush_request(mddev, bio); 865 return; 866 } 867 868 /* If this request crosses a chunk boundary, we need to 869 * split it. This will only happen for 1 PAGE (or less) requests. 870 */ 871 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 872 > chunk_sects && 873 conf->near_copies < conf->raid_disks)) { 874 struct bio_pair *bp; 875 /* Sanity check -- queue functions should prevent this happening */ 876 if (bio->bi_vcnt != 1 || 877 bio->bi_idx != 0) 878 goto bad_map; 879 /* This is a one page bio that upper layers 880 * refuse to split for us, so we need to split it. 881 */ 882 bp = bio_split(bio, 883 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 884 885 /* Each of these 'make_request' calls will call 'wait_barrier'. 886 * If the first succeeds but the second blocks due to the resync 887 * thread raising the barrier, we will deadlock because the 888 * IO to the underlying device will be queued in generic_make_request 889 * and will never complete, so will never reduce nr_pending. 890 * So increment nr_waiting here so no new raise_barriers will 891 * succeed, and so the second wait_barrier cannot block. 892 */ 893 spin_lock_irq(&conf->resync_lock); 894 conf->nr_waiting++; 895 spin_unlock_irq(&conf->resync_lock); 896 897 make_request(mddev, &bp->bio1); 898 make_request(mddev, &bp->bio2); 899 900 spin_lock_irq(&conf->resync_lock); 901 conf->nr_waiting--; 902 wake_up(&conf->wait_barrier); 903 spin_unlock_irq(&conf->resync_lock); 904 905 bio_pair_release(bp); 906 return; 907 bad_map: 908 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 909 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 910 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 911 912 bio_io_error(bio); 913 return; 914 } 915 916 md_write_start(mddev, bio); 917 918 /* 919 * Register the new request and wait if the reconstruction 920 * thread has put up a bar for new requests. 921 * Continue immediately if no resync is active currently. 922 */ 923 wait_barrier(conf); 924 925 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 926 927 r10_bio->master_bio = bio; 928 r10_bio->sectors = bio->bi_size >> 9; 929 930 r10_bio->mddev = mddev; 931 r10_bio->sector = bio->bi_sector; 932 r10_bio->state = 0; 933 934 /* We might need to issue multiple reads to different 935 * devices if there are bad blocks around, so we keep 936 * track of the number of reads in bio->bi_phys_segments. 937 * If this is 0, there is only one r10_bio and no locking 938 * will be needed when the request completes. If it is 939 * non-zero, then it is the number of not-completed requests. 940 */ 941 bio->bi_phys_segments = 0; 942 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 943 944 if (rw == READ) { 945 /* 946 * read balancing logic: 947 */ 948 int disk; 949 int slot; 950 951 read_again: 952 disk = read_balance(conf, r10_bio, &max_sectors); 953 slot = r10_bio->read_slot; 954 if (disk < 0) { 955 raid_end_bio_io(r10_bio); 956 return; 957 } 958 mirror = conf->mirrors + disk; 959 960 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 961 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 962 max_sectors); 963 964 r10_bio->devs[slot].bio = read_bio; 965 966 read_bio->bi_sector = r10_bio->devs[slot].addr + 967 mirror->rdev->data_offset; 968 read_bio->bi_bdev = mirror->rdev->bdev; 969 read_bio->bi_end_io = raid10_end_read_request; 970 read_bio->bi_rw = READ | do_sync; 971 read_bio->bi_private = r10_bio; 972 973 if (max_sectors < r10_bio->sectors) { 974 /* Could not read all from this device, so we will 975 * need another r10_bio. 976 */ 977 sectors_handled = (r10_bio->sectors + max_sectors 978 - bio->bi_sector); 979 r10_bio->sectors = max_sectors; 980 spin_lock_irq(&conf->device_lock); 981 if (bio->bi_phys_segments == 0) 982 bio->bi_phys_segments = 2; 983 else 984 bio->bi_phys_segments++; 985 spin_unlock(&conf->device_lock); 986 /* Cannot call generic_make_request directly 987 * as that will be queued in __generic_make_request 988 * and subsequent mempool_alloc might block 989 * waiting for it. so hand bio over to raid10d. 990 */ 991 reschedule_retry(r10_bio); 992 993 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 994 995 r10_bio->master_bio = bio; 996 r10_bio->sectors = ((bio->bi_size >> 9) 997 - sectors_handled); 998 r10_bio->state = 0; 999 r10_bio->mddev = mddev; 1000 r10_bio->sector = bio->bi_sector + sectors_handled; 1001 goto read_again; 1002 } else 1003 generic_make_request(read_bio); 1004 return; 1005 } 1006 1007 /* 1008 * WRITE: 1009 */ 1010 if (conf->pending_count >= max_queued_requests) { 1011 md_wakeup_thread(mddev->thread); 1012 wait_event(conf->wait_barrier, 1013 conf->pending_count < max_queued_requests); 1014 } 1015 /* first select target devices under rcu_lock and 1016 * inc refcount on their rdev. Record them by setting 1017 * bios[x] to bio 1018 * If there are known/acknowledged bad blocks on any device 1019 * on which we have seen a write error, we want to avoid 1020 * writing to those blocks. This potentially requires several 1021 * writes to write around the bad blocks. Each set of writes 1022 * gets its own r10_bio with a set of bios attached. The number 1023 * of r10_bios is recored in bio->bi_phys_segments just as with 1024 * the read case. 1025 */ 1026 plugged = mddev_check_plugged(mddev); 1027 1028 raid10_find_phys(conf, r10_bio); 1029 retry_write: 1030 blocked_rdev = NULL; 1031 rcu_read_lock(); 1032 max_sectors = r10_bio->sectors; 1033 1034 for (i = 0; i < conf->copies; i++) { 1035 int d = r10_bio->devs[i].devnum; 1036 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1037 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1038 atomic_inc(&rdev->nr_pending); 1039 blocked_rdev = rdev; 1040 break; 1041 } 1042 r10_bio->devs[i].bio = NULL; 1043 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1044 set_bit(R10BIO_Degraded, &r10_bio->state); 1045 continue; 1046 } 1047 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1048 sector_t first_bad; 1049 sector_t dev_sector = r10_bio->devs[i].addr; 1050 int bad_sectors; 1051 int is_bad; 1052 1053 is_bad = is_badblock(rdev, dev_sector, 1054 max_sectors, 1055 &first_bad, &bad_sectors); 1056 if (is_bad < 0) { 1057 /* Mustn't write here until the bad block 1058 * is acknowledged 1059 */ 1060 atomic_inc(&rdev->nr_pending); 1061 set_bit(BlockedBadBlocks, &rdev->flags); 1062 blocked_rdev = rdev; 1063 break; 1064 } 1065 if (is_bad && first_bad <= dev_sector) { 1066 /* Cannot write here at all */ 1067 bad_sectors -= (dev_sector - first_bad); 1068 if (bad_sectors < max_sectors) 1069 /* Mustn't write more than bad_sectors 1070 * to other devices yet 1071 */ 1072 max_sectors = bad_sectors; 1073 /* We don't set R10BIO_Degraded as that 1074 * only applies if the disk is missing, 1075 * so it might be re-added, and we want to 1076 * know to recover this chunk. 1077 * In this case the device is here, and the 1078 * fact that this chunk is not in-sync is 1079 * recorded in the bad block log. 1080 */ 1081 continue; 1082 } 1083 if (is_bad) { 1084 int good_sectors = first_bad - dev_sector; 1085 if (good_sectors < max_sectors) 1086 max_sectors = good_sectors; 1087 } 1088 } 1089 r10_bio->devs[i].bio = bio; 1090 atomic_inc(&rdev->nr_pending); 1091 } 1092 rcu_read_unlock(); 1093 1094 if (unlikely(blocked_rdev)) { 1095 /* Have to wait for this device to get unblocked, then retry */ 1096 int j; 1097 int d; 1098 1099 for (j = 0; j < i; j++) 1100 if (r10_bio->devs[j].bio) { 1101 d = r10_bio->devs[j].devnum; 1102 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1103 } 1104 allow_barrier(conf); 1105 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1106 wait_barrier(conf); 1107 goto retry_write; 1108 } 1109 1110 if (max_sectors < r10_bio->sectors) { 1111 /* We are splitting this into multiple parts, so 1112 * we need to prepare for allocating another r10_bio. 1113 */ 1114 r10_bio->sectors = max_sectors; 1115 spin_lock_irq(&conf->device_lock); 1116 if (bio->bi_phys_segments == 0) 1117 bio->bi_phys_segments = 2; 1118 else 1119 bio->bi_phys_segments++; 1120 spin_unlock_irq(&conf->device_lock); 1121 } 1122 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1123 1124 atomic_set(&r10_bio->remaining, 1); 1125 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1126 1127 for (i = 0; i < conf->copies; i++) { 1128 struct bio *mbio; 1129 int d = r10_bio->devs[i].devnum; 1130 if (!r10_bio->devs[i].bio) 1131 continue; 1132 1133 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1134 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1135 max_sectors); 1136 r10_bio->devs[i].bio = mbio; 1137 1138 mbio->bi_sector = (r10_bio->devs[i].addr+ 1139 conf->mirrors[d].rdev->data_offset); 1140 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1141 mbio->bi_end_io = raid10_end_write_request; 1142 mbio->bi_rw = WRITE | do_sync | do_fua; 1143 mbio->bi_private = r10_bio; 1144 1145 atomic_inc(&r10_bio->remaining); 1146 spin_lock_irqsave(&conf->device_lock, flags); 1147 bio_list_add(&conf->pending_bio_list, mbio); 1148 conf->pending_count++; 1149 spin_unlock_irqrestore(&conf->device_lock, flags); 1150 } 1151 1152 /* Don't remove the bias on 'remaining' (one_write_done) until 1153 * after checking if we need to go around again. 1154 */ 1155 1156 if (sectors_handled < (bio->bi_size >> 9)) { 1157 one_write_done(r10_bio); 1158 /* We need another r10_bio. It has already been counted 1159 * in bio->bi_phys_segments. 1160 */ 1161 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1162 1163 r10_bio->master_bio = bio; 1164 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1165 1166 r10_bio->mddev = mddev; 1167 r10_bio->sector = bio->bi_sector + sectors_handled; 1168 r10_bio->state = 0; 1169 goto retry_write; 1170 } 1171 one_write_done(r10_bio); 1172 1173 /* In case raid10d snuck in to freeze_array */ 1174 wake_up(&conf->wait_barrier); 1175 1176 if (do_sync || !mddev->bitmap || !plugged) 1177 md_wakeup_thread(mddev->thread); 1178 } 1179 1180 static void status(struct seq_file *seq, struct mddev *mddev) 1181 { 1182 struct r10conf *conf = mddev->private; 1183 int i; 1184 1185 if (conf->near_copies < conf->raid_disks) 1186 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1187 if (conf->near_copies > 1) 1188 seq_printf(seq, " %d near-copies", conf->near_copies); 1189 if (conf->far_copies > 1) { 1190 if (conf->far_offset) 1191 seq_printf(seq, " %d offset-copies", conf->far_copies); 1192 else 1193 seq_printf(seq, " %d far-copies", conf->far_copies); 1194 } 1195 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1196 conf->raid_disks - mddev->degraded); 1197 for (i = 0; i < conf->raid_disks; i++) 1198 seq_printf(seq, "%s", 1199 conf->mirrors[i].rdev && 1200 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1201 seq_printf(seq, "]"); 1202 } 1203 1204 /* check if there are enough drives for 1205 * every block to appear on atleast one. 1206 * Don't consider the device numbered 'ignore' 1207 * as we might be about to remove it. 1208 */ 1209 static int enough(struct r10conf *conf, int ignore) 1210 { 1211 int first = 0; 1212 1213 do { 1214 int n = conf->copies; 1215 int cnt = 0; 1216 while (n--) { 1217 if (conf->mirrors[first].rdev && 1218 first != ignore) 1219 cnt++; 1220 first = (first+1) % conf->raid_disks; 1221 } 1222 if (cnt == 0) 1223 return 0; 1224 } while (first != 0); 1225 return 1; 1226 } 1227 1228 static void error(struct mddev *mddev, struct md_rdev *rdev) 1229 { 1230 char b[BDEVNAME_SIZE]; 1231 struct r10conf *conf = mddev->private; 1232 1233 /* 1234 * If it is not operational, then we have already marked it as dead 1235 * else if it is the last working disks, ignore the error, let the 1236 * next level up know. 1237 * else mark the drive as failed 1238 */ 1239 if (test_bit(In_sync, &rdev->flags) 1240 && !enough(conf, rdev->raid_disk)) 1241 /* 1242 * Don't fail the drive, just return an IO error. 1243 */ 1244 return; 1245 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1246 unsigned long flags; 1247 spin_lock_irqsave(&conf->device_lock, flags); 1248 mddev->degraded++; 1249 spin_unlock_irqrestore(&conf->device_lock, flags); 1250 /* 1251 * if recovery is running, make sure it aborts. 1252 */ 1253 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1254 } 1255 set_bit(Blocked, &rdev->flags); 1256 set_bit(Faulty, &rdev->flags); 1257 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1258 printk(KERN_ALERT 1259 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1260 "md/raid10:%s: Operation continuing on %d devices.\n", 1261 mdname(mddev), bdevname(rdev->bdev, b), 1262 mdname(mddev), conf->raid_disks - mddev->degraded); 1263 } 1264 1265 static void print_conf(struct r10conf *conf) 1266 { 1267 int i; 1268 struct mirror_info *tmp; 1269 1270 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1271 if (!conf) { 1272 printk(KERN_DEBUG "(!conf)\n"); 1273 return; 1274 } 1275 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1276 conf->raid_disks); 1277 1278 for (i = 0; i < conf->raid_disks; i++) { 1279 char b[BDEVNAME_SIZE]; 1280 tmp = conf->mirrors + i; 1281 if (tmp->rdev) 1282 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1283 i, !test_bit(In_sync, &tmp->rdev->flags), 1284 !test_bit(Faulty, &tmp->rdev->flags), 1285 bdevname(tmp->rdev->bdev,b)); 1286 } 1287 } 1288 1289 static void close_sync(struct r10conf *conf) 1290 { 1291 wait_barrier(conf); 1292 allow_barrier(conf); 1293 1294 mempool_destroy(conf->r10buf_pool); 1295 conf->r10buf_pool = NULL; 1296 } 1297 1298 static int raid10_spare_active(struct mddev *mddev) 1299 { 1300 int i; 1301 struct r10conf *conf = mddev->private; 1302 struct mirror_info *tmp; 1303 int count = 0; 1304 unsigned long flags; 1305 1306 /* 1307 * Find all non-in_sync disks within the RAID10 configuration 1308 * and mark them in_sync 1309 */ 1310 for (i = 0; i < conf->raid_disks; i++) { 1311 tmp = conf->mirrors + i; 1312 if (tmp->rdev 1313 && !test_bit(Faulty, &tmp->rdev->flags) 1314 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1315 count++; 1316 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1317 } 1318 } 1319 spin_lock_irqsave(&conf->device_lock, flags); 1320 mddev->degraded -= count; 1321 spin_unlock_irqrestore(&conf->device_lock, flags); 1322 1323 print_conf(conf); 1324 return count; 1325 } 1326 1327 1328 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1329 { 1330 struct r10conf *conf = mddev->private; 1331 int err = -EEXIST; 1332 int mirror; 1333 int first = 0; 1334 int last = conf->raid_disks - 1; 1335 1336 if (mddev->recovery_cp < MaxSector) 1337 /* only hot-add to in-sync arrays, as recovery is 1338 * very different from resync 1339 */ 1340 return -EBUSY; 1341 if (!enough(conf, -1)) 1342 return -EINVAL; 1343 1344 if (rdev->raid_disk >= 0) 1345 first = last = rdev->raid_disk; 1346 1347 if (rdev->saved_raid_disk >= first && 1348 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1349 mirror = rdev->saved_raid_disk; 1350 else 1351 mirror = first; 1352 for ( ; mirror <= last ; mirror++) { 1353 struct mirror_info *p = &conf->mirrors[mirror]; 1354 if (p->recovery_disabled == mddev->recovery_disabled) 1355 continue; 1356 if (p->rdev) 1357 continue; 1358 1359 disk_stack_limits(mddev->gendisk, rdev->bdev, 1360 rdev->data_offset << 9); 1361 /* as we don't honour merge_bvec_fn, we must 1362 * never risk violating it, so limit 1363 * ->max_segments to one lying with a single 1364 * page, as a one page request is never in 1365 * violation. 1366 */ 1367 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1368 blk_queue_max_segments(mddev->queue, 1); 1369 blk_queue_segment_boundary(mddev->queue, 1370 PAGE_CACHE_SIZE - 1); 1371 } 1372 1373 p->head_position = 0; 1374 p->recovery_disabled = mddev->recovery_disabled - 1; 1375 rdev->raid_disk = mirror; 1376 err = 0; 1377 if (rdev->saved_raid_disk != mirror) 1378 conf->fullsync = 1; 1379 rcu_assign_pointer(p->rdev, rdev); 1380 break; 1381 } 1382 1383 md_integrity_add_rdev(rdev, mddev); 1384 print_conf(conf); 1385 return err; 1386 } 1387 1388 static int raid10_remove_disk(struct mddev *mddev, int number) 1389 { 1390 struct r10conf *conf = mddev->private; 1391 int err = 0; 1392 struct md_rdev *rdev; 1393 struct mirror_info *p = conf->mirrors+ number; 1394 1395 print_conf(conf); 1396 rdev = p->rdev; 1397 if (rdev) { 1398 if (test_bit(In_sync, &rdev->flags) || 1399 atomic_read(&rdev->nr_pending)) { 1400 err = -EBUSY; 1401 goto abort; 1402 } 1403 /* Only remove faulty devices in recovery 1404 * is not possible. 1405 */ 1406 if (!test_bit(Faulty, &rdev->flags) && 1407 mddev->recovery_disabled != p->recovery_disabled && 1408 enough(conf, -1)) { 1409 err = -EBUSY; 1410 goto abort; 1411 } 1412 p->rdev = NULL; 1413 synchronize_rcu(); 1414 if (atomic_read(&rdev->nr_pending)) { 1415 /* lost the race, try later */ 1416 err = -EBUSY; 1417 p->rdev = rdev; 1418 goto abort; 1419 } 1420 err = md_integrity_register(mddev); 1421 } 1422 abort: 1423 1424 print_conf(conf); 1425 return err; 1426 } 1427 1428 1429 static void end_sync_read(struct bio *bio, int error) 1430 { 1431 struct r10bio *r10_bio = bio->bi_private; 1432 struct r10conf *conf = r10_bio->mddev->private; 1433 int d; 1434 1435 d = find_bio_disk(conf, r10_bio, bio, NULL); 1436 1437 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1438 set_bit(R10BIO_Uptodate, &r10_bio->state); 1439 else 1440 /* The write handler will notice the lack of 1441 * R10BIO_Uptodate and record any errors etc 1442 */ 1443 atomic_add(r10_bio->sectors, 1444 &conf->mirrors[d].rdev->corrected_errors); 1445 1446 /* for reconstruct, we always reschedule after a read. 1447 * for resync, only after all reads 1448 */ 1449 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1450 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1451 atomic_dec_and_test(&r10_bio->remaining)) { 1452 /* we have read all the blocks, 1453 * do the comparison in process context in raid10d 1454 */ 1455 reschedule_retry(r10_bio); 1456 } 1457 } 1458 1459 static void end_sync_request(struct r10bio *r10_bio) 1460 { 1461 struct mddev *mddev = r10_bio->mddev; 1462 1463 while (atomic_dec_and_test(&r10_bio->remaining)) { 1464 if (r10_bio->master_bio == NULL) { 1465 /* the primary of several recovery bios */ 1466 sector_t s = r10_bio->sectors; 1467 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1468 test_bit(R10BIO_WriteError, &r10_bio->state)) 1469 reschedule_retry(r10_bio); 1470 else 1471 put_buf(r10_bio); 1472 md_done_sync(mddev, s, 1); 1473 break; 1474 } else { 1475 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1476 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1477 test_bit(R10BIO_WriteError, &r10_bio->state)) 1478 reschedule_retry(r10_bio); 1479 else 1480 put_buf(r10_bio); 1481 r10_bio = r10_bio2; 1482 } 1483 } 1484 } 1485 1486 static void end_sync_write(struct bio *bio, int error) 1487 { 1488 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1489 struct r10bio *r10_bio = bio->bi_private; 1490 struct mddev *mddev = r10_bio->mddev; 1491 struct r10conf *conf = mddev->private; 1492 int d; 1493 sector_t first_bad; 1494 int bad_sectors; 1495 int slot; 1496 1497 d = find_bio_disk(conf, r10_bio, bio, &slot); 1498 1499 if (!uptodate) { 1500 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags); 1501 set_bit(R10BIO_WriteError, &r10_bio->state); 1502 } else if (is_badblock(conf->mirrors[d].rdev, 1503 r10_bio->devs[slot].addr, 1504 r10_bio->sectors, 1505 &first_bad, &bad_sectors)) 1506 set_bit(R10BIO_MadeGood, &r10_bio->state); 1507 1508 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1509 1510 end_sync_request(r10_bio); 1511 } 1512 1513 /* 1514 * Note: sync and recover and handled very differently for raid10 1515 * This code is for resync. 1516 * For resync, we read through virtual addresses and read all blocks. 1517 * If there is any error, we schedule a write. The lowest numbered 1518 * drive is authoritative. 1519 * However requests come for physical address, so we need to map. 1520 * For every physical address there are raid_disks/copies virtual addresses, 1521 * which is always are least one, but is not necessarly an integer. 1522 * This means that a physical address can span multiple chunks, so we may 1523 * have to submit multiple io requests for a single sync request. 1524 */ 1525 /* 1526 * We check if all blocks are in-sync and only write to blocks that 1527 * aren't in sync 1528 */ 1529 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1530 { 1531 struct r10conf *conf = mddev->private; 1532 int i, first; 1533 struct bio *tbio, *fbio; 1534 1535 atomic_set(&r10_bio->remaining, 1); 1536 1537 /* find the first device with a block */ 1538 for (i=0; i<conf->copies; i++) 1539 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1540 break; 1541 1542 if (i == conf->copies) 1543 goto done; 1544 1545 first = i; 1546 fbio = r10_bio->devs[i].bio; 1547 1548 /* now find blocks with errors */ 1549 for (i=0 ; i < conf->copies ; i++) { 1550 int j, d; 1551 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1552 1553 tbio = r10_bio->devs[i].bio; 1554 1555 if (tbio->bi_end_io != end_sync_read) 1556 continue; 1557 if (i == first) 1558 continue; 1559 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1560 /* We know that the bi_io_vec layout is the same for 1561 * both 'first' and 'i', so we just compare them. 1562 * All vec entries are PAGE_SIZE; 1563 */ 1564 for (j = 0; j < vcnt; j++) 1565 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1566 page_address(tbio->bi_io_vec[j].bv_page), 1567 PAGE_SIZE)) 1568 break; 1569 if (j == vcnt) 1570 continue; 1571 mddev->resync_mismatches += r10_bio->sectors; 1572 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1573 /* Don't fix anything. */ 1574 continue; 1575 } 1576 /* Ok, we need to write this bio, either to correct an 1577 * inconsistency or to correct an unreadable block. 1578 * First we need to fixup bv_offset, bv_len and 1579 * bi_vecs, as the read request might have corrupted these 1580 */ 1581 tbio->bi_vcnt = vcnt; 1582 tbio->bi_size = r10_bio->sectors << 9; 1583 tbio->bi_idx = 0; 1584 tbio->bi_phys_segments = 0; 1585 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1586 tbio->bi_flags |= 1 << BIO_UPTODATE; 1587 tbio->bi_next = NULL; 1588 tbio->bi_rw = WRITE; 1589 tbio->bi_private = r10_bio; 1590 tbio->bi_sector = r10_bio->devs[i].addr; 1591 1592 for (j=0; j < vcnt ; j++) { 1593 tbio->bi_io_vec[j].bv_offset = 0; 1594 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1595 1596 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1597 page_address(fbio->bi_io_vec[j].bv_page), 1598 PAGE_SIZE); 1599 } 1600 tbio->bi_end_io = end_sync_write; 1601 1602 d = r10_bio->devs[i].devnum; 1603 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1604 atomic_inc(&r10_bio->remaining); 1605 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1606 1607 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1608 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1609 generic_make_request(tbio); 1610 } 1611 1612 done: 1613 if (atomic_dec_and_test(&r10_bio->remaining)) { 1614 md_done_sync(mddev, r10_bio->sectors, 1); 1615 put_buf(r10_bio); 1616 } 1617 } 1618 1619 /* 1620 * Now for the recovery code. 1621 * Recovery happens across physical sectors. 1622 * We recover all non-is_sync drives by finding the virtual address of 1623 * each, and then choose a working drive that also has that virt address. 1624 * There is a separate r10_bio for each non-in_sync drive. 1625 * Only the first two slots are in use. The first for reading, 1626 * The second for writing. 1627 * 1628 */ 1629 static void fix_recovery_read_error(struct r10bio *r10_bio) 1630 { 1631 /* We got a read error during recovery. 1632 * We repeat the read in smaller page-sized sections. 1633 * If a read succeeds, write it to the new device or record 1634 * a bad block if we cannot. 1635 * If a read fails, record a bad block on both old and 1636 * new devices. 1637 */ 1638 struct mddev *mddev = r10_bio->mddev; 1639 struct r10conf *conf = mddev->private; 1640 struct bio *bio = r10_bio->devs[0].bio; 1641 sector_t sect = 0; 1642 int sectors = r10_bio->sectors; 1643 int idx = 0; 1644 int dr = r10_bio->devs[0].devnum; 1645 int dw = r10_bio->devs[1].devnum; 1646 1647 while (sectors) { 1648 int s = sectors; 1649 struct md_rdev *rdev; 1650 sector_t addr; 1651 int ok; 1652 1653 if (s > (PAGE_SIZE>>9)) 1654 s = PAGE_SIZE >> 9; 1655 1656 rdev = conf->mirrors[dr].rdev; 1657 addr = r10_bio->devs[0].addr + sect, 1658 ok = sync_page_io(rdev, 1659 addr, 1660 s << 9, 1661 bio->bi_io_vec[idx].bv_page, 1662 READ, false); 1663 if (ok) { 1664 rdev = conf->mirrors[dw].rdev; 1665 addr = r10_bio->devs[1].addr + sect; 1666 ok = sync_page_io(rdev, 1667 addr, 1668 s << 9, 1669 bio->bi_io_vec[idx].bv_page, 1670 WRITE, false); 1671 if (!ok) 1672 set_bit(WriteErrorSeen, &rdev->flags); 1673 } 1674 if (!ok) { 1675 /* We don't worry if we cannot set a bad block - 1676 * it really is bad so there is no loss in not 1677 * recording it yet 1678 */ 1679 rdev_set_badblocks(rdev, addr, s, 0); 1680 1681 if (rdev != conf->mirrors[dw].rdev) { 1682 /* need bad block on destination too */ 1683 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 1684 addr = r10_bio->devs[1].addr + sect; 1685 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1686 if (!ok) { 1687 /* just abort the recovery */ 1688 printk(KERN_NOTICE 1689 "md/raid10:%s: recovery aborted" 1690 " due to read error\n", 1691 mdname(mddev)); 1692 1693 conf->mirrors[dw].recovery_disabled 1694 = mddev->recovery_disabled; 1695 set_bit(MD_RECOVERY_INTR, 1696 &mddev->recovery); 1697 break; 1698 } 1699 } 1700 } 1701 1702 sectors -= s; 1703 sect += s; 1704 idx++; 1705 } 1706 } 1707 1708 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1709 { 1710 struct r10conf *conf = mddev->private; 1711 int d; 1712 struct bio *wbio; 1713 1714 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 1715 fix_recovery_read_error(r10_bio); 1716 end_sync_request(r10_bio); 1717 return; 1718 } 1719 1720 /* 1721 * share the pages with the first bio 1722 * and submit the write request 1723 */ 1724 wbio = r10_bio->devs[1].bio; 1725 d = r10_bio->devs[1].devnum; 1726 1727 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1728 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1729 generic_make_request(wbio); 1730 } 1731 1732 1733 /* 1734 * Used by fix_read_error() to decay the per rdev read_errors. 1735 * We halve the read error count for every hour that has elapsed 1736 * since the last recorded read error. 1737 * 1738 */ 1739 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 1740 { 1741 struct timespec cur_time_mon; 1742 unsigned long hours_since_last; 1743 unsigned int read_errors = atomic_read(&rdev->read_errors); 1744 1745 ktime_get_ts(&cur_time_mon); 1746 1747 if (rdev->last_read_error.tv_sec == 0 && 1748 rdev->last_read_error.tv_nsec == 0) { 1749 /* first time we've seen a read error */ 1750 rdev->last_read_error = cur_time_mon; 1751 return; 1752 } 1753 1754 hours_since_last = (cur_time_mon.tv_sec - 1755 rdev->last_read_error.tv_sec) / 3600; 1756 1757 rdev->last_read_error = cur_time_mon; 1758 1759 /* 1760 * if hours_since_last is > the number of bits in read_errors 1761 * just set read errors to 0. We do this to avoid 1762 * overflowing the shift of read_errors by hours_since_last. 1763 */ 1764 if (hours_since_last >= 8 * sizeof(read_errors)) 1765 atomic_set(&rdev->read_errors, 0); 1766 else 1767 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1768 } 1769 1770 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 1771 int sectors, struct page *page, int rw) 1772 { 1773 sector_t first_bad; 1774 int bad_sectors; 1775 1776 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 1777 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 1778 return -1; 1779 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1780 /* success */ 1781 return 1; 1782 if (rw == WRITE) 1783 set_bit(WriteErrorSeen, &rdev->flags); 1784 /* need to record an error - either for the block or the device */ 1785 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1786 md_error(rdev->mddev, rdev); 1787 return 0; 1788 } 1789 1790 /* 1791 * This is a kernel thread which: 1792 * 1793 * 1. Retries failed read operations on working mirrors. 1794 * 2. Updates the raid superblock when problems encounter. 1795 * 3. Performs writes following reads for array synchronising. 1796 */ 1797 1798 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 1799 { 1800 int sect = 0; /* Offset from r10_bio->sector */ 1801 int sectors = r10_bio->sectors; 1802 struct md_rdev*rdev; 1803 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1804 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1805 1806 /* still own a reference to this rdev, so it cannot 1807 * have been cleared recently. 1808 */ 1809 rdev = conf->mirrors[d].rdev; 1810 1811 if (test_bit(Faulty, &rdev->flags)) 1812 /* drive has already been failed, just ignore any 1813 more fix_read_error() attempts */ 1814 return; 1815 1816 check_decay_read_errors(mddev, rdev); 1817 atomic_inc(&rdev->read_errors); 1818 if (atomic_read(&rdev->read_errors) > max_read_errors) { 1819 char b[BDEVNAME_SIZE]; 1820 bdevname(rdev->bdev, b); 1821 1822 printk(KERN_NOTICE 1823 "md/raid10:%s: %s: Raid device exceeded " 1824 "read_error threshold [cur %d:max %d]\n", 1825 mdname(mddev), b, 1826 atomic_read(&rdev->read_errors), max_read_errors); 1827 printk(KERN_NOTICE 1828 "md/raid10:%s: %s: Failing raid device\n", 1829 mdname(mddev), b); 1830 md_error(mddev, conf->mirrors[d].rdev); 1831 return; 1832 } 1833 1834 while(sectors) { 1835 int s = sectors; 1836 int sl = r10_bio->read_slot; 1837 int success = 0; 1838 int start; 1839 1840 if (s > (PAGE_SIZE>>9)) 1841 s = PAGE_SIZE >> 9; 1842 1843 rcu_read_lock(); 1844 do { 1845 sector_t first_bad; 1846 int bad_sectors; 1847 1848 d = r10_bio->devs[sl].devnum; 1849 rdev = rcu_dereference(conf->mirrors[d].rdev); 1850 if (rdev && 1851 test_bit(In_sync, &rdev->flags) && 1852 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 1853 &first_bad, &bad_sectors) == 0) { 1854 atomic_inc(&rdev->nr_pending); 1855 rcu_read_unlock(); 1856 success = sync_page_io(rdev, 1857 r10_bio->devs[sl].addr + 1858 sect, 1859 s<<9, 1860 conf->tmppage, READ, false); 1861 rdev_dec_pending(rdev, mddev); 1862 rcu_read_lock(); 1863 if (success) 1864 break; 1865 } 1866 sl++; 1867 if (sl == conf->copies) 1868 sl = 0; 1869 } while (!success && sl != r10_bio->read_slot); 1870 rcu_read_unlock(); 1871 1872 if (!success) { 1873 /* Cannot read from anywhere, just mark the block 1874 * as bad on the first device to discourage future 1875 * reads. 1876 */ 1877 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1878 rdev = conf->mirrors[dn].rdev; 1879 1880 if (!rdev_set_badblocks( 1881 rdev, 1882 r10_bio->devs[r10_bio->read_slot].addr 1883 + sect, 1884 s, 0)) 1885 md_error(mddev, rdev); 1886 break; 1887 } 1888 1889 start = sl; 1890 /* write it back and re-read */ 1891 rcu_read_lock(); 1892 while (sl != r10_bio->read_slot) { 1893 char b[BDEVNAME_SIZE]; 1894 1895 if (sl==0) 1896 sl = conf->copies; 1897 sl--; 1898 d = r10_bio->devs[sl].devnum; 1899 rdev = rcu_dereference(conf->mirrors[d].rdev); 1900 if (!rdev || 1901 !test_bit(In_sync, &rdev->flags)) 1902 continue; 1903 1904 atomic_inc(&rdev->nr_pending); 1905 rcu_read_unlock(); 1906 if (r10_sync_page_io(rdev, 1907 r10_bio->devs[sl].addr + 1908 sect, 1909 s<<9, conf->tmppage, WRITE) 1910 == 0) { 1911 /* Well, this device is dead */ 1912 printk(KERN_NOTICE 1913 "md/raid10:%s: read correction " 1914 "write failed" 1915 " (%d sectors at %llu on %s)\n", 1916 mdname(mddev), s, 1917 (unsigned long long)( 1918 sect + rdev->data_offset), 1919 bdevname(rdev->bdev, b)); 1920 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1921 "drive\n", 1922 mdname(mddev), 1923 bdevname(rdev->bdev, b)); 1924 } 1925 rdev_dec_pending(rdev, mddev); 1926 rcu_read_lock(); 1927 } 1928 sl = start; 1929 while (sl != r10_bio->read_slot) { 1930 char b[BDEVNAME_SIZE]; 1931 1932 if (sl==0) 1933 sl = conf->copies; 1934 sl--; 1935 d = r10_bio->devs[sl].devnum; 1936 rdev = rcu_dereference(conf->mirrors[d].rdev); 1937 if (!rdev || 1938 !test_bit(In_sync, &rdev->flags)) 1939 continue; 1940 1941 atomic_inc(&rdev->nr_pending); 1942 rcu_read_unlock(); 1943 switch (r10_sync_page_io(rdev, 1944 r10_bio->devs[sl].addr + 1945 sect, 1946 s<<9, conf->tmppage, 1947 READ)) { 1948 case 0: 1949 /* Well, this device is dead */ 1950 printk(KERN_NOTICE 1951 "md/raid10:%s: unable to read back " 1952 "corrected sectors" 1953 " (%d sectors at %llu on %s)\n", 1954 mdname(mddev), s, 1955 (unsigned long long)( 1956 sect + rdev->data_offset), 1957 bdevname(rdev->bdev, b)); 1958 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1959 "drive\n", 1960 mdname(mddev), 1961 bdevname(rdev->bdev, b)); 1962 break; 1963 case 1: 1964 printk(KERN_INFO 1965 "md/raid10:%s: read error corrected" 1966 " (%d sectors at %llu on %s)\n", 1967 mdname(mddev), s, 1968 (unsigned long long)( 1969 sect + rdev->data_offset), 1970 bdevname(rdev->bdev, b)); 1971 atomic_add(s, &rdev->corrected_errors); 1972 } 1973 1974 rdev_dec_pending(rdev, mddev); 1975 rcu_read_lock(); 1976 } 1977 rcu_read_unlock(); 1978 1979 sectors -= s; 1980 sect += s; 1981 } 1982 } 1983 1984 static void bi_complete(struct bio *bio, int error) 1985 { 1986 complete((struct completion *)bio->bi_private); 1987 } 1988 1989 static int submit_bio_wait(int rw, struct bio *bio) 1990 { 1991 struct completion event; 1992 rw |= REQ_SYNC; 1993 1994 init_completion(&event); 1995 bio->bi_private = &event; 1996 bio->bi_end_io = bi_complete; 1997 submit_bio(rw, bio); 1998 wait_for_completion(&event); 1999 2000 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2001 } 2002 2003 static int narrow_write_error(struct r10bio *r10_bio, int i) 2004 { 2005 struct bio *bio = r10_bio->master_bio; 2006 struct mddev *mddev = r10_bio->mddev; 2007 struct r10conf *conf = mddev->private; 2008 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2009 /* bio has the data to be written to slot 'i' where 2010 * we just recently had a write error. 2011 * We repeatedly clone the bio and trim down to one block, 2012 * then try the write. Where the write fails we record 2013 * a bad block. 2014 * It is conceivable that the bio doesn't exactly align with 2015 * blocks. We must handle this. 2016 * 2017 * We currently own a reference to the rdev. 2018 */ 2019 2020 int block_sectors; 2021 sector_t sector; 2022 int sectors; 2023 int sect_to_write = r10_bio->sectors; 2024 int ok = 1; 2025 2026 if (rdev->badblocks.shift < 0) 2027 return 0; 2028 2029 block_sectors = 1 << rdev->badblocks.shift; 2030 sector = r10_bio->sector; 2031 sectors = ((r10_bio->sector + block_sectors) 2032 & ~(sector_t)(block_sectors - 1)) 2033 - sector; 2034 2035 while (sect_to_write) { 2036 struct bio *wbio; 2037 if (sectors > sect_to_write) 2038 sectors = sect_to_write; 2039 /* Write at 'sector' for 'sectors' */ 2040 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2041 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2042 wbio->bi_sector = (r10_bio->devs[i].addr+ 2043 rdev->data_offset+ 2044 (sector - r10_bio->sector)); 2045 wbio->bi_bdev = rdev->bdev; 2046 if (submit_bio_wait(WRITE, wbio) == 0) 2047 /* Failure! */ 2048 ok = rdev_set_badblocks(rdev, sector, 2049 sectors, 0) 2050 && ok; 2051 2052 bio_put(wbio); 2053 sect_to_write -= sectors; 2054 sector += sectors; 2055 sectors = block_sectors; 2056 } 2057 return ok; 2058 } 2059 2060 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2061 { 2062 int slot = r10_bio->read_slot; 2063 int mirror = r10_bio->devs[slot].devnum; 2064 struct bio *bio; 2065 struct r10conf *conf = mddev->private; 2066 struct md_rdev *rdev; 2067 char b[BDEVNAME_SIZE]; 2068 unsigned long do_sync; 2069 int max_sectors; 2070 2071 /* we got a read error. Maybe the drive is bad. Maybe just 2072 * the block and we can fix it. 2073 * We freeze all other IO, and try reading the block from 2074 * other devices. When we find one, we re-write 2075 * and check it that fixes the read error. 2076 * This is all done synchronously while the array is 2077 * frozen. 2078 */ 2079 if (mddev->ro == 0) { 2080 freeze_array(conf); 2081 fix_read_error(conf, mddev, r10_bio); 2082 unfreeze_array(conf); 2083 } 2084 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 2085 2086 bio = r10_bio->devs[slot].bio; 2087 bdevname(bio->bi_bdev, b); 2088 r10_bio->devs[slot].bio = 2089 mddev->ro ? IO_BLOCKED : NULL; 2090 read_more: 2091 mirror = read_balance(conf, r10_bio, &max_sectors); 2092 if (mirror == -1) { 2093 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2094 " read error for block %llu\n", 2095 mdname(mddev), b, 2096 (unsigned long long)r10_bio->sector); 2097 raid_end_bio_io(r10_bio); 2098 bio_put(bio); 2099 return; 2100 } 2101 2102 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2103 if (bio) 2104 bio_put(bio); 2105 slot = r10_bio->read_slot; 2106 rdev = conf->mirrors[mirror].rdev; 2107 printk_ratelimited( 2108 KERN_ERR 2109 "md/raid10:%s: %s: redirecting" 2110 "sector %llu to another mirror\n", 2111 mdname(mddev), 2112 bdevname(rdev->bdev, b), 2113 (unsigned long long)r10_bio->sector); 2114 bio = bio_clone_mddev(r10_bio->master_bio, 2115 GFP_NOIO, mddev); 2116 md_trim_bio(bio, 2117 r10_bio->sector - bio->bi_sector, 2118 max_sectors); 2119 r10_bio->devs[slot].bio = bio; 2120 bio->bi_sector = r10_bio->devs[slot].addr 2121 + rdev->data_offset; 2122 bio->bi_bdev = rdev->bdev; 2123 bio->bi_rw = READ | do_sync; 2124 bio->bi_private = r10_bio; 2125 bio->bi_end_io = raid10_end_read_request; 2126 if (max_sectors < r10_bio->sectors) { 2127 /* Drat - have to split this up more */ 2128 struct bio *mbio = r10_bio->master_bio; 2129 int sectors_handled = 2130 r10_bio->sector + max_sectors 2131 - mbio->bi_sector; 2132 r10_bio->sectors = max_sectors; 2133 spin_lock_irq(&conf->device_lock); 2134 if (mbio->bi_phys_segments == 0) 2135 mbio->bi_phys_segments = 2; 2136 else 2137 mbio->bi_phys_segments++; 2138 spin_unlock_irq(&conf->device_lock); 2139 generic_make_request(bio); 2140 bio = NULL; 2141 2142 r10_bio = mempool_alloc(conf->r10bio_pool, 2143 GFP_NOIO); 2144 r10_bio->master_bio = mbio; 2145 r10_bio->sectors = (mbio->bi_size >> 9) 2146 - sectors_handled; 2147 r10_bio->state = 0; 2148 set_bit(R10BIO_ReadError, 2149 &r10_bio->state); 2150 r10_bio->mddev = mddev; 2151 r10_bio->sector = mbio->bi_sector 2152 + sectors_handled; 2153 2154 goto read_more; 2155 } else 2156 generic_make_request(bio); 2157 } 2158 2159 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2160 { 2161 /* Some sort of write request has finished and it 2162 * succeeded in writing where we thought there was a 2163 * bad block. So forget the bad block. 2164 * Or possibly if failed and we need to record 2165 * a bad block. 2166 */ 2167 int m; 2168 struct md_rdev *rdev; 2169 2170 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2171 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2172 for (m = 0; m < conf->copies; m++) { 2173 int dev = r10_bio->devs[m].devnum; 2174 rdev = conf->mirrors[dev].rdev; 2175 if (r10_bio->devs[m].bio == NULL) 2176 continue; 2177 if (test_bit(BIO_UPTODATE, 2178 &r10_bio->devs[m].bio->bi_flags)) { 2179 rdev_clear_badblocks( 2180 rdev, 2181 r10_bio->devs[m].addr, 2182 r10_bio->sectors); 2183 } else { 2184 if (!rdev_set_badblocks( 2185 rdev, 2186 r10_bio->devs[m].addr, 2187 r10_bio->sectors, 0)) 2188 md_error(conf->mddev, rdev); 2189 } 2190 } 2191 put_buf(r10_bio); 2192 } else { 2193 for (m = 0; m < conf->copies; m++) { 2194 int dev = r10_bio->devs[m].devnum; 2195 struct bio *bio = r10_bio->devs[m].bio; 2196 rdev = conf->mirrors[dev].rdev; 2197 if (bio == IO_MADE_GOOD) { 2198 rdev_clear_badblocks( 2199 rdev, 2200 r10_bio->devs[m].addr, 2201 r10_bio->sectors); 2202 rdev_dec_pending(rdev, conf->mddev); 2203 } else if (bio != NULL && 2204 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2205 if (!narrow_write_error(r10_bio, m)) { 2206 md_error(conf->mddev, rdev); 2207 set_bit(R10BIO_Degraded, 2208 &r10_bio->state); 2209 } 2210 rdev_dec_pending(rdev, conf->mddev); 2211 } 2212 } 2213 if (test_bit(R10BIO_WriteError, 2214 &r10_bio->state)) 2215 close_write(r10_bio); 2216 raid_end_bio_io(r10_bio); 2217 } 2218 } 2219 2220 static void raid10d(struct mddev *mddev) 2221 { 2222 struct r10bio *r10_bio; 2223 unsigned long flags; 2224 struct r10conf *conf = mddev->private; 2225 struct list_head *head = &conf->retry_list; 2226 struct blk_plug plug; 2227 2228 md_check_recovery(mddev); 2229 2230 blk_start_plug(&plug); 2231 for (;;) { 2232 2233 flush_pending_writes(conf); 2234 2235 spin_lock_irqsave(&conf->device_lock, flags); 2236 if (list_empty(head)) { 2237 spin_unlock_irqrestore(&conf->device_lock, flags); 2238 break; 2239 } 2240 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2241 list_del(head->prev); 2242 conf->nr_queued--; 2243 spin_unlock_irqrestore(&conf->device_lock, flags); 2244 2245 mddev = r10_bio->mddev; 2246 conf = mddev->private; 2247 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2248 test_bit(R10BIO_WriteError, &r10_bio->state)) 2249 handle_write_completed(conf, r10_bio); 2250 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2251 sync_request_write(mddev, r10_bio); 2252 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2253 recovery_request_write(mddev, r10_bio); 2254 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2255 handle_read_error(mddev, r10_bio); 2256 else { 2257 /* just a partial read to be scheduled from a 2258 * separate context 2259 */ 2260 int slot = r10_bio->read_slot; 2261 generic_make_request(r10_bio->devs[slot].bio); 2262 } 2263 2264 cond_resched(); 2265 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2266 md_check_recovery(mddev); 2267 } 2268 blk_finish_plug(&plug); 2269 } 2270 2271 2272 static int init_resync(struct r10conf *conf) 2273 { 2274 int buffs; 2275 2276 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2277 BUG_ON(conf->r10buf_pool); 2278 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2279 if (!conf->r10buf_pool) 2280 return -ENOMEM; 2281 conf->next_resync = 0; 2282 return 0; 2283 } 2284 2285 /* 2286 * perform a "sync" on one "block" 2287 * 2288 * We need to make sure that no normal I/O request - particularly write 2289 * requests - conflict with active sync requests. 2290 * 2291 * This is achieved by tracking pending requests and a 'barrier' concept 2292 * that can be installed to exclude normal IO requests. 2293 * 2294 * Resync and recovery are handled very differently. 2295 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2296 * 2297 * For resync, we iterate over virtual addresses, read all copies, 2298 * and update if there are differences. If only one copy is live, 2299 * skip it. 2300 * For recovery, we iterate over physical addresses, read a good 2301 * value for each non-in_sync drive, and over-write. 2302 * 2303 * So, for recovery we may have several outstanding complex requests for a 2304 * given address, one for each out-of-sync device. We model this by allocating 2305 * a number of r10_bio structures, one for each out-of-sync device. 2306 * As we setup these structures, we collect all bio's together into a list 2307 * which we then process collectively to add pages, and then process again 2308 * to pass to generic_make_request. 2309 * 2310 * The r10_bio structures are linked using a borrowed master_bio pointer. 2311 * This link is counted in ->remaining. When the r10_bio that points to NULL 2312 * has its remaining count decremented to 0, the whole complex operation 2313 * is complete. 2314 * 2315 */ 2316 2317 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2318 int *skipped, int go_faster) 2319 { 2320 struct r10conf *conf = mddev->private; 2321 struct r10bio *r10_bio; 2322 struct bio *biolist = NULL, *bio; 2323 sector_t max_sector, nr_sectors; 2324 int i; 2325 int max_sync; 2326 sector_t sync_blocks; 2327 sector_t sectors_skipped = 0; 2328 int chunks_skipped = 0; 2329 2330 if (!conf->r10buf_pool) 2331 if (init_resync(conf)) 2332 return 0; 2333 2334 skipped: 2335 max_sector = mddev->dev_sectors; 2336 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2337 max_sector = mddev->resync_max_sectors; 2338 if (sector_nr >= max_sector) { 2339 /* If we aborted, we need to abort the 2340 * sync on the 'current' bitmap chucks (there can 2341 * be several when recovering multiple devices). 2342 * as we may have started syncing it but not finished. 2343 * We can find the current address in 2344 * mddev->curr_resync, but for recovery, 2345 * we need to convert that to several 2346 * virtual addresses. 2347 */ 2348 if (mddev->curr_resync < max_sector) { /* aborted */ 2349 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2350 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2351 &sync_blocks, 1); 2352 else for (i=0; i<conf->raid_disks; i++) { 2353 sector_t sect = 2354 raid10_find_virt(conf, mddev->curr_resync, i); 2355 bitmap_end_sync(mddev->bitmap, sect, 2356 &sync_blocks, 1); 2357 } 2358 } else /* completed sync */ 2359 conf->fullsync = 0; 2360 2361 bitmap_close_sync(mddev->bitmap); 2362 close_sync(conf); 2363 *skipped = 1; 2364 return sectors_skipped; 2365 } 2366 if (chunks_skipped >= conf->raid_disks) { 2367 /* if there has been nothing to do on any drive, 2368 * then there is nothing to do at all.. 2369 */ 2370 *skipped = 1; 2371 return (max_sector - sector_nr) + sectors_skipped; 2372 } 2373 2374 if (max_sector > mddev->resync_max) 2375 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2376 2377 /* make sure whole request will fit in a chunk - if chunks 2378 * are meaningful 2379 */ 2380 if (conf->near_copies < conf->raid_disks && 2381 max_sector > (sector_nr | conf->chunk_mask)) 2382 max_sector = (sector_nr | conf->chunk_mask) + 1; 2383 /* 2384 * If there is non-resync activity waiting for us then 2385 * put in a delay to throttle resync. 2386 */ 2387 if (!go_faster && conf->nr_waiting) 2388 msleep_interruptible(1000); 2389 2390 /* Again, very different code for resync and recovery. 2391 * Both must result in an r10bio with a list of bios that 2392 * have bi_end_io, bi_sector, bi_bdev set, 2393 * and bi_private set to the r10bio. 2394 * For recovery, we may actually create several r10bios 2395 * with 2 bios in each, that correspond to the bios in the main one. 2396 * In this case, the subordinate r10bios link back through a 2397 * borrowed master_bio pointer, and the counter in the master 2398 * includes a ref from each subordinate. 2399 */ 2400 /* First, we decide what to do and set ->bi_end_io 2401 * To end_sync_read if we want to read, and 2402 * end_sync_write if we will want to write. 2403 */ 2404 2405 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2406 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2407 /* recovery... the complicated one */ 2408 int j; 2409 r10_bio = NULL; 2410 2411 for (i=0 ; i<conf->raid_disks; i++) { 2412 int still_degraded; 2413 struct r10bio *rb2; 2414 sector_t sect; 2415 int must_sync; 2416 int any_working; 2417 2418 if (conf->mirrors[i].rdev == NULL || 2419 test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 2420 continue; 2421 2422 still_degraded = 0; 2423 /* want to reconstruct this device */ 2424 rb2 = r10_bio; 2425 sect = raid10_find_virt(conf, sector_nr, i); 2426 /* Unless we are doing a full sync, we only need 2427 * to recover the block if it is set in the bitmap 2428 */ 2429 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2430 &sync_blocks, 1); 2431 if (sync_blocks < max_sync) 2432 max_sync = sync_blocks; 2433 if (!must_sync && 2434 !conf->fullsync) { 2435 /* yep, skip the sync_blocks here, but don't assume 2436 * that there will never be anything to do here 2437 */ 2438 chunks_skipped = -1; 2439 continue; 2440 } 2441 2442 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2443 raise_barrier(conf, rb2 != NULL); 2444 atomic_set(&r10_bio->remaining, 0); 2445 2446 r10_bio->master_bio = (struct bio*)rb2; 2447 if (rb2) 2448 atomic_inc(&rb2->remaining); 2449 r10_bio->mddev = mddev; 2450 set_bit(R10BIO_IsRecover, &r10_bio->state); 2451 r10_bio->sector = sect; 2452 2453 raid10_find_phys(conf, r10_bio); 2454 2455 /* Need to check if the array will still be 2456 * degraded 2457 */ 2458 for (j=0; j<conf->raid_disks; j++) 2459 if (conf->mirrors[j].rdev == NULL || 2460 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2461 still_degraded = 1; 2462 break; 2463 } 2464 2465 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2466 &sync_blocks, still_degraded); 2467 2468 any_working = 0; 2469 for (j=0; j<conf->copies;j++) { 2470 int k; 2471 int d = r10_bio->devs[j].devnum; 2472 sector_t from_addr, to_addr; 2473 struct md_rdev *rdev; 2474 sector_t sector, first_bad; 2475 int bad_sectors; 2476 if (!conf->mirrors[d].rdev || 2477 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2478 continue; 2479 /* This is where we read from */ 2480 any_working = 1; 2481 rdev = conf->mirrors[d].rdev; 2482 sector = r10_bio->devs[j].addr; 2483 2484 if (is_badblock(rdev, sector, max_sync, 2485 &first_bad, &bad_sectors)) { 2486 if (first_bad > sector) 2487 max_sync = first_bad - sector; 2488 else { 2489 bad_sectors -= (sector 2490 - first_bad); 2491 if (max_sync > bad_sectors) 2492 max_sync = bad_sectors; 2493 continue; 2494 } 2495 } 2496 bio = r10_bio->devs[0].bio; 2497 bio->bi_next = biolist; 2498 biolist = bio; 2499 bio->bi_private = r10_bio; 2500 bio->bi_end_io = end_sync_read; 2501 bio->bi_rw = READ; 2502 from_addr = r10_bio->devs[j].addr; 2503 bio->bi_sector = from_addr + 2504 conf->mirrors[d].rdev->data_offset; 2505 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2506 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2507 atomic_inc(&r10_bio->remaining); 2508 /* and we write to 'i' */ 2509 2510 for (k=0; k<conf->copies; k++) 2511 if (r10_bio->devs[k].devnum == i) 2512 break; 2513 BUG_ON(k == conf->copies); 2514 bio = r10_bio->devs[1].bio; 2515 bio->bi_next = biolist; 2516 biolist = bio; 2517 bio->bi_private = r10_bio; 2518 bio->bi_end_io = end_sync_write; 2519 bio->bi_rw = WRITE; 2520 to_addr = r10_bio->devs[k].addr; 2521 bio->bi_sector = to_addr + 2522 conf->mirrors[i].rdev->data_offset; 2523 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 2524 2525 r10_bio->devs[0].devnum = d; 2526 r10_bio->devs[0].addr = from_addr; 2527 r10_bio->devs[1].devnum = i; 2528 r10_bio->devs[1].addr = to_addr; 2529 2530 break; 2531 } 2532 if (j == conf->copies) { 2533 /* Cannot recover, so abort the recovery or 2534 * record a bad block */ 2535 put_buf(r10_bio); 2536 if (rb2) 2537 atomic_dec(&rb2->remaining); 2538 r10_bio = rb2; 2539 if (any_working) { 2540 /* problem is that there are bad blocks 2541 * on other device(s) 2542 */ 2543 int k; 2544 for (k = 0; k < conf->copies; k++) 2545 if (r10_bio->devs[k].devnum == i) 2546 break; 2547 if (!rdev_set_badblocks( 2548 conf->mirrors[i].rdev, 2549 r10_bio->devs[k].addr, 2550 max_sync, 0)) 2551 any_working = 0; 2552 } 2553 if (!any_working) { 2554 if (!test_and_set_bit(MD_RECOVERY_INTR, 2555 &mddev->recovery)) 2556 printk(KERN_INFO "md/raid10:%s: insufficient " 2557 "working devices for recovery.\n", 2558 mdname(mddev)); 2559 conf->mirrors[i].recovery_disabled 2560 = mddev->recovery_disabled; 2561 } 2562 break; 2563 } 2564 } 2565 if (biolist == NULL) { 2566 while (r10_bio) { 2567 struct r10bio *rb2 = r10_bio; 2568 r10_bio = (struct r10bio*) rb2->master_bio; 2569 rb2->master_bio = NULL; 2570 put_buf(rb2); 2571 } 2572 goto giveup; 2573 } 2574 } else { 2575 /* resync. Schedule a read for every block at this virt offset */ 2576 int count = 0; 2577 2578 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2579 2580 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2581 &sync_blocks, mddev->degraded) && 2582 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2583 &mddev->recovery)) { 2584 /* We can skip this block */ 2585 *skipped = 1; 2586 return sync_blocks + sectors_skipped; 2587 } 2588 if (sync_blocks < max_sync) 2589 max_sync = sync_blocks; 2590 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2591 2592 r10_bio->mddev = mddev; 2593 atomic_set(&r10_bio->remaining, 0); 2594 raise_barrier(conf, 0); 2595 conf->next_resync = sector_nr; 2596 2597 r10_bio->master_bio = NULL; 2598 r10_bio->sector = sector_nr; 2599 set_bit(R10BIO_IsSync, &r10_bio->state); 2600 raid10_find_phys(conf, r10_bio); 2601 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2602 2603 for (i=0; i<conf->copies; i++) { 2604 int d = r10_bio->devs[i].devnum; 2605 sector_t first_bad, sector; 2606 int bad_sectors; 2607 2608 bio = r10_bio->devs[i].bio; 2609 bio->bi_end_io = NULL; 2610 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2611 if (conf->mirrors[d].rdev == NULL || 2612 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2613 continue; 2614 sector = r10_bio->devs[i].addr; 2615 if (is_badblock(conf->mirrors[d].rdev, 2616 sector, max_sync, 2617 &first_bad, &bad_sectors)) { 2618 if (first_bad > sector) 2619 max_sync = first_bad - sector; 2620 else { 2621 bad_sectors -= (sector - first_bad); 2622 if (max_sync > bad_sectors) 2623 max_sync = max_sync; 2624 continue; 2625 } 2626 } 2627 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2628 atomic_inc(&r10_bio->remaining); 2629 bio->bi_next = biolist; 2630 biolist = bio; 2631 bio->bi_private = r10_bio; 2632 bio->bi_end_io = end_sync_read; 2633 bio->bi_rw = READ; 2634 bio->bi_sector = sector + 2635 conf->mirrors[d].rdev->data_offset; 2636 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2637 count++; 2638 } 2639 2640 if (count < 2) { 2641 for (i=0; i<conf->copies; i++) { 2642 int d = r10_bio->devs[i].devnum; 2643 if (r10_bio->devs[i].bio->bi_end_io) 2644 rdev_dec_pending(conf->mirrors[d].rdev, 2645 mddev); 2646 } 2647 put_buf(r10_bio); 2648 biolist = NULL; 2649 goto giveup; 2650 } 2651 } 2652 2653 for (bio = biolist; bio ; bio=bio->bi_next) { 2654 2655 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2656 if (bio->bi_end_io) 2657 bio->bi_flags |= 1 << BIO_UPTODATE; 2658 bio->bi_vcnt = 0; 2659 bio->bi_idx = 0; 2660 bio->bi_phys_segments = 0; 2661 bio->bi_size = 0; 2662 } 2663 2664 nr_sectors = 0; 2665 if (sector_nr + max_sync < max_sector) 2666 max_sector = sector_nr + max_sync; 2667 do { 2668 struct page *page; 2669 int len = PAGE_SIZE; 2670 if (sector_nr + (len>>9) > max_sector) 2671 len = (max_sector - sector_nr) << 9; 2672 if (len == 0) 2673 break; 2674 for (bio= biolist ; bio ; bio=bio->bi_next) { 2675 struct bio *bio2; 2676 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2677 if (bio_add_page(bio, page, len, 0)) 2678 continue; 2679 2680 /* stop here */ 2681 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2682 for (bio2 = biolist; 2683 bio2 && bio2 != bio; 2684 bio2 = bio2->bi_next) { 2685 /* remove last page from this bio */ 2686 bio2->bi_vcnt--; 2687 bio2->bi_size -= len; 2688 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2689 } 2690 goto bio_full; 2691 } 2692 nr_sectors += len>>9; 2693 sector_nr += len>>9; 2694 } while (biolist->bi_vcnt < RESYNC_PAGES); 2695 bio_full: 2696 r10_bio->sectors = nr_sectors; 2697 2698 while (biolist) { 2699 bio = biolist; 2700 biolist = biolist->bi_next; 2701 2702 bio->bi_next = NULL; 2703 r10_bio = bio->bi_private; 2704 r10_bio->sectors = nr_sectors; 2705 2706 if (bio->bi_end_io == end_sync_read) { 2707 md_sync_acct(bio->bi_bdev, nr_sectors); 2708 generic_make_request(bio); 2709 } 2710 } 2711 2712 if (sectors_skipped) 2713 /* pretend they weren't skipped, it makes 2714 * no important difference in this case 2715 */ 2716 md_done_sync(mddev, sectors_skipped, 1); 2717 2718 return sectors_skipped + nr_sectors; 2719 giveup: 2720 /* There is nowhere to write, so all non-sync 2721 * drives must be failed or in resync, all drives 2722 * have a bad block, so try the next chunk... 2723 */ 2724 if (sector_nr + max_sync < max_sector) 2725 max_sector = sector_nr + max_sync; 2726 2727 sectors_skipped += (max_sector - sector_nr); 2728 chunks_skipped ++; 2729 sector_nr = max_sector; 2730 goto skipped; 2731 } 2732 2733 static sector_t 2734 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2735 { 2736 sector_t size; 2737 struct r10conf *conf = mddev->private; 2738 2739 if (!raid_disks) 2740 raid_disks = conf->raid_disks; 2741 if (!sectors) 2742 sectors = conf->dev_sectors; 2743 2744 size = sectors >> conf->chunk_shift; 2745 sector_div(size, conf->far_copies); 2746 size = size * raid_disks; 2747 sector_div(size, conf->near_copies); 2748 2749 return size << conf->chunk_shift; 2750 } 2751 2752 2753 static struct r10conf *setup_conf(struct mddev *mddev) 2754 { 2755 struct r10conf *conf = NULL; 2756 int nc, fc, fo; 2757 sector_t stride, size; 2758 int err = -EINVAL; 2759 2760 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2761 !is_power_of_2(mddev->new_chunk_sectors)) { 2762 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2763 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2764 mdname(mddev), PAGE_SIZE); 2765 goto out; 2766 } 2767 2768 nc = mddev->new_layout & 255; 2769 fc = (mddev->new_layout >> 8) & 255; 2770 fo = mddev->new_layout & (1<<16); 2771 2772 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2773 (mddev->new_layout >> 17)) { 2774 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2775 mdname(mddev), mddev->new_layout); 2776 goto out; 2777 } 2778 2779 err = -ENOMEM; 2780 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 2781 if (!conf) 2782 goto out; 2783 2784 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2785 GFP_KERNEL); 2786 if (!conf->mirrors) 2787 goto out; 2788 2789 conf->tmppage = alloc_page(GFP_KERNEL); 2790 if (!conf->tmppage) 2791 goto out; 2792 2793 2794 conf->raid_disks = mddev->raid_disks; 2795 conf->near_copies = nc; 2796 conf->far_copies = fc; 2797 conf->copies = nc*fc; 2798 conf->far_offset = fo; 2799 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2800 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2801 2802 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2803 r10bio_pool_free, conf); 2804 if (!conf->r10bio_pool) 2805 goto out; 2806 2807 size = mddev->dev_sectors >> conf->chunk_shift; 2808 sector_div(size, fc); 2809 size = size * conf->raid_disks; 2810 sector_div(size, nc); 2811 /* 'size' is now the number of chunks in the array */ 2812 /* calculate "used chunks per device" in 'stride' */ 2813 stride = size * conf->copies; 2814 2815 /* We need to round up when dividing by raid_disks to 2816 * get the stride size. 2817 */ 2818 stride += conf->raid_disks - 1; 2819 sector_div(stride, conf->raid_disks); 2820 2821 conf->dev_sectors = stride << conf->chunk_shift; 2822 2823 if (fo) 2824 stride = 1; 2825 else 2826 sector_div(stride, fc); 2827 conf->stride = stride << conf->chunk_shift; 2828 2829 2830 spin_lock_init(&conf->device_lock); 2831 INIT_LIST_HEAD(&conf->retry_list); 2832 2833 spin_lock_init(&conf->resync_lock); 2834 init_waitqueue_head(&conf->wait_barrier); 2835 2836 conf->thread = md_register_thread(raid10d, mddev, NULL); 2837 if (!conf->thread) 2838 goto out; 2839 2840 conf->mddev = mddev; 2841 return conf; 2842 2843 out: 2844 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2845 mdname(mddev)); 2846 if (conf) { 2847 if (conf->r10bio_pool) 2848 mempool_destroy(conf->r10bio_pool); 2849 kfree(conf->mirrors); 2850 safe_put_page(conf->tmppage); 2851 kfree(conf); 2852 } 2853 return ERR_PTR(err); 2854 } 2855 2856 static int run(struct mddev *mddev) 2857 { 2858 struct r10conf *conf; 2859 int i, disk_idx, chunk_size; 2860 struct mirror_info *disk; 2861 struct md_rdev *rdev; 2862 sector_t size; 2863 2864 /* 2865 * copy the already verified devices into our private RAID10 2866 * bookkeeping area. [whatever we allocate in run(), 2867 * should be freed in stop()] 2868 */ 2869 2870 if (mddev->private == NULL) { 2871 conf = setup_conf(mddev); 2872 if (IS_ERR(conf)) 2873 return PTR_ERR(conf); 2874 mddev->private = conf; 2875 } 2876 conf = mddev->private; 2877 if (!conf) 2878 goto out; 2879 2880 mddev->thread = conf->thread; 2881 conf->thread = NULL; 2882 2883 chunk_size = mddev->chunk_sectors << 9; 2884 blk_queue_io_min(mddev->queue, chunk_size); 2885 if (conf->raid_disks % conf->near_copies) 2886 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2887 else 2888 blk_queue_io_opt(mddev->queue, chunk_size * 2889 (conf->raid_disks / conf->near_copies)); 2890 2891 list_for_each_entry(rdev, &mddev->disks, same_set) { 2892 2893 disk_idx = rdev->raid_disk; 2894 if (disk_idx >= conf->raid_disks 2895 || disk_idx < 0) 2896 continue; 2897 disk = conf->mirrors + disk_idx; 2898 2899 disk->rdev = rdev; 2900 disk_stack_limits(mddev->gendisk, rdev->bdev, 2901 rdev->data_offset << 9); 2902 /* as we don't honour merge_bvec_fn, we must never risk 2903 * violating it, so limit max_segments to 1 lying 2904 * within a single page. 2905 */ 2906 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2907 blk_queue_max_segments(mddev->queue, 1); 2908 blk_queue_segment_boundary(mddev->queue, 2909 PAGE_CACHE_SIZE - 1); 2910 } 2911 2912 disk->head_position = 0; 2913 } 2914 /* need to check that every block has at least one working mirror */ 2915 if (!enough(conf, -1)) { 2916 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2917 mdname(mddev)); 2918 goto out_free_conf; 2919 } 2920 2921 mddev->degraded = 0; 2922 for (i = 0; i < conf->raid_disks; i++) { 2923 2924 disk = conf->mirrors + i; 2925 2926 if (!disk->rdev || 2927 !test_bit(In_sync, &disk->rdev->flags)) { 2928 disk->head_position = 0; 2929 mddev->degraded++; 2930 if (disk->rdev) 2931 conf->fullsync = 1; 2932 } 2933 disk->recovery_disabled = mddev->recovery_disabled - 1; 2934 } 2935 2936 if (mddev->recovery_cp != MaxSector) 2937 printk(KERN_NOTICE "md/raid10:%s: not clean" 2938 " -- starting background reconstruction\n", 2939 mdname(mddev)); 2940 printk(KERN_INFO 2941 "md/raid10:%s: active with %d out of %d devices\n", 2942 mdname(mddev), conf->raid_disks - mddev->degraded, 2943 conf->raid_disks); 2944 /* 2945 * Ok, everything is just fine now 2946 */ 2947 mddev->dev_sectors = conf->dev_sectors; 2948 size = raid10_size(mddev, 0, 0); 2949 md_set_array_sectors(mddev, size); 2950 mddev->resync_max_sectors = size; 2951 2952 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2953 mddev->queue->backing_dev_info.congested_data = mddev; 2954 2955 /* Calculate max read-ahead size. 2956 * We need to readahead at least twice a whole stripe.... 2957 * maybe... 2958 */ 2959 { 2960 int stripe = conf->raid_disks * 2961 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2962 stripe /= conf->near_copies; 2963 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2964 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2965 } 2966 2967 if (conf->near_copies < conf->raid_disks) 2968 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2969 2970 if (md_integrity_register(mddev)) 2971 goto out_free_conf; 2972 2973 return 0; 2974 2975 out_free_conf: 2976 md_unregister_thread(&mddev->thread); 2977 if (conf->r10bio_pool) 2978 mempool_destroy(conf->r10bio_pool); 2979 safe_put_page(conf->tmppage); 2980 kfree(conf->mirrors); 2981 kfree(conf); 2982 mddev->private = NULL; 2983 out: 2984 return -EIO; 2985 } 2986 2987 static int stop(struct mddev *mddev) 2988 { 2989 struct r10conf *conf = mddev->private; 2990 2991 raise_barrier(conf, 0); 2992 lower_barrier(conf); 2993 2994 md_unregister_thread(&mddev->thread); 2995 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2996 if (conf->r10bio_pool) 2997 mempool_destroy(conf->r10bio_pool); 2998 kfree(conf->mirrors); 2999 kfree(conf); 3000 mddev->private = NULL; 3001 return 0; 3002 } 3003 3004 static void raid10_quiesce(struct mddev *mddev, int state) 3005 { 3006 struct r10conf *conf = mddev->private; 3007 3008 switch(state) { 3009 case 1: 3010 raise_barrier(conf, 0); 3011 break; 3012 case 0: 3013 lower_barrier(conf); 3014 break; 3015 } 3016 } 3017 3018 static void *raid10_takeover_raid0(struct mddev *mddev) 3019 { 3020 struct md_rdev *rdev; 3021 struct r10conf *conf; 3022 3023 if (mddev->degraded > 0) { 3024 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3025 mdname(mddev)); 3026 return ERR_PTR(-EINVAL); 3027 } 3028 3029 /* Set new parameters */ 3030 mddev->new_level = 10; 3031 /* new layout: far_copies = 1, near_copies = 2 */ 3032 mddev->new_layout = (1<<8) + 2; 3033 mddev->new_chunk_sectors = mddev->chunk_sectors; 3034 mddev->delta_disks = mddev->raid_disks; 3035 mddev->raid_disks *= 2; 3036 /* make sure it will be not marked as dirty */ 3037 mddev->recovery_cp = MaxSector; 3038 3039 conf = setup_conf(mddev); 3040 if (!IS_ERR(conf)) { 3041 list_for_each_entry(rdev, &mddev->disks, same_set) 3042 if (rdev->raid_disk >= 0) 3043 rdev->new_raid_disk = rdev->raid_disk * 2; 3044 conf->barrier = 1; 3045 } 3046 3047 return conf; 3048 } 3049 3050 static void *raid10_takeover(struct mddev *mddev) 3051 { 3052 struct r0conf *raid0_conf; 3053 3054 /* raid10 can take over: 3055 * raid0 - providing it has only two drives 3056 */ 3057 if (mddev->level == 0) { 3058 /* for raid0 takeover only one zone is supported */ 3059 raid0_conf = mddev->private; 3060 if (raid0_conf->nr_strip_zones > 1) { 3061 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3062 " with more than one zone.\n", 3063 mdname(mddev)); 3064 return ERR_PTR(-EINVAL); 3065 } 3066 return raid10_takeover_raid0(mddev); 3067 } 3068 return ERR_PTR(-EINVAL); 3069 } 3070 3071 static struct md_personality raid10_personality = 3072 { 3073 .name = "raid10", 3074 .level = 10, 3075 .owner = THIS_MODULE, 3076 .make_request = make_request, 3077 .run = run, 3078 .stop = stop, 3079 .status = status, 3080 .error_handler = error, 3081 .hot_add_disk = raid10_add_disk, 3082 .hot_remove_disk= raid10_remove_disk, 3083 .spare_active = raid10_spare_active, 3084 .sync_request = sync_request, 3085 .quiesce = raid10_quiesce, 3086 .size = raid10_size, 3087 .takeover = raid10_takeover, 3088 }; 3089 3090 static int __init raid_init(void) 3091 { 3092 return register_md_personality(&raid10_personality); 3093 } 3094 3095 static void raid_exit(void) 3096 { 3097 unregister_md_personality(&raid10_personality); 3098 } 3099 3100 module_init(raid_init); 3101 module_exit(raid_exit); 3102 MODULE_LICENSE("GPL"); 3103 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3104 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3105 MODULE_ALIAS("md-raid10"); 3106 MODULE_ALIAS("md-level-10"); 3107 3108 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3109