xref: /openbmc/linux/drivers/md/raid10.c (revision 615c36f5)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31 
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56 
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define	NR_RAID10_BIOS 256
61 
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67 
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 
71 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
72 {
73 	struct r10conf *conf = data;
74 	int size = offsetof(struct r10bio, devs[conf->copies]);
75 
76 	/* allocate a r10bio with room for raid_disks entries in the bios array */
77 	return kzalloc(size, gfp_flags);
78 }
79 
80 static void r10bio_pool_free(void *r10_bio, void *data)
81 {
82 	kfree(r10_bio);
83 }
84 
85 /* Maximum size of each resync request */
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
88 /* amount of memory to reserve for resync requests */
89 #define RESYNC_WINDOW (1024*1024)
90 /* maximum number of concurrent requests, memory permitting */
91 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
92 
93 /*
94  * When performing a resync, we need to read and compare, so
95  * we need as many pages are there are copies.
96  * When performing a recovery, we need 2 bios, one for read,
97  * one for write (we recover only one drive per r10buf)
98  *
99  */
100 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 {
102 	struct r10conf *conf = data;
103 	struct page *page;
104 	struct r10bio *r10_bio;
105 	struct bio *bio;
106 	int i, j;
107 	int nalloc;
108 
109 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
110 	if (!r10_bio)
111 		return NULL;
112 
113 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114 		nalloc = conf->copies; /* resync */
115 	else
116 		nalloc = 2; /* recovery */
117 
118 	/*
119 	 * Allocate bios.
120 	 */
121 	for (j = nalloc ; j-- ; ) {
122 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
123 		if (!bio)
124 			goto out_free_bio;
125 		r10_bio->devs[j].bio = bio;
126 	}
127 	/*
128 	 * Allocate RESYNC_PAGES data pages and attach them
129 	 * where needed.
130 	 */
131 	for (j = 0 ; j < nalloc; j++) {
132 		bio = r10_bio->devs[j].bio;
133 		for (i = 0; i < RESYNC_PAGES; i++) {
134 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
135 						&conf->mddev->recovery)) {
136 				/* we can share bv_page's during recovery */
137 				struct bio *rbio = r10_bio->devs[0].bio;
138 				page = rbio->bi_io_vec[i].bv_page;
139 				get_page(page);
140 			} else
141 				page = alloc_page(gfp_flags);
142 			if (unlikely(!page))
143 				goto out_free_pages;
144 
145 			bio->bi_io_vec[i].bv_page = page;
146 		}
147 	}
148 
149 	return r10_bio;
150 
151 out_free_pages:
152 	for ( ; i > 0 ; i--)
153 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
154 	while (j--)
155 		for (i = 0; i < RESYNC_PAGES ; i++)
156 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
157 	j = -1;
158 out_free_bio:
159 	while ( ++j < nalloc )
160 		bio_put(r10_bio->devs[j].bio);
161 	r10bio_pool_free(r10_bio, conf);
162 	return NULL;
163 }
164 
165 static void r10buf_pool_free(void *__r10_bio, void *data)
166 {
167 	int i;
168 	struct r10conf *conf = data;
169 	struct r10bio *r10bio = __r10_bio;
170 	int j;
171 
172 	for (j=0; j < conf->copies; j++) {
173 		struct bio *bio = r10bio->devs[j].bio;
174 		if (bio) {
175 			for (i = 0; i < RESYNC_PAGES; i++) {
176 				safe_put_page(bio->bi_io_vec[i].bv_page);
177 				bio->bi_io_vec[i].bv_page = NULL;
178 			}
179 			bio_put(bio);
180 		}
181 	}
182 	r10bio_pool_free(r10bio, conf);
183 }
184 
185 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
186 {
187 	int i;
188 
189 	for (i = 0; i < conf->copies; i++) {
190 		struct bio **bio = & r10_bio->devs[i].bio;
191 		if (!BIO_SPECIAL(*bio))
192 			bio_put(*bio);
193 		*bio = NULL;
194 	}
195 }
196 
197 static void free_r10bio(struct r10bio *r10_bio)
198 {
199 	struct r10conf *conf = r10_bio->mddev->private;
200 
201 	put_all_bios(conf, r10_bio);
202 	mempool_free(r10_bio, conf->r10bio_pool);
203 }
204 
205 static void put_buf(struct r10bio *r10_bio)
206 {
207 	struct r10conf *conf = r10_bio->mddev->private;
208 
209 	mempool_free(r10_bio, conf->r10buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(struct r10bio *r10_bio)
215 {
216 	unsigned long flags;
217 	struct mddev *mddev = r10_bio->mddev;
218 	struct r10conf *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r10_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	/* wake up frozen array... */
226 	wake_up(&conf->wait_barrier);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(struct r10bio *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 	int done;
240 	struct r10conf *conf = r10_bio->mddev->private;
241 
242 	if (bio->bi_phys_segments) {
243 		unsigned long flags;
244 		spin_lock_irqsave(&conf->device_lock, flags);
245 		bio->bi_phys_segments--;
246 		done = (bio->bi_phys_segments == 0);
247 		spin_unlock_irqrestore(&conf->device_lock, flags);
248 	} else
249 		done = 1;
250 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
251 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
252 	if (done) {
253 		bio_endio(bio, 0);
254 		/*
255 		 * Wake up any possible resync thread that waits for the device
256 		 * to go idle.
257 		 */
258 		allow_barrier(conf);
259 	}
260 	free_r10bio(r10_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
267 {
268 	struct r10conf *conf = r10_bio->mddev->private;
269 
270 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
271 		r10_bio->devs[slot].addr + (r10_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
278 			 struct bio *bio, int *slotp)
279 {
280 	int slot;
281 
282 	for (slot = 0; slot < conf->copies; slot++)
283 		if (r10_bio->devs[slot].bio == bio)
284 			break;
285 
286 	BUG_ON(slot == conf->copies);
287 	update_head_pos(slot, r10_bio);
288 
289 	if (slotp)
290 		*slotp = slot;
291 	return r10_bio->devs[slot].devnum;
292 }
293 
294 static void raid10_end_read_request(struct bio *bio, int error)
295 {
296 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
297 	struct r10bio *r10_bio = bio->bi_private;
298 	int slot, dev;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 
302 	slot = r10_bio->read_slot;
303 	dev = r10_bio->devs[slot].devnum;
304 	/*
305 	 * this branch is our 'one mirror IO has finished' event handler:
306 	 */
307 	update_head_pos(slot, r10_bio);
308 
309 	if (uptodate) {
310 		/*
311 		 * Set R10BIO_Uptodate in our master bio, so that
312 		 * we will return a good error code to the higher
313 		 * levels even if IO on some other mirrored buffer fails.
314 		 *
315 		 * The 'master' represents the composite IO operation to
316 		 * user-side. So if something waits for IO, then it will
317 		 * wait for the 'master' bio.
318 		 */
319 		set_bit(R10BIO_Uptodate, &r10_bio->state);
320 		raid_end_bio_io(r10_bio);
321 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
322 	} else {
323 		/*
324 		 * oops, read error - keep the refcount on the rdev
325 		 */
326 		char b[BDEVNAME_SIZE];
327 		printk_ratelimited(KERN_ERR
328 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
329 				   mdname(conf->mddev),
330 				   bdevname(conf->mirrors[dev].rdev->bdev, b),
331 				   (unsigned long long)r10_bio->sector);
332 		set_bit(R10BIO_ReadError, &r10_bio->state);
333 		reschedule_retry(r10_bio);
334 	}
335 }
336 
337 static void close_write(struct r10bio *r10_bio)
338 {
339 	/* clear the bitmap if all writes complete successfully */
340 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
341 			r10_bio->sectors,
342 			!test_bit(R10BIO_Degraded, &r10_bio->state),
343 			0);
344 	md_write_end(r10_bio->mddev);
345 }
346 
347 static void one_write_done(struct r10bio *r10_bio)
348 {
349 	if (atomic_dec_and_test(&r10_bio->remaining)) {
350 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
351 			reschedule_retry(r10_bio);
352 		else {
353 			close_write(r10_bio);
354 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
355 				reschedule_retry(r10_bio);
356 			else
357 				raid_end_bio_io(r10_bio);
358 		}
359 	}
360 }
361 
362 static void raid10_end_write_request(struct bio *bio, int error)
363 {
364 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
365 	struct r10bio *r10_bio = bio->bi_private;
366 	int dev;
367 	int dec_rdev = 1;
368 	struct r10conf *conf = r10_bio->mddev->private;
369 	int slot;
370 
371 	dev = find_bio_disk(conf, r10_bio, bio, &slot);
372 
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	if (!uptodate) {
377 		set_bit(WriteErrorSeen,	&conf->mirrors[dev].rdev->flags);
378 		set_bit(R10BIO_WriteError, &r10_bio->state);
379 		dec_rdev = 0;
380 	} else {
381 		/*
382 		 * Set R10BIO_Uptodate in our master bio, so that
383 		 * we will return a good error code for to the higher
384 		 * levels even if IO on some other mirrored buffer fails.
385 		 *
386 		 * The 'master' represents the composite IO operation to
387 		 * user-side. So if something waits for IO, then it will
388 		 * wait for the 'master' bio.
389 		 */
390 		sector_t first_bad;
391 		int bad_sectors;
392 
393 		set_bit(R10BIO_Uptodate, &r10_bio->state);
394 
395 		/* Maybe we can clear some bad blocks. */
396 		if (is_badblock(conf->mirrors[dev].rdev,
397 				r10_bio->devs[slot].addr,
398 				r10_bio->sectors,
399 				&first_bad, &bad_sectors)) {
400 			bio_put(bio);
401 			r10_bio->devs[slot].bio = IO_MADE_GOOD;
402 			dec_rdev = 0;
403 			set_bit(R10BIO_MadeGood, &r10_bio->state);
404 		}
405 	}
406 
407 	/*
408 	 *
409 	 * Let's see if all mirrored write operations have finished
410 	 * already.
411 	 */
412 	one_write_done(r10_bio);
413 	if (dec_rdev)
414 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
415 }
416 
417 
418 /*
419  * RAID10 layout manager
420  * As well as the chunksize and raid_disks count, there are two
421  * parameters: near_copies and far_copies.
422  * near_copies * far_copies must be <= raid_disks.
423  * Normally one of these will be 1.
424  * If both are 1, we get raid0.
425  * If near_copies == raid_disks, we get raid1.
426  *
427  * Chunks are laid out in raid0 style with near_copies copies of the
428  * first chunk, followed by near_copies copies of the next chunk and
429  * so on.
430  * If far_copies > 1, then after 1/far_copies of the array has been assigned
431  * as described above, we start again with a device offset of near_copies.
432  * So we effectively have another copy of the whole array further down all
433  * the drives, but with blocks on different drives.
434  * With this layout, and block is never stored twice on the one device.
435  *
436  * raid10_find_phys finds the sector offset of a given virtual sector
437  * on each device that it is on.
438  *
439  * raid10_find_virt does the reverse mapping, from a device and a
440  * sector offset to a virtual address
441  */
442 
443 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
444 {
445 	int n,f;
446 	sector_t sector;
447 	sector_t chunk;
448 	sector_t stripe;
449 	int dev;
450 
451 	int slot = 0;
452 
453 	/* now calculate first sector/dev */
454 	chunk = r10bio->sector >> conf->chunk_shift;
455 	sector = r10bio->sector & conf->chunk_mask;
456 
457 	chunk *= conf->near_copies;
458 	stripe = chunk;
459 	dev = sector_div(stripe, conf->raid_disks);
460 	if (conf->far_offset)
461 		stripe *= conf->far_copies;
462 
463 	sector += stripe << conf->chunk_shift;
464 
465 	/* and calculate all the others */
466 	for (n=0; n < conf->near_copies; n++) {
467 		int d = dev;
468 		sector_t s = sector;
469 		r10bio->devs[slot].addr = sector;
470 		r10bio->devs[slot].devnum = d;
471 		slot++;
472 
473 		for (f = 1; f < conf->far_copies; f++) {
474 			d += conf->near_copies;
475 			if (d >= conf->raid_disks)
476 				d -= conf->raid_disks;
477 			s += conf->stride;
478 			r10bio->devs[slot].devnum = d;
479 			r10bio->devs[slot].addr = s;
480 			slot++;
481 		}
482 		dev++;
483 		if (dev >= conf->raid_disks) {
484 			dev = 0;
485 			sector += (conf->chunk_mask + 1);
486 		}
487 	}
488 	BUG_ON(slot != conf->copies);
489 }
490 
491 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
492 {
493 	sector_t offset, chunk, vchunk;
494 
495 	offset = sector & conf->chunk_mask;
496 	if (conf->far_offset) {
497 		int fc;
498 		chunk = sector >> conf->chunk_shift;
499 		fc = sector_div(chunk, conf->far_copies);
500 		dev -= fc * conf->near_copies;
501 		if (dev < 0)
502 			dev += conf->raid_disks;
503 	} else {
504 		while (sector >= conf->stride) {
505 			sector -= conf->stride;
506 			if (dev < conf->near_copies)
507 				dev += conf->raid_disks - conf->near_copies;
508 			else
509 				dev -= conf->near_copies;
510 		}
511 		chunk = sector >> conf->chunk_shift;
512 	}
513 	vchunk = chunk * conf->raid_disks + dev;
514 	sector_div(vchunk, conf->near_copies);
515 	return (vchunk << conf->chunk_shift) + offset;
516 }
517 
518 /**
519  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
520  *	@q: request queue
521  *	@bvm: properties of new bio
522  *	@biovec: the request that could be merged to it.
523  *
524  *	Return amount of bytes we can accept at this offset
525  *      If near_copies == raid_disk, there are no striping issues,
526  *      but in that case, the function isn't called at all.
527  */
528 static int raid10_mergeable_bvec(struct request_queue *q,
529 				 struct bvec_merge_data *bvm,
530 				 struct bio_vec *biovec)
531 {
532 	struct mddev *mddev = q->queuedata;
533 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
534 	int max;
535 	unsigned int chunk_sectors = mddev->chunk_sectors;
536 	unsigned int bio_sectors = bvm->bi_size >> 9;
537 
538 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
539 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
540 	if (max <= biovec->bv_len && bio_sectors == 0)
541 		return biovec->bv_len;
542 	else
543 		return max;
544 }
545 
546 /*
547  * This routine returns the disk from which the requested read should
548  * be done. There is a per-array 'next expected sequential IO' sector
549  * number - if this matches on the next IO then we use the last disk.
550  * There is also a per-disk 'last know head position' sector that is
551  * maintained from IRQ contexts, both the normal and the resync IO
552  * completion handlers update this position correctly. If there is no
553  * perfect sequential match then we pick the disk whose head is closest.
554  *
555  * If there are 2 mirrors in the same 2 devices, performance degrades
556  * because position is mirror, not device based.
557  *
558  * The rdev for the device selected will have nr_pending incremented.
559  */
560 
561 /*
562  * FIXME: possibly should rethink readbalancing and do it differently
563  * depending on near_copies / far_copies geometry.
564  */
565 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
566 {
567 	const sector_t this_sector = r10_bio->sector;
568 	int disk, slot;
569 	int sectors = r10_bio->sectors;
570 	int best_good_sectors;
571 	sector_t new_distance, best_dist;
572 	struct md_rdev *rdev;
573 	int do_balance;
574 	int best_slot;
575 
576 	raid10_find_phys(conf, r10_bio);
577 	rcu_read_lock();
578 retry:
579 	sectors = r10_bio->sectors;
580 	best_slot = -1;
581 	best_dist = MaxSector;
582 	best_good_sectors = 0;
583 	do_balance = 1;
584 	/*
585 	 * Check if we can balance. We can balance on the whole
586 	 * device if no resync is going on (recovery is ok), or below
587 	 * the resync window. We take the first readable disk when
588 	 * above the resync window.
589 	 */
590 	if (conf->mddev->recovery_cp < MaxSector
591 	    && (this_sector + sectors >= conf->next_resync))
592 		do_balance = 0;
593 
594 	for (slot = 0; slot < conf->copies ; slot++) {
595 		sector_t first_bad;
596 		int bad_sectors;
597 		sector_t dev_sector;
598 
599 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
600 			continue;
601 		disk = r10_bio->devs[slot].devnum;
602 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
603 		if (rdev == NULL)
604 			continue;
605 		if (!test_bit(In_sync, &rdev->flags))
606 			continue;
607 
608 		dev_sector = r10_bio->devs[slot].addr;
609 		if (is_badblock(rdev, dev_sector, sectors,
610 				&first_bad, &bad_sectors)) {
611 			if (best_dist < MaxSector)
612 				/* Already have a better slot */
613 				continue;
614 			if (first_bad <= dev_sector) {
615 				/* Cannot read here.  If this is the
616 				 * 'primary' device, then we must not read
617 				 * beyond 'bad_sectors' from another device.
618 				 */
619 				bad_sectors -= (dev_sector - first_bad);
620 				if (!do_balance && sectors > bad_sectors)
621 					sectors = bad_sectors;
622 				if (best_good_sectors > sectors)
623 					best_good_sectors = sectors;
624 			} else {
625 				sector_t good_sectors =
626 					first_bad - dev_sector;
627 				if (good_sectors > best_good_sectors) {
628 					best_good_sectors = good_sectors;
629 					best_slot = slot;
630 				}
631 				if (!do_balance)
632 					/* Must read from here */
633 					break;
634 			}
635 			continue;
636 		} else
637 			best_good_sectors = sectors;
638 
639 		if (!do_balance)
640 			break;
641 
642 		/* This optimisation is debatable, and completely destroys
643 		 * sequential read speed for 'far copies' arrays.  So only
644 		 * keep it for 'near' arrays, and review those later.
645 		 */
646 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
647 			break;
648 
649 		/* for far > 1 always use the lowest address */
650 		if (conf->far_copies > 1)
651 			new_distance = r10_bio->devs[slot].addr;
652 		else
653 			new_distance = abs(r10_bio->devs[slot].addr -
654 					   conf->mirrors[disk].head_position);
655 		if (new_distance < best_dist) {
656 			best_dist = new_distance;
657 			best_slot = slot;
658 		}
659 	}
660 	if (slot == conf->copies)
661 		slot = best_slot;
662 
663 	if (slot >= 0) {
664 		disk = r10_bio->devs[slot].devnum;
665 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
666 		if (!rdev)
667 			goto retry;
668 		atomic_inc(&rdev->nr_pending);
669 		if (test_bit(Faulty, &rdev->flags)) {
670 			/* Cannot risk returning a device that failed
671 			 * before we inc'ed nr_pending
672 			 */
673 			rdev_dec_pending(rdev, conf->mddev);
674 			goto retry;
675 		}
676 		r10_bio->read_slot = slot;
677 	} else
678 		disk = -1;
679 	rcu_read_unlock();
680 	*max_sectors = best_good_sectors;
681 
682 	return disk;
683 }
684 
685 static int raid10_congested(void *data, int bits)
686 {
687 	struct mddev *mddev = data;
688 	struct r10conf *conf = mddev->private;
689 	int i, ret = 0;
690 
691 	if ((bits & (1 << BDI_async_congested)) &&
692 	    conf->pending_count >= max_queued_requests)
693 		return 1;
694 
695 	if (mddev_congested(mddev, bits))
696 		return 1;
697 	rcu_read_lock();
698 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
699 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
700 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
701 			struct request_queue *q = bdev_get_queue(rdev->bdev);
702 
703 			ret |= bdi_congested(&q->backing_dev_info, bits);
704 		}
705 	}
706 	rcu_read_unlock();
707 	return ret;
708 }
709 
710 static void flush_pending_writes(struct r10conf *conf)
711 {
712 	/* Any writes that have been queued but are awaiting
713 	 * bitmap updates get flushed here.
714 	 */
715 	spin_lock_irq(&conf->device_lock);
716 
717 	if (conf->pending_bio_list.head) {
718 		struct bio *bio;
719 		bio = bio_list_get(&conf->pending_bio_list);
720 		conf->pending_count = 0;
721 		spin_unlock_irq(&conf->device_lock);
722 		/* flush any pending bitmap writes to disk
723 		 * before proceeding w/ I/O */
724 		bitmap_unplug(conf->mddev->bitmap);
725 		wake_up(&conf->wait_barrier);
726 
727 		while (bio) { /* submit pending writes */
728 			struct bio *next = bio->bi_next;
729 			bio->bi_next = NULL;
730 			generic_make_request(bio);
731 			bio = next;
732 		}
733 	} else
734 		spin_unlock_irq(&conf->device_lock);
735 }
736 
737 /* Barriers....
738  * Sometimes we need to suspend IO while we do something else,
739  * either some resync/recovery, or reconfigure the array.
740  * To do this we raise a 'barrier'.
741  * The 'barrier' is a counter that can be raised multiple times
742  * to count how many activities are happening which preclude
743  * normal IO.
744  * We can only raise the barrier if there is no pending IO.
745  * i.e. if nr_pending == 0.
746  * We choose only to raise the barrier if no-one is waiting for the
747  * barrier to go down.  This means that as soon as an IO request
748  * is ready, no other operations which require a barrier will start
749  * until the IO request has had a chance.
750  *
751  * So: regular IO calls 'wait_barrier'.  When that returns there
752  *    is no backgroup IO happening,  It must arrange to call
753  *    allow_barrier when it has finished its IO.
754  * backgroup IO calls must call raise_barrier.  Once that returns
755  *    there is no normal IO happeing.  It must arrange to call
756  *    lower_barrier when the particular background IO completes.
757  */
758 
759 static void raise_barrier(struct r10conf *conf, int force)
760 {
761 	BUG_ON(force && !conf->barrier);
762 	spin_lock_irq(&conf->resync_lock);
763 
764 	/* Wait until no block IO is waiting (unless 'force') */
765 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
766 			    conf->resync_lock, );
767 
768 	/* block any new IO from starting */
769 	conf->barrier++;
770 
771 	/* Now wait for all pending IO to complete */
772 	wait_event_lock_irq(conf->wait_barrier,
773 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
774 			    conf->resync_lock, );
775 
776 	spin_unlock_irq(&conf->resync_lock);
777 }
778 
779 static void lower_barrier(struct r10conf *conf)
780 {
781 	unsigned long flags;
782 	spin_lock_irqsave(&conf->resync_lock, flags);
783 	conf->barrier--;
784 	spin_unlock_irqrestore(&conf->resync_lock, flags);
785 	wake_up(&conf->wait_barrier);
786 }
787 
788 static void wait_barrier(struct r10conf *conf)
789 {
790 	spin_lock_irq(&conf->resync_lock);
791 	if (conf->barrier) {
792 		conf->nr_waiting++;
793 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
794 				    conf->resync_lock,
795 				    );
796 		conf->nr_waiting--;
797 	}
798 	conf->nr_pending++;
799 	spin_unlock_irq(&conf->resync_lock);
800 }
801 
802 static void allow_barrier(struct r10conf *conf)
803 {
804 	unsigned long flags;
805 	spin_lock_irqsave(&conf->resync_lock, flags);
806 	conf->nr_pending--;
807 	spin_unlock_irqrestore(&conf->resync_lock, flags);
808 	wake_up(&conf->wait_barrier);
809 }
810 
811 static void freeze_array(struct r10conf *conf)
812 {
813 	/* stop syncio and normal IO and wait for everything to
814 	 * go quiet.
815 	 * We increment barrier and nr_waiting, and then
816 	 * wait until nr_pending match nr_queued+1
817 	 * This is called in the context of one normal IO request
818 	 * that has failed. Thus any sync request that might be pending
819 	 * will be blocked by nr_pending, and we need to wait for
820 	 * pending IO requests to complete or be queued for re-try.
821 	 * Thus the number queued (nr_queued) plus this request (1)
822 	 * must match the number of pending IOs (nr_pending) before
823 	 * we continue.
824 	 */
825 	spin_lock_irq(&conf->resync_lock);
826 	conf->barrier++;
827 	conf->nr_waiting++;
828 	wait_event_lock_irq(conf->wait_barrier,
829 			    conf->nr_pending == conf->nr_queued+1,
830 			    conf->resync_lock,
831 			    flush_pending_writes(conf));
832 
833 	spin_unlock_irq(&conf->resync_lock);
834 }
835 
836 static void unfreeze_array(struct r10conf *conf)
837 {
838 	/* reverse the effect of the freeze */
839 	spin_lock_irq(&conf->resync_lock);
840 	conf->barrier--;
841 	conf->nr_waiting--;
842 	wake_up(&conf->wait_barrier);
843 	spin_unlock_irq(&conf->resync_lock);
844 }
845 
846 static void make_request(struct mddev *mddev, struct bio * bio)
847 {
848 	struct r10conf *conf = mddev->private;
849 	struct mirror_info *mirror;
850 	struct r10bio *r10_bio;
851 	struct bio *read_bio;
852 	int i;
853 	int chunk_sects = conf->chunk_mask + 1;
854 	const int rw = bio_data_dir(bio);
855 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
856 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
857 	unsigned long flags;
858 	struct md_rdev *blocked_rdev;
859 	int plugged;
860 	int sectors_handled;
861 	int max_sectors;
862 
863 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
864 		md_flush_request(mddev, bio);
865 		return;
866 	}
867 
868 	/* If this request crosses a chunk boundary, we need to
869 	 * split it.  This will only happen for 1 PAGE (or less) requests.
870 	 */
871 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
872 		      > chunk_sects &&
873 		    conf->near_copies < conf->raid_disks)) {
874 		struct bio_pair *bp;
875 		/* Sanity check -- queue functions should prevent this happening */
876 		if (bio->bi_vcnt != 1 ||
877 		    bio->bi_idx != 0)
878 			goto bad_map;
879 		/* This is a one page bio that upper layers
880 		 * refuse to split for us, so we need to split it.
881 		 */
882 		bp = bio_split(bio,
883 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
884 
885 		/* Each of these 'make_request' calls will call 'wait_barrier'.
886 		 * If the first succeeds but the second blocks due to the resync
887 		 * thread raising the barrier, we will deadlock because the
888 		 * IO to the underlying device will be queued in generic_make_request
889 		 * and will never complete, so will never reduce nr_pending.
890 		 * So increment nr_waiting here so no new raise_barriers will
891 		 * succeed, and so the second wait_barrier cannot block.
892 		 */
893 		spin_lock_irq(&conf->resync_lock);
894 		conf->nr_waiting++;
895 		spin_unlock_irq(&conf->resync_lock);
896 
897 		make_request(mddev, &bp->bio1);
898 		make_request(mddev, &bp->bio2);
899 
900 		spin_lock_irq(&conf->resync_lock);
901 		conf->nr_waiting--;
902 		wake_up(&conf->wait_barrier);
903 		spin_unlock_irq(&conf->resync_lock);
904 
905 		bio_pair_release(bp);
906 		return;
907 	bad_map:
908 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
909 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
910 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
911 
912 		bio_io_error(bio);
913 		return;
914 	}
915 
916 	md_write_start(mddev, bio);
917 
918 	/*
919 	 * Register the new request and wait if the reconstruction
920 	 * thread has put up a bar for new requests.
921 	 * Continue immediately if no resync is active currently.
922 	 */
923 	wait_barrier(conf);
924 
925 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
926 
927 	r10_bio->master_bio = bio;
928 	r10_bio->sectors = bio->bi_size >> 9;
929 
930 	r10_bio->mddev = mddev;
931 	r10_bio->sector = bio->bi_sector;
932 	r10_bio->state = 0;
933 
934 	/* We might need to issue multiple reads to different
935 	 * devices if there are bad blocks around, so we keep
936 	 * track of the number of reads in bio->bi_phys_segments.
937 	 * If this is 0, there is only one r10_bio and no locking
938 	 * will be needed when the request completes.  If it is
939 	 * non-zero, then it is the number of not-completed requests.
940 	 */
941 	bio->bi_phys_segments = 0;
942 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
943 
944 	if (rw == READ) {
945 		/*
946 		 * read balancing logic:
947 		 */
948 		int disk;
949 		int slot;
950 
951 read_again:
952 		disk = read_balance(conf, r10_bio, &max_sectors);
953 		slot = r10_bio->read_slot;
954 		if (disk < 0) {
955 			raid_end_bio_io(r10_bio);
956 			return;
957 		}
958 		mirror = conf->mirrors + disk;
959 
960 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
961 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
962 			    max_sectors);
963 
964 		r10_bio->devs[slot].bio = read_bio;
965 
966 		read_bio->bi_sector = r10_bio->devs[slot].addr +
967 			mirror->rdev->data_offset;
968 		read_bio->bi_bdev = mirror->rdev->bdev;
969 		read_bio->bi_end_io = raid10_end_read_request;
970 		read_bio->bi_rw = READ | do_sync;
971 		read_bio->bi_private = r10_bio;
972 
973 		if (max_sectors < r10_bio->sectors) {
974 			/* Could not read all from this device, so we will
975 			 * need another r10_bio.
976 			 */
977 			sectors_handled = (r10_bio->sectors + max_sectors
978 					   - bio->bi_sector);
979 			r10_bio->sectors = max_sectors;
980 			spin_lock_irq(&conf->device_lock);
981 			if (bio->bi_phys_segments == 0)
982 				bio->bi_phys_segments = 2;
983 			else
984 				bio->bi_phys_segments++;
985 			spin_unlock(&conf->device_lock);
986 			/* Cannot call generic_make_request directly
987 			 * as that will be queued in __generic_make_request
988 			 * and subsequent mempool_alloc might block
989 			 * waiting for it.  so hand bio over to raid10d.
990 			 */
991 			reschedule_retry(r10_bio);
992 
993 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
994 
995 			r10_bio->master_bio = bio;
996 			r10_bio->sectors = ((bio->bi_size >> 9)
997 					    - sectors_handled);
998 			r10_bio->state = 0;
999 			r10_bio->mddev = mddev;
1000 			r10_bio->sector = bio->bi_sector + sectors_handled;
1001 			goto read_again;
1002 		} else
1003 			generic_make_request(read_bio);
1004 		return;
1005 	}
1006 
1007 	/*
1008 	 * WRITE:
1009 	 */
1010 	if (conf->pending_count >= max_queued_requests) {
1011 		md_wakeup_thread(mddev->thread);
1012 		wait_event(conf->wait_barrier,
1013 			   conf->pending_count < max_queued_requests);
1014 	}
1015 	/* first select target devices under rcu_lock and
1016 	 * inc refcount on their rdev.  Record them by setting
1017 	 * bios[x] to bio
1018 	 * If there are known/acknowledged bad blocks on any device
1019 	 * on which we have seen a write error, we want to avoid
1020 	 * writing to those blocks.  This potentially requires several
1021 	 * writes to write around the bad blocks.  Each set of writes
1022 	 * gets its own r10_bio with a set of bios attached.  The number
1023 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1024 	 * the read case.
1025 	 */
1026 	plugged = mddev_check_plugged(mddev);
1027 
1028 	raid10_find_phys(conf, r10_bio);
1029 retry_write:
1030 	blocked_rdev = NULL;
1031 	rcu_read_lock();
1032 	max_sectors = r10_bio->sectors;
1033 
1034 	for (i = 0;  i < conf->copies; i++) {
1035 		int d = r10_bio->devs[i].devnum;
1036 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1037 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1038 			atomic_inc(&rdev->nr_pending);
1039 			blocked_rdev = rdev;
1040 			break;
1041 		}
1042 		r10_bio->devs[i].bio = NULL;
1043 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1044 			set_bit(R10BIO_Degraded, &r10_bio->state);
1045 			continue;
1046 		}
1047 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1048 			sector_t first_bad;
1049 			sector_t dev_sector = r10_bio->devs[i].addr;
1050 			int bad_sectors;
1051 			int is_bad;
1052 
1053 			is_bad = is_badblock(rdev, dev_sector,
1054 					     max_sectors,
1055 					     &first_bad, &bad_sectors);
1056 			if (is_bad < 0) {
1057 				/* Mustn't write here until the bad block
1058 				 * is acknowledged
1059 				 */
1060 				atomic_inc(&rdev->nr_pending);
1061 				set_bit(BlockedBadBlocks, &rdev->flags);
1062 				blocked_rdev = rdev;
1063 				break;
1064 			}
1065 			if (is_bad && first_bad <= dev_sector) {
1066 				/* Cannot write here at all */
1067 				bad_sectors -= (dev_sector - first_bad);
1068 				if (bad_sectors < max_sectors)
1069 					/* Mustn't write more than bad_sectors
1070 					 * to other devices yet
1071 					 */
1072 					max_sectors = bad_sectors;
1073 				/* We don't set R10BIO_Degraded as that
1074 				 * only applies if the disk is missing,
1075 				 * so it might be re-added, and we want to
1076 				 * know to recover this chunk.
1077 				 * In this case the device is here, and the
1078 				 * fact that this chunk is not in-sync is
1079 				 * recorded in the bad block log.
1080 				 */
1081 				continue;
1082 			}
1083 			if (is_bad) {
1084 				int good_sectors = first_bad - dev_sector;
1085 				if (good_sectors < max_sectors)
1086 					max_sectors = good_sectors;
1087 			}
1088 		}
1089 		r10_bio->devs[i].bio = bio;
1090 		atomic_inc(&rdev->nr_pending);
1091 	}
1092 	rcu_read_unlock();
1093 
1094 	if (unlikely(blocked_rdev)) {
1095 		/* Have to wait for this device to get unblocked, then retry */
1096 		int j;
1097 		int d;
1098 
1099 		for (j = 0; j < i; j++)
1100 			if (r10_bio->devs[j].bio) {
1101 				d = r10_bio->devs[j].devnum;
1102 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1103 			}
1104 		allow_barrier(conf);
1105 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1106 		wait_barrier(conf);
1107 		goto retry_write;
1108 	}
1109 
1110 	if (max_sectors < r10_bio->sectors) {
1111 		/* We are splitting this into multiple parts, so
1112 		 * we need to prepare for allocating another r10_bio.
1113 		 */
1114 		r10_bio->sectors = max_sectors;
1115 		spin_lock_irq(&conf->device_lock);
1116 		if (bio->bi_phys_segments == 0)
1117 			bio->bi_phys_segments = 2;
1118 		else
1119 			bio->bi_phys_segments++;
1120 		spin_unlock_irq(&conf->device_lock);
1121 	}
1122 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1123 
1124 	atomic_set(&r10_bio->remaining, 1);
1125 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1126 
1127 	for (i = 0; i < conf->copies; i++) {
1128 		struct bio *mbio;
1129 		int d = r10_bio->devs[i].devnum;
1130 		if (!r10_bio->devs[i].bio)
1131 			continue;
1132 
1133 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1134 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1135 			    max_sectors);
1136 		r10_bio->devs[i].bio = mbio;
1137 
1138 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1139 				   conf->mirrors[d].rdev->data_offset);
1140 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1141 		mbio->bi_end_io	= raid10_end_write_request;
1142 		mbio->bi_rw = WRITE | do_sync | do_fua;
1143 		mbio->bi_private = r10_bio;
1144 
1145 		atomic_inc(&r10_bio->remaining);
1146 		spin_lock_irqsave(&conf->device_lock, flags);
1147 		bio_list_add(&conf->pending_bio_list, mbio);
1148 		conf->pending_count++;
1149 		spin_unlock_irqrestore(&conf->device_lock, flags);
1150 	}
1151 
1152 	/* Don't remove the bias on 'remaining' (one_write_done) until
1153 	 * after checking if we need to go around again.
1154 	 */
1155 
1156 	if (sectors_handled < (bio->bi_size >> 9)) {
1157 		one_write_done(r10_bio);
1158 		/* We need another r10_bio.  It has already been counted
1159 		 * in bio->bi_phys_segments.
1160 		 */
1161 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1162 
1163 		r10_bio->master_bio = bio;
1164 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1165 
1166 		r10_bio->mddev = mddev;
1167 		r10_bio->sector = bio->bi_sector + sectors_handled;
1168 		r10_bio->state = 0;
1169 		goto retry_write;
1170 	}
1171 	one_write_done(r10_bio);
1172 
1173 	/* In case raid10d snuck in to freeze_array */
1174 	wake_up(&conf->wait_barrier);
1175 
1176 	if (do_sync || !mddev->bitmap || !plugged)
1177 		md_wakeup_thread(mddev->thread);
1178 }
1179 
1180 static void status(struct seq_file *seq, struct mddev *mddev)
1181 {
1182 	struct r10conf *conf = mddev->private;
1183 	int i;
1184 
1185 	if (conf->near_copies < conf->raid_disks)
1186 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1187 	if (conf->near_copies > 1)
1188 		seq_printf(seq, " %d near-copies", conf->near_copies);
1189 	if (conf->far_copies > 1) {
1190 		if (conf->far_offset)
1191 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1192 		else
1193 			seq_printf(seq, " %d far-copies", conf->far_copies);
1194 	}
1195 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1196 					conf->raid_disks - mddev->degraded);
1197 	for (i = 0; i < conf->raid_disks; i++)
1198 		seq_printf(seq, "%s",
1199 			      conf->mirrors[i].rdev &&
1200 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1201 	seq_printf(seq, "]");
1202 }
1203 
1204 /* check if there are enough drives for
1205  * every block to appear on atleast one.
1206  * Don't consider the device numbered 'ignore'
1207  * as we might be about to remove it.
1208  */
1209 static int enough(struct r10conf *conf, int ignore)
1210 {
1211 	int first = 0;
1212 
1213 	do {
1214 		int n = conf->copies;
1215 		int cnt = 0;
1216 		while (n--) {
1217 			if (conf->mirrors[first].rdev &&
1218 			    first != ignore)
1219 				cnt++;
1220 			first = (first+1) % conf->raid_disks;
1221 		}
1222 		if (cnt == 0)
1223 			return 0;
1224 	} while (first != 0);
1225 	return 1;
1226 }
1227 
1228 static void error(struct mddev *mddev, struct md_rdev *rdev)
1229 {
1230 	char b[BDEVNAME_SIZE];
1231 	struct r10conf *conf = mddev->private;
1232 
1233 	/*
1234 	 * If it is not operational, then we have already marked it as dead
1235 	 * else if it is the last working disks, ignore the error, let the
1236 	 * next level up know.
1237 	 * else mark the drive as failed
1238 	 */
1239 	if (test_bit(In_sync, &rdev->flags)
1240 	    && !enough(conf, rdev->raid_disk))
1241 		/*
1242 		 * Don't fail the drive, just return an IO error.
1243 		 */
1244 		return;
1245 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246 		unsigned long flags;
1247 		spin_lock_irqsave(&conf->device_lock, flags);
1248 		mddev->degraded++;
1249 		spin_unlock_irqrestore(&conf->device_lock, flags);
1250 		/*
1251 		 * if recovery is running, make sure it aborts.
1252 		 */
1253 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1254 	}
1255 	set_bit(Blocked, &rdev->flags);
1256 	set_bit(Faulty, &rdev->flags);
1257 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1258 	printk(KERN_ALERT
1259 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1260 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1261 	       mdname(mddev), bdevname(rdev->bdev, b),
1262 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1263 }
1264 
1265 static void print_conf(struct r10conf *conf)
1266 {
1267 	int i;
1268 	struct mirror_info *tmp;
1269 
1270 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1271 	if (!conf) {
1272 		printk(KERN_DEBUG "(!conf)\n");
1273 		return;
1274 	}
1275 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1276 		conf->raid_disks);
1277 
1278 	for (i = 0; i < conf->raid_disks; i++) {
1279 		char b[BDEVNAME_SIZE];
1280 		tmp = conf->mirrors + i;
1281 		if (tmp->rdev)
1282 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1283 				i, !test_bit(In_sync, &tmp->rdev->flags),
1284 			        !test_bit(Faulty, &tmp->rdev->flags),
1285 				bdevname(tmp->rdev->bdev,b));
1286 	}
1287 }
1288 
1289 static void close_sync(struct r10conf *conf)
1290 {
1291 	wait_barrier(conf);
1292 	allow_barrier(conf);
1293 
1294 	mempool_destroy(conf->r10buf_pool);
1295 	conf->r10buf_pool = NULL;
1296 }
1297 
1298 static int raid10_spare_active(struct mddev *mddev)
1299 {
1300 	int i;
1301 	struct r10conf *conf = mddev->private;
1302 	struct mirror_info *tmp;
1303 	int count = 0;
1304 	unsigned long flags;
1305 
1306 	/*
1307 	 * Find all non-in_sync disks within the RAID10 configuration
1308 	 * and mark them in_sync
1309 	 */
1310 	for (i = 0; i < conf->raid_disks; i++) {
1311 		tmp = conf->mirrors + i;
1312 		if (tmp->rdev
1313 		    && !test_bit(Faulty, &tmp->rdev->flags)
1314 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1315 			count++;
1316 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1317 		}
1318 	}
1319 	spin_lock_irqsave(&conf->device_lock, flags);
1320 	mddev->degraded -= count;
1321 	spin_unlock_irqrestore(&conf->device_lock, flags);
1322 
1323 	print_conf(conf);
1324 	return count;
1325 }
1326 
1327 
1328 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1329 {
1330 	struct r10conf *conf = mddev->private;
1331 	int err = -EEXIST;
1332 	int mirror;
1333 	int first = 0;
1334 	int last = conf->raid_disks - 1;
1335 
1336 	if (mddev->recovery_cp < MaxSector)
1337 		/* only hot-add to in-sync arrays, as recovery is
1338 		 * very different from resync
1339 		 */
1340 		return -EBUSY;
1341 	if (!enough(conf, -1))
1342 		return -EINVAL;
1343 
1344 	if (rdev->raid_disk >= 0)
1345 		first = last = rdev->raid_disk;
1346 
1347 	if (rdev->saved_raid_disk >= first &&
1348 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1349 		mirror = rdev->saved_raid_disk;
1350 	else
1351 		mirror = first;
1352 	for ( ; mirror <= last ; mirror++) {
1353 		struct mirror_info *p = &conf->mirrors[mirror];
1354 		if (p->recovery_disabled == mddev->recovery_disabled)
1355 			continue;
1356 		if (p->rdev)
1357 			continue;
1358 
1359 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1360 				  rdev->data_offset << 9);
1361 		/* as we don't honour merge_bvec_fn, we must
1362 		 * never risk violating it, so limit
1363 		 * ->max_segments to one lying with a single
1364 		 * page, as a one page request is never in
1365 		 * violation.
1366 		 */
1367 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1368 			blk_queue_max_segments(mddev->queue, 1);
1369 			blk_queue_segment_boundary(mddev->queue,
1370 						   PAGE_CACHE_SIZE - 1);
1371 		}
1372 
1373 		p->head_position = 0;
1374 		p->recovery_disabled = mddev->recovery_disabled - 1;
1375 		rdev->raid_disk = mirror;
1376 		err = 0;
1377 		if (rdev->saved_raid_disk != mirror)
1378 			conf->fullsync = 1;
1379 		rcu_assign_pointer(p->rdev, rdev);
1380 		break;
1381 	}
1382 
1383 	md_integrity_add_rdev(rdev, mddev);
1384 	print_conf(conf);
1385 	return err;
1386 }
1387 
1388 static int raid10_remove_disk(struct mddev *mddev, int number)
1389 {
1390 	struct r10conf *conf = mddev->private;
1391 	int err = 0;
1392 	struct md_rdev *rdev;
1393 	struct mirror_info *p = conf->mirrors+ number;
1394 
1395 	print_conf(conf);
1396 	rdev = p->rdev;
1397 	if (rdev) {
1398 		if (test_bit(In_sync, &rdev->flags) ||
1399 		    atomic_read(&rdev->nr_pending)) {
1400 			err = -EBUSY;
1401 			goto abort;
1402 		}
1403 		/* Only remove faulty devices in recovery
1404 		 * is not possible.
1405 		 */
1406 		if (!test_bit(Faulty, &rdev->flags) &&
1407 		    mddev->recovery_disabled != p->recovery_disabled &&
1408 		    enough(conf, -1)) {
1409 			err = -EBUSY;
1410 			goto abort;
1411 		}
1412 		p->rdev = NULL;
1413 		synchronize_rcu();
1414 		if (atomic_read(&rdev->nr_pending)) {
1415 			/* lost the race, try later */
1416 			err = -EBUSY;
1417 			p->rdev = rdev;
1418 			goto abort;
1419 		}
1420 		err = md_integrity_register(mddev);
1421 	}
1422 abort:
1423 
1424 	print_conf(conf);
1425 	return err;
1426 }
1427 
1428 
1429 static void end_sync_read(struct bio *bio, int error)
1430 {
1431 	struct r10bio *r10_bio = bio->bi_private;
1432 	struct r10conf *conf = r10_bio->mddev->private;
1433 	int d;
1434 
1435 	d = find_bio_disk(conf, r10_bio, bio, NULL);
1436 
1437 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1438 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1439 	else
1440 		/* The write handler will notice the lack of
1441 		 * R10BIO_Uptodate and record any errors etc
1442 		 */
1443 		atomic_add(r10_bio->sectors,
1444 			   &conf->mirrors[d].rdev->corrected_errors);
1445 
1446 	/* for reconstruct, we always reschedule after a read.
1447 	 * for resync, only after all reads
1448 	 */
1449 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1450 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1451 	    atomic_dec_and_test(&r10_bio->remaining)) {
1452 		/* we have read all the blocks,
1453 		 * do the comparison in process context in raid10d
1454 		 */
1455 		reschedule_retry(r10_bio);
1456 	}
1457 }
1458 
1459 static void end_sync_request(struct r10bio *r10_bio)
1460 {
1461 	struct mddev *mddev = r10_bio->mddev;
1462 
1463 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1464 		if (r10_bio->master_bio == NULL) {
1465 			/* the primary of several recovery bios */
1466 			sector_t s = r10_bio->sectors;
1467 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1468 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1469 				reschedule_retry(r10_bio);
1470 			else
1471 				put_buf(r10_bio);
1472 			md_done_sync(mddev, s, 1);
1473 			break;
1474 		} else {
1475 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1476 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1477 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1478 				reschedule_retry(r10_bio);
1479 			else
1480 				put_buf(r10_bio);
1481 			r10_bio = r10_bio2;
1482 		}
1483 	}
1484 }
1485 
1486 static void end_sync_write(struct bio *bio, int error)
1487 {
1488 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1489 	struct r10bio *r10_bio = bio->bi_private;
1490 	struct mddev *mddev = r10_bio->mddev;
1491 	struct r10conf *conf = mddev->private;
1492 	int d;
1493 	sector_t first_bad;
1494 	int bad_sectors;
1495 	int slot;
1496 
1497 	d = find_bio_disk(conf, r10_bio, bio, &slot);
1498 
1499 	if (!uptodate) {
1500 		set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1501 		set_bit(R10BIO_WriteError, &r10_bio->state);
1502 	} else if (is_badblock(conf->mirrors[d].rdev,
1503 			     r10_bio->devs[slot].addr,
1504 			     r10_bio->sectors,
1505 			     &first_bad, &bad_sectors))
1506 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1507 
1508 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1509 
1510 	end_sync_request(r10_bio);
1511 }
1512 
1513 /*
1514  * Note: sync and recover and handled very differently for raid10
1515  * This code is for resync.
1516  * For resync, we read through virtual addresses and read all blocks.
1517  * If there is any error, we schedule a write.  The lowest numbered
1518  * drive is authoritative.
1519  * However requests come for physical address, so we need to map.
1520  * For every physical address there are raid_disks/copies virtual addresses,
1521  * which is always are least one, but is not necessarly an integer.
1522  * This means that a physical address can span multiple chunks, so we may
1523  * have to submit multiple io requests for a single sync request.
1524  */
1525 /*
1526  * We check if all blocks are in-sync and only write to blocks that
1527  * aren't in sync
1528  */
1529 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1530 {
1531 	struct r10conf *conf = mddev->private;
1532 	int i, first;
1533 	struct bio *tbio, *fbio;
1534 
1535 	atomic_set(&r10_bio->remaining, 1);
1536 
1537 	/* find the first device with a block */
1538 	for (i=0; i<conf->copies; i++)
1539 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1540 			break;
1541 
1542 	if (i == conf->copies)
1543 		goto done;
1544 
1545 	first = i;
1546 	fbio = r10_bio->devs[i].bio;
1547 
1548 	/* now find blocks with errors */
1549 	for (i=0 ; i < conf->copies ; i++) {
1550 		int  j, d;
1551 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1552 
1553 		tbio = r10_bio->devs[i].bio;
1554 
1555 		if (tbio->bi_end_io != end_sync_read)
1556 			continue;
1557 		if (i == first)
1558 			continue;
1559 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1560 			/* We know that the bi_io_vec layout is the same for
1561 			 * both 'first' and 'i', so we just compare them.
1562 			 * All vec entries are PAGE_SIZE;
1563 			 */
1564 			for (j = 0; j < vcnt; j++)
1565 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1566 					   page_address(tbio->bi_io_vec[j].bv_page),
1567 					   PAGE_SIZE))
1568 					break;
1569 			if (j == vcnt)
1570 				continue;
1571 			mddev->resync_mismatches += r10_bio->sectors;
1572 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1573 				/* Don't fix anything. */
1574 				continue;
1575 		}
1576 		/* Ok, we need to write this bio, either to correct an
1577 		 * inconsistency or to correct an unreadable block.
1578 		 * First we need to fixup bv_offset, bv_len and
1579 		 * bi_vecs, as the read request might have corrupted these
1580 		 */
1581 		tbio->bi_vcnt = vcnt;
1582 		tbio->bi_size = r10_bio->sectors << 9;
1583 		tbio->bi_idx = 0;
1584 		tbio->bi_phys_segments = 0;
1585 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1586 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1587 		tbio->bi_next = NULL;
1588 		tbio->bi_rw = WRITE;
1589 		tbio->bi_private = r10_bio;
1590 		tbio->bi_sector = r10_bio->devs[i].addr;
1591 
1592 		for (j=0; j < vcnt ; j++) {
1593 			tbio->bi_io_vec[j].bv_offset = 0;
1594 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1595 
1596 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1597 			       page_address(fbio->bi_io_vec[j].bv_page),
1598 			       PAGE_SIZE);
1599 		}
1600 		tbio->bi_end_io = end_sync_write;
1601 
1602 		d = r10_bio->devs[i].devnum;
1603 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1604 		atomic_inc(&r10_bio->remaining);
1605 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1606 
1607 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1608 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1609 		generic_make_request(tbio);
1610 	}
1611 
1612 done:
1613 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1614 		md_done_sync(mddev, r10_bio->sectors, 1);
1615 		put_buf(r10_bio);
1616 	}
1617 }
1618 
1619 /*
1620  * Now for the recovery code.
1621  * Recovery happens across physical sectors.
1622  * We recover all non-is_sync drives by finding the virtual address of
1623  * each, and then choose a working drive that also has that virt address.
1624  * There is a separate r10_bio for each non-in_sync drive.
1625  * Only the first two slots are in use. The first for reading,
1626  * The second for writing.
1627  *
1628  */
1629 static void fix_recovery_read_error(struct r10bio *r10_bio)
1630 {
1631 	/* We got a read error during recovery.
1632 	 * We repeat the read in smaller page-sized sections.
1633 	 * If a read succeeds, write it to the new device or record
1634 	 * a bad block if we cannot.
1635 	 * If a read fails, record a bad block on both old and
1636 	 * new devices.
1637 	 */
1638 	struct mddev *mddev = r10_bio->mddev;
1639 	struct r10conf *conf = mddev->private;
1640 	struct bio *bio = r10_bio->devs[0].bio;
1641 	sector_t sect = 0;
1642 	int sectors = r10_bio->sectors;
1643 	int idx = 0;
1644 	int dr = r10_bio->devs[0].devnum;
1645 	int dw = r10_bio->devs[1].devnum;
1646 
1647 	while (sectors) {
1648 		int s = sectors;
1649 		struct md_rdev *rdev;
1650 		sector_t addr;
1651 		int ok;
1652 
1653 		if (s > (PAGE_SIZE>>9))
1654 			s = PAGE_SIZE >> 9;
1655 
1656 		rdev = conf->mirrors[dr].rdev;
1657 		addr = r10_bio->devs[0].addr + sect,
1658 		ok = sync_page_io(rdev,
1659 				  addr,
1660 				  s << 9,
1661 				  bio->bi_io_vec[idx].bv_page,
1662 				  READ, false);
1663 		if (ok) {
1664 			rdev = conf->mirrors[dw].rdev;
1665 			addr = r10_bio->devs[1].addr + sect;
1666 			ok = sync_page_io(rdev,
1667 					  addr,
1668 					  s << 9,
1669 					  bio->bi_io_vec[idx].bv_page,
1670 					  WRITE, false);
1671 			if (!ok)
1672 				set_bit(WriteErrorSeen, &rdev->flags);
1673 		}
1674 		if (!ok) {
1675 			/* We don't worry if we cannot set a bad block -
1676 			 * it really is bad so there is no loss in not
1677 			 * recording it yet
1678 			 */
1679 			rdev_set_badblocks(rdev, addr, s, 0);
1680 
1681 			if (rdev != conf->mirrors[dw].rdev) {
1682 				/* need bad block on destination too */
1683 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1684 				addr = r10_bio->devs[1].addr + sect;
1685 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1686 				if (!ok) {
1687 					/* just abort the recovery */
1688 					printk(KERN_NOTICE
1689 					       "md/raid10:%s: recovery aborted"
1690 					       " due to read error\n",
1691 					       mdname(mddev));
1692 
1693 					conf->mirrors[dw].recovery_disabled
1694 						= mddev->recovery_disabled;
1695 					set_bit(MD_RECOVERY_INTR,
1696 						&mddev->recovery);
1697 					break;
1698 				}
1699 			}
1700 		}
1701 
1702 		sectors -= s;
1703 		sect += s;
1704 		idx++;
1705 	}
1706 }
1707 
1708 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1709 {
1710 	struct r10conf *conf = mddev->private;
1711 	int d;
1712 	struct bio *wbio;
1713 
1714 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1715 		fix_recovery_read_error(r10_bio);
1716 		end_sync_request(r10_bio);
1717 		return;
1718 	}
1719 
1720 	/*
1721 	 * share the pages with the first bio
1722 	 * and submit the write request
1723 	 */
1724 	wbio = r10_bio->devs[1].bio;
1725 	d = r10_bio->devs[1].devnum;
1726 
1727 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1728 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1729 	generic_make_request(wbio);
1730 }
1731 
1732 
1733 /*
1734  * Used by fix_read_error() to decay the per rdev read_errors.
1735  * We halve the read error count for every hour that has elapsed
1736  * since the last recorded read error.
1737  *
1738  */
1739 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1740 {
1741 	struct timespec cur_time_mon;
1742 	unsigned long hours_since_last;
1743 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1744 
1745 	ktime_get_ts(&cur_time_mon);
1746 
1747 	if (rdev->last_read_error.tv_sec == 0 &&
1748 	    rdev->last_read_error.tv_nsec == 0) {
1749 		/* first time we've seen a read error */
1750 		rdev->last_read_error = cur_time_mon;
1751 		return;
1752 	}
1753 
1754 	hours_since_last = (cur_time_mon.tv_sec -
1755 			    rdev->last_read_error.tv_sec) / 3600;
1756 
1757 	rdev->last_read_error = cur_time_mon;
1758 
1759 	/*
1760 	 * if hours_since_last is > the number of bits in read_errors
1761 	 * just set read errors to 0. We do this to avoid
1762 	 * overflowing the shift of read_errors by hours_since_last.
1763 	 */
1764 	if (hours_since_last >= 8 * sizeof(read_errors))
1765 		atomic_set(&rdev->read_errors, 0);
1766 	else
1767 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1768 }
1769 
1770 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1771 			    int sectors, struct page *page, int rw)
1772 {
1773 	sector_t first_bad;
1774 	int bad_sectors;
1775 
1776 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1777 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1778 		return -1;
1779 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1780 		/* success */
1781 		return 1;
1782 	if (rw == WRITE)
1783 		set_bit(WriteErrorSeen, &rdev->flags);
1784 	/* need to record an error - either for the block or the device */
1785 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786 		md_error(rdev->mddev, rdev);
1787 	return 0;
1788 }
1789 
1790 /*
1791  * This is a kernel thread which:
1792  *
1793  *	1.	Retries failed read operations on working mirrors.
1794  *	2.	Updates the raid superblock when problems encounter.
1795  *	3.	Performs writes following reads for array synchronising.
1796  */
1797 
1798 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
1799 {
1800 	int sect = 0; /* Offset from r10_bio->sector */
1801 	int sectors = r10_bio->sectors;
1802 	struct md_rdev*rdev;
1803 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1804 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1805 
1806 	/* still own a reference to this rdev, so it cannot
1807 	 * have been cleared recently.
1808 	 */
1809 	rdev = conf->mirrors[d].rdev;
1810 
1811 	if (test_bit(Faulty, &rdev->flags))
1812 		/* drive has already been failed, just ignore any
1813 		   more fix_read_error() attempts */
1814 		return;
1815 
1816 	check_decay_read_errors(mddev, rdev);
1817 	atomic_inc(&rdev->read_errors);
1818 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1819 		char b[BDEVNAME_SIZE];
1820 		bdevname(rdev->bdev, b);
1821 
1822 		printk(KERN_NOTICE
1823 		       "md/raid10:%s: %s: Raid device exceeded "
1824 		       "read_error threshold [cur %d:max %d]\n",
1825 		       mdname(mddev), b,
1826 		       atomic_read(&rdev->read_errors), max_read_errors);
1827 		printk(KERN_NOTICE
1828 		       "md/raid10:%s: %s: Failing raid device\n",
1829 		       mdname(mddev), b);
1830 		md_error(mddev, conf->mirrors[d].rdev);
1831 		return;
1832 	}
1833 
1834 	while(sectors) {
1835 		int s = sectors;
1836 		int sl = r10_bio->read_slot;
1837 		int success = 0;
1838 		int start;
1839 
1840 		if (s > (PAGE_SIZE>>9))
1841 			s = PAGE_SIZE >> 9;
1842 
1843 		rcu_read_lock();
1844 		do {
1845 			sector_t first_bad;
1846 			int bad_sectors;
1847 
1848 			d = r10_bio->devs[sl].devnum;
1849 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1850 			if (rdev &&
1851 			    test_bit(In_sync, &rdev->flags) &&
1852 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1853 					&first_bad, &bad_sectors) == 0) {
1854 				atomic_inc(&rdev->nr_pending);
1855 				rcu_read_unlock();
1856 				success = sync_page_io(rdev,
1857 						       r10_bio->devs[sl].addr +
1858 						       sect,
1859 						       s<<9,
1860 						       conf->tmppage, READ, false);
1861 				rdev_dec_pending(rdev, mddev);
1862 				rcu_read_lock();
1863 				if (success)
1864 					break;
1865 			}
1866 			sl++;
1867 			if (sl == conf->copies)
1868 				sl = 0;
1869 		} while (!success && sl != r10_bio->read_slot);
1870 		rcu_read_unlock();
1871 
1872 		if (!success) {
1873 			/* Cannot read from anywhere, just mark the block
1874 			 * as bad on the first device to discourage future
1875 			 * reads.
1876 			 */
1877 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1878 			rdev = conf->mirrors[dn].rdev;
1879 
1880 			if (!rdev_set_badblocks(
1881 				    rdev,
1882 				    r10_bio->devs[r10_bio->read_slot].addr
1883 				    + sect,
1884 				    s, 0))
1885 				md_error(mddev, rdev);
1886 			break;
1887 		}
1888 
1889 		start = sl;
1890 		/* write it back and re-read */
1891 		rcu_read_lock();
1892 		while (sl != r10_bio->read_slot) {
1893 			char b[BDEVNAME_SIZE];
1894 
1895 			if (sl==0)
1896 				sl = conf->copies;
1897 			sl--;
1898 			d = r10_bio->devs[sl].devnum;
1899 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1900 			if (!rdev ||
1901 			    !test_bit(In_sync, &rdev->flags))
1902 				continue;
1903 
1904 			atomic_inc(&rdev->nr_pending);
1905 			rcu_read_unlock();
1906 			if (r10_sync_page_io(rdev,
1907 					     r10_bio->devs[sl].addr +
1908 					     sect,
1909 					     s<<9, conf->tmppage, WRITE)
1910 			    == 0) {
1911 				/* Well, this device is dead */
1912 				printk(KERN_NOTICE
1913 				       "md/raid10:%s: read correction "
1914 				       "write failed"
1915 				       " (%d sectors at %llu on %s)\n",
1916 				       mdname(mddev), s,
1917 				       (unsigned long long)(
1918 					       sect + rdev->data_offset),
1919 				       bdevname(rdev->bdev, b));
1920 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1921 				       "drive\n",
1922 				       mdname(mddev),
1923 				       bdevname(rdev->bdev, b));
1924 			}
1925 			rdev_dec_pending(rdev, mddev);
1926 			rcu_read_lock();
1927 		}
1928 		sl = start;
1929 		while (sl != r10_bio->read_slot) {
1930 			char b[BDEVNAME_SIZE];
1931 
1932 			if (sl==0)
1933 				sl = conf->copies;
1934 			sl--;
1935 			d = r10_bio->devs[sl].devnum;
1936 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1937 			if (!rdev ||
1938 			    !test_bit(In_sync, &rdev->flags))
1939 				continue;
1940 
1941 			atomic_inc(&rdev->nr_pending);
1942 			rcu_read_unlock();
1943 			switch (r10_sync_page_io(rdev,
1944 					     r10_bio->devs[sl].addr +
1945 					     sect,
1946 					     s<<9, conf->tmppage,
1947 						 READ)) {
1948 			case 0:
1949 				/* Well, this device is dead */
1950 				printk(KERN_NOTICE
1951 				       "md/raid10:%s: unable to read back "
1952 				       "corrected sectors"
1953 				       " (%d sectors at %llu on %s)\n",
1954 				       mdname(mddev), s,
1955 				       (unsigned long long)(
1956 					       sect + rdev->data_offset),
1957 				       bdevname(rdev->bdev, b));
1958 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1959 				       "drive\n",
1960 				       mdname(mddev),
1961 				       bdevname(rdev->bdev, b));
1962 				break;
1963 			case 1:
1964 				printk(KERN_INFO
1965 				       "md/raid10:%s: read error corrected"
1966 				       " (%d sectors at %llu on %s)\n",
1967 				       mdname(mddev), s,
1968 				       (unsigned long long)(
1969 					       sect + rdev->data_offset),
1970 				       bdevname(rdev->bdev, b));
1971 				atomic_add(s, &rdev->corrected_errors);
1972 			}
1973 
1974 			rdev_dec_pending(rdev, mddev);
1975 			rcu_read_lock();
1976 		}
1977 		rcu_read_unlock();
1978 
1979 		sectors -= s;
1980 		sect += s;
1981 	}
1982 }
1983 
1984 static void bi_complete(struct bio *bio, int error)
1985 {
1986 	complete((struct completion *)bio->bi_private);
1987 }
1988 
1989 static int submit_bio_wait(int rw, struct bio *bio)
1990 {
1991 	struct completion event;
1992 	rw |= REQ_SYNC;
1993 
1994 	init_completion(&event);
1995 	bio->bi_private = &event;
1996 	bio->bi_end_io = bi_complete;
1997 	submit_bio(rw, bio);
1998 	wait_for_completion(&event);
1999 
2000 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2001 }
2002 
2003 static int narrow_write_error(struct r10bio *r10_bio, int i)
2004 {
2005 	struct bio *bio = r10_bio->master_bio;
2006 	struct mddev *mddev = r10_bio->mddev;
2007 	struct r10conf *conf = mddev->private;
2008 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2009 	/* bio has the data to be written to slot 'i' where
2010 	 * we just recently had a write error.
2011 	 * We repeatedly clone the bio and trim down to one block,
2012 	 * then try the write.  Where the write fails we record
2013 	 * a bad block.
2014 	 * It is conceivable that the bio doesn't exactly align with
2015 	 * blocks.  We must handle this.
2016 	 *
2017 	 * We currently own a reference to the rdev.
2018 	 */
2019 
2020 	int block_sectors;
2021 	sector_t sector;
2022 	int sectors;
2023 	int sect_to_write = r10_bio->sectors;
2024 	int ok = 1;
2025 
2026 	if (rdev->badblocks.shift < 0)
2027 		return 0;
2028 
2029 	block_sectors = 1 << rdev->badblocks.shift;
2030 	sector = r10_bio->sector;
2031 	sectors = ((r10_bio->sector + block_sectors)
2032 		   & ~(sector_t)(block_sectors - 1))
2033 		- sector;
2034 
2035 	while (sect_to_write) {
2036 		struct bio *wbio;
2037 		if (sectors > sect_to_write)
2038 			sectors = sect_to_write;
2039 		/* Write at 'sector' for 'sectors' */
2040 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2041 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2042 		wbio->bi_sector = (r10_bio->devs[i].addr+
2043 				   rdev->data_offset+
2044 				   (sector - r10_bio->sector));
2045 		wbio->bi_bdev = rdev->bdev;
2046 		if (submit_bio_wait(WRITE, wbio) == 0)
2047 			/* Failure! */
2048 			ok = rdev_set_badblocks(rdev, sector,
2049 						sectors, 0)
2050 				&& ok;
2051 
2052 		bio_put(wbio);
2053 		sect_to_write -= sectors;
2054 		sector += sectors;
2055 		sectors = block_sectors;
2056 	}
2057 	return ok;
2058 }
2059 
2060 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2061 {
2062 	int slot = r10_bio->read_slot;
2063 	int mirror = r10_bio->devs[slot].devnum;
2064 	struct bio *bio;
2065 	struct r10conf *conf = mddev->private;
2066 	struct md_rdev *rdev;
2067 	char b[BDEVNAME_SIZE];
2068 	unsigned long do_sync;
2069 	int max_sectors;
2070 
2071 	/* we got a read error. Maybe the drive is bad.  Maybe just
2072 	 * the block and we can fix it.
2073 	 * We freeze all other IO, and try reading the block from
2074 	 * other devices.  When we find one, we re-write
2075 	 * and check it that fixes the read error.
2076 	 * This is all done synchronously while the array is
2077 	 * frozen.
2078 	 */
2079 	if (mddev->ro == 0) {
2080 		freeze_array(conf);
2081 		fix_read_error(conf, mddev, r10_bio);
2082 		unfreeze_array(conf);
2083 	}
2084 	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2085 
2086 	bio = r10_bio->devs[slot].bio;
2087 	bdevname(bio->bi_bdev, b);
2088 	r10_bio->devs[slot].bio =
2089 		mddev->ro ? IO_BLOCKED : NULL;
2090 read_more:
2091 	mirror = read_balance(conf, r10_bio, &max_sectors);
2092 	if (mirror == -1) {
2093 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2094 		       " read error for block %llu\n",
2095 		       mdname(mddev), b,
2096 		       (unsigned long long)r10_bio->sector);
2097 		raid_end_bio_io(r10_bio);
2098 		bio_put(bio);
2099 		return;
2100 	}
2101 
2102 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2103 	if (bio)
2104 		bio_put(bio);
2105 	slot = r10_bio->read_slot;
2106 	rdev = conf->mirrors[mirror].rdev;
2107 	printk_ratelimited(
2108 		KERN_ERR
2109 		"md/raid10:%s: %s: redirecting"
2110 		"sector %llu to another mirror\n",
2111 		mdname(mddev),
2112 		bdevname(rdev->bdev, b),
2113 		(unsigned long long)r10_bio->sector);
2114 	bio = bio_clone_mddev(r10_bio->master_bio,
2115 			      GFP_NOIO, mddev);
2116 	md_trim_bio(bio,
2117 		    r10_bio->sector - bio->bi_sector,
2118 		    max_sectors);
2119 	r10_bio->devs[slot].bio = bio;
2120 	bio->bi_sector = r10_bio->devs[slot].addr
2121 		+ rdev->data_offset;
2122 	bio->bi_bdev = rdev->bdev;
2123 	bio->bi_rw = READ | do_sync;
2124 	bio->bi_private = r10_bio;
2125 	bio->bi_end_io = raid10_end_read_request;
2126 	if (max_sectors < r10_bio->sectors) {
2127 		/* Drat - have to split this up more */
2128 		struct bio *mbio = r10_bio->master_bio;
2129 		int sectors_handled =
2130 			r10_bio->sector + max_sectors
2131 			- mbio->bi_sector;
2132 		r10_bio->sectors = max_sectors;
2133 		spin_lock_irq(&conf->device_lock);
2134 		if (mbio->bi_phys_segments == 0)
2135 			mbio->bi_phys_segments = 2;
2136 		else
2137 			mbio->bi_phys_segments++;
2138 		spin_unlock_irq(&conf->device_lock);
2139 		generic_make_request(bio);
2140 		bio = NULL;
2141 
2142 		r10_bio = mempool_alloc(conf->r10bio_pool,
2143 					GFP_NOIO);
2144 		r10_bio->master_bio = mbio;
2145 		r10_bio->sectors = (mbio->bi_size >> 9)
2146 			- sectors_handled;
2147 		r10_bio->state = 0;
2148 		set_bit(R10BIO_ReadError,
2149 			&r10_bio->state);
2150 		r10_bio->mddev = mddev;
2151 		r10_bio->sector = mbio->bi_sector
2152 			+ sectors_handled;
2153 
2154 		goto read_more;
2155 	} else
2156 		generic_make_request(bio);
2157 }
2158 
2159 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2160 {
2161 	/* Some sort of write request has finished and it
2162 	 * succeeded in writing where we thought there was a
2163 	 * bad block.  So forget the bad block.
2164 	 * Or possibly if failed and we need to record
2165 	 * a bad block.
2166 	 */
2167 	int m;
2168 	struct md_rdev *rdev;
2169 
2170 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2171 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2172 		for (m = 0; m < conf->copies; m++) {
2173 			int dev = r10_bio->devs[m].devnum;
2174 			rdev = conf->mirrors[dev].rdev;
2175 			if (r10_bio->devs[m].bio == NULL)
2176 				continue;
2177 			if (test_bit(BIO_UPTODATE,
2178 				     &r10_bio->devs[m].bio->bi_flags)) {
2179 				rdev_clear_badblocks(
2180 					rdev,
2181 					r10_bio->devs[m].addr,
2182 					r10_bio->sectors);
2183 			} else {
2184 				if (!rdev_set_badblocks(
2185 					    rdev,
2186 					    r10_bio->devs[m].addr,
2187 					    r10_bio->sectors, 0))
2188 					md_error(conf->mddev, rdev);
2189 			}
2190 		}
2191 		put_buf(r10_bio);
2192 	} else {
2193 		for (m = 0; m < conf->copies; m++) {
2194 			int dev = r10_bio->devs[m].devnum;
2195 			struct bio *bio = r10_bio->devs[m].bio;
2196 			rdev = conf->mirrors[dev].rdev;
2197 			if (bio == IO_MADE_GOOD) {
2198 				rdev_clear_badblocks(
2199 					rdev,
2200 					r10_bio->devs[m].addr,
2201 					r10_bio->sectors);
2202 				rdev_dec_pending(rdev, conf->mddev);
2203 			} else if (bio != NULL &&
2204 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2205 				if (!narrow_write_error(r10_bio, m)) {
2206 					md_error(conf->mddev, rdev);
2207 					set_bit(R10BIO_Degraded,
2208 						&r10_bio->state);
2209 				}
2210 				rdev_dec_pending(rdev, conf->mddev);
2211 			}
2212 		}
2213 		if (test_bit(R10BIO_WriteError,
2214 			     &r10_bio->state))
2215 			close_write(r10_bio);
2216 		raid_end_bio_io(r10_bio);
2217 	}
2218 }
2219 
2220 static void raid10d(struct mddev *mddev)
2221 {
2222 	struct r10bio *r10_bio;
2223 	unsigned long flags;
2224 	struct r10conf *conf = mddev->private;
2225 	struct list_head *head = &conf->retry_list;
2226 	struct blk_plug plug;
2227 
2228 	md_check_recovery(mddev);
2229 
2230 	blk_start_plug(&plug);
2231 	for (;;) {
2232 
2233 		flush_pending_writes(conf);
2234 
2235 		spin_lock_irqsave(&conf->device_lock, flags);
2236 		if (list_empty(head)) {
2237 			spin_unlock_irqrestore(&conf->device_lock, flags);
2238 			break;
2239 		}
2240 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2241 		list_del(head->prev);
2242 		conf->nr_queued--;
2243 		spin_unlock_irqrestore(&conf->device_lock, flags);
2244 
2245 		mddev = r10_bio->mddev;
2246 		conf = mddev->private;
2247 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2248 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2249 			handle_write_completed(conf, r10_bio);
2250 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2251 			sync_request_write(mddev, r10_bio);
2252 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2253 			recovery_request_write(mddev, r10_bio);
2254 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2255 			handle_read_error(mddev, r10_bio);
2256 		else {
2257 			/* just a partial read to be scheduled from a
2258 			 * separate context
2259 			 */
2260 			int slot = r10_bio->read_slot;
2261 			generic_make_request(r10_bio->devs[slot].bio);
2262 		}
2263 
2264 		cond_resched();
2265 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2266 			md_check_recovery(mddev);
2267 	}
2268 	blk_finish_plug(&plug);
2269 }
2270 
2271 
2272 static int init_resync(struct r10conf *conf)
2273 {
2274 	int buffs;
2275 
2276 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2277 	BUG_ON(conf->r10buf_pool);
2278 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2279 	if (!conf->r10buf_pool)
2280 		return -ENOMEM;
2281 	conf->next_resync = 0;
2282 	return 0;
2283 }
2284 
2285 /*
2286  * perform a "sync" on one "block"
2287  *
2288  * We need to make sure that no normal I/O request - particularly write
2289  * requests - conflict with active sync requests.
2290  *
2291  * This is achieved by tracking pending requests and a 'barrier' concept
2292  * that can be installed to exclude normal IO requests.
2293  *
2294  * Resync and recovery are handled very differently.
2295  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2296  *
2297  * For resync, we iterate over virtual addresses, read all copies,
2298  * and update if there are differences.  If only one copy is live,
2299  * skip it.
2300  * For recovery, we iterate over physical addresses, read a good
2301  * value for each non-in_sync drive, and over-write.
2302  *
2303  * So, for recovery we may have several outstanding complex requests for a
2304  * given address, one for each out-of-sync device.  We model this by allocating
2305  * a number of r10_bio structures, one for each out-of-sync device.
2306  * As we setup these structures, we collect all bio's together into a list
2307  * which we then process collectively to add pages, and then process again
2308  * to pass to generic_make_request.
2309  *
2310  * The r10_bio structures are linked using a borrowed master_bio pointer.
2311  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2312  * has its remaining count decremented to 0, the whole complex operation
2313  * is complete.
2314  *
2315  */
2316 
2317 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2318 			     int *skipped, int go_faster)
2319 {
2320 	struct r10conf *conf = mddev->private;
2321 	struct r10bio *r10_bio;
2322 	struct bio *biolist = NULL, *bio;
2323 	sector_t max_sector, nr_sectors;
2324 	int i;
2325 	int max_sync;
2326 	sector_t sync_blocks;
2327 	sector_t sectors_skipped = 0;
2328 	int chunks_skipped = 0;
2329 
2330 	if (!conf->r10buf_pool)
2331 		if (init_resync(conf))
2332 			return 0;
2333 
2334  skipped:
2335 	max_sector = mddev->dev_sectors;
2336 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2337 		max_sector = mddev->resync_max_sectors;
2338 	if (sector_nr >= max_sector) {
2339 		/* If we aborted, we need to abort the
2340 		 * sync on the 'current' bitmap chucks (there can
2341 		 * be several when recovering multiple devices).
2342 		 * as we may have started syncing it but not finished.
2343 		 * We can find the current address in
2344 		 * mddev->curr_resync, but for recovery,
2345 		 * we need to convert that to several
2346 		 * virtual addresses.
2347 		 */
2348 		if (mddev->curr_resync < max_sector) { /* aborted */
2349 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2350 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2351 						&sync_blocks, 1);
2352 			else for (i=0; i<conf->raid_disks; i++) {
2353 				sector_t sect =
2354 					raid10_find_virt(conf, mddev->curr_resync, i);
2355 				bitmap_end_sync(mddev->bitmap, sect,
2356 						&sync_blocks, 1);
2357 			}
2358 		} else /* completed sync */
2359 			conf->fullsync = 0;
2360 
2361 		bitmap_close_sync(mddev->bitmap);
2362 		close_sync(conf);
2363 		*skipped = 1;
2364 		return sectors_skipped;
2365 	}
2366 	if (chunks_skipped >= conf->raid_disks) {
2367 		/* if there has been nothing to do on any drive,
2368 		 * then there is nothing to do at all..
2369 		 */
2370 		*skipped = 1;
2371 		return (max_sector - sector_nr) + sectors_skipped;
2372 	}
2373 
2374 	if (max_sector > mddev->resync_max)
2375 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2376 
2377 	/* make sure whole request will fit in a chunk - if chunks
2378 	 * are meaningful
2379 	 */
2380 	if (conf->near_copies < conf->raid_disks &&
2381 	    max_sector > (sector_nr | conf->chunk_mask))
2382 		max_sector = (sector_nr | conf->chunk_mask) + 1;
2383 	/*
2384 	 * If there is non-resync activity waiting for us then
2385 	 * put in a delay to throttle resync.
2386 	 */
2387 	if (!go_faster && conf->nr_waiting)
2388 		msleep_interruptible(1000);
2389 
2390 	/* Again, very different code for resync and recovery.
2391 	 * Both must result in an r10bio with a list of bios that
2392 	 * have bi_end_io, bi_sector, bi_bdev set,
2393 	 * and bi_private set to the r10bio.
2394 	 * For recovery, we may actually create several r10bios
2395 	 * with 2 bios in each, that correspond to the bios in the main one.
2396 	 * In this case, the subordinate r10bios link back through a
2397 	 * borrowed master_bio pointer, and the counter in the master
2398 	 * includes a ref from each subordinate.
2399 	 */
2400 	/* First, we decide what to do and set ->bi_end_io
2401 	 * To end_sync_read if we want to read, and
2402 	 * end_sync_write if we will want to write.
2403 	 */
2404 
2405 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2406 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2407 		/* recovery... the complicated one */
2408 		int j;
2409 		r10_bio = NULL;
2410 
2411 		for (i=0 ; i<conf->raid_disks; i++) {
2412 			int still_degraded;
2413 			struct r10bio *rb2;
2414 			sector_t sect;
2415 			int must_sync;
2416 			int any_working;
2417 
2418 			if (conf->mirrors[i].rdev == NULL ||
2419 			    test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2420 				continue;
2421 
2422 			still_degraded = 0;
2423 			/* want to reconstruct this device */
2424 			rb2 = r10_bio;
2425 			sect = raid10_find_virt(conf, sector_nr, i);
2426 			/* Unless we are doing a full sync, we only need
2427 			 * to recover the block if it is set in the bitmap
2428 			 */
2429 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2430 						      &sync_blocks, 1);
2431 			if (sync_blocks < max_sync)
2432 				max_sync = sync_blocks;
2433 			if (!must_sync &&
2434 			    !conf->fullsync) {
2435 				/* yep, skip the sync_blocks here, but don't assume
2436 				 * that there will never be anything to do here
2437 				 */
2438 				chunks_skipped = -1;
2439 				continue;
2440 			}
2441 
2442 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2443 			raise_barrier(conf, rb2 != NULL);
2444 			atomic_set(&r10_bio->remaining, 0);
2445 
2446 			r10_bio->master_bio = (struct bio*)rb2;
2447 			if (rb2)
2448 				atomic_inc(&rb2->remaining);
2449 			r10_bio->mddev = mddev;
2450 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2451 			r10_bio->sector = sect;
2452 
2453 			raid10_find_phys(conf, r10_bio);
2454 
2455 			/* Need to check if the array will still be
2456 			 * degraded
2457 			 */
2458 			for (j=0; j<conf->raid_disks; j++)
2459 				if (conf->mirrors[j].rdev == NULL ||
2460 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2461 					still_degraded = 1;
2462 					break;
2463 				}
2464 
2465 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2466 						      &sync_blocks, still_degraded);
2467 
2468 			any_working = 0;
2469 			for (j=0; j<conf->copies;j++) {
2470 				int k;
2471 				int d = r10_bio->devs[j].devnum;
2472 				sector_t from_addr, to_addr;
2473 				struct md_rdev *rdev;
2474 				sector_t sector, first_bad;
2475 				int bad_sectors;
2476 				if (!conf->mirrors[d].rdev ||
2477 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2478 					continue;
2479 				/* This is where we read from */
2480 				any_working = 1;
2481 				rdev = conf->mirrors[d].rdev;
2482 				sector = r10_bio->devs[j].addr;
2483 
2484 				if (is_badblock(rdev, sector, max_sync,
2485 						&first_bad, &bad_sectors)) {
2486 					if (first_bad > sector)
2487 						max_sync = first_bad - sector;
2488 					else {
2489 						bad_sectors -= (sector
2490 								- first_bad);
2491 						if (max_sync > bad_sectors)
2492 							max_sync = bad_sectors;
2493 						continue;
2494 					}
2495 				}
2496 				bio = r10_bio->devs[0].bio;
2497 				bio->bi_next = biolist;
2498 				biolist = bio;
2499 				bio->bi_private = r10_bio;
2500 				bio->bi_end_io = end_sync_read;
2501 				bio->bi_rw = READ;
2502 				from_addr = r10_bio->devs[j].addr;
2503 				bio->bi_sector = from_addr +
2504 					conf->mirrors[d].rdev->data_offset;
2505 				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2506 				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2507 				atomic_inc(&r10_bio->remaining);
2508 				/* and we write to 'i' */
2509 
2510 				for (k=0; k<conf->copies; k++)
2511 					if (r10_bio->devs[k].devnum == i)
2512 						break;
2513 				BUG_ON(k == conf->copies);
2514 				bio = r10_bio->devs[1].bio;
2515 				bio->bi_next = biolist;
2516 				biolist = bio;
2517 				bio->bi_private = r10_bio;
2518 				bio->bi_end_io = end_sync_write;
2519 				bio->bi_rw = WRITE;
2520 				to_addr = r10_bio->devs[k].addr;
2521 				bio->bi_sector = to_addr +
2522 					conf->mirrors[i].rdev->data_offset;
2523 				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2524 
2525 				r10_bio->devs[0].devnum = d;
2526 				r10_bio->devs[0].addr = from_addr;
2527 				r10_bio->devs[1].devnum = i;
2528 				r10_bio->devs[1].addr = to_addr;
2529 
2530 				break;
2531 			}
2532 			if (j == conf->copies) {
2533 				/* Cannot recover, so abort the recovery or
2534 				 * record a bad block */
2535 				put_buf(r10_bio);
2536 				if (rb2)
2537 					atomic_dec(&rb2->remaining);
2538 				r10_bio = rb2;
2539 				if (any_working) {
2540 					/* problem is that there are bad blocks
2541 					 * on other device(s)
2542 					 */
2543 					int k;
2544 					for (k = 0; k < conf->copies; k++)
2545 						if (r10_bio->devs[k].devnum == i)
2546 							break;
2547 					if (!rdev_set_badblocks(
2548 						    conf->mirrors[i].rdev,
2549 						    r10_bio->devs[k].addr,
2550 						    max_sync, 0))
2551 						any_working = 0;
2552 				}
2553 				if (!any_working)  {
2554 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2555 							      &mddev->recovery))
2556 						printk(KERN_INFO "md/raid10:%s: insufficient "
2557 						       "working devices for recovery.\n",
2558 						       mdname(mddev));
2559 					conf->mirrors[i].recovery_disabled
2560 						= mddev->recovery_disabled;
2561 				}
2562 				break;
2563 			}
2564 		}
2565 		if (biolist == NULL) {
2566 			while (r10_bio) {
2567 				struct r10bio *rb2 = r10_bio;
2568 				r10_bio = (struct r10bio*) rb2->master_bio;
2569 				rb2->master_bio = NULL;
2570 				put_buf(rb2);
2571 			}
2572 			goto giveup;
2573 		}
2574 	} else {
2575 		/* resync. Schedule a read for every block at this virt offset */
2576 		int count = 0;
2577 
2578 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2579 
2580 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2581 				       &sync_blocks, mddev->degraded) &&
2582 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2583 						 &mddev->recovery)) {
2584 			/* We can skip this block */
2585 			*skipped = 1;
2586 			return sync_blocks + sectors_skipped;
2587 		}
2588 		if (sync_blocks < max_sync)
2589 			max_sync = sync_blocks;
2590 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2591 
2592 		r10_bio->mddev = mddev;
2593 		atomic_set(&r10_bio->remaining, 0);
2594 		raise_barrier(conf, 0);
2595 		conf->next_resync = sector_nr;
2596 
2597 		r10_bio->master_bio = NULL;
2598 		r10_bio->sector = sector_nr;
2599 		set_bit(R10BIO_IsSync, &r10_bio->state);
2600 		raid10_find_phys(conf, r10_bio);
2601 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2602 
2603 		for (i=0; i<conf->copies; i++) {
2604 			int d = r10_bio->devs[i].devnum;
2605 			sector_t first_bad, sector;
2606 			int bad_sectors;
2607 
2608 			bio = r10_bio->devs[i].bio;
2609 			bio->bi_end_io = NULL;
2610 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2611 			if (conf->mirrors[d].rdev == NULL ||
2612 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2613 				continue;
2614 			sector = r10_bio->devs[i].addr;
2615 			if (is_badblock(conf->mirrors[d].rdev,
2616 					sector, max_sync,
2617 					&first_bad, &bad_sectors)) {
2618 				if (first_bad > sector)
2619 					max_sync = first_bad - sector;
2620 				else {
2621 					bad_sectors -= (sector - first_bad);
2622 					if (max_sync > bad_sectors)
2623 						max_sync = max_sync;
2624 					continue;
2625 				}
2626 			}
2627 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2628 			atomic_inc(&r10_bio->remaining);
2629 			bio->bi_next = biolist;
2630 			biolist = bio;
2631 			bio->bi_private = r10_bio;
2632 			bio->bi_end_io = end_sync_read;
2633 			bio->bi_rw = READ;
2634 			bio->bi_sector = sector +
2635 				conf->mirrors[d].rdev->data_offset;
2636 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2637 			count++;
2638 		}
2639 
2640 		if (count < 2) {
2641 			for (i=0; i<conf->copies; i++) {
2642 				int d = r10_bio->devs[i].devnum;
2643 				if (r10_bio->devs[i].bio->bi_end_io)
2644 					rdev_dec_pending(conf->mirrors[d].rdev,
2645 							 mddev);
2646 			}
2647 			put_buf(r10_bio);
2648 			biolist = NULL;
2649 			goto giveup;
2650 		}
2651 	}
2652 
2653 	for (bio = biolist; bio ; bio=bio->bi_next) {
2654 
2655 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2656 		if (bio->bi_end_io)
2657 			bio->bi_flags |= 1 << BIO_UPTODATE;
2658 		bio->bi_vcnt = 0;
2659 		bio->bi_idx = 0;
2660 		bio->bi_phys_segments = 0;
2661 		bio->bi_size = 0;
2662 	}
2663 
2664 	nr_sectors = 0;
2665 	if (sector_nr + max_sync < max_sector)
2666 		max_sector = sector_nr + max_sync;
2667 	do {
2668 		struct page *page;
2669 		int len = PAGE_SIZE;
2670 		if (sector_nr + (len>>9) > max_sector)
2671 			len = (max_sector - sector_nr) << 9;
2672 		if (len == 0)
2673 			break;
2674 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2675 			struct bio *bio2;
2676 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2677 			if (bio_add_page(bio, page, len, 0))
2678 				continue;
2679 
2680 			/* stop here */
2681 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2682 			for (bio2 = biolist;
2683 			     bio2 && bio2 != bio;
2684 			     bio2 = bio2->bi_next) {
2685 				/* remove last page from this bio */
2686 				bio2->bi_vcnt--;
2687 				bio2->bi_size -= len;
2688 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2689 			}
2690 			goto bio_full;
2691 		}
2692 		nr_sectors += len>>9;
2693 		sector_nr += len>>9;
2694 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2695  bio_full:
2696 	r10_bio->sectors = nr_sectors;
2697 
2698 	while (biolist) {
2699 		bio = biolist;
2700 		biolist = biolist->bi_next;
2701 
2702 		bio->bi_next = NULL;
2703 		r10_bio = bio->bi_private;
2704 		r10_bio->sectors = nr_sectors;
2705 
2706 		if (bio->bi_end_io == end_sync_read) {
2707 			md_sync_acct(bio->bi_bdev, nr_sectors);
2708 			generic_make_request(bio);
2709 		}
2710 	}
2711 
2712 	if (sectors_skipped)
2713 		/* pretend they weren't skipped, it makes
2714 		 * no important difference in this case
2715 		 */
2716 		md_done_sync(mddev, sectors_skipped, 1);
2717 
2718 	return sectors_skipped + nr_sectors;
2719  giveup:
2720 	/* There is nowhere to write, so all non-sync
2721 	 * drives must be failed or in resync, all drives
2722 	 * have a bad block, so try the next chunk...
2723 	 */
2724 	if (sector_nr + max_sync < max_sector)
2725 		max_sector = sector_nr + max_sync;
2726 
2727 	sectors_skipped += (max_sector - sector_nr);
2728 	chunks_skipped ++;
2729 	sector_nr = max_sector;
2730 	goto skipped;
2731 }
2732 
2733 static sector_t
2734 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2735 {
2736 	sector_t size;
2737 	struct r10conf *conf = mddev->private;
2738 
2739 	if (!raid_disks)
2740 		raid_disks = conf->raid_disks;
2741 	if (!sectors)
2742 		sectors = conf->dev_sectors;
2743 
2744 	size = sectors >> conf->chunk_shift;
2745 	sector_div(size, conf->far_copies);
2746 	size = size * raid_disks;
2747 	sector_div(size, conf->near_copies);
2748 
2749 	return size << conf->chunk_shift;
2750 }
2751 
2752 
2753 static struct r10conf *setup_conf(struct mddev *mddev)
2754 {
2755 	struct r10conf *conf = NULL;
2756 	int nc, fc, fo;
2757 	sector_t stride, size;
2758 	int err = -EINVAL;
2759 
2760 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2761 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2762 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2763 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2764 		       mdname(mddev), PAGE_SIZE);
2765 		goto out;
2766 	}
2767 
2768 	nc = mddev->new_layout & 255;
2769 	fc = (mddev->new_layout >> 8) & 255;
2770 	fo = mddev->new_layout & (1<<16);
2771 
2772 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2773 	    (mddev->new_layout >> 17)) {
2774 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2775 		       mdname(mddev), mddev->new_layout);
2776 		goto out;
2777 	}
2778 
2779 	err = -ENOMEM;
2780 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
2781 	if (!conf)
2782 		goto out;
2783 
2784 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2785 				GFP_KERNEL);
2786 	if (!conf->mirrors)
2787 		goto out;
2788 
2789 	conf->tmppage = alloc_page(GFP_KERNEL);
2790 	if (!conf->tmppage)
2791 		goto out;
2792 
2793 
2794 	conf->raid_disks = mddev->raid_disks;
2795 	conf->near_copies = nc;
2796 	conf->far_copies = fc;
2797 	conf->copies = nc*fc;
2798 	conf->far_offset = fo;
2799 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2800 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2801 
2802 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2803 					   r10bio_pool_free, conf);
2804 	if (!conf->r10bio_pool)
2805 		goto out;
2806 
2807 	size = mddev->dev_sectors >> conf->chunk_shift;
2808 	sector_div(size, fc);
2809 	size = size * conf->raid_disks;
2810 	sector_div(size, nc);
2811 	/* 'size' is now the number of chunks in the array */
2812 	/* calculate "used chunks per device" in 'stride' */
2813 	stride = size * conf->copies;
2814 
2815 	/* We need to round up when dividing by raid_disks to
2816 	 * get the stride size.
2817 	 */
2818 	stride += conf->raid_disks - 1;
2819 	sector_div(stride, conf->raid_disks);
2820 
2821 	conf->dev_sectors = stride << conf->chunk_shift;
2822 
2823 	if (fo)
2824 		stride = 1;
2825 	else
2826 		sector_div(stride, fc);
2827 	conf->stride = stride << conf->chunk_shift;
2828 
2829 
2830 	spin_lock_init(&conf->device_lock);
2831 	INIT_LIST_HEAD(&conf->retry_list);
2832 
2833 	spin_lock_init(&conf->resync_lock);
2834 	init_waitqueue_head(&conf->wait_barrier);
2835 
2836 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2837 	if (!conf->thread)
2838 		goto out;
2839 
2840 	conf->mddev = mddev;
2841 	return conf;
2842 
2843  out:
2844 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2845 	       mdname(mddev));
2846 	if (conf) {
2847 		if (conf->r10bio_pool)
2848 			mempool_destroy(conf->r10bio_pool);
2849 		kfree(conf->mirrors);
2850 		safe_put_page(conf->tmppage);
2851 		kfree(conf);
2852 	}
2853 	return ERR_PTR(err);
2854 }
2855 
2856 static int run(struct mddev *mddev)
2857 {
2858 	struct r10conf *conf;
2859 	int i, disk_idx, chunk_size;
2860 	struct mirror_info *disk;
2861 	struct md_rdev *rdev;
2862 	sector_t size;
2863 
2864 	/*
2865 	 * copy the already verified devices into our private RAID10
2866 	 * bookkeeping area. [whatever we allocate in run(),
2867 	 * should be freed in stop()]
2868 	 */
2869 
2870 	if (mddev->private == NULL) {
2871 		conf = setup_conf(mddev);
2872 		if (IS_ERR(conf))
2873 			return PTR_ERR(conf);
2874 		mddev->private = conf;
2875 	}
2876 	conf = mddev->private;
2877 	if (!conf)
2878 		goto out;
2879 
2880 	mddev->thread = conf->thread;
2881 	conf->thread = NULL;
2882 
2883 	chunk_size = mddev->chunk_sectors << 9;
2884 	blk_queue_io_min(mddev->queue, chunk_size);
2885 	if (conf->raid_disks % conf->near_copies)
2886 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2887 	else
2888 		blk_queue_io_opt(mddev->queue, chunk_size *
2889 				 (conf->raid_disks / conf->near_copies));
2890 
2891 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2892 
2893 		disk_idx = rdev->raid_disk;
2894 		if (disk_idx >= conf->raid_disks
2895 		    || disk_idx < 0)
2896 			continue;
2897 		disk = conf->mirrors + disk_idx;
2898 
2899 		disk->rdev = rdev;
2900 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2901 				  rdev->data_offset << 9);
2902 		/* as we don't honour merge_bvec_fn, we must never risk
2903 		 * violating it, so limit max_segments to 1 lying
2904 		 * within a single page.
2905 		 */
2906 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2907 			blk_queue_max_segments(mddev->queue, 1);
2908 			blk_queue_segment_boundary(mddev->queue,
2909 						   PAGE_CACHE_SIZE - 1);
2910 		}
2911 
2912 		disk->head_position = 0;
2913 	}
2914 	/* need to check that every block has at least one working mirror */
2915 	if (!enough(conf, -1)) {
2916 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2917 		       mdname(mddev));
2918 		goto out_free_conf;
2919 	}
2920 
2921 	mddev->degraded = 0;
2922 	for (i = 0; i < conf->raid_disks; i++) {
2923 
2924 		disk = conf->mirrors + i;
2925 
2926 		if (!disk->rdev ||
2927 		    !test_bit(In_sync, &disk->rdev->flags)) {
2928 			disk->head_position = 0;
2929 			mddev->degraded++;
2930 			if (disk->rdev)
2931 				conf->fullsync = 1;
2932 		}
2933 		disk->recovery_disabled = mddev->recovery_disabled - 1;
2934 	}
2935 
2936 	if (mddev->recovery_cp != MaxSector)
2937 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2938 		       " -- starting background reconstruction\n",
2939 		       mdname(mddev));
2940 	printk(KERN_INFO
2941 		"md/raid10:%s: active with %d out of %d devices\n",
2942 		mdname(mddev), conf->raid_disks - mddev->degraded,
2943 		conf->raid_disks);
2944 	/*
2945 	 * Ok, everything is just fine now
2946 	 */
2947 	mddev->dev_sectors = conf->dev_sectors;
2948 	size = raid10_size(mddev, 0, 0);
2949 	md_set_array_sectors(mddev, size);
2950 	mddev->resync_max_sectors = size;
2951 
2952 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2953 	mddev->queue->backing_dev_info.congested_data = mddev;
2954 
2955 	/* Calculate max read-ahead size.
2956 	 * We need to readahead at least twice a whole stripe....
2957 	 * maybe...
2958 	 */
2959 	{
2960 		int stripe = conf->raid_disks *
2961 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2962 		stripe /= conf->near_copies;
2963 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2964 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2965 	}
2966 
2967 	if (conf->near_copies < conf->raid_disks)
2968 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2969 
2970 	if (md_integrity_register(mddev))
2971 		goto out_free_conf;
2972 
2973 	return 0;
2974 
2975 out_free_conf:
2976 	md_unregister_thread(&mddev->thread);
2977 	if (conf->r10bio_pool)
2978 		mempool_destroy(conf->r10bio_pool);
2979 	safe_put_page(conf->tmppage);
2980 	kfree(conf->mirrors);
2981 	kfree(conf);
2982 	mddev->private = NULL;
2983 out:
2984 	return -EIO;
2985 }
2986 
2987 static int stop(struct mddev *mddev)
2988 {
2989 	struct r10conf *conf = mddev->private;
2990 
2991 	raise_barrier(conf, 0);
2992 	lower_barrier(conf);
2993 
2994 	md_unregister_thread(&mddev->thread);
2995 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2996 	if (conf->r10bio_pool)
2997 		mempool_destroy(conf->r10bio_pool);
2998 	kfree(conf->mirrors);
2999 	kfree(conf);
3000 	mddev->private = NULL;
3001 	return 0;
3002 }
3003 
3004 static void raid10_quiesce(struct mddev *mddev, int state)
3005 {
3006 	struct r10conf *conf = mddev->private;
3007 
3008 	switch(state) {
3009 	case 1:
3010 		raise_barrier(conf, 0);
3011 		break;
3012 	case 0:
3013 		lower_barrier(conf);
3014 		break;
3015 	}
3016 }
3017 
3018 static void *raid10_takeover_raid0(struct mddev *mddev)
3019 {
3020 	struct md_rdev *rdev;
3021 	struct r10conf *conf;
3022 
3023 	if (mddev->degraded > 0) {
3024 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3025 		       mdname(mddev));
3026 		return ERR_PTR(-EINVAL);
3027 	}
3028 
3029 	/* Set new parameters */
3030 	mddev->new_level = 10;
3031 	/* new layout: far_copies = 1, near_copies = 2 */
3032 	mddev->new_layout = (1<<8) + 2;
3033 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3034 	mddev->delta_disks = mddev->raid_disks;
3035 	mddev->raid_disks *= 2;
3036 	/* make sure it will be not marked as dirty */
3037 	mddev->recovery_cp = MaxSector;
3038 
3039 	conf = setup_conf(mddev);
3040 	if (!IS_ERR(conf)) {
3041 		list_for_each_entry(rdev, &mddev->disks, same_set)
3042 			if (rdev->raid_disk >= 0)
3043 				rdev->new_raid_disk = rdev->raid_disk * 2;
3044 		conf->barrier = 1;
3045 	}
3046 
3047 	return conf;
3048 }
3049 
3050 static void *raid10_takeover(struct mddev *mddev)
3051 {
3052 	struct r0conf *raid0_conf;
3053 
3054 	/* raid10 can take over:
3055 	 *  raid0 - providing it has only two drives
3056 	 */
3057 	if (mddev->level == 0) {
3058 		/* for raid0 takeover only one zone is supported */
3059 		raid0_conf = mddev->private;
3060 		if (raid0_conf->nr_strip_zones > 1) {
3061 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3062 			       " with more than one zone.\n",
3063 			       mdname(mddev));
3064 			return ERR_PTR(-EINVAL);
3065 		}
3066 		return raid10_takeover_raid0(mddev);
3067 	}
3068 	return ERR_PTR(-EINVAL);
3069 }
3070 
3071 static struct md_personality raid10_personality =
3072 {
3073 	.name		= "raid10",
3074 	.level		= 10,
3075 	.owner		= THIS_MODULE,
3076 	.make_request	= make_request,
3077 	.run		= run,
3078 	.stop		= stop,
3079 	.status		= status,
3080 	.error_handler	= error,
3081 	.hot_add_disk	= raid10_add_disk,
3082 	.hot_remove_disk= raid10_remove_disk,
3083 	.spare_active	= raid10_spare_active,
3084 	.sync_request	= sync_request,
3085 	.quiesce	= raid10_quiesce,
3086 	.size		= raid10_size,
3087 	.takeover	= raid10_takeover,
3088 };
3089 
3090 static int __init raid_init(void)
3091 {
3092 	return register_md_personality(&raid10_personality);
3093 }
3094 
3095 static void raid_exit(void)
3096 {
3097 	unregister_md_personality(&raid10_personality);
3098 }
3099 
3100 module_init(raid_init);
3101 module_exit(raid_exit);
3102 MODULE_LICENSE("GPL");
3103 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3104 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3105 MODULE_ALIAS("md-raid10");
3106 MODULE_ALIAS("md-level-10");
3107 
3108 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3109