1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/md_p.h> 29 #include <trace/events/block.h> 30 #include "md.h" 31 #include "raid10.h" 32 #include "raid0.h" 33 #include "md-bitmap.h" 34 35 /* 36 * RAID10 provides a combination of RAID0 and RAID1 functionality. 37 * The layout of data is defined by 38 * chunk_size 39 * raid_disks 40 * near_copies (stored in low byte of layout) 41 * far_copies (stored in second byte of layout) 42 * far_offset (stored in bit 16 of layout ) 43 * use_far_sets (stored in bit 17 of layout ) 44 * use_far_sets_bugfixed (stored in bit 18 of layout ) 45 * 46 * The data to be stored is divided into chunks using chunksize. Each device 47 * is divided into far_copies sections. In each section, chunks are laid out 48 * in a style similar to raid0, but near_copies copies of each chunk is stored 49 * (each on a different drive). The starting device for each section is offset 50 * near_copies from the starting device of the previous section. Thus there 51 * are (near_copies * far_copies) of each chunk, and each is on a different 52 * drive. near_copies and far_copies must be at least one, and their product 53 * is at most raid_disks. 54 * 55 * If far_offset is true, then the far_copies are handled a bit differently. 56 * The copies are still in different stripes, but instead of being very far 57 * apart on disk, there are adjacent stripes. 58 * 59 * The far and offset algorithms are handled slightly differently if 60 * 'use_far_sets' is true. In this case, the array's devices are grouped into 61 * sets that are (near_copies * far_copies) in size. The far copied stripes 62 * are still shifted by 'near_copies' devices, but this shifting stays confined 63 * to the set rather than the entire array. This is done to improve the number 64 * of device combinations that can fail without causing the array to fail. 65 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 66 * on a device): 67 * A B C D A B C D E 68 * ... ... 69 * D A B C E A B C D 70 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 71 * [A B] [C D] [A B] [C D E] 72 * |...| |...| |...| | ... | 73 * [B A] [D C] [B A] [E C D] 74 */ 75 76 /* 77 * Number of guaranteed r10bios in case of extreme VM load: 78 */ 79 #define NR_RAID10_BIOS 256 80 81 /* when we get a read error on a read-only array, we redirect to another 82 * device without failing the first device, or trying to over-write to 83 * correct the read error. To keep track of bad blocks on a per-bio 84 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 85 */ 86 #define IO_BLOCKED ((struct bio *)1) 87 /* When we successfully write to a known bad-block, we need to remove the 88 * bad-block marking which must be done from process context. So we record 89 * the success by setting devs[n].bio to IO_MADE_GOOD 90 */ 91 #define IO_MADE_GOOD ((struct bio *)2) 92 93 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 94 95 /* When there are this many requests queued to be written by 96 * the raid10 thread, we become 'congested' to provide back-pressure 97 * for writeback. 98 */ 99 static int max_queued_requests = 1024; 100 101 static void allow_barrier(struct r10conf *conf); 102 static void lower_barrier(struct r10conf *conf); 103 static int _enough(struct r10conf *conf, int previous, int ignore); 104 static int enough(struct r10conf *conf, int ignore); 105 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 106 int *skipped); 107 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 108 static void end_reshape_write(struct bio *bio); 109 static void end_reshape(struct r10conf *conf); 110 111 #define raid10_log(md, fmt, args...) \ 112 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 113 114 #include "raid1-10.c" 115 116 /* 117 * for resync bio, r10bio pointer can be retrieved from the per-bio 118 * 'struct resync_pages'. 119 */ 120 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 121 { 122 return get_resync_pages(bio)->raid_bio; 123 } 124 125 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 126 { 127 struct r10conf *conf = data; 128 int size = offsetof(struct r10bio, devs[conf->copies]); 129 130 /* allocate a r10bio with room for raid_disks entries in the 131 * bios array */ 132 return kzalloc(size, gfp_flags); 133 } 134 135 static void r10bio_pool_free(void *r10_bio, void *data) 136 { 137 kfree(r10_bio); 138 } 139 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 /* amount of memory to reserve for resync requests */ 142 #define RESYNC_WINDOW (1024*1024) 143 /* maximum number of concurrent requests, memory permitting */ 144 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 145 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 146 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 147 148 /* 149 * When performing a resync, we need to read and compare, so 150 * we need as many pages are there are copies. 151 * When performing a recovery, we need 2 bios, one for read, 152 * one for write (we recover only one drive per r10buf) 153 * 154 */ 155 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 156 { 157 struct r10conf *conf = data; 158 struct r10bio *r10_bio; 159 struct bio *bio; 160 int j; 161 int nalloc, nalloc_rp; 162 struct resync_pages *rps; 163 164 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 165 if (!r10_bio) 166 return NULL; 167 168 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 169 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 170 nalloc = conf->copies; /* resync */ 171 else 172 nalloc = 2; /* recovery */ 173 174 /* allocate once for all bios */ 175 if (!conf->have_replacement) 176 nalloc_rp = nalloc; 177 else 178 nalloc_rp = nalloc * 2; 179 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 180 if (!rps) 181 goto out_free_r10bio; 182 183 /* 184 * Allocate bios. 185 */ 186 for (j = nalloc ; j-- ; ) { 187 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 188 if (!bio) 189 goto out_free_bio; 190 r10_bio->devs[j].bio = bio; 191 if (!conf->have_replacement) 192 continue; 193 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 194 if (!bio) 195 goto out_free_bio; 196 r10_bio->devs[j].repl_bio = bio; 197 } 198 /* 199 * Allocate RESYNC_PAGES data pages and attach them 200 * where needed. 201 */ 202 for (j = 0; j < nalloc; j++) { 203 struct bio *rbio = r10_bio->devs[j].repl_bio; 204 struct resync_pages *rp, *rp_repl; 205 206 rp = &rps[j]; 207 if (rbio) 208 rp_repl = &rps[nalloc + j]; 209 210 bio = r10_bio->devs[j].bio; 211 212 if (!j || test_bit(MD_RECOVERY_SYNC, 213 &conf->mddev->recovery)) { 214 if (resync_alloc_pages(rp, gfp_flags)) 215 goto out_free_pages; 216 } else { 217 memcpy(rp, &rps[0], sizeof(*rp)); 218 resync_get_all_pages(rp); 219 } 220 221 rp->raid_bio = r10_bio; 222 bio->bi_private = rp; 223 if (rbio) { 224 memcpy(rp_repl, rp, sizeof(*rp)); 225 rbio->bi_private = rp_repl; 226 } 227 } 228 229 return r10_bio; 230 231 out_free_pages: 232 while (--j >= 0) 233 resync_free_pages(&rps[j * 2]); 234 235 j = 0; 236 out_free_bio: 237 for ( ; j < nalloc; j++) { 238 if (r10_bio->devs[j].bio) 239 bio_put(r10_bio->devs[j].bio); 240 if (r10_bio->devs[j].repl_bio) 241 bio_put(r10_bio->devs[j].repl_bio); 242 } 243 kfree(rps); 244 out_free_r10bio: 245 r10bio_pool_free(r10_bio, conf); 246 return NULL; 247 } 248 249 static void r10buf_pool_free(void *__r10_bio, void *data) 250 { 251 struct r10conf *conf = data; 252 struct r10bio *r10bio = __r10_bio; 253 int j; 254 struct resync_pages *rp = NULL; 255 256 for (j = conf->copies; j--; ) { 257 struct bio *bio = r10bio->devs[j].bio; 258 259 if (bio) { 260 rp = get_resync_pages(bio); 261 resync_free_pages(rp); 262 bio_put(bio); 263 } 264 265 bio = r10bio->devs[j].repl_bio; 266 if (bio) 267 bio_put(bio); 268 } 269 270 /* resync pages array stored in the 1st bio's .bi_private */ 271 kfree(rp); 272 273 r10bio_pool_free(r10bio, conf); 274 } 275 276 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 277 { 278 int i; 279 280 for (i = 0; i < conf->copies; i++) { 281 struct bio **bio = & r10_bio->devs[i].bio; 282 if (!BIO_SPECIAL(*bio)) 283 bio_put(*bio); 284 *bio = NULL; 285 bio = &r10_bio->devs[i].repl_bio; 286 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 287 bio_put(*bio); 288 *bio = NULL; 289 } 290 } 291 292 static void free_r10bio(struct r10bio *r10_bio) 293 { 294 struct r10conf *conf = r10_bio->mddev->private; 295 296 put_all_bios(conf, r10_bio); 297 mempool_free(r10_bio, &conf->r10bio_pool); 298 } 299 300 static void put_buf(struct r10bio *r10_bio) 301 { 302 struct r10conf *conf = r10_bio->mddev->private; 303 304 mempool_free(r10_bio, &conf->r10buf_pool); 305 306 lower_barrier(conf); 307 } 308 309 static void reschedule_retry(struct r10bio *r10_bio) 310 { 311 unsigned long flags; 312 struct mddev *mddev = r10_bio->mddev; 313 struct r10conf *conf = mddev->private; 314 315 spin_lock_irqsave(&conf->device_lock, flags); 316 list_add(&r10_bio->retry_list, &conf->retry_list); 317 conf->nr_queued ++; 318 spin_unlock_irqrestore(&conf->device_lock, flags); 319 320 /* wake up frozen array... */ 321 wake_up(&conf->wait_barrier); 322 323 md_wakeup_thread(mddev->thread); 324 } 325 326 /* 327 * raid_end_bio_io() is called when we have finished servicing a mirrored 328 * operation and are ready to return a success/failure code to the buffer 329 * cache layer. 330 */ 331 static void raid_end_bio_io(struct r10bio *r10_bio) 332 { 333 struct bio *bio = r10_bio->master_bio; 334 struct r10conf *conf = r10_bio->mddev->private; 335 336 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 337 bio->bi_status = BLK_STS_IOERR; 338 339 bio_endio(bio); 340 /* 341 * Wake up any possible resync thread that waits for the device 342 * to go idle. 343 */ 344 allow_barrier(conf); 345 346 free_r10bio(r10_bio); 347 } 348 349 /* 350 * Update disk head position estimator based on IRQ completion info. 351 */ 352 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 353 { 354 struct r10conf *conf = r10_bio->mddev->private; 355 356 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 357 r10_bio->devs[slot].addr + (r10_bio->sectors); 358 } 359 360 /* 361 * Find the disk number which triggered given bio 362 */ 363 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 364 struct bio *bio, int *slotp, int *replp) 365 { 366 int slot; 367 int repl = 0; 368 369 for (slot = 0; slot < conf->copies; slot++) { 370 if (r10_bio->devs[slot].bio == bio) 371 break; 372 if (r10_bio->devs[slot].repl_bio == bio) { 373 repl = 1; 374 break; 375 } 376 } 377 378 BUG_ON(slot == conf->copies); 379 update_head_pos(slot, r10_bio); 380 381 if (slotp) 382 *slotp = slot; 383 if (replp) 384 *replp = repl; 385 return r10_bio->devs[slot].devnum; 386 } 387 388 static void raid10_end_read_request(struct bio *bio) 389 { 390 int uptodate = !bio->bi_status; 391 struct r10bio *r10_bio = bio->bi_private; 392 int slot; 393 struct md_rdev *rdev; 394 struct r10conf *conf = r10_bio->mddev->private; 395 396 slot = r10_bio->read_slot; 397 rdev = r10_bio->devs[slot].rdev; 398 /* 399 * this branch is our 'one mirror IO has finished' event handler: 400 */ 401 update_head_pos(slot, r10_bio); 402 403 if (uptodate) { 404 /* 405 * Set R10BIO_Uptodate in our master bio, so that 406 * we will return a good error code to the higher 407 * levels even if IO on some other mirrored buffer fails. 408 * 409 * The 'master' represents the composite IO operation to 410 * user-side. So if something waits for IO, then it will 411 * wait for the 'master' bio. 412 */ 413 set_bit(R10BIO_Uptodate, &r10_bio->state); 414 } else { 415 /* If all other devices that store this block have 416 * failed, we want to return the error upwards rather 417 * than fail the last device. Here we redefine 418 * "uptodate" to mean "Don't want to retry" 419 */ 420 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 421 rdev->raid_disk)) 422 uptodate = 1; 423 } 424 if (uptodate) { 425 raid_end_bio_io(r10_bio); 426 rdev_dec_pending(rdev, conf->mddev); 427 } else { 428 /* 429 * oops, read error - keep the refcount on the rdev 430 */ 431 char b[BDEVNAME_SIZE]; 432 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 433 mdname(conf->mddev), 434 bdevname(rdev->bdev, b), 435 (unsigned long long)r10_bio->sector); 436 set_bit(R10BIO_ReadError, &r10_bio->state); 437 reschedule_retry(r10_bio); 438 } 439 } 440 441 static void close_write(struct r10bio *r10_bio) 442 { 443 /* clear the bitmap if all writes complete successfully */ 444 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 445 r10_bio->sectors, 446 !test_bit(R10BIO_Degraded, &r10_bio->state), 447 0); 448 md_write_end(r10_bio->mddev); 449 } 450 451 static void one_write_done(struct r10bio *r10_bio) 452 { 453 if (atomic_dec_and_test(&r10_bio->remaining)) { 454 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 455 reschedule_retry(r10_bio); 456 else { 457 close_write(r10_bio); 458 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 459 reschedule_retry(r10_bio); 460 else 461 raid_end_bio_io(r10_bio); 462 } 463 } 464 } 465 466 static void raid10_end_write_request(struct bio *bio) 467 { 468 struct r10bio *r10_bio = bio->bi_private; 469 int dev; 470 int dec_rdev = 1; 471 struct r10conf *conf = r10_bio->mddev->private; 472 int slot, repl; 473 struct md_rdev *rdev = NULL; 474 struct bio *to_put = NULL; 475 bool discard_error; 476 477 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 478 479 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 480 481 if (repl) 482 rdev = conf->mirrors[dev].replacement; 483 if (!rdev) { 484 smp_rmb(); 485 repl = 0; 486 rdev = conf->mirrors[dev].rdev; 487 } 488 /* 489 * this branch is our 'one mirror IO has finished' event handler: 490 */ 491 if (bio->bi_status && !discard_error) { 492 if (repl) 493 /* Never record new bad blocks to replacement, 494 * just fail it. 495 */ 496 md_error(rdev->mddev, rdev); 497 else { 498 set_bit(WriteErrorSeen, &rdev->flags); 499 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 500 set_bit(MD_RECOVERY_NEEDED, 501 &rdev->mddev->recovery); 502 503 dec_rdev = 0; 504 if (test_bit(FailFast, &rdev->flags) && 505 (bio->bi_opf & MD_FAILFAST)) { 506 md_error(rdev->mddev, rdev); 507 if (!test_bit(Faulty, &rdev->flags)) 508 /* This is the only remaining device, 509 * We need to retry the write without 510 * FailFast 511 */ 512 set_bit(R10BIO_WriteError, &r10_bio->state); 513 else { 514 r10_bio->devs[slot].bio = NULL; 515 to_put = bio; 516 dec_rdev = 1; 517 } 518 } else 519 set_bit(R10BIO_WriteError, &r10_bio->state); 520 } 521 } else { 522 /* 523 * Set R10BIO_Uptodate in our master bio, so that 524 * we will return a good error code for to the higher 525 * levels even if IO on some other mirrored buffer fails. 526 * 527 * The 'master' represents the composite IO operation to 528 * user-side. So if something waits for IO, then it will 529 * wait for the 'master' bio. 530 */ 531 sector_t first_bad; 532 int bad_sectors; 533 534 /* 535 * Do not set R10BIO_Uptodate if the current device is 536 * rebuilding or Faulty. This is because we cannot use 537 * such device for properly reading the data back (we could 538 * potentially use it, if the current write would have felt 539 * before rdev->recovery_offset, but for simplicity we don't 540 * check this here. 541 */ 542 if (test_bit(In_sync, &rdev->flags) && 543 !test_bit(Faulty, &rdev->flags)) 544 set_bit(R10BIO_Uptodate, &r10_bio->state); 545 546 /* Maybe we can clear some bad blocks. */ 547 if (is_badblock(rdev, 548 r10_bio->devs[slot].addr, 549 r10_bio->sectors, 550 &first_bad, &bad_sectors) && !discard_error) { 551 bio_put(bio); 552 if (repl) 553 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 554 else 555 r10_bio->devs[slot].bio = IO_MADE_GOOD; 556 dec_rdev = 0; 557 set_bit(R10BIO_MadeGood, &r10_bio->state); 558 } 559 } 560 561 /* 562 * 563 * Let's see if all mirrored write operations have finished 564 * already. 565 */ 566 one_write_done(r10_bio); 567 if (dec_rdev) 568 rdev_dec_pending(rdev, conf->mddev); 569 if (to_put) 570 bio_put(to_put); 571 } 572 573 /* 574 * RAID10 layout manager 575 * As well as the chunksize and raid_disks count, there are two 576 * parameters: near_copies and far_copies. 577 * near_copies * far_copies must be <= raid_disks. 578 * Normally one of these will be 1. 579 * If both are 1, we get raid0. 580 * If near_copies == raid_disks, we get raid1. 581 * 582 * Chunks are laid out in raid0 style with near_copies copies of the 583 * first chunk, followed by near_copies copies of the next chunk and 584 * so on. 585 * If far_copies > 1, then after 1/far_copies of the array has been assigned 586 * as described above, we start again with a device offset of near_copies. 587 * So we effectively have another copy of the whole array further down all 588 * the drives, but with blocks on different drives. 589 * With this layout, and block is never stored twice on the one device. 590 * 591 * raid10_find_phys finds the sector offset of a given virtual sector 592 * on each device that it is on. 593 * 594 * raid10_find_virt does the reverse mapping, from a device and a 595 * sector offset to a virtual address 596 */ 597 598 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 599 { 600 int n,f; 601 sector_t sector; 602 sector_t chunk; 603 sector_t stripe; 604 int dev; 605 int slot = 0; 606 int last_far_set_start, last_far_set_size; 607 608 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 609 last_far_set_start *= geo->far_set_size; 610 611 last_far_set_size = geo->far_set_size; 612 last_far_set_size += (geo->raid_disks % geo->far_set_size); 613 614 /* now calculate first sector/dev */ 615 chunk = r10bio->sector >> geo->chunk_shift; 616 sector = r10bio->sector & geo->chunk_mask; 617 618 chunk *= geo->near_copies; 619 stripe = chunk; 620 dev = sector_div(stripe, geo->raid_disks); 621 if (geo->far_offset) 622 stripe *= geo->far_copies; 623 624 sector += stripe << geo->chunk_shift; 625 626 /* and calculate all the others */ 627 for (n = 0; n < geo->near_copies; n++) { 628 int d = dev; 629 int set; 630 sector_t s = sector; 631 r10bio->devs[slot].devnum = d; 632 r10bio->devs[slot].addr = s; 633 slot++; 634 635 for (f = 1; f < geo->far_copies; f++) { 636 set = d / geo->far_set_size; 637 d += geo->near_copies; 638 639 if ((geo->raid_disks % geo->far_set_size) && 640 (d > last_far_set_start)) { 641 d -= last_far_set_start; 642 d %= last_far_set_size; 643 d += last_far_set_start; 644 } else { 645 d %= geo->far_set_size; 646 d += geo->far_set_size * set; 647 } 648 s += geo->stride; 649 r10bio->devs[slot].devnum = d; 650 r10bio->devs[slot].addr = s; 651 slot++; 652 } 653 dev++; 654 if (dev >= geo->raid_disks) { 655 dev = 0; 656 sector += (geo->chunk_mask + 1); 657 } 658 } 659 } 660 661 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 662 { 663 struct geom *geo = &conf->geo; 664 665 if (conf->reshape_progress != MaxSector && 666 ((r10bio->sector >= conf->reshape_progress) != 667 conf->mddev->reshape_backwards)) { 668 set_bit(R10BIO_Previous, &r10bio->state); 669 geo = &conf->prev; 670 } else 671 clear_bit(R10BIO_Previous, &r10bio->state); 672 673 __raid10_find_phys(geo, r10bio); 674 } 675 676 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 677 { 678 sector_t offset, chunk, vchunk; 679 /* Never use conf->prev as this is only called during resync 680 * or recovery, so reshape isn't happening 681 */ 682 struct geom *geo = &conf->geo; 683 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 684 int far_set_size = geo->far_set_size; 685 int last_far_set_start; 686 687 if (geo->raid_disks % geo->far_set_size) { 688 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 689 last_far_set_start *= geo->far_set_size; 690 691 if (dev >= last_far_set_start) { 692 far_set_size = geo->far_set_size; 693 far_set_size += (geo->raid_disks % geo->far_set_size); 694 far_set_start = last_far_set_start; 695 } 696 } 697 698 offset = sector & geo->chunk_mask; 699 if (geo->far_offset) { 700 int fc; 701 chunk = sector >> geo->chunk_shift; 702 fc = sector_div(chunk, geo->far_copies); 703 dev -= fc * geo->near_copies; 704 if (dev < far_set_start) 705 dev += far_set_size; 706 } else { 707 while (sector >= geo->stride) { 708 sector -= geo->stride; 709 if (dev < (geo->near_copies + far_set_start)) 710 dev += far_set_size - geo->near_copies; 711 else 712 dev -= geo->near_copies; 713 } 714 chunk = sector >> geo->chunk_shift; 715 } 716 vchunk = chunk * geo->raid_disks + dev; 717 sector_div(vchunk, geo->near_copies); 718 return (vchunk << geo->chunk_shift) + offset; 719 } 720 721 /* 722 * This routine returns the disk from which the requested read should 723 * be done. There is a per-array 'next expected sequential IO' sector 724 * number - if this matches on the next IO then we use the last disk. 725 * There is also a per-disk 'last know head position' sector that is 726 * maintained from IRQ contexts, both the normal and the resync IO 727 * completion handlers update this position correctly. If there is no 728 * perfect sequential match then we pick the disk whose head is closest. 729 * 730 * If there are 2 mirrors in the same 2 devices, performance degrades 731 * because position is mirror, not device based. 732 * 733 * The rdev for the device selected will have nr_pending incremented. 734 */ 735 736 /* 737 * FIXME: possibly should rethink readbalancing and do it differently 738 * depending on near_copies / far_copies geometry. 739 */ 740 static struct md_rdev *read_balance(struct r10conf *conf, 741 struct r10bio *r10_bio, 742 int *max_sectors) 743 { 744 const sector_t this_sector = r10_bio->sector; 745 int disk, slot; 746 int sectors = r10_bio->sectors; 747 int best_good_sectors; 748 sector_t new_distance, best_dist; 749 struct md_rdev *best_rdev, *rdev = NULL; 750 int do_balance; 751 int best_slot; 752 struct geom *geo = &conf->geo; 753 754 raid10_find_phys(conf, r10_bio); 755 rcu_read_lock(); 756 best_slot = -1; 757 best_rdev = NULL; 758 best_dist = MaxSector; 759 best_good_sectors = 0; 760 do_balance = 1; 761 clear_bit(R10BIO_FailFast, &r10_bio->state); 762 /* 763 * Check if we can balance. We can balance on the whole 764 * device if no resync is going on (recovery is ok), or below 765 * the resync window. We take the first readable disk when 766 * above the resync window. 767 */ 768 if ((conf->mddev->recovery_cp < MaxSector 769 && (this_sector + sectors >= conf->next_resync)) || 770 (mddev_is_clustered(conf->mddev) && 771 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 772 this_sector + sectors))) 773 do_balance = 0; 774 775 for (slot = 0; slot < conf->copies ; slot++) { 776 sector_t first_bad; 777 int bad_sectors; 778 sector_t dev_sector; 779 780 if (r10_bio->devs[slot].bio == IO_BLOCKED) 781 continue; 782 disk = r10_bio->devs[slot].devnum; 783 rdev = rcu_dereference(conf->mirrors[disk].replacement); 784 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 785 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 786 rdev = rcu_dereference(conf->mirrors[disk].rdev); 787 if (rdev == NULL || 788 test_bit(Faulty, &rdev->flags)) 789 continue; 790 if (!test_bit(In_sync, &rdev->flags) && 791 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 792 continue; 793 794 dev_sector = r10_bio->devs[slot].addr; 795 if (is_badblock(rdev, dev_sector, sectors, 796 &first_bad, &bad_sectors)) { 797 if (best_dist < MaxSector) 798 /* Already have a better slot */ 799 continue; 800 if (first_bad <= dev_sector) { 801 /* Cannot read here. If this is the 802 * 'primary' device, then we must not read 803 * beyond 'bad_sectors' from another device. 804 */ 805 bad_sectors -= (dev_sector - first_bad); 806 if (!do_balance && sectors > bad_sectors) 807 sectors = bad_sectors; 808 if (best_good_sectors > sectors) 809 best_good_sectors = sectors; 810 } else { 811 sector_t good_sectors = 812 first_bad - dev_sector; 813 if (good_sectors > best_good_sectors) { 814 best_good_sectors = good_sectors; 815 best_slot = slot; 816 best_rdev = rdev; 817 } 818 if (!do_balance) 819 /* Must read from here */ 820 break; 821 } 822 continue; 823 } else 824 best_good_sectors = sectors; 825 826 if (!do_balance) 827 break; 828 829 if (best_slot >= 0) 830 /* At least 2 disks to choose from so failfast is OK */ 831 set_bit(R10BIO_FailFast, &r10_bio->state); 832 /* This optimisation is debatable, and completely destroys 833 * sequential read speed for 'far copies' arrays. So only 834 * keep it for 'near' arrays, and review those later. 835 */ 836 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 837 new_distance = 0; 838 839 /* for far > 1 always use the lowest address */ 840 else if (geo->far_copies > 1) 841 new_distance = r10_bio->devs[slot].addr; 842 else 843 new_distance = abs(r10_bio->devs[slot].addr - 844 conf->mirrors[disk].head_position); 845 if (new_distance < best_dist) { 846 best_dist = new_distance; 847 best_slot = slot; 848 best_rdev = rdev; 849 } 850 } 851 if (slot >= conf->copies) { 852 slot = best_slot; 853 rdev = best_rdev; 854 } 855 856 if (slot >= 0) { 857 atomic_inc(&rdev->nr_pending); 858 r10_bio->read_slot = slot; 859 } else 860 rdev = NULL; 861 rcu_read_unlock(); 862 *max_sectors = best_good_sectors; 863 864 return rdev; 865 } 866 867 static int raid10_congested(struct mddev *mddev, int bits) 868 { 869 struct r10conf *conf = mddev->private; 870 int i, ret = 0; 871 872 if ((bits & (1 << WB_async_congested)) && 873 conf->pending_count >= max_queued_requests) 874 return 1; 875 876 rcu_read_lock(); 877 for (i = 0; 878 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 879 && ret == 0; 880 i++) { 881 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 882 if (rdev && !test_bit(Faulty, &rdev->flags)) { 883 struct request_queue *q = bdev_get_queue(rdev->bdev); 884 885 ret |= bdi_congested(q->backing_dev_info, bits); 886 } 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 892 static void flush_pending_writes(struct r10conf *conf) 893 { 894 /* Any writes that have been queued but are awaiting 895 * bitmap updates get flushed here. 896 */ 897 spin_lock_irq(&conf->device_lock); 898 899 if (conf->pending_bio_list.head) { 900 struct blk_plug plug; 901 struct bio *bio; 902 903 bio = bio_list_get(&conf->pending_bio_list); 904 conf->pending_count = 0; 905 spin_unlock_irq(&conf->device_lock); 906 907 /* 908 * As this is called in a wait_event() loop (see freeze_array), 909 * current->state might be TASK_UNINTERRUPTIBLE which will 910 * cause a warning when we prepare to wait again. As it is 911 * rare that this path is taken, it is perfectly safe to force 912 * us to go around the wait_event() loop again, so the warning 913 * is a false-positive. Silence the warning by resetting 914 * thread state 915 */ 916 __set_current_state(TASK_RUNNING); 917 918 blk_start_plug(&plug); 919 /* flush any pending bitmap writes to disk 920 * before proceeding w/ I/O */ 921 md_bitmap_unplug(conf->mddev->bitmap); 922 wake_up(&conf->wait_barrier); 923 924 while (bio) { /* submit pending writes */ 925 struct bio *next = bio->bi_next; 926 struct md_rdev *rdev = (void*)bio->bi_disk; 927 bio->bi_next = NULL; 928 bio_set_dev(bio, rdev->bdev); 929 if (test_bit(Faulty, &rdev->flags)) { 930 bio_io_error(bio); 931 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 932 !blk_queue_discard(bio->bi_disk->queue))) 933 /* Just ignore it */ 934 bio_endio(bio); 935 else 936 generic_make_request(bio); 937 bio = next; 938 } 939 blk_finish_plug(&plug); 940 } else 941 spin_unlock_irq(&conf->device_lock); 942 } 943 944 /* Barriers.... 945 * Sometimes we need to suspend IO while we do something else, 946 * either some resync/recovery, or reconfigure the array. 947 * To do this we raise a 'barrier'. 948 * The 'barrier' is a counter that can be raised multiple times 949 * to count how many activities are happening which preclude 950 * normal IO. 951 * We can only raise the barrier if there is no pending IO. 952 * i.e. if nr_pending == 0. 953 * We choose only to raise the barrier if no-one is waiting for the 954 * barrier to go down. This means that as soon as an IO request 955 * is ready, no other operations which require a barrier will start 956 * until the IO request has had a chance. 957 * 958 * So: regular IO calls 'wait_barrier'. When that returns there 959 * is no backgroup IO happening, It must arrange to call 960 * allow_barrier when it has finished its IO. 961 * backgroup IO calls must call raise_barrier. Once that returns 962 * there is no normal IO happeing. It must arrange to call 963 * lower_barrier when the particular background IO completes. 964 */ 965 966 static void raise_barrier(struct r10conf *conf, int force) 967 { 968 BUG_ON(force && !conf->barrier); 969 spin_lock_irq(&conf->resync_lock); 970 971 /* Wait until no block IO is waiting (unless 'force') */ 972 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 973 conf->resync_lock); 974 975 /* block any new IO from starting */ 976 conf->barrier++; 977 978 /* Now wait for all pending IO to complete */ 979 wait_event_lock_irq(conf->wait_barrier, 980 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 981 conf->resync_lock); 982 983 spin_unlock_irq(&conf->resync_lock); 984 } 985 986 static void lower_barrier(struct r10conf *conf) 987 { 988 unsigned long flags; 989 spin_lock_irqsave(&conf->resync_lock, flags); 990 conf->barrier--; 991 spin_unlock_irqrestore(&conf->resync_lock, flags); 992 wake_up(&conf->wait_barrier); 993 } 994 995 static void wait_barrier(struct r10conf *conf) 996 { 997 spin_lock_irq(&conf->resync_lock); 998 if (conf->barrier) { 999 conf->nr_waiting++; 1000 /* Wait for the barrier to drop. 1001 * However if there are already pending 1002 * requests (preventing the barrier from 1003 * rising completely), and the 1004 * pre-process bio queue isn't empty, 1005 * then don't wait, as we need to empty 1006 * that queue to get the nr_pending 1007 * count down. 1008 */ 1009 raid10_log(conf->mddev, "wait barrier"); 1010 wait_event_lock_irq(conf->wait_barrier, 1011 !conf->barrier || 1012 (atomic_read(&conf->nr_pending) && 1013 current->bio_list && 1014 (!bio_list_empty(¤t->bio_list[0]) || 1015 !bio_list_empty(¤t->bio_list[1]))), 1016 conf->resync_lock); 1017 conf->nr_waiting--; 1018 if (!conf->nr_waiting) 1019 wake_up(&conf->wait_barrier); 1020 } 1021 atomic_inc(&conf->nr_pending); 1022 spin_unlock_irq(&conf->resync_lock); 1023 } 1024 1025 static void allow_barrier(struct r10conf *conf) 1026 { 1027 if ((atomic_dec_and_test(&conf->nr_pending)) || 1028 (conf->array_freeze_pending)) 1029 wake_up(&conf->wait_barrier); 1030 } 1031 1032 static void freeze_array(struct r10conf *conf, int extra) 1033 { 1034 /* stop syncio and normal IO and wait for everything to 1035 * go quiet. 1036 * We increment barrier and nr_waiting, and then 1037 * wait until nr_pending match nr_queued+extra 1038 * This is called in the context of one normal IO request 1039 * that has failed. Thus any sync request that might be pending 1040 * will be blocked by nr_pending, and we need to wait for 1041 * pending IO requests to complete or be queued for re-try. 1042 * Thus the number queued (nr_queued) plus this request (extra) 1043 * must match the number of pending IOs (nr_pending) before 1044 * we continue. 1045 */ 1046 spin_lock_irq(&conf->resync_lock); 1047 conf->array_freeze_pending++; 1048 conf->barrier++; 1049 conf->nr_waiting++; 1050 wait_event_lock_irq_cmd(conf->wait_barrier, 1051 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1052 conf->resync_lock, 1053 flush_pending_writes(conf)); 1054 1055 conf->array_freeze_pending--; 1056 spin_unlock_irq(&conf->resync_lock); 1057 } 1058 1059 static void unfreeze_array(struct r10conf *conf) 1060 { 1061 /* reverse the effect of the freeze */ 1062 spin_lock_irq(&conf->resync_lock); 1063 conf->barrier--; 1064 conf->nr_waiting--; 1065 wake_up(&conf->wait_barrier); 1066 spin_unlock_irq(&conf->resync_lock); 1067 } 1068 1069 static sector_t choose_data_offset(struct r10bio *r10_bio, 1070 struct md_rdev *rdev) 1071 { 1072 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1073 test_bit(R10BIO_Previous, &r10_bio->state)) 1074 return rdev->data_offset; 1075 else 1076 return rdev->new_data_offset; 1077 } 1078 1079 struct raid10_plug_cb { 1080 struct blk_plug_cb cb; 1081 struct bio_list pending; 1082 int pending_cnt; 1083 }; 1084 1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1086 { 1087 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1088 cb); 1089 struct mddev *mddev = plug->cb.data; 1090 struct r10conf *conf = mddev->private; 1091 struct bio *bio; 1092 1093 if (from_schedule || current->bio_list) { 1094 spin_lock_irq(&conf->device_lock); 1095 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1096 conf->pending_count += plug->pending_cnt; 1097 spin_unlock_irq(&conf->device_lock); 1098 wake_up(&conf->wait_barrier); 1099 md_wakeup_thread(mddev->thread); 1100 kfree(plug); 1101 return; 1102 } 1103 1104 /* we aren't scheduling, so we can do the write-out directly. */ 1105 bio = bio_list_get(&plug->pending); 1106 md_bitmap_unplug(mddev->bitmap); 1107 wake_up(&conf->wait_barrier); 1108 1109 while (bio) { /* submit pending writes */ 1110 struct bio *next = bio->bi_next; 1111 struct md_rdev *rdev = (void*)bio->bi_disk; 1112 bio->bi_next = NULL; 1113 bio_set_dev(bio, rdev->bdev); 1114 if (test_bit(Faulty, &rdev->flags)) { 1115 bio_io_error(bio); 1116 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1117 !blk_queue_discard(bio->bi_disk->queue))) 1118 /* Just ignore it */ 1119 bio_endio(bio); 1120 else 1121 generic_make_request(bio); 1122 bio = next; 1123 } 1124 kfree(plug); 1125 } 1126 1127 /* 1128 * 1. Register the new request and wait if the reconstruction thread has put 1129 * up a bar for new requests. Continue immediately if no resync is active 1130 * currently. 1131 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1132 */ 1133 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1134 struct bio *bio, sector_t sectors) 1135 { 1136 wait_barrier(conf); 1137 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1138 bio->bi_iter.bi_sector < conf->reshape_progress && 1139 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1140 raid10_log(conf->mddev, "wait reshape"); 1141 allow_barrier(conf); 1142 wait_event(conf->wait_barrier, 1143 conf->reshape_progress <= bio->bi_iter.bi_sector || 1144 conf->reshape_progress >= bio->bi_iter.bi_sector + 1145 sectors); 1146 wait_barrier(conf); 1147 } 1148 } 1149 1150 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1151 struct r10bio *r10_bio) 1152 { 1153 struct r10conf *conf = mddev->private; 1154 struct bio *read_bio; 1155 const int op = bio_op(bio); 1156 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1157 int max_sectors; 1158 struct md_rdev *rdev; 1159 char b[BDEVNAME_SIZE]; 1160 int slot = r10_bio->read_slot; 1161 struct md_rdev *err_rdev = NULL; 1162 gfp_t gfp = GFP_NOIO; 1163 1164 if (r10_bio->devs[slot].rdev) { 1165 /* 1166 * This is an error retry, but we cannot 1167 * safely dereference the rdev in the r10_bio, 1168 * we must use the one in conf. 1169 * If it has already been disconnected (unlikely) 1170 * we lose the device name in error messages. 1171 */ 1172 int disk; 1173 /* 1174 * As we are blocking raid10, it is a little safer to 1175 * use __GFP_HIGH. 1176 */ 1177 gfp = GFP_NOIO | __GFP_HIGH; 1178 1179 rcu_read_lock(); 1180 disk = r10_bio->devs[slot].devnum; 1181 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1182 if (err_rdev) 1183 bdevname(err_rdev->bdev, b); 1184 else { 1185 strcpy(b, "???"); 1186 /* This never gets dereferenced */ 1187 err_rdev = r10_bio->devs[slot].rdev; 1188 } 1189 rcu_read_unlock(); 1190 } 1191 1192 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1193 rdev = read_balance(conf, r10_bio, &max_sectors); 1194 if (!rdev) { 1195 if (err_rdev) { 1196 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1197 mdname(mddev), b, 1198 (unsigned long long)r10_bio->sector); 1199 } 1200 raid_end_bio_io(r10_bio); 1201 return; 1202 } 1203 if (err_rdev) 1204 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1205 mdname(mddev), 1206 bdevname(rdev->bdev, b), 1207 (unsigned long long)r10_bio->sector); 1208 if (max_sectors < bio_sectors(bio)) { 1209 struct bio *split = bio_split(bio, max_sectors, 1210 gfp, &conf->bio_split); 1211 bio_chain(split, bio); 1212 allow_barrier(conf); 1213 generic_make_request(bio); 1214 wait_barrier(conf); 1215 bio = split; 1216 r10_bio->master_bio = bio; 1217 r10_bio->sectors = max_sectors; 1218 } 1219 slot = r10_bio->read_slot; 1220 1221 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1222 1223 r10_bio->devs[slot].bio = read_bio; 1224 r10_bio->devs[slot].rdev = rdev; 1225 1226 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1227 choose_data_offset(r10_bio, rdev); 1228 bio_set_dev(read_bio, rdev->bdev); 1229 read_bio->bi_end_io = raid10_end_read_request; 1230 bio_set_op_attrs(read_bio, op, do_sync); 1231 if (test_bit(FailFast, &rdev->flags) && 1232 test_bit(R10BIO_FailFast, &r10_bio->state)) 1233 read_bio->bi_opf |= MD_FAILFAST; 1234 read_bio->bi_private = r10_bio; 1235 1236 if (mddev->gendisk) 1237 trace_block_bio_remap(read_bio->bi_disk->queue, 1238 read_bio, disk_devt(mddev->gendisk), 1239 r10_bio->sector); 1240 generic_make_request(read_bio); 1241 return; 1242 } 1243 1244 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1245 struct bio *bio, bool replacement, 1246 int n_copy) 1247 { 1248 const int op = bio_op(bio); 1249 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1250 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1251 unsigned long flags; 1252 struct blk_plug_cb *cb; 1253 struct raid10_plug_cb *plug = NULL; 1254 struct r10conf *conf = mddev->private; 1255 struct md_rdev *rdev; 1256 int devnum = r10_bio->devs[n_copy].devnum; 1257 struct bio *mbio; 1258 1259 if (replacement) { 1260 rdev = conf->mirrors[devnum].replacement; 1261 if (rdev == NULL) { 1262 /* Replacement just got moved to main 'rdev' */ 1263 smp_mb(); 1264 rdev = conf->mirrors[devnum].rdev; 1265 } 1266 } else 1267 rdev = conf->mirrors[devnum].rdev; 1268 1269 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1270 if (replacement) 1271 r10_bio->devs[n_copy].repl_bio = mbio; 1272 else 1273 r10_bio->devs[n_copy].bio = mbio; 1274 1275 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1276 choose_data_offset(r10_bio, rdev)); 1277 bio_set_dev(mbio, rdev->bdev); 1278 mbio->bi_end_io = raid10_end_write_request; 1279 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1280 if (!replacement && test_bit(FailFast, 1281 &conf->mirrors[devnum].rdev->flags) 1282 && enough(conf, devnum)) 1283 mbio->bi_opf |= MD_FAILFAST; 1284 mbio->bi_private = r10_bio; 1285 1286 if (conf->mddev->gendisk) 1287 trace_block_bio_remap(mbio->bi_disk->queue, 1288 mbio, disk_devt(conf->mddev->gendisk), 1289 r10_bio->sector); 1290 /* flush_pending_writes() needs access to the rdev so...*/ 1291 mbio->bi_disk = (void *)rdev; 1292 1293 atomic_inc(&r10_bio->remaining); 1294 1295 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1296 if (cb) 1297 plug = container_of(cb, struct raid10_plug_cb, cb); 1298 else 1299 plug = NULL; 1300 if (plug) { 1301 bio_list_add(&plug->pending, mbio); 1302 plug->pending_cnt++; 1303 } else { 1304 spin_lock_irqsave(&conf->device_lock, flags); 1305 bio_list_add(&conf->pending_bio_list, mbio); 1306 conf->pending_count++; 1307 spin_unlock_irqrestore(&conf->device_lock, flags); 1308 md_wakeup_thread(mddev->thread); 1309 } 1310 } 1311 1312 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1313 struct r10bio *r10_bio) 1314 { 1315 struct r10conf *conf = mddev->private; 1316 int i; 1317 struct md_rdev *blocked_rdev; 1318 sector_t sectors; 1319 int max_sectors; 1320 1321 if ((mddev_is_clustered(mddev) && 1322 md_cluster_ops->area_resyncing(mddev, WRITE, 1323 bio->bi_iter.bi_sector, 1324 bio_end_sector(bio)))) { 1325 DEFINE_WAIT(w); 1326 for (;;) { 1327 prepare_to_wait(&conf->wait_barrier, 1328 &w, TASK_IDLE); 1329 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1330 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1331 break; 1332 schedule(); 1333 } 1334 finish_wait(&conf->wait_barrier, &w); 1335 } 1336 1337 sectors = r10_bio->sectors; 1338 regular_request_wait(mddev, conf, bio, sectors); 1339 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1340 (mddev->reshape_backwards 1341 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1342 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1343 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1344 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1345 /* Need to update reshape_position in metadata */ 1346 mddev->reshape_position = conf->reshape_progress; 1347 set_mask_bits(&mddev->sb_flags, 0, 1348 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1349 md_wakeup_thread(mddev->thread); 1350 raid10_log(conf->mddev, "wait reshape metadata"); 1351 wait_event(mddev->sb_wait, 1352 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1353 1354 conf->reshape_safe = mddev->reshape_position; 1355 } 1356 1357 if (conf->pending_count >= max_queued_requests) { 1358 md_wakeup_thread(mddev->thread); 1359 raid10_log(mddev, "wait queued"); 1360 wait_event(conf->wait_barrier, 1361 conf->pending_count < max_queued_requests); 1362 } 1363 /* first select target devices under rcu_lock and 1364 * inc refcount on their rdev. Record them by setting 1365 * bios[x] to bio 1366 * If there are known/acknowledged bad blocks on any device 1367 * on which we have seen a write error, we want to avoid 1368 * writing to those blocks. This potentially requires several 1369 * writes to write around the bad blocks. Each set of writes 1370 * gets its own r10_bio with a set of bios attached. 1371 */ 1372 1373 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1374 raid10_find_phys(conf, r10_bio); 1375 retry_write: 1376 blocked_rdev = NULL; 1377 rcu_read_lock(); 1378 max_sectors = r10_bio->sectors; 1379 1380 for (i = 0; i < conf->copies; i++) { 1381 int d = r10_bio->devs[i].devnum; 1382 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1383 struct md_rdev *rrdev = rcu_dereference( 1384 conf->mirrors[d].replacement); 1385 if (rdev == rrdev) 1386 rrdev = NULL; 1387 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1388 atomic_inc(&rdev->nr_pending); 1389 blocked_rdev = rdev; 1390 break; 1391 } 1392 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1393 atomic_inc(&rrdev->nr_pending); 1394 blocked_rdev = rrdev; 1395 break; 1396 } 1397 if (rdev && (test_bit(Faulty, &rdev->flags))) 1398 rdev = NULL; 1399 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1400 rrdev = NULL; 1401 1402 r10_bio->devs[i].bio = NULL; 1403 r10_bio->devs[i].repl_bio = NULL; 1404 1405 if (!rdev && !rrdev) { 1406 set_bit(R10BIO_Degraded, &r10_bio->state); 1407 continue; 1408 } 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1410 sector_t first_bad; 1411 sector_t dev_sector = r10_bio->devs[i].addr; 1412 int bad_sectors; 1413 int is_bad; 1414 1415 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1416 &first_bad, &bad_sectors); 1417 if (is_bad < 0) { 1418 /* Mustn't write here until the bad block 1419 * is acknowledged 1420 */ 1421 atomic_inc(&rdev->nr_pending); 1422 set_bit(BlockedBadBlocks, &rdev->flags); 1423 blocked_rdev = rdev; 1424 break; 1425 } 1426 if (is_bad && first_bad <= dev_sector) { 1427 /* Cannot write here at all */ 1428 bad_sectors -= (dev_sector - first_bad); 1429 if (bad_sectors < max_sectors) 1430 /* Mustn't write more than bad_sectors 1431 * to other devices yet 1432 */ 1433 max_sectors = bad_sectors; 1434 /* We don't set R10BIO_Degraded as that 1435 * only applies if the disk is missing, 1436 * so it might be re-added, and we want to 1437 * know to recover this chunk. 1438 * In this case the device is here, and the 1439 * fact that this chunk is not in-sync is 1440 * recorded in the bad block log. 1441 */ 1442 continue; 1443 } 1444 if (is_bad) { 1445 int good_sectors = first_bad - dev_sector; 1446 if (good_sectors < max_sectors) 1447 max_sectors = good_sectors; 1448 } 1449 } 1450 if (rdev) { 1451 r10_bio->devs[i].bio = bio; 1452 atomic_inc(&rdev->nr_pending); 1453 } 1454 if (rrdev) { 1455 r10_bio->devs[i].repl_bio = bio; 1456 atomic_inc(&rrdev->nr_pending); 1457 } 1458 } 1459 rcu_read_unlock(); 1460 1461 if (unlikely(blocked_rdev)) { 1462 /* Have to wait for this device to get unblocked, then retry */ 1463 int j; 1464 int d; 1465 1466 for (j = 0; j < i; j++) { 1467 if (r10_bio->devs[j].bio) { 1468 d = r10_bio->devs[j].devnum; 1469 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1470 } 1471 if (r10_bio->devs[j].repl_bio) { 1472 struct md_rdev *rdev; 1473 d = r10_bio->devs[j].devnum; 1474 rdev = conf->mirrors[d].replacement; 1475 if (!rdev) { 1476 /* Race with remove_disk */ 1477 smp_mb(); 1478 rdev = conf->mirrors[d].rdev; 1479 } 1480 rdev_dec_pending(rdev, mddev); 1481 } 1482 } 1483 allow_barrier(conf); 1484 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1485 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1486 wait_barrier(conf); 1487 goto retry_write; 1488 } 1489 1490 if (max_sectors < r10_bio->sectors) 1491 r10_bio->sectors = max_sectors; 1492 1493 if (r10_bio->sectors < bio_sectors(bio)) { 1494 struct bio *split = bio_split(bio, r10_bio->sectors, 1495 GFP_NOIO, &conf->bio_split); 1496 bio_chain(split, bio); 1497 allow_barrier(conf); 1498 generic_make_request(bio); 1499 wait_barrier(conf); 1500 bio = split; 1501 r10_bio->master_bio = bio; 1502 } 1503 1504 atomic_set(&r10_bio->remaining, 1); 1505 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1506 1507 for (i = 0; i < conf->copies; i++) { 1508 if (r10_bio->devs[i].bio) 1509 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1510 if (r10_bio->devs[i].repl_bio) 1511 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1512 } 1513 one_write_done(r10_bio); 1514 } 1515 1516 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1517 { 1518 struct r10conf *conf = mddev->private; 1519 struct r10bio *r10_bio; 1520 1521 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1522 1523 r10_bio->master_bio = bio; 1524 r10_bio->sectors = sectors; 1525 1526 r10_bio->mddev = mddev; 1527 r10_bio->sector = bio->bi_iter.bi_sector; 1528 r10_bio->state = 0; 1529 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1530 1531 if (bio_data_dir(bio) == READ) 1532 raid10_read_request(mddev, bio, r10_bio); 1533 else 1534 raid10_write_request(mddev, bio, r10_bio); 1535 } 1536 1537 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1538 { 1539 struct r10conf *conf = mddev->private; 1540 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1541 int chunk_sects = chunk_mask + 1; 1542 int sectors = bio_sectors(bio); 1543 1544 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1545 md_flush_request(mddev, bio); 1546 return true; 1547 } 1548 1549 if (!md_write_start(mddev, bio)) 1550 return false; 1551 1552 /* 1553 * If this request crosses a chunk boundary, we need to split 1554 * it. 1555 */ 1556 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1557 sectors > chunk_sects 1558 && (conf->geo.near_copies < conf->geo.raid_disks 1559 || conf->prev.near_copies < 1560 conf->prev.raid_disks))) 1561 sectors = chunk_sects - 1562 (bio->bi_iter.bi_sector & 1563 (chunk_sects - 1)); 1564 __make_request(mddev, bio, sectors); 1565 1566 /* In case raid10d snuck in to freeze_array */ 1567 wake_up(&conf->wait_barrier); 1568 return true; 1569 } 1570 1571 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1572 { 1573 struct r10conf *conf = mddev->private; 1574 int i; 1575 1576 if (conf->geo.near_copies < conf->geo.raid_disks) 1577 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1578 if (conf->geo.near_copies > 1) 1579 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1580 if (conf->geo.far_copies > 1) { 1581 if (conf->geo.far_offset) 1582 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1583 else 1584 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1585 if (conf->geo.far_set_size != conf->geo.raid_disks) 1586 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1587 } 1588 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1589 conf->geo.raid_disks - mddev->degraded); 1590 rcu_read_lock(); 1591 for (i = 0; i < conf->geo.raid_disks; i++) { 1592 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1593 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1594 } 1595 rcu_read_unlock(); 1596 seq_printf(seq, "]"); 1597 } 1598 1599 /* check if there are enough drives for 1600 * every block to appear on atleast one. 1601 * Don't consider the device numbered 'ignore' 1602 * as we might be about to remove it. 1603 */ 1604 static int _enough(struct r10conf *conf, int previous, int ignore) 1605 { 1606 int first = 0; 1607 int has_enough = 0; 1608 int disks, ncopies; 1609 if (previous) { 1610 disks = conf->prev.raid_disks; 1611 ncopies = conf->prev.near_copies; 1612 } else { 1613 disks = conf->geo.raid_disks; 1614 ncopies = conf->geo.near_copies; 1615 } 1616 1617 rcu_read_lock(); 1618 do { 1619 int n = conf->copies; 1620 int cnt = 0; 1621 int this = first; 1622 while (n--) { 1623 struct md_rdev *rdev; 1624 if (this != ignore && 1625 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1626 test_bit(In_sync, &rdev->flags)) 1627 cnt++; 1628 this = (this+1) % disks; 1629 } 1630 if (cnt == 0) 1631 goto out; 1632 first = (first + ncopies) % disks; 1633 } while (first != 0); 1634 has_enough = 1; 1635 out: 1636 rcu_read_unlock(); 1637 return has_enough; 1638 } 1639 1640 static int enough(struct r10conf *conf, int ignore) 1641 { 1642 /* when calling 'enough', both 'prev' and 'geo' must 1643 * be stable. 1644 * This is ensured if ->reconfig_mutex or ->device_lock 1645 * is held. 1646 */ 1647 return _enough(conf, 0, ignore) && 1648 _enough(conf, 1, ignore); 1649 } 1650 1651 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1652 { 1653 char b[BDEVNAME_SIZE]; 1654 struct r10conf *conf = mddev->private; 1655 unsigned long flags; 1656 1657 /* 1658 * If it is not operational, then we have already marked it as dead 1659 * else if it is the last working disks, ignore the error, let the 1660 * next level up know. 1661 * else mark the drive as failed 1662 */ 1663 spin_lock_irqsave(&conf->device_lock, flags); 1664 if (test_bit(In_sync, &rdev->flags) 1665 && !enough(conf, rdev->raid_disk)) { 1666 /* 1667 * Don't fail the drive, just return an IO error. 1668 */ 1669 spin_unlock_irqrestore(&conf->device_lock, flags); 1670 return; 1671 } 1672 if (test_and_clear_bit(In_sync, &rdev->flags)) 1673 mddev->degraded++; 1674 /* 1675 * If recovery is running, make sure it aborts. 1676 */ 1677 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1678 set_bit(Blocked, &rdev->flags); 1679 set_bit(Faulty, &rdev->flags); 1680 set_mask_bits(&mddev->sb_flags, 0, 1681 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1682 spin_unlock_irqrestore(&conf->device_lock, flags); 1683 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1684 "md/raid10:%s: Operation continuing on %d devices.\n", 1685 mdname(mddev), bdevname(rdev->bdev, b), 1686 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1687 } 1688 1689 static void print_conf(struct r10conf *conf) 1690 { 1691 int i; 1692 struct md_rdev *rdev; 1693 1694 pr_debug("RAID10 conf printout:\n"); 1695 if (!conf) { 1696 pr_debug("(!conf)\n"); 1697 return; 1698 } 1699 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1700 conf->geo.raid_disks); 1701 1702 /* This is only called with ->reconfix_mutex held, so 1703 * rcu protection of rdev is not needed */ 1704 for (i = 0; i < conf->geo.raid_disks; i++) { 1705 char b[BDEVNAME_SIZE]; 1706 rdev = conf->mirrors[i].rdev; 1707 if (rdev) 1708 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1709 i, !test_bit(In_sync, &rdev->flags), 1710 !test_bit(Faulty, &rdev->flags), 1711 bdevname(rdev->bdev,b)); 1712 } 1713 } 1714 1715 static void close_sync(struct r10conf *conf) 1716 { 1717 wait_barrier(conf); 1718 allow_barrier(conf); 1719 1720 mempool_exit(&conf->r10buf_pool); 1721 } 1722 1723 static int raid10_spare_active(struct mddev *mddev) 1724 { 1725 int i; 1726 struct r10conf *conf = mddev->private; 1727 struct raid10_info *tmp; 1728 int count = 0; 1729 unsigned long flags; 1730 1731 /* 1732 * Find all non-in_sync disks within the RAID10 configuration 1733 * and mark them in_sync 1734 */ 1735 for (i = 0; i < conf->geo.raid_disks; i++) { 1736 tmp = conf->mirrors + i; 1737 if (tmp->replacement 1738 && tmp->replacement->recovery_offset == MaxSector 1739 && !test_bit(Faulty, &tmp->replacement->flags) 1740 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1741 /* Replacement has just become active */ 1742 if (!tmp->rdev 1743 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1744 count++; 1745 if (tmp->rdev) { 1746 /* Replaced device not technically faulty, 1747 * but we need to be sure it gets removed 1748 * and never re-added. 1749 */ 1750 set_bit(Faulty, &tmp->rdev->flags); 1751 sysfs_notify_dirent_safe( 1752 tmp->rdev->sysfs_state); 1753 } 1754 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1755 } else if (tmp->rdev 1756 && tmp->rdev->recovery_offset == MaxSector 1757 && !test_bit(Faulty, &tmp->rdev->flags) 1758 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1759 count++; 1760 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1761 } 1762 } 1763 spin_lock_irqsave(&conf->device_lock, flags); 1764 mddev->degraded -= count; 1765 spin_unlock_irqrestore(&conf->device_lock, flags); 1766 1767 print_conf(conf); 1768 return count; 1769 } 1770 1771 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1772 { 1773 struct r10conf *conf = mddev->private; 1774 int err = -EEXIST; 1775 int mirror; 1776 int first = 0; 1777 int last = conf->geo.raid_disks - 1; 1778 1779 if (mddev->recovery_cp < MaxSector) 1780 /* only hot-add to in-sync arrays, as recovery is 1781 * very different from resync 1782 */ 1783 return -EBUSY; 1784 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1785 return -EINVAL; 1786 1787 if (md_integrity_add_rdev(rdev, mddev)) 1788 return -ENXIO; 1789 1790 if (rdev->raid_disk >= 0) 1791 first = last = rdev->raid_disk; 1792 1793 if (rdev->saved_raid_disk >= first && 1794 rdev->saved_raid_disk < conf->geo.raid_disks && 1795 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1796 mirror = rdev->saved_raid_disk; 1797 else 1798 mirror = first; 1799 for ( ; mirror <= last ; mirror++) { 1800 struct raid10_info *p = &conf->mirrors[mirror]; 1801 if (p->recovery_disabled == mddev->recovery_disabled) 1802 continue; 1803 if (p->rdev) { 1804 if (!test_bit(WantReplacement, &p->rdev->flags) || 1805 p->replacement != NULL) 1806 continue; 1807 clear_bit(In_sync, &rdev->flags); 1808 set_bit(Replacement, &rdev->flags); 1809 rdev->raid_disk = mirror; 1810 err = 0; 1811 if (mddev->gendisk) 1812 disk_stack_limits(mddev->gendisk, rdev->bdev, 1813 rdev->data_offset << 9); 1814 conf->fullsync = 1; 1815 rcu_assign_pointer(p->replacement, rdev); 1816 break; 1817 } 1818 1819 if (mddev->gendisk) 1820 disk_stack_limits(mddev->gendisk, rdev->bdev, 1821 rdev->data_offset << 9); 1822 1823 p->head_position = 0; 1824 p->recovery_disabled = mddev->recovery_disabled - 1; 1825 rdev->raid_disk = mirror; 1826 err = 0; 1827 if (rdev->saved_raid_disk != mirror) 1828 conf->fullsync = 1; 1829 rcu_assign_pointer(p->rdev, rdev); 1830 break; 1831 } 1832 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1833 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1834 1835 print_conf(conf); 1836 return err; 1837 } 1838 1839 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1840 { 1841 struct r10conf *conf = mddev->private; 1842 int err = 0; 1843 int number = rdev->raid_disk; 1844 struct md_rdev **rdevp; 1845 struct raid10_info *p = conf->mirrors + number; 1846 1847 print_conf(conf); 1848 if (rdev == p->rdev) 1849 rdevp = &p->rdev; 1850 else if (rdev == p->replacement) 1851 rdevp = &p->replacement; 1852 else 1853 return 0; 1854 1855 if (test_bit(In_sync, &rdev->flags) || 1856 atomic_read(&rdev->nr_pending)) { 1857 err = -EBUSY; 1858 goto abort; 1859 } 1860 /* Only remove non-faulty devices if recovery 1861 * is not possible. 1862 */ 1863 if (!test_bit(Faulty, &rdev->flags) && 1864 mddev->recovery_disabled != p->recovery_disabled && 1865 (!p->replacement || p->replacement == rdev) && 1866 number < conf->geo.raid_disks && 1867 enough(conf, -1)) { 1868 err = -EBUSY; 1869 goto abort; 1870 } 1871 *rdevp = NULL; 1872 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1873 synchronize_rcu(); 1874 if (atomic_read(&rdev->nr_pending)) { 1875 /* lost the race, try later */ 1876 err = -EBUSY; 1877 *rdevp = rdev; 1878 goto abort; 1879 } 1880 } 1881 if (p->replacement) { 1882 /* We must have just cleared 'rdev' */ 1883 p->rdev = p->replacement; 1884 clear_bit(Replacement, &p->replacement->flags); 1885 smp_mb(); /* Make sure other CPUs may see both as identical 1886 * but will never see neither -- if they are careful. 1887 */ 1888 p->replacement = NULL; 1889 } 1890 1891 clear_bit(WantReplacement, &rdev->flags); 1892 err = md_integrity_register(mddev); 1893 1894 abort: 1895 1896 print_conf(conf); 1897 return err; 1898 } 1899 1900 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1901 { 1902 struct r10conf *conf = r10_bio->mddev->private; 1903 1904 if (!bio->bi_status) 1905 set_bit(R10BIO_Uptodate, &r10_bio->state); 1906 else 1907 /* The write handler will notice the lack of 1908 * R10BIO_Uptodate and record any errors etc 1909 */ 1910 atomic_add(r10_bio->sectors, 1911 &conf->mirrors[d].rdev->corrected_errors); 1912 1913 /* for reconstruct, we always reschedule after a read. 1914 * for resync, only after all reads 1915 */ 1916 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1917 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1918 atomic_dec_and_test(&r10_bio->remaining)) { 1919 /* we have read all the blocks, 1920 * do the comparison in process context in raid10d 1921 */ 1922 reschedule_retry(r10_bio); 1923 } 1924 } 1925 1926 static void end_sync_read(struct bio *bio) 1927 { 1928 struct r10bio *r10_bio = get_resync_r10bio(bio); 1929 struct r10conf *conf = r10_bio->mddev->private; 1930 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1931 1932 __end_sync_read(r10_bio, bio, d); 1933 } 1934 1935 static void end_reshape_read(struct bio *bio) 1936 { 1937 /* reshape read bio isn't allocated from r10buf_pool */ 1938 struct r10bio *r10_bio = bio->bi_private; 1939 1940 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1941 } 1942 1943 static void end_sync_request(struct r10bio *r10_bio) 1944 { 1945 struct mddev *mddev = r10_bio->mddev; 1946 1947 while (atomic_dec_and_test(&r10_bio->remaining)) { 1948 if (r10_bio->master_bio == NULL) { 1949 /* the primary of several recovery bios */ 1950 sector_t s = r10_bio->sectors; 1951 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1952 test_bit(R10BIO_WriteError, &r10_bio->state)) 1953 reschedule_retry(r10_bio); 1954 else 1955 put_buf(r10_bio); 1956 md_done_sync(mddev, s, 1); 1957 break; 1958 } else { 1959 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1960 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1961 test_bit(R10BIO_WriteError, &r10_bio->state)) 1962 reschedule_retry(r10_bio); 1963 else 1964 put_buf(r10_bio); 1965 r10_bio = r10_bio2; 1966 } 1967 } 1968 } 1969 1970 static void end_sync_write(struct bio *bio) 1971 { 1972 struct r10bio *r10_bio = get_resync_r10bio(bio); 1973 struct mddev *mddev = r10_bio->mddev; 1974 struct r10conf *conf = mddev->private; 1975 int d; 1976 sector_t first_bad; 1977 int bad_sectors; 1978 int slot; 1979 int repl; 1980 struct md_rdev *rdev = NULL; 1981 1982 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1983 if (repl) 1984 rdev = conf->mirrors[d].replacement; 1985 else 1986 rdev = conf->mirrors[d].rdev; 1987 1988 if (bio->bi_status) { 1989 if (repl) 1990 md_error(mddev, rdev); 1991 else { 1992 set_bit(WriteErrorSeen, &rdev->flags); 1993 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1994 set_bit(MD_RECOVERY_NEEDED, 1995 &rdev->mddev->recovery); 1996 set_bit(R10BIO_WriteError, &r10_bio->state); 1997 } 1998 } else if (is_badblock(rdev, 1999 r10_bio->devs[slot].addr, 2000 r10_bio->sectors, 2001 &first_bad, &bad_sectors)) 2002 set_bit(R10BIO_MadeGood, &r10_bio->state); 2003 2004 rdev_dec_pending(rdev, mddev); 2005 2006 end_sync_request(r10_bio); 2007 } 2008 2009 /* 2010 * Note: sync and recover and handled very differently for raid10 2011 * This code is for resync. 2012 * For resync, we read through virtual addresses and read all blocks. 2013 * If there is any error, we schedule a write. The lowest numbered 2014 * drive is authoritative. 2015 * However requests come for physical address, so we need to map. 2016 * For every physical address there are raid_disks/copies virtual addresses, 2017 * which is always are least one, but is not necessarly an integer. 2018 * This means that a physical address can span multiple chunks, so we may 2019 * have to submit multiple io requests for a single sync request. 2020 */ 2021 /* 2022 * We check if all blocks are in-sync and only write to blocks that 2023 * aren't in sync 2024 */ 2025 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2026 { 2027 struct r10conf *conf = mddev->private; 2028 int i, first; 2029 struct bio *tbio, *fbio; 2030 int vcnt; 2031 struct page **tpages, **fpages; 2032 2033 atomic_set(&r10_bio->remaining, 1); 2034 2035 /* find the first device with a block */ 2036 for (i=0; i<conf->copies; i++) 2037 if (!r10_bio->devs[i].bio->bi_status) 2038 break; 2039 2040 if (i == conf->copies) 2041 goto done; 2042 2043 first = i; 2044 fbio = r10_bio->devs[i].bio; 2045 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2046 fbio->bi_iter.bi_idx = 0; 2047 fpages = get_resync_pages(fbio)->pages; 2048 2049 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2050 /* now find blocks with errors */ 2051 for (i=0 ; i < conf->copies ; i++) { 2052 int j, d; 2053 struct md_rdev *rdev; 2054 struct resync_pages *rp; 2055 2056 tbio = r10_bio->devs[i].bio; 2057 2058 if (tbio->bi_end_io != end_sync_read) 2059 continue; 2060 if (i == first) 2061 continue; 2062 2063 tpages = get_resync_pages(tbio)->pages; 2064 d = r10_bio->devs[i].devnum; 2065 rdev = conf->mirrors[d].rdev; 2066 if (!r10_bio->devs[i].bio->bi_status) { 2067 /* We know that the bi_io_vec layout is the same for 2068 * both 'first' and 'i', so we just compare them. 2069 * All vec entries are PAGE_SIZE; 2070 */ 2071 int sectors = r10_bio->sectors; 2072 for (j = 0; j < vcnt; j++) { 2073 int len = PAGE_SIZE; 2074 if (sectors < (len / 512)) 2075 len = sectors * 512; 2076 if (memcmp(page_address(fpages[j]), 2077 page_address(tpages[j]), 2078 len)) 2079 break; 2080 sectors -= len/512; 2081 } 2082 if (j == vcnt) 2083 continue; 2084 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2085 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2086 /* Don't fix anything. */ 2087 continue; 2088 } else if (test_bit(FailFast, &rdev->flags)) { 2089 /* Just give up on this device */ 2090 md_error(rdev->mddev, rdev); 2091 continue; 2092 } 2093 /* Ok, we need to write this bio, either to correct an 2094 * inconsistency or to correct an unreadable block. 2095 * First we need to fixup bv_offset, bv_len and 2096 * bi_vecs, as the read request might have corrupted these 2097 */ 2098 rp = get_resync_pages(tbio); 2099 bio_reset(tbio); 2100 2101 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2102 2103 rp->raid_bio = r10_bio; 2104 tbio->bi_private = rp; 2105 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2106 tbio->bi_end_io = end_sync_write; 2107 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2108 2109 bio_copy_data(tbio, fbio); 2110 2111 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2112 atomic_inc(&r10_bio->remaining); 2113 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2114 2115 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2116 tbio->bi_opf |= MD_FAILFAST; 2117 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2118 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2119 generic_make_request(tbio); 2120 } 2121 2122 /* Now write out to any replacement devices 2123 * that are active 2124 */ 2125 for (i = 0; i < conf->copies; i++) { 2126 int d; 2127 2128 tbio = r10_bio->devs[i].repl_bio; 2129 if (!tbio || !tbio->bi_end_io) 2130 continue; 2131 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2132 && r10_bio->devs[i].bio != fbio) 2133 bio_copy_data(tbio, fbio); 2134 d = r10_bio->devs[i].devnum; 2135 atomic_inc(&r10_bio->remaining); 2136 md_sync_acct(conf->mirrors[d].replacement->bdev, 2137 bio_sectors(tbio)); 2138 generic_make_request(tbio); 2139 } 2140 2141 done: 2142 if (atomic_dec_and_test(&r10_bio->remaining)) { 2143 md_done_sync(mddev, r10_bio->sectors, 1); 2144 put_buf(r10_bio); 2145 } 2146 } 2147 2148 /* 2149 * Now for the recovery code. 2150 * Recovery happens across physical sectors. 2151 * We recover all non-is_sync drives by finding the virtual address of 2152 * each, and then choose a working drive that also has that virt address. 2153 * There is a separate r10_bio for each non-in_sync drive. 2154 * Only the first two slots are in use. The first for reading, 2155 * The second for writing. 2156 * 2157 */ 2158 static void fix_recovery_read_error(struct r10bio *r10_bio) 2159 { 2160 /* We got a read error during recovery. 2161 * We repeat the read in smaller page-sized sections. 2162 * If a read succeeds, write it to the new device or record 2163 * a bad block if we cannot. 2164 * If a read fails, record a bad block on both old and 2165 * new devices. 2166 */ 2167 struct mddev *mddev = r10_bio->mddev; 2168 struct r10conf *conf = mddev->private; 2169 struct bio *bio = r10_bio->devs[0].bio; 2170 sector_t sect = 0; 2171 int sectors = r10_bio->sectors; 2172 int idx = 0; 2173 int dr = r10_bio->devs[0].devnum; 2174 int dw = r10_bio->devs[1].devnum; 2175 struct page **pages = get_resync_pages(bio)->pages; 2176 2177 while (sectors) { 2178 int s = sectors; 2179 struct md_rdev *rdev; 2180 sector_t addr; 2181 int ok; 2182 2183 if (s > (PAGE_SIZE>>9)) 2184 s = PAGE_SIZE >> 9; 2185 2186 rdev = conf->mirrors[dr].rdev; 2187 addr = r10_bio->devs[0].addr + sect, 2188 ok = sync_page_io(rdev, 2189 addr, 2190 s << 9, 2191 pages[idx], 2192 REQ_OP_READ, 0, false); 2193 if (ok) { 2194 rdev = conf->mirrors[dw].rdev; 2195 addr = r10_bio->devs[1].addr + sect; 2196 ok = sync_page_io(rdev, 2197 addr, 2198 s << 9, 2199 pages[idx], 2200 REQ_OP_WRITE, 0, false); 2201 if (!ok) { 2202 set_bit(WriteErrorSeen, &rdev->flags); 2203 if (!test_and_set_bit(WantReplacement, 2204 &rdev->flags)) 2205 set_bit(MD_RECOVERY_NEEDED, 2206 &rdev->mddev->recovery); 2207 } 2208 } 2209 if (!ok) { 2210 /* We don't worry if we cannot set a bad block - 2211 * it really is bad so there is no loss in not 2212 * recording it yet 2213 */ 2214 rdev_set_badblocks(rdev, addr, s, 0); 2215 2216 if (rdev != conf->mirrors[dw].rdev) { 2217 /* need bad block on destination too */ 2218 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2219 addr = r10_bio->devs[1].addr + sect; 2220 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2221 if (!ok) { 2222 /* just abort the recovery */ 2223 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2224 mdname(mddev)); 2225 2226 conf->mirrors[dw].recovery_disabled 2227 = mddev->recovery_disabled; 2228 set_bit(MD_RECOVERY_INTR, 2229 &mddev->recovery); 2230 break; 2231 } 2232 } 2233 } 2234 2235 sectors -= s; 2236 sect += s; 2237 idx++; 2238 } 2239 } 2240 2241 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2242 { 2243 struct r10conf *conf = mddev->private; 2244 int d; 2245 struct bio *wbio, *wbio2; 2246 2247 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2248 fix_recovery_read_error(r10_bio); 2249 end_sync_request(r10_bio); 2250 return; 2251 } 2252 2253 /* 2254 * share the pages with the first bio 2255 * and submit the write request 2256 */ 2257 d = r10_bio->devs[1].devnum; 2258 wbio = r10_bio->devs[1].bio; 2259 wbio2 = r10_bio->devs[1].repl_bio; 2260 /* Need to test wbio2->bi_end_io before we call 2261 * generic_make_request as if the former is NULL, 2262 * the latter is free to free wbio2. 2263 */ 2264 if (wbio2 && !wbio2->bi_end_io) 2265 wbio2 = NULL; 2266 if (wbio->bi_end_io) { 2267 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2268 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2269 generic_make_request(wbio); 2270 } 2271 if (wbio2) { 2272 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2273 md_sync_acct(conf->mirrors[d].replacement->bdev, 2274 bio_sectors(wbio2)); 2275 generic_make_request(wbio2); 2276 } 2277 } 2278 2279 /* 2280 * Used by fix_read_error() to decay the per rdev read_errors. 2281 * We halve the read error count for every hour that has elapsed 2282 * since the last recorded read error. 2283 * 2284 */ 2285 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2286 { 2287 long cur_time_mon; 2288 unsigned long hours_since_last; 2289 unsigned int read_errors = atomic_read(&rdev->read_errors); 2290 2291 cur_time_mon = ktime_get_seconds(); 2292 2293 if (rdev->last_read_error == 0) { 2294 /* first time we've seen a read error */ 2295 rdev->last_read_error = cur_time_mon; 2296 return; 2297 } 2298 2299 hours_since_last = (long)(cur_time_mon - 2300 rdev->last_read_error) / 3600; 2301 2302 rdev->last_read_error = cur_time_mon; 2303 2304 /* 2305 * if hours_since_last is > the number of bits in read_errors 2306 * just set read errors to 0. We do this to avoid 2307 * overflowing the shift of read_errors by hours_since_last. 2308 */ 2309 if (hours_since_last >= 8 * sizeof(read_errors)) 2310 atomic_set(&rdev->read_errors, 0); 2311 else 2312 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2313 } 2314 2315 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2316 int sectors, struct page *page, int rw) 2317 { 2318 sector_t first_bad; 2319 int bad_sectors; 2320 2321 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2322 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2323 return -1; 2324 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2325 /* success */ 2326 return 1; 2327 if (rw == WRITE) { 2328 set_bit(WriteErrorSeen, &rdev->flags); 2329 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2330 set_bit(MD_RECOVERY_NEEDED, 2331 &rdev->mddev->recovery); 2332 } 2333 /* need to record an error - either for the block or the device */ 2334 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2335 md_error(rdev->mddev, rdev); 2336 return 0; 2337 } 2338 2339 /* 2340 * This is a kernel thread which: 2341 * 2342 * 1. Retries failed read operations on working mirrors. 2343 * 2. Updates the raid superblock when problems encounter. 2344 * 3. Performs writes following reads for array synchronising. 2345 */ 2346 2347 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2348 { 2349 int sect = 0; /* Offset from r10_bio->sector */ 2350 int sectors = r10_bio->sectors; 2351 struct md_rdev *rdev; 2352 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2353 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2354 2355 /* still own a reference to this rdev, so it cannot 2356 * have been cleared recently. 2357 */ 2358 rdev = conf->mirrors[d].rdev; 2359 2360 if (test_bit(Faulty, &rdev->flags)) 2361 /* drive has already been failed, just ignore any 2362 more fix_read_error() attempts */ 2363 return; 2364 2365 check_decay_read_errors(mddev, rdev); 2366 atomic_inc(&rdev->read_errors); 2367 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2368 char b[BDEVNAME_SIZE]; 2369 bdevname(rdev->bdev, b); 2370 2371 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2372 mdname(mddev), b, 2373 atomic_read(&rdev->read_errors), max_read_errors); 2374 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2375 mdname(mddev), b); 2376 md_error(mddev, rdev); 2377 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2378 return; 2379 } 2380 2381 while(sectors) { 2382 int s = sectors; 2383 int sl = r10_bio->read_slot; 2384 int success = 0; 2385 int start; 2386 2387 if (s > (PAGE_SIZE>>9)) 2388 s = PAGE_SIZE >> 9; 2389 2390 rcu_read_lock(); 2391 do { 2392 sector_t first_bad; 2393 int bad_sectors; 2394 2395 d = r10_bio->devs[sl].devnum; 2396 rdev = rcu_dereference(conf->mirrors[d].rdev); 2397 if (rdev && 2398 test_bit(In_sync, &rdev->flags) && 2399 !test_bit(Faulty, &rdev->flags) && 2400 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2401 &first_bad, &bad_sectors) == 0) { 2402 atomic_inc(&rdev->nr_pending); 2403 rcu_read_unlock(); 2404 success = sync_page_io(rdev, 2405 r10_bio->devs[sl].addr + 2406 sect, 2407 s<<9, 2408 conf->tmppage, 2409 REQ_OP_READ, 0, false); 2410 rdev_dec_pending(rdev, mddev); 2411 rcu_read_lock(); 2412 if (success) 2413 break; 2414 } 2415 sl++; 2416 if (sl == conf->copies) 2417 sl = 0; 2418 } while (!success && sl != r10_bio->read_slot); 2419 rcu_read_unlock(); 2420 2421 if (!success) { 2422 /* Cannot read from anywhere, just mark the block 2423 * as bad on the first device to discourage future 2424 * reads. 2425 */ 2426 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2427 rdev = conf->mirrors[dn].rdev; 2428 2429 if (!rdev_set_badblocks( 2430 rdev, 2431 r10_bio->devs[r10_bio->read_slot].addr 2432 + sect, 2433 s, 0)) { 2434 md_error(mddev, rdev); 2435 r10_bio->devs[r10_bio->read_slot].bio 2436 = IO_BLOCKED; 2437 } 2438 break; 2439 } 2440 2441 start = sl; 2442 /* write it back and re-read */ 2443 rcu_read_lock(); 2444 while (sl != r10_bio->read_slot) { 2445 char b[BDEVNAME_SIZE]; 2446 2447 if (sl==0) 2448 sl = conf->copies; 2449 sl--; 2450 d = r10_bio->devs[sl].devnum; 2451 rdev = rcu_dereference(conf->mirrors[d].rdev); 2452 if (!rdev || 2453 test_bit(Faulty, &rdev->flags) || 2454 !test_bit(In_sync, &rdev->flags)) 2455 continue; 2456 2457 atomic_inc(&rdev->nr_pending); 2458 rcu_read_unlock(); 2459 if (r10_sync_page_io(rdev, 2460 r10_bio->devs[sl].addr + 2461 sect, 2462 s, conf->tmppage, WRITE) 2463 == 0) { 2464 /* Well, this device is dead */ 2465 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2466 mdname(mddev), s, 2467 (unsigned long long)( 2468 sect + 2469 choose_data_offset(r10_bio, 2470 rdev)), 2471 bdevname(rdev->bdev, b)); 2472 pr_notice("md/raid10:%s: %s: failing drive\n", 2473 mdname(mddev), 2474 bdevname(rdev->bdev, b)); 2475 } 2476 rdev_dec_pending(rdev, mddev); 2477 rcu_read_lock(); 2478 } 2479 sl = start; 2480 while (sl != r10_bio->read_slot) { 2481 char b[BDEVNAME_SIZE]; 2482 2483 if (sl==0) 2484 sl = conf->copies; 2485 sl--; 2486 d = r10_bio->devs[sl].devnum; 2487 rdev = rcu_dereference(conf->mirrors[d].rdev); 2488 if (!rdev || 2489 test_bit(Faulty, &rdev->flags) || 2490 !test_bit(In_sync, &rdev->flags)) 2491 continue; 2492 2493 atomic_inc(&rdev->nr_pending); 2494 rcu_read_unlock(); 2495 switch (r10_sync_page_io(rdev, 2496 r10_bio->devs[sl].addr + 2497 sect, 2498 s, conf->tmppage, 2499 READ)) { 2500 case 0: 2501 /* Well, this device is dead */ 2502 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2503 mdname(mddev), s, 2504 (unsigned long long)( 2505 sect + 2506 choose_data_offset(r10_bio, rdev)), 2507 bdevname(rdev->bdev, b)); 2508 pr_notice("md/raid10:%s: %s: failing drive\n", 2509 mdname(mddev), 2510 bdevname(rdev->bdev, b)); 2511 break; 2512 case 1: 2513 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2514 mdname(mddev), s, 2515 (unsigned long long)( 2516 sect + 2517 choose_data_offset(r10_bio, rdev)), 2518 bdevname(rdev->bdev, b)); 2519 atomic_add(s, &rdev->corrected_errors); 2520 } 2521 2522 rdev_dec_pending(rdev, mddev); 2523 rcu_read_lock(); 2524 } 2525 rcu_read_unlock(); 2526 2527 sectors -= s; 2528 sect += s; 2529 } 2530 } 2531 2532 static int narrow_write_error(struct r10bio *r10_bio, int i) 2533 { 2534 struct bio *bio = r10_bio->master_bio; 2535 struct mddev *mddev = r10_bio->mddev; 2536 struct r10conf *conf = mddev->private; 2537 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2538 /* bio has the data to be written to slot 'i' where 2539 * we just recently had a write error. 2540 * We repeatedly clone the bio and trim down to one block, 2541 * then try the write. Where the write fails we record 2542 * a bad block. 2543 * It is conceivable that the bio doesn't exactly align with 2544 * blocks. We must handle this. 2545 * 2546 * We currently own a reference to the rdev. 2547 */ 2548 2549 int block_sectors; 2550 sector_t sector; 2551 int sectors; 2552 int sect_to_write = r10_bio->sectors; 2553 int ok = 1; 2554 2555 if (rdev->badblocks.shift < 0) 2556 return 0; 2557 2558 block_sectors = roundup(1 << rdev->badblocks.shift, 2559 bdev_logical_block_size(rdev->bdev) >> 9); 2560 sector = r10_bio->sector; 2561 sectors = ((r10_bio->sector + block_sectors) 2562 & ~(sector_t)(block_sectors - 1)) 2563 - sector; 2564 2565 while (sect_to_write) { 2566 struct bio *wbio; 2567 sector_t wsector; 2568 if (sectors > sect_to_write) 2569 sectors = sect_to_write; 2570 /* Write at 'sector' for 'sectors' */ 2571 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2572 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2573 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2574 wbio->bi_iter.bi_sector = wsector + 2575 choose_data_offset(r10_bio, rdev); 2576 bio_set_dev(wbio, rdev->bdev); 2577 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2578 2579 if (submit_bio_wait(wbio) < 0) 2580 /* Failure! */ 2581 ok = rdev_set_badblocks(rdev, wsector, 2582 sectors, 0) 2583 && ok; 2584 2585 bio_put(wbio); 2586 sect_to_write -= sectors; 2587 sector += sectors; 2588 sectors = block_sectors; 2589 } 2590 return ok; 2591 } 2592 2593 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2594 { 2595 int slot = r10_bio->read_slot; 2596 struct bio *bio; 2597 struct r10conf *conf = mddev->private; 2598 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2599 2600 /* we got a read error. Maybe the drive is bad. Maybe just 2601 * the block and we can fix it. 2602 * We freeze all other IO, and try reading the block from 2603 * other devices. When we find one, we re-write 2604 * and check it that fixes the read error. 2605 * This is all done synchronously while the array is 2606 * frozen. 2607 */ 2608 bio = r10_bio->devs[slot].bio; 2609 bio_put(bio); 2610 r10_bio->devs[slot].bio = NULL; 2611 2612 if (mddev->ro) 2613 r10_bio->devs[slot].bio = IO_BLOCKED; 2614 else if (!test_bit(FailFast, &rdev->flags)) { 2615 freeze_array(conf, 1); 2616 fix_read_error(conf, mddev, r10_bio); 2617 unfreeze_array(conf); 2618 } else 2619 md_error(mddev, rdev); 2620 2621 rdev_dec_pending(rdev, mddev); 2622 allow_barrier(conf); 2623 r10_bio->state = 0; 2624 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2625 } 2626 2627 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2628 { 2629 /* Some sort of write request has finished and it 2630 * succeeded in writing where we thought there was a 2631 * bad block. So forget the bad block. 2632 * Or possibly if failed and we need to record 2633 * a bad block. 2634 */ 2635 int m; 2636 struct md_rdev *rdev; 2637 2638 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2639 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2640 for (m = 0; m < conf->copies; m++) { 2641 int dev = r10_bio->devs[m].devnum; 2642 rdev = conf->mirrors[dev].rdev; 2643 if (r10_bio->devs[m].bio == NULL || 2644 r10_bio->devs[m].bio->bi_end_io == NULL) 2645 continue; 2646 if (!r10_bio->devs[m].bio->bi_status) { 2647 rdev_clear_badblocks( 2648 rdev, 2649 r10_bio->devs[m].addr, 2650 r10_bio->sectors, 0); 2651 } else { 2652 if (!rdev_set_badblocks( 2653 rdev, 2654 r10_bio->devs[m].addr, 2655 r10_bio->sectors, 0)) 2656 md_error(conf->mddev, rdev); 2657 } 2658 rdev = conf->mirrors[dev].replacement; 2659 if (r10_bio->devs[m].repl_bio == NULL || 2660 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2661 continue; 2662 2663 if (!r10_bio->devs[m].repl_bio->bi_status) { 2664 rdev_clear_badblocks( 2665 rdev, 2666 r10_bio->devs[m].addr, 2667 r10_bio->sectors, 0); 2668 } else { 2669 if (!rdev_set_badblocks( 2670 rdev, 2671 r10_bio->devs[m].addr, 2672 r10_bio->sectors, 0)) 2673 md_error(conf->mddev, rdev); 2674 } 2675 } 2676 put_buf(r10_bio); 2677 } else { 2678 bool fail = false; 2679 for (m = 0; m < conf->copies; m++) { 2680 int dev = r10_bio->devs[m].devnum; 2681 struct bio *bio = r10_bio->devs[m].bio; 2682 rdev = conf->mirrors[dev].rdev; 2683 if (bio == IO_MADE_GOOD) { 2684 rdev_clear_badblocks( 2685 rdev, 2686 r10_bio->devs[m].addr, 2687 r10_bio->sectors, 0); 2688 rdev_dec_pending(rdev, conf->mddev); 2689 } else if (bio != NULL && bio->bi_status) { 2690 fail = true; 2691 if (!narrow_write_error(r10_bio, m)) { 2692 md_error(conf->mddev, rdev); 2693 set_bit(R10BIO_Degraded, 2694 &r10_bio->state); 2695 } 2696 rdev_dec_pending(rdev, conf->mddev); 2697 } 2698 bio = r10_bio->devs[m].repl_bio; 2699 rdev = conf->mirrors[dev].replacement; 2700 if (rdev && bio == IO_MADE_GOOD) { 2701 rdev_clear_badblocks( 2702 rdev, 2703 r10_bio->devs[m].addr, 2704 r10_bio->sectors, 0); 2705 rdev_dec_pending(rdev, conf->mddev); 2706 } 2707 } 2708 if (fail) { 2709 spin_lock_irq(&conf->device_lock); 2710 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2711 conf->nr_queued++; 2712 spin_unlock_irq(&conf->device_lock); 2713 /* 2714 * In case freeze_array() is waiting for condition 2715 * nr_pending == nr_queued + extra to be true. 2716 */ 2717 wake_up(&conf->wait_barrier); 2718 md_wakeup_thread(conf->mddev->thread); 2719 } else { 2720 if (test_bit(R10BIO_WriteError, 2721 &r10_bio->state)) 2722 close_write(r10_bio); 2723 raid_end_bio_io(r10_bio); 2724 } 2725 } 2726 } 2727 2728 static void raid10d(struct md_thread *thread) 2729 { 2730 struct mddev *mddev = thread->mddev; 2731 struct r10bio *r10_bio; 2732 unsigned long flags; 2733 struct r10conf *conf = mddev->private; 2734 struct list_head *head = &conf->retry_list; 2735 struct blk_plug plug; 2736 2737 md_check_recovery(mddev); 2738 2739 if (!list_empty_careful(&conf->bio_end_io_list) && 2740 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2741 LIST_HEAD(tmp); 2742 spin_lock_irqsave(&conf->device_lock, flags); 2743 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2744 while (!list_empty(&conf->bio_end_io_list)) { 2745 list_move(conf->bio_end_io_list.prev, &tmp); 2746 conf->nr_queued--; 2747 } 2748 } 2749 spin_unlock_irqrestore(&conf->device_lock, flags); 2750 while (!list_empty(&tmp)) { 2751 r10_bio = list_first_entry(&tmp, struct r10bio, 2752 retry_list); 2753 list_del(&r10_bio->retry_list); 2754 if (mddev->degraded) 2755 set_bit(R10BIO_Degraded, &r10_bio->state); 2756 2757 if (test_bit(R10BIO_WriteError, 2758 &r10_bio->state)) 2759 close_write(r10_bio); 2760 raid_end_bio_io(r10_bio); 2761 } 2762 } 2763 2764 blk_start_plug(&plug); 2765 for (;;) { 2766 2767 flush_pending_writes(conf); 2768 2769 spin_lock_irqsave(&conf->device_lock, flags); 2770 if (list_empty(head)) { 2771 spin_unlock_irqrestore(&conf->device_lock, flags); 2772 break; 2773 } 2774 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2775 list_del(head->prev); 2776 conf->nr_queued--; 2777 spin_unlock_irqrestore(&conf->device_lock, flags); 2778 2779 mddev = r10_bio->mddev; 2780 conf = mddev->private; 2781 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2782 test_bit(R10BIO_WriteError, &r10_bio->state)) 2783 handle_write_completed(conf, r10_bio); 2784 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2785 reshape_request_write(mddev, r10_bio); 2786 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2787 sync_request_write(mddev, r10_bio); 2788 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2789 recovery_request_write(mddev, r10_bio); 2790 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2791 handle_read_error(mddev, r10_bio); 2792 else 2793 WARN_ON_ONCE(1); 2794 2795 cond_resched(); 2796 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2797 md_check_recovery(mddev); 2798 } 2799 blk_finish_plug(&plug); 2800 } 2801 2802 static int init_resync(struct r10conf *conf) 2803 { 2804 int ret, buffs, i; 2805 2806 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2807 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2808 conf->have_replacement = 0; 2809 for (i = 0; i < conf->geo.raid_disks; i++) 2810 if (conf->mirrors[i].replacement) 2811 conf->have_replacement = 1; 2812 ret = mempool_init(&conf->r10buf_pool, buffs, 2813 r10buf_pool_alloc, r10buf_pool_free, conf); 2814 if (ret) 2815 return ret; 2816 conf->next_resync = 0; 2817 return 0; 2818 } 2819 2820 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2821 { 2822 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2823 struct rsync_pages *rp; 2824 struct bio *bio; 2825 int nalloc; 2826 int i; 2827 2828 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2829 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2830 nalloc = conf->copies; /* resync */ 2831 else 2832 nalloc = 2; /* recovery */ 2833 2834 for (i = 0; i < nalloc; i++) { 2835 bio = r10bio->devs[i].bio; 2836 rp = bio->bi_private; 2837 bio_reset(bio); 2838 bio->bi_private = rp; 2839 bio = r10bio->devs[i].repl_bio; 2840 if (bio) { 2841 rp = bio->bi_private; 2842 bio_reset(bio); 2843 bio->bi_private = rp; 2844 } 2845 } 2846 return r10bio; 2847 } 2848 2849 /* 2850 * Set cluster_sync_high since we need other nodes to add the 2851 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2852 */ 2853 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2854 { 2855 sector_t window_size; 2856 int extra_chunk, chunks; 2857 2858 /* 2859 * First, here we define "stripe" as a unit which across 2860 * all member devices one time, so we get chunks by use 2861 * raid_disks / near_copies. Otherwise, if near_copies is 2862 * close to raid_disks, then resync window could increases 2863 * linearly with the increase of raid_disks, which means 2864 * we will suspend a really large IO window while it is not 2865 * necessary. If raid_disks is not divisible by near_copies, 2866 * an extra chunk is needed to ensure the whole "stripe" is 2867 * covered. 2868 */ 2869 2870 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2871 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2872 extra_chunk = 0; 2873 else 2874 extra_chunk = 1; 2875 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2876 2877 /* 2878 * At least use a 32M window to align with raid1's resync window 2879 */ 2880 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2881 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2882 2883 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2884 } 2885 2886 /* 2887 * perform a "sync" on one "block" 2888 * 2889 * We need to make sure that no normal I/O request - particularly write 2890 * requests - conflict with active sync requests. 2891 * 2892 * This is achieved by tracking pending requests and a 'barrier' concept 2893 * that can be installed to exclude normal IO requests. 2894 * 2895 * Resync and recovery are handled very differently. 2896 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2897 * 2898 * For resync, we iterate over virtual addresses, read all copies, 2899 * and update if there are differences. If only one copy is live, 2900 * skip it. 2901 * For recovery, we iterate over physical addresses, read a good 2902 * value for each non-in_sync drive, and over-write. 2903 * 2904 * So, for recovery we may have several outstanding complex requests for a 2905 * given address, one for each out-of-sync device. We model this by allocating 2906 * a number of r10_bio structures, one for each out-of-sync device. 2907 * As we setup these structures, we collect all bio's together into a list 2908 * which we then process collectively to add pages, and then process again 2909 * to pass to generic_make_request. 2910 * 2911 * The r10_bio structures are linked using a borrowed master_bio pointer. 2912 * This link is counted in ->remaining. When the r10_bio that points to NULL 2913 * has its remaining count decremented to 0, the whole complex operation 2914 * is complete. 2915 * 2916 */ 2917 2918 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2919 int *skipped) 2920 { 2921 struct r10conf *conf = mddev->private; 2922 struct r10bio *r10_bio; 2923 struct bio *biolist = NULL, *bio; 2924 sector_t max_sector, nr_sectors; 2925 int i; 2926 int max_sync; 2927 sector_t sync_blocks; 2928 sector_t sectors_skipped = 0; 2929 int chunks_skipped = 0; 2930 sector_t chunk_mask = conf->geo.chunk_mask; 2931 int page_idx = 0; 2932 2933 if (!mempool_initialized(&conf->r10buf_pool)) 2934 if (init_resync(conf)) 2935 return 0; 2936 2937 /* 2938 * Allow skipping a full rebuild for incremental assembly 2939 * of a clean array, like RAID1 does. 2940 */ 2941 if (mddev->bitmap == NULL && 2942 mddev->recovery_cp == MaxSector && 2943 mddev->reshape_position == MaxSector && 2944 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2945 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2946 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2947 conf->fullsync == 0) { 2948 *skipped = 1; 2949 return mddev->dev_sectors - sector_nr; 2950 } 2951 2952 skipped: 2953 max_sector = mddev->dev_sectors; 2954 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2955 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2956 max_sector = mddev->resync_max_sectors; 2957 if (sector_nr >= max_sector) { 2958 conf->cluster_sync_low = 0; 2959 conf->cluster_sync_high = 0; 2960 2961 /* If we aborted, we need to abort the 2962 * sync on the 'current' bitmap chucks (there can 2963 * be several when recovering multiple devices). 2964 * as we may have started syncing it but not finished. 2965 * We can find the current address in 2966 * mddev->curr_resync, but for recovery, 2967 * we need to convert that to several 2968 * virtual addresses. 2969 */ 2970 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2971 end_reshape(conf); 2972 close_sync(conf); 2973 return 0; 2974 } 2975 2976 if (mddev->curr_resync < max_sector) { /* aborted */ 2977 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2978 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2979 &sync_blocks, 1); 2980 else for (i = 0; i < conf->geo.raid_disks; i++) { 2981 sector_t sect = 2982 raid10_find_virt(conf, mddev->curr_resync, i); 2983 md_bitmap_end_sync(mddev->bitmap, sect, 2984 &sync_blocks, 1); 2985 } 2986 } else { 2987 /* completed sync */ 2988 if ((!mddev->bitmap || conf->fullsync) 2989 && conf->have_replacement 2990 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2991 /* Completed a full sync so the replacements 2992 * are now fully recovered. 2993 */ 2994 rcu_read_lock(); 2995 for (i = 0; i < conf->geo.raid_disks; i++) { 2996 struct md_rdev *rdev = 2997 rcu_dereference(conf->mirrors[i].replacement); 2998 if (rdev) 2999 rdev->recovery_offset = MaxSector; 3000 } 3001 rcu_read_unlock(); 3002 } 3003 conf->fullsync = 0; 3004 } 3005 md_bitmap_close_sync(mddev->bitmap); 3006 close_sync(conf); 3007 *skipped = 1; 3008 return sectors_skipped; 3009 } 3010 3011 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3012 return reshape_request(mddev, sector_nr, skipped); 3013 3014 if (chunks_skipped >= conf->geo.raid_disks) { 3015 /* if there has been nothing to do on any drive, 3016 * then there is nothing to do at all.. 3017 */ 3018 *skipped = 1; 3019 return (max_sector - sector_nr) + sectors_skipped; 3020 } 3021 3022 if (max_sector > mddev->resync_max) 3023 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3024 3025 /* make sure whole request will fit in a chunk - if chunks 3026 * are meaningful 3027 */ 3028 if (conf->geo.near_copies < conf->geo.raid_disks && 3029 max_sector > (sector_nr | chunk_mask)) 3030 max_sector = (sector_nr | chunk_mask) + 1; 3031 3032 /* 3033 * If there is non-resync activity waiting for a turn, then let it 3034 * though before starting on this new sync request. 3035 */ 3036 if (conf->nr_waiting) 3037 schedule_timeout_uninterruptible(1); 3038 3039 /* Again, very different code for resync and recovery. 3040 * Both must result in an r10bio with a list of bios that 3041 * have bi_end_io, bi_sector, bi_disk set, 3042 * and bi_private set to the r10bio. 3043 * For recovery, we may actually create several r10bios 3044 * with 2 bios in each, that correspond to the bios in the main one. 3045 * In this case, the subordinate r10bios link back through a 3046 * borrowed master_bio pointer, and the counter in the master 3047 * includes a ref from each subordinate. 3048 */ 3049 /* First, we decide what to do and set ->bi_end_io 3050 * To end_sync_read if we want to read, and 3051 * end_sync_write if we will want to write. 3052 */ 3053 3054 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3055 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3056 /* recovery... the complicated one */ 3057 int j; 3058 r10_bio = NULL; 3059 3060 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3061 int still_degraded; 3062 struct r10bio *rb2; 3063 sector_t sect; 3064 int must_sync; 3065 int any_working; 3066 int need_recover = 0; 3067 int need_replace = 0; 3068 struct raid10_info *mirror = &conf->mirrors[i]; 3069 struct md_rdev *mrdev, *mreplace; 3070 3071 rcu_read_lock(); 3072 mrdev = rcu_dereference(mirror->rdev); 3073 mreplace = rcu_dereference(mirror->replacement); 3074 3075 if (mrdev != NULL && 3076 !test_bit(Faulty, &mrdev->flags) && 3077 !test_bit(In_sync, &mrdev->flags)) 3078 need_recover = 1; 3079 if (mreplace != NULL && 3080 !test_bit(Faulty, &mreplace->flags)) 3081 need_replace = 1; 3082 3083 if (!need_recover && !need_replace) { 3084 rcu_read_unlock(); 3085 continue; 3086 } 3087 3088 still_degraded = 0; 3089 /* want to reconstruct this device */ 3090 rb2 = r10_bio; 3091 sect = raid10_find_virt(conf, sector_nr, i); 3092 if (sect >= mddev->resync_max_sectors) { 3093 /* last stripe is not complete - don't 3094 * try to recover this sector. 3095 */ 3096 rcu_read_unlock(); 3097 continue; 3098 } 3099 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3100 mreplace = NULL; 3101 /* Unless we are doing a full sync, or a replacement 3102 * we only need to recover the block if it is set in 3103 * the bitmap 3104 */ 3105 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3106 &sync_blocks, 1); 3107 if (sync_blocks < max_sync) 3108 max_sync = sync_blocks; 3109 if (!must_sync && 3110 mreplace == NULL && 3111 !conf->fullsync) { 3112 /* yep, skip the sync_blocks here, but don't assume 3113 * that there will never be anything to do here 3114 */ 3115 chunks_skipped = -1; 3116 rcu_read_unlock(); 3117 continue; 3118 } 3119 atomic_inc(&mrdev->nr_pending); 3120 if (mreplace) 3121 atomic_inc(&mreplace->nr_pending); 3122 rcu_read_unlock(); 3123 3124 r10_bio = raid10_alloc_init_r10buf(conf); 3125 r10_bio->state = 0; 3126 raise_barrier(conf, rb2 != NULL); 3127 atomic_set(&r10_bio->remaining, 0); 3128 3129 r10_bio->master_bio = (struct bio*)rb2; 3130 if (rb2) 3131 atomic_inc(&rb2->remaining); 3132 r10_bio->mddev = mddev; 3133 set_bit(R10BIO_IsRecover, &r10_bio->state); 3134 r10_bio->sector = sect; 3135 3136 raid10_find_phys(conf, r10_bio); 3137 3138 /* Need to check if the array will still be 3139 * degraded 3140 */ 3141 rcu_read_lock(); 3142 for (j = 0; j < conf->geo.raid_disks; j++) { 3143 struct md_rdev *rdev = rcu_dereference( 3144 conf->mirrors[j].rdev); 3145 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3146 still_degraded = 1; 3147 break; 3148 } 3149 } 3150 3151 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3152 &sync_blocks, still_degraded); 3153 3154 any_working = 0; 3155 for (j=0; j<conf->copies;j++) { 3156 int k; 3157 int d = r10_bio->devs[j].devnum; 3158 sector_t from_addr, to_addr; 3159 struct md_rdev *rdev = 3160 rcu_dereference(conf->mirrors[d].rdev); 3161 sector_t sector, first_bad; 3162 int bad_sectors; 3163 if (!rdev || 3164 !test_bit(In_sync, &rdev->flags)) 3165 continue; 3166 /* This is where we read from */ 3167 any_working = 1; 3168 sector = r10_bio->devs[j].addr; 3169 3170 if (is_badblock(rdev, sector, max_sync, 3171 &first_bad, &bad_sectors)) { 3172 if (first_bad > sector) 3173 max_sync = first_bad - sector; 3174 else { 3175 bad_sectors -= (sector 3176 - first_bad); 3177 if (max_sync > bad_sectors) 3178 max_sync = bad_sectors; 3179 continue; 3180 } 3181 } 3182 bio = r10_bio->devs[0].bio; 3183 bio->bi_next = biolist; 3184 biolist = bio; 3185 bio->bi_end_io = end_sync_read; 3186 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3187 if (test_bit(FailFast, &rdev->flags)) 3188 bio->bi_opf |= MD_FAILFAST; 3189 from_addr = r10_bio->devs[j].addr; 3190 bio->bi_iter.bi_sector = from_addr + 3191 rdev->data_offset; 3192 bio_set_dev(bio, rdev->bdev); 3193 atomic_inc(&rdev->nr_pending); 3194 /* and we write to 'i' (if not in_sync) */ 3195 3196 for (k=0; k<conf->copies; k++) 3197 if (r10_bio->devs[k].devnum == i) 3198 break; 3199 BUG_ON(k == conf->copies); 3200 to_addr = r10_bio->devs[k].addr; 3201 r10_bio->devs[0].devnum = d; 3202 r10_bio->devs[0].addr = from_addr; 3203 r10_bio->devs[1].devnum = i; 3204 r10_bio->devs[1].addr = to_addr; 3205 3206 if (need_recover) { 3207 bio = r10_bio->devs[1].bio; 3208 bio->bi_next = biolist; 3209 biolist = bio; 3210 bio->bi_end_io = end_sync_write; 3211 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3212 bio->bi_iter.bi_sector = to_addr 3213 + mrdev->data_offset; 3214 bio_set_dev(bio, mrdev->bdev); 3215 atomic_inc(&r10_bio->remaining); 3216 } else 3217 r10_bio->devs[1].bio->bi_end_io = NULL; 3218 3219 /* and maybe write to replacement */ 3220 bio = r10_bio->devs[1].repl_bio; 3221 if (bio) 3222 bio->bi_end_io = NULL; 3223 /* Note: if need_replace, then bio 3224 * cannot be NULL as r10buf_pool_alloc will 3225 * have allocated it. 3226 */ 3227 if (!need_replace) 3228 break; 3229 bio->bi_next = biolist; 3230 biolist = bio; 3231 bio->bi_end_io = end_sync_write; 3232 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3233 bio->bi_iter.bi_sector = to_addr + 3234 mreplace->data_offset; 3235 bio_set_dev(bio, mreplace->bdev); 3236 atomic_inc(&r10_bio->remaining); 3237 break; 3238 } 3239 rcu_read_unlock(); 3240 if (j == conf->copies) { 3241 /* Cannot recover, so abort the recovery or 3242 * record a bad block */ 3243 if (any_working) { 3244 /* problem is that there are bad blocks 3245 * on other device(s) 3246 */ 3247 int k; 3248 for (k = 0; k < conf->copies; k++) 3249 if (r10_bio->devs[k].devnum == i) 3250 break; 3251 if (!test_bit(In_sync, 3252 &mrdev->flags) 3253 && !rdev_set_badblocks( 3254 mrdev, 3255 r10_bio->devs[k].addr, 3256 max_sync, 0)) 3257 any_working = 0; 3258 if (mreplace && 3259 !rdev_set_badblocks( 3260 mreplace, 3261 r10_bio->devs[k].addr, 3262 max_sync, 0)) 3263 any_working = 0; 3264 } 3265 if (!any_working) { 3266 if (!test_and_set_bit(MD_RECOVERY_INTR, 3267 &mddev->recovery)) 3268 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3269 mdname(mddev)); 3270 mirror->recovery_disabled 3271 = mddev->recovery_disabled; 3272 } 3273 put_buf(r10_bio); 3274 if (rb2) 3275 atomic_dec(&rb2->remaining); 3276 r10_bio = rb2; 3277 rdev_dec_pending(mrdev, mddev); 3278 if (mreplace) 3279 rdev_dec_pending(mreplace, mddev); 3280 break; 3281 } 3282 rdev_dec_pending(mrdev, mddev); 3283 if (mreplace) 3284 rdev_dec_pending(mreplace, mddev); 3285 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3286 /* Only want this if there is elsewhere to 3287 * read from. 'j' is currently the first 3288 * readable copy. 3289 */ 3290 int targets = 1; 3291 for (; j < conf->copies; j++) { 3292 int d = r10_bio->devs[j].devnum; 3293 if (conf->mirrors[d].rdev && 3294 test_bit(In_sync, 3295 &conf->mirrors[d].rdev->flags)) 3296 targets++; 3297 } 3298 if (targets == 1) 3299 r10_bio->devs[0].bio->bi_opf 3300 &= ~MD_FAILFAST; 3301 } 3302 } 3303 if (biolist == NULL) { 3304 while (r10_bio) { 3305 struct r10bio *rb2 = r10_bio; 3306 r10_bio = (struct r10bio*) rb2->master_bio; 3307 rb2->master_bio = NULL; 3308 put_buf(rb2); 3309 } 3310 goto giveup; 3311 } 3312 } else { 3313 /* resync. Schedule a read for every block at this virt offset */ 3314 int count = 0; 3315 3316 /* 3317 * Since curr_resync_completed could probably not update in 3318 * time, and we will set cluster_sync_low based on it. 3319 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3320 * safety reason, which ensures curr_resync_completed is 3321 * updated in bitmap_cond_end_sync. 3322 */ 3323 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3324 mddev_is_clustered(mddev) && 3325 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3326 3327 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3328 &sync_blocks, mddev->degraded) && 3329 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3330 &mddev->recovery)) { 3331 /* We can skip this block */ 3332 *skipped = 1; 3333 return sync_blocks + sectors_skipped; 3334 } 3335 if (sync_blocks < max_sync) 3336 max_sync = sync_blocks; 3337 r10_bio = raid10_alloc_init_r10buf(conf); 3338 r10_bio->state = 0; 3339 3340 r10_bio->mddev = mddev; 3341 atomic_set(&r10_bio->remaining, 0); 3342 raise_barrier(conf, 0); 3343 conf->next_resync = sector_nr; 3344 3345 r10_bio->master_bio = NULL; 3346 r10_bio->sector = sector_nr; 3347 set_bit(R10BIO_IsSync, &r10_bio->state); 3348 raid10_find_phys(conf, r10_bio); 3349 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3350 3351 for (i = 0; i < conf->copies; i++) { 3352 int d = r10_bio->devs[i].devnum; 3353 sector_t first_bad, sector; 3354 int bad_sectors; 3355 struct md_rdev *rdev; 3356 3357 if (r10_bio->devs[i].repl_bio) 3358 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3359 3360 bio = r10_bio->devs[i].bio; 3361 bio->bi_status = BLK_STS_IOERR; 3362 rcu_read_lock(); 3363 rdev = rcu_dereference(conf->mirrors[d].rdev); 3364 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3365 rcu_read_unlock(); 3366 continue; 3367 } 3368 sector = r10_bio->devs[i].addr; 3369 if (is_badblock(rdev, sector, max_sync, 3370 &first_bad, &bad_sectors)) { 3371 if (first_bad > sector) 3372 max_sync = first_bad - sector; 3373 else { 3374 bad_sectors -= (sector - first_bad); 3375 if (max_sync > bad_sectors) 3376 max_sync = bad_sectors; 3377 rcu_read_unlock(); 3378 continue; 3379 } 3380 } 3381 atomic_inc(&rdev->nr_pending); 3382 atomic_inc(&r10_bio->remaining); 3383 bio->bi_next = biolist; 3384 biolist = bio; 3385 bio->bi_end_io = end_sync_read; 3386 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3387 if (test_bit(FailFast, &rdev->flags)) 3388 bio->bi_opf |= MD_FAILFAST; 3389 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3390 bio_set_dev(bio, rdev->bdev); 3391 count++; 3392 3393 rdev = rcu_dereference(conf->mirrors[d].replacement); 3394 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3395 rcu_read_unlock(); 3396 continue; 3397 } 3398 atomic_inc(&rdev->nr_pending); 3399 3400 /* Need to set up for writing to the replacement */ 3401 bio = r10_bio->devs[i].repl_bio; 3402 bio->bi_status = BLK_STS_IOERR; 3403 3404 sector = r10_bio->devs[i].addr; 3405 bio->bi_next = biolist; 3406 biolist = bio; 3407 bio->bi_end_io = end_sync_write; 3408 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3409 if (test_bit(FailFast, &rdev->flags)) 3410 bio->bi_opf |= MD_FAILFAST; 3411 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3412 bio_set_dev(bio, rdev->bdev); 3413 count++; 3414 rcu_read_unlock(); 3415 } 3416 3417 if (count < 2) { 3418 for (i=0; i<conf->copies; i++) { 3419 int d = r10_bio->devs[i].devnum; 3420 if (r10_bio->devs[i].bio->bi_end_io) 3421 rdev_dec_pending(conf->mirrors[d].rdev, 3422 mddev); 3423 if (r10_bio->devs[i].repl_bio && 3424 r10_bio->devs[i].repl_bio->bi_end_io) 3425 rdev_dec_pending( 3426 conf->mirrors[d].replacement, 3427 mddev); 3428 } 3429 put_buf(r10_bio); 3430 biolist = NULL; 3431 goto giveup; 3432 } 3433 } 3434 3435 nr_sectors = 0; 3436 if (sector_nr + max_sync < max_sector) 3437 max_sector = sector_nr + max_sync; 3438 do { 3439 struct page *page; 3440 int len = PAGE_SIZE; 3441 if (sector_nr + (len>>9) > max_sector) 3442 len = (max_sector - sector_nr) << 9; 3443 if (len == 0) 3444 break; 3445 for (bio= biolist ; bio ; bio=bio->bi_next) { 3446 struct resync_pages *rp = get_resync_pages(bio); 3447 page = resync_fetch_page(rp, page_idx); 3448 /* 3449 * won't fail because the vec table is big enough 3450 * to hold all these pages 3451 */ 3452 bio_add_page(bio, page, len, 0); 3453 } 3454 nr_sectors += len>>9; 3455 sector_nr += len>>9; 3456 } while (++page_idx < RESYNC_PAGES); 3457 r10_bio->sectors = nr_sectors; 3458 3459 if (mddev_is_clustered(mddev) && 3460 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3461 /* It is resync not recovery */ 3462 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3463 conf->cluster_sync_low = mddev->curr_resync_completed; 3464 raid10_set_cluster_sync_high(conf); 3465 /* Send resync message */ 3466 md_cluster_ops->resync_info_update(mddev, 3467 conf->cluster_sync_low, 3468 conf->cluster_sync_high); 3469 } 3470 } else if (mddev_is_clustered(mddev)) { 3471 /* This is recovery not resync */ 3472 sector_t sect_va1, sect_va2; 3473 bool broadcast_msg = false; 3474 3475 for (i = 0; i < conf->geo.raid_disks; i++) { 3476 /* 3477 * sector_nr is a device address for recovery, so we 3478 * need translate it to array address before compare 3479 * with cluster_sync_high. 3480 */ 3481 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3482 3483 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3484 broadcast_msg = true; 3485 /* 3486 * curr_resync_completed is similar as 3487 * sector_nr, so make the translation too. 3488 */ 3489 sect_va2 = raid10_find_virt(conf, 3490 mddev->curr_resync_completed, i); 3491 3492 if (conf->cluster_sync_low == 0 || 3493 conf->cluster_sync_low > sect_va2) 3494 conf->cluster_sync_low = sect_va2; 3495 } 3496 } 3497 if (broadcast_msg) { 3498 raid10_set_cluster_sync_high(conf); 3499 md_cluster_ops->resync_info_update(mddev, 3500 conf->cluster_sync_low, 3501 conf->cluster_sync_high); 3502 } 3503 } 3504 3505 while (biolist) { 3506 bio = biolist; 3507 biolist = biolist->bi_next; 3508 3509 bio->bi_next = NULL; 3510 r10_bio = get_resync_r10bio(bio); 3511 r10_bio->sectors = nr_sectors; 3512 3513 if (bio->bi_end_io == end_sync_read) { 3514 md_sync_acct_bio(bio, nr_sectors); 3515 bio->bi_status = 0; 3516 generic_make_request(bio); 3517 } 3518 } 3519 3520 if (sectors_skipped) 3521 /* pretend they weren't skipped, it makes 3522 * no important difference in this case 3523 */ 3524 md_done_sync(mddev, sectors_skipped, 1); 3525 3526 return sectors_skipped + nr_sectors; 3527 giveup: 3528 /* There is nowhere to write, so all non-sync 3529 * drives must be failed or in resync, all drives 3530 * have a bad block, so try the next chunk... 3531 */ 3532 if (sector_nr + max_sync < max_sector) 3533 max_sector = sector_nr + max_sync; 3534 3535 sectors_skipped += (max_sector - sector_nr); 3536 chunks_skipped ++; 3537 sector_nr = max_sector; 3538 goto skipped; 3539 } 3540 3541 static sector_t 3542 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3543 { 3544 sector_t size; 3545 struct r10conf *conf = mddev->private; 3546 3547 if (!raid_disks) 3548 raid_disks = min(conf->geo.raid_disks, 3549 conf->prev.raid_disks); 3550 if (!sectors) 3551 sectors = conf->dev_sectors; 3552 3553 size = sectors >> conf->geo.chunk_shift; 3554 sector_div(size, conf->geo.far_copies); 3555 size = size * raid_disks; 3556 sector_div(size, conf->geo.near_copies); 3557 3558 return size << conf->geo.chunk_shift; 3559 } 3560 3561 static void calc_sectors(struct r10conf *conf, sector_t size) 3562 { 3563 /* Calculate the number of sectors-per-device that will 3564 * actually be used, and set conf->dev_sectors and 3565 * conf->stride 3566 */ 3567 3568 size = size >> conf->geo.chunk_shift; 3569 sector_div(size, conf->geo.far_copies); 3570 size = size * conf->geo.raid_disks; 3571 sector_div(size, conf->geo.near_copies); 3572 /* 'size' is now the number of chunks in the array */ 3573 /* calculate "used chunks per device" */ 3574 size = size * conf->copies; 3575 3576 /* We need to round up when dividing by raid_disks to 3577 * get the stride size. 3578 */ 3579 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3580 3581 conf->dev_sectors = size << conf->geo.chunk_shift; 3582 3583 if (conf->geo.far_offset) 3584 conf->geo.stride = 1 << conf->geo.chunk_shift; 3585 else { 3586 sector_div(size, conf->geo.far_copies); 3587 conf->geo.stride = size << conf->geo.chunk_shift; 3588 } 3589 } 3590 3591 enum geo_type {geo_new, geo_old, geo_start}; 3592 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3593 { 3594 int nc, fc, fo; 3595 int layout, chunk, disks; 3596 switch (new) { 3597 case geo_old: 3598 layout = mddev->layout; 3599 chunk = mddev->chunk_sectors; 3600 disks = mddev->raid_disks - mddev->delta_disks; 3601 break; 3602 case geo_new: 3603 layout = mddev->new_layout; 3604 chunk = mddev->new_chunk_sectors; 3605 disks = mddev->raid_disks; 3606 break; 3607 default: /* avoid 'may be unused' warnings */ 3608 case geo_start: /* new when starting reshape - raid_disks not 3609 * updated yet. */ 3610 layout = mddev->new_layout; 3611 chunk = mddev->new_chunk_sectors; 3612 disks = mddev->raid_disks + mddev->delta_disks; 3613 break; 3614 } 3615 if (layout >> 19) 3616 return -1; 3617 if (chunk < (PAGE_SIZE >> 9) || 3618 !is_power_of_2(chunk)) 3619 return -2; 3620 nc = layout & 255; 3621 fc = (layout >> 8) & 255; 3622 fo = layout & (1<<16); 3623 geo->raid_disks = disks; 3624 geo->near_copies = nc; 3625 geo->far_copies = fc; 3626 geo->far_offset = fo; 3627 switch (layout >> 17) { 3628 case 0: /* original layout. simple but not always optimal */ 3629 geo->far_set_size = disks; 3630 break; 3631 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3632 * actually using this, but leave code here just in case.*/ 3633 geo->far_set_size = disks/fc; 3634 WARN(geo->far_set_size < fc, 3635 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3636 break; 3637 case 2: /* "improved" layout fixed to match documentation */ 3638 geo->far_set_size = fc * nc; 3639 break; 3640 default: /* Not a valid layout */ 3641 return -1; 3642 } 3643 geo->chunk_mask = chunk - 1; 3644 geo->chunk_shift = ffz(~chunk); 3645 return nc*fc; 3646 } 3647 3648 static struct r10conf *setup_conf(struct mddev *mddev) 3649 { 3650 struct r10conf *conf = NULL; 3651 int err = -EINVAL; 3652 struct geom geo; 3653 int copies; 3654 3655 copies = setup_geo(&geo, mddev, geo_new); 3656 3657 if (copies == -2) { 3658 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3659 mdname(mddev), PAGE_SIZE); 3660 goto out; 3661 } 3662 3663 if (copies < 2 || copies > mddev->raid_disks) { 3664 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3665 mdname(mddev), mddev->new_layout); 3666 goto out; 3667 } 3668 3669 err = -ENOMEM; 3670 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3671 if (!conf) 3672 goto out; 3673 3674 /* FIXME calc properly */ 3675 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3676 sizeof(struct raid10_info), 3677 GFP_KERNEL); 3678 if (!conf->mirrors) 3679 goto out; 3680 3681 conf->tmppage = alloc_page(GFP_KERNEL); 3682 if (!conf->tmppage) 3683 goto out; 3684 3685 conf->geo = geo; 3686 conf->copies = copies; 3687 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc, 3688 r10bio_pool_free, conf); 3689 if (err) 3690 goto out; 3691 3692 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3693 if (err) 3694 goto out; 3695 3696 calc_sectors(conf, mddev->dev_sectors); 3697 if (mddev->reshape_position == MaxSector) { 3698 conf->prev = conf->geo; 3699 conf->reshape_progress = MaxSector; 3700 } else { 3701 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3702 err = -EINVAL; 3703 goto out; 3704 } 3705 conf->reshape_progress = mddev->reshape_position; 3706 if (conf->prev.far_offset) 3707 conf->prev.stride = 1 << conf->prev.chunk_shift; 3708 else 3709 /* far_copies must be 1 */ 3710 conf->prev.stride = conf->dev_sectors; 3711 } 3712 conf->reshape_safe = conf->reshape_progress; 3713 spin_lock_init(&conf->device_lock); 3714 INIT_LIST_HEAD(&conf->retry_list); 3715 INIT_LIST_HEAD(&conf->bio_end_io_list); 3716 3717 spin_lock_init(&conf->resync_lock); 3718 init_waitqueue_head(&conf->wait_barrier); 3719 atomic_set(&conf->nr_pending, 0); 3720 3721 err = -ENOMEM; 3722 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3723 if (!conf->thread) 3724 goto out; 3725 3726 conf->mddev = mddev; 3727 return conf; 3728 3729 out: 3730 if (conf) { 3731 mempool_exit(&conf->r10bio_pool); 3732 kfree(conf->mirrors); 3733 safe_put_page(conf->tmppage); 3734 bioset_exit(&conf->bio_split); 3735 kfree(conf); 3736 } 3737 return ERR_PTR(err); 3738 } 3739 3740 static int raid10_run(struct mddev *mddev) 3741 { 3742 struct r10conf *conf; 3743 int i, disk_idx, chunk_size; 3744 struct raid10_info *disk; 3745 struct md_rdev *rdev; 3746 sector_t size; 3747 sector_t min_offset_diff = 0; 3748 int first = 1; 3749 bool discard_supported = false; 3750 3751 if (mddev_init_writes_pending(mddev) < 0) 3752 return -ENOMEM; 3753 3754 if (mddev->private == NULL) { 3755 conf = setup_conf(mddev); 3756 if (IS_ERR(conf)) 3757 return PTR_ERR(conf); 3758 mddev->private = conf; 3759 } 3760 conf = mddev->private; 3761 if (!conf) 3762 goto out; 3763 3764 if (mddev_is_clustered(conf->mddev)) { 3765 int fc, fo; 3766 3767 fc = (mddev->layout >> 8) & 255; 3768 fo = mddev->layout & (1<<16); 3769 if (fc > 1 || fo > 0) { 3770 pr_err("only near layout is supported by clustered" 3771 " raid10\n"); 3772 goto out_free_conf; 3773 } 3774 } 3775 3776 mddev->thread = conf->thread; 3777 conf->thread = NULL; 3778 3779 chunk_size = mddev->chunk_sectors << 9; 3780 if (mddev->queue) { 3781 blk_queue_max_discard_sectors(mddev->queue, 3782 mddev->chunk_sectors); 3783 blk_queue_max_write_same_sectors(mddev->queue, 0); 3784 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3785 blk_queue_io_min(mddev->queue, chunk_size); 3786 if (conf->geo.raid_disks % conf->geo.near_copies) 3787 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3788 else 3789 blk_queue_io_opt(mddev->queue, chunk_size * 3790 (conf->geo.raid_disks / conf->geo.near_copies)); 3791 } 3792 3793 rdev_for_each(rdev, mddev) { 3794 long long diff; 3795 3796 disk_idx = rdev->raid_disk; 3797 if (disk_idx < 0) 3798 continue; 3799 if (disk_idx >= conf->geo.raid_disks && 3800 disk_idx >= conf->prev.raid_disks) 3801 continue; 3802 disk = conf->mirrors + disk_idx; 3803 3804 if (test_bit(Replacement, &rdev->flags)) { 3805 if (disk->replacement) 3806 goto out_free_conf; 3807 disk->replacement = rdev; 3808 } else { 3809 if (disk->rdev) 3810 goto out_free_conf; 3811 disk->rdev = rdev; 3812 } 3813 diff = (rdev->new_data_offset - rdev->data_offset); 3814 if (!mddev->reshape_backwards) 3815 diff = -diff; 3816 if (diff < 0) 3817 diff = 0; 3818 if (first || diff < min_offset_diff) 3819 min_offset_diff = diff; 3820 3821 if (mddev->gendisk) 3822 disk_stack_limits(mddev->gendisk, rdev->bdev, 3823 rdev->data_offset << 9); 3824 3825 disk->head_position = 0; 3826 3827 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3828 discard_supported = true; 3829 first = 0; 3830 } 3831 3832 if (mddev->queue) { 3833 if (discard_supported) 3834 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3835 mddev->queue); 3836 else 3837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3838 mddev->queue); 3839 } 3840 /* need to check that every block has at least one working mirror */ 3841 if (!enough(conf, -1)) { 3842 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3843 mdname(mddev)); 3844 goto out_free_conf; 3845 } 3846 3847 if (conf->reshape_progress != MaxSector) { 3848 /* must ensure that shape change is supported */ 3849 if (conf->geo.far_copies != 1 && 3850 conf->geo.far_offset == 0) 3851 goto out_free_conf; 3852 if (conf->prev.far_copies != 1 && 3853 conf->prev.far_offset == 0) 3854 goto out_free_conf; 3855 } 3856 3857 mddev->degraded = 0; 3858 for (i = 0; 3859 i < conf->geo.raid_disks 3860 || i < conf->prev.raid_disks; 3861 i++) { 3862 3863 disk = conf->mirrors + i; 3864 3865 if (!disk->rdev && disk->replacement) { 3866 /* The replacement is all we have - use it */ 3867 disk->rdev = disk->replacement; 3868 disk->replacement = NULL; 3869 clear_bit(Replacement, &disk->rdev->flags); 3870 } 3871 3872 if (!disk->rdev || 3873 !test_bit(In_sync, &disk->rdev->flags)) { 3874 disk->head_position = 0; 3875 mddev->degraded++; 3876 if (disk->rdev && 3877 disk->rdev->saved_raid_disk < 0) 3878 conf->fullsync = 1; 3879 } 3880 3881 if (disk->replacement && 3882 !test_bit(In_sync, &disk->replacement->flags) && 3883 disk->replacement->saved_raid_disk < 0) { 3884 conf->fullsync = 1; 3885 } 3886 3887 disk->recovery_disabled = mddev->recovery_disabled - 1; 3888 } 3889 3890 if (mddev->recovery_cp != MaxSector) 3891 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3892 mdname(mddev)); 3893 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3894 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3895 conf->geo.raid_disks); 3896 /* 3897 * Ok, everything is just fine now 3898 */ 3899 mddev->dev_sectors = conf->dev_sectors; 3900 size = raid10_size(mddev, 0, 0); 3901 md_set_array_sectors(mddev, size); 3902 mddev->resync_max_sectors = size; 3903 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3904 3905 if (mddev->queue) { 3906 int stripe = conf->geo.raid_disks * 3907 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3908 3909 /* Calculate max read-ahead size. 3910 * We need to readahead at least twice a whole stripe.... 3911 * maybe... 3912 */ 3913 stripe /= conf->geo.near_copies; 3914 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3915 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3916 } 3917 3918 if (md_integrity_register(mddev)) 3919 goto out_free_conf; 3920 3921 if (conf->reshape_progress != MaxSector) { 3922 unsigned long before_length, after_length; 3923 3924 before_length = ((1 << conf->prev.chunk_shift) * 3925 conf->prev.far_copies); 3926 after_length = ((1 << conf->geo.chunk_shift) * 3927 conf->geo.far_copies); 3928 3929 if (max(before_length, after_length) > min_offset_diff) { 3930 /* This cannot work */ 3931 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3932 goto out_free_conf; 3933 } 3934 conf->offset_diff = min_offset_diff; 3935 3936 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3939 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3940 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3941 "reshape"); 3942 } 3943 3944 return 0; 3945 3946 out_free_conf: 3947 md_unregister_thread(&mddev->thread); 3948 mempool_exit(&conf->r10bio_pool); 3949 safe_put_page(conf->tmppage); 3950 kfree(conf->mirrors); 3951 kfree(conf); 3952 mddev->private = NULL; 3953 out: 3954 return -EIO; 3955 } 3956 3957 static void raid10_free(struct mddev *mddev, void *priv) 3958 { 3959 struct r10conf *conf = priv; 3960 3961 mempool_exit(&conf->r10bio_pool); 3962 safe_put_page(conf->tmppage); 3963 kfree(conf->mirrors); 3964 kfree(conf->mirrors_old); 3965 kfree(conf->mirrors_new); 3966 bioset_exit(&conf->bio_split); 3967 kfree(conf); 3968 } 3969 3970 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3971 { 3972 struct r10conf *conf = mddev->private; 3973 3974 if (quiesce) 3975 raise_barrier(conf, 0); 3976 else 3977 lower_barrier(conf); 3978 } 3979 3980 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3981 { 3982 /* Resize of 'far' arrays is not supported. 3983 * For 'near' and 'offset' arrays we can set the 3984 * number of sectors used to be an appropriate multiple 3985 * of the chunk size. 3986 * For 'offset', this is far_copies*chunksize. 3987 * For 'near' the multiplier is the LCM of 3988 * near_copies and raid_disks. 3989 * So if far_copies > 1 && !far_offset, fail. 3990 * Else find LCM(raid_disks, near_copy)*far_copies and 3991 * multiply by chunk_size. Then round to this number. 3992 * This is mostly done by raid10_size() 3993 */ 3994 struct r10conf *conf = mddev->private; 3995 sector_t oldsize, size; 3996 3997 if (mddev->reshape_position != MaxSector) 3998 return -EBUSY; 3999 4000 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4001 return -EINVAL; 4002 4003 oldsize = raid10_size(mddev, 0, 0); 4004 size = raid10_size(mddev, sectors, 0); 4005 if (mddev->external_size && 4006 mddev->array_sectors > size) 4007 return -EINVAL; 4008 if (mddev->bitmap) { 4009 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4010 if (ret) 4011 return ret; 4012 } 4013 md_set_array_sectors(mddev, size); 4014 if (sectors > mddev->dev_sectors && 4015 mddev->recovery_cp > oldsize) { 4016 mddev->recovery_cp = oldsize; 4017 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4018 } 4019 calc_sectors(conf, sectors); 4020 mddev->dev_sectors = conf->dev_sectors; 4021 mddev->resync_max_sectors = size; 4022 return 0; 4023 } 4024 4025 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4026 { 4027 struct md_rdev *rdev; 4028 struct r10conf *conf; 4029 4030 if (mddev->degraded > 0) { 4031 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4032 mdname(mddev)); 4033 return ERR_PTR(-EINVAL); 4034 } 4035 sector_div(size, devs); 4036 4037 /* Set new parameters */ 4038 mddev->new_level = 10; 4039 /* new layout: far_copies = 1, near_copies = 2 */ 4040 mddev->new_layout = (1<<8) + 2; 4041 mddev->new_chunk_sectors = mddev->chunk_sectors; 4042 mddev->delta_disks = mddev->raid_disks; 4043 mddev->raid_disks *= 2; 4044 /* make sure it will be not marked as dirty */ 4045 mddev->recovery_cp = MaxSector; 4046 mddev->dev_sectors = size; 4047 4048 conf = setup_conf(mddev); 4049 if (!IS_ERR(conf)) { 4050 rdev_for_each(rdev, mddev) 4051 if (rdev->raid_disk >= 0) { 4052 rdev->new_raid_disk = rdev->raid_disk * 2; 4053 rdev->sectors = size; 4054 } 4055 conf->barrier = 1; 4056 } 4057 4058 return conf; 4059 } 4060 4061 static void *raid10_takeover(struct mddev *mddev) 4062 { 4063 struct r0conf *raid0_conf; 4064 4065 /* raid10 can take over: 4066 * raid0 - providing it has only two drives 4067 */ 4068 if (mddev->level == 0) { 4069 /* for raid0 takeover only one zone is supported */ 4070 raid0_conf = mddev->private; 4071 if (raid0_conf->nr_strip_zones > 1) { 4072 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4073 mdname(mddev)); 4074 return ERR_PTR(-EINVAL); 4075 } 4076 return raid10_takeover_raid0(mddev, 4077 raid0_conf->strip_zone->zone_end, 4078 raid0_conf->strip_zone->nb_dev); 4079 } 4080 return ERR_PTR(-EINVAL); 4081 } 4082 4083 static int raid10_check_reshape(struct mddev *mddev) 4084 { 4085 /* Called when there is a request to change 4086 * - layout (to ->new_layout) 4087 * - chunk size (to ->new_chunk_sectors) 4088 * - raid_disks (by delta_disks) 4089 * or when trying to restart a reshape that was ongoing. 4090 * 4091 * We need to validate the request and possibly allocate 4092 * space if that might be an issue later. 4093 * 4094 * Currently we reject any reshape of a 'far' mode array, 4095 * allow chunk size to change if new is generally acceptable, 4096 * allow raid_disks to increase, and allow 4097 * a switch between 'near' mode and 'offset' mode. 4098 */ 4099 struct r10conf *conf = mddev->private; 4100 struct geom geo; 4101 4102 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4103 return -EINVAL; 4104 4105 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4106 /* mustn't change number of copies */ 4107 return -EINVAL; 4108 if (geo.far_copies > 1 && !geo.far_offset) 4109 /* Cannot switch to 'far' mode */ 4110 return -EINVAL; 4111 4112 if (mddev->array_sectors & geo.chunk_mask) 4113 /* not factor of array size */ 4114 return -EINVAL; 4115 4116 if (!enough(conf, -1)) 4117 return -EINVAL; 4118 4119 kfree(conf->mirrors_new); 4120 conf->mirrors_new = NULL; 4121 if (mddev->delta_disks > 0) { 4122 /* allocate new 'mirrors' list */ 4123 conf->mirrors_new = 4124 kcalloc(mddev->raid_disks + mddev->delta_disks, 4125 sizeof(struct raid10_info), 4126 GFP_KERNEL); 4127 if (!conf->mirrors_new) 4128 return -ENOMEM; 4129 } 4130 return 0; 4131 } 4132 4133 /* 4134 * Need to check if array has failed when deciding whether to: 4135 * - start an array 4136 * - remove non-faulty devices 4137 * - add a spare 4138 * - allow a reshape 4139 * This determination is simple when no reshape is happening. 4140 * However if there is a reshape, we need to carefully check 4141 * both the before and after sections. 4142 * This is because some failed devices may only affect one 4143 * of the two sections, and some non-in_sync devices may 4144 * be insync in the section most affected by failed devices. 4145 */ 4146 static int calc_degraded(struct r10conf *conf) 4147 { 4148 int degraded, degraded2; 4149 int i; 4150 4151 rcu_read_lock(); 4152 degraded = 0; 4153 /* 'prev' section first */ 4154 for (i = 0; i < conf->prev.raid_disks; i++) { 4155 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4156 if (!rdev || test_bit(Faulty, &rdev->flags)) 4157 degraded++; 4158 else if (!test_bit(In_sync, &rdev->flags)) 4159 /* When we can reduce the number of devices in 4160 * an array, this might not contribute to 4161 * 'degraded'. It does now. 4162 */ 4163 degraded++; 4164 } 4165 rcu_read_unlock(); 4166 if (conf->geo.raid_disks == conf->prev.raid_disks) 4167 return degraded; 4168 rcu_read_lock(); 4169 degraded2 = 0; 4170 for (i = 0; i < conf->geo.raid_disks; i++) { 4171 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4172 if (!rdev || test_bit(Faulty, &rdev->flags)) 4173 degraded2++; 4174 else if (!test_bit(In_sync, &rdev->flags)) { 4175 /* If reshape is increasing the number of devices, 4176 * this section has already been recovered, so 4177 * it doesn't contribute to degraded. 4178 * else it does. 4179 */ 4180 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4181 degraded2++; 4182 } 4183 } 4184 rcu_read_unlock(); 4185 if (degraded2 > degraded) 4186 return degraded2; 4187 return degraded; 4188 } 4189 4190 static int raid10_start_reshape(struct mddev *mddev) 4191 { 4192 /* A 'reshape' has been requested. This commits 4193 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4194 * This also checks if there are enough spares and adds them 4195 * to the array. 4196 * We currently require enough spares to make the final 4197 * array non-degraded. We also require that the difference 4198 * between old and new data_offset - on each device - is 4199 * enough that we never risk over-writing. 4200 */ 4201 4202 unsigned long before_length, after_length; 4203 sector_t min_offset_diff = 0; 4204 int first = 1; 4205 struct geom new; 4206 struct r10conf *conf = mddev->private; 4207 struct md_rdev *rdev; 4208 int spares = 0; 4209 int ret; 4210 4211 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4212 return -EBUSY; 4213 4214 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4215 return -EINVAL; 4216 4217 before_length = ((1 << conf->prev.chunk_shift) * 4218 conf->prev.far_copies); 4219 after_length = ((1 << conf->geo.chunk_shift) * 4220 conf->geo.far_copies); 4221 4222 rdev_for_each(rdev, mddev) { 4223 if (!test_bit(In_sync, &rdev->flags) 4224 && !test_bit(Faulty, &rdev->flags)) 4225 spares++; 4226 if (rdev->raid_disk >= 0) { 4227 long long diff = (rdev->new_data_offset 4228 - rdev->data_offset); 4229 if (!mddev->reshape_backwards) 4230 diff = -diff; 4231 if (diff < 0) 4232 diff = 0; 4233 if (first || diff < min_offset_diff) 4234 min_offset_diff = diff; 4235 first = 0; 4236 } 4237 } 4238 4239 if (max(before_length, after_length) > min_offset_diff) 4240 return -EINVAL; 4241 4242 if (spares < mddev->delta_disks) 4243 return -EINVAL; 4244 4245 conf->offset_diff = min_offset_diff; 4246 spin_lock_irq(&conf->device_lock); 4247 if (conf->mirrors_new) { 4248 memcpy(conf->mirrors_new, conf->mirrors, 4249 sizeof(struct raid10_info)*conf->prev.raid_disks); 4250 smp_mb(); 4251 kfree(conf->mirrors_old); 4252 conf->mirrors_old = conf->mirrors; 4253 conf->mirrors = conf->mirrors_new; 4254 conf->mirrors_new = NULL; 4255 } 4256 setup_geo(&conf->geo, mddev, geo_start); 4257 smp_mb(); 4258 if (mddev->reshape_backwards) { 4259 sector_t size = raid10_size(mddev, 0, 0); 4260 if (size < mddev->array_sectors) { 4261 spin_unlock_irq(&conf->device_lock); 4262 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4263 mdname(mddev)); 4264 return -EINVAL; 4265 } 4266 mddev->resync_max_sectors = size; 4267 conf->reshape_progress = size; 4268 } else 4269 conf->reshape_progress = 0; 4270 conf->reshape_safe = conf->reshape_progress; 4271 spin_unlock_irq(&conf->device_lock); 4272 4273 if (mddev->delta_disks && mddev->bitmap) { 4274 struct mdp_superblock_1 *sb = NULL; 4275 sector_t oldsize, newsize; 4276 4277 oldsize = raid10_size(mddev, 0, 0); 4278 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4279 4280 if (!mddev_is_clustered(mddev)) { 4281 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4282 if (ret) 4283 goto abort; 4284 else 4285 goto out; 4286 } 4287 4288 rdev_for_each(rdev, mddev) { 4289 if (rdev->raid_disk > -1 && 4290 !test_bit(Faulty, &rdev->flags)) 4291 sb = page_address(rdev->sb_page); 4292 } 4293 4294 /* 4295 * some node is already performing reshape, and no need to 4296 * call md_bitmap_resize again since it should be called when 4297 * receiving BITMAP_RESIZE msg 4298 */ 4299 if ((sb && (le32_to_cpu(sb->feature_map) & 4300 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4301 goto out; 4302 4303 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4304 if (ret) 4305 goto abort; 4306 4307 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4308 if (ret) { 4309 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4310 goto abort; 4311 } 4312 } 4313 out: 4314 if (mddev->delta_disks > 0) { 4315 rdev_for_each(rdev, mddev) 4316 if (rdev->raid_disk < 0 && 4317 !test_bit(Faulty, &rdev->flags)) { 4318 if (raid10_add_disk(mddev, rdev) == 0) { 4319 if (rdev->raid_disk >= 4320 conf->prev.raid_disks) 4321 set_bit(In_sync, &rdev->flags); 4322 else 4323 rdev->recovery_offset = 0; 4324 4325 if (sysfs_link_rdev(mddev, rdev)) 4326 /* Failure here is OK */; 4327 } 4328 } else if (rdev->raid_disk >= conf->prev.raid_disks 4329 && !test_bit(Faulty, &rdev->flags)) { 4330 /* This is a spare that was manually added */ 4331 set_bit(In_sync, &rdev->flags); 4332 } 4333 } 4334 /* When a reshape changes the number of devices, 4335 * ->degraded is measured against the larger of the 4336 * pre and post numbers. 4337 */ 4338 spin_lock_irq(&conf->device_lock); 4339 mddev->degraded = calc_degraded(conf); 4340 spin_unlock_irq(&conf->device_lock); 4341 mddev->raid_disks = conf->geo.raid_disks; 4342 mddev->reshape_position = conf->reshape_progress; 4343 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4344 4345 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4346 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4347 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4348 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4349 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4350 4351 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4352 "reshape"); 4353 if (!mddev->sync_thread) { 4354 ret = -EAGAIN; 4355 goto abort; 4356 } 4357 conf->reshape_checkpoint = jiffies; 4358 md_wakeup_thread(mddev->sync_thread); 4359 md_new_event(mddev); 4360 return 0; 4361 4362 abort: 4363 mddev->recovery = 0; 4364 spin_lock_irq(&conf->device_lock); 4365 conf->geo = conf->prev; 4366 mddev->raid_disks = conf->geo.raid_disks; 4367 rdev_for_each(rdev, mddev) 4368 rdev->new_data_offset = rdev->data_offset; 4369 smp_wmb(); 4370 conf->reshape_progress = MaxSector; 4371 conf->reshape_safe = MaxSector; 4372 mddev->reshape_position = MaxSector; 4373 spin_unlock_irq(&conf->device_lock); 4374 return ret; 4375 } 4376 4377 /* Calculate the last device-address that could contain 4378 * any block from the chunk that includes the array-address 's' 4379 * and report the next address. 4380 * i.e. the address returned will be chunk-aligned and after 4381 * any data that is in the chunk containing 's'. 4382 */ 4383 static sector_t last_dev_address(sector_t s, struct geom *geo) 4384 { 4385 s = (s | geo->chunk_mask) + 1; 4386 s >>= geo->chunk_shift; 4387 s *= geo->near_copies; 4388 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4389 s *= geo->far_copies; 4390 s <<= geo->chunk_shift; 4391 return s; 4392 } 4393 4394 /* Calculate the first device-address that could contain 4395 * any block from the chunk that includes the array-address 's'. 4396 * This too will be the start of a chunk 4397 */ 4398 static sector_t first_dev_address(sector_t s, struct geom *geo) 4399 { 4400 s >>= geo->chunk_shift; 4401 s *= geo->near_copies; 4402 sector_div(s, geo->raid_disks); 4403 s *= geo->far_copies; 4404 s <<= geo->chunk_shift; 4405 return s; 4406 } 4407 4408 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4409 int *skipped) 4410 { 4411 /* We simply copy at most one chunk (smallest of old and new) 4412 * at a time, possibly less if that exceeds RESYNC_PAGES, 4413 * or we hit a bad block or something. 4414 * This might mean we pause for normal IO in the middle of 4415 * a chunk, but that is not a problem as mddev->reshape_position 4416 * can record any location. 4417 * 4418 * If we will want to write to a location that isn't 4419 * yet recorded as 'safe' (i.e. in metadata on disk) then 4420 * we need to flush all reshape requests and update the metadata. 4421 * 4422 * When reshaping forwards (e.g. to more devices), we interpret 4423 * 'safe' as the earliest block which might not have been copied 4424 * down yet. We divide this by previous stripe size and multiply 4425 * by previous stripe length to get lowest device offset that we 4426 * cannot write to yet. 4427 * We interpret 'sector_nr' as an address that we want to write to. 4428 * From this we use last_device_address() to find where we might 4429 * write to, and first_device_address on the 'safe' position. 4430 * If this 'next' write position is after the 'safe' position, 4431 * we must update the metadata to increase the 'safe' position. 4432 * 4433 * When reshaping backwards, we round in the opposite direction 4434 * and perform the reverse test: next write position must not be 4435 * less than current safe position. 4436 * 4437 * In all this the minimum difference in data offsets 4438 * (conf->offset_diff - always positive) allows a bit of slack, 4439 * so next can be after 'safe', but not by more than offset_diff 4440 * 4441 * We need to prepare all the bios here before we start any IO 4442 * to ensure the size we choose is acceptable to all devices. 4443 * The means one for each copy for write-out and an extra one for 4444 * read-in. 4445 * We store the read-in bio in ->master_bio and the others in 4446 * ->devs[x].bio and ->devs[x].repl_bio. 4447 */ 4448 struct r10conf *conf = mddev->private; 4449 struct r10bio *r10_bio; 4450 sector_t next, safe, last; 4451 int max_sectors; 4452 int nr_sectors; 4453 int s; 4454 struct md_rdev *rdev; 4455 int need_flush = 0; 4456 struct bio *blist; 4457 struct bio *bio, *read_bio; 4458 int sectors_done = 0; 4459 struct page **pages; 4460 4461 if (sector_nr == 0) { 4462 /* If restarting in the middle, skip the initial sectors */ 4463 if (mddev->reshape_backwards && 4464 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4465 sector_nr = (raid10_size(mddev, 0, 0) 4466 - conf->reshape_progress); 4467 } else if (!mddev->reshape_backwards && 4468 conf->reshape_progress > 0) 4469 sector_nr = conf->reshape_progress; 4470 if (sector_nr) { 4471 mddev->curr_resync_completed = sector_nr; 4472 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4473 *skipped = 1; 4474 return sector_nr; 4475 } 4476 } 4477 4478 /* We don't use sector_nr to track where we are up to 4479 * as that doesn't work well for ->reshape_backwards. 4480 * So just use ->reshape_progress. 4481 */ 4482 if (mddev->reshape_backwards) { 4483 /* 'next' is the earliest device address that we might 4484 * write to for this chunk in the new layout 4485 */ 4486 next = first_dev_address(conf->reshape_progress - 1, 4487 &conf->geo); 4488 4489 /* 'safe' is the last device address that we might read from 4490 * in the old layout after a restart 4491 */ 4492 safe = last_dev_address(conf->reshape_safe - 1, 4493 &conf->prev); 4494 4495 if (next + conf->offset_diff < safe) 4496 need_flush = 1; 4497 4498 last = conf->reshape_progress - 1; 4499 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4500 & conf->prev.chunk_mask); 4501 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4502 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4503 } else { 4504 /* 'next' is after the last device address that we 4505 * might write to for this chunk in the new layout 4506 */ 4507 next = last_dev_address(conf->reshape_progress, &conf->geo); 4508 4509 /* 'safe' is the earliest device address that we might 4510 * read from in the old layout after a restart 4511 */ 4512 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4513 4514 /* Need to update metadata if 'next' might be beyond 'safe' 4515 * as that would possibly corrupt data 4516 */ 4517 if (next > safe + conf->offset_diff) 4518 need_flush = 1; 4519 4520 sector_nr = conf->reshape_progress; 4521 last = sector_nr | (conf->geo.chunk_mask 4522 & conf->prev.chunk_mask); 4523 4524 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4525 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4526 } 4527 4528 if (need_flush || 4529 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4530 /* Need to update reshape_position in metadata */ 4531 wait_barrier(conf); 4532 mddev->reshape_position = conf->reshape_progress; 4533 if (mddev->reshape_backwards) 4534 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4535 - conf->reshape_progress; 4536 else 4537 mddev->curr_resync_completed = conf->reshape_progress; 4538 conf->reshape_checkpoint = jiffies; 4539 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4540 md_wakeup_thread(mddev->thread); 4541 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4542 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4543 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4544 allow_barrier(conf); 4545 return sectors_done; 4546 } 4547 conf->reshape_safe = mddev->reshape_position; 4548 allow_barrier(conf); 4549 } 4550 4551 raise_barrier(conf, 0); 4552 read_more: 4553 /* Now schedule reads for blocks from sector_nr to last */ 4554 r10_bio = raid10_alloc_init_r10buf(conf); 4555 r10_bio->state = 0; 4556 raise_barrier(conf, 1); 4557 atomic_set(&r10_bio->remaining, 0); 4558 r10_bio->mddev = mddev; 4559 r10_bio->sector = sector_nr; 4560 set_bit(R10BIO_IsReshape, &r10_bio->state); 4561 r10_bio->sectors = last - sector_nr + 1; 4562 rdev = read_balance(conf, r10_bio, &max_sectors); 4563 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4564 4565 if (!rdev) { 4566 /* Cannot read from here, so need to record bad blocks 4567 * on all the target devices. 4568 */ 4569 // FIXME 4570 mempool_free(r10_bio, &conf->r10buf_pool); 4571 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4572 return sectors_done; 4573 } 4574 4575 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4576 4577 bio_set_dev(read_bio, rdev->bdev); 4578 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4579 + rdev->data_offset); 4580 read_bio->bi_private = r10_bio; 4581 read_bio->bi_end_io = end_reshape_read; 4582 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4583 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4584 read_bio->bi_status = 0; 4585 read_bio->bi_vcnt = 0; 4586 read_bio->bi_iter.bi_size = 0; 4587 r10_bio->master_bio = read_bio; 4588 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4589 4590 /* 4591 * Broadcast RESYNC message to other nodes, so all nodes would not 4592 * write to the region to avoid conflict. 4593 */ 4594 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4595 struct mdp_superblock_1 *sb = NULL; 4596 int sb_reshape_pos = 0; 4597 4598 conf->cluster_sync_low = sector_nr; 4599 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4600 sb = page_address(rdev->sb_page); 4601 if (sb) { 4602 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4603 /* 4604 * Set cluster_sync_low again if next address for array 4605 * reshape is less than cluster_sync_low. Since we can't 4606 * update cluster_sync_low until it has finished reshape. 4607 */ 4608 if (sb_reshape_pos < conf->cluster_sync_low) 4609 conf->cluster_sync_low = sb_reshape_pos; 4610 } 4611 4612 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4613 conf->cluster_sync_high); 4614 } 4615 4616 /* Now find the locations in the new layout */ 4617 __raid10_find_phys(&conf->geo, r10_bio); 4618 4619 blist = read_bio; 4620 read_bio->bi_next = NULL; 4621 4622 rcu_read_lock(); 4623 for (s = 0; s < conf->copies*2; s++) { 4624 struct bio *b; 4625 int d = r10_bio->devs[s/2].devnum; 4626 struct md_rdev *rdev2; 4627 if (s&1) { 4628 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4629 b = r10_bio->devs[s/2].repl_bio; 4630 } else { 4631 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4632 b = r10_bio->devs[s/2].bio; 4633 } 4634 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4635 continue; 4636 4637 bio_set_dev(b, rdev2->bdev); 4638 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4639 rdev2->new_data_offset; 4640 b->bi_end_io = end_reshape_write; 4641 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4642 b->bi_next = blist; 4643 blist = b; 4644 } 4645 4646 /* Now add as many pages as possible to all of these bios. */ 4647 4648 nr_sectors = 0; 4649 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4650 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4651 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4652 int len = (max_sectors - s) << 9; 4653 if (len > PAGE_SIZE) 4654 len = PAGE_SIZE; 4655 for (bio = blist; bio ; bio = bio->bi_next) { 4656 /* 4657 * won't fail because the vec table is big enough 4658 * to hold all these pages 4659 */ 4660 bio_add_page(bio, page, len, 0); 4661 } 4662 sector_nr += len >> 9; 4663 nr_sectors += len >> 9; 4664 } 4665 rcu_read_unlock(); 4666 r10_bio->sectors = nr_sectors; 4667 4668 /* Now submit the read */ 4669 md_sync_acct_bio(read_bio, r10_bio->sectors); 4670 atomic_inc(&r10_bio->remaining); 4671 read_bio->bi_next = NULL; 4672 generic_make_request(read_bio); 4673 sector_nr += nr_sectors; 4674 sectors_done += nr_sectors; 4675 if (sector_nr <= last) 4676 goto read_more; 4677 4678 lower_barrier(conf); 4679 4680 /* Now that we have done the whole section we can 4681 * update reshape_progress 4682 */ 4683 if (mddev->reshape_backwards) 4684 conf->reshape_progress -= sectors_done; 4685 else 4686 conf->reshape_progress += sectors_done; 4687 4688 return sectors_done; 4689 } 4690 4691 static void end_reshape_request(struct r10bio *r10_bio); 4692 static int handle_reshape_read_error(struct mddev *mddev, 4693 struct r10bio *r10_bio); 4694 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4695 { 4696 /* Reshape read completed. Hopefully we have a block 4697 * to write out. 4698 * If we got a read error then we do sync 1-page reads from 4699 * elsewhere until we find the data - or give up. 4700 */ 4701 struct r10conf *conf = mddev->private; 4702 int s; 4703 4704 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4705 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4706 /* Reshape has been aborted */ 4707 md_done_sync(mddev, r10_bio->sectors, 0); 4708 return; 4709 } 4710 4711 /* We definitely have the data in the pages, schedule the 4712 * writes. 4713 */ 4714 atomic_set(&r10_bio->remaining, 1); 4715 for (s = 0; s < conf->copies*2; s++) { 4716 struct bio *b; 4717 int d = r10_bio->devs[s/2].devnum; 4718 struct md_rdev *rdev; 4719 rcu_read_lock(); 4720 if (s&1) { 4721 rdev = rcu_dereference(conf->mirrors[d].replacement); 4722 b = r10_bio->devs[s/2].repl_bio; 4723 } else { 4724 rdev = rcu_dereference(conf->mirrors[d].rdev); 4725 b = r10_bio->devs[s/2].bio; 4726 } 4727 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4728 rcu_read_unlock(); 4729 continue; 4730 } 4731 atomic_inc(&rdev->nr_pending); 4732 rcu_read_unlock(); 4733 md_sync_acct_bio(b, r10_bio->sectors); 4734 atomic_inc(&r10_bio->remaining); 4735 b->bi_next = NULL; 4736 generic_make_request(b); 4737 } 4738 end_reshape_request(r10_bio); 4739 } 4740 4741 static void end_reshape(struct r10conf *conf) 4742 { 4743 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4744 return; 4745 4746 spin_lock_irq(&conf->device_lock); 4747 conf->prev = conf->geo; 4748 md_finish_reshape(conf->mddev); 4749 smp_wmb(); 4750 conf->reshape_progress = MaxSector; 4751 conf->reshape_safe = MaxSector; 4752 spin_unlock_irq(&conf->device_lock); 4753 4754 /* read-ahead size must cover two whole stripes, which is 4755 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4756 */ 4757 if (conf->mddev->queue) { 4758 int stripe = conf->geo.raid_disks * 4759 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4760 stripe /= conf->geo.near_copies; 4761 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4762 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4763 } 4764 conf->fullsync = 0; 4765 } 4766 4767 static void raid10_update_reshape_pos(struct mddev *mddev) 4768 { 4769 struct r10conf *conf = mddev->private; 4770 sector_t lo, hi; 4771 4772 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4773 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4774 || mddev->reshape_position == MaxSector) 4775 conf->reshape_progress = mddev->reshape_position; 4776 else 4777 WARN_ON_ONCE(1); 4778 } 4779 4780 static int handle_reshape_read_error(struct mddev *mddev, 4781 struct r10bio *r10_bio) 4782 { 4783 /* Use sync reads to get the blocks from somewhere else */ 4784 int sectors = r10_bio->sectors; 4785 struct r10conf *conf = mddev->private; 4786 struct r10bio *r10b; 4787 int slot = 0; 4788 int idx = 0; 4789 struct page **pages; 4790 4791 r10b = kmalloc(sizeof(*r10b) + 4792 sizeof(struct r10dev) * conf->copies, GFP_NOIO); 4793 if (!r10b) { 4794 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4795 return -ENOMEM; 4796 } 4797 4798 /* reshape IOs share pages from .devs[0].bio */ 4799 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4800 4801 r10b->sector = r10_bio->sector; 4802 __raid10_find_phys(&conf->prev, r10b); 4803 4804 while (sectors) { 4805 int s = sectors; 4806 int success = 0; 4807 int first_slot = slot; 4808 4809 if (s > (PAGE_SIZE >> 9)) 4810 s = PAGE_SIZE >> 9; 4811 4812 rcu_read_lock(); 4813 while (!success) { 4814 int d = r10b->devs[slot].devnum; 4815 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4816 sector_t addr; 4817 if (rdev == NULL || 4818 test_bit(Faulty, &rdev->flags) || 4819 !test_bit(In_sync, &rdev->flags)) 4820 goto failed; 4821 4822 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4823 atomic_inc(&rdev->nr_pending); 4824 rcu_read_unlock(); 4825 success = sync_page_io(rdev, 4826 addr, 4827 s << 9, 4828 pages[idx], 4829 REQ_OP_READ, 0, false); 4830 rdev_dec_pending(rdev, mddev); 4831 rcu_read_lock(); 4832 if (success) 4833 break; 4834 failed: 4835 slot++; 4836 if (slot >= conf->copies) 4837 slot = 0; 4838 if (slot == first_slot) 4839 break; 4840 } 4841 rcu_read_unlock(); 4842 if (!success) { 4843 /* couldn't read this block, must give up */ 4844 set_bit(MD_RECOVERY_INTR, 4845 &mddev->recovery); 4846 kfree(r10b); 4847 return -EIO; 4848 } 4849 sectors -= s; 4850 idx++; 4851 } 4852 kfree(r10b); 4853 return 0; 4854 } 4855 4856 static void end_reshape_write(struct bio *bio) 4857 { 4858 struct r10bio *r10_bio = get_resync_r10bio(bio); 4859 struct mddev *mddev = r10_bio->mddev; 4860 struct r10conf *conf = mddev->private; 4861 int d; 4862 int slot; 4863 int repl; 4864 struct md_rdev *rdev = NULL; 4865 4866 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4867 if (repl) 4868 rdev = conf->mirrors[d].replacement; 4869 if (!rdev) { 4870 smp_mb(); 4871 rdev = conf->mirrors[d].rdev; 4872 } 4873 4874 if (bio->bi_status) { 4875 /* FIXME should record badblock */ 4876 md_error(mddev, rdev); 4877 } 4878 4879 rdev_dec_pending(rdev, mddev); 4880 end_reshape_request(r10_bio); 4881 } 4882 4883 static void end_reshape_request(struct r10bio *r10_bio) 4884 { 4885 if (!atomic_dec_and_test(&r10_bio->remaining)) 4886 return; 4887 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4888 bio_put(r10_bio->master_bio); 4889 put_buf(r10_bio); 4890 } 4891 4892 static void raid10_finish_reshape(struct mddev *mddev) 4893 { 4894 struct r10conf *conf = mddev->private; 4895 4896 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4897 return; 4898 4899 if (mddev->delta_disks > 0) { 4900 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4901 mddev->recovery_cp = mddev->resync_max_sectors; 4902 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4903 } 4904 mddev->resync_max_sectors = mddev->array_sectors; 4905 } else { 4906 int d; 4907 rcu_read_lock(); 4908 for (d = conf->geo.raid_disks ; 4909 d < conf->geo.raid_disks - mddev->delta_disks; 4910 d++) { 4911 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4912 if (rdev) 4913 clear_bit(In_sync, &rdev->flags); 4914 rdev = rcu_dereference(conf->mirrors[d].replacement); 4915 if (rdev) 4916 clear_bit(In_sync, &rdev->flags); 4917 } 4918 rcu_read_unlock(); 4919 } 4920 mddev->layout = mddev->new_layout; 4921 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4922 mddev->reshape_position = MaxSector; 4923 mddev->delta_disks = 0; 4924 mddev->reshape_backwards = 0; 4925 } 4926 4927 static struct md_personality raid10_personality = 4928 { 4929 .name = "raid10", 4930 .level = 10, 4931 .owner = THIS_MODULE, 4932 .make_request = raid10_make_request, 4933 .run = raid10_run, 4934 .free = raid10_free, 4935 .status = raid10_status, 4936 .error_handler = raid10_error, 4937 .hot_add_disk = raid10_add_disk, 4938 .hot_remove_disk= raid10_remove_disk, 4939 .spare_active = raid10_spare_active, 4940 .sync_request = raid10_sync_request, 4941 .quiesce = raid10_quiesce, 4942 .size = raid10_size, 4943 .resize = raid10_resize, 4944 .takeover = raid10_takeover, 4945 .check_reshape = raid10_check_reshape, 4946 .start_reshape = raid10_start_reshape, 4947 .finish_reshape = raid10_finish_reshape, 4948 .update_reshape_pos = raid10_update_reshape_pos, 4949 .congested = raid10_congested, 4950 }; 4951 4952 static int __init raid_init(void) 4953 { 4954 return register_md_personality(&raid10_personality); 4955 } 4956 4957 static void raid_exit(void) 4958 { 4959 unregister_md_personality(&raid10_personality); 4960 } 4961 4962 module_init(raid_init); 4963 module_exit(raid_exit); 4964 MODULE_LICENSE("GPL"); 4965 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4966 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4967 MODULE_ALIAS("md-raid10"); 4968 MODULE_ALIAS("md-level-10"); 4969 4970 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4971