1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "raid0.h" 28 #include "bitmap.h" 29 30 /* 31 * RAID10 provides a combination of RAID0 and RAID1 functionality. 32 * The layout of data is defined by 33 * chunk_size 34 * raid_disks 35 * near_copies (stored in low byte of layout) 36 * far_copies (stored in second byte of layout) 37 * far_offset (stored in bit 16 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. 40 * Each device is divided into far_copies sections. 41 * In each section, chunks are laid out in a style similar to raid0, but 42 * near_copies copies of each chunk is stored (each on a different drive). 43 * The starting device for each section is offset near_copies from the starting 44 * device of the previous section. 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 46 * drive. 47 * near_copies and far_copies must be at least one, and their product is at most 48 * raid_disks. 49 * 50 * If far_offset is true, then the far_copies are handled a bit differently. 51 * The copies are still in different stripes, but instead of be very far apart 52 * on disk, there are adjacent stripes. 53 */ 54 55 /* 56 * Number of guaranteed r10bios in case of extreme VM load: 57 */ 58 #define NR_RAID10_BIOS 256 59 60 static void unplug_slaves(mddev_t *mddev); 61 62 static void allow_barrier(conf_t *conf); 63 static void lower_barrier(conf_t *conf); 64 65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 66 { 67 conf_t *conf = data; 68 r10bio_t *r10_bio; 69 int size = offsetof(struct r10bio_s, devs[conf->copies]); 70 71 /* allocate a r10bio with room for raid_disks entries in the bios array */ 72 r10_bio = kzalloc(size, gfp_flags); 73 if (!r10_bio && conf->mddev) 74 unplug_slaves(conf->mddev); 75 76 return r10_bio; 77 } 78 79 static void r10bio_pool_free(void *r10_bio, void *data) 80 { 81 kfree(r10_bio); 82 } 83 84 /* Maximum size of each resync request */ 85 #define RESYNC_BLOCK_SIZE (64*1024) 86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 87 /* amount of memory to reserve for resync requests */ 88 #define RESYNC_WINDOW (1024*1024) 89 /* maximum number of concurrent requests, memory permitting */ 90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 91 92 /* 93 * When performing a resync, we need to read and compare, so 94 * we need as many pages are there are copies. 95 * When performing a recovery, we need 2 bios, one for read, 96 * one for write (we recover only one drive per r10buf) 97 * 98 */ 99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 100 { 101 conf_t *conf = data; 102 struct page *page; 103 r10bio_t *r10_bio; 104 struct bio *bio; 105 int i, j; 106 int nalloc; 107 108 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 109 if (!r10_bio) { 110 unplug_slaves(conf->mddev); 111 return NULL; 112 } 113 114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 115 nalloc = conf->copies; /* resync */ 116 else 117 nalloc = 2; /* recovery */ 118 119 /* 120 * Allocate bios. 121 */ 122 for (j = nalloc ; j-- ; ) { 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 124 if (!bio) 125 goto out_free_bio; 126 r10_bio->devs[j].bio = bio; 127 } 128 /* 129 * Allocate RESYNC_PAGES data pages and attach them 130 * where needed. 131 */ 132 for (j = 0 ; j < nalloc; j++) { 133 bio = r10_bio->devs[j].bio; 134 for (i = 0; i < RESYNC_PAGES; i++) { 135 page = alloc_page(gfp_flags); 136 if (unlikely(!page)) 137 goto out_free_pages; 138 139 bio->bi_io_vec[i].bv_page = page; 140 } 141 } 142 143 return r10_bio; 144 145 out_free_pages: 146 for ( ; i > 0 ; i--) 147 safe_put_page(bio->bi_io_vec[i-1].bv_page); 148 while (j--) 149 for (i = 0; i < RESYNC_PAGES ; i++) 150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 151 j = -1; 152 out_free_bio: 153 while ( ++j < nalloc ) 154 bio_put(r10_bio->devs[j].bio); 155 r10bio_pool_free(r10_bio, conf); 156 return NULL; 157 } 158 159 static void r10buf_pool_free(void *__r10_bio, void *data) 160 { 161 int i; 162 conf_t *conf = data; 163 r10bio_t *r10bio = __r10_bio; 164 int j; 165 166 for (j=0; j < conf->copies; j++) { 167 struct bio *bio = r10bio->devs[j].bio; 168 if (bio) { 169 for (i = 0; i < RESYNC_PAGES; i++) { 170 safe_put_page(bio->bi_io_vec[i].bv_page); 171 bio->bi_io_vec[i].bv_page = NULL; 172 } 173 bio_put(bio); 174 } 175 } 176 r10bio_pool_free(r10bio, conf); 177 } 178 179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->copies; i++) { 184 struct bio **bio = & r10_bio->devs[i].bio; 185 if (*bio && *bio != IO_BLOCKED) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r10bio(r10bio_t *r10_bio) 192 { 193 conf_t *conf = r10_bio->mddev->private; 194 195 /* 196 * Wake up any possible resync thread that waits for the device 197 * to go idle. 198 */ 199 allow_barrier(conf); 200 201 put_all_bios(conf, r10_bio); 202 mempool_free(r10_bio, conf->r10bio_pool); 203 } 204 205 static void put_buf(r10bio_t *r10_bio) 206 { 207 conf_t *conf = r10_bio->mddev->private; 208 209 mempool_free(r10_bio, conf->r10buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r10bio_t *r10_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r10_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r10_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 /* wake up frozen array... */ 226 wake_up(&conf->wait_barrier); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = r10_bio->mddev->private; 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static void raid10_end_read_request(struct bio *bio, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t *r10_bio = bio->bi_private; 260 int slot, dev; 261 conf_t *conf = r10_bio->mddev->private; 262 263 264 slot = r10_bio->read_slot; 265 dev = r10_bio->devs[slot].devnum; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(slot, r10_bio); 270 271 if (uptodate) { 272 /* 273 * Set R10BIO_Uptodate in our master bio, so that 274 * we will return a good error code to the higher 275 * levels even if IO on some other mirrored buffer fails. 276 * 277 * The 'master' represents the composite IO operation to 278 * user-side. So if something waits for IO, then it will 279 * wait for the 'master' bio. 280 */ 281 set_bit(R10BIO_Uptodate, &r10_bio->state); 282 raid_end_bio_io(r10_bio); 283 } else { 284 /* 285 * oops, read error: 286 */ 287 char b[BDEVNAME_SIZE]; 288 if (printk_ratelimit()) 289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", 290 mdname(conf->mddev), 291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 292 reschedule_retry(r10_bio); 293 } 294 295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 296 } 297 298 static void raid10_end_write_request(struct bio *bio, int error) 299 { 300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 301 r10bio_t *r10_bio = bio->bi_private; 302 int slot, dev; 303 conf_t *conf = r10_bio->mddev->private; 304 305 for (slot = 0; slot < conf->copies; slot++) 306 if (r10_bio->devs[slot].bio == bio) 307 break; 308 dev = r10_bio->devs[slot].devnum; 309 310 /* 311 * this branch is our 'one mirror IO has finished' event handler: 312 */ 313 if (!uptodate) { 314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 315 /* an I/O failed, we can't clear the bitmap */ 316 set_bit(R10BIO_Degraded, &r10_bio->state); 317 } else 318 /* 319 * Set R10BIO_Uptodate in our master bio, so that 320 * we will return a good error code for to the higher 321 * levels even if IO on some other mirrored buffer fails. 322 * 323 * The 'master' represents the composite IO operation to 324 * user-side. So if something waits for IO, then it will 325 * wait for the 'master' bio. 326 */ 327 set_bit(R10BIO_Uptodate, &r10_bio->state); 328 329 update_head_pos(slot, r10_bio); 330 331 /* 332 * 333 * Let's see if all mirrored write operations have finished 334 * already. 335 */ 336 if (atomic_dec_and_test(&r10_bio->remaining)) { 337 /* clear the bitmap if all writes complete successfully */ 338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 339 r10_bio->sectors, 340 !test_bit(R10BIO_Degraded, &r10_bio->state), 341 0); 342 md_write_end(r10_bio->mddev); 343 raid_end_bio_io(r10_bio); 344 } 345 346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 347 } 348 349 350 /* 351 * RAID10 layout manager 352 * Aswell as the chunksize and raid_disks count, there are two 353 * parameters: near_copies and far_copies. 354 * near_copies * far_copies must be <= raid_disks. 355 * Normally one of these will be 1. 356 * If both are 1, we get raid0. 357 * If near_copies == raid_disks, we get raid1. 358 * 359 * Chunks are layed out in raid0 style with near_copies copies of the 360 * first chunk, followed by near_copies copies of the next chunk and 361 * so on. 362 * If far_copies > 1, then after 1/far_copies of the array has been assigned 363 * as described above, we start again with a device offset of near_copies. 364 * So we effectively have another copy of the whole array further down all 365 * the drives, but with blocks on different drives. 366 * With this layout, and block is never stored twice on the one device. 367 * 368 * raid10_find_phys finds the sector offset of a given virtual sector 369 * on each device that it is on. 370 * 371 * raid10_find_virt does the reverse mapping, from a device and a 372 * sector offset to a virtual address 373 */ 374 375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 376 { 377 int n,f; 378 sector_t sector; 379 sector_t chunk; 380 sector_t stripe; 381 int dev; 382 383 int slot = 0; 384 385 /* now calculate first sector/dev */ 386 chunk = r10bio->sector >> conf->chunk_shift; 387 sector = r10bio->sector & conf->chunk_mask; 388 389 chunk *= conf->near_copies; 390 stripe = chunk; 391 dev = sector_div(stripe, conf->raid_disks); 392 if (conf->far_offset) 393 stripe *= conf->far_copies; 394 395 sector += stripe << conf->chunk_shift; 396 397 /* and calculate all the others */ 398 for (n=0; n < conf->near_copies; n++) { 399 int d = dev; 400 sector_t s = sector; 401 r10bio->devs[slot].addr = sector; 402 r10bio->devs[slot].devnum = d; 403 slot++; 404 405 for (f = 1; f < conf->far_copies; f++) { 406 d += conf->near_copies; 407 if (d >= conf->raid_disks) 408 d -= conf->raid_disks; 409 s += conf->stride; 410 r10bio->devs[slot].devnum = d; 411 r10bio->devs[slot].addr = s; 412 slot++; 413 } 414 dev++; 415 if (dev >= conf->raid_disks) { 416 dev = 0; 417 sector += (conf->chunk_mask + 1); 418 } 419 } 420 BUG_ON(slot != conf->copies); 421 } 422 423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 424 { 425 sector_t offset, chunk, vchunk; 426 427 offset = sector & conf->chunk_mask; 428 if (conf->far_offset) { 429 int fc; 430 chunk = sector >> conf->chunk_shift; 431 fc = sector_div(chunk, conf->far_copies); 432 dev -= fc * conf->near_copies; 433 if (dev < 0) 434 dev += conf->raid_disks; 435 } else { 436 while (sector >= conf->stride) { 437 sector -= conf->stride; 438 if (dev < conf->near_copies) 439 dev += conf->raid_disks - conf->near_copies; 440 else 441 dev -= conf->near_copies; 442 } 443 chunk = sector >> conf->chunk_shift; 444 } 445 vchunk = chunk * conf->raid_disks + dev; 446 sector_div(vchunk, conf->near_copies); 447 return (vchunk << conf->chunk_shift) + offset; 448 } 449 450 /** 451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 452 * @q: request queue 453 * @bvm: properties of new bio 454 * @biovec: the request that could be merged to it. 455 * 456 * Return amount of bytes we can accept at this offset 457 * If near_copies == raid_disk, there are no striping issues, 458 * but in that case, the function isn't called at all. 459 */ 460 static int raid10_mergeable_bvec(struct request_queue *q, 461 struct bvec_merge_data *bvm, 462 struct bio_vec *biovec) 463 { 464 mddev_t *mddev = q->queuedata; 465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 466 int max; 467 unsigned int chunk_sectors = mddev->chunk_sectors; 468 unsigned int bio_sectors = bvm->bi_size >> 9; 469 470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 472 if (max <= biovec->bv_len && bio_sectors == 0) 473 return biovec->bv_len; 474 else 475 return max; 476 } 477 478 /* 479 * This routine returns the disk from which the requested read should 480 * be done. There is a per-array 'next expected sequential IO' sector 481 * number - if this matches on the next IO then we use the last disk. 482 * There is also a per-disk 'last know head position' sector that is 483 * maintained from IRQ contexts, both the normal and the resync IO 484 * completion handlers update this position correctly. If there is no 485 * perfect sequential match then we pick the disk whose head is closest. 486 * 487 * If there are 2 mirrors in the same 2 devices, performance degrades 488 * because position is mirror, not device based. 489 * 490 * The rdev for the device selected will have nr_pending incremented. 491 */ 492 493 /* 494 * FIXME: possibly should rethink readbalancing and do it differently 495 * depending on near_copies / far_copies geometry. 496 */ 497 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 498 { 499 const sector_t this_sector = r10_bio->sector; 500 int disk, slot, nslot; 501 const int sectors = r10_bio->sectors; 502 sector_t new_distance, current_distance; 503 mdk_rdev_t *rdev; 504 505 raid10_find_phys(conf, r10_bio); 506 rcu_read_lock(); 507 /* 508 * Check if we can balance. We can balance on the whole 509 * device if no resync is going on (recovery is ok), or below 510 * the resync window. We take the first readable disk when 511 * above the resync window. 512 */ 513 if (conf->mddev->recovery_cp < MaxSector 514 && (this_sector + sectors >= conf->next_resync)) { 515 /* make sure that disk is operational */ 516 slot = 0; 517 disk = r10_bio->devs[slot].devnum; 518 519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 520 r10_bio->devs[slot].bio == IO_BLOCKED || 521 !test_bit(In_sync, &rdev->flags)) { 522 slot++; 523 if (slot == conf->copies) { 524 slot = 0; 525 disk = -1; 526 break; 527 } 528 disk = r10_bio->devs[slot].devnum; 529 } 530 goto rb_out; 531 } 532 533 534 /* make sure the disk is operational */ 535 slot = 0; 536 disk = r10_bio->devs[slot].devnum; 537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 538 r10_bio->devs[slot].bio == IO_BLOCKED || 539 !test_bit(In_sync, &rdev->flags)) { 540 slot ++; 541 if (slot == conf->copies) { 542 disk = -1; 543 goto rb_out; 544 } 545 disk = r10_bio->devs[slot].devnum; 546 } 547 548 549 current_distance = abs(r10_bio->devs[slot].addr - 550 conf->mirrors[disk].head_position); 551 552 /* Find the disk whose head is closest, 553 * or - for far > 1 - find the closest to partition beginning */ 554 555 for (nslot = slot; nslot < conf->copies; nslot++) { 556 int ndisk = r10_bio->devs[nslot].devnum; 557 558 559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 560 r10_bio->devs[nslot].bio == IO_BLOCKED || 561 !test_bit(In_sync, &rdev->flags)) 562 continue; 563 564 /* This optimisation is debatable, and completely destroys 565 * sequential read speed for 'far copies' arrays. So only 566 * keep it for 'near' arrays, and review those later. 567 */ 568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 569 disk = ndisk; 570 slot = nslot; 571 break; 572 } 573 574 /* for far > 1 always use the lowest address */ 575 if (conf->far_copies > 1) 576 new_distance = r10_bio->devs[nslot].addr; 577 else 578 new_distance = abs(r10_bio->devs[nslot].addr - 579 conf->mirrors[ndisk].head_position); 580 if (new_distance < current_distance) { 581 current_distance = new_distance; 582 disk = ndisk; 583 slot = nslot; 584 } 585 } 586 587 rb_out: 588 r10_bio->read_slot = slot; 589 /* conf->next_seq_sect = this_sector + sectors;*/ 590 591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 593 else 594 disk = -1; 595 rcu_read_unlock(); 596 597 return disk; 598 } 599 600 static void unplug_slaves(mddev_t *mddev) 601 { 602 conf_t *conf = mddev->private; 603 int i; 604 605 rcu_read_lock(); 606 for (i=0; i < conf->raid_disks; i++) { 607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 610 611 atomic_inc(&rdev->nr_pending); 612 rcu_read_unlock(); 613 614 blk_unplug(r_queue); 615 616 rdev_dec_pending(rdev, mddev); 617 rcu_read_lock(); 618 } 619 } 620 rcu_read_unlock(); 621 } 622 623 static void raid10_unplug(struct request_queue *q) 624 { 625 mddev_t *mddev = q->queuedata; 626 627 unplug_slaves(q->queuedata); 628 md_wakeup_thread(mddev->thread); 629 } 630 631 static int raid10_congested(void *data, int bits) 632 { 633 mddev_t *mddev = data; 634 conf_t *conf = mddev->private; 635 int i, ret = 0; 636 637 if (mddev_congested(mddev, bits)) 638 return 1; 639 rcu_read_lock(); 640 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 642 if (rdev && !test_bit(Faulty, &rdev->flags)) { 643 struct request_queue *q = bdev_get_queue(rdev->bdev); 644 645 ret |= bdi_congested(&q->backing_dev_info, bits); 646 } 647 } 648 rcu_read_unlock(); 649 return ret; 650 } 651 652 static int flush_pending_writes(conf_t *conf) 653 { 654 /* Any writes that have been queued but are awaiting 655 * bitmap updates get flushed here. 656 * We return 1 if any requests were actually submitted. 657 */ 658 int rv = 0; 659 660 spin_lock_irq(&conf->device_lock); 661 662 if (conf->pending_bio_list.head) { 663 struct bio *bio; 664 bio = bio_list_get(&conf->pending_bio_list); 665 /* Spinlock only taken to quiet a warning */ 666 spin_lock(conf->mddev->queue->queue_lock); 667 blk_remove_plug(conf->mddev->queue); 668 spin_unlock(conf->mddev->queue->queue_lock); 669 spin_unlock_irq(&conf->device_lock); 670 /* flush any pending bitmap writes to disk 671 * before proceeding w/ I/O */ 672 bitmap_unplug(conf->mddev->bitmap); 673 674 while (bio) { /* submit pending writes */ 675 struct bio *next = bio->bi_next; 676 bio->bi_next = NULL; 677 generic_make_request(bio); 678 bio = next; 679 } 680 rv = 1; 681 } else 682 spin_unlock_irq(&conf->device_lock); 683 return rv; 684 } 685 /* Barriers.... 686 * Sometimes we need to suspend IO while we do something else, 687 * either some resync/recovery, or reconfigure the array. 688 * To do this we raise a 'barrier'. 689 * The 'barrier' is a counter that can be raised multiple times 690 * to count how many activities are happening which preclude 691 * normal IO. 692 * We can only raise the barrier if there is no pending IO. 693 * i.e. if nr_pending == 0. 694 * We choose only to raise the barrier if no-one is waiting for the 695 * barrier to go down. This means that as soon as an IO request 696 * is ready, no other operations which require a barrier will start 697 * until the IO request has had a chance. 698 * 699 * So: regular IO calls 'wait_barrier'. When that returns there 700 * is no backgroup IO happening, It must arrange to call 701 * allow_barrier when it has finished its IO. 702 * backgroup IO calls must call raise_barrier. Once that returns 703 * there is no normal IO happeing. It must arrange to call 704 * lower_barrier when the particular background IO completes. 705 */ 706 707 static void raise_barrier(conf_t *conf, int force) 708 { 709 BUG_ON(force && !conf->barrier); 710 spin_lock_irq(&conf->resync_lock); 711 712 /* Wait until no block IO is waiting (unless 'force') */ 713 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 714 conf->resync_lock, 715 raid10_unplug(conf->mddev->queue)); 716 717 /* block any new IO from starting */ 718 conf->barrier++; 719 720 /* No wait for all pending IO to complete */ 721 wait_event_lock_irq(conf->wait_barrier, 722 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 723 conf->resync_lock, 724 raid10_unplug(conf->mddev->queue)); 725 726 spin_unlock_irq(&conf->resync_lock); 727 } 728 729 static void lower_barrier(conf_t *conf) 730 { 731 unsigned long flags; 732 spin_lock_irqsave(&conf->resync_lock, flags); 733 conf->barrier--; 734 spin_unlock_irqrestore(&conf->resync_lock, flags); 735 wake_up(&conf->wait_barrier); 736 } 737 738 static void wait_barrier(conf_t *conf) 739 { 740 spin_lock_irq(&conf->resync_lock); 741 if (conf->barrier) { 742 conf->nr_waiting++; 743 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 744 conf->resync_lock, 745 raid10_unplug(conf->mddev->queue)); 746 conf->nr_waiting--; 747 } 748 conf->nr_pending++; 749 spin_unlock_irq(&conf->resync_lock); 750 } 751 752 static void allow_barrier(conf_t *conf) 753 { 754 unsigned long flags; 755 spin_lock_irqsave(&conf->resync_lock, flags); 756 conf->nr_pending--; 757 spin_unlock_irqrestore(&conf->resync_lock, flags); 758 wake_up(&conf->wait_barrier); 759 } 760 761 static void freeze_array(conf_t *conf) 762 { 763 /* stop syncio and normal IO and wait for everything to 764 * go quiet. 765 * We increment barrier and nr_waiting, and then 766 * wait until nr_pending match nr_queued+1 767 * This is called in the context of one normal IO request 768 * that has failed. Thus any sync request that might be pending 769 * will be blocked by nr_pending, and we need to wait for 770 * pending IO requests to complete or be queued for re-try. 771 * Thus the number queued (nr_queued) plus this request (1) 772 * must match the number of pending IOs (nr_pending) before 773 * we continue. 774 */ 775 spin_lock_irq(&conf->resync_lock); 776 conf->barrier++; 777 conf->nr_waiting++; 778 wait_event_lock_irq(conf->wait_barrier, 779 conf->nr_pending == conf->nr_queued+1, 780 conf->resync_lock, 781 ({ flush_pending_writes(conf); 782 raid10_unplug(conf->mddev->queue); })); 783 spin_unlock_irq(&conf->resync_lock); 784 } 785 786 static void unfreeze_array(conf_t *conf) 787 { 788 /* reverse the effect of the freeze */ 789 spin_lock_irq(&conf->resync_lock); 790 conf->barrier--; 791 conf->nr_waiting--; 792 wake_up(&conf->wait_barrier); 793 spin_unlock_irq(&conf->resync_lock); 794 } 795 796 static int make_request(mddev_t *mddev, struct bio * bio) 797 { 798 conf_t *conf = mddev->private; 799 mirror_info_t *mirror; 800 r10bio_t *r10_bio; 801 struct bio *read_bio; 802 int i; 803 int chunk_sects = conf->chunk_mask + 1; 804 const int rw = bio_data_dir(bio); 805 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 806 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 807 unsigned long flags; 808 mdk_rdev_t *blocked_rdev; 809 810 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 811 md_flush_request(mddev, bio); 812 return 0; 813 } 814 815 /* If this request crosses a chunk boundary, we need to 816 * split it. This will only happen for 1 PAGE (or less) requests. 817 */ 818 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 819 > chunk_sects && 820 conf->near_copies < conf->raid_disks)) { 821 struct bio_pair *bp; 822 /* Sanity check -- queue functions should prevent this happening */ 823 if (bio->bi_vcnt != 1 || 824 bio->bi_idx != 0) 825 goto bad_map; 826 /* This is a one page bio that upper layers 827 * refuse to split for us, so we need to split it. 828 */ 829 bp = bio_split(bio, 830 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 831 832 /* Each of these 'make_request' calls will call 'wait_barrier'. 833 * If the first succeeds but the second blocks due to the resync 834 * thread raising the barrier, we will deadlock because the 835 * IO to the underlying device will be queued in generic_make_request 836 * and will never complete, so will never reduce nr_pending. 837 * So increment nr_waiting here so no new raise_barriers will 838 * succeed, and so the second wait_barrier cannot block. 839 */ 840 spin_lock_irq(&conf->resync_lock); 841 conf->nr_waiting++; 842 spin_unlock_irq(&conf->resync_lock); 843 844 if (make_request(mddev, &bp->bio1)) 845 generic_make_request(&bp->bio1); 846 if (make_request(mddev, &bp->bio2)) 847 generic_make_request(&bp->bio2); 848 849 spin_lock_irq(&conf->resync_lock); 850 conf->nr_waiting--; 851 wake_up(&conf->wait_barrier); 852 spin_unlock_irq(&conf->resync_lock); 853 854 bio_pair_release(bp); 855 return 0; 856 bad_map: 857 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 858 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 859 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 860 861 bio_io_error(bio); 862 return 0; 863 } 864 865 md_write_start(mddev, bio); 866 867 /* 868 * Register the new request and wait if the reconstruction 869 * thread has put up a bar for new requests. 870 * Continue immediately if no resync is active currently. 871 */ 872 wait_barrier(conf); 873 874 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 875 876 r10_bio->master_bio = bio; 877 r10_bio->sectors = bio->bi_size >> 9; 878 879 r10_bio->mddev = mddev; 880 r10_bio->sector = bio->bi_sector; 881 r10_bio->state = 0; 882 883 if (rw == READ) { 884 /* 885 * read balancing logic: 886 */ 887 int disk = read_balance(conf, r10_bio); 888 int slot = r10_bio->read_slot; 889 if (disk < 0) { 890 raid_end_bio_io(r10_bio); 891 return 0; 892 } 893 mirror = conf->mirrors + disk; 894 895 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 896 897 r10_bio->devs[slot].bio = read_bio; 898 899 read_bio->bi_sector = r10_bio->devs[slot].addr + 900 mirror->rdev->data_offset; 901 read_bio->bi_bdev = mirror->rdev->bdev; 902 read_bio->bi_end_io = raid10_end_read_request; 903 read_bio->bi_rw = READ | do_sync; 904 read_bio->bi_private = r10_bio; 905 906 generic_make_request(read_bio); 907 return 0; 908 } 909 910 /* 911 * WRITE: 912 */ 913 /* first select target devices under rcu_lock and 914 * inc refcount on their rdev. Record them by setting 915 * bios[x] to bio 916 */ 917 raid10_find_phys(conf, r10_bio); 918 retry_write: 919 blocked_rdev = NULL; 920 rcu_read_lock(); 921 for (i = 0; i < conf->copies; i++) { 922 int d = r10_bio->devs[i].devnum; 923 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 924 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 925 atomic_inc(&rdev->nr_pending); 926 blocked_rdev = rdev; 927 break; 928 } 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 atomic_inc(&rdev->nr_pending); 931 r10_bio->devs[i].bio = bio; 932 } else { 933 r10_bio->devs[i].bio = NULL; 934 set_bit(R10BIO_Degraded, &r10_bio->state); 935 } 936 } 937 rcu_read_unlock(); 938 939 if (unlikely(blocked_rdev)) { 940 /* Have to wait for this device to get unblocked, then retry */ 941 int j; 942 int d; 943 944 for (j = 0; j < i; j++) 945 if (r10_bio->devs[j].bio) { 946 d = r10_bio->devs[j].devnum; 947 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 948 } 949 allow_barrier(conf); 950 md_wait_for_blocked_rdev(blocked_rdev, mddev); 951 wait_barrier(conf); 952 goto retry_write; 953 } 954 955 atomic_set(&r10_bio->remaining, 1); 956 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 957 958 for (i = 0; i < conf->copies; i++) { 959 struct bio *mbio; 960 int d = r10_bio->devs[i].devnum; 961 if (!r10_bio->devs[i].bio) 962 continue; 963 964 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 965 r10_bio->devs[i].bio = mbio; 966 967 mbio->bi_sector = r10_bio->devs[i].addr+ 968 conf->mirrors[d].rdev->data_offset; 969 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 970 mbio->bi_end_io = raid10_end_write_request; 971 mbio->bi_rw = WRITE | do_sync | do_fua; 972 mbio->bi_private = r10_bio; 973 974 atomic_inc(&r10_bio->remaining); 975 spin_lock_irqsave(&conf->device_lock, flags); 976 bio_list_add(&conf->pending_bio_list, mbio); 977 blk_plug_device_unlocked(mddev->queue); 978 spin_unlock_irqrestore(&conf->device_lock, flags); 979 } 980 981 if (atomic_dec_and_test(&r10_bio->remaining)) { 982 /* This matches the end of raid10_end_write_request() */ 983 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 984 r10_bio->sectors, 985 !test_bit(R10BIO_Degraded, &r10_bio->state), 986 0); 987 md_write_end(mddev); 988 raid_end_bio_io(r10_bio); 989 } 990 991 /* In case raid10d snuck in to freeze_array */ 992 wake_up(&conf->wait_barrier); 993 994 if (do_sync) 995 md_wakeup_thread(mddev->thread); 996 997 return 0; 998 } 999 1000 static void status(struct seq_file *seq, mddev_t *mddev) 1001 { 1002 conf_t *conf = mddev->private; 1003 int i; 1004 1005 if (conf->near_copies < conf->raid_disks) 1006 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1007 if (conf->near_copies > 1) 1008 seq_printf(seq, " %d near-copies", conf->near_copies); 1009 if (conf->far_copies > 1) { 1010 if (conf->far_offset) 1011 seq_printf(seq, " %d offset-copies", conf->far_copies); 1012 else 1013 seq_printf(seq, " %d far-copies", conf->far_copies); 1014 } 1015 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1016 conf->raid_disks - mddev->degraded); 1017 for (i = 0; i < conf->raid_disks; i++) 1018 seq_printf(seq, "%s", 1019 conf->mirrors[i].rdev && 1020 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1021 seq_printf(seq, "]"); 1022 } 1023 1024 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1025 { 1026 char b[BDEVNAME_SIZE]; 1027 conf_t *conf = mddev->private; 1028 1029 /* 1030 * If it is not operational, then we have already marked it as dead 1031 * else if it is the last working disks, ignore the error, let the 1032 * next level up know. 1033 * else mark the drive as failed 1034 */ 1035 if (test_bit(In_sync, &rdev->flags) 1036 && conf->raid_disks-mddev->degraded == 1) 1037 /* 1038 * Don't fail the drive, just return an IO error. 1039 * The test should really be more sophisticated than 1040 * "working_disks == 1", but it isn't critical, and 1041 * can wait until we do more sophisticated "is the drive 1042 * really dead" tests... 1043 */ 1044 return; 1045 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1046 unsigned long flags; 1047 spin_lock_irqsave(&conf->device_lock, flags); 1048 mddev->degraded++; 1049 spin_unlock_irqrestore(&conf->device_lock, flags); 1050 /* 1051 * if recovery is running, make sure it aborts. 1052 */ 1053 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1054 } 1055 set_bit(Faulty, &rdev->flags); 1056 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1057 printk(KERN_ALERT 1058 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1059 "md/raid10:%s: Operation continuing on %d devices.\n", 1060 mdname(mddev), bdevname(rdev->bdev, b), 1061 mdname(mddev), conf->raid_disks - mddev->degraded); 1062 } 1063 1064 static void print_conf(conf_t *conf) 1065 { 1066 int i; 1067 mirror_info_t *tmp; 1068 1069 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1070 if (!conf) { 1071 printk(KERN_DEBUG "(!conf)\n"); 1072 return; 1073 } 1074 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1075 conf->raid_disks); 1076 1077 for (i = 0; i < conf->raid_disks; i++) { 1078 char b[BDEVNAME_SIZE]; 1079 tmp = conf->mirrors + i; 1080 if (tmp->rdev) 1081 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1082 i, !test_bit(In_sync, &tmp->rdev->flags), 1083 !test_bit(Faulty, &tmp->rdev->flags), 1084 bdevname(tmp->rdev->bdev,b)); 1085 } 1086 } 1087 1088 static void close_sync(conf_t *conf) 1089 { 1090 wait_barrier(conf); 1091 allow_barrier(conf); 1092 1093 mempool_destroy(conf->r10buf_pool); 1094 conf->r10buf_pool = NULL; 1095 } 1096 1097 /* check if there are enough drives for 1098 * every block to appear on atleast one 1099 */ 1100 static int enough(conf_t *conf) 1101 { 1102 int first = 0; 1103 1104 do { 1105 int n = conf->copies; 1106 int cnt = 0; 1107 while (n--) { 1108 if (conf->mirrors[first].rdev) 1109 cnt++; 1110 first = (first+1) % conf->raid_disks; 1111 } 1112 if (cnt == 0) 1113 return 0; 1114 } while (first != 0); 1115 return 1; 1116 } 1117 1118 static int raid10_spare_active(mddev_t *mddev) 1119 { 1120 int i; 1121 conf_t *conf = mddev->private; 1122 mirror_info_t *tmp; 1123 int count = 0; 1124 unsigned long flags; 1125 1126 /* 1127 * Find all non-in_sync disks within the RAID10 configuration 1128 * and mark them in_sync 1129 */ 1130 for (i = 0; i < conf->raid_disks; i++) { 1131 tmp = conf->mirrors + i; 1132 if (tmp->rdev 1133 && !test_bit(Faulty, &tmp->rdev->flags) 1134 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1135 count++; 1136 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1137 } 1138 } 1139 spin_lock_irqsave(&conf->device_lock, flags); 1140 mddev->degraded -= count; 1141 spin_unlock_irqrestore(&conf->device_lock, flags); 1142 1143 print_conf(conf); 1144 return count; 1145 } 1146 1147 1148 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1149 { 1150 conf_t *conf = mddev->private; 1151 int err = -EEXIST; 1152 int mirror; 1153 mirror_info_t *p; 1154 int first = 0; 1155 int last = conf->raid_disks - 1; 1156 1157 if (mddev->recovery_cp < MaxSector) 1158 /* only hot-add to in-sync arrays, as recovery is 1159 * very different from resync 1160 */ 1161 return -EBUSY; 1162 if (!enough(conf)) 1163 return -EINVAL; 1164 1165 if (rdev->raid_disk >= 0) 1166 first = last = rdev->raid_disk; 1167 1168 if (rdev->saved_raid_disk >= 0 && 1169 rdev->saved_raid_disk >= first && 1170 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1171 mirror = rdev->saved_raid_disk; 1172 else 1173 mirror = first; 1174 for ( ; mirror <= last ; mirror++) 1175 if ( !(p=conf->mirrors+mirror)->rdev) { 1176 1177 disk_stack_limits(mddev->gendisk, rdev->bdev, 1178 rdev->data_offset << 9); 1179 /* as we don't honour merge_bvec_fn, we must 1180 * never risk violating it, so limit 1181 * ->max_segments to one lying with a single 1182 * page, as a one page request is never in 1183 * violation. 1184 */ 1185 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1186 blk_queue_max_segments(mddev->queue, 1); 1187 blk_queue_segment_boundary(mddev->queue, 1188 PAGE_CACHE_SIZE - 1); 1189 } 1190 1191 p->head_position = 0; 1192 rdev->raid_disk = mirror; 1193 err = 0; 1194 if (rdev->saved_raid_disk != mirror) 1195 conf->fullsync = 1; 1196 rcu_assign_pointer(p->rdev, rdev); 1197 break; 1198 } 1199 1200 md_integrity_add_rdev(rdev, mddev); 1201 print_conf(conf); 1202 return err; 1203 } 1204 1205 static int raid10_remove_disk(mddev_t *mddev, int number) 1206 { 1207 conf_t *conf = mddev->private; 1208 int err = 0; 1209 mdk_rdev_t *rdev; 1210 mirror_info_t *p = conf->mirrors+ number; 1211 1212 print_conf(conf); 1213 rdev = p->rdev; 1214 if (rdev) { 1215 if (test_bit(In_sync, &rdev->flags) || 1216 atomic_read(&rdev->nr_pending)) { 1217 err = -EBUSY; 1218 goto abort; 1219 } 1220 /* Only remove faulty devices in recovery 1221 * is not possible. 1222 */ 1223 if (!test_bit(Faulty, &rdev->flags) && 1224 enough(conf)) { 1225 err = -EBUSY; 1226 goto abort; 1227 } 1228 p->rdev = NULL; 1229 synchronize_rcu(); 1230 if (atomic_read(&rdev->nr_pending)) { 1231 /* lost the race, try later */ 1232 err = -EBUSY; 1233 p->rdev = rdev; 1234 goto abort; 1235 } 1236 md_integrity_register(mddev); 1237 } 1238 abort: 1239 1240 print_conf(conf); 1241 return err; 1242 } 1243 1244 1245 static void end_sync_read(struct bio *bio, int error) 1246 { 1247 r10bio_t *r10_bio = bio->bi_private; 1248 conf_t *conf = r10_bio->mddev->private; 1249 int i,d; 1250 1251 for (i=0; i<conf->copies; i++) 1252 if (r10_bio->devs[i].bio == bio) 1253 break; 1254 BUG_ON(i == conf->copies); 1255 update_head_pos(i, r10_bio); 1256 d = r10_bio->devs[i].devnum; 1257 1258 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1259 set_bit(R10BIO_Uptodate, &r10_bio->state); 1260 else { 1261 atomic_add(r10_bio->sectors, 1262 &conf->mirrors[d].rdev->corrected_errors); 1263 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1264 md_error(r10_bio->mddev, 1265 conf->mirrors[d].rdev); 1266 } 1267 1268 /* for reconstruct, we always reschedule after a read. 1269 * for resync, only after all reads 1270 */ 1271 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1272 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1273 atomic_dec_and_test(&r10_bio->remaining)) { 1274 /* we have read all the blocks, 1275 * do the comparison in process context in raid10d 1276 */ 1277 reschedule_retry(r10_bio); 1278 } 1279 } 1280 1281 static void end_sync_write(struct bio *bio, int error) 1282 { 1283 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1284 r10bio_t *r10_bio = bio->bi_private; 1285 mddev_t *mddev = r10_bio->mddev; 1286 conf_t *conf = mddev->private; 1287 int i,d; 1288 1289 for (i = 0; i < conf->copies; i++) 1290 if (r10_bio->devs[i].bio == bio) 1291 break; 1292 d = r10_bio->devs[i].devnum; 1293 1294 if (!uptodate) 1295 md_error(mddev, conf->mirrors[d].rdev); 1296 1297 update_head_pos(i, r10_bio); 1298 1299 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1300 while (atomic_dec_and_test(&r10_bio->remaining)) { 1301 if (r10_bio->master_bio == NULL) { 1302 /* the primary of several recovery bios */ 1303 sector_t s = r10_bio->sectors; 1304 put_buf(r10_bio); 1305 md_done_sync(mddev, s, 1); 1306 break; 1307 } else { 1308 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1309 put_buf(r10_bio); 1310 r10_bio = r10_bio2; 1311 } 1312 } 1313 } 1314 1315 /* 1316 * Note: sync and recover and handled very differently for raid10 1317 * This code is for resync. 1318 * For resync, we read through virtual addresses and read all blocks. 1319 * If there is any error, we schedule a write. The lowest numbered 1320 * drive is authoritative. 1321 * However requests come for physical address, so we need to map. 1322 * For every physical address there are raid_disks/copies virtual addresses, 1323 * which is always are least one, but is not necessarly an integer. 1324 * This means that a physical address can span multiple chunks, so we may 1325 * have to submit multiple io requests for a single sync request. 1326 */ 1327 /* 1328 * We check if all blocks are in-sync and only write to blocks that 1329 * aren't in sync 1330 */ 1331 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1332 { 1333 conf_t *conf = mddev->private; 1334 int i, first; 1335 struct bio *tbio, *fbio; 1336 1337 atomic_set(&r10_bio->remaining, 1); 1338 1339 /* find the first device with a block */ 1340 for (i=0; i<conf->copies; i++) 1341 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1342 break; 1343 1344 if (i == conf->copies) 1345 goto done; 1346 1347 first = i; 1348 fbio = r10_bio->devs[i].bio; 1349 1350 /* now find blocks with errors */ 1351 for (i=0 ; i < conf->copies ; i++) { 1352 int j, d; 1353 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1354 1355 tbio = r10_bio->devs[i].bio; 1356 1357 if (tbio->bi_end_io != end_sync_read) 1358 continue; 1359 if (i == first) 1360 continue; 1361 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1362 /* We know that the bi_io_vec layout is the same for 1363 * both 'first' and 'i', so we just compare them. 1364 * All vec entries are PAGE_SIZE; 1365 */ 1366 for (j = 0; j < vcnt; j++) 1367 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1368 page_address(tbio->bi_io_vec[j].bv_page), 1369 PAGE_SIZE)) 1370 break; 1371 if (j == vcnt) 1372 continue; 1373 mddev->resync_mismatches += r10_bio->sectors; 1374 } 1375 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1376 /* Don't fix anything. */ 1377 continue; 1378 /* Ok, we need to write this bio 1379 * First we need to fixup bv_offset, bv_len and 1380 * bi_vecs, as the read request might have corrupted these 1381 */ 1382 tbio->bi_vcnt = vcnt; 1383 tbio->bi_size = r10_bio->sectors << 9; 1384 tbio->bi_idx = 0; 1385 tbio->bi_phys_segments = 0; 1386 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1387 tbio->bi_flags |= 1 << BIO_UPTODATE; 1388 tbio->bi_next = NULL; 1389 tbio->bi_rw = WRITE; 1390 tbio->bi_private = r10_bio; 1391 tbio->bi_sector = r10_bio->devs[i].addr; 1392 1393 for (j=0; j < vcnt ; j++) { 1394 tbio->bi_io_vec[j].bv_offset = 0; 1395 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1396 1397 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1398 page_address(fbio->bi_io_vec[j].bv_page), 1399 PAGE_SIZE); 1400 } 1401 tbio->bi_end_io = end_sync_write; 1402 1403 d = r10_bio->devs[i].devnum; 1404 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1405 atomic_inc(&r10_bio->remaining); 1406 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1407 1408 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1409 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1410 generic_make_request(tbio); 1411 } 1412 1413 done: 1414 if (atomic_dec_and_test(&r10_bio->remaining)) { 1415 md_done_sync(mddev, r10_bio->sectors, 1); 1416 put_buf(r10_bio); 1417 } 1418 } 1419 1420 /* 1421 * Now for the recovery code. 1422 * Recovery happens across physical sectors. 1423 * We recover all non-is_sync drives by finding the virtual address of 1424 * each, and then choose a working drive that also has that virt address. 1425 * There is a separate r10_bio for each non-in_sync drive. 1426 * Only the first two slots are in use. The first for reading, 1427 * The second for writing. 1428 * 1429 */ 1430 1431 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1432 { 1433 conf_t *conf = mddev->private; 1434 int i, d; 1435 struct bio *bio, *wbio; 1436 1437 1438 /* move the pages across to the second bio 1439 * and submit the write request 1440 */ 1441 bio = r10_bio->devs[0].bio; 1442 wbio = r10_bio->devs[1].bio; 1443 for (i=0; i < wbio->bi_vcnt; i++) { 1444 struct page *p = bio->bi_io_vec[i].bv_page; 1445 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1446 wbio->bi_io_vec[i].bv_page = p; 1447 } 1448 d = r10_bio->devs[1].devnum; 1449 1450 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1451 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1452 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1453 generic_make_request(wbio); 1454 else 1455 bio_endio(wbio, -EIO); 1456 } 1457 1458 1459 /* 1460 * Used by fix_read_error() to decay the per rdev read_errors. 1461 * We halve the read error count for every hour that has elapsed 1462 * since the last recorded read error. 1463 * 1464 */ 1465 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1466 { 1467 struct timespec cur_time_mon; 1468 unsigned long hours_since_last; 1469 unsigned int read_errors = atomic_read(&rdev->read_errors); 1470 1471 ktime_get_ts(&cur_time_mon); 1472 1473 if (rdev->last_read_error.tv_sec == 0 && 1474 rdev->last_read_error.tv_nsec == 0) { 1475 /* first time we've seen a read error */ 1476 rdev->last_read_error = cur_time_mon; 1477 return; 1478 } 1479 1480 hours_since_last = (cur_time_mon.tv_sec - 1481 rdev->last_read_error.tv_sec) / 3600; 1482 1483 rdev->last_read_error = cur_time_mon; 1484 1485 /* 1486 * if hours_since_last is > the number of bits in read_errors 1487 * just set read errors to 0. We do this to avoid 1488 * overflowing the shift of read_errors by hours_since_last. 1489 */ 1490 if (hours_since_last >= 8 * sizeof(read_errors)) 1491 atomic_set(&rdev->read_errors, 0); 1492 else 1493 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1494 } 1495 1496 /* 1497 * This is a kernel thread which: 1498 * 1499 * 1. Retries failed read operations on working mirrors. 1500 * 2. Updates the raid superblock when problems encounter. 1501 * 3. Performs writes following reads for array synchronising. 1502 */ 1503 1504 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1505 { 1506 int sect = 0; /* Offset from r10_bio->sector */ 1507 int sectors = r10_bio->sectors; 1508 mdk_rdev_t*rdev; 1509 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1510 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1511 1512 rcu_read_lock(); 1513 rdev = rcu_dereference(conf->mirrors[d].rdev); 1514 if (rdev) { /* If rdev is not NULL */ 1515 char b[BDEVNAME_SIZE]; 1516 int cur_read_error_count = 0; 1517 1518 bdevname(rdev->bdev, b); 1519 1520 if (test_bit(Faulty, &rdev->flags)) { 1521 rcu_read_unlock(); 1522 /* drive has already been failed, just ignore any 1523 more fix_read_error() attempts */ 1524 return; 1525 } 1526 1527 check_decay_read_errors(mddev, rdev); 1528 atomic_inc(&rdev->read_errors); 1529 cur_read_error_count = atomic_read(&rdev->read_errors); 1530 if (cur_read_error_count > max_read_errors) { 1531 rcu_read_unlock(); 1532 printk(KERN_NOTICE 1533 "md/raid10:%s: %s: Raid device exceeded " 1534 "read_error threshold " 1535 "[cur %d:max %d]\n", 1536 mdname(mddev), 1537 b, cur_read_error_count, max_read_errors); 1538 printk(KERN_NOTICE 1539 "md/raid10:%s: %s: Failing raid " 1540 "device\n", mdname(mddev), b); 1541 md_error(mddev, conf->mirrors[d].rdev); 1542 return; 1543 } 1544 } 1545 rcu_read_unlock(); 1546 1547 while(sectors) { 1548 int s = sectors; 1549 int sl = r10_bio->read_slot; 1550 int success = 0; 1551 int start; 1552 1553 if (s > (PAGE_SIZE>>9)) 1554 s = PAGE_SIZE >> 9; 1555 1556 rcu_read_lock(); 1557 do { 1558 d = r10_bio->devs[sl].devnum; 1559 rdev = rcu_dereference(conf->mirrors[d].rdev); 1560 if (rdev && 1561 test_bit(In_sync, &rdev->flags)) { 1562 atomic_inc(&rdev->nr_pending); 1563 rcu_read_unlock(); 1564 success = sync_page_io(rdev, 1565 r10_bio->devs[sl].addr + 1566 sect, 1567 s<<9, 1568 conf->tmppage, READ, false); 1569 rdev_dec_pending(rdev, mddev); 1570 rcu_read_lock(); 1571 if (success) 1572 break; 1573 } 1574 sl++; 1575 if (sl == conf->copies) 1576 sl = 0; 1577 } while (!success && sl != r10_bio->read_slot); 1578 rcu_read_unlock(); 1579 1580 if (!success) { 1581 /* Cannot read from anywhere -- bye bye array */ 1582 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1583 md_error(mddev, conf->mirrors[dn].rdev); 1584 break; 1585 } 1586 1587 start = sl; 1588 /* write it back and re-read */ 1589 rcu_read_lock(); 1590 while (sl != r10_bio->read_slot) { 1591 char b[BDEVNAME_SIZE]; 1592 1593 if (sl==0) 1594 sl = conf->copies; 1595 sl--; 1596 d = r10_bio->devs[sl].devnum; 1597 rdev = rcu_dereference(conf->mirrors[d].rdev); 1598 if (rdev && 1599 test_bit(In_sync, &rdev->flags)) { 1600 atomic_inc(&rdev->nr_pending); 1601 rcu_read_unlock(); 1602 atomic_add(s, &rdev->corrected_errors); 1603 if (sync_page_io(rdev, 1604 r10_bio->devs[sl].addr + 1605 sect, 1606 s<<9, conf->tmppage, WRITE, false) 1607 == 0) { 1608 /* Well, this device is dead */ 1609 printk(KERN_NOTICE 1610 "md/raid10:%s: read correction " 1611 "write failed" 1612 " (%d sectors at %llu on %s)\n", 1613 mdname(mddev), s, 1614 (unsigned long long)(sect+ 1615 rdev->data_offset), 1616 bdevname(rdev->bdev, b)); 1617 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1618 "drive\n", 1619 mdname(mddev), 1620 bdevname(rdev->bdev, b)); 1621 md_error(mddev, rdev); 1622 } 1623 rdev_dec_pending(rdev, mddev); 1624 rcu_read_lock(); 1625 } 1626 } 1627 sl = start; 1628 while (sl != r10_bio->read_slot) { 1629 1630 if (sl==0) 1631 sl = conf->copies; 1632 sl--; 1633 d = r10_bio->devs[sl].devnum; 1634 rdev = rcu_dereference(conf->mirrors[d].rdev); 1635 if (rdev && 1636 test_bit(In_sync, &rdev->flags)) { 1637 char b[BDEVNAME_SIZE]; 1638 atomic_inc(&rdev->nr_pending); 1639 rcu_read_unlock(); 1640 if (sync_page_io(rdev, 1641 r10_bio->devs[sl].addr + 1642 sect, 1643 s<<9, conf->tmppage, 1644 READ, false) == 0) { 1645 /* Well, this device is dead */ 1646 printk(KERN_NOTICE 1647 "md/raid10:%s: unable to read back " 1648 "corrected sectors" 1649 " (%d sectors at %llu on %s)\n", 1650 mdname(mddev), s, 1651 (unsigned long long)(sect+ 1652 rdev->data_offset), 1653 bdevname(rdev->bdev, b)); 1654 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n", 1655 mdname(mddev), 1656 bdevname(rdev->bdev, b)); 1657 1658 md_error(mddev, rdev); 1659 } else { 1660 printk(KERN_INFO 1661 "md/raid10:%s: read error corrected" 1662 " (%d sectors at %llu on %s)\n", 1663 mdname(mddev), s, 1664 (unsigned long long)(sect+ 1665 rdev->data_offset), 1666 bdevname(rdev->bdev, b)); 1667 } 1668 1669 rdev_dec_pending(rdev, mddev); 1670 rcu_read_lock(); 1671 } 1672 } 1673 rcu_read_unlock(); 1674 1675 sectors -= s; 1676 sect += s; 1677 } 1678 } 1679 1680 static void raid10d(mddev_t *mddev) 1681 { 1682 r10bio_t *r10_bio; 1683 struct bio *bio; 1684 unsigned long flags; 1685 conf_t *conf = mddev->private; 1686 struct list_head *head = &conf->retry_list; 1687 int unplug=0; 1688 mdk_rdev_t *rdev; 1689 1690 md_check_recovery(mddev); 1691 1692 for (;;) { 1693 char b[BDEVNAME_SIZE]; 1694 1695 unplug += flush_pending_writes(conf); 1696 1697 spin_lock_irqsave(&conf->device_lock, flags); 1698 if (list_empty(head)) { 1699 spin_unlock_irqrestore(&conf->device_lock, flags); 1700 break; 1701 } 1702 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1703 list_del(head->prev); 1704 conf->nr_queued--; 1705 spin_unlock_irqrestore(&conf->device_lock, flags); 1706 1707 mddev = r10_bio->mddev; 1708 conf = mddev->private; 1709 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1710 sync_request_write(mddev, r10_bio); 1711 unplug = 1; 1712 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1713 recovery_request_write(mddev, r10_bio); 1714 unplug = 1; 1715 } else { 1716 int mirror; 1717 /* we got a read error. Maybe the drive is bad. Maybe just 1718 * the block and we can fix it. 1719 * We freeze all other IO, and try reading the block from 1720 * other devices. When we find one, we re-write 1721 * and check it that fixes the read error. 1722 * This is all done synchronously while the array is 1723 * frozen. 1724 */ 1725 if (mddev->ro == 0) { 1726 freeze_array(conf); 1727 fix_read_error(conf, mddev, r10_bio); 1728 unfreeze_array(conf); 1729 } 1730 1731 bio = r10_bio->devs[r10_bio->read_slot].bio; 1732 r10_bio->devs[r10_bio->read_slot].bio = 1733 mddev->ro ? IO_BLOCKED : NULL; 1734 mirror = read_balance(conf, r10_bio); 1735 if (mirror == -1) { 1736 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 1737 " read error for block %llu\n", 1738 mdname(mddev), 1739 bdevname(bio->bi_bdev,b), 1740 (unsigned long long)r10_bio->sector); 1741 raid_end_bio_io(r10_bio); 1742 bio_put(bio); 1743 } else { 1744 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 1745 bio_put(bio); 1746 rdev = conf->mirrors[mirror].rdev; 1747 if (printk_ratelimit()) 1748 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to" 1749 " another mirror\n", 1750 mdname(mddev), 1751 bdevname(rdev->bdev,b), 1752 (unsigned long long)r10_bio->sector); 1753 bio = bio_clone_mddev(r10_bio->master_bio, 1754 GFP_NOIO, mddev); 1755 r10_bio->devs[r10_bio->read_slot].bio = bio; 1756 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1757 + rdev->data_offset; 1758 bio->bi_bdev = rdev->bdev; 1759 bio->bi_rw = READ | do_sync; 1760 bio->bi_private = r10_bio; 1761 bio->bi_end_io = raid10_end_read_request; 1762 unplug = 1; 1763 generic_make_request(bio); 1764 } 1765 } 1766 cond_resched(); 1767 } 1768 if (unplug) 1769 unplug_slaves(mddev); 1770 } 1771 1772 1773 static int init_resync(conf_t *conf) 1774 { 1775 int buffs; 1776 1777 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1778 BUG_ON(conf->r10buf_pool); 1779 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1780 if (!conf->r10buf_pool) 1781 return -ENOMEM; 1782 conf->next_resync = 0; 1783 return 0; 1784 } 1785 1786 /* 1787 * perform a "sync" on one "block" 1788 * 1789 * We need to make sure that no normal I/O request - particularly write 1790 * requests - conflict with active sync requests. 1791 * 1792 * This is achieved by tracking pending requests and a 'barrier' concept 1793 * that can be installed to exclude normal IO requests. 1794 * 1795 * Resync and recovery are handled very differently. 1796 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1797 * 1798 * For resync, we iterate over virtual addresses, read all copies, 1799 * and update if there are differences. If only one copy is live, 1800 * skip it. 1801 * For recovery, we iterate over physical addresses, read a good 1802 * value for each non-in_sync drive, and over-write. 1803 * 1804 * So, for recovery we may have several outstanding complex requests for a 1805 * given address, one for each out-of-sync device. We model this by allocating 1806 * a number of r10_bio structures, one for each out-of-sync device. 1807 * As we setup these structures, we collect all bio's together into a list 1808 * which we then process collectively to add pages, and then process again 1809 * to pass to generic_make_request. 1810 * 1811 * The r10_bio structures are linked using a borrowed master_bio pointer. 1812 * This link is counted in ->remaining. When the r10_bio that points to NULL 1813 * has its remaining count decremented to 0, the whole complex operation 1814 * is complete. 1815 * 1816 */ 1817 1818 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1819 { 1820 conf_t *conf = mddev->private; 1821 r10bio_t *r10_bio; 1822 struct bio *biolist = NULL, *bio; 1823 sector_t max_sector, nr_sectors; 1824 int disk; 1825 int i; 1826 int max_sync; 1827 sector_t sync_blocks; 1828 1829 sector_t sectors_skipped = 0; 1830 int chunks_skipped = 0; 1831 1832 if (!conf->r10buf_pool) 1833 if (init_resync(conf)) 1834 return 0; 1835 1836 skipped: 1837 max_sector = mddev->dev_sectors; 1838 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1839 max_sector = mddev->resync_max_sectors; 1840 if (sector_nr >= max_sector) { 1841 /* If we aborted, we need to abort the 1842 * sync on the 'current' bitmap chucks (there can 1843 * be several when recovering multiple devices). 1844 * as we may have started syncing it but not finished. 1845 * We can find the current address in 1846 * mddev->curr_resync, but for recovery, 1847 * we need to convert that to several 1848 * virtual addresses. 1849 */ 1850 if (mddev->curr_resync < max_sector) { /* aborted */ 1851 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1852 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1853 &sync_blocks, 1); 1854 else for (i=0; i<conf->raid_disks; i++) { 1855 sector_t sect = 1856 raid10_find_virt(conf, mddev->curr_resync, i); 1857 bitmap_end_sync(mddev->bitmap, sect, 1858 &sync_blocks, 1); 1859 } 1860 } else /* completed sync */ 1861 conf->fullsync = 0; 1862 1863 bitmap_close_sync(mddev->bitmap); 1864 close_sync(conf); 1865 *skipped = 1; 1866 return sectors_skipped; 1867 } 1868 if (chunks_skipped >= conf->raid_disks) { 1869 /* if there has been nothing to do on any drive, 1870 * then there is nothing to do at all.. 1871 */ 1872 *skipped = 1; 1873 return (max_sector - sector_nr) + sectors_skipped; 1874 } 1875 1876 if (max_sector > mddev->resync_max) 1877 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1878 1879 /* make sure whole request will fit in a chunk - if chunks 1880 * are meaningful 1881 */ 1882 if (conf->near_copies < conf->raid_disks && 1883 max_sector > (sector_nr | conf->chunk_mask)) 1884 max_sector = (sector_nr | conf->chunk_mask) + 1; 1885 /* 1886 * If there is non-resync activity waiting for us then 1887 * put in a delay to throttle resync. 1888 */ 1889 if (!go_faster && conf->nr_waiting) 1890 msleep_interruptible(1000); 1891 1892 /* Again, very different code for resync and recovery. 1893 * Both must result in an r10bio with a list of bios that 1894 * have bi_end_io, bi_sector, bi_bdev set, 1895 * and bi_private set to the r10bio. 1896 * For recovery, we may actually create several r10bios 1897 * with 2 bios in each, that correspond to the bios in the main one. 1898 * In this case, the subordinate r10bios link back through a 1899 * borrowed master_bio pointer, and the counter in the master 1900 * includes a ref from each subordinate. 1901 */ 1902 /* First, we decide what to do and set ->bi_end_io 1903 * To end_sync_read if we want to read, and 1904 * end_sync_write if we will want to write. 1905 */ 1906 1907 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1908 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1909 /* recovery... the complicated one */ 1910 int j, k; 1911 r10_bio = NULL; 1912 1913 for (i=0 ; i<conf->raid_disks; i++) 1914 if (conf->mirrors[i].rdev && 1915 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1916 int still_degraded = 0; 1917 /* want to reconstruct this device */ 1918 r10bio_t *rb2 = r10_bio; 1919 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1920 int must_sync; 1921 /* Unless we are doing a full sync, we only need 1922 * to recover the block if it is set in the bitmap 1923 */ 1924 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1925 &sync_blocks, 1); 1926 if (sync_blocks < max_sync) 1927 max_sync = sync_blocks; 1928 if (!must_sync && 1929 !conf->fullsync) { 1930 /* yep, skip the sync_blocks here, but don't assume 1931 * that there will never be anything to do here 1932 */ 1933 chunks_skipped = -1; 1934 continue; 1935 } 1936 1937 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1938 raise_barrier(conf, rb2 != NULL); 1939 atomic_set(&r10_bio->remaining, 0); 1940 1941 r10_bio->master_bio = (struct bio*)rb2; 1942 if (rb2) 1943 atomic_inc(&rb2->remaining); 1944 r10_bio->mddev = mddev; 1945 set_bit(R10BIO_IsRecover, &r10_bio->state); 1946 r10_bio->sector = sect; 1947 1948 raid10_find_phys(conf, r10_bio); 1949 1950 /* Need to check if the array will still be 1951 * degraded 1952 */ 1953 for (j=0; j<conf->raid_disks; j++) 1954 if (conf->mirrors[j].rdev == NULL || 1955 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1956 still_degraded = 1; 1957 break; 1958 } 1959 1960 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1961 &sync_blocks, still_degraded); 1962 1963 for (j=0; j<conf->copies;j++) { 1964 int d = r10_bio->devs[j].devnum; 1965 if (conf->mirrors[d].rdev && 1966 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1967 /* This is where we read from */ 1968 bio = r10_bio->devs[0].bio; 1969 bio->bi_next = biolist; 1970 biolist = bio; 1971 bio->bi_private = r10_bio; 1972 bio->bi_end_io = end_sync_read; 1973 bio->bi_rw = READ; 1974 bio->bi_sector = r10_bio->devs[j].addr + 1975 conf->mirrors[d].rdev->data_offset; 1976 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1977 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1978 atomic_inc(&r10_bio->remaining); 1979 /* and we write to 'i' */ 1980 1981 for (k=0; k<conf->copies; k++) 1982 if (r10_bio->devs[k].devnum == i) 1983 break; 1984 BUG_ON(k == conf->copies); 1985 bio = r10_bio->devs[1].bio; 1986 bio->bi_next = biolist; 1987 biolist = bio; 1988 bio->bi_private = r10_bio; 1989 bio->bi_end_io = end_sync_write; 1990 bio->bi_rw = WRITE; 1991 bio->bi_sector = r10_bio->devs[k].addr + 1992 conf->mirrors[i].rdev->data_offset; 1993 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1994 1995 r10_bio->devs[0].devnum = d; 1996 r10_bio->devs[1].devnum = i; 1997 1998 break; 1999 } 2000 } 2001 if (j == conf->copies) { 2002 /* Cannot recover, so abort the recovery */ 2003 put_buf(r10_bio); 2004 if (rb2) 2005 atomic_dec(&rb2->remaining); 2006 r10_bio = rb2; 2007 if (!test_and_set_bit(MD_RECOVERY_INTR, 2008 &mddev->recovery)) 2009 printk(KERN_INFO "md/raid10:%s: insufficient " 2010 "working devices for recovery.\n", 2011 mdname(mddev)); 2012 break; 2013 } 2014 } 2015 if (biolist == NULL) { 2016 while (r10_bio) { 2017 r10bio_t *rb2 = r10_bio; 2018 r10_bio = (r10bio_t*) rb2->master_bio; 2019 rb2->master_bio = NULL; 2020 put_buf(rb2); 2021 } 2022 goto giveup; 2023 } 2024 } else { 2025 /* resync. Schedule a read for every block at this virt offset */ 2026 int count = 0; 2027 2028 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2029 2030 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2031 &sync_blocks, mddev->degraded) && 2032 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2033 /* We can skip this block */ 2034 *skipped = 1; 2035 return sync_blocks + sectors_skipped; 2036 } 2037 if (sync_blocks < max_sync) 2038 max_sync = sync_blocks; 2039 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2040 2041 r10_bio->mddev = mddev; 2042 atomic_set(&r10_bio->remaining, 0); 2043 raise_barrier(conf, 0); 2044 conf->next_resync = sector_nr; 2045 2046 r10_bio->master_bio = NULL; 2047 r10_bio->sector = sector_nr; 2048 set_bit(R10BIO_IsSync, &r10_bio->state); 2049 raid10_find_phys(conf, r10_bio); 2050 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2051 2052 for (i=0; i<conf->copies; i++) { 2053 int d = r10_bio->devs[i].devnum; 2054 bio = r10_bio->devs[i].bio; 2055 bio->bi_end_io = NULL; 2056 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2057 if (conf->mirrors[d].rdev == NULL || 2058 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2059 continue; 2060 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2061 atomic_inc(&r10_bio->remaining); 2062 bio->bi_next = biolist; 2063 biolist = bio; 2064 bio->bi_private = r10_bio; 2065 bio->bi_end_io = end_sync_read; 2066 bio->bi_rw = READ; 2067 bio->bi_sector = r10_bio->devs[i].addr + 2068 conf->mirrors[d].rdev->data_offset; 2069 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2070 count++; 2071 } 2072 2073 if (count < 2) { 2074 for (i=0; i<conf->copies; i++) { 2075 int d = r10_bio->devs[i].devnum; 2076 if (r10_bio->devs[i].bio->bi_end_io) 2077 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 2078 } 2079 put_buf(r10_bio); 2080 biolist = NULL; 2081 goto giveup; 2082 } 2083 } 2084 2085 for (bio = biolist; bio ; bio=bio->bi_next) { 2086 2087 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2088 if (bio->bi_end_io) 2089 bio->bi_flags |= 1 << BIO_UPTODATE; 2090 bio->bi_vcnt = 0; 2091 bio->bi_idx = 0; 2092 bio->bi_phys_segments = 0; 2093 bio->bi_size = 0; 2094 } 2095 2096 nr_sectors = 0; 2097 if (sector_nr + max_sync < max_sector) 2098 max_sector = sector_nr + max_sync; 2099 do { 2100 struct page *page; 2101 int len = PAGE_SIZE; 2102 disk = 0; 2103 if (sector_nr + (len>>9) > max_sector) 2104 len = (max_sector - sector_nr) << 9; 2105 if (len == 0) 2106 break; 2107 for (bio= biolist ; bio ; bio=bio->bi_next) { 2108 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2109 if (bio_add_page(bio, page, len, 0) == 0) { 2110 /* stop here */ 2111 struct bio *bio2; 2112 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2113 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 2114 /* remove last page from this bio */ 2115 bio2->bi_vcnt--; 2116 bio2->bi_size -= len; 2117 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2118 } 2119 goto bio_full; 2120 } 2121 disk = i; 2122 } 2123 nr_sectors += len>>9; 2124 sector_nr += len>>9; 2125 } while (biolist->bi_vcnt < RESYNC_PAGES); 2126 bio_full: 2127 r10_bio->sectors = nr_sectors; 2128 2129 while (biolist) { 2130 bio = biolist; 2131 biolist = biolist->bi_next; 2132 2133 bio->bi_next = NULL; 2134 r10_bio = bio->bi_private; 2135 r10_bio->sectors = nr_sectors; 2136 2137 if (bio->bi_end_io == end_sync_read) { 2138 md_sync_acct(bio->bi_bdev, nr_sectors); 2139 generic_make_request(bio); 2140 } 2141 } 2142 2143 if (sectors_skipped) 2144 /* pretend they weren't skipped, it makes 2145 * no important difference in this case 2146 */ 2147 md_done_sync(mddev, sectors_skipped, 1); 2148 2149 return sectors_skipped + nr_sectors; 2150 giveup: 2151 /* There is nowhere to write, so all non-sync 2152 * drives must be failed, so try the next chunk... 2153 */ 2154 if (sector_nr + max_sync < max_sector) 2155 max_sector = sector_nr + max_sync; 2156 2157 sectors_skipped += (max_sector - sector_nr); 2158 chunks_skipped ++; 2159 sector_nr = max_sector; 2160 goto skipped; 2161 } 2162 2163 static sector_t 2164 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2165 { 2166 sector_t size; 2167 conf_t *conf = mddev->private; 2168 2169 if (!raid_disks) 2170 raid_disks = conf->raid_disks; 2171 if (!sectors) 2172 sectors = conf->dev_sectors; 2173 2174 size = sectors >> conf->chunk_shift; 2175 sector_div(size, conf->far_copies); 2176 size = size * raid_disks; 2177 sector_div(size, conf->near_copies); 2178 2179 return size << conf->chunk_shift; 2180 } 2181 2182 2183 static conf_t *setup_conf(mddev_t *mddev) 2184 { 2185 conf_t *conf = NULL; 2186 int nc, fc, fo; 2187 sector_t stride, size; 2188 int err = -EINVAL; 2189 2190 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2191 !is_power_of_2(mddev->new_chunk_sectors)) { 2192 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2193 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2194 mdname(mddev), PAGE_SIZE); 2195 goto out; 2196 } 2197 2198 nc = mddev->new_layout & 255; 2199 fc = (mddev->new_layout >> 8) & 255; 2200 fo = mddev->new_layout & (1<<16); 2201 2202 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2203 (mddev->new_layout >> 17)) { 2204 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2205 mdname(mddev), mddev->new_layout); 2206 goto out; 2207 } 2208 2209 err = -ENOMEM; 2210 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2211 if (!conf) 2212 goto out; 2213 2214 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2215 GFP_KERNEL); 2216 if (!conf->mirrors) 2217 goto out; 2218 2219 conf->tmppage = alloc_page(GFP_KERNEL); 2220 if (!conf->tmppage) 2221 goto out; 2222 2223 2224 conf->raid_disks = mddev->raid_disks; 2225 conf->near_copies = nc; 2226 conf->far_copies = fc; 2227 conf->copies = nc*fc; 2228 conf->far_offset = fo; 2229 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2230 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2231 2232 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2233 r10bio_pool_free, conf); 2234 if (!conf->r10bio_pool) 2235 goto out; 2236 2237 size = mddev->dev_sectors >> conf->chunk_shift; 2238 sector_div(size, fc); 2239 size = size * conf->raid_disks; 2240 sector_div(size, nc); 2241 /* 'size' is now the number of chunks in the array */ 2242 /* calculate "used chunks per device" in 'stride' */ 2243 stride = size * conf->copies; 2244 2245 /* We need to round up when dividing by raid_disks to 2246 * get the stride size. 2247 */ 2248 stride += conf->raid_disks - 1; 2249 sector_div(stride, conf->raid_disks); 2250 2251 conf->dev_sectors = stride << conf->chunk_shift; 2252 2253 if (fo) 2254 stride = 1; 2255 else 2256 sector_div(stride, fc); 2257 conf->stride = stride << conf->chunk_shift; 2258 2259 2260 spin_lock_init(&conf->device_lock); 2261 INIT_LIST_HEAD(&conf->retry_list); 2262 2263 spin_lock_init(&conf->resync_lock); 2264 init_waitqueue_head(&conf->wait_barrier); 2265 2266 conf->thread = md_register_thread(raid10d, mddev, NULL); 2267 if (!conf->thread) 2268 goto out; 2269 2270 conf->mddev = mddev; 2271 return conf; 2272 2273 out: 2274 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2275 mdname(mddev)); 2276 if (conf) { 2277 if (conf->r10bio_pool) 2278 mempool_destroy(conf->r10bio_pool); 2279 kfree(conf->mirrors); 2280 safe_put_page(conf->tmppage); 2281 kfree(conf); 2282 } 2283 return ERR_PTR(err); 2284 } 2285 2286 static int run(mddev_t *mddev) 2287 { 2288 conf_t *conf; 2289 int i, disk_idx, chunk_size; 2290 mirror_info_t *disk; 2291 mdk_rdev_t *rdev; 2292 sector_t size; 2293 2294 /* 2295 * copy the already verified devices into our private RAID10 2296 * bookkeeping area. [whatever we allocate in run(), 2297 * should be freed in stop()] 2298 */ 2299 2300 if (mddev->private == NULL) { 2301 conf = setup_conf(mddev); 2302 if (IS_ERR(conf)) 2303 return PTR_ERR(conf); 2304 mddev->private = conf; 2305 } 2306 conf = mddev->private; 2307 if (!conf) 2308 goto out; 2309 2310 mddev->thread = conf->thread; 2311 conf->thread = NULL; 2312 2313 chunk_size = mddev->chunk_sectors << 9; 2314 blk_queue_io_min(mddev->queue, chunk_size); 2315 if (conf->raid_disks % conf->near_copies) 2316 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2317 else 2318 blk_queue_io_opt(mddev->queue, chunk_size * 2319 (conf->raid_disks / conf->near_copies)); 2320 2321 list_for_each_entry(rdev, &mddev->disks, same_set) { 2322 disk_idx = rdev->raid_disk; 2323 if (disk_idx >= conf->raid_disks 2324 || disk_idx < 0) 2325 continue; 2326 disk = conf->mirrors + disk_idx; 2327 2328 disk->rdev = rdev; 2329 disk_stack_limits(mddev->gendisk, rdev->bdev, 2330 rdev->data_offset << 9); 2331 /* as we don't honour merge_bvec_fn, we must never risk 2332 * violating it, so limit max_segments to 1 lying 2333 * within a single page. 2334 */ 2335 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2336 blk_queue_max_segments(mddev->queue, 1); 2337 blk_queue_segment_boundary(mddev->queue, 2338 PAGE_CACHE_SIZE - 1); 2339 } 2340 2341 disk->head_position = 0; 2342 } 2343 /* need to check that every block has at least one working mirror */ 2344 if (!enough(conf)) { 2345 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2346 mdname(mddev)); 2347 goto out_free_conf; 2348 } 2349 2350 mddev->degraded = 0; 2351 for (i = 0; i < conf->raid_disks; i++) { 2352 2353 disk = conf->mirrors + i; 2354 2355 if (!disk->rdev || 2356 !test_bit(In_sync, &disk->rdev->flags)) { 2357 disk->head_position = 0; 2358 mddev->degraded++; 2359 if (disk->rdev) 2360 conf->fullsync = 1; 2361 } 2362 } 2363 2364 if (mddev->recovery_cp != MaxSector) 2365 printk(KERN_NOTICE "md/raid10:%s: not clean" 2366 " -- starting background reconstruction\n", 2367 mdname(mddev)); 2368 printk(KERN_INFO 2369 "md/raid10:%s: active with %d out of %d devices\n", 2370 mdname(mddev), conf->raid_disks - mddev->degraded, 2371 conf->raid_disks); 2372 /* 2373 * Ok, everything is just fine now 2374 */ 2375 mddev->dev_sectors = conf->dev_sectors; 2376 size = raid10_size(mddev, 0, 0); 2377 md_set_array_sectors(mddev, size); 2378 mddev->resync_max_sectors = size; 2379 2380 mddev->queue->unplug_fn = raid10_unplug; 2381 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2382 mddev->queue->backing_dev_info.congested_data = mddev; 2383 2384 /* Calculate max read-ahead size. 2385 * We need to readahead at least twice a whole stripe.... 2386 * maybe... 2387 */ 2388 { 2389 int stripe = conf->raid_disks * 2390 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2391 stripe /= conf->near_copies; 2392 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2393 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2394 } 2395 2396 if (conf->near_copies < conf->raid_disks) 2397 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2398 md_integrity_register(mddev); 2399 return 0; 2400 2401 out_free_conf: 2402 md_unregister_thread(mddev->thread); 2403 if (conf->r10bio_pool) 2404 mempool_destroy(conf->r10bio_pool); 2405 safe_put_page(conf->tmppage); 2406 kfree(conf->mirrors); 2407 kfree(conf); 2408 mddev->private = NULL; 2409 out: 2410 return -EIO; 2411 } 2412 2413 static int stop(mddev_t *mddev) 2414 { 2415 conf_t *conf = mddev->private; 2416 2417 raise_barrier(conf, 0); 2418 lower_barrier(conf); 2419 2420 md_unregister_thread(mddev->thread); 2421 mddev->thread = NULL; 2422 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2423 if (conf->r10bio_pool) 2424 mempool_destroy(conf->r10bio_pool); 2425 kfree(conf->mirrors); 2426 kfree(conf); 2427 mddev->private = NULL; 2428 return 0; 2429 } 2430 2431 static void raid10_quiesce(mddev_t *mddev, int state) 2432 { 2433 conf_t *conf = mddev->private; 2434 2435 switch(state) { 2436 case 1: 2437 raise_barrier(conf, 0); 2438 break; 2439 case 0: 2440 lower_barrier(conf); 2441 break; 2442 } 2443 } 2444 2445 static void *raid10_takeover_raid0(mddev_t *mddev) 2446 { 2447 mdk_rdev_t *rdev; 2448 conf_t *conf; 2449 2450 if (mddev->degraded > 0) { 2451 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 2452 mdname(mddev)); 2453 return ERR_PTR(-EINVAL); 2454 } 2455 2456 /* Set new parameters */ 2457 mddev->new_level = 10; 2458 /* new layout: far_copies = 1, near_copies = 2 */ 2459 mddev->new_layout = (1<<8) + 2; 2460 mddev->new_chunk_sectors = mddev->chunk_sectors; 2461 mddev->delta_disks = mddev->raid_disks; 2462 mddev->raid_disks *= 2; 2463 /* make sure it will be not marked as dirty */ 2464 mddev->recovery_cp = MaxSector; 2465 2466 conf = setup_conf(mddev); 2467 if (!IS_ERR(conf)) { 2468 list_for_each_entry(rdev, &mddev->disks, same_set) 2469 if (rdev->raid_disk >= 0) 2470 rdev->new_raid_disk = rdev->raid_disk * 2; 2471 conf->barrier = 1; 2472 } 2473 2474 return conf; 2475 } 2476 2477 static void *raid10_takeover(mddev_t *mddev) 2478 { 2479 struct raid0_private_data *raid0_priv; 2480 2481 /* raid10 can take over: 2482 * raid0 - providing it has only two drives 2483 */ 2484 if (mddev->level == 0) { 2485 /* for raid0 takeover only one zone is supported */ 2486 raid0_priv = mddev->private; 2487 if (raid0_priv->nr_strip_zones > 1) { 2488 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 2489 " with more than one zone.\n", 2490 mdname(mddev)); 2491 return ERR_PTR(-EINVAL); 2492 } 2493 return raid10_takeover_raid0(mddev); 2494 } 2495 return ERR_PTR(-EINVAL); 2496 } 2497 2498 static struct mdk_personality raid10_personality = 2499 { 2500 .name = "raid10", 2501 .level = 10, 2502 .owner = THIS_MODULE, 2503 .make_request = make_request, 2504 .run = run, 2505 .stop = stop, 2506 .status = status, 2507 .error_handler = error, 2508 .hot_add_disk = raid10_add_disk, 2509 .hot_remove_disk= raid10_remove_disk, 2510 .spare_active = raid10_spare_active, 2511 .sync_request = sync_request, 2512 .quiesce = raid10_quiesce, 2513 .size = raid10_size, 2514 .takeover = raid10_takeover, 2515 }; 2516 2517 static int __init raid_init(void) 2518 { 2519 return register_md_personality(&raid10_personality); 2520 } 2521 2522 static void raid_exit(void) 2523 { 2524 unregister_md_personality(&raid10_personality); 2525 } 2526 2527 module_init(raid_init); 2528 module_exit(raid_exit); 2529 MODULE_LICENSE("GPL"); 2530 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2531 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2532 MODULE_ALIAS("md-raid10"); 2533 MODULE_ALIAS("md-level-10"); 2534