1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* when we get a read error on a read-only array, we redirect to another 64 * device without failing the first device, or trying to over-write to 65 * correct the read error. To keep track of bad blocks on a per-bio 66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 67 */ 68 #define IO_BLOCKED ((struct bio *)1) 69 /* When we successfully write to a known bad-block, we need to remove the 70 * bad-block marking which must be done from process context. So we record 71 * the success by setting devs[n].bio to IO_MADE_GOOD 72 */ 73 #define IO_MADE_GOOD ((struct bio *)2) 74 75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 76 77 /* When there are this many requests queued to be written by 78 * the raid10 thread, we become 'congested' to provide back-pressure 79 * for writeback. 80 */ 81 static int max_queued_requests = 1024; 82 83 static void allow_barrier(struct r10conf *conf); 84 static void lower_barrier(struct r10conf *conf); 85 static int enough(struct r10conf *conf, int ignore); 86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 87 int *skipped); 88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 89 static void end_reshape_write(struct bio *bio, int error); 90 static void end_reshape(struct r10conf *conf); 91 92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct r10conf *conf = data; 95 int size = offsetof(struct r10bio, devs[conf->copies]); 96 97 /* allocate a r10bio with room for raid_disks entries in the 98 * bios array */ 99 return kzalloc(size, gfp_flags); 100 } 101 102 static void r10bio_pool_free(void *r10_bio, void *data) 103 { 104 kfree(r10_bio); 105 } 106 107 /* Maximum size of each resync request */ 108 #define RESYNC_BLOCK_SIZE (64*1024) 109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 110 /* amount of memory to reserve for resync requests */ 111 #define RESYNC_WINDOW (1024*1024) 112 /* maximum number of concurrent requests, memory permitting */ 113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 114 115 /* 116 * When performing a resync, we need to read and compare, so 117 * we need as many pages are there are copies. 118 * When performing a recovery, we need 2 bios, one for read, 119 * one for write (we recover only one drive per r10buf) 120 * 121 */ 122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 123 { 124 struct r10conf *conf = data; 125 struct page *page; 126 struct r10bio *r10_bio; 127 struct bio *bio; 128 int i, j; 129 int nalloc; 130 131 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 132 if (!r10_bio) 133 return NULL; 134 135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 137 nalloc = conf->copies; /* resync */ 138 else 139 nalloc = 2; /* recovery */ 140 141 /* 142 * Allocate bios. 143 */ 144 for (j = nalloc ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r10_bio->devs[j].bio = bio; 149 if (!conf->have_replacement) 150 continue; 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r10_bio->devs[j].repl_bio = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them 158 * where needed. 159 */ 160 for (j = 0 ; j < nalloc; j++) { 161 struct bio *rbio = r10_bio->devs[j].repl_bio; 162 bio = r10_bio->devs[j].bio; 163 for (i = 0; i < RESYNC_PAGES; i++) { 164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 165 &conf->mddev->recovery)) { 166 /* we can share bv_page's during recovery 167 * and reshape */ 168 struct bio *rbio = r10_bio->devs[0].bio; 169 page = rbio->bi_io_vec[i].bv_page; 170 get_page(page); 171 } else 172 page = alloc_page(gfp_flags); 173 if (unlikely(!page)) 174 goto out_free_pages; 175 176 bio->bi_io_vec[i].bv_page = page; 177 if (rbio) 178 rbio->bi_io_vec[i].bv_page = page; 179 } 180 } 181 182 return r10_bio; 183 184 out_free_pages: 185 for ( ; i > 0 ; i--) 186 safe_put_page(bio->bi_io_vec[i-1].bv_page); 187 while (j--) 188 for (i = 0; i < RESYNC_PAGES ; i++) 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 190 j = 0; 191 out_free_bio: 192 for ( ; j < nalloc; j++) { 193 if (r10_bio->devs[j].bio) 194 bio_put(r10_bio->devs[j].bio); 195 if (r10_bio->devs[j].repl_bio) 196 bio_put(r10_bio->devs[j].repl_bio); 197 } 198 r10bio_pool_free(r10_bio, conf); 199 return NULL; 200 } 201 202 static void r10buf_pool_free(void *__r10_bio, void *data) 203 { 204 int i; 205 struct r10conf *conf = data; 206 struct r10bio *r10bio = __r10_bio; 207 int j; 208 209 for (j=0; j < conf->copies; j++) { 210 struct bio *bio = r10bio->devs[j].bio; 211 if (bio) { 212 for (i = 0; i < RESYNC_PAGES; i++) { 213 safe_put_page(bio->bi_io_vec[i].bv_page); 214 bio->bi_io_vec[i].bv_page = NULL; 215 } 216 bio_put(bio); 217 } 218 bio = r10bio->devs[j].repl_bio; 219 if (bio) 220 bio_put(bio); 221 } 222 r10bio_pool_free(r10bio, conf); 223 } 224 225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 226 { 227 int i; 228 229 for (i = 0; i < conf->copies; i++) { 230 struct bio **bio = & r10_bio->devs[i].bio; 231 if (!BIO_SPECIAL(*bio)) 232 bio_put(*bio); 233 *bio = NULL; 234 bio = &r10_bio->devs[i].repl_bio; 235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 236 bio_put(*bio); 237 *bio = NULL; 238 } 239 } 240 241 static void free_r10bio(struct r10bio *r10_bio) 242 { 243 struct r10conf *conf = r10_bio->mddev->private; 244 245 put_all_bios(conf, r10_bio); 246 mempool_free(r10_bio, conf->r10bio_pool); 247 } 248 249 static void put_buf(struct r10bio *r10_bio) 250 { 251 struct r10conf *conf = r10_bio->mddev->private; 252 253 mempool_free(r10_bio, conf->r10buf_pool); 254 255 lower_barrier(conf); 256 } 257 258 static void reschedule_retry(struct r10bio *r10_bio) 259 { 260 unsigned long flags; 261 struct mddev *mddev = r10_bio->mddev; 262 struct r10conf *conf = mddev->private; 263 264 spin_lock_irqsave(&conf->device_lock, flags); 265 list_add(&r10_bio->retry_list, &conf->retry_list); 266 conf->nr_queued ++; 267 spin_unlock_irqrestore(&conf->device_lock, flags); 268 269 /* wake up frozen array... */ 270 wake_up(&conf->wait_barrier); 271 272 md_wakeup_thread(mddev->thread); 273 } 274 275 /* 276 * raid_end_bio_io() is called when we have finished servicing a mirrored 277 * operation and are ready to return a success/failure code to the buffer 278 * cache layer. 279 */ 280 static void raid_end_bio_io(struct r10bio *r10_bio) 281 { 282 struct bio *bio = r10_bio->master_bio; 283 int done; 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 if (bio->bi_phys_segments) { 287 unsigned long flags; 288 spin_lock_irqsave(&conf->device_lock, flags); 289 bio->bi_phys_segments--; 290 done = (bio->bi_phys_segments == 0); 291 spin_unlock_irqrestore(&conf->device_lock, flags); 292 } else 293 done = 1; 294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 295 clear_bit(BIO_UPTODATE, &bio->bi_flags); 296 if (done) { 297 bio_endio(bio, 0); 298 /* 299 * Wake up any possible resync thread that waits for the device 300 * to go idle. 301 */ 302 allow_barrier(conf); 303 } 304 free_r10bio(r10_bio); 305 } 306 307 /* 308 * Update disk head position estimator based on IRQ completion info. 309 */ 310 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 311 { 312 struct r10conf *conf = r10_bio->mddev->private; 313 314 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 315 r10_bio->devs[slot].addr + (r10_bio->sectors); 316 } 317 318 /* 319 * Find the disk number which triggered given bio 320 */ 321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 322 struct bio *bio, int *slotp, int *replp) 323 { 324 int slot; 325 int repl = 0; 326 327 for (slot = 0; slot < conf->copies; slot++) { 328 if (r10_bio->devs[slot].bio == bio) 329 break; 330 if (r10_bio->devs[slot].repl_bio == bio) { 331 repl = 1; 332 break; 333 } 334 } 335 336 BUG_ON(slot == conf->copies); 337 update_head_pos(slot, r10_bio); 338 339 if (slotp) 340 *slotp = slot; 341 if (replp) 342 *replp = repl; 343 return r10_bio->devs[slot].devnum; 344 } 345 346 static void raid10_end_read_request(struct bio *bio, int error) 347 { 348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 349 struct r10bio *r10_bio = bio->bi_private; 350 int slot, dev; 351 struct md_rdev *rdev; 352 struct r10conf *conf = r10_bio->mddev->private; 353 354 355 slot = r10_bio->read_slot; 356 dev = r10_bio->devs[slot].devnum; 357 rdev = r10_bio->devs[slot].rdev; 358 /* 359 * this branch is our 'one mirror IO has finished' event handler: 360 */ 361 update_head_pos(slot, r10_bio); 362 363 if (uptodate) { 364 /* 365 * Set R10BIO_Uptodate in our master bio, so that 366 * we will return a good error code to the higher 367 * levels even if IO on some other mirrored buffer fails. 368 * 369 * The 'master' represents the composite IO operation to 370 * user-side. So if something waits for IO, then it will 371 * wait for the 'master' bio. 372 */ 373 set_bit(R10BIO_Uptodate, &r10_bio->state); 374 } else { 375 /* If all other devices that store this block have 376 * failed, we want to return the error upwards rather 377 * than fail the last device. Here we redefine 378 * "uptodate" to mean "Don't want to retry" 379 */ 380 unsigned long flags; 381 spin_lock_irqsave(&conf->device_lock, flags); 382 if (!enough(conf, rdev->raid_disk)) 383 uptodate = 1; 384 spin_unlock_irqrestore(&conf->device_lock, flags); 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 printk_ratelimited(KERN_ERR 395 "md/raid10:%s: %s: rescheduling sector %llu\n", 396 mdname(conf->mddev), 397 bdevname(rdev->bdev, b), 398 (unsigned long long)r10_bio->sector); 399 set_bit(R10BIO_ReadError, &r10_bio->state); 400 reschedule_retry(r10_bio); 401 } 402 } 403 404 static void close_write(struct r10bio *r10_bio) 405 { 406 /* clear the bitmap if all writes complete successfully */ 407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 408 r10_bio->sectors, 409 !test_bit(R10BIO_Degraded, &r10_bio->state), 410 0); 411 md_write_end(r10_bio->mddev); 412 } 413 414 static void one_write_done(struct r10bio *r10_bio) 415 { 416 if (atomic_dec_and_test(&r10_bio->remaining)) { 417 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 418 reschedule_retry(r10_bio); 419 else { 420 close_write(r10_bio); 421 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 422 reschedule_retry(r10_bio); 423 else 424 raid_end_bio_io(r10_bio); 425 } 426 } 427 } 428 429 static void raid10_end_write_request(struct bio *bio, int error) 430 { 431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 432 struct r10bio *r10_bio = bio->bi_private; 433 int dev; 434 int dec_rdev = 1; 435 struct r10conf *conf = r10_bio->mddev->private; 436 int slot, repl; 437 struct md_rdev *rdev = NULL; 438 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 440 441 if (repl) 442 rdev = conf->mirrors[dev].replacement; 443 if (!rdev) { 444 smp_rmb(); 445 repl = 0; 446 rdev = conf->mirrors[dev].rdev; 447 } 448 /* 449 * this branch is our 'one mirror IO has finished' event handler: 450 */ 451 if (!uptodate) { 452 if (repl) 453 /* Never record new bad blocks to replacement, 454 * just fail it. 455 */ 456 md_error(rdev->mddev, rdev); 457 else { 458 set_bit(WriteErrorSeen, &rdev->flags); 459 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 460 set_bit(MD_RECOVERY_NEEDED, 461 &rdev->mddev->recovery); 462 set_bit(R10BIO_WriteError, &r10_bio->state); 463 dec_rdev = 0; 464 } 465 } else { 466 /* 467 * Set R10BIO_Uptodate in our master bio, so that 468 * we will return a good error code for to the higher 469 * levels even if IO on some other mirrored buffer fails. 470 * 471 * The 'master' represents the composite IO operation to 472 * user-side. So if something waits for IO, then it will 473 * wait for the 'master' bio. 474 */ 475 sector_t first_bad; 476 int bad_sectors; 477 478 set_bit(R10BIO_Uptodate, &r10_bio->state); 479 480 /* Maybe we can clear some bad blocks. */ 481 if (is_badblock(rdev, 482 r10_bio->devs[slot].addr, 483 r10_bio->sectors, 484 &first_bad, &bad_sectors)) { 485 bio_put(bio); 486 if (repl) 487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 488 else 489 r10_bio->devs[slot].bio = IO_MADE_GOOD; 490 dec_rdev = 0; 491 set_bit(R10BIO_MadeGood, &r10_bio->state); 492 } 493 } 494 495 /* 496 * 497 * Let's see if all mirrored write operations have finished 498 * already. 499 */ 500 one_write_done(r10_bio); 501 if (dec_rdev) 502 rdev_dec_pending(rdev, conf->mddev); 503 } 504 505 /* 506 * RAID10 layout manager 507 * As well as the chunksize and raid_disks count, there are two 508 * parameters: near_copies and far_copies. 509 * near_copies * far_copies must be <= raid_disks. 510 * Normally one of these will be 1. 511 * If both are 1, we get raid0. 512 * If near_copies == raid_disks, we get raid1. 513 * 514 * Chunks are laid out in raid0 style with near_copies copies of the 515 * first chunk, followed by near_copies copies of the next chunk and 516 * so on. 517 * If far_copies > 1, then after 1/far_copies of the array has been assigned 518 * as described above, we start again with a device offset of near_copies. 519 * So we effectively have another copy of the whole array further down all 520 * the drives, but with blocks on different drives. 521 * With this layout, and block is never stored twice on the one device. 522 * 523 * raid10_find_phys finds the sector offset of a given virtual sector 524 * on each device that it is on. 525 * 526 * raid10_find_virt does the reverse mapping, from a device and a 527 * sector offset to a virtual address 528 */ 529 530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 531 { 532 int n,f; 533 sector_t sector; 534 sector_t chunk; 535 sector_t stripe; 536 int dev; 537 int slot = 0; 538 539 /* now calculate first sector/dev */ 540 chunk = r10bio->sector >> geo->chunk_shift; 541 sector = r10bio->sector & geo->chunk_mask; 542 543 chunk *= geo->near_copies; 544 stripe = chunk; 545 dev = sector_div(stripe, geo->raid_disks); 546 if (geo->far_offset) 547 stripe *= geo->far_copies; 548 549 sector += stripe << geo->chunk_shift; 550 551 /* and calculate all the others */ 552 for (n = 0; n < geo->near_copies; n++) { 553 int d = dev; 554 sector_t s = sector; 555 r10bio->devs[slot].addr = sector; 556 r10bio->devs[slot].devnum = d; 557 slot++; 558 559 for (f = 1; f < geo->far_copies; f++) { 560 d += geo->near_copies; 561 if (d >= geo->raid_disks) 562 d -= geo->raid_disks; 563 s += geo->stride; 564 r10bio->devs[slot].devnum = d; 565 r10bio->devs[slot].addr = s; 566 slot++; 567 } 568 dev++; 569 if (dev >= geo->raid_disks) { 570 dev = 0; 571 sector += (geo->chunk_mask + 1); 572 } 573 } 574 } 575 576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 577 { 578 struct geom *geo = &conf->geo; 579 580 if (conf->reshape_progress != MaxSector && 581 ((r10bio->sector >= conf->reshape_progress) != 582 conf->mddev->reshape_backwards)) { 583 set_bit(R10BIO_Previous, &r10bio->state); 584 geo = &conf->prev; 585 } else 586 clear_bit(R10BIO_Previous, &r10bio->state); 587 588 __raid10_find_phys(geo, r10bio); 589 } 590 591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 592 { 593 sector_t offset, chunk, vchunk; 594 /* Never use conf->prev as this is only called during resync 595 * or recovery, so reshape isn't happening 596 */ 597 struct geom *geo = &conf->geo; 598 599 offset = sector & geo->chunk_mask; 600 if (geo->far_offset) { 601 int fc; 602 chunk = sector >> geo->chunk_shift; 603 fc = sector_div(chunk, geo->far_copies); 604 dev -= fc * geo->near_copies; 605 if (dev < 0) 606 dev += geo->raid_disks; 607 } else { 608 while (sector >= geo->stride) { 609 sector -= geo->stride; 610 if (dev < geo->near_copies) 611 dev += geo->raid_disks - geo->near_copies; 612 else 613 dev -= geo->near_copies; 614 } 615 chunk = sector >> geo->chunk_shift; 616 } 617 vchunk = chunk * geo->raid_disks + dev; 618 sector_div(vchunk, geo->near_copies); 619 return (vchunk << geo->chunk_shift) + offset; 620 } 621 622 /** 623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 624 * @q: request queue 625 * @bvm: properties of new bio 626 * @biovec: the request that could be merged to it. 627 * 628 * Return amount of bytes we can accept at this offset 629 * This requires checking for end-of-chunk if near_copies != raid_disks, 630 * and for subordinate merge_bvec_fns if merge_check_needed. 631 */ 632 static int raid10_mergeable_bvec(struct request_queue *q, 633 struct bvec_merge_data *bvm, 634 struct bio_vec *biovec) 635 { 636 struct mddev *mddev = q->queuedata; 637 struct r10conf *conf = mddev->private; 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 639 int max; 640 unsigned int chunk_sectors; 641 unsigned int bio_sectors = bvm->bi_size >> 9; 642 struct geom *geo = &conf->geo; 643 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 645 if (conf->reshape_progress != MaxSector && 646 ((sector >= conf->reshape_progress) != 647 conf->mddev->reshape_backwards)) 648 geo = &conf->prev; 649 650 if (geo->near_copies < geo->raid_disks) { 651 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 652 + bio_sectors)) << 9; 653 if (max < 0) 654 /* bio_add cannot handle a negative return */ 655 max = 0; 656 if (max <= biovec->bv_len && bio_sectors == 0) 657 return biovec->bv_len; 658 } else 659 max = biovec->bv_len; 660 661 if (mddev->merge_check_needed) { 662 struct { 663 struct r10bio r10_bio; 664 struct r10dev devs[conf->copies]; 665 } on_stack; 666 struct r10bio *r10_bio = &on_stack.r10_bio; 667 int s; 668 if (conf->reshape_progress != MaxSector) { 669 /* Cannot give any guidance during reshape */ 670 if (max <= biovec->bv_len && bio_sectors == 0) 671 return biovec->bv_len; 672 return 0; 673 } 674 r10_bio->sector = sector; 675 raid10_find_phys(conf, r10_bio); 676 rcu_read_lock(); 677 for (s = 0; s < conf->copies; s++) { 678 int disk = r10_bio->devs[s].devnum; 679 struct md_rdev *rdev = rcu_dereference( 680 conf->mirrors[disk].rdev); 681 if (rdev && !test_bit(Faulty, &rdev->flags)) { 682 struct request_queue *q = 683 bdev_get_queue(rdev->bdev); 684 if (q->merge_bvec_fn) { 685 bvm->bi_sector = r10_bio->devs[s].addr 686 + rdev->data_offset; 687 bvm->bi_bdev = rdev->bdev; 688 max = min(max, q->merge_bvec_fn( 689 q, bvm, biovec)); 690 } 691 } 692 rdev = rcu_dereference(conf->mirrors[disk].replacement); 693 if (rdev && !test_bit(Faulty, &rdev->flags)) { 694 struct request_queue *q = 695 bdev_get_queue(rdev->bdev); 696 if (q->merge_bvec_fn) { 697 bvm->bi_sector = r10_bio->devs[s].addr 698 + rdev->data_offset; 699 bvm->bi_bdev = rdev->bdev; 700 max = min(max, q->merge_bvec_fn( 701 q, bvm, biovec)); 702 } 703 } 704 } 705 rcu_read_unlock(); 706 } 707 return max; 708 } 709 710 /* 711 * This routine returns the disk from which the requested read should 712 * be done. There is a per-array 'next expected sequential IO' sector 713 * number - if this matches on the next IO then we use the last disk. 714 * There is also a per-disk 'last know head position' sector that is 715 * maintained from IRQ contexts, both the normal and the resync IO 716 * completion handlers update this position correctly. If there is no 717 * perfect sequential match then we pick the disk whose head is closest. 718 * 719 * If there are 2 mirrors in the same 2 devices, performance degrades 720 * because position is mirror, not device based. 721 * 722 * The rdev for the device selected will have nr_pending incremented. 723 */ 724 725 /* 726 * FIXME: possibly should rethink readbalancing and do it differently 727 * depending on near_copies / far_copies geometry. 728 */ 729 static struct md_rdev *read_balance(struct r10conf *conf, 730 struct r10bio *r10_bio, 731 int *max_sectors) 732 { 733 const sector_t this_sector = r10_bio->sector; 734 int disk, slot; 735 int sectors = r10_bio->sectors; 736 int best_good_sectors; 737 sector_t new_distance, best_dist; 738 struct md_rdev *best_rdev, *rdev = NULL; 739 int do_balance; 740 int best_slot; 741 struct geom *geo = &conf->geo; 742 743 raid10_find_phys(conf, r10_bio); 744 rcu_read_lock(); 745 retry: 746 sectors = r10_bio->sectors; 747 best_slot = -1; 748 best_rdev = NULL; 749 best_dist = MaxSector; 750 best_good_sectors = 0; 751 do_balance = 1; 752 /* 753 * Check if we can balance. We can balance on the whole 754 * device if no resync is going on (recovery is ok), or below 755 * the resync window. We take the first readable disk when 756 * above the resync window. 757 */ 758 if (conf->mddev->recovery_cp < MaxSector 759 && (this_sector + sectors >= conf->next_resync)) 760 do_balance = 0; 761 762 for (slot = 0; slot < conf->copies ; slot++) { 763 sector_t first_bad; 764 int bad_sectors; 765 sector_t dev_sector; 766 767 if (r10_bio->devs[slot].bio == IO_BLOCKED) 768 continue; 769 disk = r10_bio->devs[slot].devnum; 770 rdev = rcu_dereference(conf->mirrors[disk].replacement); 771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 772 test_bit(Unmerged, &rdev->flags) || 773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 774 rdev = rcu_dereference(conf->mirrors[disk].rdev); 775 if (rdev == NULL || 776 test_bit(Faulty, &rdev->flags) || 777 test_bit(Unmerged, &rdev->flags)) 778 continue; 779 if (!test_bit(In_sync, &rdev->flags) && 780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 781 continue; 782 783 dev_sector = r10_bio->devs[slot].addr; 784 if (is_badblock(rdev, dev_sector, sectors, 785 &first_bad, &bad_sectors)) { 786 if (best_dist < MaxSector) 787 /* Already have a better slot */ 788 continue; 789 if (first_bad <= dev_sector) { 790 /* Cannot read here. If this is the 791 * 'primary' device, then we must not read 792 * beyond 'bad_sectors' from another device. 793 */ 794 bad_sectors -= (dev_sector - first_bad); 795 if (!do_balance && sectors > bad_sectors) 796 sectors = bad_sectors; 797 if (best_good_sectors > sectors) 798 best_good_sectors = sectors; 799 } else { 800 sector_t good_sectors = 801 first_bad - dev_sector; 802 if (good_sectors > best_good_sectors) { 803 best_good_sectors = good_sectors; 804 best_slot = slot; 805 best_rdev = rdev; 806 } 807 if (!do_balance) 808 /* Must read from here */ 809 break; 810 } 811 continue; 812 } else 813 best_good_sectors = sectors; 814 815 if (!do_balance) 816 break; 817 818 /* This optimisation is debatable, and completely destroys 819 * sequential read speed for 'far copies' arrays. So only 820 * keep it for 'near' arrays, and review those later. 821 */ 822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 823 break; 824 825 /* for far > 1 always use the lowest address */ 826 if (geo->far_copies > 1) 827 new_distance = r10_bio->devs[slot].addr; 828 else 829 new_distance = abs(r10_bio->devs[slot].addr - 830 conf->mirrors[disk].head_position); 831 if (new_distance < best_dist) { 832 best_dist = new_distance; 833 best_slot = slot; 834 best_rdev = rdev; 835 } 836 } 837 if (slot >= conf->copies) { 838 slot = best_slot; 839 rdev = best_rdev; 840 } 841 842 if (slot >= 0) { 843 atomic_inc(&rdev->nr_pending); 844 if (test_bit(Faulty, &rdev->flags)) { 845 /* Cannot risk returning a device that failed 846 * before we inc'ed nr_pending 847 */ 848 rdev_dec_pending(rdev, conf->mddev); 849 goto retry; 850 } 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 rcu_read_unlock(); 855 *max_sectors = best_good_sectors; 856 857 return rdev; 858 } 859 860 int md_raid10_congested(struct mddev *mddev, int bits) 861 { 862 struct r10conf *conf = mddev->private; 863 int i, ret = 0; 864 865 if ((bits & (1 << BDI_async_congested)) && 866 conf->pending_count >= max_queued_requests) 867 return 1; 868 869 rcu_read_lock(); 870 for (i = 0; 871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 872 && ret == 0; 873 i++) { 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 875 if (rdev && !test_bit(Faulty, &rdev->flags)) { 876 struct request_queue *q = bdev_get_queue(rdev->bdev); 877 878 ret |= bdi_congested(&q->backing_dev_info, bits); 879 } 880 } 881 rcu_read_unlock(); 882 return ret; 883 } 884 EXPORT_SYMBOL_GPL(md_raid10_congested); 885 886 static int raid10_congested(void *data, int bits) 887 { 888 struct mddev *mddev = data; 889 890 return mddev_congested(mddev, bits) || 891 md_raid10_congested(mddev, bits); 892 } 893 894 static void flush_pending_writes(struct r10conf *conf) 895 { 896 /* Any writes that have been queued but are awaiting 897 * bitmap updates get flushed here. 898 */ 899 spin_lock_irq(&conf->device_lock); 900 901 if (conf->pending_bio_list.head) { 902 struct bio *bio; 903 bio = bio_list_get(&conf->pending_bio_list); 904 conf->pending_count = 0; 905 spin_unlock_irq(&conf->device_lock); 906 /* flush any pending bitmap writes to disk 907 * before proceeding w/ I/O */ 908 bitmap_unplug(conf->mddev->bitmap); 909 wake_up(&conf->wait_barrier); 910 911 while (bio) { /* submit pending writes */ 912 struct bio *next = bio->bi_next; 913 bio->bi_next = NULL; 914 if (unlikely((bio->bi_rw & REQ_DISCARD) && 915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 916 /* Just ignore it */ 917 bio_endio(bio, 0); 918 else 919 generic_make_request(bio); 920 bio = next; 921 } 922 } else 923 spin_unlock_irq(&conf->device_lock); 924 } 925 926 /* Barriers.... 927 * Sometimes we need to suspend IO while we do something else, 928 * either some resync/recovery, or reconfigure the array. 929 * To do this we raise a 'barrier'. 930 * The 'barrier' is a counter that can be raised multiple times 931 * to count how many activities are happening which preclude 932 * normal IO. 933 * We can only raise the barrier if there is no pending IO. 934 * i.e. if nr_pending == 0. 935 * We choose only to raise the barrier if no-one is waiting for the 936 * barrier to go down. This means that as soon as an IO request 937 * is ready, no other operations which require a barrier will start 938 * until the IO request has had a chance. 939 * 940 * So: regular IO calls 'wait_barrier'. When that returns there 941 * is no backgroup IO happening, It must arrange to call 942 * allow_barrier when it has finished its IO. 943 * backgroup IO calls must call raise_barrier. Once that returns 944 * there is no normal IO happeing. It must arrange to call 945 * lower_barrier when the particular background IO completes. 946 */ 947 948 static void raise_barrier(struct r10conf *conf, int force) 949 { 950 BUG_ON(force && !conf->barrier); 951 spin_lock_irq(&conf->resync_lock); 952 953 /* Wait until no block IO is waiting (unless 'force') */ 954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 955 conf->resync_lock); 956 957 /* block any new IO from starting */ 958 conf->barrier++; 959 960 /* Now wait for all pending IO to complete */ 961 wait_event_lock_irq(conf->wait_barrier, 962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 963 conf->resync_lock); 964 965 spin_unlock_irq(&conf->resync_lock); 966 } 967 968 static void lower_barrier(struct r10conf *conf) 969 { 970 unsigned long flags; 971 spin_lock_irqsave(&conf->resync_lock, flags); 972 conf->barrier--; 973 spin_unlock_irqrestore(&conf->resync_lock, flags); 974 wake_up(&conf->wait_barrier); 975 } 976 977 static void wait_barrier(struct r10conf *conf) 978 { 979 spin_lock_irq(&conf->resync_lock); 980 if (conf->barrier) { 981 conf->nr_waiting++; 982 /* Wait for the barrier to drop. 983 * However if there are already pending 984 * requests (preventing the barrier from 985 * rising completely), and the 986 * pre-process bio queue isn't empty, 987 * then don't wait, as we need to empty 988 * that queue to get the nr_pending 989 * count down. 990 */ 991 wait_event_lock_irq(conf->wait_barrier, 992 !conf->barrier || 993 (conf->nr_pending && 994 current->bio_list && 995 !bio_list_empty(current->bio_list)), 996 conf->resync_lock); 997 conf->nr_waiting--; 998 } 999 conf->nr_pending++; 1000 spin_unlock_irq(&conf->resync_lock); 1001 } 1002 1003 static void allow_barrier(struct r10conf *conf) 1004 { 1005 unsigned long flags; 1006 spin_lock_irqsave(&conf->resync_lock, flags); 1007 conf->nr_pending--; 1008 spin_unlock_irqrestore(&conf->resync_lock, flags); 1009 wake_up(&conf->wait_barrier); 1010 } 1011 1012 static void freeze_array(struct r10conf *conf) 1013 { 1014 /* stop syncio and normal IO and wait for everything to 1015 * go quiet. 1016 * We increment barrier and nr_waiting, and then 1017 * wait until nr_pending match nr_queued+1 1018 * This is called in the context of one normal IO request 1019 * that has failed. Thus any sync request that might be pending 1020 * will be blocked by nr_pending, and we need to wait for 1021 * pending IO requests to complete or be queued for re-try. 1022 * Thus the number queued (nr_queued) plus this request (1) 1023 * must match the number of pending IOs (nr_pending) before 1024 * we continue. 1025 */ 1026 spin_lock_irq(&conf->resync_lock); 1027 conf->barrier++; 1028 conf->nr_waiting++; 1029 wait_event_lock_irq_cmd(conf->wait_barrier, 1030 conf->nr_pending == conf->nr_queued+1, 1031 conf->resync_lock, 1032 flush_pending_writes(conf)); 1033 1034 spin_unlock_irq(&conf->resync_lock); 1035 } 1036 1037 static void unfreeze_array(struct r10conf *conf) 1038 { 1039 /* reverse the effect of the freeze */ 1040 spin_lock_irq(&conf->resync_lock); 1041 conf->barrier--; 1042 conf->nr_waiting--; 1043 wake_up(&conf->wait_barrier); 1044 spin_unlock_irq(&conf->resync_lock); 1045 } 1046 1047 static sector_t choose_data_offset(struct r10bio *r10_bio, 1048 struct md_rdev *rdev) 1049 { 1050 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1051 test_bit(R10BIO_Previous, &r10_bio->state)) 1052 return rdev->data_offset; 1053 else 1054 return rdev->new_data_offset; 1055 } 1056 1057 struct raid10_plug_cb { 1058 struct blk_plug_cb cb; 1059 struct bio_list pending; 1060 int pending_cnt; 1061 }; 1062 1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1064 { 1065 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1066 cb); 1067 struct mddev *mddev = plug->cb.data; 1068 struct r10conf *conf = mddev->private; 1069 struct bio *bio; 1070 1071 if (from_schedule || current->bio_list) { 1072 spin_lock_irq(&conf->device_lock); 1073 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1074 conf->pending_count += plug->pending_cnt; 1075 spin_unlock_irq(&conf->device_lock); 1076 md_wakeup_thread(mddev->thread); 1077 kfree(plug); 1078 return; 1079 } 1080 1081 /* we aren't scheduling, so we can do the write-out directly. */ 1082 bio = bio_list_get(&plug->pending); 1083 bitmap_unplug(mddev->bitmap); 1084 wake_up(&conf->wait_barrier); 1085 1086 while (bio) { /* submit pending writes */ 1087 struct bio *next = bio->bi_next; 1088 bio->bi_next = NULL; 1089 generic_make_request(bio); 1090 bio = next; 1091 } 1092 kfree(plug); 1093 } 1094 1095 static void make_request(struct mddev *mddev, struct bio * bio) 1096 { 1097 struct r10conf *conf = mddev->private; 1098 struct r10bio *r10_bio; 1099 struct bio *read_bio; 1100 int i; 1101 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1102 int chunk_sects = chunk_mask + 1; 1103 const int rw = bio_data_dir(bio); 1104 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1105 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1106 const unsigned long do_discard = (bio->bi_rw 1107 & (REQ_DISCARD | REQ_SECURE)); 1108 unsigned long flags; 1109 struct md_rdev *blocked_rdev; 1110 struct blk_plug_cb *cb; 1111 struct raid10_plug_cb *plug = NULL; 1112 int sectors_handled; 1113 int max_sectors; 1114 int sectors; 1115 1116 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1117 md_flush_request(mddev, bio); 1118 return; 1119 } 1120 1121 /* If this request crosses a chunk boundary, we need to 1122 * split it. This will only happen for 1 PAGE (or less) requests. 1123 */ 1124 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1125 > chunk_sects 1126 && (conf->geo.near_copies < conf->geo.raid_disks 1127 || conf->prev.near_copies < conf->prev.raid_disks))) { 1128 struct bio_pair *bp; 1129 /* Sanity check -- queue functions should prevent this happening */ 1130 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || 1131 bio->bi_idx != 0) 1132 goto bad_map; 1133 /* This is a one page bio that upper layers 1134 * refuse to split for us, so we need to split it. 1135 */ 1136 bp = bio_split(bio, 1137 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1138 1139 /* Each of these 'make_request' calls will call 'wait_barrier'. 1140 * If the first succeeds but the second blocks due to the resync 1141 * thread raising the barrier, we will deadlock because the 1142 * IO to the underlying device will be queued in generic_make_request 1143 * and will never complete, so will never reduce nr_pending. 1144 * So increment nr_waiting here so no new raise_barriers will 1145 * succeed, and so the second wait_barrier cannot block. 1146 */ 1147 spin_lock_irq(&conf->resync_lock); 1148 conf->nr_waiting++; 1149 spin_unlock_irq(&conf->resync_lock); 1150 1151 make_request(mddev, &bp->bio1); 1152 make_request(mddev, &bp->bio2); 1153 1154 spin_lock_irq(&conf->resync_lock); 1155 conf->nr_waiting--; 1156 wake_up(&conf->wait_barrier); 1157 spin_unlock_irq(&conf->resync_lock); 1158 1159 bio_pair_release(bp); 1160 return; 1161 bad_map: 1162 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1163 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1164 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1165 1166 bio_io_error(bio); 1167 return; 1168 } 1169 1170 md_write_start(mddev, bio); 1171 1172 /* 1173 * Register the new request and wait if the reconstruction 1174 * thread has put up a bar for new requests. 1175 * Continue immediately if no resync is active currently. 1176 */ 1177 wait_barrier(conf); 1178 1179 sectors = bio->bi_size >> 9; 1180 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1181 bio->bi_sector < conf->reshape_progress && 1182 bio->bi_sector + sectors > conf->reshape_progress) { 1183 /* IO spans the reshape position. Need to wait for 1184 * reshape to pass 1185 */ 1186 allow_barrier(conf); 1187 wait_event(conf->wait_barrier, 1188 conf->reshape_progress <= bio->bi_sector || 1189 conf->reshape_progress >= bio->bi_sector + sectors); 1190 wait_barrier(conf); 1191 } 1192 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1193 bio_data_dir(bio) == WRITE && 1194 (mddev->reshape_backwards 1195 ? (bio->bi_sector < conf->reshape_safe && 1196 bio->bi_sector + sectors > conf->reshape_progress) 1197 : (bio->bi_sector + sectors > conf->reshape_safe && 1198 bio->bi_sector < conf->reshape_progress))) { 1199 /* Need to update reshape_position in metadata */ 1200 mddev->reshape_position = conf->reshape_progress; 1201 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1202 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1203 md_wakeup_thread(mddev->thread); 1204 wait_event(mddev->sb_wait, 1205 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1206 1207 conf->reshape_safe = mddev->reshape_position; 1208 } 1209 1210 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1211 1212 r10_bio->master_bio = bio; 1213 r10_bio->sectors = sectors; 1214 1215 r10_bio->mddev = mddev; 1216 r10_bio->sector = bio->bi_sector; 1217 r10_bio->state = 0; 1218 1219 /* We might need to issue multiple reads to different 1220 * devices if there are bad blocks around, so we keep 1221 * track of the number of reads in bio->bi_phys_segments. 1222 * If this is 0, there is only one r10_bio and no locking 1223 * will be needed when the request completes. If it is 1224 * non-zero, then it is the number of not-completed requests. 1225 */ 1226 bio->bi_phys_segments = 0; 1227 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1228 1229 if (rw == READ) { 1230 /* 1231 * read balancing logic: 1232 */ 1233 struct md_rdev *rdev; 1234 int slot; 1235 1236 read_again: 1237 rdev = read_balance(conf, r10_bio, &max_sectors); 1238 if (!rdev) { 1239 raid_end_bio_io(r10_bio); 1240 return; 1241 } 1242 slot = r10_bio->read_slot; 1243 1244 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1245 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1246 max_sectors); 1247 1248 r10_bio->devs[slot].bio = read_bio; 1249 r10_bio->devs[slot].rdev = rdev; 1250 1251 read_bio->bi_sector = r10_bio->devs[slot].addr + 1252 choose_data_offset(r10_bio, rdev); 1253 read_bio->bi_bdev = rdev->bdev; 1254 read_bio->bi_end_io = raid10_end_read_request; 1255 read_bio->bi_rw = READ | do_sync; 1256 read_bio->bi_private = r10_bio; 1257 1258 if (max_sectors < r10_bio->sectors) { 1259 /* Could not read all from this device, so we will 1260 * need another r10_bio. 1261 */ 1262 sectors_handled = (r10_bio->sectors + max_sectors 1263 - bio->bi_sector); 1264 r10_bio->sectors = max_sectors; 1265 spin_lock_irq(&conf->device_lock); 1266 if (bio->bi_phys_segments == 0) 1267 bio->bi_phys_segments = 2; 1268 else 1269 bio->bi_phys_segments++; 1270 spin_unlock(&conf->device_lock); 1271 /* Cannot call generic_make_request directly 1272 * as that will be queued in __generic_make_request 1273 * and subsequent mempool_alloc might block 1274 * waiting for it. so hand bio over to raid10d. 1275 */ 1276 reschedule_retry(r10_bio); 1277 1278 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1279 1280 r10_bio->master_bio = bio; 1281 r10_bio->sectors = ((bio->bi_size >> 9) 1282 - sectors_handled); 1283 r10_bio->state = 0; 1284 r10_bio->mddev = mddev; 1285 r10_bio->sector = bio->bi_sector + sectors_handled; 1286 goto read_again; 1287 } else 1288 generic_make_request(read_bio); 1289 return; 1290 } 1291 1292 /* 1293 * WRITE: 1294 */ 1295 if (conf->pending_count >= max_queued_requests) { 1296 md_wakeup_thread(mddev->thread); 1297 wait_event(conf->wait_barrier, 1298 conf->pending_count < max_queued_requests); 1299 } 1300 /* first select target devices under rcu_lock and 1301 * inc refcount on their rdev. Record them by setting 1302 * bios[x] to bio 1303 * If there are known/acknowledged bad blocks on any device 1304 * on which we have seen a write error, we want to avoid 1305 * writing to those blocks. This potentially requires several 1306 * writes to write around the bad blocks. Each set of writes 1307 * gets its own r10_bio with a set of bios attached. The number 1308 * of r10_bios is recored in bio->bi_phys_segments just as with 1309 * the read case. 1310 */ 1311 1312 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1313 raid10_find_phys(conf, r10_bio); 1314 retry_write: 1315 blocked_rdev = NULL; 1316 rcu_read_lock(); 1317 max_sectors = r10_bio->sectors; 1318 1319 for (i = 0; i < conf->copies; i++) { 1320 int d = r10_bio->devs[i].devnum; 1321 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1322 struct md_rdev *rrdev = rcu_dereference( 1323 conf->mirrors[d].replacement); 1324 if (rdev == rrdev) 1325 rrdev = NULL; 1326 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1327 atomic_inc(&rdev->nr_pending); 1328 blocked_rdev = rdev; 1329 break; 1330 } 1331 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1332 atomic_inc(&rrdev->nr_pending); 1333 blocked_rdev = rrdev; 1334 break; 1335 } 1336 if (rdev && (test_bit(Faulty, &rdev->flags) 1337 || test_bit(Unmerged, &rdev->flags))) 1338 rdev = NULL; 1339 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1340 || test_bit(Unmerged, &rrdev->flags))) 1341 rrdev = NULL; 1342 1343 r10_bio->devs[i].bio = NULL; 1344 r10_bio->devs[i].repl_bio = NULL; 1345 1346 if (!rdev && !rrdev) { 1347 set_bit(R10BIO_Degraded, &r10_bio->state); 1348 continue; 1349 } 1350 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1351 sector_t first_bad; 1352 sector_t dev_sector = r10_bio->devs[i].addr; 1353 int bad_sectors; 1354 int is_bad; 1355 1356 is_bad = is_badblock(rdev, dev_sector, 1357 max_sectors, 1358 &first_bad, &bad_sectors); 1359 if (is_bad < 0) { 1360 /* Mustn't write here until the bad block 1361 * is acknowledged 1362 */ 1363 atomic_inc(&rdev->nr_pending); 1364 set_bit(BlockedBadBlocks, &rdev->flags); 1365 blocked_rdev = rdev; 1366 break; 1367 } 1368 if (is_bad && first_bad <= dev_sector) { 1369 /* Cannot write here at all */ 1370 bad_sectors -= (dev_sector - first_bad); 1371 if (bad_sectors < max_sectors) 1372 /* Mustn't write more than bad_sectors 1373 * to other devices yet 1374 */ 1375 max_sectors = bad_sectors; 1376 /* We don't set R10BIO_Degraded as that 1377 * only applies if the disk is missing, 1378 * so it might be re-added, and we want to 1379 * know to recover this chunk. 1380 * In this case the device is here, and the 1381 * fact that this chunk is not in-sync is 1382 * recorded in the bad block log. 1383 */ 1384 continue; 1385 } 1386 if (is_bad) { 1387 int good_sectors = first_bad - dev_sector; 1388 if (good_sectors < max_sectors) 1389 max_sectors = good_sectors; 1390 } 1391 } 1392 if (rdev) { 1393 r10_bio->devs[i].bio = bio; 1394 atomic_inc(&rdev->nr_pending); 1395 } 1396 if (rrdev) { 1397 r10_bio->devs[i].repl_bio = bio; 1398 atomic_inc(&rrdev->nr_pending); 1399 } 1400 } 1401 rcu_read_unlock(); 1402 1403 if (unlikely(blocked_rdev)) { 1404 /* Have to wait for this device to get unblocked, then retry */ 1405 int j; 1406 int d; 1407 1408 for (j = 0; j < i; j++) { 1409 if (r10_bio->devs[j].bio) { 1410 d = r10_bio->devs[j].devnum; 1411 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1412 } 1413 if (r10_bio->devs[j].repl_bio) { 1414 struct md_rdev *rdev; 1415 d = r10_bio->devs[j].devnum; 1416 rdev = conf->mirrors[d].replacement; 1417 if (!rdev) { 1418 /* Race with remove_disk */ 1419 smp_mb(); 1420 rdev = conf->mirrors[d].rdev; 1421 } 1422 rdev_dec_pending(rdev, mddev); 1423 } 1424 } 1425 allow_barrier(conf); 1426 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1427 wait_barrier(conf); 1428 goto retry_write; 1429 } 1430 1431 if (max_sectors < r10_bio->sectors) { 1432 /* We are splitting this into multiple parts, so 1433 * we need to prepare for allocating another r10_bio. 1434 */ 1435 r10_bio->sectors = max_sectors; 1436 spin_lock_irq(&conf->device_lock); 1437 if (bio->bi_phys_segments == 0) 1438 bio->bi_phys_segments = 2; 1439 else 1440 bio->bi_phys_segments++; 1441 spin_unlock_irq(&conf->device_lock); 1442 } 1443 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1444 1445 atomic_set(&r10_bio->remaining, 1); 1446 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1447 1448 for (i = 0; i < conf->copies; i++) { 1449 struct bio *mbio; 1450 int d = r10_bio->devs[i].devnum; 1451 if (r10_bio->devs[i].bio) { 1452 struct md_rdev *rdev = conf->mirrors[d].rdev; 1453 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1454 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1455 max_sectors); 1456 r10_bio->devs[i].bio = mbio; 1457 1458 mbio->bi_sector = (r10_bio->devs[i].addr+ 1459 choose_data_offset(r10_bio, 1460 rdev)); 1461 mbio->bi_bdev = rdev->bdev; 1462 mbio->bi_end_io = raid10_end_write_request; 1463 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; 1464 mbio->bi_private = r10_bio; 1465 1466 atomic_inc(&r10_bio->remaining); 1467 1468 cb = blk_check_plugged(raid10_unplug, mddev, 1469 sizeof(*plug)); 1470 if (cb) 1471 plug = container_of(cb, struct raid10_plug_cb, 1472 cb); 1473 else 1474 plug = NULL; 1475 spin_lock_irqsave(&conf->device_lock, flags); 1476 if (plug) { 1477 bio_list_add(&plug->pending, mbio); 1478 plug->pending_cnt++; 1479 } else { 1480 bio_list_add(&conf->pending_bio_list, mbio); 1481 conf->pending_count++; 1482 } 1483 spin_unlock_irqrestore(&conf->device_lock, flags); 1484 if (!plug) 1485 md_wakeup_thread(mddev->thread); 1486 } 1487 1488 if (r10_bio->devs[i].repl_bio) { 1489 struct md_rdev *rdev = conf->mirrors[d].replacement; 1490 if (rdev == NULL) { 1491 /* Replacement just got moved to main 'rdev' */ 1492 smp_mb(); 1493 rdev = conf->mirrors[d].rdev; 1494 } 1495 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1496 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1497 max_sectors); 1498 r10_bio->devs[i].repl_bio = mbio; 1499 1500 mbio->bi_sector = (r10_bio->devs[i].addr + 1501 choose_data_offset( 1502 r10_bio, rdev)); 1503 mbio->bi_bdev = rdev->bdev; 1504 mbio->bi_end_io = raid10_end_write_request; 1505 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; 1506 mbio->bi_private = r10_bio; 1507 1508 atomic_inc(&r10_bio->remaining); 1509 spin_lock_irqsave(&conf->device_lock, flags); 1510 bio_list_add(&conf->pending_bio_list, mbio); 1511 conf->pending_count++; 1512 spin_unlock_irqrestore(&conf->device_lock, flags); 1513 if (!mddev_check_plugged(mddev)) 1514 md_wakeup_thread(mddev->thread); 1515 } 1516 } 1517 1518 /* Don't remove the bias on 'remaining' (one_write_done) until 1519 * after checking if we need to go around again. 1520 */ 1521 1522 if (sectors_handled < (bio->bi_size >> 9)) { 1523 one_write_done(r10_bio); 1524 /* We need another r10_bio. It has already been counted 1525 * in bio->bi_phys_segments. 1526 */ 1527 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1528 1529 r10_bio->master_bio = bio; 1530 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1531 1532 r10_bio->mddev = mddev; 1533 r10_bio->sector = bio->bi_sector + sectors_handled; 1534 r10_bio->state = 0; 1535 goto retry_write; 1536 } 1537 one_write_done(r10_bio); 1538 1539 /* In case raid10d snuck in to freeze_array */ 1540 wake_up(&conf->wait_barrier); 1541 } 1542 1543 static void status(struct seq_file *seq, struct mddev *mddev) 1544 { 1545 struct r10conf *conf = mddev->private; 1546 int i; 1547 1548 if (conf->geo.near_copies < conf->geo.raid_disks) 1549 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1550 if (conf->geo.near_copies > 1) 1551 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1552 if (conf->geo.far_copies > 1) { 1553 if (conf->geo.far_offset) 1554 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1555 else 1556 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1557 } 1558 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1559 conf->geo.raid_disks - mddev->degraded); 1560 for (i = 0; i < conf->geo.raid_disks; i++) 1561 seq_printf(seq, "%s", 1562 conf->mirrors[i].rdev && 1563 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1564 seq_printf(seq, "]"); 1565 } 1566 1567 /* check if there are enough drives for 1568 * every block to appear on atleast one. 1569 * Don't consider the device numbered 'ignore' 1570 * as we might be about to remove it. 1571 */ 1572 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1573 { 1574 int first = 0; 1575 1576 do { 1577 int n = conf->copies; 1578 int cnt = 0; 1579 int this = first; 1580 while (n--) { 1581 if (conf->mirrors[this].rdev && 1582 this != ignore) 1583 cnt++; 1584 this = (this+1) % geo->raid_disks; 1585 } 1586 if (cnt == 0) 1587 return 0; 1588 first = (first + geo->near_copies) % geo->raid_disks; 1589 } while (first != 0); 1590 return 1; 1591 } 1592 1593 static int enough(struct r10conf *conf, int ignore) 1594 { 1595 return _enough(conf, &conf->geo, ignore) && 1596 _enough(conf, &conf->prev, ignore); 1597 } 1598 1599 static void error(struct mddev *mddev, struct md_rdev *rdev) 1600 { 1601 char b[BDEVNAME_SIZE]; 1602 struct r10conf *conf = mddev->private; 1603 1604 /* 1605 * If it is not operational, then we have already marked it as dead 1606 * else if it is the last working disks, ignore the error, let the 1607 * next level up know. 1608 * else mark the drive as failed 1609 */ 1610 if (test_bit(In_sync, &rdev->flags) 1611 && !enough(conf, rdev->raid_disk)) 1612 /* 1613 * Don't fail the drive, just return an IO error. 1614 */ 1615 return; 1616 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1617 unsigned long flags; 1618 spin_lock_irqsave(&conf->device_lock, flags); 1619 mddev->degraded++; 1620 spin_unlock_irqrestore(&conf->device_lock, flags); 1621 /* 1622 * if recovery is running, make sure it aborts. 1623 */ 1624 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1625 } 1626 set_bit(Blocked, &rdev->flags); 1627 set_bit(Faulty, &rdev->flags); 1628 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1629 printk(KERN_ALERT 1630 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1631 "md/raid10:%s: Operation continuing on %d devices.\n", 1632 mdname(mddev), bdevname(rdev->bdev, b), 1633 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1634 } 1635 1636 static void print_conf(struct r10conf *conf) 1637 { 1638 int i; 1639 struct raid10_info *tmp; 1640 1641 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1642 if (!conf) { 1643 printk(KERN_DEBUG "(!conf)\n"); 1644 return; 1645 } 1646 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1647 conf->geo.raid_disks); 1648 1649 for (i = 0; i < conf->geo.raid_disks; i++) { 1650 char b[BDEVNAME_SIZE]; 1651 tmp = conf->mirrors + i; 1652 if (tmp->rdev) 1653 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1654 i, !test_bit(In_sync, &tmp->rdev->flags), 1655 !test_bit(Faulty, &tmp->rdev->flags), 1656 bdevname(tmp->rdev->bdev,b)); 1657 } 1658 } 1659 1660 static void close_sync(struct r10conf *conf) 1661 { 1662 wait_barrier(conf); 1663 allow_barrier(conf); 1664 1665 mempool_destroy(conf->r10buf_pool); 1666 conf->r10buf_pool = NULL; 1667 } 1668 1669 static int raid10_spare_active(struct mddev *mddev) 1670 { 1671 int i; 1672 struct r10conf *conf = mddev->private; 1673 struct raid10_info *tmp; 1674 int count = 0; 1675 unsigned long flags; 1676 1677 /* 1678 * Find all non-in_sync disks within the RAID10 configuration 1679 * and mark them in_sync 1680 */ 1681 for (i = 0; i < conf->geo.raid_disks; i++) { 1682 tmp = conf->mirrors + i; 1683 if (tmp->replacement 1684 && tmp->replacement->recovery_offset == MaxSector 1685 && !test_bit(Faulty, &tmp->replacement->flags) 1686 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1687 /* Replacement has just become active */ 1688 if (!tmp->rdev 1689 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1690 count++; 1691 if (tmp->rdev) { 1692 /* Replaced device not technically faulty, 1693 * but we need to be sure it gets removed 1694 * and never re-added. 1695 */ 1696 set_bit(Faulty, &tmp->rdev->flags); 1697 sysfs_notify_dirent_safe( 1698 tmp->rdev->sysfs_state); 1699 } 1700 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1701 } else if (tmp->rdev 1702 && !test_bit(Faulty, &tmp->rdev->flags) 1703 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1704 count++; 1705 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1706 } 1707 } 1708 spin_lock_irqsave(&conf->device_lock, flags); 1709 mddev->degraded -= count; 1710 spin_unlock_irqrestore(&conf->device_lock, flags); 1711 1712 print_conf(conf); 1713 return count; 1714 } 1715 1716 1717 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1718 { 1719 struct r10conf *conf = mddev->private; 1720 int err = -EEXIST; 1721 int mirror; 1722 int first = 0; 1723 int last = conf->geo.raid_disks - 1; 1724 struct request_queue *q = bdev_get_queue(rdev->bdev); 1725 1726 if (mddev->recovery_cp < MaxSector) 1727 /* only hot-add to in-sync arrays, as recovery is 1728 * very different from resync 1729 */ 1730 return -EBUSY; 1731 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1732 return -EINVAL; 1733 1734 if (rdev->raid_disk >= 0) 1735 first = last = rdev->raid_disk; 1736 1737 if (q->merge_bvec_fn) { 1738 set_bit(Unmerged, &rdev->flags); 1739 mddev->merge_check_needed = 1; 1740 } 1741 1742 if (rdev->saved_raid_disk >= first && 1743 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1744 mirror = rdev->saved_raid_disk; 1745 else 1746 mirror = first; 1747 for ( ; mirror <= last ; mirror++) { 1748 struct raid10_info *p = &conf->mirrors[mirror]; 1749 if (p->recovery_disabled == mddev->recovery_disabled) 1750 continue; 1751 if (p->rdev) { 1752 if (!test_bit(WantReplacement, &p->rdev->flags) || 1753 p->replacement != NULL) 1754 continue; 1755 clear_bit(In_sync, &rdev->flags); 1756 set_bit(Replacement, &rdev->flags); 1757 rdev->raid_disk = mirror; 1758 err = 0; 1759 disk_stack_limits(mddev->gendisk, rdev->bdev, 1760 rdev->data_offset << 9); 1761 conf->fullsync = 1; 1762 rcu_assign_pointer(p->replacement, rdev); 1763 break; 1764 } 1765 1766 disk_stack_limits(mddev->gendisk, rdev->bdev, 1767 rdev->data_offset << 9); 1768 1769 p->head_position = 0; 1770 p->recovery_disabled = mddev->recovery_disabled - 1; 1771 rdev->raid_disk = mirror; 1772 err = 0; 1773 if (rdev->saved_raid_disk != mirror) 1774 conf->fullsync = 1; 1775 rcu_assign_pointer(p->rdev, rdev); 1776 break; 1777 } 1778 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1779 /* Some requests might not have seen this new 1780 * merge_bvec_fn. We must wait for them to complete 1781 * before merging the device fully. 1782 * First we make sure any code which has tested 1783 * our function has submitted the request, then 1784 * we wait for all outstanding requests to complete. 1785 */ 1786 synchronize_sched(); 1787 raise_barrier(conf, 0); 1788 lower_barrier(conf); 1789 clear_bit(Unmerged, &rdev->flags); 1790 } 1791 md_integrity_add_rdev(rdev, mddev); 1792 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1793 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1794 1795 print_conf(conf); 1796 return err; 1797 } 1798 1799 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1800 { 1801 struct r10conf *conf = mddev->private; 1802 int err = 0; 1803 int number = rdev->raid_disk; 1804 struct md_rdev **rdevp; 1805 struct raid10_info *p = conf->mirrors + number; 1806 1807 print_conf(conf); 1808 if (rdev == p->rdev) 1809 rdevp = &p->rdev; 1810 else if (rdev == p->replacement) 1811 rdevp = &p->replacement; 1812 else 1813 return 0; 1814 1815 if (test_bit(In_sync, &rdev->flags) || 1816 atomic_read(&rdev->nr_pending)) { 1817 err = -EBUSY; 1818 goto abort; 1819 } 1820 /* Only remove faulty devices if recovery 1821 * is not possible. 1822 */ 1823 if (!test_bit(Faulty, &rdev->flags) && 1824 mddev->recovery_disabled != p->recovery_disabled && 1825 (!p->replacement || p->replacement == rdev) && 1826 number < conf->geo.raid_disks && 1827 enough(conf, -1)) { 1828 err = -EBUSY; 1829 goto abort; 1830 } 1831 *rdevp = NULL; 1832 synchronize_rcu(); 1833 if (atomic_read(&rdev->nr_pending)) { 1834 /* lost the race, try later */ 1835 err = -EBUSY; 1836 *rdevp = rdev; 1837 goto abort; 1838 } else if (p->replacement) { 1839 /* We must have just cleared 'rdev' */ 1840 p->rdev = p->replacement; 1841 clear_bit(Replacement, &p->replacement->flags); 1842 smp_mb(); /* Make sure other CPUs may see both as identical 1843 * but will never see neither -- if they are careful. 1844 */ 1845 p->replacement = NULL; 1846 clear_bit(WantReplacement, &rdev->flags); 1847 } else 1848 /* We might have just remove the Replacement as faulty 1849 * Clear the flag just in case 1850 */ 1851 clear_bit(WantReplacement, &rdev->flags); 1852 1853 err = md_integrity_register(mddev); 1854 1855 abort: 1856 1857 print_conf(conf); 1858 return err; 1859 } 1860 1861 1862 static void end_sync_read(struct bio *bio, int error) 1863 { 1864 struct r10bio *r10_bio = bio->bi_private; 1865 struct r10conf *conf = r10_bio->mddev->private; 1866 int d; 1867 1868 if (bio == r10_bio->master_bio) { 1869 /* this is a reshape read */ 1870 d = r10_bio->read_slot; /* really the read dev */ 1871 } else 1872 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1873 1874 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1875 set_bit(R10BIO_Uptodate, &r10_bio->state); 1876 else 1877 /* The write handler will notice the lack of 1878 * R10BIO_Uptodate and record any errors etc 1879 */ 1880 atomic_add(r10_bio->sectors, 1881 &conf->mirrors[d].rdev->corrected_errors); 1882 1883 /* for reconstruct, we always reschedule after a read. 1884 * for resync, only after all reads 1885 */ 1886 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1887 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1888 atomic_dec_and_test(&r10_bio->remaining)) { 1889 /* we have read all the blocks, 1890 * do the comparison in process context in raid10d 1891 */ 1892 reschedule_retry(r10_bio); 1893 } 1894 } 1895 1896 static void end_sync_request(struct r10bio *r10_bio) 1897 { 1898 struct mddev *mddev = r10_bio->mddev; 1899 1900 while (atomic_dec_and_test(&r10_bio->remaining)) { 1901 if (r10_bio->master_bio == NULL) { 1902 /* the primary of several recovery bios */ 1903 sector_t s = r10_bio->sectors; 1904 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1905 test_bit(R10BIO_WriteError, &r10_bio->state)) 1906 reschedule_retry(r10_bio); 1907 else 1908 put_buf(r10_bio); 1909 md_done_sync(mddev, s, 1); 1910 break; 1911 } else { 1912 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1913 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1914 test_bit(R10BIO_WriteError, &r10_bio->state)) 1915 reschedule_retry(r10_bio); 1916 else 1917 put_buf(r10_bio); 1918 r10_bio = r10_bio2; 1919 } 1920 } 1921 } 1922 1923 static void end_sync_write(struct bio *bio, int error) 1924 { 1925 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1926 struct r10bio *r10_bio = bio->bi_private; 1927 struct mddev *mddev = r10_bio->mddev; 1928 struct r10conf *conf = mddev->private; 1929 int d; 1930 sector_t first_bad; 1931 int bad_sectors; 1932 int slot; 1933 int repl; 1934 struct md_rdev *rdev = NULL; 1935 1936 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1937 if (repl) 1938 rdev = conf->mirrors[d].replacement; 1939 else 1940 rdev = conf->mirrors[d].rdev; 1941 1942 if (!uptodate) { 1943 if (repl) 1944 md_error(mddev, rdev); 1945 else { 1946 set_bit(WriteErrorSeen, &rdev->flags); 1947 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1948 set_bit(MD_RECOVERY_NEEDED, 1949 &rdev->mddev->recovery); 1950 set_bit(R10BIO_WriteError, &r10_bio->state); 1951 } 1952 } else if (is_badblock(rdev, 1953 r10_bio->devs[slot].addr, 1954 r10_bio->sectors, 1955 &first_bad, &bad_sectors)) 1956 set_bit(R10BIO_MadeGood, &r10_bio->state); 1957 1958 rdev_dec_pending(rdev, mddev); 1959 1960 end_sync_request(r10_bio); 1961 } 1962 1963 /* 1964 * Note: sync and recover and handled very differently for raid10 1965 * This code is for resync. 1966 * For resync, we read through virtual addresses and read all blocks. 1967 * If there is any error, we schedule a write. The lowest numbered 1968 * drive is authoritative. 1969 * However requests come for physical address, so we need to map. 1970 * For every physical address there are raid_disks/copies virtual addresses, 1971 * which is always are least one, but is not necessarly an integer. 1972 * This means that a physical address can span multiple chunks, so we may 1973 * have to submit multiple io requests for a single sync request. 1974 */ 1975 /* 1976 * We check if all blocks are in-sync and only write to blocks that 1977 * aren't in sync 1978 */ 1979 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1980 { 1981 struct r10conf *conf = mddev->private; 1982 int i, first; 1983 struct bio *tbio, *fbio; 1984 int vcnt; 1985 1986 atomic_set(&r10_bio->remaining, 1); 1987 1988 /* find the first device with a block */ 1989 for (i=0; i<conf->copies; i++) 1990 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1991 break; 1992 1993 if (i == conf->copies) 1994 goto done; 1995 1996 first = i; 1997 fbio = r10_bio->devs[i].bio; 1998 1999 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2000 /* now find blocks with errors */ 2001 for (i=0 ; i < conf->copies ; i++) { 2002 int j, d; 2003 2004 tbio = r10_bio->devs[i].bio; 2005 2006 if (tbio->bi_end_io != end_sync_read) 2007 continue; 2008 if (i == first) 2009 continue; 2010 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2011 /* We know that the bi_io_vec layout is the same for 2012 * both 'first' and 'i', so we just compare them. 2013 * All vec entries are PAGE_SIZE; 2014 */ 2015 for (j = 0; j < vcnt; j++) 2016 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2017 page_address(tbio->bi_io_vec[j].bv_page), 2018 fbio->bi_io_vec[j].bv_len)) 2019 break; 2020 if (j == vcnt) 2021 continue; 2022 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2023 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2024 /* Don't fix anything. */ 2025 continue; 2026 } 2027 /* Ok, we need to write this bio, either to correct an 2028 * inconsistency or to correct an unreadable block. 2029 * First we need to fixup bv_offset, bv_len and 2030 * bi_vecs, as the read request might have corrupted these 2031 */ 2032 tbio->bi_vcnt = vcnt; 2033 tbio->bi_size = r10_bio->sectors << 9; 2034 tbio->bi_idx = 0; 2035 tbio->bi_phys_segments = 0; 2036 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 2037 tbio->bi_flags |= 1 << BIO_UPTODATE; 2038 tbio->bi_next = NULL; 2039 tbio->bi_rw = WRITE; 2040 tbio->bi_private = r10_bio; 2041 tbio->bi_sector = r10_bio->devs[i].addr; 2042 2043 for (j=0; j < vcnt ; j++) { 2044 tbio->bi_io_vec[j].bv_offset = 0; 2045 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2046 2047 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2048 page_address(fbio->bi_io_vec[j].bv_page), 2049 PAGE_SIZE); 2050 } 2051 tbio->bi_end_io = end_sync_write; 2052 2053 d = r10_bio->devs[i].devnum; 2054 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2055 atomic_inc(&r10_bio->remaining); 2056 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 2057 2058 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2059 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2060 generic_make_request(tbio); 2061 } 2062 2063 /* Now write out to any replacement devices 2064 * that are active 2065 */ 2066 for (i = 0; i < conf->copies; i++) { 2067 int j, d; 2068 2069 tbio = r10_bio->devs[i].repl_bio; 2070 if (!tbio || !tbio->bi_end_io) 2071 continue; 2072 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2073 && r10_bio->devs[i].bio != fbio) 2074 for (j = 0; j < vcnt; j++) 2075 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2076 page_address(fbio->bi_io_vec[j].bv_page), 2077 PAGE_SIZE); 2078 d = r10_bio->devs[i].devnum; 2079 atomic_inc(&r10_bio->remaining); 2080 md_sync_acct(conf->mirrors[d].replacement->bdev, 2081 tbio->bi_size >> 9); 2082 generic_make_request(tbio); 2083 } 2084 2085 done: 2086 if (atomic_dec_and_test(&r10_bio->remaining)) { 2087 md_done_sync(mddev, r10_bio->sectors, 1); 2088 put_buf(r10_bio); 2089 } 2090 } 2091 2092 /* 2093 * Now for the recovery code. 2094 * Recovery happens across physical sectors. 2095 * We recover all non-is_sync drives by finding the virtual address of 2096 * each, and then choose a working drive that also has that virt address. 2097 * There is a separate r10_bio for each non-in_sync drive. 2098 * Only the first two slots are in use. The first for reading, 2099 * The second for writing. 2100 * 2101 */ 2102 static void fix_recovery_read_error(struct r10bio *r10_bio) 2103 { 2104 /* We got a read error during recovery. 2105 * We repeat the read in smaller page-sized sections. 2106 * If a read succeeds, write it to the new device or record 2107 * a bad block if we cannot. 2108 * If a read fails, record a bad block on both old and 2109 * new devices. 2110 */ 2111 struct mddev *mddev = r10_bio->mddev; 2112 struct r10conf *conf = mddev->private; 2113 struct bio *bio = r10_bio->devs[0].bio; 2114 sector_t sect = 0; 2115 int sectors = r10_bio->sectors; 2116 int idx = 0; 2117 int dr = r10_bio->devs[0].devnum; 2118 int dw = r10_bio->devs[1].devnum; 2119 2120 while (sectors) { 2121 int s = sectors; 2122 struct md_rdev *rdev; 2123 sector_t addr; 2124 int ok; 2125 2126 if (s > (PAGE_SIZE>>9)) 2127 s = PAGE_SIZE >> 9; 2128 2129 rdev = conf->mirrors[dr].rdev; 2130 addr = r10_bio->devs[0].addr + sect, 2131 ok = sync_page_io(rdev, 2132 addr, 2133 s << 9, 2134 bio->bi_io_vec[idx].bv_page, 2135 READ, false); 2136 if (ok) { 2137 rdev = conf->mirrors[dw].rdev; 2138 addr = r10_bio->devs[1].addr + sect; 2139 ok = sync_page_io(rdev, 2140 addr, 2141 s << 9, 2142 bio->bi_io_vec[idx].bv_page, 2143 WRITE, false); 2144 if (!ok) { 2145 set_bit(WriteErrorSeen, &rdev->flags); 2146 if (!test_and_set_bit(WantReplacement, 2147 &rdev->flags)) 2148 set_bit(MD_RECOVERY_NEEDED, 2149 &rdev->mddev->recovery); 2150 } 2151 } 2152 if (!ok) { 2153 /* We don't worry if we cannot set a bad block - 2154 * it really is bad so there is no loss in not 2155 * recording it yet 2156 */ 2157 rdev_set_badblocks(rdev, addr, s, 0); 2158 2159 if (rdev != conf->mirrors[dw].rdev) { 2160 /* need bad block on destination too */ 2161 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2162 addr = r10_bio->devs[1].addr + sect; 2163 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2164 if (!ok) { 2165 /* just abort the recovery */ 2166 printk(KERN_NOTICE 2167 "md/raid10:%s: recovery aborted" 2168 " due to read error\n", 2169 mdname(mddev)); 2170 2171 conf->mirrors[dw].recovery_disabled 2172 = mddev->recovery_disabled; 2173 set_bit(MD_RECOVERY_INTR, 2174 &mddev->recovery); 2175 break; 2176 } 2177 } 2178 } 2179 2180 sectors -= s; 2181 sect += s; 2182 idx++; 2183 } 2184 } 2185 2186 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2187 { 2188 struct r10conf *conf = mddev->private; 2189 int d; 2190 struct bio *wbio, *wbio2; 2191 2192 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2193 fix_recovery_read_error(r10_bio); 2194 end_sync_request(r10_bio); 2195 return; 2196 } 2197 2198 /* 2199 * share the pages with the first bio 2200 * and submit the write request 2201 */ 2202 d = r10_bio->devs[1].devnum; 2203 wbio = r10_bio->devs[1].bio; 2204 wbio2 = r10_bio->devs[1].repl_bio; 2205 if (wbio->bi_end_io) { 2206 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2207 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2208 generic_make_request(wbio); 2209 } 2210 if (wbio2 && wbio2->bi_end_io) { 2211 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2212 md_sync_acct(conf->mirrors[d].replacement->bdev, 2213 wbio2->bi_size >> 9); 2214 generic_make_request(wbio2); 2215 } 2216 } 2217 2218 2219 /* 2220 * Used by fix_read_error() to decay the per rdev read_errors. 2221 * We halve the read error count for every hour that has elapsed 2222 * since the last recorded read error. 2223 * 2224 */ 2225 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2226 { 2227 struct timespec cur_time_mon; 2228 unsigned long hours_since_last; 2229 unsigned int read_errors = atomic_read(&rdev->read_errors); 2230 2231 ktime_get_ts(&cur_time_mon); 2232 2233 if (rdev->last_read_error.tv_sec == 0 && 2234 rdev->last_read_error.tv_nsec == 0) { 2235 /* first time we've seen a read error */ 2236 rdev->last_read_error = cur_time_mon; 2237 return; 2238 } 2239 2240 hours_since_last = (cur_time_mon.tv_sec - 2241 rdev->last_read_error.tv_sec) / 3600; 2242 2243 rdev->last_read_error = cur_time_mon; 2244 2245 /* 2246 * if hours_since_last is > the number of bits in read_errors 2247 * just set read errors to 0. We do this to avoid 2248 * overflowing the shift of read_errors by hours_since_last. 2249 */ 2250 if (hours_since_last >= 8 * sizeof(read_errors)) 2251 atomic_set(&rdev->read_errors, 0); 2252 else 2253 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2254 } 2255 2256 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2257 int sectors, struct page *page, int rw) 2258 { 2259 sector_t first_bad; 2260 int bad_sectors; 2261 2262 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2263 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2264 return -1; 2265 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2266 /* success */ 2267 return 1; 2268 if (rw == WRITE) { 2269 set_bit(WriteErrorSeen, &rdev->flags); 2270 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2271 set_bit(MD_RECOVERY_NEEDED, 2272 &rdev->mddev->recovery); 2273 } 2274 /* need to record an error - either for the block or the device */ 2275 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2276 md_error(rdev->mddev, rdev); 2277 return 0; 2278 } 2279 2280 /* 2281 * This is a kernel thread which: 2282 * 2283 * 1. Retries failed read operations on working mirrors. 2284 * 2. Updates the raid superblock when problems encounter. 2285 * 3. Performs writes following reads for array synchronising. 2286 */ 2287 2288 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2289 { 2290 int sect = 0; /* Offset from r10_bio->sector */ 2291 int sectors = r10_bio->sectors; 2292 struct md_rdev*rdev; 2293 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2294 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2295 2296 /* still own a reference to this rdev, so it cannot 2297 * have been cleared recently. 2298 */ 2299 rdev = conf->mirrors[d].rdev; 2300 2301 if (test_bit(Faulty, &rdev->flags)) 2302 /* drive has already been failed, just ignore any 2303 more fix_read_error() attempts */ 2304 return; 2305 2306 check_decay_read_errors(mddev, rdev); 2307 atomic_inc(&rdev->read_errors); 2308 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2309 char b[BDEVNAME_SIZE]; 2310 bdevname(rdev->bdev, b); 2311 2312 printk(KERN_NOTICE 2313 "md/raid10:%s: %s: Raid device exceeded " 2314 "read_error threshold [cur %d:max %d]\n", 2315 mdname(mddev), b, 2316 atomic_read(&rdev->read_errors), max_read_errors); 2317 printk(KERN_NOTICE 2318 "md/raid10:%s: %s: Failing raid device\n", 2319 mdname(mddev), b); 2320 md_error(mddev, conf->mirrors[d].rdev); 2321 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2322 return; 2323 } 2324 2325 while(sectors) { 2326 int s = sectors; 2327 int sl = r10_bio->read_slot; 2328 int success = 0; 2329 int start; 2330 2331 if (s > (PAGE_SIZE>>9)) 2332 s = PAGE_SIZE >> 9; 2333 2334 rcu_read_lock(); 2335 do { 2336 sector_t first_bad; 2337 int bad_sectors; 2338 2339 d = r10_bio->devs[sl].devnum; 2340 rdev = rcu_dereference(conf->mirrors[d].rdev); 2341 if (rdev && 2342 !test_bit(Unmerged, &rdev->flags) && 2343 test_bit(In_sync, &rdev->flags) && 2344 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2345 &first_bad, &bad_sectors) == 0) { 2346 atomic_inc(&rdev->nr_pending); 2347 rcu_read_unlock(); 2348 success = sync_page_io(rdev, 2349 r10_bio->devs[sl].addr + 2350 sect, 2351 s<<9, 2352 conf->tmppage, READ, false); 2353 rdev_dec_pending(rdev, mddev); 2354 rcu_read_lock(); 2355 if (success) 2356 break; 2357 } 2358 sl++; 2359 if (sl == conf->copies) 2360 sl = 0; 2361 } while (!success && sl != r10_bio->read_slot); 2362 rcu_read_unlock(); 2363 2364 if (!success) { 2365 /* Cannot read from anywhere, just mark the block 2366 * as bad on the first device to discourage future 2367 * reads. 2368 */ 2369 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2370 rdev = conf->mirrors[dn].rdev; 2371 2372 if (!rdev_set_badblocks( 2373 rdev, 2374 r10_bio->devs[r10_bio->read_slot].addr 2375 + sect, 2376 s, 0)) { 2377 md_error(mddev, rdev); 2378 r10_bio->devs[r10_bio->read_slot].bio 2379 = IO_BLOCKED; 2380 } 2381 break; 2382 } 2383 2384 start = sl; 2385 /* write it back and re-read */ 2386 rcu_read_lock(); 2387 while (sl != r10_bio->read_slot) { 2388 char b[BDEVNAME_SIZE]; 2389 2390 if (sl==0) 2391 sl = conf->copies; 2392 sl--; 2393 d = r10_bio->devs[sl].devnum; 2394 rdev = rcu_dereference(conf->mirrors[d].rdev); 2395 if (!rdev || 2396 test_bit(Unmerged, &rdev->flags) || 2397 !test_bit(In_sync, &rdev->flags)) 2398 continue; 2399 2400 atomic_inc(&rdev->nr_pending); 2401 rcu_read_unlock(); 2402 if (r10_sync_page_io(rdev, 2403 r10_bio->devs[sl].addr + 2404 sect, 2405 s, conf->tmppage, WRITE) 2406 == 0) { 2407 /* Well, this device is dead */ 2408 printk(KERN_NOTICE 2409 "md/raid10:%s: read correction " 2410 "write failed" 2411 " (%d sectors at %llu on %s)\n", 2412 mdname(mddev), s, 2413 (unsigned long long)( 2414 sect + 2415 choose_data_offset(r10_bio, 2416 rdev)), 2417 bdevname(rdev->bdev, b)); 2418 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2419 "drive\n", 2420 mdname(mddev), 2421 bdevname(rdev->bdev, b)); 2422 } 2423 rdev_dec_pending(rdev, mddev); 2424 rcu_read_lock(); 2425 } 2426 sl = start; 2427 while (sl != r10_bio->read_slot) { 2428 char b[BDEVNAME_SIZE]; 2429 2430 if (sl==0) 2431 sl = conf->copies; 2432 sl--; 2433 d = r10_bio->devs[sl].devnum; 2434 rdev = rcu_dereference(conf->mirrors[d].rdev); 2435 if (!rdev || 2436 !test_bit(In_sync, &rdev->flags)) 2437 continue; 2438 2439 atomic_inc(&rdev->nr_pending); 2440 rcu_read_unlock(); 2441 switch (r10_sync_page_io(rdev, 2442 r10_bio->devs[sl].addr + 2443 sect, 2444 s, conf->tmppage, 2445 READ)) { 2446 case 0: 2447 /* Well, this device is dead */ 2448 printk(KERN_NOTICE 2449 "md/raid10:%s: unable to read back " 2450 "corrected sectors" 2451 " (%d sectors at %llu on %s)\n", 2452 mdname(mddev), s, 2453 (unsigned long long)( 2454 sect + 2455 choose_data_offset(r10_bio, rdev)), 2456 bdevname(rdev->bdev, b)); 2457 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2458 "drive\n", 2459 mdname(mddev), 2460 bdevname(rdev->bdev, b)); 2461 break; 2462 case 1: 2463 printk(KERN_INFO 2464 "md/raid10:%s: read error corrected" 2465 " (%d sectors at %llu on %s)\n", 2466 mdname(mddev), s, 2467 (unsigned long long)( 2468 sect + 2469 choose_data_offset(r10_bio, rdev)), 2470 bdevname(rdev->bdev, b)); 2471 atomic_add(s, &rdev->corrected_errors); 2472 } 2473 2474 rdev_dec_pending(rdev, mddev); 2475 rcu_read_lock(); 2476 } 2477 rcu_read_unlock(); 2478 2479 sectors -= s; 2480 sect += s; 2481 } 2482 } 2483 2484 static void bi_complete(struct bio *bio, int error) 2485 { 2486 complete((struct completion *)bio->bi_private); 2487 } 2488 2489 static int submit_bio_wait(int rw, struct bio *bio) 2490 { 2491 struct completion event; 2492 rw |= REQ_SYNC; 2493 2494 init_completion(&event); 2495 bio->bi_private = &event; 2496 bio->bi_end_io = bi_complete; 2497 submit_bio(rw, bio); 2498 wait_for_completion(&event); 2499 2500 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2501 } 2502 2503 static int narrow_write_error(struct r10bio *r10_bio, int i) 2504 { 2505 struct bio *bio = r10_bio->master_bio; 2506 struct mddev *mddev = r10_bio->mddev; 2507 struct r10conf *conf = mddev->private; 2508 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2509 /* bio has the data to be written to slot 'i' where 2510 * we just recently had a write error. 2511 * We repeatedly clone the bio and trim down to one block, 2512 * then try the write. Where the write fails we record 2513 * a bad block. 2514 * It is conceivable that the bio doesn't exactly align with 2515 * blocks. We must handle this. 2516 * 2517 * We currently own a reference to the rdev. 2518 */ 2519 2520 int block_sectors; 2521 sector_t sector; 2522 int sectors; 2523 int sect_to_write = r10_bio->sectors; 2524 int ok = 1; 2525 2526 if (rdev->badblocks.shift < 0) 2527 return 0; 2528 2529 block_sectors = 1 << rdev->badblocks.shift; 2530 sector = r10_bio->sector; 2531 sectors = ((r10_bio->sector + block_sectors) 2532 & ~(sector_t)(block_sectors - 1)) 2533 - sector; 2534 2535 while (sect_to_write) { 2536 struct bio *wbio; 2537 if (sectors > sect_to_write) 2538 sectors = sect_to_write; 2539 /* Write at 'sector' for 'sectors' */ 2540 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2541 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2542 wbio->bi_sector = (r10_bio->devs[i].addr+ 2543 choose_data_offset(r10_bio, rdev) + 2544 (sector - r10_bio->sector)); 2545 wbio->bi_bdev = rdev->bdev; 2546 if (submit_bio_wait(WRITE, wbio) == 0) 2547 /* Failure! */ 2548 ok = rdev_set_badblocks(rdev, sector, 2549 sectors, 0) 2550 && ok; 2551 2552 bio_put(wbio); 2553 sect_to_write -= sectors; 2554 sector += sectors; 2555 sectors = block_sectors; 2556 } 2557 return ok; 2558 } 2559 2560 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2561 { 2562 int slot = r10_bio->read_slot; 2563 struct bio *bio; 2564 struct r10conf *conf = mddev->private; 2565 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2566 char b[BDEVNAME_SIZE]; 2567 unsigned long do_sync; 2568 int max_sectors; 2569 2570 /* we got a read error. Maybe the drive is bad. Maybe just 2571 * the block and we can fix it. 2572 * We freeze all other IO, and try reading the block from 2573 * other devices. When we find one, we re-write 2574 * and check it that fixes the read error. 2575 * This is all done synchronously while the array is 2576 * frozen. 2577 */ 2578 bio = r10_bio->devs[slot].bio; 2579 bdevname(bio->bi_bdev, b); 2580 bio_put(bio); 2581 r10_bio->devs[slot].bio = NULL; 2582 2583 if (mddev->ro == 0) { 2584 freeze_array(conf); 2585 fix_read_error(conf, mddev, r10_bio); 2586 unfreeze_array(conf); 2587 } else 2588 r10_bio->devs[slot].bio = IO_BLOCKED; 2589 2590 rdev_dec_pending(rdev, mddev); 2591 2592 read_more: 2593 rdev = read_balance(conf, r10_bio, &max_sectors); 2594 if (rdev == NULL) { 2595 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2596 " read error for block %llu\n", 2597 mdname(mddev), b, 2598 (unsigned long long)r10_bio->sector); 2599 raid_end_bio_io(r10_bio); 2600 return; 2601 } 2602 2603 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2604 slot = r10_bio->read_slot; 2605 printk_ratelimited( 2606 KERN_ERR 2607 "md/raid10:%s: %s: redirecting " 2608 "sector %llu to another mirror\n", 2609 mdname(mddev), 2610 bdevname(rdev->bdev, b), 2611 (unsigned long long)r10_bio->sector); 2612 bio = bio_clone_mddev(r10_bio->master_bio, 2613 GFP_NOIO, mddev); 2614 md_trim_bio(bio, 2615 r10_bio->sector - bio->bi_sector, 2616 max_sectors); 2617 r10_bio->devs[slot].bio = bio; 2618 r10_bio->devs[slot].rdev = rdev; 2619 bio->bi_sector = r10_bio->devs[slot].addr 2620 + choose_data_offset(r10_bio, rdev); 2621 bio->bi_bdev = rdev->bdev; 2622 bio->bi_rw = READ | do_sync; 2623 bio->bi_private = r10_bio; 2624 bio->bi_end_io = raid10_end_read_request; 2625 if (max_sectors < r10_bio->sectors) { 2626 /* Drat - have to split this up more */ 2627 struct bio *mbio = r10_bio->master_bio; 2628 int sectors_handled = 2629 r10_bio->sector + max_sectors 2630 - mbio->bi_sector; 2631 r10_bio->sectors = max_sectors; 2632 spin_lock_irq(&conf->device_lock); 2633 if (mbio->bi_phys_segments == 0) 2634 mbio->bi_phys_segments = 2; 2635 else 2636 mbio->bi_phys_segments++; 2637 spin_unlock_irq(&conf->device_lock); 2638 generic_make_request(bio); 2639 2640 r10_bio = mempool_alloc(conf->r10bio_pool, 2641 GFP_NOIO); 2642 r10_bio->master_bio = mbio; 2643 r10_bio->sectors = (mbio->bi_size >> 9) 2644 - sectors_handled; 2645 r10_bio->state = 0; 2646 set_bit(R10BIO_ReadError, 2647 &r10_bio->state); 2648 r10_bio->mddev = mddev; 2649 r10_bio->sector = mbio->bi_sector 2650 + sectors_handled; 2651 2652 goto read_more; 2653 } else 2654 generic_make_request(bio); 2655 } 2656 2657 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2658 { 2659 /* Some sort of write request has finished and it 2660 * succeeded in writing where we thought there was a 2661 * bad block. So forget the bad block. 2662 * Or possibly if failed and we need to record 2663 * a bad block. 2664 */ 2665 int m; 2666 struct md_rdev *rdev; 2667 2668 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2669 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2670 for (m = 0; m < conf->copies; m++) { 2671 int dev = r10_bio->devs[m].devnum; 2672 rdev = conf->mirrors[dev].rdev; 2673 if (r10_bio->devs[m].bio == NULL) 2674 continue; 2675 if (test_bit(BIO_UPTODATE, 2676 &r10_bio->devs[m].bio->bi_flags)) { 2677 rdev_clear_badblocks( 2678 rdev, 2679 r10_bio->devs[m].addr, 2680 r10_bio->sectors, 0); 2681 } else { 2682 if (!rdev_set_badblocks( 2683 rdev, 2684 r10_bio->devs[m].addr, 2685 r10_bio->sectors, 0)) 2686 md_error(conf->mddev, rdev); 2687 } 2688 rdev = conf->mirrors[dev].replacement; 2689 if (r10_bio->devs[m].repl_bio == NULL) 2690 continue; 2691 if (test_bit(BIO_UPTODATE, 2692 &r10_bio->devs[m].repl_bio->bi_flags)) { 2693 rdev_clear_badblocks( 2694 rdev, 2695 r10_bio->devs[m].addr, 2696 r10_bio->sectors, 0); 2697 } else { 2698 if (!rdev_set_badblocks( 2699 rdev, 2700 r10_bio->devs[m].addr, 2701 r10_bio->sectors, 0)) 2702 md_error(conf->mddev, rdev); 2703 } 2704 } 2705 put_buf(r10_bio); 2706 } else { 2707 for (m = 0; m < conf->copies; m++) { 2708 int dev = r10_bio->devs[m].devnum; 2709 struct bio *bio = r10_bio->devs[m].bio; 2710 rdev = conf->mirrors[dev].rdev; 2711 if (bio == IO_MADE_GOOD) { 2712 rdev_clear_badblocks( 2713 rdev, 2714 r10_bio->devs[m].addr, 2715 r10_bio->sectors, 0); 2716 rdev_dec_pending(rdev, conf->mddev); 2717 } else if (bio != NULL && 2718 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2719 if (!narrow_write_error(r10_bio, m)) { 2720 md_error(conf->mddev, rdev); 2721 set_bit(R10BIO_Degraded, 2722 &r10_bio->state); 2723 } 2724 rdev_dec_pending(rdev, conf->mddev); 2725 } 2726 bio = r10_bio->devs[m].repl_bio; 2727 rdev = conf->mirrors[dev].replacement; 2728 if (rdev && bio == IO_MADE_GOOD) { 2729 rdev_clear_badblocks( 2730 rdev, 2731 r10_bio->devs[m].addr, 2732 r10_bio->sectors, 0); 2733 rdev_dec_pending(rdev, conf->mddev); 2734 } 2735 } 2736 if (test_bit(R10BIO_WriteError, 2737 &r10_bio->state)) 2738 close_write(r10_bio); 2739 raid_end_bio_io(r10_bio); 2740 } 2741 } 2742 2743 static void raid10d(struct md_thread *thread) 2744 { 2745 struct mddev *mddev = thread->mddev; 2746 struct r10bio *r10_bio; 2747 unsigned long flags; 2748 struct r10conf *conf = mddev->private; 2749 struct list_head *head = &conf->retry_list; 2750 struct blk_plug plug; 2751 2752 md_check_recovery(mddev); 2753 2754 blk_start_plug(&plug); 2755 for (;;) { 2756 2757 flush_pending_writes(conf); 2758 2759 spin_lock_irqsave(&conf->device_lock, flags); 2760 if (list_empty(head)) { 2761 spin_unlock_irqrestore(&conf->device_lock, flags); 2762 break; 2763 } 2764 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2765 list_del(head->prev); 2766 conf->nr_queued--; 2767 spin_unlock_irqrestore(&conf->device_lock, flags); 2768 2769 mddev = r10_bio->mddev; 2770 conf = mddev->private; 2771 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2772 test_bit(R10BIO_WriteError, &r10_bio->state)) 2773 handle_write_completed(conf, r10_bio); 2774 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2775 reshape_request_write(mddev, r10_bio); 2776 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2777 sync_request_write(mddev, r10_bio); 2778 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2779 recovery_request_write(mddev, r10_bio); 2780 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2781 handle_read_error(mddev, r10_bio); 2782 else { 2783 /* just a partial read to be scheduled from a 2784 * separate context 2785 */ 2786 int slot = r10_bio->read_slot; 2787 generic_make_request(r10_bio->devs[slot].bio); 2788 } 2789 2790 cond_resched(); 2791 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2792 md_check_recovery(mddev); 2793 } 2794 blk_finish_plug(&plug); 2795 } 2796 2797 2798 static int init_resync(struct r10conf *conf) 2799 { 2800 int buffs; 2801 int i; 2802 2803 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2804 BUG_ON(conf->r10buf_pool); 2805 conf->have_replacement = 0; 2806 for (i = 0; i < conf->geo.raid_disks; i++) 2807 if (conf->mirrors[i].replacement) 2808 conf->have_replacement = 1; 2809 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2810 if (!conf->r10buf_pool) 2811 return -ENOMEM; 2812 conf->next_resync = 0; 2813 return 0; 2814 } 2815 2816 /* 2817 * perform a "sync" on one "block" 2818 * 2819 * We need to make sure that no normal I/O request - particularly write 2820 * requests - conflict with active sync requests. 2821 * 2822 * This is achieved by tracking pending requests and a 'barrier' concept 2823 * that can be installed to exclude normal IO requests. 2824 * 2825 * Resync and recovery are handled very differently. 2826 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2827 * 2828 * For resync, we iterate over virtual addresses, read all copies, 2829 * and update if there are differences. If only one copy is live, 2830 * skip it. 2831 * For recovery, we iterate over physical addresses, read a good 2832 * value for each non-in_sync drive, and over-write. 2833 * 2834 * So, for recovery we may have several outstanding complex requests for a 2835 * given address, one for each out-of-sync device. We model this by allocating 2836 * a number of r10_bio structures, one for each out-of-sync device. 2837 * As we setup these structures, we collect all bio's together into a list 2838 * which we then process collectively to add pages, and then process again 2839 * to pass to generic_make_request. 2840 * 2841 * The r10_bio structures are linked using a borrowed master_bio pointer. 2842 * This link is counted in ->remaining. When the r10_bio that points to NULL 2843 * has its remaining count decremented to 0, the whole complex operation 2844 * is complete. 2845 * 2846 */ 2847 2848 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2849 int *skipped, int go_faster) 2850 { 2851 struct r10conf *conf = mddev->private; 2852 struct r10bio *r10_bio; 2853 struct bio *biolist = NULL, *bio; 2854 sector_t max_sector, nr_sectors; 2855 int i; 2856 int max_sync; 2857 sector_t sync_blocks; 2858 sector_t sectors_skipped = 0; 2859 int chunks_skipped = 0; 2860 sector_t chunk_mask = conf->geo.chunk_mask; 2861 2862 if (!conf->r10buf_pool) 2863 if (init_resync(conf)) 2864 return 0; 2865 2866 skipped: 2867 max_sector = mddev->dev_sectors; 2868 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2869 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2870 max_sector = mddev->resync_max_sectors; 2871 if (sector_nr >= max_sector) { 2872 /* If we aborted, we need to abort the 2873 * sync on the 'current' bitmap chucks (there can 2874 * be several when recovering multiple devices). 2875 * as we may have started syncing it but not finished. 2876 * We can find the current address in 2877 * mddev->curr_resync, but for recovery, 2878 * we need to convert that to several 2879 * virtual addresses. 2880 */ 2881 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2882 end_reshape(conf); 2883 return 0; 2884 } 2885 2886 if (mddev->curr_resync < max_sector) { /* aborted */ 2887 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2888 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2889 &sync_blocks, 1); 2890 else for (i = 0; i < conf->geo.raid_disks; i++) { 2891 sector_t sect = 2892 raid10_find_virt(conf, mddev->curr_resync, i); 2893 bitmap_end_sync(mddev->bitmap, sect, 2894 &sync_blocks, 1); 2895 } 2896 } else { 2897 /* completed sync */ 2898 if ((!mddev->bitmap || conf->fullsync) 2899 && conf->have_replacement 2900 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2901 /* Completed a full sync so the replacements 2902 * are now fully recovered. 2903 */ 2904 for (i = 0; i < conf->geo.raid_disks; i++) 2905 if (conf->mirrors[i].replacement) 2906 conf->mirrors[i].replacement 2907 ->recovery_offset 2908 = MaxSector; 2909 } 2910 conf->fullsync = 0; 2911 } 2912 bitmap_close_sync(mddev->bitmap); 2913 close_sync(conf); 2914 *skipped = 1; 2915 return sectors_skipped; 2916 } 2917 2918 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2919 return reshape_request(mddev, sector_nr, skipped); 2920 2921 if (chunks_skipped >= conf->geo.raid_disks) { 2922 /* if there has been nothing to do on any drive, 2923 * then there is nothing to do at all.. 2924 */ 2925 *skipped = 1; 2926 return (max_sector - sector_nr) + sectors_skipped; 2927 } 2928 2929 if (max_sector > mddev->resync_max) 2930 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2931 2932 /* make sure whole request will fit in a chunk - if chunks 2933 * are meaningful 2934 */ 2935 if (conf->geo.near_copies < conf->geo.raid_disks && 2936 max_sector > (sector_nr | chunk_mask)) 2937 max_sector = (sector_nr | chunk_mask) + 1; 2938 /* 2939 * If there is non-resync activity waiting for us then 2940 * put in a delay to throttle resync. 2941 */ 2942 if (!go_faster && conf->nr_waiting) 2943 msleep_interruptible(1000); 2944 2945 /* Again, very different code for resync and recovery. 2946 * Both must result in an r10bio with a list of bios that 2947 * have bi_end_io, bi_sector, bi_bdev set, 2948 * and bi_private set to the r10bio. 2949 * For recovery, we may actually create several r10bios 2950 * with 2 bios in each, that correspond to the bios in the main one. 2951 * In this case, the subordinate r10bios link back through a 2952 * borrowed master_bio pointer, and the counter in the master 2953 * includes a ref from each subordinate. 2954 */ 2955 /* First, we decide what to do and set ->bi_end_io 2956 * To end_sync_read if we want to read, and 2957 * end_sync_write if we will want to write. 2958 */ 2959 2960 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2961 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2962 /* recovery... the complicated one */ 2963 int j; 2964 r10_bio = NULL; 2965 2966 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2967 int still_degraded; 2968 struct r10bio *rb2; 2969 sector_t sect; 2970 int must_sync; 2971 int any_working; 2972 struct raid10_info *mirror = &conf->mirrors[i]; 2973 2974 if ((mirror->rdev == NULL || 2975 test_bit(In_sync, &mirror->rdev->flags)) 2976 && 2977 (mirror->replacement == NULL || 2978 test_bit(Faulty, 2979 &mirror->replacement->flags))) 2980 continue; 2981 2982 still_degraded = 0; 2983 /* want to reconstruct this device */ 2984 rb2 = r10_bio; 2985 sect = raid10_find_virt(conf, sector_nr, i); 2986 if (sect >= mddev->resync_max_sectors) { 2987 /* last stripe is not complete - don't 2988 * try to recover this sector. 2989 */ 2990 continue; 2991 } 2992 /* Unless we are doing a full sync, or a replacement 2993 * we only need to recover the block if it is set in 2994 * the bitmap 2995 */ 2996 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2997 &sync_blocks, 1); 2998 if (sync_blocks < max_sync) 2999 max_sync = sync_blocks; 3000 if (!must_sync && 3001 mirror->replacement == NULL && 3002 !conf->fullsync) { 3003 /* yep, skip the sync_blocks here, but don't assume 3004 * that there will never be anything to do here 3005 */ 3006 chunks_skipped = -1; 3007 continue; 3008 } 3009 3010 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3011 raise_barrier(conf, rb2 != NULL); 3012 atomic_set(&r10_bio->remaining, 0); 3013 3014 r10_bio->master_bio = (struct bio*)rb2; 3015 if (rb2) 3016 atomic_inc(&rb2->remaining); 3017 r10_bio->mddev = mddev; 3018 set_bit(R10BIO_IsRecover, &r10_bio->state); 3019 r10_bio->sector = sect; 3020 3021 raid10_find_phys(conf, r10_bio); 3022 3023 /* Need to check if the array will still be 3024 * degraded 3025 */ 3026 for (j = 0; j < conf->geo.raid_disks; j++) 3027 if (conf->mirrors[j].rdev == NULL || 3028 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3029 still_degraded = 1; 3030 break; 3031 } 3032 3033 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3034 &sync_blocks, still_degraded); 3035 3036 any_working = 0; 3037 for (j=0; j<conf->copies;j++) { 3038 int k; 3039 int d = r10_bio->devs[j].devnum; 3040 sector_t from_addr, to_addr; 3041 struct md_rdev *rdev; 3042 sector_t sector, first_bad; 3043 int bad_sectors; 3044 if (!conf->mirrors[d].rdev || 3045 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3046 continue; 3047 /* This is where we read from */ 3048 any_working = 1; 3049 rdev = conf->mirrors[d].rdev; 3050 sector = r10_bio->devs[j].addr; 3051 3052 if (is_badblock(rdev, sector, max_sync, 3053 &first_bad, &bad_sectors)) { 3054 if (first_bad > sector) 3055 max_sync = first_bad - sector; 3056 else { 3057 bad_sectors -= (sector 3058 - first_bad); 3059 if (max_sync > bad_sectors) 3060 max_sync = bad_sectors; 3061 continue; 3062 } 3063 } 3064 bio = r10_bio->devs[0].bio; 3065 bio->bi_next = biolist; 3066 biolist = bio; 3067 bio->bi_private = r10_bio; 3068 bio->bi_end_io = end_sync_read; 3069 bio->bi_rw = READ; 3070 from_addr = r10_bio->devs[j].addr; 3071 bio->bi_sector = from_addr + rdev->data_offset; 3072 bio->bi_bdev = rdev->bdev; 3073 atomic_inc(&rdev->nr_pending); 3074 /* and we write to 'i' (if not in_sync) */ 3075 3076 for (k=0; k<conf->copies; k++) 3077 if (r10_bio->devs[k].devnum == i) 3078 break; 3079 BUG_ON(k == conf->copies); 3080 to_addr = r10_bio->devs[k].addr; 3081 r10_bio->devs[0].devnum = d; 3082 r10_bio->devs[0].addr = from_addr; 3083 r10_bio->devs[1].devnum = i; 3084 r10_bio->devs[1].addr = to_addr; 3085 3086 rdev = mirror->rdev; 3087 if (!test_bit(In_sync, &rdev->flags)) { 3088 bio = r10_bio->devs[1].bio; 3089 bio->bi_next = biolist; 3090 biolist = bio; 3091 bio->bi_private = r10_bio; 3092 bio->bi_end_io = end_sync_write; 3093 bio->bi_rw = WRITE; 3094 bio->bi_sector = to_addr 3095 + rdev->data_offset; 3096 bio->bi_bdev = rdev->bdev; 3097 atomic_inc(&r10_bio->remaining); 3098 } else 3099 r10_bio->devs[1].bio->bi_end_io = NULL; 3100 3101 /* and maybe write to replacement */ 3102 bio = r10_bio->devs[1].repl_bio; 3103 if (bio) 3104 bio->bi_end_io = NULL; 3105 rdev = mirror->replacement; 3106 /* Note: if rdev != NULL, then bio 3107 * cannot be NULL as r10buf_pool_alloc will 3108 * have allocated it. 3109 * So the second test here is pointless. 3110 * But it keeps semantic-checkers happy, and 3111 * this comment keeps human reviewers 3112 * happy. 3113 */ 3114 if (rdev == NULL || bio == NULL || 3115 test_bit(Faulty, &rdev->flags)) 3116 break; 3117 bio->bi_next = biolist; 3118 biolist = bio; 3119 bio->bi_private = r10_bio; 3120 bio->bi_end_io = end_sync_write; 3121 bio->bi_rw = WRITE; 3122 bio->bi_sector = to_addr + rdev->data_offset; 3123 bio->bi_bdev = rdev->bdev; 3124 atomic_inc(&r10_bio->remaining); 3125 break; 3126 } 3127 if (j == conf->copies) { 3128 /* Cannot recover, so abort the recovery or 3129 * record a bad block */ 3130 put_buf(r10_bio); 3131 if (rb2) 3132 atomic_dec(&rb2->remaining); 3133 r10_bio = rb2; 3134 if (any_working) { 3135 /* problem is that there are bad blocks 3136 * on other device(s) 3137 */ 3138 int k; 3139 for (k = 0; k < conf->copies; k++) 3140 if (r10_bio->devs[k].devnum == i) 3141 break; 3142 if (!test_bit(In_sync, 3143 &mirror->rdev->flags) 3144 && !rdev_set_badblocks( 3145 mirror->rdev, 3146 r10_bio->devs[k].addr, 3147 max_sync, 0)) 3148 any_working = 0; 3149 if (mirror->replacement && 3150 !rdev_set_badblocks( 3151 mirror->replacement, 3152 r10_bio->devs[k].addr, 3153 max_sync, 0)) 3154 any_working = 0; 3155 } 3156 if (!any_working) { 3157 if (!test_and_set_bit(MD_RECOVERY_INTR, 3158 &mddev->recovery)) 3159 printk(KERN_INFO "md/raid10:%s: insufficient " 3160 "working devices for recovery.\n", 3161 mdname(mddev)); 3162 mirror->recovery_disabled 3163 = mddev->recovery_disabled; 3164 } 3165 break; 3166 } 3167 } 3168 if (biolist == NULL) { 3169 while (r10_bio) { 3170 struct r10bio *rb2 = r10_bio; 3171 r10_bio = (struct r10bio*) rb2->master_bio; 3172 rb2->master_bio = NULL; 3173 put_buf(rb2); 3174 } 3175 goto giveup; 3176 } 3177 } else { 3178 /* resync. Schedule a read for every block at this virt offset */ 3179 int count = 0; 3180 3181 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3182 3183 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3184 &sync_blocks, mddev->degraded) && 3185 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3186 &mddev->recovery)) { 3187 /* We can skip this block */ 3188 *skipped = 1; 3189 return sync_blocks + sectors_skipped; 3190 } 3191 if (sync_blocks < max_sync) 3192 max_sync = sync_blocks; 3193 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3194 3195 r10_bio->mddev = mddev; 3196 atomic_set(&r10_bio->remaining, 0); 3197 raise_barrier(conf, 0); 3198 conf->next_resync = sector_nr; 3199 3200 r10_bio->master_bio = NULL; 3201 r10_bio->sector = sector_nr; 3202 set_bit(R10BIO_IsSync, &r10_bio->state); 3203 raid10_find_phys(conf, r10_bio); 3204 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3205 3206 for (i = 0; i < conf->copies; i++) { 3207 int d = r10_bio->devs[i].devnum; 3208 sector_t first_bad, sector; 3209 int bad_sectors; 3210 3211 if (r10_bio->devs[i].repl_bio) 3212 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3213 3214 bio = r10_bio->devs[i].bio; 3215 bio->bi_end_io = NULL; 3216 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3217 if (conf->mirrors[d].rdev == NULL || 3218 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3219 continue; 3220 sector = r10_bio->devs[i].addr; 3221 if (is_badblock(conf->mirrors[d].rdev, 3222 sector, max_sync, 3223 &first_bad, &bad_sectors)) { 3224 if (first_bad > sector) 3225 max_sync = first_bad - sector; 3226 else { 3227 bad_sectors -= (sector - first_bad); 3228 if (max_sync > bad_sectors) 3229 max_sync = bad_sectors; 3230 continue; 3231 } 3232 } 3233 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3234 atomic_inc(&r10_bio->remaining); 3235 bio->bi_next = biolist; 3236 biolist = bio; 3237 bio->bi_private = r10_bio; 3238 bio->bi_end_io = end_sync_read; 3239 bio->bi_rw = READ; 3240 bio->bi_sector = sector + 3241 conf->mirrors[d].rdev->data_offset; 3242 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3243 count++; 3244 3245 if (conf->mirrors[d].replacement == NULL || 3246 test_bit(Faulty, 3247 &conf->mirrors[d].replacement->flags)) 3248 continue; 3249 3250 /* Need to set up for writing to the replacement */ 3251 bio = r10_bio->devs[i].repl_bio; 3252 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3253 3254 sector = r10_bio->devs[i].addr; 3255 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3256 bio->bi_next = biolist; 3257 biolist = bio; 3258 bio->bi_private = r10_bio; 3259 bio->bi_end_io = end_sync_write; 3260 bio->bi_rw = WRITE; 3261 bio->bi_sector = sector + 3262 conf->mirrors[d].replacement->data_offset; 3263 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3264 count++; 3265 } 3266 3267 if (count < 2) { 3268 for (i=0; i<conf->copies; i++) { 3269 int d = r10_bio->devs[i].devnum; 3270 if (r10_bio->devs[i].bio->bi_end_io) 3271 rdev_dec_pending(conf->mirrors[d].rdev, 3272 mddev); 3273 if (r10_bio->devs[i].repl_bio && 3274 r10_bio->devs[i].repl_bio->bi_end_io) 3275 rdev_dec_pending( 3276 conf->mirrors[d].replacement, 3277 mddev); 3278 } 3279 put_buf(r10_bio); 3280 biolist = NULL; 3281 goto giveup; 3282 } 3283 } 3284 3285 for (bio = biolist; bio ; bio=bio->bi_next) { 3286 3287 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3288 if (bio->bi_end_io) 3289 bio->bi_flags |= 1 << BIO_UPTODATE; 3290 bio->bi_vcnt = 0; 3291 bio->bi_idx = 0; 3292 bio->bi_phys_segments = 0; 3293 bio->bi_size = 0; 3294 } 3295 3296 nr_sectors = 0; 3297 if (sector_nr + max_sync < max_sector) 3298 max_sector = sector_nr + max_sync; 3299 do { 3300 struct page *page; 3301 int len = PAGE_SIZE; 3302 if (sector_nr + (len>>9) > max_sector) 3303 len = (max_sector - sector_nr) << 9; 3304 if (len == 0) 3305 break; 3306 for (bio= biolist ; bio ; bio=bio->bi_next) { 3307 struct bio *bio2; 3308 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3309 if (bio_add_page(bio, page, len, 0)) 3310 continue; 3311 3312 /* stop here */ 3313 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3314 for (bio2 = biolist; 3315 bio2 && bio2 != bio; 3316 bio2 = bio2->bi_next) { 3317 /* remove last page from this bio */ 3318 bio2->bi_vcnt--; 3319 bio2->bi_size -= len; 3320 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3321 } 3322 goto bio_full; 3323 } 3324 nr_sectors += len>>9; 3325 sector_nr += len>>9; 3326 } while (biolist->bi_vcnt < RESYNC_PAGES); 3327 bio_full: 3328 r10_bio->sectors = nr_sectors; 3329 3330 while (biolist) { 3331 bio = biolist; 3332 biolist = biolist->bi_next; 3333 3334 bio->bi_next = NULL; 3335 r10_bio = bio->bi_private; 3336 r10_bio->sectors = nr_sectors; 3337 3338 if (bio->bi_end_io == end_sync_read) { 3339 md_sync_acct(bio->bi_bdev, nr_sectors); 3340 generic_make_request(bio); 3341 } 3342 } 3343 3344 if (sectors_skipped) 3345 /* pretend they weren't skipped, it makes 3346 * no important difference in this case 3347 */ 3348 md_done_sync(mddev, sectors_skipped, 1); 3349 3350 return sectors_skipped + nr_sectors; 3351 giveup: 3352 /* There is nowhere to write, so all non-sync 3353 * drives must be failed or in resync, all drives 3354 * have a bad block, so try the next chunk... 3355 */ 3356 if (sector_nr + max_sync < max_sector) 3357 max_sector = sector_nr + max_sync; 3358 3359 sectors_skipped += (max_sector - sector_nr); 3360 chunks_skipped ++; 3361 sector_nr = max_sector; 3362 goto skipped; 3363 } 3364 3365 static sector_t 3366 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3367 { 3368 sector_t size; 3369 struct r10conf *conf = mddev->private; 3370 3371 if (!raid_disks) 3372 raid_disks = min(conf->geo.raid_disks, 3373 conf->prev.raid_disks); 3374 if (!sectors) 3375 sectors = conf->dev_sectors; 3376 3377 size = sectors >> conf->geo.chunk_shift; 3378 sector_div(size, conf->geo.far_copies); 3379 size = size * raid_disks; 3380 sector_div(size, conf->geo.near_copies); 3381 3382 return size << conf->geo.chunk_shift; 3383 } 3384 3385 static void calc_sectors(struct r10conf *conf, sector_t size) 3386 { 3387 /* Calculate the number of sectors-per-device that will 3388 * actually be used, and set conf->dev_sectors and 3389 * conf->stride 3390 */ 3391 3392 size = size >> conf->geo.chunk_shift; 3393 sector_div(size, conf->geo.far_copies); 3394 size = size * conf->geo.raid_disks; 3395 sector_div(size, conf->geo.near_copies); 3396 /* 'size' is now the number of chunks in the array */ 3397 /* calculate "used chunks per device" */ 3398 size = size * conf->copies; 3399 3400 /* We need to round up when dividing by raid_disks to 3401 * get the stride size. 3402 */ 3403 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3404 3405 conf->dev_sectors = size << conf->geo.chunk_shift; 3406 3407 if (conf->geo.far_offset) 3408 conf->geo.stride = 1 << conf->geo.chunk_shift; 3409 else { 3410 sector_div(size, conf->geo.far_copies); 3411 conf->geo.stride = size << conf->geo.chunk_shift; 3412 } 3413 } 3414 3415 enum geo_type {geo_new, geo_old, geo_start}; 3416 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3417 { 3418 int nc, fc, fo; 3419 int layout, chunk, disks; 3420 switch (new) { 3421 case geo_old: 3422 layout = mddev->layout; 3423 chunk = mddev->chunk_sectors; 3424 disks = mddev->raid_disks - mddev->delta_disks; 3425 break; 3426 case geo_new: 3427 layout = mddev->new_layout; 3428 chunk = mddev->new_chunk_sectors; 3429 disks = mddev->raid_disks; 3430 break; 3431 default: /* avoid 'may be unused' warnings */ 3432 case geo_start: /* new when starting reshape - raid_disks not 3433 * updated yet. */ 3434 layout = mddev->new_layout; 3435 chunk = mddev->new_chunk_sectors; 3436 disks = mddev->raid_disks + mddev->delta_disks; 3437 break; 3438 } 3439 if (layout >> 17) 3440 return -1; 3441 if (chunk < (PAGE_SIZE >> 9) || 3442 !is_power_of_2(chunk)) 3443 return -2; 3444 nc = layout & 255; 3445 fc = (layout >> 8) & 255; 3446 fo = layout & (1<<16); 3447 geo->raid_disks = disks; 3448 geo->near_copies = nc; 3449 geo->far_copies = fc; 3450 geo->far_offset = fo; 3451 geo->chunk_mask = chunk - 1; 3452 geo->chunk_shift = ffz(~chunk); 3453 return nc*fc; 3454 } 3455 3456 static struct r10conf *setup_conf(struct mddev *mddev) 3457 { 3458 struct r10conf *conf = NULL; 3459 int err = -EINVAL; 3460 struct geom geo; 3461 int copies; 3462 3463 copies = setup_geo(&geo, mddev, geo_new); 3464 3465 if (copies == -2) { 3466 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3467 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3468 mdname(mddev), PAGE_SIZE); 3469 goto out; 3470 } 3471 3472 if (copies < 2 || copies > mddev->raid_disks) { 3473 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3474 mdname(mddev), mddev->new_layout); 3475 goto out; 3476 } 3477 3478 err = -ENOMEM; 3479 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3480 if (!conf) 3481 goto out; 3482 3483 /* FIXME calc properly */ 3484 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3485 max(0,mddev->delta_disks)), 3486 GFP_KERNEL); 3487 if (!conf->mirrors) 3488 goto out; 3489 3490 conf->tmppage = alloc_page(GFP_KERNEL); 3491 if (!conf->tmppage) 3492 goto out; 3493 3494 conf->geo = geo; 3495 conf->copies = copies; 3496 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3497 r10bio_pool_free, conf); 3498 if (!conf->r10bio_pool) 3499 goto out; 3500 3501 calc_sectors(conf, mddev->dev_sectors); 3502 if (mddev->reshape_position == MaxSector) { 3503 conf->prev = conf->geo; 3504 conf->reshape_progress = MaxSector; 3505 } else { 3506 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3507 err = -EINVAL; 3508 goto out; 3509 } 3510 conf->reshape_progress = mddev->reshape_position; 3511 if (conf->prev.far_offset) 3512 conf->prev.stride = 1 << conf->prev.chunk_shift; 3513 else 3514 /* far_copies must be 1 */ 3515 conf->prev.stride = conf->dev_sectors; 3516 } 3517 spin_lock_init(&conf->device_lock); 3518 INIT_LIST_HEAD(&conf->retry_list); 3519 3520 spin_lock_init(&conf->resync_lock); 3521 init_waitqueue_head(&conf->wait_barrier); 3522 3523 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3524 if (!conf->thread) 3525 goto out; 3526 3527 conf->mddev = mddev; 3528 return conf; 3529 3530 out: 3531 if (err == -ENOMEM) 3532 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3533 mdname(mddev)); 3534 if (conf) { 3535 if (conf->r10bio_pool) 3536 mempool_destroy(conf->r10bio_pool); 3537 kfree(conf->mirrors); 3538 safe_put_page(conf->tmppage); 3539 kfree(conf); 3540 } 3541 return ERR_PTR(err); 3542 } 3543 3544 static int run(struct mddev *mddev) 3545 { 3546 struct r10conf *conf; 3547 int i, disk_idx, chunk_size; 3548 struct raid10_info *disk; 3549 struct md_rdev *rdev; 3550 sector_t size; 3551 sector_t min_offset_diff = 0; 3552 int first = 1; 3553 bool discard_supported = false; 3554 3555 if (mddev->private == NULL) { 3556 conf = setup_conf(mddev); 3557 if (IS_ERR(conf)) 3558 return PTR_ERR(conf); 3559 mddev->private = conf; 3560 } 3561 conf = mddev->private; 3562 if (!conf) 3563 goto out; 3564 3565 mddev->thread = conf->thread; 3566 conf->thread = NULL; 3567 3568 chunk_size = mddev->chunk_sectors << 9; 3569 if (mddev->queue) { 3570 blk_queue_max_discard_sectors(mddev->queue, 3571 mddev->chunk_sectors); 3572 blk_queue_io_min(mddev->queue, chunk_size); 3573 if (conf->geo.raid_disks % conf->geo.near_copies) 3574 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3575 else 3576 blk_queue_io_opt(mddev->queue, chunk_size * 3577 (conf->geo.raid_disks / conf->geo.near_copies)); 3578 } 3579 3580 rdev_for_each(rdev, mddev) { 3581 long long diff; 3582 struct request_queue *q; 3583 3584 disk_idx = rdev->raid_disk; 3585 if (disk_idx < 0) 3586 continue; 3587 if (disk_idx >= conf->geo.raid_disks && 3588 disk_idx >= conf->prev.raid_disks) 3589 continue; 3590 disk = conf->mirrors + disk_idx; 3591 3592 if (test_bit(Replacement, &rdev->flags)) { 3593 if (disk->replacement) 3594 goto out_free_conf; 3595 disk->replacement = rdev; 3596 } else { 3597 if (disk->rdev) 3598 goto out_free_conf; 3599 disk->rdev = rdev; 3600 } 3601 q = bdev_get_queue(rdev->bdev); 3602 if (q->merge_bvec_fn) 3603 mddev->merge_check_needed = 1; 3604 diff = (rdev->new_data_offset - rdev->data_offset); 3605 if (!mddev->reshape_backwards) 3606 diff = -diff; 3607 if (diff < 0) 3608 diff = 0; 3609 if (first || diff < min_offset_diff) 3610 min_offset_diff = diff; 3611 3612 if (mddev->gendisk) 3613 disk_stack_limits(mddev->gendisk, rdev->bdev, 3614 rdev->data_offset << 9); 3615 3616 disk->head_position = 0; 3617 3618 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3619 discard_supported = true; 3620 } 3621 3622 if (mddev->queue) { 3623 if (discard_supported) 3624 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3625 mddev->queue); 3626 else 3627 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3628 mddev->queue); 3629 } 3630 /* need to check that every block has at least one working mirror */ 3631 if (!enough(conf, -1)) { 3632 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3633 mdname(mddev)); 3634 goto out_free_conf; 3635 } 3636 3637 if (conf->reshape_progress != MaxSector) { 3638 /* must ensure that shape change is supported */ 3639 if (conf->geo.far_copies != 1 && 3640 conf->geo.far_offset == 0) 3641 goto out_free_conf; 3642 if (conf->prev.far_copies != 1 && 3643 conf->geo.far_offset == 0) 3644 goto out_free_conf; 3645 } 3646 3647 mddev->degraded = 0; 3648 for (i = 0; 3649 i < conf->geo.raid_disks 3650 || i < conf->prev.raid_disks; 3651 i++) { 3652 3653 disk = conf->mirrors + i; 3654 3655 if (!disk->rdev && disk->replacement) { 3656 /* The replacement is all we have - use it */ 3657 disk->rdev = disk->replacement; 3658 disk->replacement = NULL; 3659 clear_bit(Replacement, &disk->rdev->flags); 3660 } 3661 3662 if (!disk->rdev || 3663 !test_bit(In_sync, &disk->rdev->flags)) { 3664 disk->head_position = 0; 3665 mddev->degraded++; 3666 if (disk->rdev) 3667 conf->fullsync = 1; 3668 } 3669 disk->recovery_disabled = mddev->recovery_disabled - 1; 3670 } 3671 3672 if (mddev->recovery_cp != MaxSector) 3673 printk(KERN_NOTICE "md/raid10:%s: not clean" 3674 " -- starting background reconstruction\n", 3675 mdname(mddev)); 3676 printk(KERN_INFO 3677 "md/raid10:%s: active with %d out of %d devices\n", 3678 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3679 conf->geo.raid_disks); 3680 /* 3681 * Ok, everything is just fine now 3682 */ 3683 mddev->dev_sectors = conf->dev_sectors; 3684 size = raid10_size(mddev, 0, 0); 3685 md_set_array_sectors(mddev, size); 3686 mddev->resync_max_sectors = size; 3687 3688 if (mddev->queue) { 3689 int stripe = conf->geo.raid_disks * 3690 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3691 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3692 mddev->queue->backing_dev_info.congested_data = mddev; 3693 3694 /* Calculate max read-ahead size. 3695 * We need to readahead at least twice a whole stripe.... 3696 * maybe... 3697 */ 3698 stripe /= conf->geo.near_copies; 3699 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3700 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3701 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3702 } 3703 3704 3705 if (md_integrity_register(mddev)) 3706 goto out_free_conf; 3707 3708 if (conf->reshape_progress != MaxSector) { 3709 unsigned long before_length, after_length; 3710 3711 before_length = ((1 << conf->prev.chunk_shift) * 3712 conf->prev.far_copies); 3713 after_length = ((1 << conf->geo.chunk_shift) * 3714 conf->geo.far_copies); 3715 3716 if (max(before_length, after_length) > min_offset_diff) { 3717 /* This cannot work */ 3718 printk("md/raid10: offset difference not enough to continue reshape\n"); 3719 goto out_free_conf; 3720 } 3721 conf->offset_diff = min_offset_diff; 3722 3723 conf->reshape_safe = conf->reshape_progress; 3724 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3725 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3726 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3727 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3728 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3729 "reshape"); 3730 } 3731 3732 return 0; 3733 3734 out_free_conf: 3735 md_unregister_thread(&mddev->thread); 3736 if (conf->r10bio_pool) 3737 mempool_destroy(conf->r10bio_pool); 3738 safe_put_page(conf->tmppage); 3739 kfree(conf->mirrors); 3740 kfree(conf); 3741 mddev->private = NULL; 3742 out: 3743 return -EIO; 3744 } 3745 3746 static int stop(struct mddev *mddev) 3747 { 3748 struct r10conf *conf = mddev->private; 3749 3750 raise_barrier(conf, 0); 3751 lower_barrier(conf); 3752 3753 md_unregister_thread(&mddev->thread); 3754 if (mddev->queue) 3755 /* the unplug fn references 'conf'*/ 3756 blk_sync_queue(mddev->queue); 3757 3758 if (conf->r10bio_pool) 3759 mempool_destroy(conf->r10bio_pool); 3760 kfree(conf->mirrors); 3761 kfree(conf); 3762 mddev->private = NULL; 3763 return 0; 3764 } 3765 3766 static void raid10_quiesce(struct mddev *mddev, int state) 3767 { 3768 struct r10conf *conf = mddev->private; 3769 3770 switch(state) { 3771 case 1: 3772 raise_barrier(conf, 0); 3773 break; 3774 case 0: 3775 lower_barrier(conf); 3776 break; 3777 } 3778 } 3779 3780 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3781 { 3782 /* Resize of 'far' arrays is not supported. 3783 * For 'near' and 'offset' arrays we can set the 3784 * number of sectors used to be an appropriate multiple 3785 * of the chunk size. 3786 * For 'offset', this is far_copies*chunksize. 3787 * For 'near' the multiplier is the LCM of 3788 * near_copies and raid_disks. 3789 * So if far_copies > 1 && !far_offset, fail. 3790 * Else find LCM(raid_disks, near_copy)*far_copies and 3791 * multiply by chunk_size. Then round to this number. 3792 * This is mostly done by raid10_size() 3793 */ 3794 struct r10conf *conf = mddev->private; 3795 sector_t oldsize, size; 3796 3797 if (mddev->reshape_position != MaxSector) 3798 return -EBUSY; 3799 3800 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3801 return -EINVAL; 3802 3803 oldsize = raid10_size(mddev, 0, 0); 3804 size = raid10_size(mddev, sectors, 0); 3805 if (mddev->external_size && 3806 mddev->array_sectors > size) 3807 return -EINVAL; 3808 if (mddev->bitmap) { 3809 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3810 if (ret) 3811 return ret; 3812 } 3813 md_set_array_sectors(mddev, size); 3814 set_capacity(mddev->gendisk, mddev->array_sectors); 3815 revalidate_disk(mddev->gendisk); 3816 if (sectors > mddev->dev_sectors && 3817 mddev->recovery_cp > oldsize) { 3818 mddev->recovery_cp = oldsize; 3819 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3820 } 3821 calc_sectors(conf, sectors); 3822 mddev->dev_sectors = conf->dev_sectors; 3823 mddev->resync_max_sectors = size; 3824 return 0; 3825 } 3826 3827 static void *raid10_takeover_raid0(struct mddev *mddev) 3828 { 3829 struct md_rdev *rdev; 3830 struct r10conf *conf; 3831 3832 if (mddev->degraded > 0) { 3833 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3834 mdname(mddev)); 3835 return ERR_PTR(-EINVAL); 3836 } 3837 3838 /* Set new parameters */ 3839 mddev->new_level = 10; 3840 /* new layout: far_copies = 1, near_copies = 2 */ 3841 mddev->new_layout = (1<<8) + 2; 3842 mddev->new_chunk_sectors = mddev->chunk_sectors; 3843 mddev->delta_disks = mddev->raid_disks; 3844 mddev->raid_disks *= 2; 3845 /* make sure it will be not marked as dirty */ 3846 mddev->recovery_cp = MaxSector; 3847 3848 conf = setup_conf(mddev); 3849 if (!IS_ERR(conf)) { 3850 rdev_for_each(rdev, mddev) 3851 if (rdev->raid_disk >= 0) 3852 rdev->new_raid_disk = rdev->raid_disk * 2; 3853 conf->barrier = 1; 3854 } 3855 3856 return conf; 3857 } 3858 3859 static void *raid10_takeover(struct mddev *mddev) 3860 { 3861 struct r0conf *raid0_conf; 3862 3863 /* raid10 can take over: 3864 * raid0 - providing it has only two drives 3865 */ 3866 if (mddev->level == 0) { 3867 /* for raid0 takeover only one zone is supported */ 3868 raid0_conf = mddev->private; 3869 if (raid0_conf->nr_strip_zones > 1) { 3870 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3871 " with more than one zone.\n", 3872 mdname(mddev)); 3873 return ERR_PTR(-EINVAL); 3874 } 3875 return raid10_takeover_raid0(mddev); 3876 } 3877 return ERR_PTR(-EINVAL); 3878 } 3879 3880 static int raid10_check_reshape(struct mddev *mddev) 3881 { 3882 /* Called when there is a request to change 3883 * - layout (to ->new_layout) 3884 * - chunk size (to ->new_chunk_sectors) 3885 * - raid_disks (by delta_disks) 3886 * or when trying to restart a reshape that was ongoing. 3887 * 3888 * We need to validate the request and possibly allocate 3889 * space if that might be an issue later. 3890 * 3891 * Currently we reject any reshape of a 'far' mode array, 3892 * allow chunk size to change if new is generally acceptable, 3893 * allow raid_disks to increase, and allow 3894 * a switch between 'near' mode and 'offset' mode. 3895 */ 3896 struct r10conf *conf = mddev->private; 3897 struct geom geo; 3898 3899 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3900 return -EINVAL; 3901 3902 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3903 /* mustn't change number of copies */ 3904 return -EINVAL; 3905 if (geo.far_copies > 1 && !geo.far_offset) 3906 /* Cannot switch to 'far' mode */ 3907 return -EINVAL; 3908 3909 if (mddev->array_sectors & geo.chunk_mask) 3910 /* not factor of array size */ 3911 return -EINVAL; 3912 3913 if (!enough(conf, -1)) 3914 return -EINVAL; 3915 3916 kfree(conf->mirrors_new); 3917 conf->mirrors_new = NULL; 3918 if (mddev->delta_disks > 0) { 3919 /* allocate new 'mirrors' list */ 3920 conf->mirrors_new = kzalloc( 3921 sizeof(struct raid10_info) 3922 *(mddev->raid_disks + 3923 mddev->delta_disks), 3924 GFP_KERNEL); 3925 if (!conf->mirrors_new) 3926 return -ENOMEM; 3927 } 3928 return 0; 3929 } 3930 3931 /* 3932 * Need to check if array has failed when deciding whether to: 3933 * - start an array 3934 * - remove non-faulty devices 3935 * - add a spare 3936 * - allow a reshape 3937 * This determination is simple when no reshape is happening. 3938 * However if there is a reshape, we need to carefully check 3939 * both the before and after sections. 3940 * This is because some failed devices may only affect one 3941 * of the two sections, and some non-in_sync devices may 3942 * be insync in the section most affected by failed devices. 3943 */ 3944 static int calc_degraded(struct r10conf *conf) 3945 { 3946 int degraded, degraded2; 3947 int i; 3948 3949 rcu_read_lock(); 3950 degraded = 0; 3951 /* 'prev' section first */ 3952 for (i = 0; i < conf->prev.raid_disks; i++) { 3953 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3954 if (!rdev || test_bit(Faulty, &rdev->flags)) 3955 degraded++; 3956 else if (!test_bit(In_sync, &rdev->flags)) 3957 /* When we can reduce the number of devices in 3958 * an array, this might not contribute to 3959 * 'degraded'. It does now. 3960 */ 3961 degraded++; 3962 } 3963 rcu_read_unlock(); 3964 if (conf->geo.raid_disks == conf->prev.raid_disks) 3965 return degraded; 3966 rcu_read_lock(); 3967 degraded2 = 0; 3968 for (i = 0; i < conf->geo.raid_disks; i++) { 3969 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3970 if (!rdev || test_bit(Faulty, &rdev->flags)) 3971 degraded2++; 3972 else if (!test_bit(In_sync, &rdev->flags)) { 3973 /* If reshape is increasing the number of devices, 3974 * this section has already been recovered, so 3975 * it doesn't contribute to degraded. 3976 * else it does. 3977 */ 3978 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3979 degraded2++; 3980 } 3981 } 3982 rcu_read_unlock(); 3983 if (degraded2 > degraded) 3984 return degraded2; 3985 return degraded; 3986 } 3987 3988 static int raid10_start_reshape(struct mddev *mddev) 3989 { 3990 /* A 'reshape' has been requested. This commits 3991 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3992 * This also checks if there are enough spares and adds them 3993 * to the array. 3994 * We currently require enough spares to make the final 3995 * array non-degraded. We also require that the difference 3996 * between old and new data_offset - on each device - is 3997 * enough that we never risk over-writing. 3998 */ 3999 4000 unsigned long before_length, after_length; 4001 sector_t min_offset_diff = 0; 4002 int first = 1; 4003 struct geom new; 4004 struct r10conf *conf = mddev->private; 4005 struct md_rdev *rdev; 4006 int spares = 0; 4007 int ret; 4008 4009 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4010 return -EBUSY; 4011 4012 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4013 return -EINVAL; 4014 4015 before_length = ((1 << conf->prev.chunk_shift) * 4016 conf->prev.far_copies); 4017 after_length = ((1 << conf->geo.chunk_shift) * 4018 conf->geo.far_copies); 4019 4020 rdev_for_each(rdev, mddev) { 4021 if (!test_bit(In_sync, &rdev->flags) 4022 && !test_bit(Faulty, &rdev->flags)) 4023 spares++; 4024 if (rdev->raid_disk >= 0) { 4025 long long diff = (rdev->new_data_offset 4026 - rdev->data_offset); 4027 if (!mddev->reshape_backwards) 4028 diff = -diff; 4029 if (diff < 0) 4030 diff = 0; 4031 if (first || diff < min_offset_diff) 4032 min_offset_diff = diff; 4033 } 4034 } 4035 4036 if (max(before_length, after_length) > min_offset_diff) 4037 return -EINVAL; 4038 4039 if (spares < mddev->delta_disks) 4040 return -EINVAL; 4041 4042 conf->offset_diff = min_offset_diff; 4043 spin_lock_irq(&conf->device_lock); 4044 if (conf->mirrors_new) { 4045 memcpy(conf->mirrors_new, conf->mirrors, 4046 sizeof(struct raid10_info)*conf->prev.raid_disks); 4047 smp_mb(); 4048 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4049 conf->mirrors_old = conf->mirrors; 4050 conf->mirrors = conf->mirrors_new; 4051 conf->mirrors_new = NULL; 4052 } 4053 setup_geo(&conf->geo, mddev, geo_start); 4054 smp_mb(); 4055 if (mddev->reshape_backwards) { 4056 sector_t size = raid10_size(mddev, 0, 0); 4057 if (size < mddev->array_sectors) { 4058 spin_unlock_irq(&conf->device_lock); 4059 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4060 mdname(mddev)); 4061 return -EINVAL; 4062 } 4063 mddev->resync_max_sectors = size; 4064 conf->reshape_progress = size; 4065 } else 4066 conf->reshape_progress = 0; 4067 spin_unlock_irq(&conf->device_lock); 4068 4069 if (mddev->delta_disks && mddev->bitmap) { 4070 ret = bitmap_resize(mddev->bitmap, 4071 raid10_size(mddev, 0, 4072 conf->geo.raid_disks), 4073 0, 0); 4074 if (ret) 4075 goto abort; 4076 } 4077 if (mddev->delta_disks > 0) { 4078 rdev_for_each(rdev, mddev) 4079 if (rdev->raid_disk < 0 && 4080 !test_bit(Faulty, &rdev->flags)) { 4081 if (raid10_add_disk(mddev, rdev) == 0) { 4082 if (rdev->raid_disk >= 4083 conf->prev.raid_disks) 4084 set_bit(In_sync, &rdev->flags); 4085 else 4086 rdev->recovery_offset = 0; 4087 4088 if (sysfs_link_rdev(mddev, rdev)) 4089 /* Failure here is OK */; 4090 } 4091 } else if (rdev->raid_disk >= conf->prev.raid_disks 4092 && !test_bit(Faulty, &rdev->flags)) { 4093 /* This is a spare that was manually added */ 4094 set_bit(In_sync, &rdev->flags); 4095 } 4096 } 4097 /* When a reshape changes the number of devices, 4098 * ->degraded is measured against the larger of the 4099 * pre and post numbers. 4100 */ 4101 spin_lock_irq(&conf->device_lock); 4102 mddev->degraded = calc_degraded(conf); 4103 spin_unlock_irq(&conf->device_lock); 4104 mddev->raid_disks = conf->geo.raid_disks; 4105 mddev->reshape_position = conf->reshape_progress; 4106 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4107 4108 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4109 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4110 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4111 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4112 4113 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4114 "reshape"); 4115 if (!mddev->sync_thread) { 4116 ret = -EAGAIN; 4117 goto abort; 4118 } 4119 conf->reshape_checkpoint = jiffies; 4120 md_wakeup_thread(mddev->sync_thread); 4121 md_new_event(mddev); 4122 return 0; 4123 4124 abort: 4125 mddev->recovery = 0; 4126 spin_lock_irq(&conf->device_lock); 4127 conf->geo = conf->prev; 4128 mddev->raid_disks = conf->geo.raid_disks; 4129 rdev_for_each(rdev, mddev) 4130 rdev->new_data_offset = rdev->data_offset; 4131 smp_wmb(); 4132 conf->reshape_progress = MaxSector; 4133 mddev->reshape_position = MaxSector; 4134 spin_unlock_irq(&conf->device_lock); 4135 return ret; 4136 } 4137 4138 /* Calculate the last device-address that could contain 4139 * any block from the chunk that includes the array-address 's' 4140 * and report the next address. 4141 * i.e. the address returned will be chunk-aligned and after 4142 * any data that is in the chunk containing 's'. 4143 */ 4144 static sector_t last_dev_address(sector_t s, struct geom *geo) 4145 { 4146 s = (s | geo->chunk_mask) + 1; 4147 s >>= geo->chunk_shift; 4148 s *= geo->near_copies; 4149 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4150 s *= geo->far_copies; 4151 s <<= geo->chunk_shift; 4152 return s; 4153 } 4154 4155 /* Calculate the first device-address that could contain 4156 * any block from the chunk that includes the array-address 's'. 4157 * This too will be the start of a chunk 4158 */ 4159 static sector_t first_dev_address(sector_t s, struct geom *geo) 4160 { 4161 s >>= geo->chunk_shift; 4162 s *= geo->near_copies; 4163 sector_div(s, geo->raid_disks); 4164 s *= geo->far_copies; 4165 s <<= geo->chunk_shift; 4166 return s; 4167 } 4168 4169 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4170 int *skipped) 4171 { 4172 /* We simply copy at most one chunk (smallest of old and new) 4173 * at a time, possibly less if that exceeds RESYNC_PAGES, 4174 * or we hit a bad block or something. 4175 * This might mean we pause for normal IO in the middle of 4176 * a chunk, but that is not a problem was mddev->reshape_position 4177 * can record any location. 4178 * 4179 * If we will want to write to a location that isn't 4180 * yet recorded as 'safe' (i.e. in metadata on disk) then 4181 * we need to flush all reshape requests and update the metadata. 4182 * 4183 * When reshaping forwards (e.g. to more devices), we interpret 4184 * 'safe' as the earliest block which might not have been copied 4185 * down yet. We divide this by previous stripe size and multiply 4186 * by previous stripe length to get lowest device offset that we 4187 * cannot write to yet. 4188 * We interpret 'sector_nr' as an address that we want to write to. 4189 * From this we use last_device_address() to find where we might 4190 * write to, and first_device_address on the 'safe' position. 4191 * If this 'next' write position is after the 'safe' position, 4192 * we must update the metadata to increase the 'safe' position. 4193 * 4194 * When reshaping backwards, we round in the opposite direction 4195 * and perform the reverse test: next write position must not be 4196 * less than current safe position. 4197 * 4198 * In all this the minimum difference in data offsets 4199 * (conf->offset_diff - always positive) allows a bit of slack, 4200 * so next can be after 'safe', but not by more than offset_disk 4201 * 4202 * We need to prepare all the bios here before we start any IO 4203 * to ensure the size we choose is acceptable to all devices. 4204 * The means one for each copy for write-out and an extra one for 4205 * read-in. 4206 * We store the read-in bio in ->master_bio and the others in 4207 * ->devs[x].bio and ->devs[x].repl_bio. 4208 */ 4209 struct r10conf *conf = mddev->private; 4210 struct r10bio *r10_bio; 4211 sector_t next, safe, last; 4212 int max_sectors; 4213 int nr_sectors; 4214 int s; 4215 struct md_rdev *rdev; 4216 int need_flush = 0; 4217 struct bio *blist; 4218 struct bio *bio, *read_bio; 4219 int sectors_done = 0; 4220 4221 if (sector_nr == 0) { 4222 /* If restarting in the middle, skip the initial sectors */ 4223 if (mddev->reshape_backwards && 4224 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4225 sector_nr = (raid10_size(mddev, 0, 0) 4226 - conf->reshape_progress); 4227 } else if (!mddev->reshape_backwards && 4228 conf->reshape_progress > 0) 4229 sector_nr = conf->reshape_progress; 4230 if (sector_nr) { 4231 mddev->curr_resync_completed = sector_nr; 4232 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4233 *skipped = 1; 4234 return sector_nr; 4235 } 4236 } 4237 4238 /* We don't use sector_nr to track where we are up to 4239 * as that doesn't work well for ->reshape_backwards. 4240 * So just use ->reshape_progress. 4241 */ 4242 if (mddev->reshape_backwards) { 4243 /* 'next' is the earliest device address that we might 4244 * write to for this chunk in the new layout 4245 */ 4246 next = first_dev_address(conf->reshape_progress - 1, 4247 &conf->geo); 4248 4249 /* 'safe' is the last device address that we might read from 4250 * in the old layout after a restart 4251 */ 4252 safe = last_dev_address(conf->reshape_safe - 1, 4253 &conf->prev); 4254 4255 if (next + conf->offset_diff < safe) 4256 need_flush = 1; 4257 4258 last = conf->reshape_progress - 1; 4259 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4260 & conf->prev.chunk_mask); 4261 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4262 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4263 } else { 4264 /* 'next' is after the last device address that we 4265 * might write to for this chunk in the new layout 4266 */ 4267 next = last_dev_address(conf->reshape_progress, &conf->geo); 4268 4269 /* 'safe' is the earliest device address that we might 4270 * read from in the old layout after a restart 4271 */ 4272 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4273 4274 /* Need to update metadata if 'next' might be beyond 'safe' 4275 * as that would possibly corrupt data 4276 */ 4277 if (next > safe + conf->offset_diff) 4278 need_flush = 1; 4279 4280 sector_nr = conf->reshape_progress; 4281 last = sector_nr | (conf->geo.chunk_mask 4282 & conf->prev.chunk_mask); 4283 4284 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4285 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4286 } 4287 4288 if (need_flush || 4289 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4290 /* Need to update reshape_position in metadata */ 4291 wait_barrier(conf); 4292 mddev->reshape_position = conf->reshape_progress; 4293 if (mddev->reshape_backwards) 4294 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4295 - conf->reshape_progress; 4296 else 4297 mddev->curr_resync_completed = conf->reshape_progress; 4298 conf->reshape_checkpoint = jiffies; 4299 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4300 md_wakeup_thread(mddev->thread); 4301 wait_event(mddev->sb_wait, mddev->flags == 0 || 4302 kthread_should_stop()); 4303 conf->reshape_safe = mddev->reshape_position; 4304 allow_barrier(conf); 4305 } 4306 4307 read_more: 4308 /* Now schedule reads for blocks from sector_nr to last */ 4309 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4310 raise_barrier(conf, sectors_done != 0); 4311 atomic_set(&r10_bio->remaining, 0); 4312 r10_bio->mddev = mddev; 4313 r10_bio->sector = sector_nr; 4314 set_bit(R10BIO_IsReshape, &r10_bio->state); 4315 r10_bio->sectors = last - sector_nr + 1; 4316 rdev = read_balance(conf, r10_bio, &max_sectors); 4317 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4318 4319 if (!rdev) { 4320 /* Cannot read from here, so need to record bad blocks 4321 * on all the target devices. 4322 */ 4323 // FIXME 4324 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4325 return sectors_done; 4326 } 4327 4328 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4329 4330 read_bio->bi_bdev = rdev->bdev; 4331 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4332 + rdev->data_offset); 4333 read_bio->bi_private = r10_bio; 4334 read_bio->bi_end_io = end_sync_read; 4335 read_bio->bi_rw = READ; 4336 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4337 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4338 read_bio->bi_vcnt = 0; 4339 read_bio->bi_idx = 0; 4340 read_bio->bi_size = 0; 4341 r10_bio->master_bio = read_bio; 4342 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4343 4344 /* Now find the locations in the new layout */ 4345 __raid10_find_phys(&conf->geo, r10_bio); 4346 4347 blist = read_bio; 4348 read_bio->bi_next = NULL; 4349 4350 for (s = 0; s < conf->copies*2; s++) { 4351 struct bio *b; 4352 int d = r10_bio->devs[s/2].devnum; 4353 struct md_rdev *rdev2; 4354 if (s&1) { 4355 rdev2 = conf->mirrors[d].replacement; 4356 b = r10_bio->devs[s/2].repl_bio; 4357 } else { 4358 rdev2 = conf->mirrors[d].rdev; 4359 b = r10_bio->devs[s/2].bio; 4360 } 4361 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4362 continue; 4363 b->bi_bdev = rdev2->bdev; 4364 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4365 b->bi_private = r10_bio; 4366 b->bi_end_io = end_reshape_write; 4367 b->bi_rw = WRITE; 4368 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4369 b->bi_flags |= 1 << BIO_UPTODATE; 4370 b->bi_next = blist; 4371 b->bi_vcnt = 0; 4372 b->bi_idx = 0; 4373 b->bi_size = 0; 4374 blist = b; 4375 } 4376 4377 /* Now add as many pages as possible to all of these bios. */ 4378 4379 nr_sectors = 0; 4380 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4381 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4382 int len = (max_sectors - s) << 9; 4383 if (len > PAGE_SIZE) 4384 len = PAGE_SIZE; 4385 for (bio = blist; bio ; bio = bio->bi_next) { 4386 struct bio *bio2; 4387 if (bio_add_page(bio, page, len, 0)) 4388 continue; 4389 4390 /* Didn't fit, must stop */ 4391 for (bio2 = blist; 4392 bio2 && bio2 != bio; 4393 bio2 = bio2->bi_next) { 4394 /* Remove last page from this bio */ 4395 bio2->bi_vcnt--; 4396 bio2->bi_size -= len; 4397 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4398 } 4399 goto bio_full; 4400 } 4401 sector_nr += len >> 9; 4402 nr_sectors += len >> 9; 4403 } 4404 bio_full: 4405 r10_bio->sectors = nr_sectors; 4406 4407 /* Now submit the read */ 4408 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4409 atomic_inc(&r10_bio->remaining); 4410 read_bio->bi_next = NULL; 4411 generic_make_request(read_bio); 4412 sector_nr += nr_sectors; 4413 sectors_done += nr_sectors; 4414 if (sector_nr <= last) 4415 goto read_more; 4416 4417 /* Now that we have done the whole section we can 4418 * update reshape_progress 4419 */ 4420 if (mddev->reshape_backwards) 4421 conf->reshape_progress -= sectors_done; 4422 else 4423 conf->reshape_progress += sectors_done; 4424 4425 return sectors_done; 4426 } 4427 4428 static void end_reshape_request(struct r10bio *r10_bio); 4429 static int handle_reshape_read_error(struct mddev *mddev, 4430 struct r10bio *r10_bio); 4431 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4432 { 4433 /* Reshape read completed. Hopefully we have a block 4434 * to write out. 4435 * If we got a read error then we do sync 1-page reads from 4436 * elsewhere until we find the data - or give up. 4437 */ 4438 struct r10conf *conf = mddev->private; 4439 int s; 4440 4441 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4442 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4443 /* Reshape has been aborted */ 4444 md_done_sync(mddev, r10_bio->sectors, 0); 4445 return; 4446 } 4447 4448 /* We definitely have the data in the pages, schedule the 4449 * writes. 4450 */ 4451 atomic_set(&r10_bio->remaining, 1); 4452 for (s = 0; s < conf->copies*2; s++) { 4453 struct bio *b; 4454 int d = r10_bio->devs[s/2].devnum; 4455 struct md_rdev *rdev; 4456 if (s&1) { 4457 rdev = conf->mirrors[d].replacement; 4458 b = r10_bio->devs[s/2].repl_bio; 4459 } else { 4460 rdev = conf->mirrors[d].rdev; 4461 b = r10_bio->devs[s/2].bio; 4462 } 4463 if (!rdev || test_bit(Faulty, &rdev->flags)) 4464 continue; 4465 atomic_inc(&rdev->nr_pending); 4466 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4467 atomic_inc(&r10_bio->remaining); 4468 b->bi_next = NULL; 4469 generic_make_request(b); 4470 } 4471 end_reshape_request(r10_bio); 4472 } 4473 4474 static void end_reshape(struct r10conf *conf) 4475 { 4476 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4477 return; 4478 4479 spin_lock_irq(&conf->device_lock); 4480 conf->prev = conf->geo; 4481 md_finish_reshape(conf->mddev); 4482 smp_wmb(); 4483 conf->reshape_progress = MaxSector; 4484 spin_unlock_irq(&conf->device_lock); 4485 4486 /* read-ahead size must cover two whole stripes, which is 4487 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4488 */ 4489 if (conf->mddev->queue) { 4490 int stripe = conf->geo.raid_disks * 4491 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4492 stripe /= conf->geo.near_copies; 4493 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4494 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4495 } 4496 conf->fullsync = 0; 4497 } 4498 4499 4500 static int handle_reshape_read_error(struct mddev *mddev, 4501 struct r10bio *r10_bio) 4502 { 4503 /* Use sync reads to get the blocks from somewhere else */ 4504 int sectors = r10_bio->sectors; 4505 struct r10conf *conf = mddev->private; 4506 struct { 4507 struct r10bio r10_bio; 4508 struct r10dev devs[conf->copies]; 4509 } on_stack; 4510 struct r10bio *r10b = &on_stack.r10_bio; 4511 int slot = 0; 4512 int idx = 0; 4513 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4514 4515 r10b->sector = r10_bio->sector; 4516 __raid10_find_phys(&conf->prev, r10b); 4517 4518 while (sectors) { 4519 int s = sectors; 4520 int success = 0; 4521 int first_slot = slot; 4522 4523 if (s > (PAGE_SIZE >> 9)) 4524 s = PAGE_SIZE >> 9; 4525 4526 while (!success) { 4527 int d = r10b->devs[slot].devnum; 4528 struct md_rdev *rdev = conf->mirrors[d].rdev; 4529 sector_t addr; 4530 if (rdev == NULL || 4531 test_bit(Faulty, &rdev->flags) || 4532 !test_bit(In_sync, &rdev->flags)) 4533 goto failed; 4534 4535 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4536 success = sync_page_io(rdev, 4537 addr, 4538 s << 9, 4539 bvec[idx].bv_page, 4540 READ, false); 4541 if (success) 4542 break; 4543 failed: 4544 slot++; 4545 if (slot >= conf->copies) 4546 slot = 0; 4547 if (slot == first_slot) 4548 break; 4549 } 4550 if (!success) { 4551 /* couldn't read this block, must give up */ 4552 set_bit(MD_RECOVERY_INTR, 4553 &mddev->recovery); 4554 return -EIO; 4555 } 4556 sectors -= s; 4557 idx++; 4558 } 4559 return 0; 4560 } 4561 4562 static void end_reshape_write(struct bio *bio, int error) 4563 { 4564 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4565 struct r10bio *r10_bio = bio->bi_private; 4566 struct mddev *mddev = r10_bio->mddev; 4567 struct r10conf *conf = mddev->private; 4568 int d; 4569 int slot; 4570 int repl; 4571 struct md_rdev *rdev = NULL; 4572 4573 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4574 if (repl) 4575 rdev = conf->mirrors[d].replacement; 4576 if (!rdev) { 4577 smp_mb(); 4578 rdev = conf->mirrors[d].rdev; 4579 } 4580 4581 if (!uptodate) { 4582 /* FIXME should record badblock */ 4583 md_error(mddev, rdev); 4584 } 4585 4586 rdev_dec_pending(rdev, mddev); 4587 end_reshape_request(r10_bio); 4588 } 4589 4590 static void end_reshape_request(struct r10bio *r10_bio) 4591 { 4592 if (!atomic_dec_and_test(&r10_bio->remaining)) 4593 return; 4594 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4595 bio_put(r10_bio->master_bio); 4596 put_buf(r10_bio); 4597 } 4598 4599 static void raid10_finish_reshape(struct mddev *mddev) 4600 { 4601 struct r10conf *conf = mddev->private; 4602 4603 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4604 return; 4605 4606 if (mddev->delta_disks > 0) { 4607 sector_t size = raid10_size(mddev, 0, 0); 4608 md_set_array_sectors(mddev, size); 4609 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4610 mddev->recovery_cp = mddev->resync_max_sectors; 4611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4612 } 4613 mddev->resync_max_sectors = size; 4614 set_capacity(mddev->gendisk, mddev->array_sectors); 4615 revalidate_disk(mddev->gendisk); 4616 } else { 4617 int d; 4618 for (d = conf->geo.raid_disks ; 4619 d < conf->geo.raid_disks - mddev->delta_disks; 4620 d++) { 4621 struct md_rdev *rdev = conf->mirrors[d].rdev; 4622 if (rdev) 4623 clear_bit(In_sync, &rdev->flags); 4624 rdev = conf->mirrors[d].replacement; 4625 if (rdev) 4626 clear_bit(In_sync, &rdev->flags); 4627 } 4628 } 4629 mddev->layout = mddev->new_layout; 4630 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4631 mddev->reshape_position = MaxSector; 4632 mddev->delta_disks = 0; 4633 mddev->reshape_backwards = 0; 4634 } 4635 4636 static struct md_personality raid10_personality = 4637 { 4638 .name = "raid10", 4639 .level = 10, 4640 .owner = THIS_MODULE, 4641 .make_request = make_request, 4642 .run = run, 4643 .stop = stop, 4644 .status = status, 4645 .error_handler = error, 4646 .hot_add_disk = raid10_add_disk, 4647 .hot_remove_disk= raid10_remove_disk, 4648 .spare_active = raid10_spare_active, 4649 .sync_request = sync_request, 4650 .quiesce = raid10_quiesce, 4651 .size = raid10_size, 4652 .resize = raid10_resize, 4653 .takeover = raid10_takeover, 4654 .check_reshape = raid10_check_reshape, 4655 .start_reshape = raid10_start_reshape, 4656 .finish_reshape = raid10_finish_reshape, 4657 }; 4658 4659 static int __init raid_init(void) 4660 { 4661 return register_md_personality(&raid10_personality); 4662 } 4663 4664 static void raid_exit(void) 4665 { 4666 unregister_md_personality(&raid10_personality); 4667 } 4668 4669 module_init(raid_init); 4670 module_exit(raid_exit); 4671 MODULE_LICENSE("GPL"); 4672 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4673 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4674 MODULE_ALIAS("md-raid10"); 4675 MODULE_ALIAS("md-level-10"); 4676 4677 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4678