xref: /openbmc/linux/drivers/md/raid10.c (revision 54cbac81)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error.  To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context.  So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74 
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76 
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82 
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 				int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91 
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct r10conf *conf = data;
95 	int size = offsetof(struct r10bio, devs[conf->copies]);
96 
97 	/* allocate a r10bio with room for raid_disks entries in the
98 	 * bios array */
99 	return kzalloc(size, gfp_flags);
100 }
101 
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 	kfree(r10_bio);
105 }
106 
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114 
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 	struct r10conf *conf = data;
125 	struct page *page;
126 	struct r10bio *r10_bio;
127 	struct bio *bio;
128 	int i, j;
129 	int nalloc;
130 
131 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 	if (!r10_bio)
133 		return NULL;
134 
135 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 		nalloc = conf->copies; /* resync */
138 	else
139 		nalloc = 2; /* recovery */
140 
141 	/*
142 	 * Allocate bios.
143 	 */
144 	for (j = nalloc ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r10_bio->devs[j].bio = bio;
149 		if (!conf->have_replacement)
150 			continue;
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r10_bio->devs[j].repl_bio = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them
158 	 * where needed.
159 	 */
160 	for (j = 0 ; j < nalloc; j++) {
161 		struct bio *rbio = r10_bio->devs[j].repl_bio;
162 		bio = r10_bio->devs[j].bio;
163 		for (i = 0; i < RESYNC_PAGES; i++) {
164 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 					       &conf->mddev->recovery)) {
166 				/* we can share bv_page's during recovery
167 				 * and reshape */
168 				struct bio *rbio = r10_bio->devs[0].bio;
169 				page = rbio->bi_io_vec[i].bv_page;
170 				get_page(page);
171 			} else
172 				page = alloc_page(gfp_flags);
173 			if (unlikely(!page))
174 				goto out_free_pages;
175 
176 			bio->bi_io_vec[i].bv_page = page;
177 			if (rbio)
178 				rbio->bi_io_vec[i].bv_page = page;
179 		}
180 	}
181 
182 	return r10_bio;
183 
184 out_free_pages:
185 	for ( ; i > 0 ; i--)
186 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 	while (j--)
188 		for (i = 0; i < RESYNC_PAGES ; i++)
189 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 	j = 0;
191 out_free_bio:
192 	for ( ; j < nalloc; j++) {
193 		if (r10_bio->devs[j].bio)
194 			bio_put(r10_bio->devs[j].bio);
195 		if (r10_bio->devs[j].repl_bio)
196 			bio_put(r10_bio->devs[j].repl_bio);
197 	}
198 	r10bio_pool_free(r10_bio, conf);
199 	return NULL;
200 }
201 
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 	int i;
205 	struct r10conf *conf = data;
206 	struct r10bio *r10bio = __r10_bio;
207 	int j;
208 
209 	for (j=0; j < conf->copies; j++) {
210 		struct bio *bio = r10bio->devs[j].bio;
211 		if (bio) {
212 			for (i = 0; i < RESYNC_PAGES; i++) {
213 				safe_put_page(bio->bi_io_vec[i].bv_page);
214 				bio->bi_io_vec[i].bv_page = NULL;
215 			}
216 			bio_put(bio);
217 		}
218 		bio = r10bio->devs[j].repl_bio;
219 		if (bio)
220 			bio_put(bio);
221 	}
222 	r10bio_pool_free(r10bio, conf);
223 }
224 
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 	int i;
228 
229 	for (i = 0; i < conf->copies; i++) {
230 		struct bio **bio = & r10_bio->devs[i].bio;
231 		if (!BIO_SPECIAL(*bio))
232 			bio_put(*bio);
233 		*bio = NULL;
234 		bio = &r10_bio->devs[i].repl_bio;
235 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 			bio_put(*bio);
237 		*bio = NULL;
238 	}
239 }
240 
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 	struct r10conf *conf = r10_bio->mddev->private;
244 
245 	put_all_bios(conf, r10_bio);
246 	mempool_free(r10_bio, conf->r10bio_pool);
247 }
248 
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 	struct r10conf *conf = r10_bio->mddev->private;
252 
253 	mempool_free(r10_bio, conf->r10buf_pool);
254 
255 	lower_barrier(conf);
256 }
257 
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 	unsigned long flags;
261 	struct mddev *mddev = r10_bio->mddev;
262 	struct r10conf *conf = mddev->private;
263 
264 	spin_lock_irqsave(&conf->device_lock, flags);
265 	list_add(&r10_bio->retry_list, &conf->retry_list);
266 	conf->nr_queued ++;
267 	spin_unlock_irqrestore(&conf->device_lock, flags);
268 
269 	/* wake up frozen array... */
270 	wake_up(&conf->wait_barrier);
271 
272 	md_wakeup_thread(mddev->thread);
273 }
274 
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 	struct bio *bio = r10_bio->master_bio;
283 	int done;
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	if (bio->bi_phys_segments) {
287 		unsigned long flags;
288 		spin_lock_irqsave(&conf->device_lock, flags);
289 		bio->bi_phys_segments--;
290 		done = (bio->bi_phys_segments == 0);
291 		spin_unlock_irqrestore(&conf->device_lock, flags);
292 	} else
293 		done = 1;
294 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 	if (done) {
297 		bio_endio(bio, 0);
298 		/*
299 		 * Wake up any possible resync thread that waits for the device
300 		 * to go idle.
301 		 */
302 		allow_barrier(conf);
303 	}
304 	free_r10bio(r10_bio);
305 }
306 
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 	struct r10conf *conf = r10_bio->mddev->private;
313 
314 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 		r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317 
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 			 struct bio *bio, int *slotp, int *replp)
323 {
324 	int slot;
325 	int repl = 0;
326 
327 	for (slot = 0; slot < conf->copies; slot++) {
328 		if (r10_bio->devs[slot].bio == bio)
329 			break;
330 		if (r10_bio->devs[slot].repl_bio == bio) {
331 			repl = 1;
332 			break;
333 		}
334 	}
335 
336 	BUG_ON(slot == conf->copies);
337 	update_head_pos(slot, r10_bio);
338 
339 	if (slotp)
340 		*slotp = slot;
341 	if (replp)
342 		*replp = repl;
343 	return r10_bio->devs[slot].devnum;
344 }
345 
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 	struct r10bio *r10_bio = bio->bi_private;
350 	int slot, dev;
351 	struct md_rdev *rdev;
352 	struct r10conf *conf = r10_bio->mddev->private;
353 
354 
355 	slot = r10_bio->read_slot;
356 	dev = r10_bio->devs[slot].devnum;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		unsigned long flags;
381 		spin_lock_irqsave(&conf->device_lock, flags);
382 		if (!enough(conf, rdev->raid_disk))
383 			uptodate = 1;
384 		spin_unlock_irqrestore(&conf->device_lock, flags);
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		printk_ratelimited(KERN_ERR
395 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396 				   mdname(conf->mddev),
397 				   bdevname(rdev->bdev, b),
398 				   (unsigned long long)r10_bio->sector);
399 		set_bit(R10BIO_ReadError, &r10_bio->state);
400 		reschedule_retry(r10_bio);
401 	}
402 }
403 
404 static void close_write(struct r10bio *r10_bio)
405 {
406 	/* clear the bitmap if all writes complete successfully */
407 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 			r10_bio->sectors,
409 			!test_bit(R10BIO_Degraded, &r10_bio->state),
410 			0);
411 	md_write_end(r10_bio->mddev);
412 }
413 
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 	if (atomic_dec_and_test(&r10_bio->remaining)) {
417 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 			reschedule_retry(r10_bio);
419 		else {
420 			close_write(r10_bio);
421 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 				reschedule_retry(r10_bio);
423 			else
424 				raid_end_bio_io(r10_bio);
425 		}
426 	}
427 }
428 
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 	struct r10bio *r10_bio = bio->bi_private;
433 	int dev;
434 	int dec_rdev = 1;
435 	struct r10conf *conf = r10_bio->mddev->private;
436 	int slot, repl;
437 	struct md_rdev *rdev = NULL;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (!uptodate) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 			set_bit(R10BIO_WriteError, &r10_bio->state);
463 			dec_rdev = 0;
464 		}
465 	} else {
466 		/*
467 		 * Set R10BIO_Uptodate in our master bio, so that
468 		 * we will return a good error code for to the higher
469 		 * levels even if IO on some other mirrored buffer fails.
470 		 *
471 		 * The 'master' represents the composite IO operation to
472 		 * user-side. So if something waits for IO, then it will
473 		 * wait for the 'master' bio.
474 		 */
475 		sector_t first_bad;
476 		int bad_sectors;
477 
478 		set_bit(R10BIO_Uptodate, &r10_bio->state);
479 
480 		/* Maybe we can clear some bad blocks. */
481 		if (is_badblock(rdev,
482 				r10_bio->devs[slot].addr,
483 				r10_bio->sectors,
484 				&first_bad, &bad_sectors)) {
485 			bio_put(bio);
486 			if (repl)
487 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 			else
489 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 			dec_rdev = 0;
491 			set_bit(R10BIO_MadeGood, &r10_bio->state);
492 		}
493 	}
494 
495 	/*
496 	 *
497 	 * Let's see if all mirrored write operations have finished
498 	 * already.
499 	 */
500 	one_write_done(r10_bio);
501 	if (dec_rdev)
502 		rdev_dec_pending(rdev, conf->mddev);
503 }
504 
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529 
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 	int n,f;
533 	sector_t sector;
534 	sector_t chunk;
535 	sector_t stripe;
536 	int dev;
537 	int slot = 0;
538 
539 	/* now calculate first sector/dev */
540 	chunk = r10bio->sector >> geo->chunk_shift;
541 	sector = r10bio->sector & geo->chunk_mask;
542 
543 	chunk *= geo->near_copies;
544 	stripe = chunk;
545 	dev = sector_div(stripe, geo->raid_disks);
546 	if (geo->far_offset)
547 		stripe *= geo->far_copies;
548 
549 	sector += stripe << geo->chunk_shift;
550 
551 	/* and calculate all the others */
552 	for (n = 0; n < geo->near_copies; n++) {
553 		int d = dev;
554 		sector_t s = sector;
555 		r10bio->devs[slot].addr = sector;
556 		r10bio->devs[slot].devnum = d;
557 		slot++;
558 
559 		for (f = 1; f < geo->far_copies; f++) {
560 			d += geo->near_copies;
561 			if (d >= geo->raid_disks)
562 				d -= geo->raid_disks;
563 			s += geo->stride;
564 			r10bio->devs[slot].devnum = d;
565 			r10bio->devs[slot].addr = s;
566 			slot++;
567 		}
568 		dev++;
569 		if (dev >= geo->raid_disks) {
570 			dev = 0;
571 			sector += (geo->chunk_mask + 1);
572 		}
573 	}
574 }
575 
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 	struct geom *geo = &conf->geo;
579 
580 	if (conf->reshape_progress != MaxSector &&
581 	    ((r10bio->sector >= conf->reshape_progress) !=
582 	     conf->mddev->reshape_backwards)) {
583 		set_bit(R10BIO_Previous, &r10bio->state);
584 		geo = &conf->prev;
585 	} else
586 		clear_bit(R10BIO_Previous, &r10bio->state);
587 
588 	__raid10_find_phys(geo, r10bio);
589 }
590 
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 	sector_t offset, chunk, vchunk;
594 	/* Never use conf->prev as this is only called during resync
595 	 * or recovery, so reshape isn't happening
596 	 */
597 	struct geom *geo = &conf->geo;
598 
599 	offset = sector & geo->chunk_mask;
600 	if (geo->far_offset) {
601 		int fc;
602 		chunk = sector >> geo->chunk_shift;
603 		fc = sector_div(chunk, geo->far_copies);
604 		dev -= fc * geo->near_copies;
605 		if (dev < 0)
606 			dev += geo->raid_disks;
607 	} else {
608 		while (sector >= geo->stride) {
609 			sector -= geo->stride;
610 			if (dev < geo->near_copies)
611 				dev += geo->raid_disks - geo->near_copies;
612 			else
613 				dev -= geo->near_copies;
614 		}
615 		chunk = sector >> geo->chunk_shift;
616 	}
617 	vchunk = chunk * geo->raid_disks + dev;
618 	sector_div(vchunk, geo->near_copies);
619 	return (vchunk << geo->chunk_shift) + offset;
620 }
621 
622 /**
623  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624  *	@q: request queue
625  *	@bvm: properties of new bio
626  *	@biovec: the request that could be merged to it.
627  *
628  *	Return amount of bytes we can accept at this offset
629  *	This requires checking for end-of-chunk if near_copies != raid_disks,
630  *	and for subordinate merge_bvec_fns if merge_check_needed.
631  */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 				 struct bvec_merge_data *bvm,
634 				 struct bio_vec *biovec)
635 {
636 	struct mddev *mddev = q->queuedata;
637 	struct r10conf *conf = mddev->private;
638 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 	int max;
640 	unsigned int chunk_sectors;
641 	unsigned int bio_sectors = bvm->bi_size >> 9;
642 	struct geom *geo = &conf->geo;
643 
644 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards))
648 		geo = &conf->prev;
649 
650 	if (geo->near_copies < geo->raid_disks) {
651 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 					+ bio_sectors)) << 9;
653 		if (max < 0)
654 			/* bio_add cannot handle a negative return */
655 			max = 0;
656 		if (max <= biovec->bv_len && bio_sectors == 0)
657 			return biovec->bv_len;
658 	} else
659 		max = biovec->bv_len;
660 
661 	if (mddev->merge_check_needed) {
662 		struct {
663 			struct r10bio r10_bio;
664 			struct r10dev devs[conf->copies];
665 		} on_stack;
666 		struct r10bio *r10_bio = &on_stack.r10_bio;
667 		int s;
668 		if (conf->reshape_progress != MaxSector) {
669 			/* Cannot give any guidance during reshape */
670 			if (max <= biovec->bv_len && bio_sectors == 0)
671 				return biovec->bv_len;
672 			return 0;
673 		}
674 		r10_bio->sector = sector;
675 		raid10_find_phys(conf, r10_bio);
676 		rcu_read_lock();
677 		for (s = 0; s < conf->copies; s++) {
678 			int disk = r10_bio->devs[s].devnum;
679 			struct md_rdev *rdev = rcu_dereference(
680 				conf->mirrors[disk].rdev);
681 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 				struct request_queue *q =
683 					bdev_get_queue(rdev->bdev);
684 				if (q->merge_bvec_fn) {
685 					bvm->bi_sector = r10_bio->devs[s].addr
686 						+ rdev->data_offset;
687 					bvm->bi_bdev = rdev->bdev;
688 					max = min(max, q->merge_bvec_fn(
689 							  q, bvm, biovec));
690 				}
691 			}
692 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 				struct request_queue *q =
695 					bdev_get_queue(rdev->bdev);
696 				if (q->merge_bvec_fn) {
697 					bvm->bi_sector = r10_bio->devs[s].addr
698 						+ rdev->data_offset;
699 					bvm->bi_bdev = rdev->bdev;
700 					max = min(max, q->merge_bvec_fn(
701 							  q, bvm, biovec));
702 				}
703 			}
704 		}
705 		rcu_read_unlock();
706 	}
707 	return max;
708 }
709 
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724 
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 				    struct r10bio *r10_bio,
731 				    int *max_sectors)
732 {
733 	const sector_t this_sector = r10_bio->sector;
734 	int disk, slot;
735 	int sectors = r10_bio->sectors;
736 	int best_good_sectors;
737 	sector_t new_distance, best_dist;
738 	struct md_rdev *best_rdev, *rdev = NULL;
739 	int do_balance;
740 	int best_slot;
741 	struct geom *geo = &conf->geo;
742 
743 	raid10_find_phys(conf, r10_bio);
744 	rcu_read_lock();
745 retry:
746 	sectors = r10_bio->sectors;
747 	best_slot = -1;
748 	best_rdev = NULL;
749 	best_dist = MaxSector;
750 	best_good_sectors = 0;
751 	do_balance = 1;
752 	/*
753 	 * Check if we can balance. We can balance on the whole
754 	 * device if no resync is going on (recovery is ok), or below
755 	 * the resync window. We take the first readable disk when
756 	 * above the resync window.
757 	 */
758 	if (conf->mddev->recovery_cp < MaxSector
759 	    && (this_sector + sectors >= conf->next_resync))
760 		do_balance = 0;
761 
762 	for (slot = 0; slot < conf->copies ; slot++) {
763 		sector_t first_bad;
764 		int bad_sectors;
765 		sector_t dev_sector;
766 
767 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 			continue;
769 		disk = r10_bio->devs[slot].devnum;
770 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 		    test_bit(Unmerged, &rdev->flags) ||
773 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
775 		if (rdev == NULL ||
776 		    test_bit(Faulty, &rdev->flags) ||
777 		    test_bit(Unmerged, &rdev->flags))
778 			continue;
779 		if (!test_bit(In_sync, &rdev->flags) &&
780 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781 			continue;
782 
783 		dev_sector = r10_bio->devs[slot].addr;
784 		if (is_badblock(rdev, dev_sector, sectors,
785 				&first_bad, &bad_sectors)) {
786 			if (best_dist < MaxSector)
787 				/* Already have a better slot */
788 				continue;
789 			if (first_bad <= dev_sector) {
790 				/* Cannot read here.  If this is the
791 				 * 'primary' device, then we must not read
792 				 * beyond 'bad_sectors' from another device.
793 				 */
794 				bad_sectors -= (dev_sector - first_bad);
795 				if (!do_balance && sectors > bad_sectors)
796 					sectors = bad_sectors;
797 				if (best_good_sectors > sectors)
798 					best_good_sectors = sectors;
799 			} else {
800 				sector_t good_sectors =
801 					first_bad - dev_sector;
802 				if (good_sectors > best_good_sectors) {
803 					best_good_sectors = good_sectors;
804 					best_slot = slot;
805 					best_rdev = rdev;
806 				}
807 				if (!do_balance)
808 					/* Must read from here */
809 					break;
810 			}
811 			continue;
812 		} else
813 			best_good_sectors = sectors;
814 
815 		if (!do_balance)
816 			break;
817 
818 		/* This optimisation is debatable, and completely destroys
819 		 * sequential read speed for 'far copies' arrays.  So only
820 		 * keep it for 'near' arrays, and review those later.
821 		 */
822 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823 			break;
824 
825 		/* for far > 1 always use the lowest address */
826 		if (geo->far_copies > 1)
827 			new_distance = r10_bio->devs[slot].addr;
828 		else
829 			new_distance = abs(r10_bio->devs[slot].addr -
830 					   conf->mirrors[disk].head_position);
831 		if (new_distance < best_dist) {
832 			best_dist = new_distance;
833 			best_slot = slot;
834 			best_rdev = rdev;
835 		}
836 	}
837 	if (slot >= conf->copies) {
838 		slot = best_slot;
839 		rdev = best_rdev;
840 	}
841 
842 	if (slot >= 0) {
843 		atomic_inc(&rdev->nr_pending);
844 		if (test_bit(Faulty, &rdev->flags)) {
845 			/* Cannot risk returning a device that failed
846 			 * before we inc'ed nr_pending
847 			 */
848 			rdev_dec_pending(rdev, conf->mddev);
849 			goto retry;
850 		}
851 		r10_bio->read_slot = slot;
852 	} else
853 		rdev = NULL;
854 	rcu_read_unlock();
855 	*max_sectors = best_good_sectors;
856 
857 	return rdev;
858 }
859 
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862 	struct r10conf *conf = mddev->private;
863 	int i, ret = 0;
864 
865 	if ((bits & (1 << BDI_async_congested)) &&
866 	    conf->pending_count >= max_queued_requests)
867 		return 1;
868 
869 	rcu_read_lock();
870 	for (i = 0;
871 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 		     && ret == 0;
873 	     i++) {
874 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 			struct request_queue *q = bdev_get_queue(rdev->bdev);
877 
878 			ret |= bdi_congested(&q->backing_dev_info, bits);
879 		}
880 	}
881 	rcu_read_unlock();
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885 
886 static int raid10_congested(void *data, int bits)
887 {
888 	struct mddev *mddev = data;
889 
890 	return mddev_congested(mddev, bits) ||
891 		md_raid10_congested(mddev, bits);
892 }
893 
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896 	/* Any writes that have been queued but are awaiting
897 	 * bitmap updates get flushed here.
898 	 */
899 	spin_lock_irq(&conf->device_lock);
900 
901 	if (conf->pending_bio_list.head) {
902 		struct bio *bio;
903 		bio = bio_list_get(&conf->pending_bio_list);
904 		conf->pending_count = 0;
905 		spin_unlock_irq(&conf->device_lock);
906 		/* flush any pending bitmap writes to disk
907 		 * before proceeding w/ I/O */
908 		bitmap_unplug(conf->mddev->bitmap);
909 		wake_up(&conf->wait_barrier);
910 
911 		while (bio) { /* submit pending writes */
912 			struct bio *next = bio->bi_next;
913 			bio->bi_next = NULL;
914 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916 				/* Just ignore it */
917 				bio_endio(bio, 0);
918 			else
919 				generic_make_request(bio);
920 			bio = next;
921 		}
922 	} else
923 		spin_unlock_irq(&conf->device_lock);
924 }
925 
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947 
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 	BUG_ON(force && !conf->barrier);
951 	spin_lock_irq(&conf->resync_lock);
952 
953 	/* Wait until no block IO is waiting (unless 'force') */
954 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955 			    conf->resync_lock);
956 
957 	/* block any new IO from starting */
958 	conf->barrier++;
959 
960 	/* Now wait for all pending IO to complete */
961 	wait_event_lock_irq(conf->wait_barrier,
962 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963 			    conf->resync_lock);
964 
965 	spin_unlock_irq(&conf->resync_lock);
966 }
967 
968 static void lower_barrier(struct r10conf *conf)
969 {
970 	unsigned long flags;
971 	spin_lock_irqsave(&conf->resync_lock, flags);
972 	conf->barrier--;
973 	spin_unlock_irqrestore(&conf->resync_lock, flags);
974 	wake_up(&conf->wait_barrier);
975 }
976 
977 static void wait_barrier(struct r10conf *conf)
978 {
979 	spin_lock_irq(&conf->resync_lock);
980 	if (conf->barrier) {
981 		conf->nr_waiting++;
982 		/* Wait for the barrier to drop.
983 		 * However if there are already pending
984 		 * requests (preventing the barrier from
985 		 * rising completely), and the
986 		 * pre-process bio queue isn't empty,
987 		 * then don't wait, as we need to empty
988 		 * that queue to get the nr_pending
989 		 * count down.
990 		 */
991 		wait_event_lock_irq(conf->wait_barrier,
992 				    !conf->barrier ||
993 				    (conf->nr_pending &&
994 				     current->bio_list &&
995 				     !bio_list_empty(current->bio_list)),
996 				    conf->resync_lock);
997 		conf->nr_waiting--;
998 	}
999 	conf->nr_pending++;
1000 	spin_unlock_irq(&conf->resync_lock);
1001 }
1002 
1003 static void allow_barrier(struct r10conf *conf)
1004 {
1005 	unsigned long flags;
1006 	spin_lock_irqsave(&conf->resync_lock, flags);
1007 	conf->nr_pending--;
1008 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1009 	wake_up(&conf->wait_barrier);
1010 }
1011 
1012 static void freeze_array(struct r10conf *conf)
1013 {
1014 	/* stop syncio and normal IO and wait for everything to
1015 	 * go quiet.
1016 	 * We increment barrier and nr_waiting, and then
1017 	 * wait until nr_pending match nr_queued+1
1018 	 * This is called in the context of one normal IO request
1019 	 * that has failed. Thus any sync request that might be pending
1020 	 * will be blocked by nr_pending, and we need to wait for
1021 	 * pending IO requests to complete or be queued for re-try.
1022 	 * Thus the number queued (nr_queued) plus this request (1)
1023 	 * must match the number of pending IOs (nr_pending) before
1024 	 * we continue.
1025 	 */
1026 	spin_lock_irq(&conf->resync_lock);
1027 	conf->barrier++;
1028 	conf->nr_waiting++;
1029 	wait_event_lock_irq_cmd(conf->wait_barrier,
1030 				conf->nr_pending == conf->nr_queued+1,
1031 				conf->resync_lock,
1032 				flush_pending_writes(conf));
1033 
1034 	spin_unlock_irq(&conf->resync_lock);
1035 }
1036 
1037 static void unfreeze_array(struct r10conf *conf)
1038 {
1039 	/* reverse the effect of the freeze */
1040 	spin_lock_irq(&conf->resync_lock);
1041 	conf->barrier--;
1042 	conf->nr_waiting--;
1043 	wake_up(&conf->wait_barrier);
1044 	spin_unlock_irq(&conf->resync_lock);
1045 }
1046 
1047 static sector_t choose_data_offset(struct r10bio *r10_bio,
1048 				   struct md_rdev *rdev)
1049 {
1050 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1051 	    test_bit(R10BIO_Previous, &r10_bio->state))
1052 		return rdev->data_offset;
1053 	else
1054 		return rdev->new_data_offset;
1055 }
1056 
1057 struct raid10_plug_cb {
1058 	struct blk_plug_cb	cb;
1059 	struct bio_list		pending;
1060 	int			pending_cnt;
1061 };
1062 
1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1064 {
1065 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1066 						   cb);
1067 	struct mddev *mddev = plug->cb.data;
1068 	struct r10conf *conf = mddev->private;
1069 	struct bio *bio;
1070 
1071 	if (from_schedule || current->bio_list) {
1072 		spin_lock_irq(&conf->device_lock);
1073 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1074 		conf->pending_count += plug->pending_cnt;
1075 		spin_unlock_irq(&conf->device_lock);
1076 		md_wakeup_thread(mddev->thread);
1077 		kfree(plug);
1078 		return;
1079 	}
1080 
1081 	/* we aren't scheduling, so we can do the write-out directly. */
1082 	bio = bio_list_get(&plug->pending);
1083 	bitmap_unplug(mddev->bitmap);
1084 	wake_up(&conf->wait_barrier);
1085 
1086 	while (bio) { /* submit pending writes */
1087 		struct bio *next = bio->bi_next;
1088 		bio->bi_next = NULL;
1089 		generic_make_request(bio);
1090 		bio = next;
1091 	}
1092 	kfree(plug);
1093 }
1094 
1095 static void make_request(struct mddev *mddev, struct bio * bio)
1096 {
1097 	struct r10conf *conf = mddev->private;
1098 	struct r10bio *r10_bio;
1099 	struct bio *read_bio;
1100 	int i;
1101 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1102 	int chunk_sects = chunk_mask + 1;
1103 	const int rw = bio_data_dir(bio);
1104 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1105 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1106 	const unsigned long do_discard = (bio->bi_rw
1107 					  & (REQ_DISCARD | REQ_SECURE));
1108 	unsigned long flags;
1109 	struct md_rdev *blocked_rdev;
1110 	struct blk_plug_cb *cb;
1111 	struct raid10_plug_cb *plug = NULL;
1112 	int sectors_handled;
1113 	int max_sectors;
1114 	int sectors;
1115 
1116 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1117 		md_flush_request(mddev, bio);
1118 		return;
1119 	}
1120 
1121 	/* If this request crosses a chunk boundary, we need to
1122 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1123 	 */
1124 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1125 		     > chunk_sects
1126 		     && (conf->geo.near_copies < conf->geo.raid_disks
1127 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1128 		struct bio_pair *bp;
1129 		/* Sanity check -- queue functions should prevent this happening */
1130 		if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1131 		    bio->bi_idx != 0)
1132 			goto bad_map;
1133 		/* This is a one page bio that upper layers
1134 		 * refuse to split for us, so we need to split it.
1135 		 */
1136 		bp = bio_split(bio,
1137 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1138 
1139 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1140 		 * If the first succeeds but the second blocks due to the resync
1141 		 * thread raising the barrier, we will deadlock because the
1142 		 * IO to the underlying device will be queued in generic_make_request
1143 		 * and will never complete, so will never reduce nr_pending.
1144 		 * So increment nr_waiting here so no new raise_barriers will
1145 		 * succeed, and so the second wait_barrier cannot block.
1146 		 */
1147 		spin_lock_irq(&conf->resync_lock);
1148 		conf->nr_waiting++;
1149 		spin_unlock_irq(&conf->resync_lock);
1150 
1151 		make_request(mddev, &bp->bio1);
1152 		make_request(mddev, &bp->bio2);
1153 
1154 		spin_lock_irq(&conf->resync_lock);
1155 		conf->nr_waiting--;
1156 		wake_up(&conf->wait_barrier);
1157 		spin_unlock_irq(&conf->resync_lock);
1158 
1159 		bio_pair_release(bp);
1160 		return;
1161 	bad_map:
1162 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1163 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1164 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1165 
1166 		bio_io_error(bio);
1167 		return;
1168 	}
1169 
1170 	md_write_start(mddev, bio);
1171 
1172 	/*
1173 	 * Register the new request and wait if the reconstruction
1174 	 * thread has put up a bar for new requests.
1175 	 * Continue immediately if no resync is active currently.
1176 	 */
1177 	wait_barrier(conf);
1178 
1179 	sectors = bio->bi_size >> 9;
1180 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1181 	    bio->bi_sector < conf->reshape_progress &&
1182 	    bio->bi_sector + sectors > conf->reshape_progress) {
1183 		/* IO spans the reshape position.  Need to wait for
1184 		 * reshape to pass
1185 		 */
1186 		allow_barrier(conf);
1187 		wait_event(conf->wait_barrier,
1188 			   conf->reshape_progress <= bio->bi_sector ||
1189 			   conf->reshape_progress >= bio->bi_sector + sectors);
1190 		wait_barrier(conf);
1191 	}
1192 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1193 	    bio_data_dir(bio) == WRITE &&
1194 	    (mddev->reshape_backwards
1195 	     ? (bio->bi_sector < conf->reshape_safe &&
1196 		bio->bi_sector + sectors > conf->reshape_progress)
1197 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1198 		bio->bi_sector < conf->reshape_progress))) {
1199 		/* Need to update reshape_position in metadata */
1200 		mddev->reshape_position = conf->reshape_progress;
1201 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1202 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1203 		md_wakeup_thread(mddev->thread);
1204 		wait_event(mddev->sb_wait,
1205 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1206 
1207 		conf->reshape_safe = mddev->reshape_position;
1208 	}
1209 
1210 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1211 
1212 	r10_bio->master_bio = bio;
1213 	r10_bio->sectors = sectors;
1214 
1215 	r10_bio->mddev = mddev;
1216 	r10_bio->sector = bio->bi_sector;
1217 	r10_bio->state = 0;
1218 
1219 	/* We might need to issue multiple reads to different
1220 	 * devices if there are bad blocks around, so we keep
1221 	 * track of the number of reads in bio->bi_phys_segments.
1222 	 * If this is 0, there is only one r10_bio and no locking
1223 	 * will be needed when the request completes.  If it is
1224 	 * non-zero, then it is the number of not-completed requests.
1225 	 */
1226 	bio->bi_phys_segments = 0;
1227 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1228 
1229 	if (rw == READ) {
1230 		/*
1231 		 * read balancing logic:
1232 		 */
1233 		struct md_rdev *rdev;
1234 		int slot;
1235 
1236 read_again:
1237 		rdev = read_balance(conf, r10_bio, &max_sectors);
1238 		if (!rdev) {
1239 			raid_end_bio_io(r10_bio);
1240 			return;
1241 		}
1242 		slot = r10_bio->read_slot;
1243 
1244 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1245 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1246 			    max_sectors);
1247 
1248 		r10_bio->devs[slot].bio = read_bio;
1249 		r10_bio->devs[slot].rdev = rdev;
1250 
1251 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1252 			choose_data_offset(r10_bio, rdev);
1253 		read_bio->bi_bdev = rdev->bdev;
1254 		read_bio->bi_end_io = raid10_end_read_request;
1255 		read_bio->bi_rw = READ | do_sync;
1256 		read_bio->bi_private = r10_bio;
1257 
1258 		if (max_sectors < r10_bio->sectors) {
1259 			/* Could not read all from this device, so we will
1260 			 * need another r10_bio.
1261 			 */
1262 			sectors_handled = (r10_bio->sectors + max_sectors
1263 					   - bio->bi_sector);
1264 			r10_bio->sectors = max_sectors;
1265 			spin_lock_irq(&conf->device_lock);
1266 			if (bio->bi_phys_segments == 0)
1267 				bio->bi_phys_segments = 2;
1268 			else
1269 				bio->bi_phys_segments++;
1270 			spin_unlock(&conf->device_lock);
1271 			/* Cannot call generic_make_request directly
1272 			 * as that will be queued in __generic_make_request
1273 			 * and subsequent mempool_alloc might block
1274 			 * waiting for it.  so hand bio over to raid10d.
1275 			 */
1276 			reschedule_retry(r10_bio);
1277 
1278 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1279 
1280 			r10_bio->master_bio = bio;
1281 			r10_bio->sectors = ((bio->bi_size >> 9)
1282 					    - sectors_handled);
1283 			r10_bio->state = 0;
1284 			r10_bio->mddev = mddev;
1285 			r10_bio->sector = bio->bi_sector + sectors_handled;
1286 			goto read_again;
1287 		} else
1288 			generic_make_request(read_bio);
1289 		return;
1290 	}
1291 
1292 	/*
1293 	 * WRITE:
1294 	 */
1295 	if (conf->pending_count >= max_queued_requests) {
1296 		md_wakeup_thread(mddev->thread);
1297 		wait_event(conf->wait_barrier,
1298 			   conf->pending_count < max_queued_requests);
1299 	}
1300 	/* first select target devices under rcu_lock and
1301 	 * inc refcount on their rdev.  Record them by setting
1302 	 * bios[x] to bio
1303 	 * If there are known/acknowledged bad blocks on any device
1304 	 * on which we have seen a write error, we want to avoid
1305 	 * writing to those blocks.  This potentially requires several
1306 	 * writes to write around the bad blocks.  Each set of writes
1307 	 * gets its own r10_bio with a set of bios attached.  The number
1308 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1309 	 * the read case.
1310 	 */
1311 
1312 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1313 	raid10_find_phys(conf, r10_bio);
1314 retry_write:
1315 	blocked_rdev = NULL;
1316 	rcu_read_lock();
1317 	max_sectors = r10_bio->sectors;
1318 
1319 	for (i = 0;  i < conf->copies; i++) {
1320 		int d = r10_bio->devs[i].devnum;
1321 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1322 		struct md_rdev *rrdev = rcu_dereference(
1323 			conf->mirrors[d].replacement);
1324 		if (rdev == rrdev)
1325 			rrdev = NULL;
1326 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1327 			atomic_inc(&rdev->nr_pending);
1328 			blocked_rdev = rdev;
1329 			break;
1330 		}
1331 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1332 			atomic_inc(&rrdev->nr_pending);
1333 			blocked_rdev = rrdev;
1334 			break;
1335 		}
1336 		if (rdev && (test_bit(Faulty, &rdev->flags)
1337 			     || test_bit(Unmerged, &rdev->flags)))
1338 			rdev = NULL;
1339 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1340 			      || test_bit(Unmerged, &rrdev->flags)))
1341 			rrdev = NULL;
1342 
1343 		r10_bio->devs[i].bio = NULL;
1344 		r10_bio->devs[i].repl_bio = NULL;
1345 
1346 		if (!rdev && !rrdev) {
1347 			set_bit(R10BIO_Degraded, &r10_bio->state);
1348 			continue;
1349 		}
1350 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1351 			sector_t first_bad;
1352 			sector_t dev_sector = r10_bio->devs[i].addr;
1353 			int bad_sectors;
1354 			int is_bad;
1355 
1356 			is_bad = is_badblock(rdev, dev_sector,
1357 					     max_sectors,
1358 					     &first_bad, &bad_sectors);
1359 			if (is_bad < 0) {
1360 				/* Mustn't write here until the bad block
1361 				 * is acknowledged
1362 				 */
1363 				atomic_inc(&rdev->nr_pending);
1364 				set_bit(BlockedBadBlocks, &rdev->flags);
1365 				blocked_rdev = rdev;
1366 				break;
1367 			}
1368 			if (is_bad && first_bad <= dev_sector) {
1369 				/* Cannot write here at all */
1370 				bad_sectors -= (dev_sector - first_bad);
1371 				if (bad_sectors < max_sectors)
1372 					/* Mustn't write more than bad_sectors
1373 					 * to other devices yet
1374 					 */
1375 					max_sectors = bad_sectors;
1376 				/* We don't set R10BIO_Degraded as that
1377 				 * only applies if the disk is missing,
1378 				 * so it might be re-added, and we want to
1379 				 * know to recover this chunk.
1380 				 * In this case the device is here, and the
1381 				 * fact that this chunk is not in-sync is
1382 				 * recorded in the bad block log.
1383 				 */
1384 				continue;
1385 			}
1386 			if (is_bad) {
1387 				int good_sectors = first_bad - dev_sector;
1388 				if (good_sectors < max_sectors)
1389 					max_sectors = good_sectors;
1390 			}
1391 		}
1392 		if (rdev) {
1393 			r10_bio->devs[i].bio = bio;
1394 			atomic_inc(&rdev->nr_pending);
1395 		}
1396 		if (rrdev) {
1397 			r10_bio->devs[i].repl_bio = bio;
1398 			atomic_inc(&rrdev->nr_pending);
1399 		}
1400 	}
1401 	rcu_read_unlock();
1402 
1403 	if (unlikely(blocked_rdev)) {
1404 		/* Have to wait for this device to get unblocked, then retry */
1405 		int j;
1406 		int d;
1407 
1408 		for (j = 0; j < i; j++) {
1409 			if (r10_bio->devs[j].bio) {
1410 				d = r10_bio->devs[j].devnum;
1411 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1412 			}
1413 			if (r10_bio->devs[j].repl_bio) {
1414 				struct md_rdev *rdev;
1415 				d = r10_bio->devs[j].devnum;
1416 				rdev = conf->mirrors[d].replacement;
1417 				if (!rdev) {
1418 					/* Race with remove_disk */
1419 					smp_mb();
1420 					rdev = conf->mirrors[d].rdev;
1421 				}
1422 				rdev_dec_pending(rdev, mddev);
1423 			}
1424 		}
1425 		allow_barrier(conf);
1426 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1427 		wait_barrier(conf);
1428 		goto retry_write;
1429 	}
1430 
1431 	if (max_sectors < r10_bio->sectors) {
1432 		/* We are splitting this into multiple parts, so
1433 		 * we need to prepare for allocating another r10_bio.
1434 		 */
1435 		r10_bio->sectors = max_sectors;
1436 		spin_lock_irq(&conf->device_lock);
1437 		if (bio->bi_phys_segments == 0)
1438 			bio->bi_phys_segments = 2;
1439 		else
1440 			bio->bi_phys_segments++;
1441 		spin_unlock_irq(&conf->device_lock);
1442 	}
1443 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1444 
1445 	atomic_set(&r10_bio->remaining, 1);
1446 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1447 
1448 	for (i = 0; i < conf->copies; i++) {
1449 		struct bio *mbio;
1450 		int d = r10_bio->devs[i].devnum;
1451 		if (r10_bio->devs[i].bio) {
1452 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1453 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1454 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1455 				    max_sectors);
1456 			r10_bio->devs[i].bio = mbio;
1457 
1458 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1459 					   choose_data_offset(r10_bio,
1460 							      rdev));
1461 			mbio->bi_bdev = rdev->bdev;
1462 			mbio->bi_end_io	= raid10_end_write_request;
1463 			mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1464 			mbio->bi_private = r10_bio;
1465 
1466 			atomic_inc(&r10_bio->remaining);
1467 
1468 			cb = blk_check_plugged(raid10_unplug, mddev,
1469 					       sizeof(*plug));
1470 			if (cb)
1471 				plug = container_of(cb, struct raid10_plug_cb,
1472 						    cb);
1473 			else
1474 				plug = NULL;
1475 			spin_lock_irqsave(&conf->device_lock, flags);
1476 			if (plug) {
1477 				bio_list_add(&plug->pending, mbio);
1478 				plug->pending_cnt++;
1479 			} else {
1480 				bio_list_add(&conf->pending_bio_list, mbio);
1481 				conf->pending_count++;
1482 			}
1483 			spin_unlock_irqrestore(&conf->device_lock, flags);
1484 			if (!plug)
1485 				md_wakeup_thread(mddev->thread);
1486 		}
1487 
1488 		if (r10_bio->devs[i].repl_bio) {
1489 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1490 			if (rdev == NULL) {
1491 				/* Replacement just got moved to main 'rdev' */
1492 				smp_mb();
1493 				rdev = conf->mirrors[d].rdev;
1494 			}
1495 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1496 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1497 				    max_sectors);
1498 			r10_bio->devs[i].repl_bio = mbio;
1499 
1500 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1501 					   choose_data_offset(
1502 						   r10_bio, rdev));
1503 			mbio->bi_bdev = rdev->bdev;
1504 			mbio->bi_end_io	= raid10_end_write_request;
1505 			mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1506 			mbio->bi_private = r10_bio;
1507 
1508 			atomic_inc(&r10_bio->remaining);
1509 			spin_lock_irqsave(&conf->device_lock, flags);
1510 			bio_list_add(&conf->pending_bio_list, mbio);
1511 			conf->pending_count++;
1512 			spin_unlock_irqrestore(&conf->device_lock, flags);
1513 			if (!mddev_check_plugged(mddev))
1514 				md_wakeup_thread(mddev->thread);
1515 		}
1516 	}
1517 
1518 	/* Don't remove the bias on 'remaining' (one_write_done) until
1519 	 * after checking if we need to go around again.
1520 	 */
1521 
1522 	if (sectors_handled < (bio->bi_size >> 9)) {
1523 		one_write_done(r10_bio);
1524 		/* We need another r10_bio.  It has already been counted
1525 		 * in bio->bi_phys_segments.
1526 		 */
1527 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1528 
1529 		r10_bio->master_bio = bio;
1530 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1531 
1532 		r10_bio->mddev = mddev;
1533 		r10_bio->sector = bio->bi_sector + sectors_handled;
1534 		r10_bio->state = 0;
1535 		goto retry_write;
1536 	}
1537 	one_write_done(r10_bio);
1538 
1539 	/* In case raid10d snuck in to freeze_array */
1540 	wake_up(&conf->wait_barrier);
1541 }
1542 
1543 static void status(struct seq_file *seq, struct mddev *mddev)
1544 {
1545 	struct r10conf *conf = mddev->private;
1546 	int i;
1547 
1548 	if (conf->geo.near_copies < conf->geo.raid_disks)
1549 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1550 	if (conf->geo.near_copies > 1)
1551 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1552 	if (conf->geo.far_copies > 1) {
1553 		if (conf->geo.far_offset)
1554 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1555 		else
1556 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1557 	}
1558 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1559 					conf->geo.raid_disks - mddev->degraded);
1560 	for (i = 0; i < conf->geo.raid_disks; i++)
1561 		seq_printf(seq, "%s",
1562 			      conf->mirrors[i].rdev &&
1563 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1564 	seq_printf(seq, "]");
1565 }
1566 
1567 /* check if there are enough drives for
1568  * every block to appear on atleast one.
1569  * Don't consider the device numbered 'ignore'
1570  * as we might be about to remove it.
1571  */
1572 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1573 {
1574 	int first = 0;
1575 
1576 	do {
1577 		int n = conf->copies;
1578 		int cnt = 0;
1579 		int this = first;
1580 		while (n--) {
1581 			if (conf->mirrors[this].rdev &&
1582 			    this != ignore)
1583 				cnt++;
1584 			this = (this+1) % geo->raid_disks;
1585 		}
1586 		if (cnt == 0)
1587 			return 0;
1588 		first = (first + geo->near_copies) % geo->raid_disks;
1589 	} while (first != 0);
1590 	return 1;
1591 }
1592 
1593 static int enough(struct r10conf *conf, int ignore)
1594 {
1595 	return _enough(conf, &conf->geo, ignore) &&
1596 		_enough(conf, &conf->prev, ignore);
1597 }
1598 
1599 static void error(struct mddev *mddev, struct md_rdev *rdev)
1600 {
1601 	char b[BDEVNAME_SIZE];
1602 	struct r10conf *conf = mddev->private;
1603 
1604 	/*
1605 	 * If it is not operational, then we have already marked it as dead
1606 	 * else if it is the last working disks, ignore the error, let the
1607 	 * next level up know.
1608 	 * else mark the drive as failed
1609 	 */
1610 	if (test_bit(In_sync, &rdev->flags)
1611 	    && !enough(conf, rdev->raid_disk))
1612 		/*
1613 		 * Don't fail the drive, just return an IO error.
1614 		 */
1615 		return;
1616 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1617 		unsigned long flags;
1618 		spin_lock_irqsave(&conf->device_lock, flags);
1619 		mddev->degraded++;
1620 		spin_unlock_irqrestore(&conf->device_lock, flags);
1621 		/*
1622 		 * if recovery is running, make sure it aborts.
1623 		 */
1624 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1625 	}
1626 	set_bit(Blocked, &rdev->flags);
1627 	set_bit(Faulty, &rdev->flags);
1628 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1629 	printk(KERN_ALERT
1630 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1631 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1632 	       mdname(mddev), bdevname(rdev->bdev, b),
1633 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1634 }
1635 
1636 static void print_conf(struct r10conf *conf)
1637 {
1638 	int i;
1639 	struct raid10_info *tmp;
1640 
1641 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1642 	if (!conf) {
1643 		printk(KERN_DEBUG "(!conf)\n");
1644 		return;
1645 	}
1646 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1647 		conf->geo.raid_disks);
1648 
1649 	for (i = 0; i < conf->geo.raid_disks; i++) {
1650 		char b[BDEVNAME_SIZE];
1651 		tmp = conf->mirrors + i;
1652 		if (tmp->rdev)
1653 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1654 				i, !test_bit(In_sync, &tmp->rdev->flags),
1655 			        !test_bit(Faulty, &tmp->rdev->flags),
1656 				bdevname(tmp->rdev->bdev,b));
1657 	}
1658 }
1659 
1660 static void close_sync(struct r10conf *conf)
1661 {
1662 	wait_barrier(conf);
1663 	allow_barrier(conf);
1664 
1665 	mempool_destroy(conf->r10buf_pool);
1666 	conf->r10buf_pool = NULL;
1667 }
1668 
1669 static int raid10_spare_active(struct mddev *mddev)
1670 {
1671 	int i;
1672 	struct r10conf *conf = mddev->private;
1673 	struct raid10_info *tmp;
1674 	int count = 0;
1675 	unsigned long flags;
1676 
1677 	/*
1678 	 * Find all non-in_sync disks within the RAID10 configuration
1679 	 * and mark them in_sync
1680 	 */
1681 	for (i = 0; i < conf->geo.raid_disks; i++) {
1682 		tmp = conf->mirrors + i;
1683 		if (tmp->replacement
1684 		    && tmp->replacement->recovery_offset == MaxSector
1685 		    && !test_bit(Faulty, &tmp->replacement->flags)
1686 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1687 			/* Replacement has just become active */
1688 			if (!tmp->rdev
1689 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1690 				count++;
1691 			if (tmp->rdev) {
1692 				/* Replaced device not technically faulty,
1693 				 * but we need to be sure it gets removed
1694 				 * and never re-added.
1695 				 */
1696 				set_bit(Faulty, &tmp->rdev->flags);
1697 				sysfs_notify_dirent_safe(
1698 					tmp->rdev->sysfs_state);
1699 			}
1700 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1701 		} else if (tmp->rdev
1702 			   && !test_bit(Faulty, &tmp->rdev->flags)
1703 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1704 			count++;
1705 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1706 		}
1707 	}
1708 	spin_lock_irqsave(&conf->device_lock, flags);
1709 	mddev->degraded -= count;
1710 	spin_unlock_irqrestore(&conf->device_lock, flags);
1711 
1712 	print_conf(conf);
1713 	return count;
1714 }
1715 
1716 
1717 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1718 {
1719 	struct r10conf *conf = mddev->private;
1720 	int err = -EEXIST;
1721 	int mirror;
1722 	int first = 0;
1723 	int last = conf->geo.raid_disks - 1;
1724 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1725 
1726 	if (mddev->recovery_cp < MaxSector)
1727 		/* only hot-add to in-sync arrays, as recovery is
1728 		 * very different from resync
1729 		 */
1730 		return -EBUSY;
1731 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1732 		return -EINVAL;
1733 
1734 	if (rdev->raid_disk >= 0)
1735 		first = last = rdev->raid_disk;
1736 
1737 	if (q->merge_bvec_fn) {
1738 		set_bit(Unmerged, &rdev->flags);
1739 		mddev->merge_check_needed = 1;
1740 	}
1741 
1742 	if (rdev->saved_raid_disk >= first &&
1743 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1744 		mirror = rdev->saved_raid_disk;
1745 	else
1746 		mirror = first;
1747 	for ( ; mirror <= last ; mirror++) {
1748 		struct raid10_info *p = &conf->mirrors[mirror];
1749 		if (p->recovery_disabled == mddev->recovery_disabled)
1750 			continue;
1751 		if (p->rdev) {
1752 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1753 			    p->replacement != NULL)
1754 				continue;
1755 			clear_bit(In_sync, &rdev->flags);
1756 			set_bit(Replacement, &rdev->flags);
1757 			rdev->raid_disk = mirror;
1758 			err = 0;
1759 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1760 					  rdev->data_offset << 9);
1761 			conf->fullsync = 1;
1762 			rcu_assign_pointer(p->replacement, rdev);
1763 			break;
1764 		}
1765 
1766 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1767 				  rdev->data_offset << 9);
1768 
1769 		p->head_position = 0;
1770 		p->recovery_disabled = mddev->recovery_disabled - 1;
1771 		rdev->raid_disk = mirror;
1772 		err = 0;
1773 		if (rdev->saved_raid_disk != mirror)
1774 			conf->fullsync = 1;
1775 		rcu_assign_pointer(p->rdev, rdev);
1776 		break;
1777 	}
1778 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1779 		/* Some requests might not have seen this new
1780 		 * merge_bvec_fn.  We must wait for them to complete
1781 		 * before merging the device fully.
1782 		 * First we make sure any code which has tested
1783 		 * our function has submitted the request, then
1784 		 * we wait for all outstanding requests to complete.
1785 		 */
1786 		synchronize_sched();
1787 		raise_barrier(conf, 0);
1788 		lower_barrier(conf);
1789 		clear_bit(Unmerged, &rdev->flags);
1790 	}
1791 	md_integrity_add_rdev(rdev, mddev);
1792 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1793 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1794 
1795 	print_conf(conf);
1796 	return err;
1797 }
1798 
1799 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1800 {
1801 	struct r10conf *conf = mddev->private;
1802 	int err = 0;
1803 	int number = rdev->raid_disk;
1804 	struct md_rdev **rdevp;
1805 	struct raid10_info *p = conf->mirrors + number;
1806 
1807 	print_conf(conf);
1808 	if (rdev == p->rdev)
1809 		rdevp = &p->rdev;
1810 	else if (rdev == p->replacement)
1811 		rdevp = &p->replacement;
1812 	else
1813 		return 0;
1814 
1815 	if (test_bit(In_sync, &rdev->flags) ||
1816 	    atomic_read(&rdev->nr_pending)) {
1817 		err = -EBUSY;
1818 		goto abort;
1819 	}
1820 	/* Only remove faulty devices if recovery
1821 	 * is not possible.
1822 	 */
1823 	if (!test_bit(Faulty, &rdev->flags) &&
1824 	    mddev->recovery_disabled != p->recovery_disabled &&
1825 	    (!p->replacement || p->replacement == rdev) &&
1826 	    number < conf->geo.raid_disks &&
1827 	    enough(conf, -1)) {
1828 		err = -EBUSY;
1829 		goto abort;
1830 	}
1831 	*rdevp = NULL;
1832 	synchronize_rcu();
1833 	if (atomic_read(&rdev->nr_pending)) {
1834 		/* lost the race, try later */
1835 		err = -EBUSY;
1836 		*rdevp = rdev;
1837 		goto abort;
1838 	} else if (p->replacement) {
1839 		/* We must have just cleared 'rdev' */
1840 		p->rdev = p->replacement;
1841 		clear_bit(Replacement, &p->replacement->flags);
1842 		smp_mb(); /* Make sure other CPUs may see both as identical
1843 			   * but will never see neither -- if they are careful.
1844 			   */
1845 		p->replacement = NULL;
1846 		clear_bit(WantReplacement, &rdev->flags);
1847 	} else
1848 		/* We might have just remove the Replacement as faulty
1849 		 * Clear the flag just in case
1850 		 */
1851 		clear_bit(WantReplacement, &rdev->flags);
1852 
1853 	err = md_integrity_register(mddev);
1854 
1855 abort:
1856 
1857 	print_conf(conf);
1858 	return err;
1859 }
1860 
1861 
1862 static void end_sync_read(struct bio *bio, int error)
1863 {
1864 	struct r10bio *r10_bio = bio->bi_private;
1865 	struct r10conf *conf = r10_bio->mddev->private;
1866 	int d;
1867 
1868 	if (bio == r10_bio->master_bio) {
1869 		/* this is a reshape read */
1870 		d = r10_bio->read_slot; /* really the read dev */
1871 	} else
1872 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1873 
1874 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1875 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1876 	else
1877 		/* The write handler will notice the lack of
1878 		 * R10BIO_Uptodate and record any errors etc
1879 		 */
1880 		atomic_add(r10_bio->sectors,
1881 			   &conf->mirrors[d].rdev->corrected_errors);
1882 
1883 	/* for reconstruct, we always reschedule after a read.
1884 	 * for resync, only after all reads
1885 	 */
1886 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1887 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1888 	    atomic_dec_and_test(&r10_bio->remaining)) {
1889 		/* we have read all the blocks,
1890 		 * do the comparison in process context in raid10d
1891 		 */
1892 		reschedule_retry(r10_bio);
1893 	}
1894 }
1895 
1896 static void end_sync_request(struct r10bio *r10_bio)
1897 {
1898 	struct mddev *mddev = r10_bio->mddev;
1899 
1900 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1901 		if (r10_bio->master_bio == NULL) {
1902 			/* the primary of several recovery bios */
1903 			sector_t s = r10_bio->sectors;
1904 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1905 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1906 				reschedule_retry(r10_bio);
1907 			else
1908 				put_buf(r10_bio);
1909 			md_done_sync(mddev, s, 1);
1910 			break;
1911 		} else {
1912 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1913 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1914 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1915 				reschedule_retry(r10_bio);
1916 			else
1917 				put_buf(r10_bio);
1918 			r10_bio = r10_bio2;
1919 		}
1920 	}
1921 }
1922 
1923 static void end_sync_write(struct bio *bio, int error)
1924 {
1925 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1926 	struct r10bio *r10_bio = bio->bi_private;
1927 	struct mddev *mddev = r10_bio->mddev;
1928 	struct r10conf *conf = mddev->private;
1929 	int d;
1930 	sector_t first_bad;
1931 	int bad_sectors;
1932 	int slot;
1933 	int repl;
1934 	struct md_rdev *rdev = NULL;
1935 
1936 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1937 	if (repl)
1938 		rdev = conf->mirrors[d].replacement;
1939 	else
1940 		rdev = conf->mirrors[d].rdev;
1941 
1942 	if (!uptodate) {
1943 		if (repl)
1944 			md_error(mddev, rdev);
1945 		else {
1946 			set_bit(WriteErrorSeen, &rdev->flags);
1947 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1948 				set_bit(MD_RECOVERY_NEEDED,
1949 					&rdev->mddev->recovery);
1950 			set_bit(R10BIO_WriteError, &r10_bio->state);
1951 		}
1952 	} else if (is_badblock(rdev,
1953 			     r10_bio->devs[slot].addr,
1954 			     r10_bio->sectors,
1955 			     &first_bad, &bad_sectors))
1956 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1957 
1958 	rdev_dec_pending(rdev, mddev);
1959 
1960 	end_sync_request(r10_bio);
1961 }
1962 
1963 /*
1964  * Note: sync and recover and handled very differently for raid10
1965  * This code is for resync.
1966  * For resync, we read through virtual addresses and read all blocks.
1967  * If there is any error, we schedule a write.  The lowest numbered
1968  * drive is authoritative.
1969  * However requests come for physical address, so we need to map.
1970  * For every physical address there are raid_disks/copies virtual addresses,
1971  * which is always are least one, but is not necessarly an integer.
1972  * This means that a physical address can span multiple chunks, so we may
1973  * have to submit multiple io requests for a single sync request.
1974  */
1975 /*
1976  * We check if all blocks are in-sync and only write to blocks that
1977  * aren't in sync
1978  */
1979 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1980 {
1981 	struct r10conf *conf = mddev->private;
1982 	int i, first;
1983 	struct bio *tbio, *fbio;
1984 	int vcnt;
1985 
1986 	atomic_set(&r10_bio->remaining, 1);
1987 
1988 	/* find the first device with a block */
1989 	for (i=0; i<conf->copies; i++)
1990 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1991 			break;
1992 
1993 	if (i == conf->copies)
1994 		goto done;
1995 
1996 	first = i;
1997 	fbio = r10_bio->devs[i].bio;
1998 
1999 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2000 	/* now find blocks with errors */
2001 	for (i=0 ; i < conf->copies ; i++) {
2002 		int  j, d;
2003 
2004 		tbio = r10_bio->devs[i].bio;
2005 
2006 		if (tbio->bi_end_io != end_sync_read)
2007 			continue;
2008 		if (i == first)
2009 			continue;
2010 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2011 			/* We know that the bi_io_vec layout is the same for
2012 			 * both 'first' and 'i', so we just compare them.
2013 			 * All vec entries are PAGE_SIZE;
2014 			 */
2015 			for (j = 0; j < vcnt; j++)
2016 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2017 					   page_address(tbio->bi_io_vec[j].bv_page),
2018 					   fbio->bi_io_vec[j].bv_len))
2019 					break;
2020 			if (j == vcnt)
2021 				continue;
2022 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2023 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2024 				/* Don't fix anything. */
2025 				continue;
2026 		}
2027 		/* Ok, we need to write this bio, either to correct an
2028 		 * inconsistency or to correct an unreadable block.
2029 		 * First we need to fixup bv_offset, bv_len and
2030 		 * bi_vecs, as the read request might have corrupted these
2031 		 */
2032 		tbio->bi_vcnt = vcnt;
2033 		tbio->bi_size = r10_bio->sectors << 9;
2034 		tbio->bi_idx = 0;
2035 		tbio->bi_phys_segments = 0;
2036 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2037 		tbio->bi_flags |= 1 << BIO_UPTODATE;
2038 		tbio->bi_next = NULL;
2039 		tbio->bi_rw = WRITE;
2040 		tbio->bi_private = r10_bio;
2041 		tbio->bi_sector = r10_bio->devs[i].addr;
2042 
2043 		for (j=0; j < vcnt ; j++) {
2044 			tbio->bi_io_vec[j].bv_offset = 0;
2045 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2046 
2047 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2048 			       page_address(fbio->bi_io_vec[j].bv_page),
2049 			       PAGE_SIZE);
2050 		}
2051 		tbio->bi_end_io = end_sync_write;
2052 
2053 		d = r10_bio->devs[i].devnum;
2054 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2055 		atomic_inc(&r10_bio->remaining);
2056 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2057 
2058 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2059 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2060 		generic_make_request(tbio);
2061 	}
2062 
2063 	/* Now write out to any replacement devices
2064 	 * that are active
2065 	 */
2066 	for (i = 0; i < conf->copies; i++) {
2067 		int j, d;
2068 
2069 		tbio = r10_bio->devs[i].repl_bio;
2070 		if (!tbio || !tbio->bi_end_io)
2071 			continue;
2072 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2073 		    && r10_bio->devs[i].bio != fbio)
2074 			for (j = 0; j < vcnt; j++)
2075 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2076 				       page_address(fbio->bi_io_vec[j].bv_page),
2077 				       PAGE_SIZE);
2078 		d = r10_bio->devs[i].devnum;
2079 		atomic_inc(&r10_bio->remaining);
2080 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2081 			     tbio->bi_size >> 9);
2082 		generic_make_request(tbio);
2083 	}
2084 
2085 done:
2086 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2087 		md_done_sync(mddev, r10_bio->sectors, 1);
2088 		put_buf(r10_bio);
2089 	}
2090 }
2091 
2092 /*
2093  * Now for the recovery code.
2094  * Recovery happens across physical sectors.
2095  * We recover all non-is_sync drives by finding the virtual address of
2096  * each, and then choose a working drive that also has that virt address.
2097  * There is a separate r10_bio for each non-in_sync drive.
2098  * Only the first two slots are in use. The first for reading,
2099  * The second for writing.
2100  *
2101  */
2102 static void fix_recovery_read_error(struct r10bio *r10_bio)
2103 {
2104 	/* We got a read error during recovery.
2105 	 * We repeat the read in smaller page-sized sections.
2106 	 * If a read succeeds, write it to the new device or record
2107 	 * a bad block if we cannot.
2108 	 * If a read fails, record a bad block on both old and
2109 	 * new devices.
2110 	 */
2111 	struct mddev *mddev = r10_bio->mddev;
2112 	struct r10conf *conf = mddev->private;
2113 	struct bio *bio = r10_bio->devs[0].bio;
2114 	sector_t sect = 0;
2115 	int sectors = r10_bio->sectors;
2116 	int idx = 0;
2117 	int dr = r10_bio->devs[0].devnum;
2118 	int dw = r10_bio->devs[1].devnum;
2119 
2120 	while (sectors) {
2121 		int s = sectors;
2122 		struct md_rdev *rdev;
2123 		sector_t addr;
2124 		int ok;
2125 
2126 		if (s > (PAGE_SIZE>>9))
2127 			s = PAGE_SIZE >> 9;
2128 
2129 		rdev = conf->mirrors[dr].rdev;
2130 		addr = r10_bio->devs[0].addr + sect,
2131 		ok = sync_page_io(rdev,
2132 				  addr,
2133 				  s << 9,
2134 				  bio->bi_io_vec[idx].bv_page,
2135 				  READ, false);
2136 		if (ok) {
2137 			rdev = conf->mirrors[dw].rdev;
2138 			addr = r10_bio->devs[1].addr + sect;
2139 			ok = sync_page_io(rdev,
2140 					  addr,
2141 					  s << 9,
2142 					  bio->bi_io_vec[idx].bv_page,
2143 					  WRITE, false);
2144 			if (!ok) {
2145 				set_bit(WriteErrorSeen, &rdev->flags);
2146 				if (!test_and_set_bit(WantReplacement,
2147 						      &rdev->flags))
2148 					set_bit(MD_RECOVERY_NEEDED,
2149 						&rdev->mddev->recovery);
2150 			}
2151 		}
2152 		if (!ok) {
2153 			/* We don't worry if we cannot set a bad block -
2154 			 * it really is bad so there is no loss in not
2155 			 * recording it yet
2156 			 */
2157 			rdev_set_badblocks(rdev, addr, s, 0);
2158 
2159 			if (rdev != conf->mirrors[dw].rdev) {
2160 				/* need bad block on destination too */
2161 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2162 				addr = r10_bio->devs[1].addr + sect;
2163 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2164 				if (!ok) {
2165 					/* just abort the recovery */
2166 					printk(KERN_NOTICE
2167 					       "md/raid10:%s: recovery aborted"
2168 					       " due to read error\n",
2169 					       mdname(mddev));
2170 
2171 					conf->mirrors[dw].recovery_disabled
2172 						= mddev->recovery_disabled;
2173 					set_bit(MD_RECOVERY_INTR,
2174 						&mddev->recovery);
2175 					break;
2176 				}
2177 			}
2178 		}
2179 
2180 		sectors -= s;
2181 		sect += s;
2182 		idx++;
2183 	}
2184 }
2185 
2186 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2187 {
2188 	struct r10conf *conf = mddev->private;
2189 	int d;
2190 	struct bio *wbio, *wbio2;
2191 
2192 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2193 		fix_recovery_read_error(r10_bio);
2194 		end_sync_request(r10_bio);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * share the pages with the first bio
2200 	 * and submit the write request
2201 	 */
2202 	d = r10_bio->devs[1].devnum;
2203 	wbio = r10_bio->devs[1].bio;
2204 	wbio2 = r10_bio->devs[1].repl_bio;
2205 	if (wbio->bi_end_io) {
2206 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2207 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2208 		generic_make_request(wbio);
2209 	}
2210 	if (wbio2 && wbio2->bi_end_io) {
2211 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2212 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2213 			     wbio2->bi_size >> 9);
2214 		generic_make_request(wbio2);
2215 	}
2216 }
2217 
2218 
2219 /*
2220  * Used by fix_read_error() to decay the per rdev read_errors.
2221  * We halve the read error count for every hour that has elapsed
2222  * since the last recorded read error.
2223  *
2224  */
2225 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2226 {
2227 	struct timespec cur_time_mon;
2228 	unsigned long hours_since_last;
2229 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2230 
2231 	ktime_get_ts(&cur_time_mon);
2232 
2233 	if (rdev->last_read_error.tv_sec == 0 &&
2234 	    rdev->last_read_error.tv_nsec == 0) {
2235 		/* first time we've seen a read error */
2236 		rdev->last_read_error = cur_time_mon;
2237 		return;
2238 	}
2239 
2240 	hours_since_last = (cur_time_mon.tv_sec -
2241 			    rdev->last_read_error.tv_sec) / 3600;
2242 
2243 	rdev->last_read_error = cur_time_mon;
2244 
2245 	/*
2246 	 * if hours_since_last is > the number of bits in read_errors
2247 	 * just set read errors to 0. We do this to avoid
2248 	 * overflowing the shift of read_errors by hours_since_last.
2249 	 */
2250 	if (hours_since_last >= 8 * sizeof(read_errors))
2251 		atomic_set(&rdev->read_errors, 0);
2252 	else
2253 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2254 }
2255 
2256 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2257 			    int sectors, struct page *page, int rw)
2258 {
2259 	sector_t first_bad;
2260 	int bad_sectors;
2261 
2262 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2263 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2264 		return -1;
2265 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2266 		/* success */
2267 		return 1;
2268 	if (rw == WRITE) {
2269 		set_bit(WriteErrorSeen, &rdev->flags);
2270 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2271 			set_bit(MD_RECOVERY_NEEDED,
2272 				&rdev->mddev->recovery);
2273 	}
2274 	/* need to record an error - either for the block or the device */
2275 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2276 		md_error(rdev->mddev, rdev);
2277 	return 0;
2278 }
2279 
2280 /*
2281  * This is a kernel thread which:
2282  *
2283  *	1.	Retries failed read operations on working mirrors.
2284  *	2.	Updates the raid superblock when problems encounter.
2285  *	3.	Performs writes following reads for array synchronising.
2286  */
2287 
2288 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2289 {
2290 	int sect = 0; /* Offset from r10_bio->sector */
2291 	int sectors = r10_bio->sectors;
2292 	struct md_rdev*rdev;
2293 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2294 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2295 
2296 	/* still own a reference to this rdev, so it cannot
2297 	 * have been cleared recently.
2298 	 */
2299 	rdev = conf->mirrors[d].rdev;
2300 
2301 	if (test_bit(Faulty, &rdev->flags))
2302 		/* drive has already been failed, just ignore any
2303 		   more fix_read_error() attempts */
2304 		return;
2305 
2306 	check_decay_read_errors(mddev, rdev);
2307 	atomic_inc(&rdev->read_errors);
2308 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2309 		char b[BDEVNAME_SIZE];
2310 		bdevname(rdev->bdev, b);
2311 
2312 		printk(KERN_NOTICE
2313 		       "md/raid10:%s: %s: Raid device exceeded "
2314 		       "read_error threshold [cur %d:max %d]\n",
2315 		       mdname(mddev), b,
2316 		       atomic_read(&rdev->read_errors), max_read_errors);
2317 		printk(KERN_NOTICE
2318 		       "md/raid10:%s: %s: Failing raid device\n",
2319 		       mdname(mddev), b);
2320 		md_error(mddev, conf->mirrors[d].rdev);
2321 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2322 		return;
2323 	}
2324 
2325 	while(sectors) {
2326 		int s = sectors;
2327 		int sl = r10_bio->read_slot;
2328 		int success = 0;
2329 		int start;
2330 
2331 		if (s > (PAGE_SIZE>>9))
2332 			s = PAGE_SIZE >> 9;
2333 
2334 		rcu_read_lock();
2335 		do {
2336 			sector_t first_bad;
2337 			int bad_sectors;
2338 
2339 			d = r10_bio->devs[sl].devnum;
2340 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2341 			if (rdev &&
2342 			    !test_bit(Unmerged, &rdev->flags) &&
2343 			    test_bit(In_sync, &rdev->flags) &&
2344 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2345 					&first_bad, &bad_sectors) == 0) {
2346 				atomic_inc(&rdev->nr_pending);
2347 				rcu_read_unlock();
2348 				success = sync_page_io(rdev,
2349 						       r10_bio->devs[sl].addr +
2350 						       sect,
2351 						       s<<9,
2352 						       conf->tmppage, READ, false);
2353 				rdev_dec_pending(rdev, mddev);
2354 				rcu_read_lock();
2355 				if (success)
2356 					break;
2357 			}
2358 			sl++;
2359 			if (sl == conf->copies)
2360 				sl = 0;
2361 		} while (!success && sl != r10_bio->read_slot);
2362 		rcu_read_unlock();
2363 
2364 		if (!success) {
2365 			/* Cannot read from anywhere, just mark the block
2366 			 * as bad on the first device to discourage future
2367 			 * reads.
2368 			 */
2369 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2370 			rdev = conf->mirrors[dn].rdev;
2371 
2372 			if (!rdev_set_badblocks(
2373 				    rdev,
2374 				    r10_bio->devs[r10_bio->read_slot].addr
2375 				    + sect,
2376 				    s, 0)) {
2377 				md_error(mddev, rdev);
2378 				r10_bio->devs[r10_bio->read_slot].bio
2379 					= IO_BLOCKED;
2380 			}
2381 			break;
2382 		}
2383 
2384 		start = sl;
2385 		/* write it back and re-read */
2386 		rcu_read_lock();
2387 		while (sl != r10_bio->read_slot) {
2388 			char b[BDEVNAME_SIZE];
2389 
2390 			if (sl==0)
2391 				sl = conf->copies;
2392 			sl--;
2393 			d = r10_bio->devs[sl].devnum;
2394 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2395 			if (!rdev ||
2396 			    test_bit(Unmerged, &rdev->flags) ||
2397 			    !test_bit(In_sync, &rdev->flags))
2398 				continue;
2399 
2400 			atomic_inc(&rdev->nr_pending);
2401 			rcu_read_unlock();
2402 			if (r10_sync_page_io(rdev,
2403 					     r10_bio->devs[sl].addr +
2404 					     sect,
2405 					     s, conf->tmppage, WRITE)
2406 			    == 0) {
2407 				/* Well, this device is dead */
2408 				printk(KERN_NOTICE
2409 				       "md/raid10:%s: read correction "
2410 				       "write failed"
2411 				       " (%d sectors at %llu on %s)\n",
2412 				       mdname(mddev), s,
2413 				       (unsigned long long)(
2414 					       sect +
2415 					       choose_data_offset(r10_bio,
2416 								  rdev)),
2417 				       bdevname(rdev->bdev, b));
2418 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2419 				       "drive\n",
2420 				       mdname(mddev),
2421 				       bdevname(rdev->bdev, b));
2422 			}
2423 			rdev_dec_pending(rdev, mddev);
2424 			rcu_read_lock();
2425 		}
2426 		sl = start;
2427 		while (sl != r10_bio->read_slot) {
2428 			char b[BDEVNAME_SIZE];
2429 
2430 			if (sl==0)
2431 				sl = conf->copies;
2432 			sl--;
2433 			d = r10_bio->devs[sl].devnum;
2434 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2435 			if (!rdev ||
2436 			    !test_bit(In_sync, &rdev->flags))
2437 				continue;
2438 
2439 			atomic_inc(&rdev->nr_pending);
2440 			rcu_read_unlock();
2441 			switch (r10_sync_page_io(rdev,
2442 					     r10_bio->devs[sl].addr +
2443 					     sect,
2444 					     s, conf->tmppage,
2445 						 READ)) {
2446 			case 0:
2447 				/* Well, this device is dead */
2448 				printk(KERN_NOTICE
2449 				       "md/raid10:%s: unable to read back "
2450 				       "corrected sectors"
2451 				       " (%d sectors at %llu on %s)\n",
2452 				       mdname(mddev), s,
2453 				       (unsigned long long)(
2454 					       sect +
2455 					       choose_data_offset(r10_bio, rdev)),
2456 				       bdevname(rdev->bdev, b));
2457 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2458 				       "drive\n",
2459 				       mdname(mddev),
2460 				       bdevname(rdev->bdev, b));
2461 				break;
2462 			case 1:
2463 				printk(KERN_INFO
2464 				       "md/raid10:%s: read error corrected"
2465 				       " (%d sectors at %llu on %s)\n",
2466 				       mdname(mddev), s,
2467 				       (unsigned long long)(
2468 					       sect +
2469 					       choose_data_offset(r10_bio, rdev)),
2470 				       bdevname(rdev->bdev, b));
2471 				atomic_add(s, &rdev->corrected_errors);
2472 			}
2473 
2474 			rdev_dec_pending(rdev, mddev);
2475 			rcu_read_lock();
2476 		}
2477 		rcu_read_unlock();
2478 
2479 		sectors -= s;
2480 		sect += s;
2481 	}
2482 }
2483 
2484 static void bi_complete(struct bio *bio, int error)
2485 {
2486 	complete((struct completion *)bio->bi_private);
2487 }
2488 
2489 static int submit_bio_wait(int rw, struct bio *bio)
2490 {
2491 	struct completion event;
2492 	rw |= REQ_SYNC;
2493 
2494 	init_completion(&event);
2495 	bio->bi_private = &event;
2496 	bio->bi_end_io = bi_complete;
2497 	submit_bio(rw, bio);
2498 	wait_for_completion(&event);
2499 
2500 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2501 }
2502 
2503 static int narrow_write_error(struct r10bio *r10_bio, int i)
2504 {
2505 	struct bio *bio = r10_bio->master_bio;
2506 	struct mddev *mddev = r10_bio->mddev;
2507 	struct r10conf *conf = mddev->private;
2508 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2509 	/* bio has the data to be written to slot 'i' where
2510 	 * we just recently had a write error.
2511 	 * We repeatedly clone the bio and trim down to one block,
2512 	 * then try the write.  Where the write fails we record
2513 	 * a bad block.
2514 	 * It is conceivable that the bio doesn't exactly align with
2515 	 * blocks.  We must handle this.
2516 	 *
2517 	 * We currently own a reference to the rdev.
2518 	 */
2519 
2520 	int block_sectors;
2521 	sector_t sector;
2522 	int sectors;
2523 	int sect_to_write = r10_bio->sectors;
2524 	int ok = 1;
2525 
2526 	if (rdev->badblocks.shift < 0)
2527 		return 0;
2528 
2529 	block_sectors = 1 << rdev->badblocks.shift;
2530 	sector = r10_bio->sector;
2531 	sectors = ((r10_bio->sector + block_sectors)
2532 		   & ~(sector_t)(block_sectors - 1))
2533 		- sector;
2534 
2535 	while (sect_to_write) {
2536 		struct bio *wbio;
2537 		if (sectors > sect_to_write)
2538 			sectors = sect_to_write;
2539 		/* Write at 'sector' for 'sectors' */
2540 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2541 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2542 		wbio->bi_sector = (r10_bio->devs[i].addr+
2543 				   choose_data_offset(r10_bio, rdev) +
2544 				   (sector - r10_bio->sector));
2545 		wbio->bi_bdev = rdev->bdev;
2546 		if (submit_bio_wait(WRITE, wbio) == 0)
2547 			/* Failure! */
2548 			ok = rdev_set_badblocks(rdev, sector,
2549 						sectors, 0)
2550 				&& ok;
2551 
2552 		bio_put(wbio);
2553 		sect_to_write -= sectors;
2554 		sector += sectors;
2555 		sectors = block_sectors;
2556 	}
2557 	return ok;
2558 }
2559 
2560 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2561 {
2562 	int slot = r10_bio->read_slot;
2563 	struct bio *bio;
2564 	struct r10conf *conf = mddev->private;
2565 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2566 	char b[BDEVNAME_SIZE];
2567 	unsigned long do_sync;
2568 	int max_sectors;
2569 
2570 	/* we got a read error. Maybe the drive is bad.  Maybe just
2571 	 * the block and we can fix it.
2572 	 * We freeze all other IO, and try reading the block from
2573 	 * other devices.  When we find one, we re-write
2574 	 * and check it that fixes the read error.
2575 	 * This is all done synchronously while the array is
2576 	 * frozen.
2577 	 */
2578 	bio = r10_bio->devs[slot].bio;
2579 	bdevname(bio->bi_bdev, b);
2580 	bio_put(bio);
2581 	r10_bio->devs[slot].bio = NULL;
2582 
2583 	if (mddev->ro == 0) {
2584 		freeze_array(conf);
2585 		fix_read_error(conf, mddev, r10_bio);
2586 		unfreeze_array(conf);
2587 	} else
2588 		r10_bio->devs[slot].bio = IO_BLOCKED;
2589 
2590 	rdev_dec_pending(rdev, mddev);
2591 
2592 read_more:
2593 	rdev = read_balance(conf, r10_bio, &max_sectors);
2594 	if (rdev == NULL) {
2595 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2596 		       " read error for block %llu\n",
2597 		       mdname(mddev), b,
2598 		       (unsigned long long)r10_bio->sector);
2599 		raid_end_bio_io(r10_bio);
2600 		return;
2601 	}
2602 
2603 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2604 	slot = r10_bio->read_slot;
2605 	printk_ratelimited(
2606 		KERN_ERR
2607 		"md/raid10:%s: %s: redirecting "
2608 		"sector %llu to another mirror\n",
2609 		mdname(mddev),
2610 		bdevname(rdev->bdev, b),
2611 		(unsigned long long)r10_bio->sector);
2612 	bio = bio_clone_mddev(r10_bio->master_bio,
2613 			      GFP_NOIO, mddev);
2614 	md_trim_bio(bio,
2615 		    r10_bio->sector - bio->bi_sector,
2616 		    max_sectors);
2617 	r10_bio->devs[slot].bio = bio;
2618 	r10_bio->devs[slot].rdev = rdev;
2619 	bio->bi_sector = r10_bio->devs[slot].addr
2620 		+ choose_data_offset(r10_bio, rdev);
2621 	bio->bi_bdev = rdev->bdev;
2622 	bio->bi_rw = READ | do_sync;
2623 	bio->bi_private = r10_bio;
2624 	bio->bi_end_io = raid10_end_read_request;
2625 	if (max_sectors < r10_bio->sectors) {
2626 		/* Drat - have to split this up more */
2627 		struct bio *mbio = r10_bio->master_bio;
2628 		int sectors_handled =
2629 			r10_bio->sector + max_sectors
2630 			- mbio->bi_sector;
2631 		r10_bio->sectors = max_sectors;
2632 		spin_lock_irq(&conf->device_lock);
2633 		if (mbio->bi_phys_segments == 0)
2634 			mbio->bi_phys_segments = 2;
2635 		else
2636 			mbio->bi_phys_segments++;
2637 		spin_unlock_irq(&conf->device_lock);
2638 		generic_make_request(bio);
2639 
2640 		r10_bio = mempool_alloc(conf->r10bio_pool,
2641 					GFP_NOIO);
2642 		r10_bio->master_bio = mbio;
2643 		r10_bio->sectors = (mbio->bi_size >> 9)
2644 			- sectors_handled;
2645 		r10_bio->state = 0;
2646 		set_bit(R10BIO_ReadError,
2647 			&r10_bio->state);
2648 		r10_bio->mddev = mddev;
2649 		r10_bio->sector = mbio->bi_sector
2650 			+ sectors_handled;
2651 
2652 		goto read_more;
2653 	} else
2654 		generic_make_request(bio);
2655 }
2656 
2657 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2658 {
2659 	/* Some sort of write request has finished and it
2660 	 * succeeded in writing where we thought there was a
2661 	 * bad block.  So forget the bad block.
2662 	 * Or possibly if failed and we need to record
2663 	 * a bad block.
2664 	 */
2665 	int m;
2666 	struct md_rdev *rdev;
2667 
2668 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2669 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2670 		for (m = 0; m < conf->copies; m++) {
2671 			int dev = r10_bio->devs[m].devnum;
2672 			rdev = conf->mirrors[dev].rdev;
2673 			if (r10_bio->devs[m].bio == NULL)
2674 				continue;
2675 			if (test_bit(BIO_UPTODATE,
2676 				     &r10_bio->devs[m].bio->bi_flags)) {
2677 				rdev_clear_badblocks(
2678 					rdev,
2679 					r10_bio->devs[m].addr,
2680 					r10_bio->sectors, 0);
2681 			} else {
2682 				if (!rdev_set_badblocks(
2683 					    rdev,
2684 					    r10_bio->devs[m].addr,
2685 					    r10_bio->sectors, 0))
2686 					md_error(conf->mddev, rdev);
2687 			}
2688 			rdev = conf->mirrors[dev].replacement;
2689 			if (r10_bio->devs[m].repl_bio == NULL)
2690 				continue;
2691 			if (test_bit(BIO_UPTODATE,
2692 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2693 				rdev_clear_badblocks(
2694 					rdev,
2695 					r10_bio->devs[m].addr,
2696 					r10_bio->sectors, 0);
2697 			} else {
2698 				if (!rdev_set_badblocks(
2699 					    rdev,
2700 					    r10_bio->devs[m].addr,
2701 					    r10_bio->sectors, 0))
2702 					md_error(conf->mddev, rdev);
2703 			}
2704 		}
2705 		put_buf(r10_bio);
2706 	} else {
2707 		for (m = 0; m < conf->copies; m++) {
2708 			int dev = r10_bio->devs[m].devnum;
2709 			struct bio *bio = r10_bio->devs[m].bio;
2710 			rdev = conf->mirrors[dev].rdev;
2711 			if (bio == IO_MADE_GOOD) {
2712 				rdev_clear_badblocks(
2713 					rdev,
2714 					r10_bio->devs[m].addr,
2715 					r10_bio->sectors, 0);
2716 				rdev_dec_pending(rdev, conf->mddev);
2717 			} else if (bio != NULL &&
2718 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2719 				if (!narrow_write_error(r10_bio, m)) {
2720 					md_error(conf->mddev, rdev);
2721 					set_bit(R10BIO_Degraded,
2722 						&r10_bio->state);
2723 				}
2724 				rdev_dec_pending(rdev, conf->mddev);
2725 			}
2726 			bio = r10_bio->devs[m].repl_bio;
2727 			rdev = conf->mirrors[dev].replacement;
2728 			if (rdev && bio == IO_MADE_GOOD) {
2729 				rdev_clear_badblocks(
2730 					rdev,
2731 					r10_bio->devs[m].addr,
2732 					r10_bio->sectors, 0);
2733 				rdev_dec_pending(rdev, conf->mddev);
2734 			}
2735 		}
2736 		if (test_bit(R10BIO_WriteError,
2737 			     &r10_bio->state))
2738 			close_write(r10_bio);
2739 		raid_end_bio_io(r10_bio);
2740 	}
2741 }
2742 
2743 static void raid10d(struct md_thread *thread)
2744 {
2745 	struct mddev *mddev = thread->mddev;
2746 	struct r10bio *r10_bio;
2747 	unsigned long flags;
2748 	struct r10conf *conf = mddev->private;
2749 	struct list_head *head = &conf->retry_list;
2750 	struct blk_plug plug;
2751 
2752 	md_check_recovery(mddev);
2753 
2754 	blk_start_plug(&plug);
2755 	for (;;) {
2756 
2757 		flush_pending_writes(conf);
2758 
2759 		spin_lock_irqsave(&conf->device_lock, flags);
2760 		if (list_empty(head)) {
2761 			spin_unlock_irqrestore(&conf->device_lock, flags);
2762 			break;
2763 		}
2764 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2765 		list_del(head->prev);
2766 		conf->nr_queued--;
2767 		spin_unlock_irqrestore(&conf->device_lock, flags);
2768 
2769 		mddev = r10_bio->mddev;
2770 		conf = mddev->private;
2771 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2772 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2773 			handle_write_completed(conf, r10_bio);
2774 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2775 			reshape_request_write(mddev, r10_bio);
2776 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2777 			sync_request_write(mddev, r10_bio);
2778 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2779 			recovery_request_write(mddev, r10_bio);
2780 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2781 			handle_read_error(mddev, r10_bio);
2782 		else {
2783 			/* just a partial read to be scheduled from a
2784 			 * separate context
2785 			 */
2786 			int slot = r10_bio->read_slot;
2787 			generic_make_request(r10_bio->devs[slot].bio);
2788 		}
2789 
2790 		cond_resched();
2791 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2792 			md_check_recovery(mddev);
2793 	}
2794 	blk_finish_plug(&plug);
2795 }
2796 
2797 
2798 static int init_resync(struct r10conf *conf)
2799 {
2800 	int buffs;
2801 	int i;
2802 
2803 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2804 	BUG_ON(conf->r10buf_pool);
2805 	conf->have_replacement = 0;
2806 	for (i = 0; i < conf->geo.raid_disks; i++)
2807 		if (conf->mirrors[i].replacement)
2808 			conf->have_replacement = 1;
2809 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2810 	if (!conf->r10buf_pool)
2811 		return -ENOMEM;
2812 	conf->next_resync = 0;
2813 	return 0;
2814 }
2815 
2816 /*
2817  * perform a "sync" on one "block"
2818  *
2819  * We need to make sure that no normal I/O request - particularly write
2820  * requests - conflict with active sync requests.
2821  *
2822  * This is achieved by tracking pending requests and a 'barrier' concept
2823  * that can be installed to exclude normal IO requests.
2824  *
2825  * Resync and recovery are handled very differently.
2826  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2827  *
2828  * For resync, we iterate over virtual addresses, read all copies,
2829  * and update if there are differences.  If only one copy is live,
2830  * skip it.
2831  * For recovery, we iterate over physical addresses, read a good
2832  * value for each non-in_sync drive, and over-write.
2833  *
2834  * So, for recovery we may have several outstanding complex requests for a
2835  * given address, one for each out-of-sync device.  We model this by allocating
2836  * a number of r10_bio structures, one for each out-of-sync device.
2837  * As we setup these structures, we collect all bio's together into a list
2838  * which we then process collectively to add pages, and then process again
2839  * to pass to generic_make_request.
2840  *
2841  * The r10_bio structures are linked using a borrowed master_bio pointer.
2842  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2843  * has its remaining count decremented to 0, the whole complex operation
2844  * is complete.
2845  *
2846  */
2847 
2848 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2849 			     int *skipped, int go_faster)
2850 {
2851 	struct r10conf *conf = mddev->private;
2852 	struct r10bio *r10_bio;
2853 	struct bio *biolist = NULL, *bio;
2854 	sector_t max_sector, nr_sectors;
2855 	int i;
2856 	int max_sync;
2857 	sector_t sync_blocks;
2858 	sector_t sectors_skipped = 0;
2859 	int chunks_skipped = 0;
2860 	sector_t chunk_mask = conf->geo.chunk_mask;
2861 
2862 	if (!conf->r10buf_pool)
2863 		if (init_resync(conf))
2864 			return 0;
2865 
2866  skipped:
2867 	max_sector = mddev->dev_sectors;
2868 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2869 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2870 		max_sector = mddev->resync_max_sectors;
2871 	if (sector_nr >= max_sector) {
2872 		/* If we aborted, we need to abort the
2873 		 * sync on the 'current' bitmap chucks (there can
2874 		 * be several when recovering multiple devices).
2875 		 * as we may have started syncing it but not finished.
2876 		 * We can find the current address in
2877 		 * mddev->curr_resync, but for recovery,
2878 		 * we need to convert that to several
2879 		 * virtual addresses.
2880 		 */
2881 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2882 			end_reshape(conf);
2883 			return 0;
2884 		}
2885 
2886 		if (mddev->curr_resync < max_sector) { /* aborted */
2887 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2888 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2889 						&sync_blocks, 1);
2890 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2891 				sector_t sect =
2892 					raid10_find_virt(conf, mddev->curr_resync, i);
2893 				bitmap_end_sync(mddev->bitmap, sect,
2894 						&sync_blocks, 1);
2895 			}
2896 		} else {
2897 			/* completed sync */
2898 			if ((!mddev->bitmap || conf->fullsync)
2899 			    && conf->have_replacement
2900 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2901 				/* Completed a full sync so the replacements
2902 				 * are now fully recovered.
2903 				 */
2904 				for (i = 0; i < conf->geo.raid_disks; i++)
2905 					if (conf->mirrors[i].replacement)
2906 						conf->mirrors[i].replacement
2907 							->recovery_offset
2908 							= MaxSector;
2909 			}
2910 			conf->fullsync = 0;
2911 		}
2912 		bitmap_close_sync(mddev->bitmap);
2913 		close_sync(conf);
2914 		*skipped = 1;
2915 		return sectors_skipped;
2916 	}
2917 
2918 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2919 		return reshape_request(mddev, sector_nr, skipped);
2920 
2921 	if (chunks_skipped >= conf->geo.raid_disks) {
2922 		/* if there has been nothing to do on any drive,
2923 		 * then there is nothing to do at all..
2924 		 */
2925 		*skipped = 1;
2926 		return (max_sector - sector_nr) + sectors_skipped;
2927 	}
2928 
2929 	if (max_sector > mddev->resync_max)
2930 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2931 
2932 	/* make sure whole request will fit in a chunk - if chunks
2933 	 * are meaningful
2934 	 */
2935 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2936 	    max_sector > (sector_nr | chunk_mask))
2937 		max_sector = (sector_nr | chunk_mask) + 1;
2938 	/*
2939 	 * If there is non-resync activity waiting for us then
2940 	 * put in a delay to throttle resync.
2941 	 */
2942 	if (!go_faster && conf->nr_waiting)
2943 		msleep_interruptible(1000);
2944 
2945 	/* Again, very different code for resync and recovery.
2946 	 * Both must result in an r10bio with a list of bios that
2947 	 * have bi_end_io, bi_sector, bi_bdev set,
2948 	 * and bi_private set to the r10bio.
2949 	 * For recovery, we may actually create several r10bios
2950 	 * with 2 bios in each, that correspond to the bios in the main one.
2951 	 * In this case, the subordinate r10bios link back through a
2952 	 * borrowed master_bio pointer, and the counter in the master
2953 	 * includes a ref from each subordinate.
2954 	 */
2955 	/* First, we decide what to do and set ->bi_end_io
2956 	 * To end_sync_read if we want to read, and
2957 	 * end_sync_write if we will want to write.
2958 	 */
2959 
2960 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2961 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2962 		/* recovery... the complicated one */
2963 		int j;
2964 		r10_bio = NULL;
2965 
2966 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2967 			int still_degraded;
2968 			struct r10bio *rb2;
2969 			sector_t sect;
2970 			int must_sync;
2971 			int any_working;
2972 			struct raid10_info *mirror = &conf->mirrors[i];
2973 
2974 			if ((mirror->rdev == NULL ||
2975 			     test_bit(In_sync, &mirror->rdev->flags))
2976 			    &&
2977 			    (mirror->replacement == NULL ||
2978 			     test_bit(Faulty,
2979 				      &mirror->replacement->flags)))
2980 				continue;
2981 
2982 			still_degraded = 0;
2983 			/* want to reconstruct this device */
2984 			rb2 = r10_bio;
2985 			sect = raid10_find_virt(conf, sector_nr, i);
2986 			if (sect >= mddev->resync_max_sectors) {
2987 				/* last stripe is not complete - don't
2988 				 * try to recover this sector.
2989 				 */
2990 				continue;
2991 			}
2992 			/* Unless we are doing a full sync, or a replacement
2993 			 * we only need to recover the block if it is set in
2994 			 * the bitmap
2995 			 */
2996 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2997 						      &sync_blocks, 1);
2998 			if (sync_blocks < max_sync)
2999 				max_sync = sync_blocks;
3000 			if (!must_sync &&
3001 			    mirror->replacement == NULL &&
3002 			    !conf->fullsync) {
3003 				/* yep, skip the sync_blocks here, but don't assume
3004 				 * that there will never be anything to do here
3005 				 */
3006 				chunks_skipped = -1;
3007 				continue;
3008 			}
3009 
3010 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011 			raise_barrier(conf, rb2 != NULL);
3012 			atomic_set(&r10_bio->remaining, 0);
3013 
3014 			r10_bio->master_bio = (struct bio*)rb2;
3015 			if (rb2)
3016 				atomic_inc(&rb2->remaining);
3017 			r10_bio->mddev = mddev;
3018 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3019 			r10_bio->sector = sect;
3020 
3021 			raid10_find_phys(conf, r10_bio);
3022 
3023 			/* Need to check if the array will still be
3024 			 * degraded
3025 			 */
3026 			for (j = 0; j < conf->geo.raid_disks; j++)
3027 				if (conf->mirrors[j].rdev == NULL ||
3028 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3029 					still_degraded = 1;
3030 					break;
3031 				}
3032 
3033 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3034 						      &sync_blocks, still_degraded);
3035 
3036 			any_working = 0;
3037 			for (j=0; j<conf->copies;j++) {
3038 				int k;
3039 				int d = r10_bio->devs[j].devnum;
3040 				sector_t from_addr, to_addr;
3041 				struct md_rdev *rdev;
3042 				sector_t sector, first_bad;
3043 				int bad_sectors;
3044 				if (!conf->mirrors[d].rdev ||
3045 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3046 					continue;
3047 				/* This is where we read from */
3048 				any_working = 1;
3049 				rdev = conf->mirrors[d].rdev;
3050 				sector = r10_bio->devs[j].addr;
3051 
3052 				if (is_badblock(rdev, sector, max_sync,
3053 						&first_bad, &bad_sectors)) {
3054 					if (first_bad > sector)
3055 						max_sync = first_bad - sector;
3056 					else {
3057 						bad_sectors -= (sector
3058 								- first_bad);
3059 						if (max_sync > bad_sectors)
3060 							max_sync = bad_sectors;
3061 						continue;
3062 					}
3063 				}
3064 				bio = r10_bio->devs[0].bio;
3065 				bio->bi_next = biolist;
3066 				biolist = bio;
3067 				bio->bi_private = r10_bio;
3068 				bio->bi_end_io = end_sync_read;
3069 				bio->bi_rw = READ;
3070 				from_addr = r10_bio->devs[j].addr;
3071 				bio->bi_sector = from_addr + rdev->data_offset;
3072 				bio->bi_bdev = rdev->bdev;
3073 				atomic_inc(&rdev->nr_pending);
3074 				/* and we write to 'i' (if not in_sync) */
3075 
3076 				for (k=0; k<conf->copies; k++)
3077 					if (r10_bio->devs[k].devnum == i)
3078 						break;
3079 				BUG_ON(k == conf->copies);
3080 				to_addr = r10_bio->devs[k].addr;
3081 				r10_bio->devs[0].devnum = d;
3082 				r10_bio->devs[0].addr = from_addr;
3083 				r10_bio->devs[1].devnum = i;
3084 				r10_bio->devs[1].addr = to_addr;
3085 
3086 				rdev = mirror->rdev;
3087 				if (!test_bit(In_sync, &rdev->flags)) {
3088 					bio = r10_bio->devs[1].bio;
3089 					bio->bi_next = biolist;
3090 					biolist = bio;
3091 					bio->bi_private = r10_bio;
3092 					bio->bi_end_io = end_sync_write;
3093 					bio->bi_rw = WRITE;
3094 					bio->bi_sector = to_addr
3095 						+ rdev->data_offset;
3096 					bio->bi_bdev = rdev->bdev;
3097 					atomic_inc(&r10_bio->remaining);
3098 				} else
3099 					r10_bio->devs[1].bio->bi_end_io = NULL;
3100 
3101 				/* and maybe write to replacement */
3102 				bio = r10_bio->devs[1].repl_bio;
3103 				if (bio)
3104 					bio->bi_end_io = NULL;
3105 				rdev = mirror->replacement;
3106 				/* Note: if rdev != NULL, then bio
3107 				 * cannot be NULL as r10buf_pool_alloc will
3108 				 * have allocated it.
3109 				 * So the second test here is pointless.
3110 				 * But it keeps semantic-checkers happy, and
3111 				 * this comment keeps human reviewers
3112 				 * happy.
3113 				 */
3114 				if (rdev == NULL || bio == NULL ||
3115 				    test_bit(Faulty, &rdev->flags))
3116 					break;
3117 				bio->bi_next = biolist;
3118 				biolist = bio;
3119 				bio->bi_private = r10_bio;
3120 				bio->bi_end_io = end_sync_write;
3121 				bio->bi_rw = WRITE;
3122 				bio->bi_sector = to_addr + rdev->data_offset;
3123 				bio->bi_bdev = rdev->bdev;
3124 				atomic_inc(&r10_bio->remaining);
3125 				break;
3126 			}
3127 			if (j == conf->copies) {
3128 				/* Cannot recover, so abort the recovery or
3129 				 * record a bad block */
3130 				put_buf(r10_bio);
3131 				if (rb2)
3132 					atomic_dec(&rb2->remaining);
3133 				r10_bio = rb2;
3134 				if (any_working) {
3135 					/* problem is that there are bad blocks
3136 					 * on other device(s)
3137 					 */
3138 					int k;
3139 					for (k = 0; k < conf->copies; k++)
3140 						if (r10_bio->devs[k].devnum == i)
3141 							break;
3142 					if (!test_bit(In_sync,
3143 						      &mirror->rdev->flags)
3144 					    && !rdev_set_badblocks(
3145 						    mirror->rdev,
3146 						    r10_bio->devs[k].addr,
3147 						    max_sync, 0))
3148 						any_working = 0;
3149 					if (mirror->replacement &&
3150 					    !rdev_set_badblocks(
3151 						    mirror->replacement,
3152 						    r10_bio->devs[k].addr,
3153 						    max_sync, 0))
3154 						any_working = 0;
3155 				}
3156 				if (!any_working)  {
3157 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3158 							      &mddev->recovery))
3159 						printk(KERN_INFO "md/raid10:%s: insufficient "
3160 						       "working devices for recovery.\n",
3161 						       mdname(mddev));
3162 					mirror->recovery_disabled
3163 						= mddev->recovery_disabled;
3164 				}
3165 				break;
3166 			}
3167 		}
3168 		if (biolist == NULL) {
3169 			while (r10_bio) {
3170 				struct r10bio *rb2 = r10_bio;
3171 				r10_bio = (struct r10bio*) rb2->master_bio;
3172 				rb2->master_bio = NULL;
3173 				put_buf(rb2);
3174 			}
3175 			goto giveup;
3176 		}
3177 	} else {
3178 		/* resync. Schedule a read for every block at this virt offset */
3179 		int count = 0;
3180 
3181 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3182 
3183 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3184 				       &sync_blocks, mddev->degraded) &&
3185 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3186 						 &mddev->recovery)) {
3187 			/* We can skip this block */
3188 			*skipped = 1;
3189 			return sync_blocks + sectors_skipped;
3190 		}
3191 		if (sync_blocks < max_sync)
3192 			max_sync = sync_blocks;
3193 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3194 
3195 		r10_bio->mddev = mddev;
3196 		atomic_set(&r10_bio->remaining, 0);
3197 		raise_barrier(conf, 0);
3198 		conf->next_resync = sector_nr;
3199 
3200 		r10_bio->master_bio = NULL;
3201 		r10_bio->sector = sector_nr;
3202 		set_bit(R10BIO_IsSync, &r10_bio->state);
3203 		raid10_find_phys(conf, r10_bio);
3204 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3205 
3206 		for (i = 0; i < conf->copies; i++) {
3207 			int d = r10_bio->devs[i].devnum;
3208 			sector_t first_bad, sector;
3209 			int bad_sectors;
3210 
3211 			if (r10_bio->devs[i].repl_bio)
3212 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3213 
3214 			bio = r10_bio->devs[i].bio;
3215 			bio->bi_end_io = NULL;
3216 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3217 			if (conf->mirrors[d].rdev == NULL ||
3218 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3219 				continue;
3220 			sector = r10_bio->devs[i].addr;
3221 			if (is_badblock(conf->mirrors[d].rdev,
3222 					sector, max_sync,
3223 					&first_bad, &bad_sectors)) {
3224 				if (first_bad > sector)
3225 					max_sync = first_bad - sector;
3226 				else {
3227 					bad_sectors -= (sector - first_bad);
3228 					if (max_sync > bad_sectors)
3229 						max_sync = bad_sectors;
3230 					continue;
3231 				}
3232 			}
3233 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3234 			atomic_inc(&r10_bio->remaining);
3235 			bio->bi_next = biolist;
3236 			biolist = bio;
3237 			bio->bi_private = r10_bio;
3238 			bio->bi_end_io = end_sync_read;
3239 			bio->bi_rw = READ;
3240 			bio->bi_sector = sector +
3241 				conf->mirrors[d].rdev->data_offset;
3242 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3243 			count++;
3244 
3245 			if (conf->mirrors[d].replacement == NULL ||
3246 			    test_bit(Faulty,
3247 				     &conf->mirrors[d].replacement->flags))
3248 				continue;
3249 
3250 			/* Need to set up for writing to the replacement */
3251 			bio = r10_bio->devs[i].repl_bio;
3252 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3253 
3254 			sector = r10_bio->devs[i].addr;
3255 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3256 			bio->bi_next = biolist;
3257 			biolist = bio;
3258 			bio->bi_private = r10_bio;
3259 			bio->bi_end_io = end_sync_write;
3260 			bio->bi_rw = WRITE;
3261 			bio->bi_sector = sector +
3262 				conf->mirrors[d].replacement->data_offset;
3263 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3264 			count++;
3265 		}
3266 
3267 		if (count < 2) {
3268 			for (i=0; i<conf->copies; i++) {
3269 				int d = r10_bio->devs[i].devnum;
3270 				if (r10_bio->devs[i].bio->bi_end_io)
3271 					rdev_dec_pending(conf->mirrors[d].rdev,
3272 							 mddev);
3273 				if (r10_bio->devs[i].repl_bio &&
3274 				    r10_bio->devs[i].repl_bio->bi_end_io)
3275 					rdev_dec_pending(
3276 						conf->mirrors[d].replacement,
3277 						mddev);
3278 			}
3279 			put_buf(r10_bio);
3280 			biolist = NULL;
3281 			goto giveup;
3282 		}
3283 	}
3284 
3285 	for (bio = biolist; bio ; bio=bio->bi_next) {
3286 
3287 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3288 		if (bio->bi_end_io)
3289 			bio->bi_flags |= 1 << BIO_UPTODATE;
3290 		bio->bi_vcnt = 0;
3291 		bio->bi_idx = 0;
3292 		bio->bi_phys_segments = 0;
3293 		bio->bi_size = 0;
3294 	}
3295 
3296 	nr_sectors = 0;
3297 	if (sector_nr + max_sync < max_sector)
3298 		max_sector = sector_nr + max_sync;
3299 	do {
3300 		struct page *page;
3301 		int len = PAGE_SIZE;
3302 		if (sector_nr + (len>>9) > max_sector)
3303 			len = (max_sector - sector_nr) << 9;
3304 		if (len == 0)
3305 			break;
3306 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3307 			struct bio *bio2;
3308 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3309 			if (bio_add_page(bio, page, len, 0))
3310 				continue;
3311 
3312 			/* stop here */
3313 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3314 			for (bio2 = biolist;
3315 			     bio2 && bio2 != bio;
3316 			     bio2 = bio2->bi_next) {
3317 				/* remove last page from this bio */
3318 				bio2->bi_vcnt--;
3319 				bio2->bi_size -= len;
3320 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3321 			}
3322 			goto bio_full;
3323 		}
3324 		nr_sectors += len>>9;
3325 		sector_nr += len>>9;
3326 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3327  bio_full:
3328 	r10_bio->sectors = nr_sectors;
3329 
3330 	while (biolist) {
3331 		bio = biolist;
3332 		biolist = biolist->bi_next;
3333 
3334 		bio->bi_next = NULL;
3335 		r10_bio = bio->bi_private;
3336 		r10_bio->sectors = nr_sectors;
3337 
3338 		if (bio->bi_end_io == end_sync_read) {
3339 			md_sync_acct(bio->bi_bdev, nr_sectors);
3340 			generic_make_request(bio);
3341 		}
3342 	}
3343 
3344 	if (sectors_skipped)
3345 		/* pretend they weren't skipped, it makes
3346 		 * no important difference in this case
3347 		 */
3348 		md_done_sync(mddev, sectors_skipped, 1);
3349 
3350 	return sectors_skipped + nr_sectors;
3351  giveup:
3352 	/* There is nowhere to write, so all non-sync
3353 	 * drives must be failed or in resync, all drives
3354 	 * have a bad block, so try the next chunk...
3355 	 */
3356 	if (sector_nr + max_sync < max_sector)
3357 		max_sector = sector_nr + max_sync;
3358 
3359 	sectors_skipped += (max_sector - sector_nr);
3360 	chunks_skipped ++;
3361 	sector_nr = max_sector;
3362 	goto skipped;
3363 }
3364 
3365 static sector_t
3366 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3367 {
3368 	sector_t size;
3369 	struct r10conf *conf = mddev->private;
3370 
3371 	if (!raid_disks)
3372 		raid_disks = min(conf->geo.raid_disks,
3373 				 conf->prev.raid_disks);
3374 	if (!sectors)
3375 		sectors = conf->dev_sectors;
3376 
3377 	size = sectors >> conf->geo.chunk_shift;
3378 	sector_div(size, conf->geo.far_copies);
3379 	size = size * raid_disks;
3380 	sector_div(size, conf->geo.near_copies);
3381 
3382 	return size << conf->geo.chunk_shift;
3383 }
3384 
3385 static void calc_sectors(struct r10conf *conf, sector_t size)
3386 {
3387 	/* Calculate the number of sectors-per-device that will
3388 	 * actually be used, and set conf->dev_sectors and
3389 	 * conf->stride
3390 	 */
3391 
3392 	size = size >> conf->geo.chunk_shift;
3393 	sector_div(size, conf->geo.far_copies);
3394 	size = size * conf->geo.raid_disks;
3395 	sector_div(size, conf->geo.near_copies);
3396 	/* 'size' is now the number of chunks in the array */
3397 	/* calculate "used chunks per device" */
3398 	size = size * conf->copies;
3399 
3400 	/* We need to round up when dividing by raid_disks to
3401 	 * get the stride size.
3402 	 */
3403 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3404 
3405 	conf->dev_sectors = size << conf->geo.chunk_shift;
3406 
3407 	if (conf->geo.far_offset)
3408 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3409 	else {
3410 		sector_div(size, conf->geo.far_copies);
3411 		conf->geo.stride = size << conf->geo.chunk_shift;
3412 	}
3413 }
3414 
3415 enum geo_type {geo_new, geo_old, geo_start};
3416 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3417 {
3418 	int nc, fc, fo;
3419 	int layout, chunk, disks;
3420 	switch (new) {
3421 	case geo_old:
3422 		layout = mddev->layout;
3423 		chunk = mddev->chunk_sectors;
3424 		disks = mddev->raid_disks - mddev->delta_disks;
3425 		break;
3426 	case geo_new:
3427 		layout = mddev->new_layout;
3428 		chunk = mddev->new_chunk_sectors;
3429 		disks = mddev->raid_disks;
3430 		break;
3431 	default: /* avoid 'may be unused' warnings */
3432 	case geo_start: /* new when starting reshape - raid_disks not
3433 			 * updated yet. */
3434 		layout = mddev->new_layout;
3435 		chunk = mddev->new_chunk_sectors;
3436 		disks = mddev->raid_disks + mddev->delta_disks;
3437 		break;
3438 	}
3439 	if (layout >> 17)
3440 		return -1;
3441 	if (chunk < (PAGE_SIZE >> 9) ||
3442 	    !is_power_of_2(chunk))
3443 		return -2;
3444 	nc = layout & 255;
3445 	fc = (layout >> 8) & 255;
3446 	fo = layout & (1<<16);
3447 	geo->raid_disks = disks;
3448 	geo->near_copies = nc;
3449 	geo->far_copies = fc;
3450 	geo->far_offset = fo;
3451 	geo->chunk_mask = chunk - 1;
3452 	geo->chunk_shift = ffz(~chunk);
3453 	return nc*fc;
3454 }
3455 
3456 static struct r10conf *setup_conf(struct mddev *mddev)
3457 {
3458 	struct r10conf *conf = NULL;
3459 	int err = -EINVAL;
3460 	struct geom geo;
3461 	int copies;
3462 
3463 	copies = setup_geo(&geo, mddev, geo_new);
3464 
3465 	if (copies == -2) {
3466 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3467 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3468 		       mdname(mddev), PAGE_SIZE);
3469 		goto out;
3470 	}
3471 
3472 	if (copies < 2 || copies > mddev->raid_disks) {
3473 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3474 		       mdname(mddev), mddev->new_layout);
3475 		goto out;
3476 	}
3477 
3478 	err = -ENOMEM;
3479 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3480 	if (!conf)
3481 		goto out;
3482 
3483 	/* FIXME calc properly */
3484 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3485 							    max(0,mddev->delta_disks)),
3486 				GFP_KERNEL);
3487 	if (!conf->mirrors)
3488 		goto out;
3489 
3490 	conf->tmppage = alloc_page(GFP_KERNEL);
3491 	if (!conf->tmppage)
3492 		goto out;
3493 
3494 	conf->geo = geo;
3495 	conf->copies = copies;
3496 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3497 					   r10bio_pool_free, conf);
3498 	if (!conf->r10bio_pool)
3499 		goto out;
3500 
3501 	calc_sectors(conf, mddev->dev_sectors);
3502 	if (mddev->reshape_position == MaxSector) {
3503 		conf->prev = conf->geo;
3504 		conf->reshape_progress = MaxSector;
3505 	} else {
3506 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3507 			err = -EINVAL;
3508 			goto out;
3509 		}
3510 		conf->reshape_progress = mddev->reshape_position;
3511 		if (conf->prev.far_offset)
3512 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3513 		else
3514 			/* far_copies must be 1 */
3515 			conf->prev.stride = conf->dev_sectors;
3516 	}
3517 	spin_lock_init(&conf->device_lock);
3518 	INIT_LIST_HEAD(&conf->retry_list);
3519 
3520 	spin_lock_init(&conf->resync_lock);
3521 	init_waitqueue_head(&conf->wait_barrier);
3522 
3523 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3524 	if (!conf->thread)
3525 		goto out;
3526 
3527 	conf->mddev = mddev;
3528 	return conf;
3529 
3530  out:
3531 	if (err == -ENOMEM)
3532 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3533 		       mdname(mddev));
3534 	if (conf) {
3535 		if (conf->r10bio_pool)
3536 			mempool_destroy(conf->r10bio_pool);
3537 		kfree(conf->mirrors);
3538 		safe_put_page(conf->tmppage);
3539 		kfree(conf);
3540 	}
3541 	return ERR_PTR(err);
3542 }
3543 
3544 static int run(struct mddev *mddev)
3545 {
3546 	struct r10conf *conf;
3547 	int i, disk_idx, chunk_size;
3548 	struct raid10_info *disk;
3549 	struct md_rdev *rdev;
3550 	sector_t size;
3551 	sector_t min_offset_diff = 0;
3552 	int first = 1;
3553 	bool discard_supported = false;
3554 
3555 	if (mddev->private == NULL) {
3556 		conf = setup_conf(mddev);
3557 		if (IS_ERR(conf))
3558 			return PTR_ERR(conf);
3559 		mddev->private = conf;
3560 	}
3561 	conf = mddev->private;
3562 	if (!conf)
3563 		goto out;
3564 
3565 	mddev->thread = conf->thread;
3566 	conf->thread = NULL;
3567 
3568 	chunk_size = mddev->chunk_sectors << 9;
3569 	if (mddev->queue) {
3570 		blk_queue_max_discard_sectors(mddev->queue,
3571 					      mddev->chunk_sectors);
3572 		blk_queue_io_min(mddev->queue, chunk_size);
3573 		if (conf->geo.raid_disks % conf->geo.near_copies)
3574 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3575 		else
3576 			blk_queue_io_opt(mddev->queue, chunk_size *
3577 					 (conf->geo.raid_disks / conf->geo.near_copies));
3578 	}
3579 
3580 	rdev_for_each(rdev, mddev) {
3581 		long long diff;
3582 		struct request_queue *q;
3583 
3584 		disk_idx = rdev->raid_disk;
3585 		if (disk_idx < 0)
3586 			continue;
3587 		if (disk_idx >= conf->geo.raid_disks &&
3588 		    disk_idx >= conf->prev.raid_disks)
3589 			continue;
3590 		disk = conf->mirrors + disk_idx;
3591 
3592 		if (test_bit(Replacement, &rdev->flags)) {
3593 			if (disk->replacement)
3594 				goto out_free_conf;
3595 			disk->replacement = rdev;
3596 		} else {
3597 			if (disk->rdev)
3598 				goto out_free_conf;
3599 			disk->rdev = rdev;
3600 		}
3601 		q = bdev_get_queue(rdev->bdev);
3602 		if (q->merge_bvec_fn)
3603 			mddev->merge_check_needed = 1;
3604 		diff = (rdev->new_data_offset - rdev->data_offset);
3605 		if (!mddev->reshape_backwards)
3606 			diff = -diff;
3607 		if (diff < 0)
3608 			diff = 0;
3609 		if (first || diff < min_offset_diff)
3610 			min_offset_diff = diff;
3611 
3612 		if (mddev->gendisk)
3613 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3614 					  rdev->data_offset << 9);
3615 
3616 		disk->head_position = 0;
3617 
3618 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3619 			discard_supported = true;
3620 	}
3621 
3622 	if (mddev->queue) {
3623 		if (discard_supported)
3624 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3625 						mddev->queue);
3626 		else
3627 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3628 						  mddev->queue);
3629 	}
3630 	/* need to check that every block has at least one working mirror */
3631 	if (!enough(conf, -1)) {
3632 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3633 		       mdname(mddev));
3634 		goto out_free_conf;
3635 	}
3636 
3637 	if (conf->reshape_progress != MaxSector) {
3638 		/* must ensure that shape change is supported */
3639 		if (conf->geo.far_copies != 1 &&
3640 		    conf->geo.far_offset == 0)
3641 			goto out_free_conf;
3642 		if (conf->prev.far_copies != 1 &&
3643 		    conf->geo.far_offset == 0)
3644 			goto out_free_conf;
3645 	}
3646 
3647 	mddev->degraded = 0;
3648 	for (i = 0;
3649 	     i < conf->geo.raid_disks
3650 		     || i < conf->prev.raid_disks;
3651 	     i++) {
3652 
3653 		disk = conf->mirrors + i;
3654 
3655 		if (!disk->rdev && disk->replacement) {
3656 			/* The replacement is all we have - use it */
3657 			disk->rdev = disk->replacement;
3658 			disk->replacement = NULL;
3659 			clear_bit(Replacement, &disk->rdev->flags);
3660 		}
3661 
3662 		if (!disk->rdev ||
3663 		    !test_bit(In_sync, &disk->rdev->flags)) {
3664 			disk->head_position = 0;
3665 			mddev->degraded++;
3666 			if (disk->rdev)
3667 				conf->fullsync = 1;
3668 		}
3669 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3670 	}
3671 
3672 	if (mddev->recovery_cp != MaxSector)
3673 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3674 		       " -- starting background reconstruction\n",
3675 		       mdname(mddev));
3676 	printk(KERN_INFO
3677 		"md/raid10:%s: active with %d out of %d devices\n",
3678 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3679 		conf->geo.raid_disks);
3680 	/*
3681 	 * Ok, everything is just fine now
3682 	 */
3683 	mddev->dev_sectors = conf->dev_sectors;
3684 	size = raid10_size(mddev, 0, 0);
3685 	md_set_array_sectors(mddev, size);
3686 	mddev->resync_max_sectors = size;
3687 
3688 	if (mddev->queue) {
3689 		int stripe = conf->geo.raid_disks *
3690 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3691 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3692 		mddev->queue->backing_dev_info.congested_data = mddev;
3693 
3694 		/* Calculate max read-ahead size.
3695 		 * We need to readahead at least twice a whole stripe....
3696 		 * maybe...
3697 		 */
3698 		stripe /= conf->geo.near_copies;
3699 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3700 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3701 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3702 	}
3703 
3704 
3705 	if (md_integrity_register(mddev))
3706 		goto out_free_conf;
3707 
3708 	if (conf->reshape_progress != MaxSector) {
3709 		unsigned long before_length, after_length;
3710 
3711 		before_length = ((1 << conf->prev.chunk_shift) *
3712 				 conf->prev.far_copies);
3713 		after_length = ((1 << conf->geo.chunk_shift) *
3714 				conf->geo.far_copies);
3715 
3716 		if (max(before_length, after_length) > min_offset_diff) {
3717 			/* This cannot work */
3718 			printk("md/raid10: offset difference not enough to continue reshape\n");
3719 			goto out_free_conf;
3720 		}
3721 		conf->offset_diff = min_offset_diff;
3722 
3723 		conf->reshape_safe = conf->reshape_progress;
3724 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3725 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3726 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3727 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3728 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3729 							"reshape");
3730 	}
3731 
3732 	return 0;
3733 
3734 out_free_conf:
3735 	md_unregister_thread(&mddev->thread);
3736 	if (conf->r10bio_pool)
3737 		mempool_destroy(conf->r10bio_pool);
3738 	safe_put_page(conf->tmppage);
3739 	kfree(conf->mirrors);
3740 	kfree(conf);
3741 	mddev->private = NULL;
3742 out:
3743 	return -EIO;
3744 }
3745 
3746 static int stop(struct mddev *mddev)
3747 {
3748 	struct r10conf *conf = mddev->private;
3749 
3750 	raise_barrier(conf, 0);
3751 	lower_barrier(conf);
3752 
3753 	md_unregister_thread(&mddev->thread);
3754 	if (mddev->queue)
3755 		/* the unplug fn references 'conf'*/
3756 		blk_sync_queue(mddev->queue);
3757 
3758 	if (conf->r10bio_pool)
3759 		mempool_destroy(conf->r10bio_pool);
3760 	kfree(conf->mirrors);
3761 	kfree(conf);
3762 	mddev->private = NULL;
3763 	return 0;
3764 }
3765 
3766 static void raid10_quiesce(struct mddev *mddev, int state)
3767 {
3768 	struct r10conf *conf = mddev->private;
3769 
3770 	switch(state) {
3771 	case 1:
3772 		raise_barrier(conf, 0);
3773 		break;
3774 	case 0:
3775 		lower_barrier(conf);
3776 		break;
3777 	}
3778 }
3779 
3780 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3781 {
3782 	/* Resize of 'far' arrays is not supported.
3783 	 * For 'near' and 'offset' arrays we can set the
3784 	 * number of sectors used to be an appropriate multiple
3785 	 * of the chunk size.
3786 	 * For 'offset', this is far_copies*chunksize.
3787 	 * For 'near' the multiplier is the LCM of
3788 	 * near_copies and raid_disks.
3789 	 * So if far_copies > 1 && !far_offset, fail.
3790 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3791 	 * multiply by chunk_size.  Then round to this number.
3792 	 * This is mostly done by raid10_size()
3793 	 */
3794 	struct r10conf *conf = mddev->private;
3795 	sector_t oldsize, size;
3796 
3797 	if (mddev->reshape_position != MaxSector)
3798 		return -EBUSY;
3799 
3800 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3801 		return -EINVAL;
3802 
3803 	oldsize = raid10_size(mddev, 0, 0);
3804 	size = raid10_size(mddev, sectors, 0);
3805 	if (mddev->external_size &&
3806 	    mddev->array_sectors > size)
3807 		return -EINVAL;
3808 	if (mddev->bitmap) {
3809 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3810 		if (ret)
3811 			return ret;
3812 	}
3813 	md_set_array_sectors(mddev, size);
3814 	set_capacity(mddev->gendisk, mddev->array_sectors);
3815 	revalidate_disk(mddev->gendisk);
3816 	if (sectors > mddev->dev_sectors &&
3817 	    mddev->recovery_cp > oldsize) {
3818 		mddev->recovery_cp = oldsize;
3819 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3820 	}
3821 	calc_sectors(conf, sectors);
3822 	mddev->dev_sectors = conf->dev_sectors;
3823 	mddev->resync_max_sectors = size;
3824 	return 0;
3825 }
3826 
3827 static void *raid10_takeover_raid0(struct mddev *mddev)
3828 {
3829 	struct md_rdev *rdev;
3830 	struct r10conf *conf;
3831 
3832 	if (mddev->degraded > 0) {
3833 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3834 		       mdname(mddev));
3835 		return ERR_PTR(-EINVAL);
3836 	}
3837 
3838 	/* Set new parameters */
3839 	mddev->new_level = 10;
3840 	/* new layout: far_copies = 1, near_copies = 2 */
3841 	mddev->new_layout = (1<<8) + 2;
3842 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3843 	mddev->delta_disks = mddev->raid_disks;
3844 	mddev->raid_disks *= 2;
3845 	/* make sure it will be not marked as dirty */
3846 	mddev->recovery_cp = MaxSector;
3847 
3848 	conf = setup_conf(mddev);
3849 	if (!IS_ERR(conf)) {
3850 		rdev_for_each(rdev, mddev)
3851 			if (rdev->raid_disk >= 0)
3852 				rdev->new_raid_disk = rdev->raid_disk * 2;
3853 		conf->barrier = 1;
3854 	}
3855 
3856 	return conf;
3857 }
3858 
3859 static void *raid10_takeover(struct mddev *mddev)
3860 {
3861 	struct r0conf *raid0_conf;
3862 
3863 	/* raid10 can take over:
3864 	 *  raid0 - providing it has only two drives
3865 	 */
3866 	if (mddev->level == 0) {
3867 		/* for raid0 takeover only one zone is supported */
3868 		raid0_conf = mddev->private;
3869 		if (raid0_conf->nr_strip_zones > 1) {
3870 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3871 			       " with more than one zone.\n",
3872 			       mdname(mddev));
3873 			return ERR_PTR(-EINVAL);
3874 		}
3875 		return raid10_takeover_raid0(mddev);
3876 	}
3877 	return ERR_PTR(-EINVAL);
3878 }
3879 
3880 static int raid10_check_reshape(struct mddev *mddev)
3881 {
3882 	/* Called when there is a request to change
3883 	 * - layout (to ->new_layout)
3884 	 * - chunk size (to ->new_chunk_sectors)
3885 	 * - raid_disks (by delta_disks)
3886 	 * or when trying to restart a reshape that was ongoing.
3887 	 *
3888 	 * We need to validate the request and possibly allocate
3889 	 * space if that might be an issue later.
3890 	 *
3891 	 * Currently we reject any reshape of a 'far' mode array,
3892 	 * allow chunk size to change if new is generally acceptable,
3893 	 * allow raid_disks to increase, and allow
3894 	 * a switch between 'near' mode and 'offset' mode.
3895 	 */
3896 	struct r10conf *conf = mddev->private;
3897 	struct geom geo;
3898 
3899 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3900 		return -EINVAL;
3901 
3902 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3903 		/* mustn't change number of copies */
3904 		return -EINVAL;
3905 	if (geo.far_copies > 1 && !geo.far_offset)
3906 		/* Cannot switch to 'far' mode */
3907 		return -EINVAL;
3908 
3909 	if (mddev->array_sectors & geo.chunk_mask)
3910 			/* not factor of array size */
3911 			return -EINVAL;
3912 
3913 	if (!enough(conf, -1))
3914 		return -EINVAL;
3915 
3916 	kfree(conf->mirrors_new);
3917 	conf->mirrors_new = NULL;
3918 	if (mddev->delta_disks > 0) {
3919 		/* allocate new 'mirrors' list */
3920 		conf->mirrors_new = kzalloc(
3921 			sizeof(struct raid10_info)
3922 			*(mddev->raid_disks +
3923 			  mddev->delta_disks),
3924 			GFP_KERNEL);
3925 		if (!conf->mirrors_new)
3926 			return -ENOMEM;
3927 	}
3928 	return 0;
3929 }
3930 
3931 /*
3932  * Need to check if array has failed when deciding whether to:
3933  *  - start an array
3934  *  - remove non-faulty devices
3935  *  - add a spare
3936  *  - allow a reshape
3937  * This determination is simple when no reshape is happening.
3938  * However if there is a reshape, we need to carefully check
3939  * both the before and after sections.
3940  * This is because some failed devices may only affect one
3941  * of the two sections, and some non-in_sync devices may
3942  * be insync in the section most affected by failed devices.
3943  */
3944 static int calc_degraded(struct r10conf *conf)
3945 {
3946 	int degraded, degraded2;
3947 	int i;
3948 
3949 	rcu_read_lock();
3950 	degraded = 0;
3951 	/* 'prev' section first */
3952 	for (i = 0; i < conf->prev.raid_disks; i++) {
3953 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3954 		if (!rdev || test_bit(Faulty, &rdev->flags))
3955 			degraded++;
3956 		else if (!test_bit(In_sync, &rdev->flags))
3957 			/* When we can reduce the number of devices in
3958 			 * an array, this might not contribute to
3959 			 * 'degraded'.  It does now.
3960 			 */
3961 			degraded++;
3962 	}
3963 	rcu_read_unlock();
3964 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3965 		return degraded;
3966 	rcu_read_lock();
3967 	degraded2 = 0;
3968 	for (i = 0; i < conf->geo.raid_disks; i++) {
3969 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3970 		if (!rdev || test_bit(Faulty, &rdev->flags))
3971 			degraded2++;
3972 		else if (!test_bit(In_sync, &rdev->flags)) {
3973 			/* If reshape is increasing the number of devices,
3974 			 * this section has already been recovered, so
3975 			 * it doesn't contribute to degraded.
3976 			 * else it does.
3977 			 */
3978 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3979 				degraded2++;
3980 		}
3981 	}
3982 	rcu_read_unlock();
3983 	if (degraded2 > degraded)
3984 		return degraded2;
3985 	return degraded;
3986 }
3987 
3988 static int raid10_start_reshape(struct mddev *mddev)
3989 {
3990 	/* A 'reshape' has been requested. This commits
3991 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3992 	 * This also checks if there are enough spares and adds them
3993 	 * to the array.
3994 	 * We currently require enough spares to make the final
3995 	 * array non-degraded.  We also require that the difference
3996 	 * between old and new data_offset - on each device - is
3997 	 * enough that we never risk over-writing.
3998 	 */
3999 
4000 	unsigned long before_length, after_length;
4001 	sector_t min_offset_diff = 0;
4002 	int first = 1;
4003 	struct geom new;
4004 	struct r10conf *conf = mddev->private;
4005 	struct md_rdev *rdev;
4006 	int spares = 0;
4007 	int ret;
4008 
4009 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4010 		return -EBUSY;
4011 
4012 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4013 		return -EINVAL;
4014 
4015 	before_length = ((1 << conf->prev.chunk_shift) *
4016 			 conf->prev.far_copies);
4017 	after_length = ((1 << conf->geo.chunk_shift) *
4018 			conf->geo.far_copies);
4019 
4020 	rdev_for_each(rdev, mddev) {
4021 		if (!test_bit(In_sync, &rdev->flags)
4022 		    && !test_bit(Faulty, &rdev->flags))
4023 			spares++;
4024 		if (rdev->raid_disk >= 0) {
4025 			long long diff = (rdev->new_data_offset
4026 					  - rdev->data_offset);
4027 			if (!mddev->reshape_backwards)
4028 				diff = -diff;
4029 			if (diff < 0)
4030 				diff = 0;
4031 			if (first || diff < min_offset_diff)
4032 				min_offset_diff = diff;
4033 		}
4034 	}
4035 
4036 	if (max(before_length, after_length) > min_offset_diff)
4037 		return -EINVAL;
4038 
4039 	if (spares < mddev->delta_disks)
4040 		return -EINVAL;
4041 
4042 	conf->offset_diff = min_offset_diff;
4043 	spin_lock_irq(&conf->device_lock);
4044 	if (conf->mirrors_new) {
4045 		memcpy(conf->mirrors_new, conf->mirrors,
4046 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4047 		smp_mb();
4048 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4049 		conf->mirrors_old = conf->mirrors;
4050 		conf->mirrors = conf->mirrors_new;
4051 		conf->mirrors_new = NULL;
4052 	}
4053 	setup_geo(&conf->geo, mddev, geo_start);
4054 	smp_mb();
4055 	if (mddev->reshape_backwards) {
4056 		sector_t size = raid10_size(mddev, 0, 0);
4057 		if (size < mddev->array_sectors) {
4058 			spin_unlock_irq(&conf->device_lock);
4059 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4060 			       mdname(mddev));
4061 			return -EINVAL;
4062 		}
4063 		mddev->resync_max_sectors = size;
4064 		conf->reshape_progress = size;
4065 	} else
4066 		conf->reshape_progress = 0;
4067 	spin_unlock_irq(&conf->device_lock);
4068 
4069 	if (mddev->delta_disks && mddev->bitmap) {
4070 		ret = bitmap_resize(mddev->bitmap,
4071 				    raid10_size(mddev, 0,
4072 						conf->geo.raid_disks),
4073 				    0, 0);
4074 		if (ret)
4075 			goto abort;
4076 	}
4077 	if (mddev->delta_disks > 0) {
4078 		rdev_for_each(rdev, mddev)
4079 			if (rdev->raid_disk < 0 &&
4080 			    !test_bit(Faulty, &rdev->flags)) {
4081 				if (raid10_add_disk(mddev, rdev) == 0) {
4082 					if (rdev->raid_disk >=
4083 					    conf->prev.raid_disks)
4084 						set_bit(In_sync, &rdev->flags);
4085 					else
4086 						rdev->recovery_offset = 0;
4087 
4088 					if (sysfs_link_rdev(mddev, rdev))
4089 						/* Failure here  is OK */;
4090 				}
4091 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4092 				   && !test_bit(Faulty, &rdev->flags)) {
4093 				/* This is a spare that was manually added */
4094 				set_bit(In_sync, &rdev->flags);
4095 			}
4096 	}
4097 	/* When a reshape changes the number of devices,
4098 	 * ->degraded is measured against the larger of the
4099 	 * pre and  post numbers.
4100 	 */
4101 	spin_lock_irq(&conf->device_lock);
4102 	mddev->degraded = calc_degraded(conf);
4103 	spin_unlock_irq(&conf->device_lock);
4104 	mddev->raid_disks = conf->geo.raid_disks;
4105 	mddev->reshape_position = conf->reshape_progress;
4106 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4107 
4108 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4109 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4110 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4111 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4112 
4113 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4114 						"reshape");
4115 	if (!mddev->sync_thread) {
4116 		ret = -EAGAIN;
4117 		goto abort;
4118 	}
4119 	conf->reshape_checkpoint = jiffies;
4120 	md_wakeup_thread(mddev->sync_thread);
4121 	md_new_event(mddev);
4122 	return 0;
4123 
4124 abort:
4125 	mddev->recovery = 0;
4126 	spin_lock_irq(&conf->device_lock);
4127 	conf->geo = conf->prev;
4128 	mddev->raid_disks = conf->geo.raid_disks;
4129 	rdev_for_each(rdev, mddev)
4130 		rdev->new_data_offset = rdev->data_offset;
4131 	smp_wmb();
4132 	conf->reshape_progress = MaxSector;
4133 	mddev->reshape_position = MaxSector;
4134 	spin_unlock_irq(&conf->device_lock);
4135 	return ret;
4136 }
4137 
4138 /* Calculate the last device-address that could contain
4139  * any block from the chunk that includes the array-address 's'
4140  * and report the next address.
4141  * i.e. the address returned will be chunk-aligned and after
4142  * any data that is in the chunk containing 's'.
4143  */
4144 static sector_t last_dev_address(sector_t s, struct geom *geo)
4145 {
4146 	s = (s | geo->chunk_mask) + 1;
4147 	s >>= geo->chunk_shift;
4148 	s *= geo->near_copies;
4149 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4150 	s *= geo->far_copies;
4151 	s <<= geo->chunk_shift;
4152 	return s;
4153 }
4154 
4155 /* Calculate the first device-address that could contain
4156  * any block from the chunk that includes the array-address 's'.
4157  * This too will be the start of a chunk
4158  */
4159 static sector_t first_dev_address(sector_t s, struct geom *geo)
4160 {
4161 	s >>= geo->chunk_shift;
4162 	s *= geo->near_copies;
4163 	sector_div(s, geo->raid_disks);
4164 	s *= geo->far_copies;
4165 	s <<= geo->chunk_shift;
4166 	return s;
4167 }
4168 
4169 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4170 				int *skipped)
4171 {
4172 	/* We simply copy at most one chunk (smallest of old and new)
4173 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4174 	 * or we hit a bad block or something.
4175 	 * This might mean we pause for normal IO in the middle of
4176 	 * a chunk, but that is not a problem was mddev->reshape_position
4177 	 * can record any location.
4178 	 *
4179 	 * If we will want to write to a location that isn't
4180 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4181 	 * we need to flush all reshape requests and update the metadata.
4182 	 *
4183 	 * When reshaping forwards (e.g. to more devices), we interpret
4184 	 * 'safe' as the earliest block which might not have been copied
4185 	 * down yet.  We divide this by previous stripe size and multiply
4186 	 * by previous stripe length to get lowest device offset that we
4187 	 * cannot write to yet.
4188 	 * We interpret 'sector_nr' as an address that we want to write to.
4189 	 * From this we use last_device_address() to find where we might
4190 	 * write to, and first_device_address on the  'safe' position.
4191 	 * If this 'next' write position is after the 'safe' position,
4192 	 * we must update the metadata to increase the 'safe' position.
4193 	 *
4194 	 * When reshaping backwards, we round in the opposite direction
4195 	 * and perform the reverse test:  next write position must not be
4196 	 * less than current safe position.
4197 	 *
4198 	 * In all this the minimum difference in data offsets
4199 	 * (conf->offset_diff - always positive) allows a bit of slack,
4200 	 * so next can be after 'safe', but not by more than offset_disk
4201 	 *
4202 	 * We need to prepare all the bios here before we start any IO
4203 	 * to ensure the size we choose is acceptable to all devices.
4204 	 * The means one for each copy for write-out and an extra one for
4205 	 * read-in.
4206 	 * We store the read-in bio in ->master_bio and the others in
4207 	 * ->devs[x].bio and ->devs[x].repl_bio.
4208 	 */
4209 	struct r10conf *conf = mddev->private;
4210 	struct r10bio *r10_bio;
4211 	sector_t next, safe, last;
4212 	int max_sectors;
4213 	int nr_sectors;
4214 	int s;
4215 	struct md_rdev *rdev;
4216 	int need_flush = 0;
4217 	struct bio *blist;
4218 	struct bio *bio, *read_bio;
4219 	int sectors_done = 0;
4220 
4221 	if (sector_nr == 0) {
4222 		/* If restarting in the middle, skip the initial sectors */
4223 		if (mddev->reshape_backwards &&
4224 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4225 			sector_nr = (raid10_size(mddev, 0, 0)
4226 				     - conf->reshape_progress);
4227 		} else if (!mddev->reshape_backwards &&
4228 			   conf->reshape_progress > 0)
4229 			sector_nr = conf->reshape_progress;
4230 		if (sector_nr) {
4231 			mddev->curr_resync_completed = sector_nr;
4232 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4233 			*skipped = 1;
4234 			return sector_nr;
4235 		}
4236 	}
4237 
4238 	/* We don't use sector_nr to track where we are up to
4239 	 * as that doesn't work well for ->reshape_backwards.
4240 	 * So just use ->reshape_progress.
4241 	 */
4242 	if (mddev->reshape_backwards) {
4243 		/* 'next' is the earliest device address that we might
4244 		 * write to for this chunk in the new layout
4245 		 */
4246 		next = first_dev_address(conf->reshape_progress - 1,
4247 					 &conf->geo);
4248 
4249 		/* 'safe' is the last device address that we might read from
4250 		 * in the old layout after a restart
4251 		 */
4252 		safe = last_dev_address(conf->reshape_safe - 1,
4253 					&conf->prev);
4254 
4255 		if (next + conf->offset_diff < safe)
4256 			need_flush = 1;
4257 
4258 		last = conf->reshape_progress - 1;
4259 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4260 					       & conf->prev.chunk_mask);
4261 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4262 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4263 	} else {
4264 		/* 'next' is after the last device address that we
4265 		 * might write to for this chunk in the new layout
4266 		 */
4267 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4268 
4269 		/* 'safe' is the earliest device address that we might
4270 		 * read from in the old layout after a restart
4271 		 */
4272 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4273 
4274 		/* Need to update metadata if 'next' might be beyond 'safe'
4275 		 * as that would possibly corrupt data
4276 		 */
4277 		if (next > safe + conf->offset_diff)
4278 			need_flush = 1;
4279 
4280 		sector_nr = conf->reshape_progress;
4281 		last  = sector_nr | (conf->geo.chunk_mask
4282 				     & conf->prev.chunk_mask);
4283 
4284 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4285 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4286 	}
4287 
4288 	if (need_flush ||
4289 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4290 		/* Need to update reshape_position in metadata */
4291 		wait_barrier(conf);
4292 		mddev->reshape_position = conf->reshape_progress;
4293 		if (mddev->reshape_backwards)
4294 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4295 				- conf->reshape_progress;
4296 		else
4297 			mddev->curr_resync_completed = conf->reshape_progress;
4298 		conf->reshape_checkpoint = jiffies;
4299 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4300 		md_wakeup_thread(mddev->thread);
4301 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4302 			   kthread_should_stop());
4303 		conf->reshape_safe = mddev->reshape_position;
4304 		allow_barrier(conf);
4305 	}
4306 
4307 read_more:
4308 	/* Now schedule reads for blocks from sector_nr to last */
4309 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4310 	raise_barrier(conf, sectors_done != 0);
4311 	atomic_set(&r10_bio->remaining, 0);
4312 	r10_bio->mddev = mddev;
4313 	r10_bio->sector = sector_nr;
4314 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4315 	r10_bio->sectors = last - sector_nr + 1;
4316 	rdev = read_balance(conf, r10_bio, &max_sectors);
4317 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4318 
4319 	if (!rdev) {
4320 		/* Cannot read from here, so need to record bad blocks
4321 		 * on all the target devices.
4322 		 */
4323 		// FIXME
4324 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4325 		return sectors_done;
4326 	}
4327 
4328 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4329 
4330 	read_bio->bi_bdev = rdev->bdev;
4331 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4332 			       + rdev->data_offset);
4333 	read_bio->bi_private = r10_bio;
4334 	read_bio->bi_end_io = end_sync_read;
4335 	read_bio->bi_rw = READ;
4336 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4337 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4338 	read_bio->bi_vcnt = 0;
4339 	read_bio->bi_idx = 0;
4340 	read_bio->bi_size = 0;
4341 	r10_bio->master_bio = read_bio;
4342 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4343 
4344 	/* Now find the locations in the new layout */
4345 	__raid10_find_phys(&conf->geo, r10_bio);
4346 
4347 	blist = read_bio;
4348 	read_bio->bi_next = NULL;
4349 
4350 	for (s = 0; s < conf->copies*2; s++) {
4351 		struct bio *b;
4352 		int d = r10_bio->devs[s/2].devnum;
4353 		struct md_rdev *rdev2;
4354 		if (s&1) {
4355 			rdev2 = conf->mirrors[d].replacement;
4356 			b = r10_bio->devs[s/2].repl_bio;
4357 		} else {
4358 			rdev2 = conf->mirrors[d].rdev;
4359 			b = r10_bio->devs[s/2].bio;
4360 		}
4361 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4362 			continue;
4363 		b->bi_bdev = rdev2->bdev;
4364 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4365 		b->bi_private = r10_bio;
4366 		b->bi_end_io = end_reshape_write;
4367 		b->bi_rw = WRITE;
4368 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4369 		b->bi_flags |= 1 << BIO_UPTODATE;
4370 		b->bi_next = blist;
4371 		b->bi_vcnt = 0;
4372 		b->bi_idx = 0;
4373 		b->bi_size = 0;
4374 		blist = b;
4375 	}
4376 
4377 	/* Now add as many pages as possible to all of these bios. */
4378 
4379 	nr_sectors = 0;
4380 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4381 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4382 		int len = (max_sectors - s) << 9;
4383 		if (len > PAGE_SIZE)
4384 			len = PAGE_SIZE;
4385 		for (bio = blist; bio ; bio = bio->bi_next) {
4386 			struct bio *bio2;
4387 			if (bio_add_page(bio, page, len, 0))
4388 				continue;
4389 
4390 			/* Didn't fit, must stop */
4391 			for (bio2 = blist;
4392 			     bio2 && bio2 != bio;
4393 			     bio2 = bio2->bi_next) {
4394 				/* Remove last page from this bio */
4395 				bio2->bi_vcnt--;
4396 				bio2->bi_size -= len;
4397 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4398 			}
4399 			goto bio_full;
4400 		}
4401 		sector_nr += len >> 9;
4402 		nr_sectors += len >> 9;
4403 	}
4404 bio_full:
4405 	r10_bio->sectors = nr_sectors;
4406 
4407 	/* Now submit the read */
4408 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4409 	atomic_inc(&r10_bio->remaining);
4410 	read_bio->bi_next = NULL;
4411 	generic_make_request(read_bio);
4412 	sector_nr += nr_sectors;
4413 	sectors_done += nr_sectors;
4414 	if (sector_nr <= last)
4415 		goto read_more;
4416 
4417 	/* Now that we have done the whole section we can
4418 	 * update reshape_progress
4419 	 */
4420 	if (mddev->reshape_backwards)
4421 		conf->reshape_progress -= sectors_done;
4422 	else
4423 		conf->reshape_progress += sectors_done;
4424 
4425 	return sectors_done;
4426 }
4427 
4428 static void end_reshape_request(struct r10bio *r10_bio);
4429 static int handle_reshape_read_error(struct mddev *mddev,
4430 				     struct r10bio *r10_bio);
4431 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4432 {
4433 	/* Reshape read completed.  Hopefully we have a block
4434 	 * to write out.
4435 	 * If we got a read error then we do sync 1-page reads from
4436 	 * elsewhere until we find the data - or give up.
4437 	 */
4438 	struct r10conf *conf = mddev->private;
4439 	int s;
4440 
4441 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4442 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4443 			/* Reshape has been aborted */
4444 			md_done_sync(mddev, r10_bio->sectors, 0);
4445 			return;
4446 		}
4447 
4448 	/* We definitely have the data in the pages, schedule the
4449 	 * writes.
4450 	 */
4451 	atomic_set(&r10_bio->remaining, 1);
4452 	for (s = 0; s < conf->copies*2; s++) {
4453 		struct bio *b;
4454 		int d = r10_bio->devs[s/2].devnum;
4455 		struct md_rdev *rdev;
4456 		if (s&1) {
4457 			rdev = conf->mirrors[d].replacement;
4458 			b = r10_bio->devs[s/2].repl_bio;
4459 		} else {
4460 			rdev = conf->mirrors[d].rdev;
4461 			b = r10_bio->devs[s/2].bio;
4462 		}
4463 		if (!rdev || test_bit(Faulty, &rdev->flags))
4464 			continue;
4465 		atomic_inc(&rdev->nr_pending);
4466 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4467 		atomic_inc(&r10_bio->remaining);
4468 		b->bi_next = NULL;
4469 		generic_make_request(b);
4470 	}
4471 	end_reshape_request(r10_bio);
4472 }
4473 
4474 static void end_reshape(struct r10conf *conf)
4475 {
4476 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4477 		return;
4478 
4479 	spin_lock_irq(&conf->device_lock);
4480 	conf->prev = conf->geo;
4481 	md_finish_reshape(conf->mddev);
4482 	smp_wmb();
4483 	conf->reshape_progress = MaxSector;
4484 	spin_unlock_irq(&conf->device_lock);
4485 
4486 	/* read-ahead size must cover two whole stripes, which is
4487 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4488 	 */
4489 	if (conf->mddev->queue) {
4490 		int stripe = conf->geo.raid_disks *
4491 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4492 		stripe /= conf->geo.near_copies;
4493 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4494 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4495 	}
4496 	conf->fullsync = 0;
4497 }
4498 
4499 
4500 static int handle_reshape_read_error(struct mddev *mddev,
4501 				     struct r10bio *r10_bio)
4502 {
4503 	/* Use sync reads to get the blocks from somewhere else */
4504 	int sectors = r10_bio->sectors;
4505 	struct r10conf *conf = mddev->private;
4506 	struct {
4507 		struct r10bio r10_bio;
4508 		struct r10dev devs[conf->copies];
4509 	} on_stack;
4510 	struct r10bio *r10b = &on_stack.r10_bio;
4511 	int slot = 0;
4512 	int idx = 0;
4513 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4514 
4515 	r10b->sector = r10_bio->sector;
4516 	__raid10_find_phys(&conf->prev, r10b);
4517 
4518 	while (sectors) {
4519 		int s = sectors;
4520 		int success = 0;
4521 		int first_slot = slot;
4522 
4523 		if (s > (PAGE_SIZE >> 9))
4524 			s = PAGE_SIZE >> 9;
4525 
4526 		while (!success) {
4527 			int d = r10b->devs[slot].devnum;
4528 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4529 			sector_t addr;
4530 			if (rdev == NULL ||
4531 			    test_bit(Faulty, &rdev->flags) ||
4532 			    !test_bit(In_sync, &rdev->flags))
4533 				goto failed;
4534 
4535 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4536 			success = sync_page_io(rdev,
4537 					       addr,
4538 					       s << 9,
4539 					       bvec[idx].bv_page,
4540 					       READ, false);
4541 			if (success)
4542 				break;
4543 		failed:
4544 			slot++;
4545 			if (slot >= conf->copies)
4546 				slot = 0;
4547 			if (slot == first_slot)
4548 				break;
4549 		}
4550 		if (!success) {
4551 			/* couldn't read this block, must give up */
4552 			set_bit(MD_RECOVERY_INTR,
4553 				&mddev->recovery);
4554 			return -EIO;
4555 		}
4556 		sectors -= s;
4557 		idx++;
4558 	}
4559 	return 0;
4560 }
4561 
4562 static void end_reshape_write(struct bio *bio, int error)
4563 {
4564 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4565 	struct r10bio *r10_bio = bio->bi_private;
4566 	struct mddev *mddev = r10_bio->mddev;
4567 	struct r10conf *conf = mddev->private;
4568 	int d;
4569 	int slot;
4570 	int repl;
4571 	struct md_rdev *rdev = NULL;
4572 
4573 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4574 	if (repl)
4575 		rdev = conf->mirrors[d].replacement;
4576 	if (!rdev) {
4577 		smp_mb();
4578 		rdev = conf->mirrors[d].rdev;
4579 	}
4580 
4581 	if (!uptodate) {
4582 		/* FIXME should record badblock */
4583 		md_error(mddev, rdev);
4584 	}
4585 
4586 	rdev_dec_pending(rdev, mddev);
4587 	end_reshape_request(r10_bio);
4588 }
4589 
4590 static void end_reshape_request(struct r10bio *r10_bio)
4591 {
4592 	if (!atomic_dec_and_test(&r10_bio->remaining))
4593 		return;
4594 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4595 	bio_put(r10_bio->master_bio);
4596 	put_buf(r10_bio);
4597 }
4598 
4599 static void raid10_finish_reshape(struct mddev *mddev)
4600 {
4601 	struct r10conf *conf = mddev->private;
4602 
4603 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4604 		return;
4605 
4606 	if (mddev->delta_disks > 0) {
4607 		sector_t size = raid10_size(mddev, 0, 0);
4608 		md_set_array_sectors(mddev, size);
4609 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4610 			mddev->recovery_cp = mddev->resync_max_sectors;
4611 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4612 		}
4613 		mddev->resync_max_sectors = size;
4614 		set_capacity(mddev->gendisk, mddev->array_sectors);
4615 		revalidate_disk(mddev->gendisk);
4616 	} else {
4617 		int d;
4618 		for (d = conf->geo.raid_disks ;
4619 		     d < conf->geo.raid_disks - mddev->delta_disks;
4620 		     d++) {
4621 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4622 			if (rdev)
4623 				clear_bit(In_sync, &rdev->flags);
4624 			rdev = conf->mirrors[d].replacement;
4625 			if (rdev)
4626 				clear_bit(In_sync, &rdev->flags);
4627 		}
4628 	}
4629 	mddev->layout = mddev->new_layout;
4630 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4631 	mddev->reshape_position = MaxSector;
4632 	mddev->delta_disks = 0;
4633 	mddev->reshape_backwards = 0;
4634 }
4635 
4636 static struct md_personality raid10_personality =
4637 {
4638 	.name		= "raid10",
4639 	.level		= 10,
4640 	.owner		= THIS_MODULE,
4641 	.make_request	= make_request,
4642 	.run		= run,
4643 	.stop		= stop,
4644 	.status		= status,
4645 	.error_handler	= error,
4646 	.hot_add_disk	= raid10_add_disk,
4647 	.hot_remove_disk= raid10_remove_disk,
4648 	.spare_active	= raid10_spare_active,
4649 	.sync_request	= sync_request,
4650 	.quiesce	= raid10_quiesce,
4651 	.size		= raid10_size,
4652 	.resize		= raid10_resize,
4653 	.takeover	= raid10_takeover,
4654 	.check_reshape	= raid10_check_reshape,
4655 	.start_reshape	= raid10_start_reshape,
4656 	.finish_reshape	= raid10_finish_reshape,
4657 };
4658 
4659 static int __init raid_init(void)
4660 {
4661 	return register_md_personality(&raid10_personality);
4662 }
4663 
4664 static void raid_exit(void)
4665 {
4666 	unregister_md_personality(&raid10_personality);
4667 }
4668 
4669 module_init(raid_init);
4670 module_exit(raid_exit);
4671 MODULE_LICENSE("GPL");
4672 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4673 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4674 MODULE_ALIAS("md-raid10");
4675 MODULE_ALIAS("md-level-10");
4676 
4677 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4678