1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio, int error) 443 { 444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct r10bio *r10_bio = bio->bi_private; 446 int dev; 447 int dec_rdev = 1; 448 struct r10conf *conf = r10_bio->mddev->private; 449 int slot, repl; 450 struct md_rdev *rdev = NULL; 451 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 453 454 if (repl) 455 rdev = conf->mirrors[dev].replacement; 456 if (!rdev) { 457 smp_rmb(); 458 repl = 0; 459 rdev = conf->mirrors[dev].rdev; 460 } 461 /* 462 * this branch is our 'one mirror IO has finished' event handler: 463 */ 464 if (!uptodate) { 465 if (repl) 466 /* Never record new bad blocks to replacement, 467 * just fail it. 468 */ 469 md_error(rdev->mddev, rdev); 470 else { 471 set_bit(WriteErrorSeen, &rdev->flags); 472 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 473 set_bit(MD_RECOVERY_NEEDED, 474 &rdev->mddev->recovery); 475 set_bit(R10BIO_WriteError, &r10_bio->state); 476 dec_rdev = 0; 477 } 478 } else { 479 /* 480 * Set R10BIO_Uptodate in our master bio, so that 481 * we will return a good error code for to the higher 482 * levels even if IO on some other mirrored buffer fails. 483 * 484 * The 'master' represents the composite IO operation to 485 * user-side. So if something waits for IO, then it will 486 * wait for the 'master' bio. 487 */ 488 sector_t first_bad; 489 int bad_sectors; 490 491 /* 492 * Do not set R10BIO_Uptodate if the current device is 493 * rebuilding or Faulty. This is because we cannot use 494 * such device for properly reading the data back (we could 495 * potentially use it, if the current write would have felt 496 * before rdev->recovery_offset, but for simplicity we don't 497 * check this here. 498 */ 499 if (test_bit(In_sync, &rdev->flags) && 500 !test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_Uptodate, &r10_bio->state); 502 503 /* Maybe we can clear some bad blocks. */ 504 if (is_badblock(rdev, 505 r10_bio->devs[slot].addr, 506 r10_bio->sectors, 507 &first_bad, &bad_sectors)) { 508 bio_put(bio); 509 if (repl) 510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 511 else 512 r10_bio->devs[slot].bio = IO_MADE_GOOD; 513 dec_rdev = 0; 514 set_bit(R10BIO_MadeGood, &r10_bio->state); 515 } 516 } 517 518 /* 519 * 520 * Let's see if all mirrored write operations have finished 521 * already. 522 */ 523 one_write_done(r10_bio); 524 if (dec_rdev) 525 rdev_dec_pending(rdev, conf->mddev); 526 } 527 528 /* 529 * RAID10 layout manager 530 * As well as the chunksize and raid_disks count, there are two 531 * parameters: near_copies and far_copies. 532 * near_copies * far_copies must be <= raid_disks. 533 * Normally one of these will be 1. 534 * If both are 1, we get raid0. 535 * If near_copies == raid_disks, we get raid1. 536 * 537 * Chunks are laid out in raid0 style with near_copies copies of the 538 * first chunk, followed by near_copies copies of the next chunk and 539 * so on. 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned 541 * as described above, we start again with a device offset of near_copies. 542 * So we effectively have another copy of the whole array further down all 543 * the drives, but with blocks on different drives. 544 * With this layout, and block is never stored twice on the one device. 545 * 546 * raid10_find_phys finds the sector offset of a given virtual sector 547 * on each device that it is on. 548 * 549 * raid10_find_virt does the reverse mapping, from a device and a 550 * sector offset to a virtual address 551 */ 552 553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 554 { 555 int n,f; 556 sector_t sector; 557 sector_t chunk; 558 sector_t stripe; 559 int dev; 560 int slot = 0; 561 int last_far_set_start, last_far_set_size; 562 563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 564 last_far_set_start *= geo->far_set_size; 565 566 last_far_set_size = geo->far_set_size; 567 last_far_set_size += (geo->raid_disks % geo->far_set_size); 568 569 /* now calculate first sector/dev */ 570 chunk = r10bio->sector >> geo->chunk_shift; 571 sector = r10bio->sector & geo->chunk_mask; 572 573 chunk *= geo->near_copies; 574 stripe = chunk; 575 dev = sector_div(stripe, geo->raid_disks); 576 if (geo->far_offset) 577 stripe *= geo->far_copies; 578 579 sector += stripe << geo->chunk_shift; 580 581 /* and calculate all the others */ 582 for (n = 0; n < geo->near_copies; n++) { 583 int d = dev; 584 int set; 585 sector_t s = sector; 586 r10bio->devs[slot].devnum = d; 587 r10bio->devs[slot].addr = s; 588 slot++; 589 590 for (f = 1; f < geo->far_copies; f++) { 591 set = d / geo->far_set_size; 592 d += geo->near_copies; 593 594 if ((geo->raid_disks % geo->far_set_size) && 595 (d > last_far_set_start)) { 596 d -= last_far_set_start; 597 d %= last_far_set_size; 598 d += last_far_set_start; 599 } else { 600 d %= geo->far_set_size; 601 d += geo->far_set_size * set; 602 } 603 s += geo->stride; 604 r10bio->devs[slot].devnum = d; 605 r10bio->devs[slot].addr = s; 606 slot++; 607 } 608 dev++; 609 if (dev >= geo->raid_disks) { 610 dev = 0; 611 sector += (geo->chunk_mask + 1); 612 } 613 } 614 } 615 616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 617 { 618 struct geom *geo = &conf->geo; 619 620 if (conf->reshape_progress != MaxSector && 621 ((r10bio->sector >= conf->reshape_progress) != 622 conf->mddev->reshape_backwards)) { 623 set_bit(R10BIO_Previous, &r10bio->state); 624 geo = &conf->prev; 625 } else 626 clear_bit(R10BIO_Previous, &r10bio->state); 627 628 __raid10_find_phys(geo, r10bio); 629 } 630 631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 632 { 633 sector_t offset, chunk, vchunk; 634 /* Never use conf->prev as this is only called during resync 635 * or recovery, so reshape isn't happening 636 */ 637 struct geom *geo = &conf->geo; 638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 639 int far_set_size = geo->far_set_size; 640 int last_far_set_start; 641 642 if (geo->raid_disks % geo->far_set_size) { 643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 644 last_far_set_start *= geo->far_set_size; 645 646 if (dev >= last_far_set_start) { 647 far_set_size = geo->far_set_size; 648 far_set_size += (geo->raid_disks % geo->far_set_size); 649 far_set_start = last_far_set_start; 650 } 651 } 652 653 offset = sector & geo->chunk_mask; 654 if (geo->far_offset) { 655 int fc; 656 chunk = sector >> geo->chunk_shift; 657 fc = sector_div(chunk, geo->far_copies); 658 dev -= fc * geo->near_copies; 659 if (dev < far_set_start) 660 dev += far_set_size; 661 } else { 662 while (sector >= geo->stride) { 663 sector -= geo->stride; 664 if (dev < (geo->near_copies + far_set_start)) 665 dev += far_set_size - geo->near_copies; 666 else 667 dev -= geo->near_copies; 668 } 669 chunk = sector >> geo->chunk_shift; 670 } 671 vchunk = chunk * geo->raid_disks + dev; 672 sector_div(vchunk, geo->near_copies); 673 return (vchunk << geo->chunk_shift) + offset; 674 } 675 676 /** 677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 678 * @q: request queue 679 * @bvm: properties of new bio 680 * @biovec: the request that could be merged to it. 681 * 682 * Return amount of bytes we can accept at this offset 683 * This requires checking for end-of-chunk if near_copies != raid_disks, 684 * and for subordinate merge_bvec_fns if merge_check_needed. 685 */ 686 static int raid10_mergeable_bvec(struct request_queue *q, 687 struct bvec_merge_data *bvm, 688 struct bio_vec *biovec) 689 { 690 struct mddev *mddev = q->queuedata; 691 struct r10conf *conf = mddev->private; 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 693 int max; 694 unsigned int chunk_sectors; 695 unsigned int bio_sectors = bvm->bi_size >> 9; 696 struct geom *geo = &conf->geo; 697 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 699 if (conf->reshape_progress != MaxSector && 700 ((sector >= conf->reshape_progress) != 701 conf->mddev->reshape_backwards)) 702 geo = &conf->prev; 703 704 if (geo->near_copies < geo->raid_disks) { 705 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 706 + bio_sectors)) << 9; 707 if (max < 0) 708 /* bio_add cannot handle a negative return */ 709 max = 0; 710 if (max <= biovec->bv_len && bio_sectors == 0) 711 return biovec->bv_len; 712 } else 713 max = biovec->bv_len; 714 715 if (mddev->merge_check_needed) { 716 struct { 717 struct r10bio r10_bio; 718 struct r10dev devs[conf->copies]; 719 } on_stack; 720 struct r10bio *r10_bio = &on_stack.r10_bio; 721 int s; 722 if (conf->reshape_progress != MaxSector) { 723 /* Cannot give any guidance during reshape */ 724 if (max <= biovec->bv_len && bio_sectors == 0) 725 return biovec->bv_len; 726 return 0; 727 } 728 r10_bio->sector = sector; 729 raid10_find_phys(conf, r10_bio); 730 rcu_read_lock(); 731 for (s = 0; s < conf->copies; s++) { 732 int disk = r10_bio->devs[s].devnum; 733 struct md_rdev *rdev = rcu_dereference( 734 conf->mirrors[disk].rdev); 735 if (rdev && !test_bit(Faulty, &rdev->flags)) { 736 struct request_queue *q = 737 bdev_get_queue(rdev->bdev); 738 if (q->merge_bvec_fn) { 739 bvm->bi_sector = r10_bio->devs[s].addr 740 + rdev->data_offset; 741 bvm->bi_bdev = rdev->bdev; 742 max = min(max, q->merge_bvec_fn( 743 q, bvm, biovec)); 744 } 745 } 746 rdev = rcu_dereference(conf->mirrors[disk].replacement); 747 if (rdev && !test_bit(Faulty, &rdev->flags)) { 748 struct request_queue *q = 749 bdev_get_queue(rdev->bdev); 750 if (q->merge_bvec_fn) { 751 bvm->bi_sector = r10_bio->devs[s].addr 752 + rdev->data_offset; 753 bvm->bi_bdev = rdev->bdev; 754 max = min(max, q->merge_bvec_fn( 755 q, bvm, biovec)); 756 } 757 } 758 } 759 rcu_read_unlock(); 760 } 761 return max; 762 } 763 764 /* 765 * This routine returns the disk from which the requested read should 766 * be done. There is a per-array 'next expected sequential IO' sector 767 * number - if this matches on the next IO then we use the last disk. 768 * There is also a per-disk 'last know head position' sector that is 769 * maintained from IRQ contexts, both the normal and the resync IO 770 * completion handlers update this position correctly. If there is no 771 * perfect sequential match then we pick the disk whose head is closest. 772 * 773 * If there are 2 mirrors in the same 2 devices, performance degrades 774 * because position is mirror, not device based. 775 * 776 * The rdev for the device selected will have nr_pending incremented. 777 */ 778 779 /* 780 * FIXME: possibly should rethink readbalancing and do it differently 781 * depending on near_copies / far_copies geometry. 782 */ 783 static struct md_rdev *read_balance(struct r10conf *conf, 784 struct r10bio *r10_bio, 785 int *max_sectors) 786 { 787 const sector_t this_sector = r10_bio->sector; 788 int disk, slot; 789 int sectors = r10_bio->sectors; 790 int best_good_sectors; 791 sector_t new_distance, best_dist; 792 struct md_rdev *best_rdev, *rdev = NULL; 793 int do_balance; 794 int best_slot; 795 struct geom *geo = &conf->geo; 796 797 raid10_find_phys(conf, r10_bio); 798 rcu_read_lock(); 799 retry: 800 sectors = r10_bio->sectors; 801 best_slot = -1; 802 best_rdev = NULL; 803 best_dist = MaxSector; 804 best_good_sectors = 0; 805 do_balance = 1; 806 /* 807 * Check if we can balance. We can balance on the whole 808 * device if no resync is going on (recovery is ok), or below 809 * the resync window. We take the first readable disk when 810 * above the resync window. 811 */ 812 if (conf->mddev->recovery_cp < MaxSector 813 && (this_sector + sectors >= conf->next_resync)) 814 do_balance = 0; 815 816 for (slot = 0; slot < conf->copies ; slot++) { 817 sector_t first_bad; 818 int bad_sectors; 819 sector_t dev_sector; 820 821 if (r10_bio->devs[slot].bio == IO_BLOCKED) 822 continue; 823 disk = r10_bio->devs[slot].devnum; 824 rdev = rcu_dereference(conf->mirrors[disk].replacement); 825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 826 test_bit(Unmerged, &rdev->flags) || 827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 828 rdev = rcu_dereference(conf->mirrors[disk].rdev); 829 if (rdev == NULL || 830 test_bit(Faulty, &rdev->flags) || 831 test_bit(Unmerged, &rdev->flags)) 832 continue; 833 if (!test_bit(In_sync, &rdev->flags) && 834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 835 continue; 836 837 dev_sector = r10_bio->devs[slot].addr; 838 if (is_badblock(rdev, dev_sector, sectors, 839 &first_bad, &bad_sectors)) { 840 if (best_dist < MaxSector) 841 /* Already have a better slot */ 842 continue; 843 if (first_bad <= dev_sector) { 844 /* Cannot read here. If this is the 845 * 'primary' device, then we must not read 846 * beyond 'bad_sectors' from another device. 847 */ 848 bad_sectors -= (dev_sector - first_bad); 849 if (!do_balance && sectors > bad_sectors) 850 sectors = bad_sectors; 851 if (best_good_sectors > sectors) 852 best_good_sectors = sectors; 853 } else { 854 sector_t good_sectors = 855 first_bad - dev_sector; 856 if (good_sectors > best_good_sectors) { 857 best_good_sectors = good_sectors; 858 best_slot = slot; 859 best_rdev = rdev; 860 } 861 if (!do_balance) 862 /* Must read from here */ 863 break; 864 } 865 continue; 866 } else 867 best_good_sectors = sectors; 868 869 if (!do_balance) 870 break; 871 872 /* This optimisation is debatable, and completely destroys 873 * sequential read speed for 'far copies' arrays. So only 874 * keep it for 'near' arrays, and review those later. 875 */ 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 877 break; 878 879 /* for far > 1 always use the lowest address */ 880 if (geo->far_copies > 1) 881 new_distance = r10_bio->devs[slot].addr; 882 else 883 new_distance = abs(r10_bio->devs[slot].addr - 884 conf->mirrors[disk].head_position); 885 if (new_distance < best_dist) { 886 best_dist = new_distance; 887 best_slot = slot; 888 best_rdev = rdev; 889 } 890 } 891 if (slot >= conf->copies) { 892 slot = best_slot; 893 rdev = best_rdev; 894 } 895 896 if (slot >= 0) { 897 atomic_inc(&rdev->nr_pending); 898 if (test_bit(Faulty, &rdev->flags)) { 899 /* Cannot risk returning a device that failed 900 * before we inc'ed nr_pending 901 */ 902 rdev_dec_pending(rdev, conf->mddev); 903 goto retry; 904 } 905 r10_bio->read_slot = slot; 906 } else 907 rdev = NULL; 908 rcu_read_unlock(); 909 *max_sectors = best_good_sectors; 910 911 return rdev; 912 } 913 914 int md_raid10_congested(struct mddev *mddev, int bits) 915 { 916 struct r10conf *conf = mddev->private; 917 int i, ret = 0; 918 919 if ((bits & (1 << BDI_async_congested)) && 920 conf->pending_count >= max_queued_requests) 921 return 1; 922 923 rcu_read_lock(); 924 for (i = 0; 925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 926 && ret == 0; 927 i++) { 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 struct request_queue *q = bdev_get_queue(rdev->bdev); 931 932 ret |= bdi_congested(&q->backing_dev_info, bits); 933 } 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(md_raid10_congested); 939 940 static int raid10_congested(void *data, int bits) 941 { 942 struct mddev *mddev = data; 943 944 return mddev_congested(mddev, bits) || 945 md_raid10_congested(mddev, bits); 946 } 947 948 static void flush_pending_writes(struct r10conf *conf) 949 { 950 /* Any writes that have been queued but are awaiting 951 * bitmap updates get flushed here. 952 */ 953 spin_lock_irq(&conf->device_lock); 954 955 if (conf->pending_bio_list.head) { 956 struct bio *bio; 957 bio = bio_list_get(&conf->pending_bio_list); 958 conf->pending_count = 0; 959 spin_unlock_irq(&conf->device_lock); 960 /* flush any pending bitmap writes to disk 961 * before proceeding w/ I/O */ 962 bitmap_unplug(conf->mddev->bitmap); 963 wake_up(&conf->wait_barrier); 964 965 while (bio) { /* submit pending writes */ 966 struct bio *next = bio->bi_next; 967 bio->bi_next = NULL; 968 if (unlikely((bio->bi_rw & REQ_DISCARD) && 969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 970 /* Just ignore it */ 971 bio_endio(bio, 0); 972 else 973 generic_make_request(bio); 974 bio = next; 975 } 976 } else 977 spin_unlock_irq(&conf->device_lock); 978 } 979 980 /* Barriers.... 981 * Sometimes we need to suspend IO while we do something else, 982 * either some resync/recovery, or reconfigure the array. 983 * To do this we raise a 'barrier'. 984 * The 'barrier' is a counter that can be raised multiple times 985 * to count how many activities are happening which preclude 986 * normal IO. 987 * We can only raise the barrier if there is no pending IO. 988 * i.e. if nr_pending == 0. 989 * We choose only to raise the barrier if no-one is waiting for the 990 * barrier to go down. This means that as soon as an IO request 991 * is ready, no other operations which require a barrier will start 992 * until the IO request has had a chance. 993 * 994 * So: regular IO calls 'wait_barrier'. When that returns there 995 * is no backgroup IO happening, It must arrange to call 996 * allow_barrier when it has finished its IO. 997 * backgroup IO calls must call raise_barrier. Once that returns 998 * there is no normal IO happeing. It must arrange to call 999 * lower_barrier when the particular background IO completes. 1000 */ 1001 1002 static void raise_barrier(struct r10conf *conf, int force) 1003 { 1004 BUG_ON(force && !conf->barrier); 1005 spin_lock_irq(&conf->resync_lock); 1006 1007 /* Wait until no block IO is waiting (unless 'force') */ 1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1009 conf->resync_lock); 1010 1011 /* block any new IO from starting */ 1012 conf->barrier++; 1013 1014 /* Now wait for all pending IO to complete */ 1015 wait_event_lock_irq(conf->wait_barrier, 1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1017 conf->resync_lock); 1018 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void lower_barrier(struct r10conf *conf) 1023 { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->resync_lock, flags); 1026 conf->barrier--; 1027 spin_unlock_irqrestore(&conf->resync_lock, flags); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static void wait_barrier(struct r10conf *conf) 1032 { 1033 spin_lock_irq(&conf->resync_lock); 1034 if (conf->barrier) { 1035 conf->nr_waiting++; 1036 /* Wait for the barrier to drop. 1037 * However if there are already pending 1038 * requests (preventing the barrier from 1039 * rising completely), and the 1040 * pre-process bio queue isn't empty, 1041 * then don't wait, as we need to empty 1042 * that queue to get the nr_pending 1043 * count down. 1044 */ 1045 wait_event_lock_irq(conf->wait_barrier, 1046 !conf->barrier || 1047 (conf->nr_pending && 1048 current->bio_list && 1049 !bio_list_empty(current->bio_list)), 1050 conf->resync_lock); 1051 conf->nr_waiting--; 1052 } 1053 conf->nr_pending++; 1054 spin_unlock_irq(&conf->resync_lock); 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->resync_lock, flags); 1061 conf->nr_pending--; 1062 spin_unlock_irqrestore(&conf->resync_lock, flags); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->barrier++; 1082 conf->nr_waiting++; 1083 wait_event_lock_irq_cmd(conf->wait_barrier, 1084 conf->nr_pending == conf->nr_queued+extra, 1085 conf->resync_lock, 1086 flush_pending_writes(conf)); 1087 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 1091 static void unfreeze_array(struct r10conf *conf) 1092 { 1093 /* reverse the effect of the freeze */ 1094 spin_lock_irq(&conf->resync_lock); 1095 conf->barrier--; 1096 conf->nr_waiting--; 1097 wake_up(&conf->wait_barrier); 1098 spin_unlock_irq(&conf->resync_lock); 1099 } 1100 1101 static sector_t choose_data_offset(struct r10bio *r10_bio, 1102 struct md_rdev *rdev) 1103 { 1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1105 test_bit(R10BIO_Previous, &r10_bio->state)) 1106 return rdev->data_offset; 1107 else 1108 return rdev->new_data_offset; 1109 } 1110 1111 struct raid10_plug_cb { 1112 struct blk_plug_cb cb; 1113 struct bio_list pending; 1114 int pending_cnt; 1115 }; 1116 1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1118 { 1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1120 cb); 1121 struct mddev *mddev = plug->cb.data; 1122 struct r10conf *conf = mddev->private; 1123 struct bio *bio; 1124 1125 if (from_schedule || current->bio_list) { 1126 spin_lock_irq(&conf->device_lock); 1127 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1128 conf->pending_count += plug->pending_cnt; 1129 spin_unlock_irq(&conf->device_lock); 1130 wake_up(&conf->wait_barrier); 1131 md_wakeup_thread(mddev->thread); 1132 kfree(plug); 1133 return; 1134 } 1135 1136 /* we aren't scheduling, so we can do the write-out directly. */ 1137 bio = bio_list_get(&plug->pending); 1138 bitmap_unplug(mddev->bitmap); 1139 wake_up(&conf->wait_barrier); 1140 1141 while (bio) { /* submit pending writes */ 1142 struct bio *next = bio->bi_next; 1143 bio->bi_next = NULL; 1144 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio, 0); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static void make_request(struct mddev *mddev, struct bio * bio) 1156 { 1157 struct r10conf *conf = mddev->private; 1158 struct r10bio *r10_bio; 1159 struct bio *read_bio; 1160 int i; 1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1162 int chunk_sects = chunk_mask + 1; 1163 const int rw = bio_data_dir(bio); 1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1166 const unsigned long do_discard = (bio->bi_rw 1167 & (REQ_DISCARD | REQ_SECURE)); 1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1169 unsigned long flags; 1170 struct md_rdev *blocked_rdev; 1171 struct blk_plug_cb *cb; 1172 struct raid10_plug_cb *plug = NULL; 1173 int sectors_handled; 1174 int max_sectors; 1175 int sectors; 1176 1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1178 md_flush_request(mddev, bio); 1179 return; 1180 } 1181 1182 /* If this request crosses a chunk boundary, we need to 1183 * split it. This will only happen for 1 PAGE (or less) requests. 1184 */ 1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio) 1186 > chunk_sects 1187 && (conf->geo.near_copies < conf->geo.raid_disks 1188 || conf->prev.near_copies < conf->prev.raid_disks))) { 1189 struct bio_pair *bp; 1190 /* Sanity check -- queue functions should prevent this happening */ 1191 if (bio_segments(bio) > 1) 1192 goto bad_map; 1193 /* This is a one page bio that upper layers 1194 * refuse to split for us, so we need to split it. 1195 */ 1196 bp = bio_split(bio, 1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1198 1199 /* Each of these 'make_request' calls will call 'wait_barrier'. 1200 * If the first succeeds but the second blocks due to the resync 1201 * thread raising the barrier, we will deadlock because the 1202 * IO to the underlying device will be queued in generic_make_request 1203 * and will never complete, so will never reduce nr_pending. 1204 * So increment nr_waiting here so no new raise_barriers will 1205 * succeed, and so the second wait_barrier cannot block. 1206 */ 1207 spin_lock_irq(&conf->resync_lock); 1208 conf->nr_waiting++; 1209 spin_unlock_irq(&conf->resync_lock); 1210 1211 make_request(mddev, &bp->bio1); 1212 make_request(mddev, &bp->bio2); 1213 1214 spin_lock_irq(&conf->resync_lock); 1215 conf->nr_waiting--; 1216 wake_up(&conf->wait_barrier); 1217 spin_unlock_irq(&conf->resync_lock); 1218 1219 bio_pair_release(bp); 1220 return; 1221 bad_map: 1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2); 1225 1226 bio_io_error(bio); 1227 return; 1228 } 1229 1230 md_write_start(mddev, bio); 1231 1232 /* 1233 * Register the new request and wait if the reconstruction 1234 * thread has put up a bar for new requests. 1235 * Continue immediately if no resync is active currently. 1236 */ 1237 wait_barrier(conf); 1238 1239 sectors = bio_sectors(bio); 1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1241 bio->bi_sector < conf->reshape_progress && 1242 bio->bi_sector + sectors > conf->reshape_progress) { 1243 /* IO spans the reshape position. Need to wait for 1244 * reshape to pass 1245 */ 1246 allow_barrier(conf); 1247 wait_event(conf->wait_barrier, 1248 conf->reshape_progress <= bio->bi_sector || 1249 conf->reshape_progress >= bio->bi_sector + sectors); 1250 wait_barrier(conf); 1251 } 1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1253 bio_data_dir(bio) == WRITE && 1254 (mddev->reshape_backwards 1255 ? (bio->bi_sector < conf->reshape_safe && 1256 bio->bi_sector + sectors > conf->reshape_progress) 1257 : (bio->bi_sector + sectors > conf->reshape_safe && 1258 bio->bi_sector < conf->reshape_progress))) { 1259 /* Need to update reshape_position in metadata */ 1260 mddev->reshape_position = conf->reshape_progress; 1261 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1262 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1263 md_wakeup_thread(mddev->thread); 1264 wait_event(mddev->sb_wait, 1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1266 1267 conf->reshape_safe = mddev->reshape_position; 1268 } 1269 1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1271 1272 r10_bio->master_bio = bio; 1273 r10_bio->sectors = sectors; 1274 1275 r10_bio->mddev = mddev; 1276 r10_bio->sector = bio->bi_sector; 1277 r10_bio->state = 0; 1278 1279 /* We might need to issue multiple reads to different 1280 * devices if there are bad blocks around, so we keep 1281 * track of the number of reads in bio->bi_phys_segments. 1282 * If this is 0, there is only one r10_bio and no locking 1283 * will be needed when the request completes. If it is 1284 * non-zero, then it is the number of not-completed requests. 1285 */ 1286 bio->bi_phys_segments = 0; 1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1288 1289 if (rw == READ) { 1290 /* 1291 * read balancing logic: 1292 */ 1293 struct md_rdev *rdev; 1294 int slot; 1295 1296 read_again: 1297 rdev = read_balance(conf, r10_bio, &max_sectors); 1298 if (!rdev) { 1299 raid_end_bio_io(r10_bio); 1300 return; 1301 } 1302 slot = r10_bio->read_slot; 1303 1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1305 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1306 max_sectors); 1307 1308 r10_bio->devs[slot].bio = read_bio; 1309 r10_bio->devs[slot].rdev = rdev; 1310 1311 read_bio->bi_sector = r10_bio->devs[slot].addr + 1312 choose_data_offset(r10_bio, rdev); 1313 read_bio->bi_bdev = rdev->bdev; 1314 read_bio->bi_end_io = raid10_end_read_request; 1315 read_bio->bi_rw = READ | do_sync; 1316 read_bio->bi_private = r10_bio; 1317 1318 if (max_sectors < r10_bio->sectors) { 1319 /* Could not read all from this device, so we will 1320 * need another r10_bio. 1321 */ 1322 sectors_handled = (r10_bio->sectors + max_sectors 1323 - bio->bi_sector); 1324 r10_bio->sectors = max_sectors; 1325 spin_lock_irq(&conf->device_lock); 1326 if (bio->bi_phys_segments == 0) 1327 bio->bi_phys_segments = 2; 1328 else 1329 bio->bi_phys_segments++; 1330 spin_unlock(&conf->device_lock); 1331 /* Cannot call generic_make_request directly 1332 * as that will be queued in __generic_make_request 1333 * and subsequent mempool_alloc might block 1334 * waiting for it. so hand bio over to raid10d. 1335 */ 1336 reschedule_retry(r10_bio); 1337 1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1339 1340 r10_bio->master_bio = bio; 1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1342 r10_bio->state = 0; 1343 r10_bio->mddev = mddev; 1344 r10_bio->sector = bio->bi_sector + sectors_handled; 1345 goto read_again; 1346 } else 1347 generic_make_request(read_bio); 1348 return; 1349 } 1350 1351 /* 1352 * WRITE: 1353 */ 1354 if (conf->pending_count >= max_queued_requests) { 1355 md_wakeup_thread(mddev->thread); 1356 wait_event(conf->wait_barrier, 1357 conf->pending_count < max_queued_requests); 1358 } 1359 /* first select target devices under rcu_lock and 1360 * inc refcount on their rdev. Record them by setting 1361 * bios[x] to bio 1362 * If there are known/acknowledged bad blocks on any device 1363 * on which we have seen a write error, we want to avoid 1364 * writing to those blocks. This potentially requires several 1365 * writes to write around the bad blocks. Each set of writes 1366 * gets its own r10_bio with a set of bios attached. The number 1367 * of r10_bios is recored in bio->bi_phys_segments just as with 1368 * the read case. 1369 */ 1370 1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1372 raid10_find_phys(conf, r10_bio); 1373 retry_write: 1374 blocked_rdev = NULL; 1375 rcu_read_lock(); 1376 max_sectors = r10_bio->sectors; 1377 1378 for (i = 0; i < conf->copies; i++) { 1379 int d = r10_bio->devs[i].devnum; 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1381 struct md_rdev *rrdev = rcu_dereference( 1382 conf->mirrors[d].replacement); 1383 if (rdev == rrdev) 1384 rrdev = NULL; 1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1386 atomic_inc(&rdev->nr_pending); 1387 blocked_rdev = rdev; 1388 break; 1389 } 1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1391 atomic_inc(&rrdev->nr_pending); 1392 blocked_rdev = rrdev; 1393 break; 1394 } 1395 if (rdev && (test_bit(Faulty, &rdev->flags) 1396 || test_bit(Unmerged, &rdev->flags))) 1397 rdev = NULL; 1398 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1399 || test_bit(Unmerged, &rrdev->flags))) 1400 rrdev = NULL; 1401 1402 r10_bio->devs[i].bio = NULL; 1403 r10_bio->devs[i].repl_bio = NULL; 1404 1405 if (!rdev && !rrdev) { 1406 set_bit(R10BIO_Degraded, &r10_bio->state); 1407 continue; 1408 } 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1410 sector_t first_bad; 1411 sector_t dev_sector = r10_bio->devs[i].addr; 1412 int bad_sectors; 1413 int is_bad; 1414 1415 is_bad = is_badblock(rdev, dev_sector, 1416 max_sectors, 1417 &first_bad, &bad_sectors); 1418 if (is_bad < 0) { 1419 /* Mustn't write here until the bad block 1420 * is acknowledged 1421 */ 1422 atomic_inc(&rdev->nr_pending); 1423 set_bit(BlockedBadBlocks, &rdev->flags); 1424 blocked_rdev = rdev; 1425 break; 1426 } 1427 if (is_bad && first_bad <= dev_sector) { 1428 /* Cannot write here at all */ 1429 bad_sectors -= (dev_sector - first_bad); 1430 if (bad_sectors < max_sectors) 1431 /* Mustn't write more than bad_sectors 1432 * to other devices yet 1433 */ 1434 max_sectors = bad_sectors; 1435 /* We don't set R10BIO_Degraded as that 1436 * only applies if the disk is missing, 1437 * so it might be re-added, and we want to 1438 * know to recover this chunk. 1439 * In this case the device is here, and the 1440 * fact that this chunk is not in-sync is 1441 * recorded in the bad block log. 1442 */ 1443 continue; 1444 } 1445 if (is_bad) { 1446 int good_sectors = first_bad - dev_sector; 1447 if (good_sectors < max_sectors) 1448 max_sectors = good_sectors; 1449 } 1450 } 1451 if (rdev) { 1452 r10_bio->devs[i].bio = bio; 1453 atomic_inc(&rdev->nr_pending); 1454 } 1455 if (rrdev) { 1456 r10_bio->devs[i].repl_bio = bio; 1457 atomic_inc(&rrdev->nr_pending); 1458 } 1459 } 1460 rcu_read_unlock(); 1461 1462 if (unlikely(blocked_rdev)) { 1463 /* Have to wait for this device to get unblocked, then retry */ 1464 int j; 1465 int d; 1466 1467 for (j = 0; j < i; j++) { 1468 if (r10_bio->devs[j].bio) { 1469 d = r10_bio->devs[j].devnum; 1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1471 } 1472 if (r10_bio->devs[j].repl_bio) { 1473 struct md_rdev *rdev; 1474 d = r10_bio->devs[j].devnum; 1475 rdev = conf->mirrors[d].replacement; 1476 if (!rdev) { 1477 /* Race with remove_disk */ 1478 smp_mb(); 1479 rdev = conf->mirrors[d].rdev; 1480 } 1481 rdev_dec_pending(rdev, mddev); 1482 } 1483 } 1484 allow_barrier(conf); 1485 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1486 wait_barrier(conf); 1487 goto retry_write; 1488 } 1489 1490 if (max_sectors < r10_bio->sectors) { 1491 /* We are splitting this into multiple parts, so 1492 * we need to prepare for allocating another r10_bio. 1493 */ 1494 r10_bio->sectors = max_sectors; 1495 spin_lock_irq(&conf->device_lock); 1496 if (bio->bi_phys_segments == 0) 1497 bio->bi_phys_segments = 2; 1498 else 1499 bio->bi_phys_segments++; 1500 spin_unlock_irq(&conf->device_lock); 1501 } 1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1503 1504 atomic_set(&r10_bio->remaining, 1); 1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1506 1507 for (i = 0; i < conf->copies; i++) { 1508 struct bio *mbio; 1509 int d = r10_bio->devs[i].devnum; 1510 if (r10_bio->devs[i].bio) { 1511 struct md_rdev *rdev = conf->mirrors[d].rdev; 1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1513 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1514 max_sectors); 1515 r10_bio->devs[i].bio = mbio; 1516 1517 mbio->bi_sector = (r10_bio->devs[i].addr+ 1518 choose_data_offset(r10_bio, 1519 rdev)); 1520 mbio->bi_bdev = rdev->bdev; 1521 mbio->bi_end_io = raid10_end_write_request; 1522 mbio->bi_rw = 1523 WRITE | do_sync | do_fua | do_discard | do_same; 1524 mbio->bi_private = r10_bio; 1525 1526 atomic_inc(&r10_bio->remaining); 1527 1528 cb = blk_check_plugged(raid10_unplug, mddev, 1529 sizeof(*plug)); 1530 if (cb) 1531 plug = container_of(cb, struct raid10_plug_cb, 1532 cb); 1533 else 1534 plug = NULL; 1535 spin_lock_irqsave(&conf->device_lock, flags); 1536 if (plug) { 1537 bio_list_add(&plug->pending, mbio); 1538 plug->pending_cnt++; 1539 } else { 1540 bio_list_add(&conf->pending_bio_list, mbio); 1541 conf->pending_count++; 1542 } 1543 spin_unlock_irqrestore(&conf->device_lock, flags); 1544 if (!plug) 1545 md_wakeup_thread(mddev->thread); 1546 } 1547 1548 if (r10_bio->devs[i].repl_bio) { 1549 struct md_rdev *rdev = conf->mirrors[d].replacement; 1550 if (rdev == NULL) { 1551 /* Replacement just got moved to main 'rdev' */ 1552 smp_mb(); 1553 rdev = conf->mirrors[d].rdev; 1554 } 1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1556 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1557 max_sectors); 1558 r10_bio->devs[i].repl_bio = mbio; 1559 1560 mbio->bi_sector = (r10_bio->devs[i].addr + 1561 choose_data_offset( 1562 r10_bio, rdev)); 1563 mbio->bi_bdev = rdev->bdev; 1564 mbio->bi_end_io = raid10_end_write_request; 1565 mbio->bi_rw = 1566 WRITE | do_sync | do_fua | do_discard | do_same; 1567 mbio->bi_private = r10_bio; 1568 1569 atomic_inc(&r10_bio->remaining); 1570 spin_lock_irqsave(&conf->device_lock, flags); 1571 bio_list_add(&conf->pending_bio_list, mbio); 1572 conf->pending_count++; 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 if (!mddev_check_plugged(mddev)) 1575 md_wakeup_thread(mddev->thread); 1576 } 1577 } 1578 1579 /* Don't remove the bias on 'remaining' (one_write_done) until 1580 * after checking if we need to go around again. 1581 */ 1582 1583 if (sectors_handled < bio_sectors(bio)) { 1584 one_write_done(r10_bio); 1585 /* We need another r10_bio. It has already been counted 1586 * in bio->bi_phys_segments. 1587 */ 1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1589 1590 r10_bio->master_bio = bio; 1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1592 1593 r10_bio->mddev = mddev; 1594 r10_bio->sector = bio->bi_sector + sectors_handled; 1595 r10_bio->state = 0; 1596 goto retry_write; 1597 } 1598 one_write_done(r10_bio); 1599 1600 /* In case raid10d snuck in to freeze_array */ 1601 wake_up(&conf->wait_barrier); 1602 } 1603 1604 static void status(struct seq_file *seq, struct mddev *mddev) 1605 { 1606 struct r10conf *conf = mddev->private; 1607 int i; 1608 1609 if (conf->geo.near_copies < conf->geo.raid_disks) 1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1611 if (conf->geo.near_copies > 1) 1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1613 if (conf->geo.far_copies > 1) { 1614 if (conf->geo.far_offset) 1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1616 else 1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1618 } 1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1620 conf->geo.raid_disks - mddev->degraded); 1621 for (i = 0; i < conf->geo.raid_disks; i++) 1622 seq_printf(seq, "%s", 1623 conf->mirrors[i].rdev && 1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1625 seq_printf(seq, "]"); 1626 } 1627 1628 /* check if there are enough drives for 1629 * every block to appear on atleast one. 1630 * Don't consider the device numbered 'ignore' 1631 * as we might be about to remove it. 1632 */ 1633 static int _enough(struct r10conf *conf, int previous, int ignore) 1634 { 1635 int first = 0; 1636 int has_enough = 0; 1637 int disks, ncopies; 1638 if (previous) { 1639 disks = conf->prev.raid_disks; 1640 ncopies = conf->prev.near_copies; 1641 } else { 1642 disks = conf->geo.raid_disks; 1643 ncopies = conf->geo.near_copies; 1644 } 1645 1646 rcu_read_lock(); 1647 do { 1648 int n = conf->copies; 1649 int cnt = 0; 1650 int this = first; 1651 while (n--) { 1652 struct md_rdev *rdev; 1653 if (this != ignore && 1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1655 test_bit(In_sync, &rdev->flags)) 1656 cnt++; 1657 this = (this+1) % disks; 1658 } 1659 if (cnt == 0) 1660 goto out; 1661 first = (first + ncopies) % disks; 1662 } while (first != 0); 1663 has_enough = 1; 1664 out: 1665 rcu_read_unlock(); 1666 return has_enough; 1667 } 1668 1669 static int enough(struct r10conf *conf, int ignore) 1670 { 1671 /* when calling 'enough', both 'prev' and 'geo' must 1672 * be stable. 1673 * This is ensured if ->reconfig_mutex or ->device_lock 1674 * is held. 1675 */ 1676 return _enough(conf, 0, ignore) && 1677 _enough(conf, 1, ignore); 1678 } 1679 1680 static void error(struct mddev *mddev, struct md_rdev *rdev) 1681 { 1682 char b[BDEVNAME_SIZE]; 1683 struct r10conf *conf = mddev->private; 1684 unsigned long flags; 1685 1686 /* 1687 * If it is not operational, then we have already marked it as dead 1688 * else if it is the last working disks, ignore the error, let the 1689 * next level up know. 1690 * else mark the drive as failed 1691 */ 1692 spin_lock_irqsave(&conf->device_lock, flags); 1693 if (test_bit(In_sync, &rdev->flags) 1694 && !enough(conf, rdev->raid_disk)) { 1695 /* 1696 * Don't fail the drive, just return an IO error. 1697 */ 1698 spin_unlock_irqrestore(&conf->device_lock, flags); 1699 return; 1700 } 1701 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1702 mddev->degraded++; 1703 /* 1704 * if recovery is running, make sure it aborts. 1705 */ 1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1707 } 1708 set_bit(Blocked, &rdev->flags); 1709 set_bit(Faulty, &rdev->flags); 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1711 spin_unlock_irqrestore(&conf->device_lock, flags); 1712 printk(KERN_ALERT 1713 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1714 "md/raid10:%s: Operation continuing on %d devices.\n", 1715 mdname(mddev), bdevname(rdev->bdev, b), 1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1717 } 1718 1719 static void print_conf(struct r10conf *conf) 1720 { 1721 int i; 1722 struct raid10_info *tmp; 1723 1724 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1725 if (!conf) { 1726 printk(KERN_DEBUG "(!conf)\n"); 1727 return; 1728 } 1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1730 conf->geo.raid_disks); 1731 1732 for (i = 0; i < conf->geo.raid_disks; i++) { 1733 char b[BDEVNAME_SIZE]; 1734 tmp = conf->mirrors + i; 1735 if (tmp->rdev) 1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1737 i, !test_bit(In_sync, &tmp->rdev->flags), 1738 !test_bit(Faulty, &tmp->rdev->flags), 1739 bdevname(tmp->rdev->bdev,b)); 1740 } 1741 } 1742 1743 static void close_sync(struct r10conf *conf) 1744 { 1745 wait_barrier(conf); 1746 allow_barrier(conf); 1747 1748 mempool_destroy(conf->r10buf_pool); 1749 conf->r10buf_pool = NULL; 1750 } 1751 1752 static int raid10_spare_active(struct mddev *mddev) 1753 { 1754 int i; 1755 struct r10conf *conf = mddev->private; 1756 struct raid10_info *tmp; 1757 int count = 0; 1758 unsigned long flags; 1759 1760 /* 1761 * Find all non-in_sync disks within the RAID10 configuration 1762 * and mark them in_sync 1763 */ 1764 for (i = 0; i < conf->geo.raid_disks; i++) { 1765 tmp = conf->mirrors + i; 1766 if (tmp->replacement 1767 && tmp->replacement->recovery_offset == MaxSector 1768 && !test_bit(Faulty, &tmp->replacement->flags) 1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1770 /* Replacement has just become active */ 1771 if (!tmp->rdev 1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1773 count++; 1774 if (tmp->rdev) { 1775 /* Replaced device not technically faulty, 1776 * but we need to be sure it gets removed 1777 * and never re-added. 1778 */ 1779 set_bit(Faulty, &tmp->rdev->flags); 1780 sysfs_notify_dirent_safe( 1781 tmp->rdev->sysfs_state); 1782 } 1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1784 } else if (tmp->rdev 1785 && !test_bit(Faulty, &tmp->rdev->flags) 1786 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1787 count++; 1788 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1789 } 1790 } 1791 spin_lock_irqsave(&conf->device_lock, flags); 1792 mddev->degraded -= count; 1793 spin_unlock_irqrestore(&conf->device_lock, flags); 1794 1795 print_conf(conf); 1796 return count; 1797 } 1798 1799 1800 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1801 { 1802 struct r10conf *conf = mddev->private; 1803 int err = -EEXIST; 1804 int mirror; 1805 int first = 0; 1806 int last = conf->geo.raid_disks - 1; 1807 struct request_queue *q = bdev_get_queue(rdev->bdev); 1808 1809 if (mddev->recovery_cp < MaxSector) 1810 /* only hot-add to in-sync arrays, as recovery is 1811 * very different from resync 1812 */ 1813 return -EBUSY; 1814 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1815 return -EINVAL; 1816 1817 if (rdev->raid_disk >= 0) 1818 first = last = rdev->raid_disk; 1819 1820 if (q->merge_bvec_fn) { 1821 set_bit(Unmerged, &rdev->flags); 1822 mddev->merge_check_needed = 1; 1823 } 1824 1825 if (rdev->saved_raid_disk >= first && 1826 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1827 mirror = rdev->saved_raid_disk; 1828 else 1829 mirror = first; 1830 for ( ; mirror <= last ; mirror++) { 1831 struct raid10_info *p = &conf->mirrors[mirror]; 1832 if (p->recovery_disabled == mddev->recovery_disabled) 1833 continue; 1834 if (p->rdev) { 1835 if (!test_bit(WantReplacement, &p->rdev->flags) || 1836 p->replacement != NULL) 1837 continue; 1838 clear_bit(In_sync, &rdev->flags); 1839 set_bit(Replacement, &rdev->flags); 1840 rdev->raid_disk = mirror; 1841 err = 0; 1842 if (mddev->gendisk) 1843 disk_stack_limits(mddev->gendisk, rdev->bdev, 1844 rdev->data_offset << 9); 1845 conf->fullsync = 1; 1846 rcu_assign_pointer(p->replacement, rdev); 1847 break; 1848 } 1849 1850 if (mddev->gendisk) 1851 disk_stack_limits(mddev->gendisk, rdev->bdev, 1852 rdev->data_offset << 9); 1853 1854 p->head_position = 0; 1855 p->recovery_disabled = mddev->recovery_disabled - 1; 1856 rdev->raid_disk = mirror; 1857 err = 0; 1858 if (rdev->saved_raid_disk != mirror) 1859 conf->fullsync = 1; 1860 rcu_assign_pointer(p->rdev, rdev); 1861 break; 1862 } 1863 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1864 /* Some requests might not have seen this new 1865 * merge_bvec_fn. We must wait for them to complete 1866 * before merging the device fully. 1867 * First we make sure any code which has tested 1868 * our function has submitted the request, then 1869 * we wait for all outstanding requests to complete. 1870 */ 1871 synchronize_sched(); 1872 freeze_array(conf, 0); 1873 unfreeze_array(conf); 1874 clear_bit(Unmerged, &rdev->flags); 1875 } 1876 md_integrity_add_rdev(rdev, mddev); 1877 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1878 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1879 1880 print_conf(conf); 1881 return err; 1882 } 1883 1884 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1885 { 1886 struct r10conf *conf = mddev->private; 1887 int err = 0; 1888 int number = rdev->raid_disk; 1889 struct md_rdev **rdevp; 1890 struct raid10_info *p = conf->mirrors + number; 1891 1892 print_conf(conf); 1893 if (rdev == p->rdev) 1894 rdevp = &p->rdev; 1895 else if (rdev == p->replacement) 1896 rdevp = &p->replacement; 1897 else 1898 return 0; 1899 1900 if (test_bit(In_sync, &rdev->flags) || 1901 atomic_read(&rdev->nr_pending)) { 1902 err = -EBUSY; 1903 goto abort; 1904 } 1905 /* Only remove faulty devices if recovery 1906 * is not possible. 1907 */ 1908 if (!test_bit(Faulty, &rdev->flags) && 1909 mddev->recovery_disabled != p->recovery_disabled && 1910 (!p->replacement || p->replacement == rdev) && 1911 number < conf->geo.raid_disks && 1912 enough(conf, -1)) { 1913 err = -EBUSY; 1914 goto abort; 1915 } 1916 *rdevp = NULL; 1917 synchronize_rcu(); 1918 if (atomic_read(&rdev->nr_pending)) { 1919 /* lost the race, try later */ 1920 err = -EBUSY; 1921 *rdevp = rdev; 1922 goto abort; 1923 } else if (p->replacement) { 1924 /* We must have just cleared 'rdev' */ 1925 p->rdev = p->replacement; 1926 clear_bit(Replacement, &p->replacement->flags); 1927 smp_mb(); /* Make sure other CPUs may see both as identical 1928 * but will never see neither -- if they are careful. 1929 */ 1930 p->replacement = NULL; 1931 clear_bit(WantReplacement, &rdev->flags); 1932 } else 1933 /* We might have just remove the Replacement as faulty 1934 * Clear the flag just in case 1935 */ 1936 clear_bit(WantReplacement, &rdev->flags); 1937 1938 err = md_integrity_register(mddev); 1939 1940 abort: 1941 1942 print_conf(conf); 1943 return err; 1944 } 1945 1946 1947 static void end_sync_read(struct bio *bio, int error) 1948 { 1949 struct r10bio *r10_bio = bio->bi_private; 1950 struct r10conf *conf = r10_bio->mddev->private; 1951 int d; 1952 1953 if (bio == r10_bio->master_bio) { 1954 /* this is a reshape read */ 1955 d = r10_bio->read_slot; /* really the read dev */ 1956 } else 1957 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1958 1959 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1960 set_bit(R10BIO_Uptodate, &r10_bio->state); 1961 else 1962 /* The write handler will notice the lack of 1963 * R10BIO_Uptodate and record any errors etc 1964 */ 1965 atomic_add(r10_bio->sectors, 1966 &conf->mirrors[d].rdev->corrected_errors); 1967 1968 /* for reconstruct, we always reschedule after a read. 1969 * for resync, only after all reads 1970 */ 1971 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1972 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1973 atomic_dec_and_test(&r10_bio->remaining)) { 1974 /* we have read all the blocks, 1975 * do the comparison in process context in raid10d 1976 */ 1977 reschedule_retry(r10_bio); 1978 } 1979 } 1980 1981 static void end_sync_request(struct r10bio *r10_bio) 1982 { 1983 struct mddev *mddev = r10_bio->mddev; 1984 1985 while (atomic_dec_and_test(&r10_bio->remaining)) { 1986 if (r10_bio->master_bio == NULL) { 1987 /* the primary of several recovery bios */ 1988 sector_t s = r10_bio->sectors; 1989 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1990 test_bit(R10BIO_WriteError, &r10_bio->state)) 1991 reschedule_retry(r10_bio); 1992 else 1993 put_buf(r10_bio); 1994 md_done_sync(mddev, s, 1); 1995 break; 1996 } else { 1997 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1998 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1999 test_bit(R10BIO_WriteError, &r10_bio->state)) 2000 reschedule_retry(r10_bio); 2001 else 2002 put_buf(r10_bio); 2003 r10_bio = r10_bio2; 2004 } 2005 } 2006 } 2007 2008 static void end_sync_write(struct bio *bio, int error) 2009 { 2010 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2011 struct r10bio *r10_bio = bio->bi_private; 2012 struct mddev *mddev = r10_bio->mddev; 2013 struct r10conf *conf = mddev->private; 2014 int d; 2015 sector_t first_bad; 2016 int bad_sectors; 2017 int slot; 2018 int repl; 2019 struct md_rdev *rdev = NULL; 2020 2021 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2022 if (repl) 2023 rdev = conf->mirrors[d].replacement; 2024 else 2025 rdev = conf->mirrors[d].rdev; 2026 2027 if (!uptodate) { 2028 if (repl) 2029 md_error(mddev, rdev); 2030 else { 2031 set_bit(WriteErrorSeen, &rdev->flags); 2032 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2033 set_bit(MD_RECOVERY_NEEDED, 2034 &rdev->mddev->recovery); 2035 set_bit(R10BIO_WriteError, &r10_bio->state); 2036 } 2037 } else if (is_badblock(rdev, 2038 r10_bio->devs[slot].addr, 2039 r10_bio->sectors, 2040 &first_bad, &bad_sectors)) 2041 set_bit(R10BIO_MadeGood, &r10_bio->state); 2042 2043 rdev_dec_pending(rdev, mddev); 2044 2045 end_sync_request(r10_bio); 2046 } 2047 2048 /* 2049 * Note: sync and recover and handled very differently for raid10 2050 * This code is for resync. 2051 * For resync, we read through virtual addresses and read all blocks. 2052 * If there is any error, we schedule a write. The lowest numbered 2053 * drive is authoritative. 2054 * However requests come for physical address, so we need to map. 2055 * For every physical address there are raid_disks/copies virtual addresses, 2056 * which is always are least one, but is not necessarly an integer. 2057 * This means that a physical address can span multiple chunks, so we may 2058 * have to submit multiple io requests for a single sync request. 2059 */ 2060 /* 2061 * We check if all blocks are in-sync and only write to blocks that 2062 * aren't in sync 2063 */ 2064 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2065 { 2066 struct r10conf *conf = mddev->private; 2067 int i, first; 2068 struct bio *tbio, *fbio; 2069 int vcnt; 2070 2071 atomic_set(&r10_bio->remaining, 1); 2072 2073 /* find the first device with a block */ 2074 for (i=0; i<conf->copies; i++) 2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2076 break; 2077 2078 if (i == conf->copies) 2079 goto done; 2080 2081 first = i; 2082 fbio = r10_bio->devs[i].bio; 2083 2084 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2085 /* now find blocks with errors */ 2086 for (i=0 ; i < conf->copies ; i++) { 2087 int j, d; 2088 2089 tbio = r10_bio->devs[i].bio; 2090 2091 if (tbio->bi_end_io != end_sync_read) 2092 continue; 2093 if (i == first) 2094 continue; 2095 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2096 /* We know that the bi_io_vec layout is the same for 2097 * both 'first' and 'i', so we just compare them. 2098 * All vec entries are PAGE_SIZE; 2099 */ 2100 int sectors = r10_bio->sectors; 2101 for (j = 0; j < vcnt; j++) { 2102 int len = PAGE_SIZE; 2103 if (sectors < (len / 512)) 2104 len = sectors * 512; 2105 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2106 page_address(tbio->bi_io_vec[j].bv_page), 2107 len)) 2108 break; 2109 sectors -= len/512; 2110 } 2111 if (j == vcnt) 2112 continue; 2113 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2114 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2115 /* Don't fix anything. */ 2116 continue; 2117 } 2118 /* Ok, we need to write this bio, either to correct an 2119 * inconsistency or to correct an unreadable block. 2120 * First we need to fixup bv_offset, bv_len and 2121 * bi_vecs, as the read request might have corrupted these 2122 */ 2123 bio_reset(tbio); 2124 2125 tbio->bi_vcnt = vcnt; 2126 tbio->bi_size = r10_bio->sectors << 9; 2127 tbio->bi_rw = WRITE; 2128 tbio->bi_private = r10_bio; 2129 tbio->bi_sector = r10_bio->devs[i].addr; 2130 2131 for (j=0; j < vcnt ; j++) { 2132 tbio->bi_io_vec[j].bv_offset = 0; 2133 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2134 2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2136 page_address(fbio->bi_io_vec[j].bv_page), 2137 PAGE_SIZE); 2138 } 2139 tbio->bi_end_io = end_sync_write; 2140 2141 d = r10_bio->devs[i].devnum; 2142 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2143 atomic_inc(&r10_bio->remaining); 2144 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2145 2146 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2147 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2148 generic_make_request(tbio); 2149 } 2150 2151 /* Now write out to any replacement devices 2152 * that are active 2153 */ 2154 for (i = 0; i < conf->copies; i++) { 2155 int j, d; 2156 2157 tbio = r10_bio->devs[i].repl_bio; 2158 if (!tbio || !tbio->bi_end_io) 2159 continue; 2160 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2161 && r10_bio->devs[i].bio != fbio) 2162 for (j = 0; j < vcnt; j++) 2163 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2164 page_address(fbio->bi_io_vec[j].bv_page), 2165 PAGE_SIZE); 2166 d = r10_bio->devs[i].devnum; 2167 atomic_inc(&r10_bio->remaining); 2168 md_sync_acct(conf->mirrors[d].replacement->bdev, 2169 bio_sectors(tbio)); 2170 generic_make_request(tbio); 2171 } 2172 2173 done: 2174 if (atomic_dec_and_test(&r10_bio->remaining)) { 2175 md_done_sync(mddev, r10_bio->sectors, 1); 2176 put_buf(r10_bio); 2177 } 2178 } 2179 2180 /* 2181 * Now for the recovery code. 2182 * Recovery happens across physical sectors. 2183 * We recover all non-is_sync drives by finding the virtual address of 2184 * each, and then choose a working drive that also has that virt address. 2185 * There is a separate r10_bio for each non-in_sync drive. 2186 * Only the first two slots are in use. The first for reading, 2187 * The second for writing. 2188 * 2189 */ 2190 static void fix_recovery_read_error(struct r10bio *r10_bio) 2191 { 2192 /* We got a read error during recovery. 2193 * We repeat the read in smaller page-sized sections. 2194 * If a read succeeds, write it to the new device or record 2195 * a bad block if we cannot. 2196 * If a read fails, record a bad block on both old and 2197 * new devices. 2198 */ 2199 struct mddev *mddev = r10_bio->mddev; 2200 struct r10conf *conf = mddev->private; 2201 struct bio *bio = r10_bio->devs[0].bio; 2202 sector_t sect = 0; 2203 int sectors = r10_bio->sectors; 2204 int idx = 0; 2205 int dr = r10_bio->devs[0].devnum; 2206 int dw = r10_bio->devs[1].devnum; 2207 2208 while (sectors) { 2209 int s = sectors; 2210 struct md_rdev *rdev; 2211 sector_t addr; 2212 int ok; 2213 2214 if (s > (PAGE_SIZE>>9)) 2215 s = PAGE_SIZE >> 9; 2216 2217 rdev = conf->mirrors[dr].rdev; 2218 addr = r10_bio->devs[0].addr + sect, 2219 ok = sync_page_io(rdev, 2220 addr, 2221 s << 9, 2222 bio->bi_io_vec[idx].bv_page, 2223 READ, false); 2224 if (ok) { 2225 rdev = conf->mirrors[dw].rdev; 2226 addr = r10_bio->devs[1].addr + sect; 2227 ok = sync_page_io(rdev, 2228 addr, 2229 s << 9, 2230 bio->bi_io_vec[idx].bv_page, 2231 WRITE, false); 2232 if (!ok) { 2233 set_bit(WriteErrorSeen, &rdev->flags); 2234 if (!test_and_set_bit(WantReplacement, 2235 &rdev->flags)) 2236 set_bit(MD_RECOVERY_NEEDED, 2237 &rdev->mddev->recovery); 2238 } 2239 } 2240 if (!ok) { 2241 /* We don't worry if we cannot set a bad block - 2242 * it really is bad so there is no loss in not 2243 * recording it yet 2244 */ 2245 rdev_set_badblocks(rdev, addr, s, 0); 2246 2247 if (rdev != conf->mirrors[dw].rdev) { 2248 /* need bad block on destination too */ 2249 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2250 addr = r10_bio->devs[1].addr + sect; 2251 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2252 if (!ok) { 2253 /* just abort the recovery */ 2254 printk(KERN_NOTICE 2255 "md/raid10:%s: recovery aborted" 2256 " due to read error\n", 2257 mdname(mddev)); 2258 2259 conf->mirrors[dw].recovery_disabled 2260 = mddev->recovery_disabled; 2261 set_bit(MD_RECOVERY_INTR, 2262 &mddev->recovery); 2263 break; 2264 } 2265 } 2266 } 2267 2268 sectors -= s; 2269 sect += s; 2270 idx++; 2271 } 2272 } 2273 2274 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2275 { 2276 struct r10conf *conf = mddev->private; 2277 int d; 2278 struct bio *wbio, *wbio2; 2279 2280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2281 fix_recovery_read_error(r10_bio); 2282 end_sync_request(r10_bio); 2283 return; 2284 } 2285 2286 /* 2287 * share the pages with the first bio 2288 * and submit the write request 2289 */ 2290 d = r10_bio->devs[1].devnum; 2291 wbio = r10_bio->devs[1].bio; 2292 wbio2 = r10_bio->devs[1].repl_bio; 2293 if (wbio->bi_end_io) { 2294 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2295 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2296 generic_make_request(wbio); 2297 } 2298 if (wbio2 && wbio2->bi_end_io) { 2299 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2300 md_sync_acct(conf->mirrors[d].replacement->bdev, 2301 bio_sectors(wbio2)); 2302 generic_make_request(wbio2); 2303 } 2304 } 2305 2306 2307 /* 2308 * Used by fix_read_error() to decay the per rdev read_errors. 2309 * We halve the read error count for every hour that has elapsed 2310 * since the last recorded read error. 2311 * 2312 */ 2313 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2314 { 2315 struct timespec cur_time_mon; 2316 unsigned long hours_since_last; 2317 unsigned int read_errors = atomic_read(&rdev->read_errors); 2318 2319 ktime_get_ts(&cur_time_mon); 2320 2321 if (rdev->last_read_error.tv_sec == 0 && 2322 rdev->last_read_error.tv_nsec == 0) { 2323 /* first time we've seen a read error */ 2324 rdev->last_read_error = cur_time_mon; 2325 return; 2326 } 2327 2328 hours_since_last = (cur_time_mon.tv_sec - 2329 rdev->last_read_error.tv_sec) / 3600; 2330 2331 rdev->last_read_error = cur_time_mon; 2332 2333 /* 2334 * if hours_since_last is > the number of bits in read_errors 2335 * just set read errors to 0. We do this to avoid 2336 * overflowing the shift of read_errors by hours_since_last. 2337 */ 2338 if (hours_since_last >= 8 * sizeof(read_errors)) 2339 atomic_set(&rdev->read_errors, 0); 2340 else 2341 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2342 } 2343 2344 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2345 int sectors, struct page *page, int rw) 2346 { 2347 sector_t first_bad; 2348 int bad_sectors; 2349 2350 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2351 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2352 return -1; 2353 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2354 /* success */ 2355 return 1; 2356 if (rw == WRITE) { 2357 set_bit(WriteErrorSeen, &rdev->flags); 2358 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2359 set_bit(MD_RECOVERY_NEEDED, 2360 &rdev->mddev->recovery); 2361 } 2362 /* need to record an error - either for the block or the device */ 2363 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2364 md_error(rdev->mddev, rdev); 2365 return 0; 2366 } 2367 2368 /* 2369 * This is a kernel thread which: 2370 * 2371 * 1. Retries failed read operations on working mirrors. 2372 * 2. Updates the raid superblock when problems encounter. 2373 * 3. Performs writes following reads for array synchronising. 2374 */ 2375 2376 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2377 { 2378 int sect = 0; /* Offset from r10_bio->sector */ 2379 int sectors = r10_bio->sectors; 2380 struct md_rdev*rdev; 2381 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2382 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2383 2384 /* still own a reference to this rdev, so it cannot 2385 * have been cleared recently. 2386 */ 2387 rdev = conf->mirrors[d].rdev; 2388 2389 if (test_bit(Faulty, &rdev->flags)) 2390 /* drive has already been failed, just ignore any 2391 more fix_read_error() attempts */ 2392 return; 2393 2394 check_decay_read_errors(mddev, rdev); 2395 atomic_inc(&rdev->read_errors); 2396 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2397 char b[BDEVNAME_SIZE]; 2398 bdevname(rdev->bdev, b); 2399 2400 printk(KERN_NOTICE 2401 "md/raid10:%s: %s: Raid device exceeded " 2402 "read_error threshold [cur %d:max %d]\n", 2403 mdname(mddev), b, 2404 atomic_read(&rdev->read_errors), max_read_errors); 2405 printk(KERN_NOTICE 2406 "md/raid10:%s: %s: Failing raid device\n", 2407 mdname(mddev), b); 2408 md_error(mddev, conf->mirrors[d].rdev); 2409 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2410 return; 2411 } 2412 2413 while(sectors) { 2414 int s = sectors; 2415 int sl = r10_bio->read_slot; 2416 int success = 0; 2417 int start; 2418 2419 if (s > (PAGE_SIZE>>9)) 2420 s = PAGE_SIZE >> 9; 2421 2422 rcu_read_lock(); 2423 do { 2424 sector_t first_bad; 2425 int bad_sectors; 2426 2427 d = r10_bio->devs[sl].devnum; 2428 rdev = rcu_dereference(conf->mirrors[d].rdev); 2429 if (rdev && 2430 !test_bit(Unmerged, &rdev->flags) && 2431 test_bit(In_sync, &rdev->flags) && 2432 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2433 &first_bad, &bad_sectors) == 0) { 2434 atomic_inc(&rdev->nr_pending); 2435 rcu_read_unlock(); 2436 success = sync_page_io(rdev, 2437 r10_bio->devs[sl].addr + 2438 sect, 2439 s<<9, 2440 conf->tmppage, READ, false); 2441 rdev_dec_pending(rdev, mddev); 2442 rcu_read_lock(); 2443 if (success) 2444 break; 2445 } 2446 sl++; 2447 if (sl == conf->copies) 2448 sl = 0; 2449 } while (!success && sl != r10_bio->read_slot); 2450 rcu_read_unlock(); 2451 2452 if (!success) { 2453 /* Cannot read from anywhere, just mark the block 2454 * as bad on the first device to discourage future 2455 * reads. 2456 */ 2457 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2458 rdev = conf->mirrors[dn].rdev; 2459 2460 if (!rdev_set_badblocks( 2461 rdev, 2462 r10_bio->devs[r10_bio->read_slot].addr 2463 + sect, 2464 s, 0)) { 2465 md_error(mddev, rdev); 2466 r10_bio->devs[r10_bio->read_slot].bio 2467 = IO_BLOCKED; 2468 } 2469 break; 2470 } 2471 2472 start = sl; 2473 /* write it back and re-read */ 2474 rcu_read_lock(); 2475 while (sl != r10_bio->read_slot) { 2476 char b[BDEVNAME_SIZE]; 2477 2478 if (sl==0) 2479 sl = conf->copies; 2480 sl--; 2481 d = r10_bio->devs[sl].devnum; 2482 rdev = rcu_dereference(conf->mirrors[d].rdev); 2483 if (!rdev || 2484 test_bit(Unmerged, &rdev->flags) || 2485 !test_bit(In_sync, &rdev->flags)) 2486 continue; 2487 2488 atomic_inc(&rdev->nr_pending); 2489 rcu_read_unlock(); 2490 if (r10_sync_page_io(rdev, 2491 r10_bio->devs[sl].addr + 2492 sect, 2493 s, conf->tmppage, WRITE) 2494 == 0) { 2495 /* Well, this device is dead */ 2496 printk(KERN_NOTICE 2497 "md/raid10:%s: read correction " 2498 "write failed" 2499 " (%d sectors at %llu on %s)\n", 2500 mdname(mddev), s, 2501 (unsigned long long)( 2502 sect + 2503 choose_data_offset(r10_bio, 2504 rdev)), 2505 bdevname(rdev->bdev, b)); 2506 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2507 "drive\n", 2508 mdname(mddev), 2509 bdevname(rdev->bdev, b)); 2510 } 2511 rdev_dec_pending(rdev, mddev); 2512 rcu_read_lock(); 2513 } 2514 sl = start; 2515 while (sl != r10_bio->read_slot) { 2516 char b[BDEVNAME_SIZE]; 2517 2518 if (sl==0) 2519 sl = conf->copies; 2520 sl--; 2521 d = r10_bio->devs[sl].devnum; 2522 rdev = rcu_dereference(conf->mirrors[d].rdev); 2523 if (!rdev || 2524 !test_bit(In_sync, &rdev->flags)) 2525 continue; 2526 2527 atomic_inc(&rdev->nr_pending); 2528 rcu_read_unlock(); 2529 switch (r10_sync_page_io(rdev, 2530 r10_bio->devs[sl].addr + 2531 sect, 2532 s, conf->tmppage, 2533 READ)) { 2534 case 0: 2535 /* Well, this device is dead */ 2536 printk(KERN_NOTICE 2537 "md/raid10:%s: unable to read back " 2538 "corrected sectors" 2539 " (%d sectors at %llu on %s)\n", 2540 mdname(mddev), s, 2541 (unsigned long long)( 2542 sect + 2543 choose_data_offset(r10_bio, rdev)), 2544 bdevname(rdev->bdev, b)); 2545 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2546 "drive\n", 2547 mdname(mddev), 2548 bdevname(rdev->bdev, b)); 2549 break; 2550 case 1: 2551 printk(KERN_INFO 2552 "md/raid10:%s: read error corrected" 2553 " (%d sectors at %llu on %s)\n", 2554 mdname(mddev), s, 2555 (unsigned long long)( 2556 sect + 2557 choose_data_offset(r10_bio, rdev)), 2558 bdevname(rdev->bdev, b)); 2559 atomic_add(s, &rdev->corrected_errors); 2560 } 2561 2562 rdev_dec_pending(rdev, mddev); 2563 rcu_read_lock(); 2564 } 2565 rcu_read_unlock(); 2566 2567 sectors -= s; 2568 sect += s; 2569 } 2570 } 2571 2572 static int narrow_write_error(struct r10bio *r10_bio, int i) 2573 { 2574 struct bio *bio = r10_bio->master_bio; 2575 struct mddev *mddev = r10_bio->mddev; 2576 struct r10conf *conf = mddev->private; 2577 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2578 /* bio has the data to be written to slot 'i' where 2579 * we just recently had a write error. 2580 * We repeatedly clone the bio and trim down to one block, 2581 * then try the write. Where the write fails we record 2582 * a bad block. 2583 * It is conceivable that the bio doesn't exactly align with 2584 * blocks. We must handle this. 2585 * 2586 * We currently own a reference to the rdev. 2587 */ 2588 2589 int block_sectors; 2590 sector_t sector; 2591 int sectors; 2592 int sect_to_write = r10_bio->sectors; 2593 int ok = 1; 2594 2595 if (rdev->badblocks.shift < 0) 2596 return 0; 2597 2598 block_sectors = 1 << rdev->badblocks.shift; 2599 sector = r10_bio->sector; 2600 sectors = ((r10_bio->sector + block_sectors) 2601 & ~(sector_t)(block_sectors - 1)) 2602 - sector; 2603 2604 while (sect_to_write) { 2605 struct bio *wbio; 2606 if (sectors > sect_to_write) 2607 sectors = sect_to_write; 2608 /* Write at 'sector' for 'sectors' */ 2609 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2610 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2611 wbio->bi_sector = (r10_bio->devs[i].addr+ 2612 choose_data_offset(r10_bio, rdev) + 2613 (sector - r10_bio->sector)); 2614 wbio->bi_bdev = rdev->bdev; 2615 if (submit_bio_wait(WRITE, wbio) == 0) 2616 /* Failure! */ 2617 ok = rdev_set_badblocks(rdev, sector, 2618 sectors, 0) 2619 && ok; 2620 2621 bio_put(wbio); 2622 sect_to_write -= sectors; 2623 sector += sectors; 2624 sectors = block_sectors; 2625 } 2626 return ok; 2627 } 2628 2629 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2630 { 2631 int slot = r10_bio->read_slot; 2632 struct bio *bio; 2633 struct r10conf *conf = mddev->private; 2634 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2635 char b[BDEVNAME_SIZE]; 2636 unsigned long do_sync; 2637 int max_sectors; 2638 2639 /* we got a read error. Maybe the drive is bad. Maybe just 2640 * the block and we can fix it. 2641 * We freeze all other IO, and try reading the block from 2642 * other devices. When we find one, we re-write 2643 * and check it that fixes the read error. 2644 * This is all done synchronously while the array is 2645 * frozen. 2646 */ 2647 bio = r10_bio->devs[slot].bio; 2648 bdevname(bio->bi_bdev, b); 2649 bio_put(bio); 2650 r10_bio->devs[slot].bio = NULL; 2651 2652 if (mddev->ro == 0) { 2653 freeze_array(conf, 1); 2654 fix_read_error(conf, mddev, r10_bio); 2655 unfreeze_array(conf); 2656 } else 2657 r10_bio->devs[slot].bio = IO_BLOCKED; 2658 2659 rdev_dec_pending(rdev, mddev); 2660 2661 read_more: 2662 rdev = read_balance(conf, r10_bio, &max_sectors); 2663 if (rdev == NULL) { 2664 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2665 " read error for block %llu\n", 2666 mdname(mddev), b, 2667 (unsigned long long)r10_bio->sector); 2668 raid_end_bio_io(r10_bio); 2669 return; 2670 } 2671 2672 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2673 slot = r10_bio->read_slot; 2674 printk_ratelimited( 2675 KERN_ERR 2676 "md/raid10:%s: %s: redirecting " 2677 "sector %llu to another mirror\n", 2678 mdname(mddev), 2679 bdevname(rdev->bdev, b), 2680 (unsigned long long)r10_bio->sector); 2681 bio = bio_clone_mddev(r10_bio->master_bio, 2682 GFP_NOIO, mddev); 2683 md_trim_bio(bio, 2684 r10_bio->sector - bio->bi_sector, 2685 max_sectors); 2686 r10_bio->devs[slot].bio = bio; 2687 r10_bio->devs[slot].rdev = rdev; 2688 bio->bi_sector = r10_bio->devs[slot].addr 2689 + choose_data_offset(r10_bio, rdev); 2690 bio->bi_bdev = rdev->bdev; 2691 bio->bi_rw = READ | do_sync; 2692 bio->bi_private = r10_bio; 2693 bio->bi_end_io = raid10_end_read_request; 2694 if (max_sectors < r10_bio->sectors) { 2695 /* Drat - have to split this up more */ 2696 struct bio *mbio = r10_bio->master_bio; 2697 int sectors_handled = 2698 r10_bio->sector + max_sectors 2699 - mbio->bi_sector; 2700 r10_bio->sectors = max_sectors; 2701 spin_lock_irq(&conf->device_lock); 2702 if (mbio->bi_phys_segments == 0) 2703 mbio->bi_phys_segments = 2; 2704 else 2705 mbio->bi_phys_segments++; 2706 spin_unlock_irq(&conf->device_lock); 2707 generic_make_request(bio); 2708 2709 r10_bio = mempool_alloc(conf->r10bio_pool, 2710 GFP_NOIO); 2711 r10_bio->master_bio = mbio; 2712 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2713 r10_bio->state = 0; 2714 set_bit(R10BIO_ReadError, 2715 &r10_bio->state); 2716 r10_bio->mddev = mddev; 2717 r10_bio->sector = mbio->bi_sector 2718 + sectors_handled; 2719 2720 goto read_more; 2721 } else 2722 generic_make_request(bio); 2723 } 2724 2725 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2726 { 2727 /* Some sort of write request has finished and it 2728 * succeeded in writing where we thought there was a 2729 * bad block. So forget the bad block. 2730 * Or possibly if failed and we need to record 2731 * a bad block. 2732 */ 2733 int m; 2734 struct md_rdev *rdev; 2735 2736 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2737 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2738 for (m = 0; m < conf->copies; m++) { 2739 int dev = r10_bio->devs[m].devnum; 2740 rdev = conf->mirrors[dev].rdev; 2741 if (r10_bio->devs[m].bio == NULL) 2742 continue; 2743 if (test_bit(BIO_UPTODATE, 2744 &r10_bio->devs[m].bio->bi_flags)) { 2745 rdev_clear_badblocks( 2746 rdev, 2747 r10_bio->devs[m].addr, 2748 r10_bio->sectors, 0); 2749 } else { 2750 if (!rdev_set_badblocks( 2751 rdev, 2752 r10_bio->devs[m].addr, 2753 r10_bio->sectors, 0)) 2754 md_error(conf->mddev, rdev); 2755 } 2756 rdev = conf->mirrors[dev].replacement; 2757 if (r10_bio->devs[m].repl_bio == NULL) 2758 continue; 2759 if (test_bit(BIO_UPTODATE, 2760 &r10_bio->devs[m].repl_bio->bi_flags)) { 2761 rdev_clear_badblocks( 2762 rdev, 2763 r10_bio->devs[m].addr, 2764 r10_bio->sectors, 0); 2765 } else { 2766 if (!rdev_set_badblocks( 2767 rdev, 2768 r10_bio->devs[m].addr, 2769 r10_bio->sectors, 0)) 2770 md_error(conf->mddev, rdev); 2771 } 2772 } 2773 put_buf(r10_bio); 2774 } else { 2775 for (m = 0; m < conf->copies; m++) { 2776 int dev = r10_bio->devs[m].devnum; 2777 struct bio *bio = r10_bio->devs[m].bio; 2778 rdev = conf->mirrors[dev].rdev; 2779 if (bio == IO_MADE_GOOD) { 2780 rdev_clear_badblocks( 2781 rdev, 2782 r10_bio->devs[m].addr, 2783 r10_bio->sectors, 0); 2784 rdev_dec_pending(rdev, conf->mddev); 2785 } else if (bio != NULL && 2786 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2787 if (!narrow_write_error(r10_bio, m)) { 2788 md_error(conf->mddev, rdev); 2789 set_bit(R10BIO_Degraded, 2790 &r10_bio->state); 2791 } 2792 rdev_dec_pending(rdev, conf->mddev); 2793 } 2794 bio = r10_bio->devs[m].repl_bio; 2795 rdev = conf->mirrors[dev].replacement; 2796 if (rdev && bio == IO_MADE_GOOD) { 2797 rdev_clear_badblocks( 2798 rdev, 2799 r10_bio->devs[m].addr, 2800 r10_bio->sectors, 0); 2801 rdev_dec_pending(rdev, conf->mddev); 2802 } 2803 } 2804 if (test_bit(R10BIO_WriteError, 2805 &r10_bio->state)) 2806 close_write(r10_bio); 2807 raid_end_bio_io(r10_bio); 2808 } 2809 } 2810 2811 static void raid10d(struct md_thread *thread) 2812 { 2813 struct mddev *mddev = thread->mddev; 2814 struct r10bio *r10_bio; 2815 unsigned long flags; 2816 struct r10conf *conf = mddev->private; 2817 struct list_head *head = &conf->retry_list; 2818 struct blk_plug plug; 2819 2820 md_check_recovery(mddev); 2821 2822 blk_start_plug(&plug); 2823 for (;;) { 2824 2825 flush_pending_writes(conf); 2826 2827 spin_lock_irqsave(&conf->device_lock, flags); 2828 if (list_empty(head)) { 2829 spin_unlock_irqrestore(&conf->device_lock, flags); 2830 break; 2831 } 2832 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2833 list_del(head->prev); 2834 conf->nr_queued--; 2835 spin_unlock_irqrestore(&conf->device_lock, flags); 2836 2837 mddev = r10_bio->mddev; 2838 conf = mddev->private; 2839 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2840 test_bit(R10BIO_WriteError, &r10_bio->state)) 2841 handle_write_completed(conf, r10_bio); 2842 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2843 reshape_request_write(mddev, r10_bio); 2844 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2845 sync_request_write(mddev, r10_bio); 2846 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2847 recovery_request_write(mddev, r10_bio); 2848 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2849 handle_read_error(mddev, r10_bio); 2850 else { 2851 /* just a partial read to be scheduled from a 2852 * separate context 2853 */ 2854 int slot = r10_bio->read_slot; 2855 generic_make_request(r10_bio->devs[slot].bio); 2856 } 2857 2858 cond_resched(); 2859 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2860 md_check_recovery(mddev); 2861 } 2862 blk_finish_plug(&plug); 2863 } 2864 2865 2866 static int init_resync(struct r10conf *conf) 2867 { 2868 int buffs; 2869 int i; 2870 2871 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2872 BUG_ON(conf->r10buf_pool); 2873 conf->have_replacement = 0; 2874 for (i = 0; i < conf->geo.raid_disks; i++) 2875 if (conf->mirrors[i].replacement) 2876 conf->have_replacement = 1; 2877 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2878 if (!conf->r10buf_pool) 2879 return -ENOMEM; 2880 conf->next_resync = 0; 2881 return 0; 2882 } 2883 2884 /* 2885 * perform a "sync" on one "block" 2886 * 2887 * We need to make sure that no normal I/O request - particularly write 2888 * requests - conflict with active sync requests. 2889 * 2890 * This is achieved by tracking pending requests and a 'barrier' concept 2891 * that can be installed to exclude normal IO requests. 2892 * 2893 * Resync and recovery are handled very differently. 2894 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2895 * 2896 * For resync, we iterate over virtual addresses, read all copies, 2897 * and update if there are differences. If only one copy is live, 2898 * skip it. 2899 * For recovery, we iterate over physical addresses, read a good 2900 * value for each non-in_sync drive, and over-write. 2901 * 2902 * So, for recovery we may have several outstanding complex requests for a 2903 * given address, one for each out-of-sync device. We model this by allocating 2904 * a number of r10_bio structures, one for each out-of-sync device. 2905 * As we setup these structures, we collect all bio's together into a list 2906 * which we then process collectively to add pages, and then process again 2907 * to pass to generic_make_request. 2908 * 2909 * The r10_bio structures are linked using a borrowed master_bio pointer. 2910 * This link is counted in ->remaining. When the r10_bio that points to NULL 2911 * has its remaining count decremented to 0, the whole complex operation 2912 * is complete. 2913 * 2914 */ 2915 2916 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2917 int *skipped, int go_faster) 2918 { 2919 struct r10conf *conf = mddev->private; 2920 struct r10bio *r10_bio; 2921 struct bio *biolist = NULL, *bio; 2922 sector_t max_sector, nr_sectors; 2923 int i; 2924 int max_sync; 2925 sector_t sync_blocks; 2926 sector_t sectors_skipped = 0; 2927 int chunks_skipped = 0; 2928 sector_t chunk_mask = conf->geo.chunk_mask; 2929 2930 if (!conf->r10buf_pool) 2931 if (init_resync(conf)) 2932 return 0; 2933 2934 /* 2935 * Allow skipping a full rebuild for incremental assembly 2936 * of a clean array, like RAID1 does. 2937 */ 2938 if (mddev->bitmap == NULL && 2939 mddev->recovery_cp == MaxSector && 2940 mddev->reshape_position == MaxSector && 2941 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2942 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2943 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2944 conf->fullsync == 0) { 2945 *skipped = 1; 2946 return mddev->dev_sectors - sector_nr; 2947 } 2948 2949 skipped: 2950 max_sector = mddev->dev_sectors; 2951 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2952 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2953 max_sector = mddev->resync_max_sectors; 2954 if (sector_nr >= max_sector) { 2955 /* If we aborted, we need to abort the 2956 * sync on the 'current' bitmap chucks (there can 2957 * be several when recovering multiple devices). 2958 * as we may have started syncing it but not finished. 2959 * We can find the current address in 2960 * mddev->curr_resync, but for recovery, 2961 * we need to convert that to several 2962 * virtual addresses. 2963 */ 2964 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2965 end_reshape(conf); 2966 return 0; 2967 } 2968 2969 if (mddev->curr_resync < max_sector) { /* aborted */ 2970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2971 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2972 &sync_blocks, 1); 2973 else for (i = 0; i < conf->geo.raid_disks; i++) { 2974 sector_t sect = 2975 raid10_find_virt(conf, mddev->curr_resync, i); 2976 bitmap_end_sync(mddev->bitmap, sect, 2977 &sync_blocks, 1); 2978 } 2979 } else { 2980 /* completed sync */ 2981 if ((!mddev->bitmap || conf->fullsync) 2982 && conf->have_replacement 2983 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2984 /* Completed a full sync so the replacements 2985 * are now fully recovered. 2986 */ 2987 for (i = 0; i < conf->geo.raid_disks; i++) 2988 if (conf->mirrors[i].replacement) 2989 conf->mirrors[i].replacement 2990 ->recovery_offset 2991 = MaxSector; 2992 } 2993 conf->fullsync = 0; 2994 } 2995 bitmap_close_sync(mddev->bitmap); 2996 close_sync(conf); 2997 *skipped = 1; 2998 return sectors_skipped; 2999 } 3000 3001 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3002 return reshape_request(mddev, sector_nr, skipped); 3003 3004 if (chunks_skipped >= conf->geo.raid_disks) { 3005 /* if there has been nothing to do on any drive, 3006 * then there is nothing to do at all.. 3007 */ 3008 *skipped = 1; 3009 return (max_sector - sector_nr) + sectors_skipped; 3010 } 3011 3012 if (max_sector > mddev->resync_max) 3013 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3014 3015 /* make sure whole request will fit in a chunk - if chunks 3016 * are meaningful 3017 */ 3018 if (conf->geo.near_copies < conf->geo.raid_disks && 3019 max_sector > (sector_nr | chunk_mask)) 3020 max_sector = (sector_nr | chunk_mask) + 1; 3021 /* 3022 * If there is non-resync activity waiting for us then 3023 * put in a delay to throttle resync. 3024 */ 3025 if (!go_faster && conf->nr_waiting) 3026 msleep_interruptible(1000); 3027 3028 /* Again, very different code for resync and recovery. 3029 * Both must result in an r10bio with a list of bios that 3030 * have bi_end_io, bi_sector, bi_bdev set, 3031 * and bi_private set to the r10bio. 3032 * For recovery, we may actually create several r10bios 3033 * with 2 bios in each, that correspond to the bios in the main one. 3034 * In this case, the subordinate r10bios link back through a 3035 * borrowed master_bio pointer, and the counter in the master 3036 * includes a ref from each subordinate. 3037 */ 3038 /* First, we decide what to do and set ->bi_end_io 3039 * To end_sync_read if we want to read, and 3040 * end_sync_write if we will want to write. 3041 */ 3042 3043 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3044 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3045 /* recovery... the complicated one */ 3046 int j; 3047 r10_bio = NULL; 3048 3049 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3050 int still_degraded; 3051 struct r10bio *rb2; 3052 sector_t sect; 3053 int must_sync; 3054 int any_working; 3055 struct raid10_info *mirror = &conf->mirrors[i]; 3056 3057 if ((mirror->rdev == NULL || 3058 test_bit(In_sync, &mirror->rdev->flags)) 3059 && 3060 (mirror->replacement == NULL || 3061 test_bit(Faulty, 3062 &mirror->replacement->flags))) 3063 continue; 3064 3065 still_degraded = 0; 3066 /* want to reconstruct this device */ 3067 rb2 = r10_bio; 3068 sect = raid10_find_virt(conf, sector_nr, i); 3069 if (sect >= mddev->resync_max_sectors) { 3070 /* last stripe is not complete - don't 3071 * try to recover this sector. 3072 */ 3073 continue; 3074 } 3075 /* Unless we are doing a full sync, or a replacement 3076 * we only need to recover the block if it is set in 3077 * the bitmap 3078 */ 3079 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3080 &sync_blocks, 1); 3081 if (sync_blocks < max_sync) 3082 max_sync = sync_blocks; 3083 if (!must_sync && 3084 mirror->replacement == NULL && 3085 !conf->fullsync) { 3086 /* yep, skip the sync_blocks here, but don't assume 3087 * that there will never be anything to do here 3088 */ 3089 chunks_skipped = -1; 3090 continue; 3091 } 3092 3093 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3094 raise_barrier(conf, rb2 != NULL); 3095 atomic_set(&r10_bio->remaining, 0); 3096 3097 r10_bio->master_bio = (struct bio*)rb2; 3098 if (rb2) 3099 atomic_inc(&rb2->remaining); 3100 r10_bio->mddev = mddev; 3101 set_bit(R10BIO_IsRecover, &r10_bio->state); 3102 r10_bio->sector = sect; 3103 3104 raid10_find_phys(conf, r10_bio); 3105 3106 /* Need to check if the array will still be 3107 * degraded 3108 */ 3109 for (j = 0; j < conf->geo.raid_disks; j++) 3110 if (conf->mirrors[j].rdev == NULL || 3111 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3112 still_degraded = 1; 3113 break; 3114 } 3115 3116 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3117 &sync_blocks, still_degraded); 3118 3119 any_working = 0; 3120 for (j=0; j<conf->copies;j++) { 3121 int k; 3122 int d = r10_bio->devs[j].devnum; 3123 sector_t from_addr, to_addr; 3124 struct md_rdev *rdev; 3125 sector_t sector, first_bad; 3126 int bad_sectors; 3127 if (!conf->mirrors[d].rdev || 3128 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3129 continue; 3130 /* This is where we read from */ 3131 any_working = 1; 3132 rdev = conf->mirrors[d].rdev; 3133 sector = r10_bio->devs[j].addr; 3134 3135 if (is_badblock(rdev, sector, max_sync, 3136 &first_bad, &bad_sectors)) { 3137 if (first_bad > sector) 3138 max_sync = first_bad - sector; 3139 else { 3140 bad_sectors -= (sector 3141 - first_bad); 3142 if (max_sync > bad_sectors) 3143 max_sync = bad_sectors; 3144 continue; 3145 } 3146 } 3147 bio = r10_bio->devs[0].bio; 3148 bio_reset(bio); 3149 bio->bi_next = biolist; 3150 biolist = bio; 3151 bio->bi_private = r10_bio; 3152 bio->bi_end_io = end_sync_read; 3153 bio->bi_rw = READ; 3154 from_addr = r10_bio->devs[j].addr; 3155 bio->bi_sector = from_addr + rdev->data_offset; 3156 bio->bi_bdev = rdev->bdev; 3157 atomic_inc(&rdev->nr_pending); 3158 /* and we write to 'i' (if not in_sync) */ 3159 3160 for (k=0; k<conf->copies; k++) 3161 if (r10_bio->devs[k].devnum == i) 3162 break; 3163 BUG_ON(k == conf->copies); 3164 to_addr = r10_bio->devs[k].addr; 3165 r10_bio->devs[0].devnum = d; 3166 r10_bio->devs[0].addr = from_addr; 3167 r10_bio->devs[1].devnum = i; 3168 r10_bio->devs[1].addr = to_addr; 3169 3170 rdev = mirror->rdev; 3171 if (!test_bit(In_sync, &rdev->flags)) { 3172 bio = r10_bio->devs[1].bio; 3173 bio_reset(bio); 3174 bio->bi_next = biolist; 3175 biolist = bio; 3176 bio->bi_private = r10_bio; 3177 bio->bi_end_io = end_sync_write; 3178 bio->bi_rw = WRITE; 3179 bio->bi_sector = to_addr 3180 + rdev->data_offset; 3181 bio->bi_bdev = rdev->bdev; 3182 atomic_inc(&r10_bio->remaining); 3183 } else 3184 r10_bio->devs[1].bio->bi_end_io = NULL; 3185 3186 /* and maybe write to replacement */ 3187 bio = r10_bio->devs[1].repl_bio; 3188 if (bio) 3189 bio->bi_end_io = NULL; 3190 rdev = mirror->replacement; 3191 /* Note: if rdev != NULL, then bio 3192 * cannot be NULL as r10buf_pool_alloc will 3193 * have allocated it. 3194 * So the second test here is pointless. 3195 * But it keeps semantic-checkers happy, and 3196 * this comment keeps human reviewers 3197 * happy. 3198 */ 3199 if (rdev == NULL || bio == NULL || 3200 test_bit(Faulty, &rdev->flags)) 3201 break; 3202 bio_reset(bio); 3203 bio->bi_next = biolist; 3204 biolist = bio; 3205 bio->bi_private = r10_bio; 3206 bio->bi_end_io = end_sync_write; 3207 bio->bi_rw = WRITE; 3208 bio->bi_sector = to_addr + rdev->data_offset; 3209 bio->bi_bdev = rdev->bdev; 3210 atomic_inc(&r10_bio->remaining); 3211 break; 3212 } 3213 if (j == conf->copies) { 3214 /* Cannot recover, so abort the recovery or 3215 * record a bad block */ 3216 put_buf(r10_bio); 3217 if (rb2) 3218 atomic_dec(&rb2->remaining); 3219 r10_bio = rb2; 3220 if (any_working) { 3221 /* problem is that there are bad blocks 3222 * on other device(s) 3223 */ 3224 int k; 3225 for (k = 0; k < conf->copies; k++) 3226 if (r10_bio->devs[k].devnum == i) 3227 break; 3228 if (!test_bit(In_sync, 3229 &mirror->rdev->flags) 3230 && !rdev_set_badblocks( 3231 mirror->rdev, 3232 r10_bio->devs[k].addr, 3233 max_sync, 0)) 3234 any_working = 0; 3235 if (mirror->replacement && 3236 !rdev_set_badblocks( 3237 mirror->replacement, 3238 r10_bio->devs[k].addr, 3239 max_sync, 0)) 3240 any_working = 0; 3241 } 3242 if (!any_working) { 3243 if (!test_and_set_bit(MD_RECOVERY_INTR, 3244 &mddev->recovery)) 3245 printk(KERN_INFO "md/raid10:%s: insufficient " 3246 "working devices for recovery.\n", 3247 mdname(mddev)); 3248 mirror->recovery_disabled 3249 = mddev->recovery_disabled; 3250 } 3251 break; 3252 } 3253 } 3254 if (biolist == NULL) { 3255 while (r10_bio) { 3256 struct r10bio *rb2 = r10_bio; 3257 r10_bio = (struct r10bio*) rb2->master_bio; 3258 rb2->master_bio = NULL; 3259 put_buf(rb2); 3260 } 3261 goto giveup; 3262 } 3263 } else { 3264 /* resync. Schedule a read for every block at this virt offset */ 3265 int count = 0; 3266 3267 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3268 3269 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3270 &sync_blocks, mddev->degraded) && 3271 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3272 &mddev->recovery)) { 3273 /* We can skip this block */ 3274 *skipped = 1; 3275 return sync_blocks + sectors_skipped; 3276 } 3277 if (sync_blocks < max_sync) 3278 max_sync = sync_blocks; 3279 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3280 3281 r10_bio->mddev = mddev; 3282 atomic_set(&r10_bio->remaining, 0); 3283 raise_barrier(conf, 0); 3284 conf->next_resync = sector_nr; 3285 3286 r10_bio->master_bio = NULL; 3287 r10_bio->sector = sector_nr; 3288 set_bit(R10BIO_IsSync, &r10_bio->state); 3289 raid10_find_phys(conf, r10_bio); 3290 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3291 3292 for (i = 0; i < conf->copies; i++) { 3293 int d = r10_bio->devs[i].devnum; 3294 sector_t first_bad, sector; 3295 int bad_sectors; 3296 3297 if (r10_bio->devs[i].repl_bio) 3298 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3299 3300 bio = r10_bio->devs[i].bio; 3301 bio_reset(bio); 3302 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3303 if (conf->mirrors[d].rdev == NULL || 3304 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3305 continue; 3306 sector = r10_bio->devs[i].addr; 3307 if (is_badblock(conf->mirrors[d].rdev, 3308 sector, max_sync, 3309 &first_bad, &bad_sectors)) { 3310 if (first_bad > sector) 3311 max_sync = first_bad - sector; 3312 else { 3313 bad_sectors -= (sector - first_bad); 3314 if (max_sync > bad_sectors) 3315 max_sync = bad_sectors; 3316 continue; 3317 } 3318 } 3319 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3320 atomic_inc(&r10_bio->remaining); 3321 bio->bi_next = biolist; 3322 biolist = bio; 3323 bio->bi_private = r10_bio; 3324 bio->bi_end_io = end_sync_read; 3325 bio->bi_rw = READ; 3326 bio->bi_sector = sector + 3327 conf->mirrors[d].rdev->data_offset; 3328 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3329 count++; 3330 3331 if (conf->mirrors[d].replacement == NULL || 3332 test_bit(Faulty, 3333 &conf->mirrors[d].replacement->flags)) 3334 continue; 3335 3336 /* Need to set up for writing to the replacement */ 3337 bio = r10_bio->devs[i].repl_bio; 3338 bio_reset(bio); 3339 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3340 3341 sector = r10_bio->devs[i].addr; 3342 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3343 bio->bi_next = biolist; 3344 biolist = bio; 3345 bio->bi_private = r10_bio; 3346 bio->bi_end_io = end_sync_write; 3347 bio->bi_rw = WRITE; 3348 bio->bi_sector = sector + 3349 conf->mirrors[d].replacement->data_offset; 3350 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3351 count++; 3352 } 3353 3354 if (count < 2) { 3355 for (i=0; i<conf->copies; i++) { 3356 int d = r10_bio->devs[i].devnum; 3357 if (r10_bio->devs[i].bio->bi_end_io) 3358 rdev_dec_pending(conf->mirrors[d].rdev, 3359 mddev); 3360 if (r10_bio->devs[i].repl_bio && 3361 r10_bio->devs[i].repl_bio->bi_end_io) 3362 rdev_dec_pending( 3363 conf->mirrors[d].replacement, 3364 mddev); 3365 } 3366 put_buf(r10_bio); 3367 biolist = NULL; 3368 goto giveup; 3369 } 3370 } 3371 3372 nr_sectors = 0; 3373 if (sector_nr + max_sync < max_sector) 3374 max_sector = sector_nr + max_sync; 3375 do { 3376 struct page *page; 3377 int len = PAGE_SIZE; 3378 if (sector_nr + (len>>9) > max_sector) 3379 len = (max_sector - sector_nr) << 9; 3380 if (len == 0) 3381 break; 3382 for (bio= biolist ; bio ; bio=bio->bi_next) { 3383 struct bio *bio2; 3384 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3385 if (bio_add_page(bio, page, len, 0)) 3386 continue; 3387 3388 /* stop here */ 3389 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3390 for (bio2 = biolist; 3391 bio2 && bio2 != bio; 3392 bio2 = bio2->bi_next) { 3393 /* remove last page from this bio */ 3394 bio2->bi_vcnt--; 3395 bio2->bi_size -= len; 3396 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3397 } 3398 goto bio_full; 3399 } 3400 nr_sectors += len>>9; 3401 sector_nr += len>>9; 3402 } while (biolist->bi_vcnt < RESYNC_PAGES); 3403 bio_full: 3404 r10_bio->sectors = nr_sectors; 3405 3406 while (biolist) { 3407 bio = biolist; 3408 biolist = biolist->bi_next; 3409 3410 bio->bi_next = NULL; 3411 r10_bio = bio->bi_private; 3412 r10_bio->sectors = nr_sectors; 3413 3414 if (bio->bi_end_io == end_sync_read) { 3415 md_sync_acct(bio->bi_bdev, nr_sectors); 3416 set_bit(BIO_UPTODATE, &bio->bi_flags); 3417 generic_make_request(bio); 3418 } 3419 } 3420 3421 if (sectors_skipped) 3422 /* pretend they weren't skipped, it makes 3423 * no important difference in this case 3424 */ 3425 md_done_sync(mddev, sectors_skipped, 1); 3426 3427 return sectors_skipped + nr_sectors; 3428 giveup: 3429 /* There is nowhere to write, so all non-sync 3430 * drives must be failed or in resync, all drives 3431 * have a bad block, so try the next chunk... 3432 */ 3433 if (sector_nr + max_sync < max_sector) 3434 max_sector = sector_nr + max_sync; 3435 3436 sectors_skipped += (max_sector - sector_nr); 3437 chunks_skipped ++; 3438 sector_nr = max_sector; 3439 goto skipped; 3440 } 3441 3442 static sector_t 3443 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3444 { 3445 sector_t size; 3446 struct r10conf *conf = mddev->private; 3447 3448 if (!raid_disks) 3449 raid_disks = min(conf->geo.raid_disks, 3450 conf->prev.raid_disks); 3451 if (!sectors) 3452 sectors = conf->dev_sectors; 3453 3454 size = sectors >> conf->geo.chunk_shift; 3455 sector_div(size, conf->geo.far_copies); 3456 size = size * raid_disks; 3457 sector_div(size, conf->geo.near_copies); 3458 3459 return size << conf->geo.chunk_shift; 3460 } 3461 3462 static void calc_sectors(struct r10conf *conf, sector_t size) 3463 { 3464 /* Calculate the number of sectors-per-device that will 3465 * actually be used, and set conf->dev_sectors and 3466 * conf->stride 3467 */ 3468 3469 size = size >> conf->geo.chunk_shift; 3470 sector_div(size, conf->geo.far_copies); 3471 size = size * conf->geo.raid_disks; 3472 sector_div(size, conf->geo.near_copies); 3473 /* 'size' is now the number of chunks in the array */ 3474 /* calculate "used chunks per device" */ 3475 size = size * conf->copies; 3476 3477 /* We need to round up when dividing by raid_disks to 3478 * get the stride size. 3479 */ 3480 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3481 3482 conf->dev_sectors = size << conf->geo.chunk_shift; 3483 3484 if (conf->geo.far_offset) 3485 conf->geo.stride = 1 << conf->geo.chunk_shift; 3486 else { 3487 sector_div(size, conf->geo.far_copies); 3488 conf->geo.stride = size << conf->geo.chunk_shift; 3489 } 3490 } 3491 3492 enum geo_type {geo_new, geo_old, geo_start}; 3493 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3494 { 3495 int nc, fc, fo; 3496 int layout, chunk, disks; 3497 switch (new) { 3498 case geo_old: 3499 layout = mddev->layout; 3500 chunk = mddev->chunk_sectors; 3501 disks = mddev->raid_disks - mddev->delta_disks; 3502 break; 3503 case geo_new: 3504 layout = mddev->new_layout; 3505 chunk = mddev->new_chunk_sectors; 3506 disks = mddev->raid_disks; 3507 break; 3508 default: /* avoid 'may be unused' warnings */ 3509 case geo_start: /* new when starting reshape - raid_disks not 3510 * updated yet. */ 3511 layout = mddev->new_layout; 3512 chunk = mddev->new_chunk_sectors; 3513 disks = mddev->raid_disks + mddev->delta_disks; 3514 break; 3515 } 3516 if (layout >> 18) 3517 return -1; 3518 if (chunk < (PAGE_SIZE >> 9) || 3519 !is_power_of_2(chunk)) 3520 return -2; 3521 nc = layout & 255; 3522 fc = (layout >> 8) & 255; 3523 fo = layout & (1<<16); 3524 geo->raid_disks = disks; 3525 geo->near_copies = nc; 3526 geo->far_copies = fc; 3527 geo->far_offset = fo; 3528 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3529 geo->chunk_mask = chunk - 1; 3530 geo->chunk_shift = ffz(~chunk); 3531 return nc*fc; 3532 } 3533 3534 static struct r10conf *setup_conf(struct mddev *mddev) 3535 { 3536 struct r10conf *conf = NULL; 3537 int err = -EINVAL; 3538 struct geom geo; 3539 int copies; 3540 3541 copies = setup_geo(&geo, mddev, geo_new); 3542 3543 if (copies == -2) { 3544 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3545 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3546 mdname(mddev), PAGE_SIZE); 3547 goto out; 3548 } 3549 3550 if (copies < 2 || copies > mddev->raid_disks) { 3551 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3552 mdname(mddev), mddev->new_layout); 3553 goto out; 3554 } 3555 3556 err = -ENOMEM; 3557 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3558 if (!conf) 3559 goto out; 3560 3561 /* FIXME calc properly */ 3562 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3563 max(0,-mddev->delta_disks)), 3564 GFP_KERNEL); 3565 if (!conf->mirrors) 3566 goto out; 3567 3568 conf->tmppage = alloc_page(GFP_KERNEL); 3569 if (!conf->tmppage) 3570 goto out; 3571 3572 conf->geo = geo; 3573 conf->copies = copies; 3574 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3575 r10bio_pool_free, conf); 3576 if (!conf->r10bio_pool) 3577 goto out; 3578 3579 calc_sectors(conf, mddev->dev_sectors); 3580 if (mddev->reshape_position == MaxSector) { 3581 conf->prev = conf->geo; 3582 conf->reshape_progress = MaxSector; 3583 } else { 3584 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3585 err = -EINVAL; 3586 goto out; 3587 } 3588 conf->reshape_progress = mddev->reshape_position; 3589 if (conf->prev.far_offset) 3590 conf->prev.stride = 1 << conf->prev.chunk_shift; 3591 else 3592 /* far_copies must be 1 */ 3593 conf->prev.stride = conf->dev_sectors; 3594 } 3595 spin_lock_init(&conf->device_lock); 3596 INIT_LIST_HEAD(&conf->retry_list); 3597 3598 spin_lock_init(&conf->resync_lock); 3599 init_waitqueue_head(&conf->wait_barrier); 3600 3601 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3602 if (!conf->thread) 3603 goto out; 3604 3605 conf->mddev = mddev; 3606 return conf; 3607 3608 out: 3609 if (err == -ENOMEM) 3610 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3611 mdname(mddev)); 3612 if (conf) { 3613 if (conf->r10bio_pool) 3614 mempool_destroy(conf->r10bio_pool); 3615 kfree(conf->mirrors); 3616 safe_put_page(conf->tmppage); 3617 kfree(conf); 3618 } 3619 return ERR_PTR(err); 3620 } 3621 3622 static int run(struct mddev *mddev) 3623 { 3624 struct r10conf *conf; 3625 int i, disk_idx, chunk_size; 3626 struct raid10_info *disk; 3627 struct md_rdev *rdev; 3628 sector_t size; 3629 sector_t min_offset_diff = 0; 3630 int first = 1; 3631 bool discard_supported = false; 3632 3633 if (mddev->private == NULL) { 3634 conf = setup_conf(mddev); 3635 if (IS_ERR(conf)) 3636 return PTR_ERR(conf); 3637 mddev->private = conf; 3638 } 3639 conf = mddev->private; 3640 if (!conf) 3641 goto out; 3642 3643 mddev->thread = conf->thread; 3644 conf->thread = NULL; 3645 3646 chunk_size = mddev->chunk_sectors << 9; 3647 if (mddev->queue) { 3648 blk_queue_max_discard_sectors(mddev->queue, 3649 mddev->chunk_sectors); 3650 blk_queue_max_write_same_sectors(mddev->queue, 0); 3651 blk_queue_io_min(mddev->queue, chunk_size); 3652 if (conf->geo.raid_disks % conf->geo.near_copies) 3653 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3654 else 3655 blk_queue_io_opt(mddev->queue, chunk_size * 3656 (conf->geo.raid_disks / conf->geo.near_copies)); 3657 } 3658 3659 rdev_for_each(rdev, mddev) { 3660 long long diff; 3661 struct request_queue *q; 3662 3663 disk_idx = rdev->raid_disk; 3664 if (disk_idx < 0) 3665 continue; 3666 if (disk_idx >= conf->geo.raid_disks && 3667 disk_idx >= conf->prev.raid_disks) 3668 continue; 3669 disk = conf->mirrors + disk_idx; 3670 3671 if (test_bit(Replacement, &rdev->flags)) { 3672 if (disk->replacement) 3673 goto out_free_conf; 3674 disk->replacement = rdev; 3675 } else { 3676 if (disk->rdev) 3677 goto out_free_conf; 3678 disk->rdev = rdev; 3679 } 3680 q = bdev_get_queue(rdev->bdev); 3681 if (q->merge_bvec_fn) 3682 mddev->merge_check_needed = 1; 3683 diff = (rdev->new_data_offset - rdev->data_offset); 3684 if (!mddev->reshape_backwards) 3685 diff = -diff; 3686 if (diff < 0) 3687 diff = 0; 3688 if (first || diff < min_offset_diff) 3689 min_offset_diff = diff; 3690 3691 if (mddev->gendisk) 3692 disk_stack_limits(mddev->gendisk, rdev->bdev, 3693 rdev->data_offset << 9); 3694 3695 disk->head_position = 0; 3696 3697 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3698 discard_supported = true; 3699 } 3700 3701 if (mddev->queue) { 3702 if (discard_supported) 3703 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3704 mddev->queue); 3705 else 3706 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3707 mddev->queue); 3708 } 3709 /* need to check that every block has at least one working mirror */ 3710 if (!enough(conf, -1)) { 3711 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3712 mdname(mddev)); 3713 goto out_free_conf; 3714 } 3715 3716 if (conf->reshape_progress != MaxSector) { 3717 /* must ensure that shape change is supported */ 3718 if (conf->geo.far_copies != 1 && 3719 conf->geo.far_offset == 0) 3720 goto out_free_conf; 3721 if (conf->prev.far_copies != 1 && 3722 conf->prev.far_offset == 0) 3723 goto out_free_conf; 3724 } 3725 3726 mddev->degraded = 0; 3727 for (i = 0; 3728 i < conf->geo.raid_disks 3729 || i < conf->prev.raid_disks; 3730 i++) { 3731 3732 disk = conf->mirrors + i; 3733 3734 if (!disk->rdev && disk->replacement) { 3735 /* The replacement is all we have - use it */ 3736 disk->rdev = disk->replacement; 3737 disk->replacement = NULL; 3738 clear_bit(Replacement, &disk->rdev->flags); 3739 } 3740 3741 if (!disk->rdev || 3742 !test_bit(In_sync, &disk->rdev->flags)) { 3743 disk->head_position = 0; 3744 mddev->degraded++; 3745 if (disk->rdev) 3746 conf->fullsync = 1; 3747 } 3748 disk->recovery_disabled = mddev->recovery_disabled - 1; 3749 } 3750 3751 if (mddev->recovery_cp != MaxSector) 3752 printk(KERN_NOTICE "md/raid10:%s: not clean" 3753 " -- starting background reconstruction\n", 3754 mdname(mddev)); 3755 printk(KERN_INFO 3756 "md/raid10:%s: active with %d out of %d devices\n", 3757 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3758 conf->geo.raid_disks); 3759 /* 3760 * Ok, everything is just fine now 3761 */ 3762 mddev->dev_sectors = conf->dev_sectors; 3763 size = raid10_size(mddev, 0, 0); 3764 md_set_array_sectors(mddev, size); 3765 mddev->resync_max_sectors = size; 3766 3767 if (mddev->queue) { 3768 int stripe = conf->geo.raid_disks * 3769 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3770 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3771 mddev->queue->backing_dev_info.congested_data = mddev; 3772 3773 /* Calculate max read-ahead size. 3774 * We need to readahead at least twice a whole stripe.... 3775 * maybe... 3776 */ 3777 stripe /= conf->geo.near_copies; 3778 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3779 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3780 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3781 } 3782 3783 3784 if (md_integrity_register(mddev)) 3785 goto out_free_conf; 3786 3787 if (conf->reshape_progress != MaxSector) { 3788 unsigned long before_length, after_length; 3789 3790 before_length = ((1 << conf->prev.chunk_shift) * 3791 conf->prev.far_copies); 3792 after_length = ((1 << conf->geo.chunk_shift) * 3793 conf->geo.far_copies); 3794 3795 if (max(before_length, after_length) > min_offset_diff) { 3796 /* This cannot work */ 3797 printk("md/raid10: offset difference not enough to continue reshape\n"); 3798 goto out_free_conf; 3799 } 3800 conf->offset_diff = min_offset_diff; 3801 3802 conf->reshape_safe = conf->reshape_progress; 3803 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3804 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3805 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3806 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3807 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3808 "reshape"); 3809 } 3810 3811 return 0; 3812 3813 out_free_conf: 3814 md_unregister_thread(&mddev->thread); 3815 if (conf->r10bio_pool) 3816 mempool_destroy(conf->r10bio_pool); 3817 safe_put_page(conf->tmppage); 3818 kfree(conf->mirrors); 3819 kfree(conf); 3820 mddev->private = NULL; 3821 out: 3822 return -EIO; 3823 } 3824 3825 static int stop(struct mddev *mddev) 3826 { 3827 struct r10conf *conf = mddev->private; 3828 3829 raise_barrier(conf, 0); 3830 lower_barrier(conf); 3831 3832 md_unregister_thread(&mddev->thread); 3833 if (mddev->queue) 3834 /* the unplug fn references 'conf'*/ 3835 blk_sync_queue(mddev->queue); 3836 3837 if (conf->r10bio_pool) 3838 mempool_destroy(conf->r10bio_pool); 3839 safe_put_page(conf->tmppage); 3840 kfree(conf->mirrors); 3841 kfree(conf); 3842 mddev->private = NULL; 3843 return 0; 3844 } 3845 3846 static void raid10_quiesce(struct mddev *mddev, int state) 3847 { 3848 struct r10conf *conf = mddev->private; 3849 3850 switch(state) { 3851 case 1: 3852 raise_barrier(conf, 0); 3853 break; 3854 case 0: 3855 lower_barrier(conf); 3856 break; 3857 } 3858 } 3859 3860 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3861 { 3862 /* Resize of 'far' arrays is not supported. 3863 * For 'near' and 'offset' arrays we can set the 3864 * number of sectors used to be an appropriate multiple 3865 * of the chunk size. 3866 * For 'offset', this is far_copies*chunksize. 3867 * For 'near' the multiplier is the LCM of 3868 * near_copies and raid_disks. 3869 * So if far_copies > 1 && !far_offset, fail. 3870 * Else find LCM(raid_disks, near_copy)*far_copies and 3871 * multiply by chunk_size. Then round to this number. 3872 * This is mostly done by raid10_size() 3873 */ 3874 struct r10conf *conf = mddev->private; 3875 sector_t oldsize, size; 3876 3877 if (mddev->reshape_position != MaxSector) 3878 return -EBUSY; 3879 3880 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3881 return -EINVAL; 3882 3883 oldsize = raid10_size(mddev, 0, 0); 3884 size = raid10_size(mddev, sectors, 0); 3885 if (mddev->external_size && 3886 mddev->array_sectors > size) 3887 return -EINVAL; 3888 if (mddev->bitmap) { 3889 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3890 if (ret) 3891 return ret; 3892 } 3893 md_set_array_sectors(mddev, size); 3894 set_capacity(mddev->gendisk, mddev->array_sectors); 3895 revalidate_disk(mddev->gendisk); 3896 if (sectors > mddev->dev_sectors && 3897 mddev->recovery_cp > oldsize) { 3898 mddev->recovery_cp = oldsize; 3899 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3900 } 3901 calc_sectors(conf, sectors); 3902 mddev->dev_sectors = conf->dev_sectors; 3903 mddev->resync_max_sectors = size; 3904 return 0; 3905 } 3906 3907 static void *raid10_takeover_raid0(struct mddev *mddev) 3908 { 3909 struct md_rdev *rdev; 3910 struct r10conf *conf; 3911 3912 if (mddev->degraded > 0) { 3913 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3914 mdname(mddev)); 3915 return ERR_PTR(-EINVAL); 3916 } 3917 3918 /* Set new parameters */ 3919 mddev->new_level = 10; 3920 /* new layout: far_copies = 1, near_copies = 2 */ 3921 mddev->new_layout = (1<<8) + 2; 3922 mddev->new_chunk_sectors = mddev->chunk_sectors; 3923 mddev->delta_disks = mddev->raid_disks; 3924 mddev->raid_disks *= 2; 3925 /* make sure it will be not marked as dirty */ 3926 mddev->recovery_cp = MaxSector; 3927 3928 conf = setup_conf(mddev); 3929 if (!IS_ERR(conf)) { 3930 rdev_for_each(rdev, mddev) 3931 if (rdev->raid_disk >= 0) 3932 rdev->new_raid_disk = rdev->raid_disk * 2; 3933 conf->barrier = 1; 3934 } 3935 3936 return conf; 3937 } 3938 3939 static void *raid10_takeover(struct mddev *mddev) 3940 { 3941 struct r0conf *raid0_conf; 3942 3943 /* raid10 can take over: 3944 * raid0 - providing it has only two drives 3945 */ 3946 if (mddev->level == 0) { 3947 /* for raid0 takeover only one zone is supported */ 3948 raid0_conf = mddev->private; 3949 if (raid0_conf->nr_strip_zones > 1) { 3950 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3951 " with more than one zone.\n", 3952 mdname(mddev)); 3953 return ERR_PTR(-EINVAL); 3954 } 3955 return raid10_takeover_raid0(mddev); 3956 } 3957 return ERR_PTR(-EINVAL); 3958 } 3959 3960 static int raid10_check_reshape(struct mddev *mddev) 3961 { 3962 /* Called when there is a request to change 3963 * - layout (to ->new_layout) 3964 * - chunk size (to ->new_chunk_sectors) 3965 * - raid_disks (by delta_disks) 3966 * or when trying to restart a reshape that was ongoing. 3967 * 3968 * We need to validate the request and possibly allocate 3969 * space if that might be an issue later. 3970 * 3971 * Currently we reject any reshape of a 'far' mode array, 3972 * allow chunk size to change if new is generally acceptable, 3973 * allow raid_disks to increase, and allow 3974 * a switch between 'near' mode and 'offset' mode. 3975 */ 3976 struct r10conf *conf = mddev->private; 3977 struct geom geo; 3978 3979 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3980 return -EINVAL; 3981 3982 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3983 /* mustn't change number of copies */ 3984 return -EINVAL; 3985 if (geo.far_copies > 1 && !geo.far_offset) 3986 /* Cannot switch to 'far' mode */ 3987 return -EINVAL; 3988 3989 if (mddev->array_sectors & geo.chunk_mask) 3990 /* not factor of array size */ 3991 return -EINVAL; 3992 3993 if (!enough(conf, -1)) 3994 return -EINVAL; 3995 3996 kfree(conf->mirrors_new); 3997 conf->mirrors_new = NULL; 3998 if (mddev->delta_disks > 0) { 3999 /* allocate new 'mirrors' list */ 4000 conf->mirrors_new = kzalloc( 4001 sizeof(struct raid10_info) 4002 *(mddev->raid_disks + 4003 mddev->delta_disks), 4004 GFP_KERNEL); 4005 if (!conf->mirrors_new) 4006 return -ENOMEM; 4007 } 4008 return 0; 4009 } 4010 4011 /* 4012 * Need to check if array has failed when deciding whether to: 4013 * - start an array 4014 * - remove non-faulty devices 4015 * - add a spare 4016 * - allow a reshape 4017 * This determination is simple when no reshape is happening. 4018 * However if there is a reshape, we need to carefully check 4019 * both the before and after sections. 4020 * This is because some failed devices may only affect one 4021 * of the two sections, and some non-in_sync devices may 4022 * be insync in the section most affected by failed devices. 4023 */ 4024 static int calc_degraded(struct r10conf *conf) 4025 { 4026 int degraded, degraded2; 4027 int i; 4028 4029 rcu_read_lock(); 4030 degraded = 0; 4031 /* 'prev' section first */ 4032 for (i = 0; i < conf->prev.raid_disks; i++) { 4033 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4034 if (!rdev || test_bit(Faulty, &rdev->flags)) 4035 degraded++; 4036 else if (!test_bit(In_sync, &rdev->flags)) 4037 /* When we can reduce the number of devices in 4038 * an array, this might not contribute to 4039 * 'degraded'. It does now. 4040 */ 4041 degraded++; 4042 } 4043 rcu_read_unlock(); 4044 if (conf->geo.raid_disks == conf->prev.raid_disks) 4045 return degraded; 4046 rcu_read_lock(); 4047 degraded2 = 0; 4048 for (i = 0; i < conf->geo.raid_disks; i++) { 4049 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4050 if (!rdev || test_bit(Faulty, &rdev->flags)) 4051 degraded2++; 4052 else if (!test_bit(In_sync, &rdev->flags)) { 4053 /* If reshape is increasing the number of devices, 4054 * this section has already been recovered, so 4055 * it doesn't contribute to degraded. 4056 * else it does. 4057 */ 4058 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4059 degraded2++; 4060 } 4061 } 4062 rcu_read_unlock(); 4063 if (degraded2 > degraded) 4064 return degraded2; 4065 return degraded; 4066 } 4067 4068 static int raid10_start_reshape(struct mddev *mddev) 4069 { 4070 /* A 'reshape' has been requested. This commits 4071 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4072 * This also checks if there are enough spares and adds them 4073 * to the array. 4074 * We currently require enough spares to make the final 4075 * array non-degraded. We also require that the difference 4076 * between old and new data_offset - on each device - is 4077 * enough that we never risk over-writing. 4078 */ 4079 4080 unsigned long before_length, after_length; 4081 sector_t min_offset_diff = 0; 4082 int first = 1; 4083 struct geom new; 4084 struct r10conf *conf = mddev->private; 4085 struct md_rdev *rdev; 4086 int spares = 0; 4087 int ret; 4088 4089 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4090 return -EBUSY; 4091 4092 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4093 return -EINVAL; 4094 4095 before_length = ((1 << conf->prev.chunk_shift) * 4096 conf->prev.far_copies); 4097 after_length = ((1 << conf->geo.chunk_shift) * 4098 conf->geo.far_copies); 4099 4100 rdev_for_each(rdev, mddev) { 4101 if (!test_bit(In_sync, &rdev->flags) 4102 && !test_bit(Faulty, &rdev->flags)) 4103 spares++; 4104 if (rdev->raid_disk >= 0) { 4105 long long diff = (rdev->new_data_offset 4106 - rdev->data_offset); 4107 if (!mddev->reshape_backwards) 4108 diff = -diff; 4109 if (diff < 0) 4110 diff = 0; 4111 if (first || diff < min_offset_diff) 4112 min_offset_diff = diff; 4113 } 4114 } 4115 4116 if (max(before_length, after_length) > min_offset_diff) 4117 return -EINVAL; 4118 4119 if (spares < mddev->delta_disks) 4120 return -EINVAL; 4121 4122 conf->offset_diff = min_offset_diff; 4123 spin_lock_irq(&conf->device_lock); 4124 if (conf->mirrors_new) { 4125 memcpy(conf->mirrors_new, conf->mirrors, 4126 sizeof(struct raid10_info)*conf->prev.raid_disks); 4127 smp_mb(); 4128 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4129 conf->mirrors_old = conf->mirrors; 4130 conf->mirrors = conf->mirrors_new; 4131 conf->mirrors_new = NULL; 4132 } 4133 setup_geo(&conf->geo, mddev, geo_start); 4134 smp_mb(); 4135 if (mddev->reshape_backwards) { 4136 sector_t size = raid10_size(mddev, 0, 0); 4137 if (size < mddev->array_sectors) { 4138 spin_unlock_irq(&conf->device_lock); 4139 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4140 mdname(mddev)); 4141 return -EINVAL; 4142 } 4143 mddev->resync_max_sectors = size; 4144 conf->reshape_progress = size; 4145 } else 4146 conf->reshape_progress = 0; 4147 spin_unlock_irq(&conf->device_lock); 4148 4149 if (mddev->delta_disks && mddev->bitmap) { 4150 ret = bitmap_resize(mddev->bitmap, 4151 raid10_size(mddev, 0, 4152 conf->geo.raid_disks), 4153 0, 0); 4154 if (ret) 4155 goto abort; 4156 } 4157 if (mddev->delta_disks > 0) { 4158 rdev_for_each(rdev, mddev) 4159 if (rdev->raid_disk < 0 && 4160 !test_bit(Faulty, &rdev->flags)) { 4161 if (raid10_add_disk(mddev, rdev) == 0) { 4162 if (rdev->raid_disk >= 4163 conf->prev.raid_disks) 4164 set_bit(In_sync, &rdev->flags); 4165 else 4166 rdev->recovery_offset = 0; 4167 4168 if (sysfs_link_rdev(mddev, rdev)) 4169 /* Failure here is OK */; 4170 } 4171 } else if (rdev->raid_disk >= conf->prev.raid_disks 4172 && !test_bit(Faulty, &rdev->flags)) { 4173 /* This is a spare that was manually added */ 4174 set_bit(In_sync, &rdev->flags); 4175 } 4176 } 4177 /* When a reshape changes the number of devices, 4178 * ->degraded is measured against the larger of the 4179 * pre and post numbers. 4180 */ 4181 spin_lock_irq(&conf->device_lock); 4182 mddev->degraded = calc_degraded(conf); 4183 spin_unlock_irq(&conf->device_lock); 4184 mddev->raid_disks = conf->geo.raid_disks; 4185 mddev->reshape_position = conf->reshape_progress; 4186 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4187 4188 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4189 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4190 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4191 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4192 4193 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4194 "reshape"); 4195 if (!mddev->sync_thread) { 4196 ret = -EAGAIN; 4197 goto abort; 4198 } 4199 conf->reshape_checkpoint = jiffies; 4200 md_wakeup_thread(mddev->sync_thread); 4201 md_new_event(mddev); 4202 return 0; 4203 4204 abort: 4205 mddev->recovery = 0; 4206 spin_lock_irq(&conf->device_lock); 4207 conf->geo = conf->prev; 4208 mddev->raid_disks = conf->geo.raid_disks; 4209 rdev_for_each(rdev, mddev) 4210 rdev->new_data_offset = rdev->data_offset; 4211 smp_wmb(); 4212 conf->reshape_progress = MaxSector; 4213 mddev->reshape_position = MaxSector; 4214 spin_unlock_irq(&conf->device_lock); 4215 return ret; 4216 } 4217 4218 /* Calculate the last device-address that could contain 4219 * any block from the chunk that includes the array-address 's' 4220 * and report the next address. 4221 * i.e. the address returned will be chunk-aligned and after 4222 * any data that is in the chunk containing 's'. 4223 */ 4224 static sector_t last_dev_address(sector_t s, struct geom *geo) 4225 { 4226 s = (s | geo->chunk_mask) + 1; 4227 s >>= geo->chunk_shift; 4228 s *= geo->near_copies; 4229 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4230 s *= geo->far_copies; 4231 s <<= geo->chunk_shift; 4232 return s; 4233 } 4234 4235 /* Calculate the first device-address that could contain 4236 * any block from the chunk that includes the array-address 's'. 4237 * This too will be the start of a chunk 4238 */ 4239 static sector_t first_dev_address(sector_t s, struct geom *geo) 4240 { 4241 s >>= geo->chunk_shift; 4242 s *= geo->near_copies; 4243 sector_div(s, geo->raid_disks); 4244 s *= geo->far_copies; 4245 s <<= geo->chunk_shift; 4246 return s; 4247 } 4248 4249 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4250 int *skipped) 4251 { 4252 /* We simply copy at most one chunk (smallest of old and new) 4253 * at a time, possibly less if that exceeds RESYNC_PAGES, 4254 * or we hit a bad block or something. 4255 * This might mean we pause for normal IO in the middle of 4256 * a chunk, but that is not a problem was mddev->reshape_position 4257 * can record any location. 4258 * 4259 * If we will want to write to a location that isn't 4260 * yet recorded as 'safe' (i.e. in metadata on disk) then 4261 * we need to flush all reshape requests and update the metadata. 4262 * 4263 * When reshaping forwards (e.g. to more devices), we interpret 4264 * 'safe' as the earliest block which might not have been copied 4265 * down yet. We divide this by previous stripe size and multiply 4266 * by previous stripe length to get lowest device offset that we 4267 * cannot write to yet. 4268 * We interpret 'sector_nr' as an address that we want to write to. 4269 * From this we use last_device_address() to find where we might 4270 * write to, and first_device_address on the 'safe' position. 4271 * If this 'next' write position is after the 'safe' position, 4272 * we must update the metadata to increase the 'safe' position. 4273 * 4274 * When reshaping backwards, we round in the opposite direction 4275 * and perform the reverse test: next write position must not be 4276 * less than current safe position. 4277 * 4278 * In all this the minimum difference in data offsets 4279 * (conf->offset_diff - always positive) allows a bit of slack, 4280 * so next can be after 'safe', but not by more than offset_disk 4281 * 4282 * We need to prepare all the bios here before we start any IO 4283 * to ensure the size we choose is acceptable to all devices. 4284 * The means one for each copy for write-out and an extra one for 4285 * read-in. 4286 * We store the read-in bio in ->master_bio and the others in 4287 * ->devs[x].bio and ->devs[x].repl_bio. 4288 */ 4289 struct r10conf *conf = mddev->private; 4290 struct r10bio *r10_bio; 4291 sector_t next, safe, last; 4292 int max_sectors; 4293 int nr_sectors; 4294 int s; 4295 struct md_rdev *rdev; 4296 int need_flush = 0; 4297 struct bio *blist; 4298 struct bio *bio, *read_bio; 4299 int sectors_done = 0; 4300 4301 if (sector_nr == 0) { 4302 /* If restarting in the middle, skip the initial sectors */ 4303 if (mddev->reshape_backwards && 4304 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4305 sector_nr = (raid10_size(mddev, 0, 0) 4306 - conf->reshape_progress); 4307 } else if (!mddev->reshape_backwards && 4308 conf->reshape_progress > 0) 4309 sector_nr = conf->reshape_progress; 4310 if (sector_nr) { 4311 mddev->curr_resync_completed = sector_nr; 4312 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4313 *skipped = 1; 4314 return sector_nr; 4315 } 4316 } 4317 4318 /* We don't use sector_nr to track where we are up to 4319 * as that doesn't work well for ->reshape_backwards. 4320 * So just use ->reshape_progress. 4321 */ 4322 if (mddev->reshape_backwards) { 4323 /* 'next' is the earliest device address that we might 4324 * write to for this chunk in the new layout 4325 */ 4326 next = first_dev_address(conf->reshape_progress - 1, 4327 &conf->geo); 4328 4329 /* 'safe' is the last device address that we might read from 4330 * in the old layout after a restart 4331 */ 4332 safe = last_dev_address(conf->reshape_safe - 1, 4333 &conf->prev); 4334 4335 if (next + conf->offset_diff < safe) 4336 need_flush = 1; 4337 4338 last = conf->reshape_progress - 1; 4339 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4340 & conf->prev.chunk_mask); 4341 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4342 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4343 } else { 4344 /* 'next' is after the last device address that we 4345 * might write to for this chunk in the new layout 4346 */ 4347 next = last_dev_address(conf->reshape_progress, &conf->geo); 4348 4349 /* 'safe' is the earliest device address that we might 4350 * read from in the old layout after a restart 4351 */ 4352 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4353 4354 /* Need to update metadata if 'next' might be beyond 'safe' 4355 * as that would possibly corrupt data 4356 */ 4357 if (next > safe + conf->offset_diff) 4358 need_flush = 1; 4359 4360 sector_nr = conf->reshape_progress; 4361 last = sector_nr | (conf->geo.chunk_mask 4362 & conf->prev.chunk_mask); 4363 4364 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4365 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4366 } 4367 4368 if (need_flush || 4369 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4370 /* Need to update reshape_position in metadata */ 4371 wait_barrier(conf); 4372 mddev->reshape_position = conf->reshape_progress; 4373 if (mddev->reshape_backwards) 4374 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4375 - conf->reshape_progress; 4376 else 4377 mddev->curr_resync_completed = conf->reshape_progress; 4378 conf->reshape_checkpoint = jiffies; 4379 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4380 md_wakeup_thread(mddev->thread); 4381 wait_event(mddev->sb_wait, mddev->flags == 0 || 4382 kthread_should_stop()); 4383 conf->reshape_safe = mddev->reshape_position; 4384 allow_barrier(conf); 4385 } 4386 4387 read_more: 4388 /* Now schedule reads for blocks from sector_nr to last */ 4389 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4390 raise_barrier(conf, sectors_done != 0); 4391 atomic_set(&r10_bio->remaining, 0); 4392 r10_bio->mddev = mddev; 4393 r10_bio->sector = sector_nr; 4394 set_bit(R10BIO_IsReshape, &r10_bio->state); 4395 r10_bio->sectors = last - sector_nr + 1; 4396 rdev = read_balance(conf, r10_bio, &max_sectors); 4397 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4398 4399 if (!rdev) { 4400 /* Cannot read from here, so need to record bad blocks 4401 * on all the target devices. 4402 */ 4403 // FIXME 4404 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4405 return sectors_done; 4406 } 4407 4408 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4409 4410 read_bio->bi_bdev = rdev->bdev; 4411 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4412 + rdev->data_offset); 4413 read_bio->bi_private = r10_bio; 4414 read_bio->bi_end_io = end_sync_read; 4415 read_bio->bi_rw = READ; 4416 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4417 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4418 read_bio->bi_vcnt = 0; 4419 read_bio->bi_size = 0; 4420 r10_bio->master_bio = read_bio; 4421 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4422 4423 /* Now find the locations in the new layout */ 4424 __raid10_find_phys(&conf->geo, r10_bio); 4425 4426 blist = read_bio; 4427 read_bio->bi_next = NULL; 4428 4429 for (s = 0; s < conf->copies*2; s++) { 4430 struct bio *b; 4431 int d = r10_bio->devs[s/2].devnum; 4432 struct md_rdev *rdev2; 4433 if (s&1) { 4434 rdev2 = conf->mirrors[d].replacement; 4435 b = r10_bio->devs[s/2].repl_bio; 4436 } else { 4437 rdev2 = conf->mirrors[d].rdev; 4438 b = r10_bio->devs[s/2].bio; 4439 } 4440 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4441 continue; 4442 4443 bio_reset(b); 4444 b->bi_bdev = rdev2->bdev; 4445 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4446 b->bi_private = r10_bio; 4447 b->bi_end_io = end_reshape_write; 4448 b->bi_rw = WRITE; 4449 b->bi_next = blist; 4450 blist = b; 4451 } 4452 4453 /* Now add as many pages as possible to all of these bios. */ 4454 4455 nr_sectors = 0; 4456 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4457 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4458 int len = (max_sectors - s) << 9; 4459 if (len > PAGE_SIZE) 4460 len = PAGE_SIZE; 4461 for (bio = blist; bio ; bio = bio->bi_next) { 4462 struct bio *bio2; 4463 if (bio_add_page(bio, page, len, 0)) 4464 continue; 4465 4466 /* Didn't fit, must stop */ 4467 for (bio2 = blist; 4468 bio2 && bio2 != bio; 4469 bio2 = bio2->bi_next) { 4470 /* Remove last page from this bio */ 4471 bio2->bi_vcnt--; 4472 bio2->bi_size -= len; 4473 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4474 } 4475 goto bio_full; 4476 } 4477 sector_nr += len >> 9; 4478 nr_sectors += len >> 9; 4479 } 4480 bio_full: 4481 r10_bio->sectors = nr_sectors; 4482 4483 /* Now submit the read */ 4484 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4485 atomic_inc(&r10_bio->remaining); 4486 read_bio->bi_next = NULL; 4487 generic_make_request(read_bio); 4488 sector_nr += nr_sectors; 4489 sectors_done += nr_sectors; 4490 if (sector_nr <= last) 4491 goto read_more; 4492 4493 /* Now that we have done the whole section we can 4494 * update reshape_progress 4495 */ 4496 if (mddev->reshape_backwards) 4497 conf->reshape_progress -= sectors_done; 4498 else 4499 conf->reshape_progress += sectors_done; 4500 4501 return sectors_done; 4502 } 4503 4504 static void end_reshape_request(struct r10bio *r10_bio); 4505 static int handle_reshape_read_error(struct mddev *mddev, 4506 struct r10bio *r10_bio); 4507 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4508 { 4509 /* Reshape read completed. Hopefully we have a block 4510 * to write out. 4511 * If we got a read error then we do sync 1-page reads from 4512 * elsewhere until we find the data - or give up. 4513 */ 4514 struct r10conf *conf = mddev->private; 4515 int s; 4516 4517 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4518 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4519 /* Reshape has been aborted */ 4520 md_done_sync(mddev, r10_bio->sectors, 0); 4521 return; 4522 } 4523 4524 /* We definitely have the data in the pages, schedule the 4525 * writes. 4526 */ 4527 atomic_set(&r10_bio->remaining, 1); 4528 for (s = 0; s < conf->copies*2; s++) { 4529 struct bio *b; 4530 int d = r10_bio->devs[s/2].devnum; 4531 struct md_rdev *rdev; 4532 if (s&1) { 4533 rdev = conf->mirrors[d].replacement; 4534 b = r10_bio->devs[s/2].repl_bio; 4535 } else { 4536 rdev = conf->mirrors[d].rdev; 4537 b = r10_bio->devs[s/2].bio; 4538 } 4539 if (!rdev || test_bit(Faulty, &rdev->flags)) 4540 continue; 4541 atomic_inc(&rdev->nr_pending); 4542 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4543 atomic_inc(&r10_bio->remaining); 4544 b->bi_next = NULL; 4545 generic_make_request(b); 4546 } 4547 end_reshape_request(r10_bio); 4548 } 4549 4550 static void end_reshape(struct r10conf *conf) 4551 { 4552 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4553 return; 4554 4555 spin_lock_irq(&conf->device_lock); 4556 conf->prev = conf->geo; 4557 md_finish_reshape(conf->mddev); 4558 smp_wmb(); 4559 conf->reshape_progress = MaxSector; 4560 spin_unlock_irq(&conf->device_lock); 4561 4562 /* read-ahead size must cover two whole stripes, which is 4563 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4564 */ 4565 if (conf->mddev->queue) { 4566 int stripe = conf->geo.raid_disks * 4567 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4568 stripe /= conf->geo.near_copies; 4569 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4570 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4571 } 4572 conf->fullsync = 0; 4573 } 4574 4575 4576 static int handle_reshape_read_error(struct mddev *mddev, 4577 struct r10bio *r10_bio) 4578 { 4579 /* Use sync reads to get the blocks from somewhere else */ 4580 int sectors = r10_bio->sectors; 4581 struct r10conf *conf = mddev->private; 4582 struct { 4583 struct r10bio r10_bio; 4584 struct r10dev devs[conf->copies]; 4585 } on_stack; 4586 struct r10bio *r10b = &on_stack.r10_bio; 4587 int slot = 0; 4588 int idx = 0; 4589 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4590 4591 r10b->sector = r10_bio->sector; 4592 __raid10_find_phys(&conf->prev, r10b); 4593 4594 while (sectors) { 4595 int s = sectors; 4596 int success = 0; 4597 int first_slot = slot; 4598 4599 if (s > (PAGE_SIZE >> 9)) 4600 s = PAGE_SIZE >> 9; 4601 4602 while (!success) { 4603 int d = r10b->devs[slot].devnum; 4604 struct md_rdev *rdev = conf->mirrors[d].rdev; 4605 sector_t addr; 4606 if (rdev == NULL || 4607 test_bit(Faulty, &rdev->flags) || 4608 !test_bit(In_sync, &rdev->flags)) 4609 goto failed; 4610 4611 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4612 success = sync_page_io(rdev, 4613 addr, 4614 s << 9, 4615 bvec[idx].bv_page, 4616 READ, false); 4617 if (success) 4618 break; 4619 failed: 4620 slot++; 4621 if (slot >= conf->copies) 4622 slot = 0; 4623 if (slot == first_slot) 4624 break; 4625 } 4626 if (!success) { 4627 /* couldn't read this block, must give up */ 4628 set_bit(MD_RECOVERY_INTR, 4629 &mddev->recovery); 4630 return -EIO; 4631 } 4632 sectors -= s; 4633 idx++; 4634 } 4635 return 0; 4636 } 4637 4638 static void end_reshape_write(struct bio *bio, int error) 4639 { 4640 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4641 struct r10bio *r10_bio = bio->bi_private; 4642 struct mddev *mddev = r10_bio->mddev; 4643 struct r10conf *conf = mddev->private; 4644 int d; 4645 int slot; 4646 int repl; 4647 struct md_rdev *rdev = NULL; 4648 4649 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4650 if (repl) 4651 rdev = conf->mirrors[d].replacement; 4652 if (!rdev) { 4653 smp_mb(); 4654 rdev = conf->mirrors[d].rdev; 4655 } 4656 4657 if (!uptodate) { 4658 /* FIXME should record badblock */ 4659 md_error(mddev, rdev); 4660 } 4661 4662 rdev_dec_pending(rdev, mddev); 4663 end_reshape_request(r10_bio); 4664 } 4665 4666 static void end_reshape_request(struct r10bio *r10_bio) 4667 { 4668 if (!atomic_dec_and_test(&r10_bio->remaining)) 4669 return; 4670 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4671 bio_put(r10_bio->master_bio); 4672 put_buf(r10_bio); 4673 } 4674 4675 static void raid10_finish_reshape(struct mddev *mddev) 4676 { 4677 struct r10conf *conf = mddev->private; 4678 4679 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4680 return; 4681 4682 if (mddev->delta_disks > 0) { 4683 sector_t size = raid10_size(mddev, 0, 0); 4684 md_set_array_sectors(mddev, size); 4685 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4686 mddev->recovery_cp = mddev->resync_max_sectors; 4687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4688 } 4689 mddev->resync_max_sectors = size; 4690 set_capacity(mddev->gendisk, mddev->array_sectors); 4691 revalidate_disk(mddev->gendisk); 4692 } else { 4693 int d; 4694 for (d = conf->geo.raid_disks ; 4695 d < conf->geo.raid_disks - mddev->delta_disks; 4696 d++) { 4697 struct md_rdev *rdev = conf->mirrors[d].rdev; 4698 if (rdev) 4699 clear_bit(In_sync, &rdev->flags); 4700 rdev = conf->mirrors[d].replacement; 4701 if (rdev) 4702 clear_bit(In_sync, &rdev->flags); 4703 } 4704 } 4705 mddev->layout = mddev->new_layout; 4706 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4707 mddev->reshape_position = MaxSector; 4708 mddev->delta_disks = 0; 4709 mddev->reshape_backwards = 0; 4710 } 4711 4712 static struct md_personality raid10_personality = 4713 { 4714 .name = "raid10", 4715 .level = 10, 4716 .owner = THIS_MODULE, 4717 .make_request = make_request, 4718 .run = run, 4719 .stop = stop, 4720 .status = status, 4721 .error_handler = error, 4722 .hot_add_disk = raid10_add_disk, 4723 .hot_remove_disk= raid10_remove_disk, 4724 .spare_active = raid10_spare_active, 4725 .sync_request = sync_request, 4726 .quiesce = raid10_quiesce, 4727 .size = raid10_size, 4728 .resize = raid10_resize, 4729 .takeover = raid10_takeover, 4730 .check_reshape = raid10_check_reshape, 4731 .start_reshape = raid10_start_reshape, 4732 .finish_reshape = raid10_finish_reshape, 4733 }; 4734 4735 static int __init raid_init(void) 4736 { 4737 return register_md_personality(&raid10_personality); 4738 } 4739 4740 static void raid_exit(void) 4741 { 4742 unregister_md_personality(&raid10_personality); 4743 } 4744 4745 module_init(raid_init); 4746 module_exit(raid_exit); 4747 MODULE_LICENSE("GPL"); 4748 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4749 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4750 MODULE_ALIAS("md-raid10"); 4751 MODULE_ALIAS("md-level-10"); 4752 4753 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4754