xref: /openbmc/linux/drivers/md/raid10.c (revision 4e1a33b1)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
114 {
115 	struct r10conf *conf = data;
116 	int size = offsetof(struct r10bio, devs[conf->copies]);
117 
118 	/* allocate a r10bio with room for raid_disks entries in the
119 	 * bios array */
120 	return kzalloc(size, gfp_flags);
121 }
122 
123 static void r10bio_pool_free(void *r10_bio, void *data)
124 {
125 	kfree(r10_bio);
126 }
127 
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
135 
136 /*
137  * When performing a resync, we need to read and compare, so
138  * we need as many pages are there are copies.
139  * When performing a recovery, we need 2 bios, one for read,
140  * one for write (we recover only one drive per r10buf)
141  *
142  */
143 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
144 {
145 	struct r10conf *conf = data;
146 	struct page *page;
147 	struct r10bio *r10_bio;
148 	struct bio *bio;
149 	int i, j;
150 	int nalloc;
151 
152 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
153 	if (!r10_bio)
154 		return NULL;
155 
156 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
157 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
158 		nalloc = conf->copies; /* resync */
159 	else
160 		nalloc = 2; /* recovery */
161 
162 	/*
163 	 * Allocate bios.
164 	 */
165 	for (j = nalloc ; j-- ; ) {
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].bio = bio;
170 		if (!conf->have_replacement)
171 			continue;
172 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
173 		if (!bio)
174 			goto out_free_bio;
175 		r10_bio->devs[j].repl_bio = bio;
176 	}
177 	/*
178 	 * Allocate RESYNC_PAGES data pages and attach them
179 	 * where needed.
180 	 */
181 	for (j = 0 ; j < nalloc; j++) {
182 		struct bio *rbio = r10_bio->devs[j].repl_bio;
183 		bio = r10_bio->devs[j].bio;
184 		for (i = 0; i < RESYNC_PAGES; i++) {
185 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
186 					       &conf->mddev->recovery)) {
187 				/* we can share bv_page's during recovery
188 				 * and reshape */
189 				struct bio *rbio = r10_bio->devs[0].bio;
190 				page = rbio->bi_io_vec[i].bv_page;
191 				get_page(page);
192 			} else
193 				page = alloc_page(gfp_flags);
194 			if (unlikely(!page))
195 				goto out_free_pages;
196 
197 			bio->bi_io_vec[i].bv_page = page;
198 			if (rbio)
199 				rbio->bi_io_vec[i].bv_page = page;
200 		}
201 	}
202 
203 	return r10_bio;
204 
205 out_free_pages:
206 	for ( ; i > 0 ; i--)
207 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
208 	while (j--)
209 		for (i = 0; i < RESYNC_PAGES ; i++)
210 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
211 	j = 0;
212 out_free_bio:
213 	for ( ; j < nalloc; j++) {
214 		if (r10_bio->devs[j].bio)
215 			bio_put(r10_bio->devs[j].bio);
216 		if (r10_bio->devs[j].repl_bio)
217 			bio_put(r10_bio->devs[j].repl_bio);
218 	}
219 	r10bio_pool_free(r10_bio, conf);
220 	return NULL;
221 }
222 
223 static void r10buf_pool_free(void *__r10_bio, void *data)
224 {
225 	int i;
226 	struct r10conf *conf = data;
227 	struct r10bio *r10bio = __r10_bio;
228 	int j;
229 
230 	for (j=0; j < conf->copies; j++) {
231 		struct bio *bio = r10bio->devs[j].bio;
232 		if (bio) {
233 			for (i = 0; i < RESYNC_PAGES; i++) {
234 				safe_put_page(bio->bi_io_vec[i].bv_page);
235 				bio->bi_io_vec[i].bv_page = NULL;
236 			}
237 			bio_put(bio);
238 		}
239 		bio = r10bio->devs[j].repl_bio;
240 		if (bio)
241 			bio_put(bio);
242 	}
243 	r10bio_pool_free(r10bio, conf);
244 }
245 
246 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
247 {
248 	int i;
249 
250 	for (i = 0; i < conf->copies; i++) {
251 		struct bio **bio = & r10_bio->devs[i].bio;
252 		if (!BIO_SPECIAL(*bio))
253 			bio_put(*bio);
254 		*bio = NULL;
255 		bio = &r10_bio->devs[i].repl_bio;
256 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
257 			bio_put(*bio);
258 		*bio = NULL;
259 	}
260 }
261 
262 static void free_r10bio(struct r10bio *r10_bio)
263 {
264 	struct r10conf *conf = r10_bio->mddev->private;
265 
266 	put_all_bios(conf, r10_bio);
267 	mempool_free(r10_bio, conf->r10bio_pool);
268 }
269 
270 static void put_buf(struct r10bio *r10_bio)
271 {
272 	struct r10conf *conf = r10_bio->mddev->private;
273 
274 	mempool_free(r10_bio, conf->r10buf_pool);
275 
276 	lower_barrier(conf);
277 }
278 
279 static void reschedule_retry(struct r10bio *r10_bio)
280 {
281 	unsigned long flags;
282 	struct mddev *mddev = r10_bio->mddev;
283 	struct r10conf *conf = mddev->private;
284 
285 	spin_lock_irqsave(&conf->device_lock, flags);
286 	list_add(&r10_bio->retry_list, &conf->retry_list);
287 	conf->nr_queued ++;
288 	spin_unlock_irqrestore(&conf->device_lock, flags);
289 
290 	/* wake up frozen array... */
291 	wake_up(&conf->wait_barrier);
292 
293 	md_wakeup_thread(mddev->thread);
294 }
295 
296 /*
297  * raid_end_bio_io() is called when we have finished servicing a mirrored
298  * operation and are ready to return a success/failure code to the buffer
299  * cache layer.
300  */
301 static void raid_end_bio_io(struct r10bio *r10_bio)
302 {
303 	struct bio *bio = r10_bio->master_bio;
304 	int done;
305 	struct r10conf *conf = r10_bio->mddev->private;
306 
307 	if (bio->bi_phys_segments) {
308 		unsigned long flags;
309 		spin_lock_irqsave(&conf->device_lock, flags);
310 		bio->bi_phys_segments--;
311 		done = (bio->bi_phys_segments == 0);
312 		spin_unlock_irqrestore(&conf->device_lock, flags);
313 	} else
314 		done = 1;
315 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
316 		bio->bi_error = -EIO;
317 	if (done) {
318 		bio_endio(bio);
319 		/*
320 		 * Wake up any possible resync thread that waits for the device
321 		 * to go idle.
322 		 */
323 		allow_barrier(conf);
324 	}
325 	free_r10bio(r10_bio);
326 }
327 
328 /*
329  * Update disk head position estimator based on IRQ completion info.
330  */
331 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
332 {
333 	struct r10conf *conf = r10_bio->mddev->private;
334 
335 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
336 		r10_bio->devs[slot].addr + (r10_bio->sectors);
337 }
338 
339 /*
340  * Find the disk number which triggered given bio
341  */
342 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
343 			 struct bio *bio, int *slotp, int *replp)
344 {
345 	int slot;
346 	int repl = 0;
347 
348 	for (slot = 0; slot < conf->copies; slot++) {
349 		if (r10_bio->devs[slot].bio == bio)
350 			break;
351 		if (r10_bio->devs[slot].repl_bio == bio) {
352 			repl = 1;
353 			break;
354 		}
355 	}
356 
357 	BUG_ON(slot == conf->copies);
358 	update_head_pos(slot, r10_bio);
359 
360 	if (slotp)
361 		*slotp = slot;
362 	if (replp)
363 		*replp = repl;
364 	return r10_bio->devs[slot].devnum;
365 }
366 
367 static void raid10_end_read_request(struct bio *bio)
368 {
369 	int uptodate = !bio->bi_error;
370 	struct r10bio *r10_bio = bio->bi_private;
371 	int slot, dev;
372 	struct md_rdev *rdev;
373 	struct r10conf *conf = r10_bio->mddev->private;
374 
375 	slot = r10_bio->read_slot;
376 	dev = r10_bio->devs[slot].devnum;
377 	rdev = r10_bio->devs[slot].rdev;
378 	/*
379 	 * this branch is our 'one mirror IO has finished' event handler:
380 	 */
381 	update_head_pos(slot, r10_bio);
382 
383 	if (uptodate) {
384 		/*
385 		 * Set R10BIO_Uptodate in our master bio, so that
386 		 * we will return a good error code to the higher
387 		 * levels even if IO on some other mirrored buffer fails.
388 		 *
389 		 * The 'master' represents the composite IO operation to
390 		 * user-side. So if something waits for IO, then it will
391 		 * wait for the 'master' bio.
392 		 */
393 		set_bit(R10BIO_Uptodate, &r10_bio->state);
394 	} else {
395 		/* If all other devices that store this block have
396 		 * failed, we want to return the error upwards rather
397 		 * than fail the last device.  Here we redefine
398 		 * "uptodate" to mean "Don't want to retry"
399 		 */
400 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
401 			     rdev->raid_disk))
402 			uptodate = 1;
403 	}
404 	if (uptodate) {
405 		raid_end_bio_io(r10_bio);
406 		rdev_dec_pending(rdev, conf->mddev);
407 	} else {
408 		/*
409 		 * oops, read error - keep the refcount on the rdev
410 		 */
411 		char b[BDEVNAME_SIZE];
412 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
413 				   mdname(conf->mddev),
414 				   bdevname(rdev->bdev, b),
415 				   (unsigned long long)r10_bio->sector);
416 		set_bit(R10BIO_ReadError, &r10_bio->state);
417 		reschedule_retry(r10_bio);
418 	}
419 }
420 
421 static void close_write(struct r10bio *r10_bio)
422 {
423 	/* clear the bitmap if all writes complete successfully */
424 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
425 			r10_bio->sectors,
426 			!test_bit(R10BIO_Degraded, &r10_bio->state),
427 			0);
428 	md_write_end(r10_bio->mddev);
429 }
430 
431 static void one_write_done(struct r10bio *r10_bio)
432 {
433 	if (atomic_dec_and_test(&r10_bio->remaining)) {
434 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
435 			reschedule_retry(r10_bio);
436 		else {
437 			close_write(r10_bio);
438 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
439 				reschedule_retry(r10_bio);
440 			else
441 				raid_end_bio_io(r10_bio);
442 		}
443 	}
444 }
445 
446 static void raid10_end_write_request(struct bio *bio)
447 {
448 	struct r10bio *r10_bio = bio->bi_private;
449 	int dev;
450 	int dec_rdev = 1;
451 	struct r10conf *conf = r10_bio->mddev->private;
452 	int slot, repl;
453 	struct md_rdev *rdev = NULL;
454 	struct bio *to_put = NULL;
455 	bool discard_error;
456 
457 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
458 
459 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
460 
461 	if (repl)
462 		rdev = conf->mirrors[dev].replacement;
463 	if (!rdev) {
464 		smp_rmb();
465 		repl = 0;
466 		rdev = conf->mirrors[dev].rdev;
467 	}
468 	/*
469 	 * this branch is our 'one mirror IO has finished' event handler:
470 	 */
471 	if (bio->bi_error && !discard_error) {
472 		if (repl)
473 			/* Never record new bad blocks to replacement,
474 			 * just fail it.
475 			 */
476 			md_error(rdev->mddev, rdev);
477 		else {
478 			set_bit(WriteErrorSeen,	&rdev->flags);
479 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
480 				set_bit(MD_RECOVERY_NEEDED,
481 					&rdev->mddev->recovery);
482 
483 			dec_rdev = 0;
484 			if (test_bit(FailFast, &rdev->flags) &&
485 			    (bio->bi_opf & MD_FAILFAST)) {
486 				md_error(rdev->mddev, rdev);
487 				if (!test_bit(Faulty, &rdev->flags))
488 					/* This is the only remaining device,
489 					 * We need to retry the write without
490 					 * FailFast
491 					 */
492 					set_bit(R10BIO_WriteError, &r10_bio->state);
493 				else {
494 					r10_bio->devs[slot].bio = NULL;
495 					to_put = bio;
496 					dec_rdev = 1;
497 				}
498 			} else
499 				set_bit(R10BIO_WriteError, &r10_bio->state);
500 		}
501 	} else {
502 		/*
503 		 * Set R10BIO_Uptodate in our master bio, so that
504 		 * we will return a good error code for to the higher
505 		 * levels even if IO on some other mirrored buffer fails.
506 		 *
507 		 * The 'master' represents the composite IO operation to
508 		 * user-side. So if something waits for IO, then it will
509 		 * wait for the 'master' bio.
510 		 */
511 		sector_t first_bad;
512 		int bad_sectors;
513 
514 		/*
515 		 * Do not set R10BIO_Uptodate if the current device is
516 		 * rebuilding or Faulty. This is because we cannot use
517 		 * such device for properly reading the data back (we could
518 		 * potentially use it, if the current write would have felt
519 		 * before rdev->recovery_offset, but for simplicity we don't
520 		 * check this here.
521 		 */
522 		if (test_bit(In_sync, &rdev->flags) &&
523 		    !test_bit(Faulty, &rdev->flags))
524 			set_bit(R10BIO_Uptodate, &r10_bio->state);
525 
526 		/* Maybe we can clear some bad blocks. */
527 		if (is_badblock(rdev,
528 				r10_bio->devs[slot].addr,
529 				r10_bio->sectors,
530 				&first_bad, &bad_sectors) && !discard_error) {
531 			bio_put(bio);
532 			if (repl)
533 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 			else
535 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 			dec_rdev = 0;
537 			set_bit(R10BIO_MadeGood, &r10_bio->state);
538 		}
539 	}
540 
541 	/*
542 	 *
543 	 * Let's see if all mirrored write operations have finished
544 	 * already.
545 	 */
546 	one_write_done(r10_bio);
547 	if (dec_rdev)
548 		rdev_dec_pending(rdev, conf->mddev);
549 	if (to_put)
550 		bio_put(to_put);
551 }
552 
553 /*
554  * RAID10 layout manager
555  * As well as the chunksize and raid_disks count, there are two
556  * parameters: near_copies and far_copies.
557  * near_copies * far_copies must be <= raid_disks.
558  * Normally one of these will be 1.
559  * If both are 1, we get raid0.
560  * If near_copies == raid_disks, we get raid1.
561  *
562  * Chunks are laid out in raid0 style with near_copies copies of the
563  * first chunk, followed by near_copies copies of the next chunk and
564  * so on.
565  * If far_copies > 1, then after 1/far_copies of the array has been assigned
566  * as described above, we start again with a device offset of near_copies.
567  * So we effectively have another copy of the whole array further down all
568  * the drives, but with blocks on different drives.
569  * With this layout, and block is never stored twice on the one device.
570  *
571  * raid10_find_phys finds the sector offset of a given virtual sector
572  * on each device that it is on.
573  *
574  * raid10_find_virt does the reverse mapping, from a device and a
575  * sector offset to a virtual address
576  */
577 
578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580 	int n,f;
581 	sector_t sector;
582 	sector_t chunk;
583 	sector_t stripe;
584 	int dev;
585 	int slot = 0;
586 	int last_far_set_start, last_far_set_size;
587 
588 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 	last_far_set_start *= geo->far_set_size;
590 
591 	last_far_set_size = geo->far_set_size;
592 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
593 
594 	/* now calculate first sector/dev */
595 	chunk = r10bio->sector >> geo->chunk_shift;
596 	sector = r10bio->sector & geo->chunk_mask;
597 
598 	chunk *= geo->near_copies;
599 	stripe = chunk;
600 	dev = sector_div(stripe, geo->raid_disks);
601 	if (geo->far_offset)
602 		stripe *= geo->far_copies;
603 
604 	sector += stripe << geo->chunk_shift;
605 
606 	/* and calculate all the others */
607 	for (n = 0; n < geo->near_copies; n++) {
608 		int d = dev;
609 		int set;
610 		sector_t s = sector;
611 		r10bio->devs[slot].devnum = d;
612 		r10bio->devs[slot].addr = s;
613 		slot++;
614 
615 		for (f = 1; f < geo->far_copies; f++) {
616 			set = d / geo->far_set_size;
617 			d += geo->near_copies;
618 
619 			if ((geo->raid_disks % geo->far_set_size) &&
620 			    (d > last_far_set_start)) {
621 				d -= last_far_set_start;
622 				d %= last_far_set_size;
623 				d += last_far_set_start;
624 			} else {
625 				d %= geo->far_set_size;
626 				d += geo->far_set_size * set;
627 			}
628 			s += geo->stride;
629 			r10bio->devs[slot].devnum = d;
630 			r10bio->devs[slot].addr = s;
631 			slot++;
632 		}
633 		dev++;
634 		if (dev >= geo->raid_disks) {
635 			dev = 0;
636 			sector += (geo->chunk_mask + 1);
637 		}
638 	}
639 }
640 
641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643 	struct geom *geo = &conf->geo;
644 
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((r10bio->sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards)) {
648 		set_bit(R10BIO_Previous, &r10bio->state);
649 		geo = &conf->prev;
650 	} else
651 		clear_bit(R10BIO_Previous, &r10bio->state);
652 
653 	__raid10_find_phys(geo, r10bio);
654 }
655 
656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658 	sector_t offset, chunk, vchunk;
659 	/* Never use conf->prev as this is only called during resync
660 	 * or recovery, so reshape isn't happening
661 	 */
662 	struct geom *geo = &conf->geo;
663 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 	int far_set_size = geo->far_set_size;
665 	int last_far_set_start;
666 
667 	if (geo->raid_disks % geo->far_set_size) {
668 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 		last_far_set_start *= geo->far_set_size;
670 
671 		if (dev >= last_far_set_start) {
672 			far_set_size = geo->far_set_size;
673 			far_set_size += (geo->raid_disks % geo->far_set_size);
674 			far_set_start = last_far_set_start;
675 		}
676 	}
677 
678 	offset = sector & geo->chunk_mask;
679 	if (geo->far_offset) {
680 		int fc;
681 		chunk = sector >> geo->chunk_shift;
682 		fc = sector_div(chunk, geo->far_copies);
683 		dev -= fc * geo->near_copies;
684 		if (dev < far_set_start)
685 			dev += far_set_size;
686 	} else {
687 		while (sector >= geo->stride) {
688 			sector -= geo->stride;
689 			if (dev < (geo->near_copies + far_set_start))
690 				dev += far_set_size - geo->near_copies;
691 			else
692 				dev -= geo->near_copies;
693 		}
694 		chunk = sector >> geo->chunk_shift;
695 	}
696 	vchunk = chunk * geo->raid_disks + dev;
697 	sector_div(vchunk, geo->near_copies);
698 	return (vchunk << geo->chunk_shift) + offset;
699 }
700 
701 /*
702  * This routine returns the disk from which the requested read should
703  * be done. There is a per-array 'next expected sequential IO' sector
704  * number - if this matches on the next IO then we use the last disk.
705  * There is also a per-disk 'last know head position' sector that is
706  * maintained from IRQ contexts, both the normal and the resync IO
707  * completion handlers update this position correctly. If there is no
708  * perfect sequential match then we pick the disk whose head is closest.
709  *
710  * If there are 2 mirrors in the same 2 devices, performance degrades
711  * because position is mirror, not device based.
712  *
713  * The rdev for the device selected will have nr_pending incremented.
714  */
715 
716 /*
717  * FIXME: possibly should rethink readbalancing and do it differently
718  * depending on near_copies / far_copies geometry.
719  */
720 static struct md_rdev *read_balance(struct r10conf *conf,
721 				    struct r10bio *r10_bio,
722 				    int *max_sectors)
723 {
724 	const sector_t this_sector = r10_bio->sector;
725 	int disk, slot;
726 	int sectors = r10_bio->sectors;
727 	int best_good_sectors;
728 	sector_t new_distance, best_dist;
729 	struct md_rdev *best_rdev, *rdev = NULL;
730 	int do_balance;
731 	int best_slot;
732 	struct geom *geo = &conf->geo;
733 
734 	raid10_find_phys(conf, r10_bio);
735 	rcu_read_lock();
736 	sectors = r10_bio->sectors;
737 	best_slot = -1;
738 	best_rdev = NULL;
739 	best_dist = MaxSector;
740 	best_good_sectors = 0;
741 	do_balance = 1;
742 	clear_bit(R10BIO_FailFast, &r10_bio->state);
743 	/*
744 	 * Check if we can balance. We can balance on the whole
745 	 * device if no resync is going on (recovery is ok), or below
746 	 * the resync window. We take the first readable disk when
747 	 * above the resync window.
748 	 */
749 	if (conf->mddev->recovery_cp < MaxSector
750 	    && (this_sector + sectors >= conf->next_resync))
751 		do_balance = 0;
752 
753 	for (slot = 0; slot < conf->copies ; slot++) {
754 		sector_t first_bad;
755 		int bad_sectors;
756 		sector_t dev_sector;
757 
758 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
759 			continue;
760 		disk = r10_bio->devs[slot].devnum;
761 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
762 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
763 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
764 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
765 		if (rdev == NULL ||
766 		    test_bit(Faulty, &rdev->flags))
767 			continue;
768 		if (!test_bit(In_sync, &rdev->flags) &&
769 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 			continue;
771 
772 		dev_sector = r10_bio->devs[slot].addr;
773 		if (is_badblock(rdev, dev_sector, sectors,
774 				&first_bad, &bad_sectors)) {
775 			if (best_dist < MaxSector)
776 				/* Already have a better slot */
777 				continue;
778 			if (first_bad <= dev_sector) {
779 				/* Cannot read here.  If this is the
780 				 * 'primary' device, then we must not read
781 				 * beyond 'bad_sectors' from another device.
782 				 */
783 				bad_sectors -= (dev_sector - first_bad);
784 				if (!do_balance && sectors > bad_sectors)
785 					sectors = bad_sectors;
786 				if (best_good_sectors > sectors)
787 					best_good_sectors = sectors;
788 			} else {
789 				sector_t good_sectors =
790 					first_bad - dev_sector;
791 				if (good_sectors > best_good_sectors) {
792 					best_good_sectors = good_sectors;
793 					best_slot = slot;
794 					best_rdev = rdev;
795 				}
796 				if (!do_balance)
797 					/* Must read from here */
798 					break;
799 			}
800 			continue;
801 		} else
802 			best_good_sectors = sectors;
803 
804 		if (!do_balance)
805 			break;
806 
807 		if (best_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 		if (new_distance < best_dist) {
824 			best_dist = new_distance;
825 			best_slot = slot;
826 			best_rdev = rdev;
827 		}
828 	}
829 	if (slot >= conf->copies) {
830 		slot = best_slot;
831 		rdev = best_rdev;
832 	}
833 
834 	if (slot >= 0) {
835 		atomic_inc(&rdev->nr_pending);
836 		r10_bio->read_slot = slot;
837 	} else
838 		rdev = NULL;
839 	rcu_read_unlock();
840 	*max_sectors = best_good_sectors;
841 
842 	return rdev;
843 }
844 
845 static int raid10_congested(struct mddev *mddev, int bits)
846 {
847 	struct r10conf *conf = mddev->private;
848 	int i, ret = 0;
849 
850 	if ((bits & (1 << WB_async_congested)) &&
851 	    conf->pending_count >= max_queued_requests)
852 		return 1;
853 
854 	rcu_read_lock();
855 	for (i = 0;
856 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 		     && ret == 0;
858 	     i++) {
859 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 			struct request_queue *q = bdev_get_queue(rdev->bdev);
862 
863 			ret |= bdi_congested(q->backing_dev_info, bits);
864 		}
865 	}
866 	rcu_read_unlock();
867 	return ret;
868 }
869 
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872 	/* Any writes that have been queued but are awaiting
873 	 * bitmap updates get flushed here.
874 	 */
875 	spin_lock_irq(&conf->device_lock);
876 
877 	if (conf->pending_bio_list.head) {
878 		struct bio *bio;
879 		bio = bio_list_get(&conf->pending_bio_list);
880 		conf->pending_count = 0;
881 		spin_unlock_irq(&conf->device_lock);
882 		/* flush any pending bitmap writes to disk
883 		 * before proceeding w/ I/O */
884 		bitmap_unplug(conf->mddev->bitmap);
885 		wake_up(&conf->wait_barrier);
886 
887 		while (bio) { /* submit pending writes */
888 			struct bio *next = bio->bi_next;
889 			struct md_rdev *rdev = (void*)bio->bi_bdev;
890 			bio->bi_next = NULL;
891 			bio->bi_bdev = rdev->bdev;
892 			if (test_bit(Faulty, &rdev->flags)) {
893 				bio->bi_error = -EIO;
894 				bio_endio(bio);
895 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
896 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
897 				/* Just ignore it */
898 				bio_endio(bio);
899 			else
900 				generic_make_request(bio);
901 			bio = next;
902 		}
903 	} else
904 		spin_unlock_irq(&conf->device_lock);
905 }
906 
907 /* Barriers....
908  * Sometimes we need to suspend IO while we do something else,
909  * either some resync/recovery, or reconfigure the array.
910  * To do this we raise a 'barrier'.
911  * The 'barrier' is a counter that can be raised multiple times
912  * to count how many activities are happening which preclude
913  * normal IO.
914  * We can only raise the barrier if there is no pending IO.
915  * i.e. if nr_pending == 0.
916  * We choose only to raise the barrier if no-one is waiting for the
917  * barrier to go down.  This means that as soon as an IO request
918  * is ready, no other operations which require a barrier will start
919  * until the IO request has had a chance.
920  *
921  * So: regular IO calls 'wait_barrier'.  When that returns there
922  *    is no backgroup IO happening,  It must arrange to call
923  *    allow_barrier when it has finished its IO.
924  * backgroup IO calls must call raise_barrier.  Once that returns
925  *    there is no normal IO happeing.  It must arrange to call
926  *    lower_barrier when the particular background IO completes.
927  */
928 
929 static void raise_barrier(struct r10conf *conf, int force)
930 {
931 	BUG_ON(force && !conf->barrier);
932 	spin_lock_irq(&conf->resync_lock);
933 
934 	/* Wait until no block IO is waiting (unless 'force') */
935 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
936 			    conf->resync_lock);
937 
938 	/* block any new IO from starting */
939 	conf->barrier++;
940 
941 	/* Now wait for all pending IO to complete */
942 	wait_event_lock_irq(conf->wait_barrier,
943 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
944 			    conf->resync_lock);
945 
946 	spin_unlock_irq(&conf->resync_lock);
947 }
948 
949 static void lower_barrier(struct r10conf *conf)
950 {
951 	unsigned long flags;
952 	spin_lock_irqsave(&conf->resync_lock, flags);
953 	conf->barrier--;
954 	spin_unlock_irqrestore(&conf->resync_lock, flags);
955 	wake_up(&conf->wait_barrier);
956 }
957 
958 static void wait_barrier(struct r10conf *conf)
959 {
960 	spin_lock_irq(&conf->resync_lock);
961 	if (conf->barrier) {
962 		conf->nr_waiting++;
963 		/* Wait for the barrier to drop.
964 		 * However if there are already pending
965 		 * requests (preventing the barrier from
966 		 * rising completely), and the
967 		 * pre-process bio queue isn't empty,
968 		 * then don't wait, as we need to empty
969 		 * that queue to get the nr_pending
970 		 * count down.
971 		 */
972 		raid10_log(conf->mddev, "wait barrier");
973 		wait_event_lock_irq(conf->wait_barrier,
974 				    !conf->barrier ||
975 				    (atomic_read(&conf->nr_pending) &&
976 				     current->bio_list &&
977 				     !bio_list_empty(current->bio_list)),
978 				    conf->resync_lock);
979 		conf->nr_waiting--;
980 		if (!conf->nr_waiting)
981 			wake_up(&conf->wait_barrier);
982 	}
983 	atomic_inc(&conf->nr_pending);
984 	spin_unlock_irq(&conf->resync_lock);
985 }
986 
987 static void allow_barrier(struct r10conf *conf)
988 {
989 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
990 			(conf->array_freeze_pending))
991 		wake_up(&conf->wait_barrier);
992 }
993 
994 static void freeze_array(struct r10conf *conf, int extra)
995 {
996 	/* stop syncio and normal IO and wait for everything to
997 	 * go quiet.
998 	 * We increment barrier and nr_waiting, and then
999 	 * wait until nr_pending match nr_queued+extra
1000 	 * This is called in the context of one normal IO request
1001 	 * that has failed. Thus any sync request that might be pending
1002 	 * will be blocked by nr_pending, and we need to wait for
1003 	 * pending IO requests to complete or be queued for re-try.
1004 	 * Thus the number queued (nr_queued) plus this request (extra)
1005 	 * must match the number of pending IOs (nr_pending) before
1006 	 * we continue.
1007 	 */
1008 	spin_lock_irq(&conf->resync_lock);
1009 	conf->array_freeze_pending++;
1010 	conf->barrier++;
1011 	conf->nr_waiting++;
1012 	wait_event_lock_irq_cmd(conf->wait_barrier,
1013 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1014 				conf->resync_lock,
1015 				flush_pending_writes(conf));
1016 
1017 	conf->array_freeze_pending--;
1018 	spin_unlock_irq(&conf->resync_lock);
1019 }
1020 
1021 static void unfreeze_array(struct r10conf *conf)
1022 {
1023 	/* reverse the effect of the freeze */
1024 	spin_lock_irq(&conf->resync_lock);
1025 	conf->barrier--;
1026 	conf->nr_waiting--;
1027 	wake_up(&conf->wait_barrier);
1028 	spin_unlock_irq(&conf->resync_lock);
1029 }
1030 
1031 static sector_t choose_data_offset(struct r10bio *r10_bio,
1032 				   struct md_rdev *rdev)
1033 {
1034 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1035 	    test_bit(R10BIO_Previous, &r10_bio->state))
1036 		return rdev->data_offset;
1037 	else
1038 		return rdev->new_data_offset;
1039 }
1040 
1041 struct raid10_plug_cb {
1042 	struct blk_plug_cb	cb;
1043 	struct bio_list		pending;
1044 	int			pending_cnt;
1045 };
1046 
1047 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048 {
1049 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1050 						   cb);
1051 	struct mddev *mddev = plug->cb.data;
1052 	struct r10conf *conf = mddev->private;
1053 	struct bio *bio;
1054 
1055 	if (from_schedule || current->bio_list) {
1056 		spin_lock_irq(&conf->device_lock);
1057 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 		conf->pending_count += plug->pending_cnt;
1059 		spin_unlock_irq(&conf->device_lock);
1060 		wake_up(&conf->wait_barrier);
1061 		md_wakeup_thread(mddev->thread);
1062 		kfree(plug);
1063 		return;
1064 	}
1065 
1066 	/* we aren't scheduling, so we can do the write-out directly. */
1067 	bio = bio_list_get(&plug->pending);
1068 	bitmap_unplug(mddev->bitmap);
1069 	wake_up(&conf->wait_barrier);
1070 
1071 	while (bio) { /* submit pending writes */
1072 		struct bio *next = bio->bi_next;
1073 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1074 		bio->bi_next = NULL;
1075 		bio->bi_bdev = rdev->bdev;
1076 		if (test_bit(Faulty, &rdev->flags)) {
1077 			bio->bi_error = -EIO;
1078 			bio_endio(bio);
1079 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1080 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1081 			/* Just ignore it */
1082 			bio_endio(bio);
1083 		else
1084 			generic_make_request(bio);
1085 		bio = next;
1086 	}
1087 	kfree(plug);
1088 }
1089 
1090 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1091 				struct r10bio *r10_bio)
1092 {
1093 	struct r10conf *conf = mddev->private;
1094 	struct bio *read_bio;
1095 	const int op = bio_op(bio);
1096 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1097 	int sectors_handled;
1098 	int max_sectors;
1099 	sector_t sectors;
1100 	struct md_rdev *rdev;
1101 	int slot;
1102 
1103 	/*
1104 	 * Register the new request and wait if the reconstruction
1105 	 * thread has put up a bar for new requests.
1106 	 * Continue immediately if no resync is active currently.
1107 	 */
1108 	wait_barrier(conf);
1109 
1110 	sectors = bio_sectors(bio);
1111 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1112 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1113 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1114 		/*
1115 		 * IO spans the reshape position.  Need to wait for reshape to
1116 		 * pass
1117 		 */
1118 		raid10_log(conf->mddev, "wait reshape");
1119 		allow_barrier(conf);
1120 		wait_event(conf->wait_barrier,
1121 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1122 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1123 			   sectors);
1124 		wait_barrier(conf);
1125 	}
1126 
1127 read_again:
1128 	rdev = read_balance(conf, r10_bio, &max_sectors);
1129 	if (!rdev) {
1130 		raid_end_bio_io(r10_bio);
1131 		return;
1132 	}
1133 	slot = r10_bio->read_slot;
1134 
1135 	read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1136 	bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1137 		 max_sectors);
1138 
1139 	r10_bio->devs[slot].bio = read_bio;
1140 	r10_bio->devs[slot].rdev = rdev;
1141 
1142 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1143 		choose_data_offset(r10_bio, rdev);
1144 	read_bio->bi_bdev = rdev->bdev;
1145 	read_bio->bi_end_io = raid10_end_read_request;
1146 	bio_set_op_attrs(read_bio, op, do_sync);
1147 	if (test_bit(FailFast, &rdev->flags) &&
1148 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1149 	        read_bio->bi_opf |= MD_FAILFAST;
1150 	read_bio->bi_private = r10_bio;
1151 
1152 	if (mddev->gendisk)
1153 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1154 	                              read_bio, disk_devt(mddev->gendisk),
1155 	                              r10_bio->sector);
1156 	if (max_sectors < r10_bio->sectors) {
1157 		/*
1158 		 * Could not read all from this device, so we will need another
1159 		 * r10_bio.
1160 		 */
1161 		sectors_handled = (r10_bio->sector + max_sectors
1162 				   - bio->bi_iter.bi_sector);
1163 		r10_bio->sectors = max_sectors;
1164 		spin_lock_irq(&conf->device_lock);
1165 		if (bio->bi_phys_segments == 0)
1166 			bio->bi_phys_segments = 2;
1167 		else
1168 			bio->bi_phys_segments++;
1169 		spin_unlock_irq(&conf->device_lock);
1170 		/*
1171 		 * Cannot call generic_make_request directly as that will be
1172 		 * queued in __generic_make_request and subsequent
1173 		 * mempool_alloc might block waiting for it.  so hand bio over
1174 		 * to raid10d.
1175 		 */
1176 		reschedule_retry(r10_bio);
1177 
1178 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1179 
1180 		r10_bio->master_bio = bio;
1181 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1182 		r10_bio->state = 0;
1183 		r10_bio->mddev = mddev;
1184 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1185 		goto read_again;
1186 	} else
1187 		generic_make_request(read_bio);
1188 	return;
1189 }
1190 
1191 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1192 				 struct r10bio *r10_bio)
1193 {
1194 	struct r10conf *conf = mddev->private;
1195 	int i;
1196 	const int op = bio_op(bio);
1197 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1199 	unsigned long flags;
1200 	struct md_rdev *blocked_rdev;
1201 	struct blk_plug_cb *cb;
1202 	struct raid10_plug_cb *plug = NULL;
1203 	sector_t sectors;
1204 	int sectors_handled;
1205 	int max_sectors;
1206 
1207 	md_write_start(mddev, bio);
1208 
1209 	/*
1210 	 * Register the new request and wait if the reconstruction
1211 	 * thread has put up a bar for new requests.
1212 	 * Continue immediately if no resync is active currently.
1213 	 */
1214 	wait_barrier(conf);
1215 
1216 	sectors = bio_sectors(bio);
1217 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1218 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1219 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1220 		/*
1221 		 * IO spans the reshape position.  Need to wait for reshape to
1222 		 * pass
1223 		 */
1224 		raid10_log(conf->mddev, "wait reshape");
1225 		allow_barrier(conf);
1226 		wait_event(conf->wait_barrier,
1227 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1228 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1229 			   sectors);
1230 		wait_barrier(conf);
1231 	}
1232 
1233 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1234 	    (mddev->reshape_backwards
1235 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1236 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1237 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1238 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1239 		/* Need to update reshape_position in metadata */
1240 		mddev->reshape_position = conf->reshape_progress;
1241 		set_mask_bits(&mddev->sb_flags, 0,
1242 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1243 		md_wakeup_thread(mddev->thread);
1244 		raid10_log(conf->mddev, "wait reshape metadata");
1245 		wait_event(mddev->sb_wait,
1246 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1247 
1248 		conf->reshape_safe = mddev->reshape_position;
1249 	}
1250 
1251 	if (conf->pending_count >= max_queued_requests) {
1252 		md_wakeup_thread(mddev->thread);
1253 		raid10_log(mddev, "wait queued");
1254 		wait_event(conf->wait_barrier,
1255 			   conf->pending_count < max_queued_requests);
1256 	}
1257 	/* first select target devices under rcu_lock and
1258 	 * inc refcount on their rdev.  Record them by setting
1259 	 * bios[x] to bio
1260 	 * If there are known/acknowledged bad blocks on any device
1261 	 * on which we have seen a write error, we want to avoid
1262 	 * writing to those blocks.  This potentially requires several
1263 	 * writes to write around the bad blocks.  Each set of writes
1264 	 * gets its own r10_bio with a set of bios attached.  The number
1265 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1266 	 * the read case.
1267 	 */
1268 
1269 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1270 	raid10_find_phys(conf, r10_bio);
1271 retry_write:
1272 	blocked_rdev = NULL;
1273 	rcu_read_lock();
1274 	max_sectors = r10_bio->sectors;
1275 
1276 	for (i = 0;  i < conf->copies; i++) {
1277 		int d = r10_bio->devs[i].devnum;
1278 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1279 		struct md_rdev *rrdev = rcu_dereference(
1280 			conf->mirrors[d].replacement);
1281 		if (rdev == rrdev)
1282 			rrdev = NULL;
1283 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1284 			atomic_inc(&rdev->nr_pending);
1285 			blocked_rdev = rdev;
1286 			break;
1287 		}
1288 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1289 			atomic_inc(&rrdev->nr_pending);
1290 			blocked_rdev = rrdev;
1291 			break;
1292 		}
1293 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1294 			rdev = NULL;
1295 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1296 			rrdev = NULL;
1297 
1298 		r10_bio->devs[i].bio = NULL;
1299 		r10_bio->devs[i].repl_bio = NULL;
1300 
1301 		if (!rdev && !rrdev) {
1302 			set_bit(R10BIO_Degraded, &r10_bio->state);
1303 			continue;
1304 		}
1305 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1306 			sector_t first_bad;
1307 			sector_t dev_sector = r10_bio->devs[i].addr;
1308 			int bad_sectors;
1309 			int is_bad;
1310 
1311 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1312 					     &first_bad, &bad_sectors);
1313 			if (is_bad < 0) {
1314 				/* Mustn't write here until the bad block
1315 				 * is acknowledged
1316 				 */
1317 				atomic_inc(&rdev->nr_pending);
1318 				set_bit(BlockedBadBlocks, &rdev->flags);
1319 				blocked_rdev = rdev;
1320 				break;
1321 			}
1322 			if (is_bad && first_bad <= dev_sector) {
1323 				/* Cannot write here at all */
1324 				bad_sectors -= (dev_sector - first_bad);
1325 				if (bad_sectors < max_sectors)
1326 					/* Mustn't write more than bad_sectors
1327 					 * to other devices yet
1328 					 */
1329 					max_sectors = bad_sectors;
1330 				/* We don't set R10BIO_Degraded as that
1331 				 * only applies if the disk is missing,
1332 				 * so it might be re-added, and we want to
1333 				 * know to recover this chunk.
1334 				 * In this case the device is here, and the
1335 				 * fact that this chunk is not in-sync is
1336 				 * recorded in the bad block log.
1337 				 */
1338 				continue;
1339 			}
1340 			if (is_bad) {
1341 				int good_sectors = first_bad - dev_sector;
1342 				if (good_sectors < max_sectors)
1343 					max_sectors = good_sectors;
1344 			}
1345 		}
1346 		if (rdev) {
1347 			r10_bio->devs[i].bio = bio;
1348 			atomic_inc(&rdev->nr_pending);
1349 		}
1350 		if (rrdev) {
1351 			r10_bio->devs[i].repl_bio = bio;
1352 			atomic_inc(&rrdev->nr_pending);
1353 		}
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	if (unlikely(blocked_rdev)) {
1358 		/* Have to wait for this device to get unblocked, then retry */
1359 		int j;
1360 		int d;
1361 
1362 		for (j = 0; j < i; j++) {
1363 			if (r10_bio->devs[j].bio) {
1364 				d = r10_bio->devs[j].devnum;
1365 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1366 			}
1367 			if (r10_bio->devs[j].repl_bio) {
1368 				struct md_rdev *rdev;
1369 				d = r10_bio->devs[j].devnum;
1370 				rdev = conf->mirrors[d].replacement;
1371 				if (!rdev) {
1372 					/* Race with remove_disk */
1373 					smp_mb();
1374 					rdev = conf->mirrors[d].rdev;
1375 				}
1376 				rdev_dec_pending(rdev, mddev);
1377 			}
1378 		}
1379 		allow_barrier(conf);
1380 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1381 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1382 		wait_barrier(conf);
1383 		goto retry_write;
1384 	}
1385 
1386 	if (max_sectors < r10_bio->sectors) {
1387 		/* We are splitting this into multiple parts, so
1388 		 * we need to prepare for allocating another r10_bio.
1389 		 */
1390 		r10_bio->sectors = max_sectors;
1391 		spin_lock_irq(&conf->device_lock);
1392 		if (bio->bi_phys_segments == 0)
1393 			bio->bi_phys_segments = 2;
1394 		else
1395 			bio->bi_phys_segments++;
1396 		spin_unlock_irq(&conf->device_lock);
1397 	}
1398 	sectors_handled = r10_bio->sector + max_sectors -
1399 		bio->bi_iter.bi_sector;
1400 
1401 	atomic_set(&r10_bio->remaining, 1);
1402 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1403 
1404 	for (i = 0; i < conf->copies; i++) {
1405 		struct bio *mbio;
1406 		int d = r10_bio->devs[i].devnum;
1407 		if (r10_bio->devs[i].bio) {
1408 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1409 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1410 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1411 				 max_sectors);
1412 			r10_bio->devs[i].bio = mbio;
1413 
1414 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1415 					   choose_data_offset(r10_bio, rdev));
1416 			mbio->bi_bdev = rdev->bdev;
1417 			mbio->bi_end_io	= raid10_end_write_request;
1418 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1419 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1420 			    enough(conf, d))
1421 				mbio->bi_opf |= MD_FAILFAST;
1422 			mbio->bi_private = r10_bio;
1423 
1424 			if (conf->mddev->gendisk)
1425 				trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1426 						      mbio, disk_devt(conf->mddev->gendisk),
1427 						      r10_bio->sector);
1428 			/* flush_pending_writes() needs access to the rdev so...*/
1429 			mbio->bi_bdev = (void*)rdev;
1430 
1431 			atomic_inc(&r10_bio->remaining);
1432 
1433 			cb = blk_check_plugged(raid10_unplug, mddev,
1434 					       sizeof(*plug));
1435 			if (cb)
1436 				plug = container_of(cb, struct raid10_plug_cb,
1437 						    cb);
1438 			else
1439 				plug = NULL;
1440 			spin_lock_irqsave(&conf->device_lock, flags);
1441 			if (plug) {
1442 				bio_list_add(&plug->pending, mbio);
1443 				plug->pending_cnt++;
1444 			} else {
1445 				bio_list_add(&conf->pending_bio_list, mbio);
1446 				conf->pending_count++;
1447 			}
1448 			spin_unlock_irqrestore(&conf->device_lock, flags);
1449 			if (!plug)
1450 				md_wakeup_thread(mddev->thread);
1451 		}
1452 
1453 		if (r10_bio->devs[i].repl_bio) {
1454 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1455 			if (rdev == NULL) {
1456 				/* Replacement just got moved to main 'rdev' */
1457 				smp_mb();
1458 				rdev = conf->mirrors[d].rdev;
1459 			}
1460 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1461 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1462 				 max_sectors);
1463 			r10_bio->devs[i].repl_bio = mbio;
1464 
1465 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1466 					   choose_data_offset(r10_bio, rdev));
1467 			mbio->bi_bdev = rdev->bdev;
1468 			mbio->bi_end_io	= raid10_end_write_request;
1469 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1470 			mbio->bi_private = r10_bio;
1471 
1472 			if (conf->mddev->gendisk)
1473 				trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1474 						      mbio, disk_devt(conf->mddev->gendisk),
1475 						      r10_bio->sector);
1476 			/* flush_pending_writes() needs access to the rdev so...*/
1477 			mbio->bi_bdev = (void*)rdev;
1478 
1479 			atomic_inc(&r10_bio->remaining);
1480 			spin_lock_irqsave(&conf->device_lock, flags);
1481 			bio_list_add(&conf->pending_bio_list, mbio);
1482 			conf->pending_count++;
1483 			spin_unlock_irqrestore(&conf->device_lock, flags);
1484 			if (!mddev_check_plugged(mddev))
1485 				md_wakeup_thread(mddev->thread);
1486 		}
1487 	}
1488 
1489 	/* Don't remove the bias on 'remaining' (one_write_done) until
1490 	 * after checking if we need to go around again.
1491 	 */
1492 
1493 	if (sectors_handled < bio_sectors(bio)) {
1494 		one_write_done(r10_bio);
1495 		/* We need another r10_bio.  It has already been counted
1496 		 * in bio->bi_phys_segments.
1497 		 */
1498 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1499 
1500 		r10_bio->master_bio = bio;
1501 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1502 
1503 		r10_bio->mddev = mddev;
1504 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1505 		r10_bio->state = 0;
1506 		goto retry_write;
1507 	}
1508 	one_write_done(r10_bio);
1509 }
1510 
1511 static void __make_request(struct mddev *mddev, struct bio *bio)
1512 {
1513 	struct r10conf *conf = mddev->private;
1514 	struct r10bio *r10_bio;
1515 
1516 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1517 
1518 	r10_bio->master_bio = bio;
1519 	r10_bio->sectors = bio_sectors(bio);
1520 
1521 	r10_bio->mddev = mddev;
1522 	r10_bio->sector = bio->bi_iter.bi_sector;
1523 	r10_bio->state = 0;
1524 
1525 	/*
1526 	 * We might need to issue multiple reads to different devices if there
1527 	 * are bad blocks around, so we keep track of the number of reads in
1528 	 * bio->bi_phys_segments.  If this is 0, there is only one r10_bio and
1529 	 * no locking will be needed when the request completes.  If it is
1530 	 * non-zero, then it is the number of not-completed requests.
1531 	 */
1532 	bio->bi_phys_segments = 0;
1533 	bio_clear_flag(bio, BIO_SEG_VALID);
1534 
1535 	if (bio_data_dir(bio) == READ)
1536 		raid10_read_request(mddev, bio, r10_bio);
1537 	else
1538 		raid10_write_request(mddev, bio, r10_bio);
1539 }
1540 
1541 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1542 {
1543 	struct r10conf *conf = mddev->private;
1544 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1545 	int chunk_sects = chunk_mask + 1;
1546 
1547 	struct bio *split;
1548 
1549 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1550 		md_flush_request(mddev, bio);
1551 		return;
1552 	}
1553 
1554 	do {
1555 
1556 		/*
1557 		 * If this request crosses a chunk boundary, we need to split
1558 		 * it.
1559 		 */
1560 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1561 			     bio_sectors(bio) > chunk_sects
1562 			     && (conf->geo.near_copies < conf->geo.raid_disks
1563 				 || conf->prev.near_copies <
1564 				 conf->prev.raid_disks))) {
1565 			split = bio_split(bio, chunk_sects -
1566 					  (bio->bi_iter.bi_sector &
1567 					   (chunk_sects - 1)),
1568 					  GFP_NOIO, fs_bio_set);
1569 			bio_chain(split, bio);
1570 		} else {
1571 			split = bio;
1572 		}
1573 
1574 		__make_request(mddev, split);
1575 	} while (split != bio);
1576 
1577 	/* In case raid10d snuck in to freeze_array */
1578 	wake_up(&conf->wait_barrier);
1579 }
1580 
1581 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1582 {
1583 	struct r10conf *conf = mddev->private;
1584 	int i;
1585 
1586 	if (conf->geo.near_copies < conf->geo.raid_disks)
1587 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1588 	if (conf->geo.near_copies > 1)
1589 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1590 	if (conf->geo.far_copies > 1) {
1591 		if (conf->geo.far_offset)
1592 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1593 		else
1594 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1595 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1596 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1597 	}
1598 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1599 					conf->geo.raid_disks - mddev->degraded);
1600 	rcu_read_lock();
1601 	for (i = 0; i < conf->geo.raid_disks; i++) {
1602 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1603 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1604 	}
1605 	rcu_read_unlock();
1606 	seq_printf(seq, "]");
1607 }
1608 
1609 /* check if there are enough drives for
1610  * every block to appear on atleast one.
1611  * Don't consider the device numbered 'ignore'
1612  * as we might be about to remove it.
1613  */
1614 static int _enough(struct r10conf *conf, int previous, int ignore)
1615 {
1616 	int first = 0;
1617 	int has_enough = 0;
1618 	int disks, ncopies;
1619 	if (previous) {
1620 		disks = conf->prev.raid_disks;
1621 		ncopies = conf->prev.near_copies;
1622 	} else {
1623 		disks = conf->geo.raid_disks;
1624 		ncopies = conf->geo.near_copies;
1625 	}
1626 
1627 	rcu_read_lock();
1628 	do {
1629 		int n = conf->copies;
1630 		int cnt = 0;
1631 		int this = first;
1632 		while (n--) {
1633 			struct md_rdev *rdev;
1634 			if (this != ignore &&
1635 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1636 			    test_bit(In_sync, &rdev->flags))
1637 				cnt++;
1638 			this = (this+1) % disks;
1639 		}
1640 		if (cnt == 0)
1641 			goto out;
1642 		first = (first + ncopies) % disks;
1643 	} while (first != 0);
1644 	has_enough = 1;
1645 out:
1646 	rcu_read_unlock();
1647 	return has_enough;
1648 }
1649 
1650 static int enough(struct r10conf *conf, int ignore)
1651 {
1652 	/* when calling 'enough', both 'prev' and 'geo' must
1653 	 * be stable.
1654 	 * This is ensured if ->reconfig_mutex or ->device_lock
1655 	 * is held.
1656 	 */
1657 	return _enough(conf, 0, ignore) &&
1658 		_enough(conf, 1, ignore);
1659 }
1660 
1661 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1662 {
1663 	char b[BDEVNAME_SIZE];
1664 	struct r10conf *conf = mddev->private;
1665 	unsigned long flags;
1666 
1667 	/*
1668 	 * If it is not operational, then we have already marked it as dead
1669 	 * else if it is the last working disks, ignore the error, let the
1670 	 * next level up know.
1671 	 * else mark the drive as failed
1672 	 */
1673 	spin_lock_irqsave(&conf->device_lock, flags);
1674 	if (test_bit(In_sync, &rdev->flags)
1675 	    && !enough(conf, rdev->raid_disk)) {
1676 		/*
1677 		 * Don't fail the drive, just return an IO error.
1678 		 */
1679 		spin_unlock_irqrestore(&conf->device_lock, flags);
1680 		return;
1681 	}
1682 	if (test_and_clear_bit(In_sync, &rdev->flags))
1683 		mddev->degraded++;
1684 	/*
1685 	 * If recovery is running, make sure it aborts.
1686 	 */
1687 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1688 	set_bit(Blocked, &rdev->flags);
1689 	set_bit(Faulty, &rdev->flags);
1690 	set_mask_bits(&mddev->sb_flags, 0,
1691 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1692 	spin_unlock_irqrestore(&conf->device_lock, flags);
1693 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1694 		"md/raid10:%s: Operation continuing on %d devices.\n",
1695 		mdname(mddev), bdevname(rdev->bdev, b),
1696 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1697 }
1698 
1699 static void print_conf(struct r10conf *conf)
1700 {
1701 	int i;
1702 	struct md_rdev *rdev;
1703 
1704 	pr_debug("RAID10 conf printout:\n");
1705 	if (!conf) {
1706 		pr_debug("(!conf)\n");
1707 		return;
1708 	}
1709 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1710 		 conf->geo.raid_disks);
1711 
1712 	/* This is only called with ->reconfix_mutex held, so
1713 	 * rcu protection of rdev is not needed */
1714 	for (i = 0; i < conf->geo.raid_disks; i++) {
1715 		char b[BDEVNAME_SIZE];
1716 		rdev = conf->mirrors[i].rdev;
1717 		if (rdev)
1718 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1719 				 i, !test_bit(In_sync, &rdev->flags),
1720 				 !test_bit(Faulty, &rdev->flags),
1721 				 bdevname(rdev->bdev,b));
1722 	}
1723 }
1724 
1725 static void close_sync(struct r10conf *conf)
1726 {
1727 	wait_barrier(conf);
1728 	allow_barrier(conf);
1729 
1730 	mempool_destroy(conf->r10buf_pool);
1731 	conf->r10buf_pool = NULL;
1732 }
1733 
1734 static int raid10_spare_active(struct mddev *mddev)
1735 {
1736 	int i;
1737 	struct r10conf *conf = mddev->private;
1738 	struct raid10_info *tmp;
1739 	int count = 0;
1740 	unsigned long flags;
1741 
1742 	/*
1743 	 * Find all non-in_sync disks within the RAID10 configuration
1744 	 * and mark them in_sync
1745 	 */
1746 	for (i = 0; i < conf->geo.raid_disks; i++) {
1747 		tmp = conf->mirrors + i;
1748 		if (tmp->replacement
1749 		    && tmp->replacement->recovery_offset == MaxSector
1750 		    && !test_bit(Faulty, &tmp->replacement->flags)
1751 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1752 			/* Replacement has just become active */
1753 			if (!tmp->rdev
1754 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1755 				count++;
1756 			if (tmp->rdev) {
1757 				/* Replaced device not technically faulty,
1758 				 * but we need to be sure it gets removed
1759 				 * and never re-added.
1760 				 */
1761 				set_bit(Faulty, &tmp->rdev->flags);
1762 				sysfs_notify_dirent_safe(
1763 					tmp->rdev->sysfs_state);
1764 			}
1765 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1766 		} else if (tmp->rdev
1767 			   && tmp->rdev->recovery_offset == MaxSector
1768 			   && !test_bit(Faulty, &tmp->rdev->flags)
1769 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1770 			count++;
1771 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1772 		}
1773 	}
1774 	spin_lock_irqsave(&conf->device_lock, flags);
1775 	mddev->degraded -= count;
1776 	spin_unlock_irqrestore(&conf->device_lock, flags);
1777 
1778 	print_conf(conf);
1779 	return count;
1780 }
1781 
1782 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1783 {
1784 	struct r10conf *conf = mddev->private;
1785 	int err = -EEXIST;
1786 	int mirror;
1787 	int first = 0;
1788 	int last = conf->geo.raid_disks - 1;
1789 
1790 	if (mddev->recovery_cp < MaxSector)
1791 		/* only hot-add to in-sync arrays, as recovery is
1792 		 * very different from resync
1793 		 */
1794 		return -EBUSY;
1795 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1796 		return -EINVAL;
1797 
1798 	if (md_integrity_add_rdev(rdev, mddev))
1799 		return -ENXIO;
1800 
1801 	if (rdev->raid_disk >= 0)
1802 		first = last = rdev->raid_disk;
1803 
1804 	if (rdev->saved_raid_disk >= first &&
1805 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1806 		mirror = rdev->saved_raid_disk;
1807 	else
1808 		mirror = first;
1809 	for ( ; mirror <= last ; mirror++) {
1810 		struct raid10_info *p = &conf->mirrors[mirror];
1811 		if (p->recovery_disabled == mddev->recovery_disabled)
1812 			continue;
1813 		if (p->rdev) {
1814 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1815 			    p->replacement != NULL)
1816 				continue;
1817 			clear_bit(In_sync, &rdev->flags);
1818 			set_bit(Replacement, &rdev->flags);
1819 			rdev->raid_disk = mirror;
1820 			err = 0;
1821 			if (mddev->gendisk)
1822 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1823 						  rdev->data_offset << 9);
1824 			conf->fullsync = 1;
1825 			rcu_assign_pointer(p->replacement, rdev);
1826 			break;
1827 		}
1828 
1829 		if (mddev->gendisk)
1830 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1831 					  rdev->data_offset << 9);
1832 
1833 		p->head_position = 0;
1834 		p->recovery_disabled = mddev->recovery_disabled - 1;
1835 		rdev->raid_disk = mirror;
1836 		err = 0;
1837 		if (rdev->saved_raid_disk != mirror)
1838 			conf->fullsync = 1;
1839 		rcu_assign_pointer(p->rdev, rdev);
1840 		break;
1841 	}
1842 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1843 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1844 
1845 	print_conf(conf);
1846 	return err;
1847 }
1848 
1849 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1850 {
1851 	struct r10conf *conf = mddev->private;
1852 	int err = 0;
1853 	int number = rdev->raid_disk;
1854 	struct md_rdev **rdevp;
1855 	struct raid10_info *p = conf->mirrors + number;
1856 
1857 	print_conf(conf);
1858 	if (rdev == p->rdev)
1859 		rdevp = &p->rdev;
1860 	else if (rdev == p->replacement)
1861 		rdevp = &p->replacement;
1862 	else
1863 		return 0;
1864 
1865 	if (test_bit(In_sync, &rdev->flags) ||
1866 	    atomic_read(&rdev->nr_pending)) {
1867 		err = -EBUSY;
1868 		goto abort;
1869 	}
1870 	/* Only remove non-faulty devices if recovery
1871 	 * is not possible.
1872 	 */
1873 	if (!test_bit(Faulty, &rdev->flags) &&
1874 	    mddev->recovery_disabled != p->recovery_disabled &&
1875 	    (!p->replacement || p->replacement == rdev) &&
1876 	    number < conf->geo.raid_disks &&
1877 	    enough(conf, -1)) {
1878 		err = -EBUSY;
1879 		goto abort;
1880 	}
1881 	*rdevp = NULL;
1882 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1883 		synchronize_rcu();
1884 		if (atomic_read(&rdev->nr_pending)) {
1885 			/* lost the race, try later */
1886 			err = -EBUSY;
1887 			*rdevp = rdev;
1888 			goto abort;
1889 		}
1890 	}
1891 	if (p->replacement) {
1892 		/* We must have just cleared 'rdev' */
1893 		p->rdev = p->replacement;
1894 		clear_bit(Replacement, &p->replacement->flags);
1895 		smp_mb(); /* Make sure other CPUs may see both as identical
1896 			   * but will never see neither -- if they are careful.
1897 			   */
1898 		p->replacement = NULL;
1899 		clear_bit(WantReplacement, &rdev->flags);
1900 	} else
1901 		/* We might have just remove the Replacement as faulty
1902 		 * Clear the flag just in case
1903 		 */
1904 		clear_bit(WantReplacement, &rdev->flags);
1905 
1906 	err = md_integrity_register(mddev);
1907 
1908 abort:
1909 
1910 	print_conf(conf);
1911 	return err;
1912 }
1913 
1914 static void end_sync_read(struct bio *bio)
1915 {
1916 	struct r10bio *r10_bio = bio->bi_private;
1917 	struct r10conf *conf = r10_bio->mddev->private;
1918 	int d;
1919 
1920 	if (bio == r10_bio->master_bio) {
1921 		/* this is a reshape read */
1922 		d = r10_bio->read_slot; /* really the read dev */
1923 	} else
1924 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1925 
1926 	if (!bio->bi_error)
1927 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1928 	else
1929 		/* The write handler will notice the lack of
1930 		 * R10BIO_Uptodate and record any errors etc
1931 		 */
1932 		atomic_add(r10_bio->sectors,
1933 			   &conf->mirrors[d].rdev->corrected_errors);
1934 
1935 	/* for reconstruct, we always reschedule after a read.
1936 	 * for resync, only after all reads
1937 	 */
1938 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1939 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1940 	    atomic_dec_and_test(&r10_bio->remaining)) {
1941 		/* we have read all the blocks,
1942 		 * do the comparison in process context in raid10d
1943 		 */
1944 		reschedule_retry(r10_bio);
1945 	}
1946 }
1947 
1948 static void end_sync_request(struct r10bio *r10_bio)
1949 {
1950 	struct mddev *mddev = r10_bio->mddev;
1951 
1952 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1953 		if (r10_bio->master_bio == NULL) {
1954 			/* the primary of several recovery bios */
1955 			sector_t s = r10_bio->sectors;
1956 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1957 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1958 				reschedule_retry(r10_bio);
1959 			else
1960 				put_buf(r10_bio);
1961 			md_done_sync(mddev, s, 1);
1962 			break;
1963 		} else {
1964 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1965 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1966 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1967 				reschedule_retry(r10_bio);
1968 			else
1969 				put_buf(r10_bio);
1970 			r10_bio = r10_bio2;
1971 		}
1972 	}
1973 }
1974 
1975 static void end_sync_write(struct bio *bio)
1976 {
1977 	struct r10bio *r10_bio = bio->bi_private;
1978 	struct mddev *mddev = r10_bio->mddev;
1979 	struct r10conf *conf = mddev->private;
1980 	int d;
1981 	sector_t first_bad;
1982 	int bad_sectors;
1983 	int slot;
1984 	int repl;
1985 	struct md_rdev *rdev = NULL;
1986 
1987 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1988 	if (repl)
1989 		rdev = conf->mirrors[d].replacement;
1990 	else
1991 		rdev = conf->mirrors[d].rdev;
1992 
1993 	if (bio->bi_error) {
1994 		if (repl)
1995 			md_error(mddev, rdev);
1996 		else {
1997 			set_bit(WriteErrorSeen, &rdev->flags);
1998 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1999 				set_bit(MD_RECOVERY_NEEDED,
2000 					&rdev->mddev->recovery);
2001 			set_bit(R10BIO_WriteError, &r10_bio->state);
2002 		}
2003 	} else if (is_badblock(rdev,
2004 			     r10_bio->devs[slot].addr,
2005 			     r10_bio->sectors,
2006 			     &first_bad, &bad_sectors))
2007 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2008 
2009 	rdev_dec_pending(rdev, mddev);
2010 
2011 	end_sync_request(r10_bio);
2012 }
2013 
2014 /*
2015  * Note: sync and recover and handled very differently for raid10
2016  * This code is for resync.
2017  * For resync, we read through virtual addresses and read all blocks.
2018  * If there is any error, we schedule a write.  The lowest numbered
2019  * drive is authoritative.
2020  * However requests come for physical address, so we need to map.
2021  * For every physical address there are raid_disks/copies virtual addresses,
2022  * which is always are least one, but is not necessarly an integer.
2023  * This means that a physical address can span multiple chunks, so we may
2024  * have to submit multiple io requests for a single sync request.
2025  */
2026 /*
2027  * We check if all blocks are in-sync and only write to blocks that
2028  * aren't in sync
2029  */
2030 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2031 {
2032 	struct r10conf *conf = mddev->private;
2033 	int i, first;
2034 	struct bio *tbio, *fbio;
2035 	int vcnt;
2036 
2037 	atomic_set(&r10_bio->remaining, 1);
2038 
2039 	/* find the first device with a block */
2040 	for (i=0; i<conf->copies; i++)
2041 		if (!r10_bio->devs[i].bio->bi_error)
2042 			break;
2043 
2044 	if (i == conf->copies)
2045 		goto done;
2046 
2047 	first = i;
2048 	fbio = r10_bio->devs[i].bio;
2049 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2050 	fbio->bi_iter.bi_idx = 0;
2051 
2052 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053 	/* now find blocks with errors */
2054 	for (i=0 ; i < conf->copies ; i++) {
2055 		int  j, d;
2056 		struct md_rdev *rdev;
2057 
2058 		tbio = r10_bio->devs[i].bio;
2059 
2060 		if (tbio->bi_end_io != end_sync_read)
2061 			continue;
2062 		if (i == first)
2063 			continue;
2064 		d = r10_bio->devs[i].devnum;
2065 		rdev = conf->mirrors[d].rdev;
2066 		if (!r10_bio->devs[i].bio->bi_error) {
2067 			/* We know that the bi_io_vec layout is the same for
2068 			 * both 'first' and 'i', so we just compare them.
2069 			 * All vec entries are PAGE_SIZE;
2070 			 */
2071 			int sectors = r10_bio->sectors;
2072 			for (j = 0; j < vcnt; j++) {
2073 				int len = PAGE_SIZE;
2074 				if (sectors < (len / 512))
2075 					len = sectors * 512;
2076 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2077 					   page_address(tbio->bi_io_vec[j].bv_page),
2078 					   len))
2079 					break;
2080 				sectors -= len/512;
2081 			}
2082 			if (j == vcnt)
2083 				continue;
2084 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2085 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2086 				/* Don't fix anything. */
2087 				continue;
2088 		} else if (test_bit(FailFast, &rdev->flags)) {
2089 			/* Just give up on this device */
2090 			md_error(rdev->mddev, rdev);
2091 			continue;
2092 		}
2093 		/* Ok, we need to write this bio, either to correct an
2094 		 * inconsistency or to correct an unreadable block.
2095 		 * First we need to fixup bv_offset, bv_len and
2096 		 * bi_vecs, as the read request might have corrupted these
2097 		 */
2098 		bio_reset(tbio);
2099 
2100 		tbio->bi_vcnt = vcnt;
2101 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2102 		tbio->bi_private = r10_bio;
2103 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2104 		tbio->bi_end_io = end_sync_write;
2105 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2106 
2107 		bio_copy_data(tbio, fbio);
2108 
2109 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2110 		atomic_inc(&r10_bio->remaining);
2111 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2112 
2113 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2114 			tbio->bi_opf |= MD_FAILFAST;
2115 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2116 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2117 		generic_make_request(tbio);
2118 	}
2119 
2120 	/* Now write out to any replacement devices
2121 	 * that are active
2122 	 */
2123 	for (i = 0; i < conf->copies; i++) {
2124 		int d;
2125 
2126 		tbio = r10_bio->devs[i].repl_bio;
2127 		if (!tbio || !tbio->bi_end_io)
2128 			continue;
2129 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2130 		    && r10_bio->devs[i].bio != fbio)
2131 			bio_copy_data(tbio, fbio);
2132 		d = r10_bio->devs[i].devnum;
2133 		atomic_inc(&r10_bio->remaining);
2134 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2135 			     bio_sectors(tbio));
2136 		generic_make_request(tbio);
2137 	}
2138 
2139 done:
2140 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2141 		md_done_sync(mddev, r10_bio->sectors, 1);
2142 		put_buf(r10_bio);
2143 	}
2144 }
2145 
2146 /*
2147  * Now for the recovery code.
2148  * Recovery happens across physical sectors.
2149  * We recover all non-is_sync drives by finding the virtual address of
2150  * each, and then choose a working drive that also has that virt address.
2151  * There is a separate r10_bio for each non-in_sync drive.
2152  * Only the first two slots are in use. The first for reading,
2153  * The second for writing.
2154  *
2155  */
2156 static void fix_recovery_read_error(struct r10bio *r10_bio)
2157 {
2158 	/* We got a read error during recovery.
2159 	 * We repeat the read in smaller page-sized sections.
2160 	 * If a read succeeds, write it to the new device or record
2161 	 * a bad block if we cannot.
2162 	 * If a read fails, record a bad block on both old and
2163 	 * new devices.
2164 	 */
2165 	struct mddev *mddev = r10_bio->mddev;
2166 	struct r10conf *conf = mddev->private;
2167 	struct bio *bio = r10_bio->devs[0].bio;
2168 	sector_t sect = 0;
2169 	int sectors = r10_bio->sectors;
2170 	int idx = 0;
2171 	int dr = r10_bio->devs[0].devnum;
2172 	int dw = r10_bio->devs[1].devnum;
2173 
2174 	while (sectors) {
2175 		int s = sectors;
2176 		struct md_rdev *rdev;
2177 		sector_t addr;
2178 		int ok;
2179 
2180 		if (s > (PAGE_SIZE>>9))
2181 			s = PAGE_SIZE >> 9;
2182 
2183 		rdev = conf->mirrors[dr].rdev;
2184 		addr = r10_bio->devs[0].addr + sect,
2185 		ok = sync_page_io(rdev,
2186 				  addr,
2187 				  s << 9,
2188 				  bio->bi_io_vec[idx].bv_page,
2189 				  REQ_OP_READ, 0, false);
2190 		if (ok) {
2191 			rdev = conf->mirrors[dw].rdev;
2192 			addr = r10_bio->devs[1].addr + sect;
2193 			ok = sync_page_io(rdev,
2194 					  addr,
2195 					  s << 9,
2196 					  bio->bi_io_vec[idx].bv_page,
2197 					  REQ_OP_WRITE, 0, false);
2198 			if (!ok) {
2199 				set_bit(WriteErrorSeen, &rdev->flags);
2200 				if (!test_and_set_bit(WantReplacement,
2201 						      &rdev->flags))
2202 					set_bit(MD_RECOVERY_NEEDED,
2203 						&rdev->mddev->recovery);
2204 			}
2205 		}
2206 		if (!ok) {
2207 			/* We don't worry if we cannot set a bad block -
2208 			 * it really is bad so there is no loss in not
2209 			 * recording it yet
2210 			 */
2211 			rdev_set_badblocks(rdev, addr, s, 0);
2212 
2213 			if (rdev != conf->mirrors[dw].rdev) {
2214 				/* need bad block on destination too */
2215 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2216 				addr = r10_bio->devs[1].addr + sect;
2217 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2218 				if (!ok) {
2219 					/* just abort the recovery */
2220 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2221 						  mdname(mddev));
2222 
2223 					conf->mirrors[dw].recovery_disabled
2224 						= mddev->recovery_disabled;
2225 					set_bit(MD_RECOVERY_INTR,
2226 						&mddev->recovery);
2227 					break;
2228 				}
2229 			}
2230 		}
2231 
2232 		sectors -= s;
2233 		sect += s;
2234 		idx++;
2235 	}
2236 }
2237 
2238 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2239 {
2240 	struct r10conf *conf = mddev->private;
2241 	int d;
2242 	struct bio *wbio, *wbio2;
2243 
2244 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2245 		fix_recovery_read_error(r10_bio);
2246 		end_sync_request(r10_bio);
2247 		return;
2248 	}
2249 
2250 	/*
2251 	 * share the pages with the first bio
2252 	 * and submit the write request
2253 	 */
2254 	d = r10_bio->devs[1].devnum;
2255 	wbio = r10_bio->devs[1].bio;
2256 	wbio2 = r10_bio->devs[1].repl_bio;
2257 	/* Need to test wbio2->bi_end_io before we call
2258 	 * generic_make_request as if the former is NULL,
2259 	 * the latter is free to free wbio2.
2260 	 */
2261 	if (wbio2 && !wbio2->bi_end_io)
2262 		wbio2 = NULL;
2263 	if (wbio->bi_end_io) {
2264 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2265 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2266 		generic_make_request(wbio);
2267 	}
2268 	if (wbio2) {
2269 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2270 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2271 			     bio_sectors(wbio2));
2272 		generic_make_request(wbio2);
2273 	}
2274 }
2275 
2276 /*
2277  * Used by fix_read_error() to decay the per rdev read_errors.
2278  * We halve the read error count for every hour that has elapsed
2279  * since the last recorded read error.
2280  *
2281  */
2282 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2283 {
2284 	long cur_time_mon;
2285 	unsigned long hours_since_last;
2286 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2287 
2288 	cur_time_mon = ktime_get_seconds();
2289 
2290 	if (rdev->last_read_error == 0) {
2291 		/* first time we've seen a read error */
2292 		rdev->last_read_error = cur_time_mon;
2293 		return;
2294 	}
2295 
2296 	hours_since_last = (long)(cur_time_mon -
2297 			    rdev->last_read_error) / 3600;
2298 
2299 	rdev->last_read_error = cur_time_mon;
2300 
2301 	/*
2302 	 * if hours_since_last is > the number of bits in read_errors
2303 	 * just set read errors to 0. We do this to avoid
2304 	 * overflowing the shift of read_errors by hours_since_last.
2305 	 */
2306 	if (hours_since_last >= 8 * sizeof(read_errors))
2307 		atomic_set(&rdev->read_errors, 0);
2308 	else
2309 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2310 }
2311 
2312 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2313 			    int sectors, struct page *page, int rw)
2314 {
2315 	sector_t first_bad;
2316 	int bad_sectors;
2317 
2318 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2319 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2320 		return -1;
2321 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2322 		/* success */
2323 		return 1;
2324 	if (rw == WRITE) {
2325 		set_bit(WriteErrorSeen, &rdev->flags);
2326 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2327 			set_bit(MD_RECOVERY_NEEDED,
2328 				&rdev->mddev->recovery);
2329 	}
2330 	/* need to record an error - either for the block or the device */
2331 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2332 		md_error(rdev->mddev, rdev);
2333 	return 0;
2334 }
2335 
2336 /*
2337  * This is a kernel thread which:
2338  *
2339  *	1.	Retries failed read operations on working mirrors.
2340  *	2.	Updates the raid superblock when problems encounter.
2341  *	3.	Performs writes following reads for array synchronising.
2342  */
2343 
2344 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2345 {
2346 	int sect = 0; /* Offset from r10_bio->sector */
2347 	int sectors = r10_bio->sectors;
2348 	struct md_rdev*rdev;
2349 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2350 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2351 
2352 	/* still own a reference to this rdev, so it cannot
2353 	 * have been cleared recently.
2354 	 */
2355 	rdev = conf->mirrors[d].rdev;
2356 
2357 	if (test_bit(Faulty, &rdev->flags))
2358 		/* drive has already been failed, just ignore any
2359 		   more fix_read_error() attempts */
2360 		return;
2361 
2362 	check_decay_read_errors(mddev, rdev);
2363 	atomic_inc(&rdev->read_errors);
2364 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2365 		char b[BDEVNAME_SIZE];
2366 		bdevname(rdev->bdev, b);
2367 
2368 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2369 			  mdname(mddev), b,
2370 			  atomic_read(&rdev->read_errors), max_read_errors);
2371 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2372 			  mdname(mddev), b);
2373 		md_error(mddev, rdev);
2374 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2375 		return;
2376 	}
2377 
2378 	while(sectors) {
2379 		int s = sectors;
2380 		int sl = r10_bio->read_slot;
2381 		int success = 0;
2382 		int start;
2383 
2384 		if (s > (PAGE_SIZE>>9))
2385 			s = PAGE_SIZE >> 9;
2386 
2387 		rcu_read_lock();
2388 		do {
2389 			sector_t first_bad;
2390 			int bad_sectors;
2391 
2392 			d = r10_bio->devs[sl].devnum;
2393 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2394 			if (rdev &&
2395 			    test_bit(In_sync, &rdev->flags) &&
2396 			    !test_bit(Faulty, &rdev->flags) &&
2397 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2398 					&first_bad, &bad_sectors) == 0) {
2399 				atomic_inc(&rdev->nr_pending);
2400 				rcu_read_unlock();
2401 				success = sync_page_io(rdev,
2402 						       r10_bio->devs[sl].addr +
2403 						       sect,
2404 						       s<<9,
2405 						       conf->tmppage,
2406 						       REQ_OP_READ, 0, false);
2407 				rdev_dec_pending(rdev, mddev);
2408 				rcu_read_lock();
2409 				if (success)
2410 					break;
2411 			}
2412 			sl++;
2413 			if (sl == conf->copies)
2414 				sl = 0;
2415 		} while (!success && sl != r10_bio->read_slot);
2416 		rcu_read_unlock();
2417 
2418 		if (!success) {
2419 			/* Cannot read from anywhere, just mark the block
2420 			 * as bad on the first device to discourage future
2421 			 * reads.
2422 			 */
2423 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2424 			rdev = conf->mirrors[dn].rdev;
2425 
2426 			if (!rdev_set_badblocks(
2427 				    rdev,
2428 				    r10_bio->devs[r10_bio->read_slot].addr
2429 				    + sect,
2430 				    s, 0)) {
2431 				md_error(mddev, rdev);
2432 				r10_bio->devs[r10_bio->read_slot].bio
2433 					= IO_BLOCKED;
2434 			}
2435 			break;
2436 		}
2437 
2438 		start = sl;
2439 		/* write it back and re-read */
2440 		rcu_read_lock();
2441 		while (sl != r10_bio->read_slot) {
2442 			char b[BDEVNAME_SIZE];
2443 
2444 			if (sl==0)
2445 				sl = conf->copies;
2446 			sl--;
2447 			d = r10_bio->devs[sl].devnum;
2448 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2449 			if (!rdev ||
2450 			    test_bit(Faulty, &rdev->flags) ||
2451 			    !test_bit(In_sync, &rdev->flags))
2452 				continue;
2453 
2454 			atomic_inc(&rdev->nr_pending);
2455 			rcu_read_unlock();
2456 			if (r10_sync_page_io(rdev,
2457 					     r10_bio->devs[sl].addr +
2458 					     sect,
2459 					     s, conf->tmppage, WRITE)
2460 			    == 0) {
2461 				/* Well, this device is dead */
2462 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2463 					  mdname(mddev), s,
2464 					  (unsigned long long)(
2465 						  sect +
2466 						  choose_data_offset(r10_bio,
2467 								     rdev)),
2468 					  bdevname(rdev->bdev, b));
2469 				pr_notice("md/raid10:%s: %s: failing drive\n",
2470 					  mdname(mddev),
2471 					  bdevname(rdev->bdev, b));
2472 			}
2473 			rdev_dec_pending(rdev, mddev);
2474 			rcu_read_lock();
2475 		}
2476 		sl = start;
2477 		while (sl != r10_bio->read_slot) {
2478 			char b[BDEVNAME_SIZE];
2479 
2480 			if (sl==0)
2481 				sl = conf->copies;
2482 			sl--;
2483 			d = r10_bio->devs[sl].devnum;
2484 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2485 			if (!rdev ||
2486 			    test_bit(Faulty, &rdev->flags) ||
2487 			    !test_bit(In_sync, &rdev->flags))
2488 				continue;
2489 
2490 			atomic_inc(&rdev->nr_pending);
2491 			rcu_read_unlock();
2492 			switch (r10_sync_page_io(rdev,
2493 					     r10_bio->devs[sl].addr +
2494 					     sect,
2495 					     s, conf->tmppage,
2496 						 READ)) {
2497 			case 0:
2498 				/* Well, this device is dead */
2499 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2500 				       mdname(mddev), s,
2501 				       (unsigned long long)(
2502 					       sect +
2503 					       choose_data_offset(r10_bio, rdev)),
2504 				       bdevname(rdev->bdev, b));
2505 				pr_notice("md/raid10:%s: %s: failing drive\n",
2506 				       mdname(mddev),
2507 				       bdevname(rdev->bdev, b));
2508 				break;
2509 			case 1:
2510 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2511 				       mdname(mddev), s,
2512 				       (unsigned long long)(
2513 					       sect +
2514 					       choose_data_offset(r10_bio, rdev)),
2515 				       bdevname(rdev->bdev, b));
2516 				atomic_add(s, &rdev->corrected_errors);
2517 			}
2518 
2519 			rdev_dec_pending(rdev, mddev);
2520 			rcu_read_lock();
2521 		}
2522 		rcu_read_unlock();
2523 
2524 		sectors -= s;
2525 		sect += s;
2526 	}
2527 }
2528 
2529 static int narrow_write_error(struct r10bio *r10_bio, int i)
2530 {
2531 	struct bio *bio = r10_bio->master_bio;
2532 	struct mddev *mddev = r10_bio->mddev;
2533 	struct r10conf *conf = mddev->private;
2534 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2535 	/* bio has the data to be written to slot 'i' where
2536 	 * we just recently had a write error.
2537 	 * We repeatedly clone the bio and trim down to one block,
2538 	 * then try the write.  Where the write fails we record
2539 	 * a bad block.
2540 	 * It is conceivable that the bio doesn't exactly align with
2541 	 * blocks.  We must handle this.
2542 	 *
2543 	 * We currently own a reference to the rdev.
2544 	 */
2545 
2546 	int block_sectors;
2547 	sector_t sector;
2548 	int sectors;
2549 	int sect_to_write = r10_bio->sectors;
2550 	int ok = 1;
2551 
2552 	if (rdev->badblocks.shift < 0)
2553 		return 0;
2554 
2555 	block_sectors = roundup(1 << rdev->badblocks.shift,
2556 				bdev_logical_block_size(rdev->bdev) >> 9);
2557 	sector = r10_bio->sector;
2558 	sectors = ((r10_bio->sector + block_sectors)
2559 		   & ~(sector_t)(block_sectors - 1))
2560 		- sector;
2561 
2562 	while (sect_to_write) {
2563 		struct bio *wbio;
2564 		sector_t wsector;
2565 		if (sectors > sect_to_write)
2566 			sectors = sect_to_write;
2567 		/* Write at 'sector' for 'sectors' */
2568 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2569 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2570 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2571 		wbio->bi_iter.bi_sector = wsector +
2572 				   choose_data_offset(r10_bio, rdev);
2573 		wbio->bi_bdev = rdev->bdev;
2574 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2575 
2576 		if (submit_bio_wait(wbio) < 0)
2577 			/* Failure! */
2578 			ok = rdev_set_badblocks(rdev, wsector,
2579 						sectors, 0)
2580 				&& ok;
2581 
2582 		bio_put(wbio);
2583 		sect_to_write -= sectors;
2584 		sector += sectors;
2585 		sectors = block_sectors;
2586 	}
2587 	return ok;
2588 }
2589 
2590 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2591 {
2592 	int slot = r10_bio->read_slot;
2593 	struct bio *bio;
2594 	struct r10conf *conf = mddev->private;
2595 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2596 	char b[BDEVNAME_SIZE];
2597 	unsigned long do_sync;
2598 	int max_sectors;
2599 	dev_t bio_dev;
2600 	sector_t bio_last_sector;
2601 
2602 	/* we got a read error. Maybe the drive is bad.  Maybe just
2603 	 * the block and we can fix it.
2604 	 * We freeze all other IO, and try reading the block from
2605 	 * other devices.  When we find one, we re-write
2606 	 * and check it that fixes the read error.
2607 	 * This is all done synchronously while the array is
2608 	 * frozen.
2609 	 */
2610 	bio = r10_bio->devs[slot].bio;
2611 	bdevname(bio->bi_bdev, b);
2612 	bio_dev = bio->bi_bdev->bd_dev;
2613 	bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2614 	bio_put(bio);
2615 	r10_bio->devs[slot].bio = NULL;
2616 
2617 	if (mddev->ro)
2618 		r10_bio->devs[slot].bio = IO_BLOCKED;
2619 	else if (!test_bit(FailFast, &rdev->flags)) {
2620 		freeze_array(conf, 1);
2621 		fix_read_error(conf, mddev, r10_bio);
2622 		unfreeze_array(conf);
2623 	} else
2624 		md_error(mddev, rdev);
2625 
2626 	rdev_dec_pending(rdev, mddev);
2627 
2628 read_more:
2629 	rdev = read_balance(conf, r10_bio, &max_sectors);
2630 	if (rdev == NULL) {
2631 		pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2632 				    mdname(mddev), b,
2633 				    (unsigned long long)r10_bio->sector);
2634 		raid_end_bio_io(r10_bio);
2635 		return;
2636 	}
2637 
2638 	do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2639 	slot = r10_bio->read_slot;
2640 	pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2641 			   mdname(mddev),
2642 			   bdevname(rdev->bdev, b),
2643 			   (unsigned long long)r10_bio->sector);
2644 	bio = bio_clone_mddev(r10_bio->master_bio,
2645 			      GFP_NOIO, mddev);
2646 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2647 	r10_bio->devs[slot].bio = bio;
2648 	r10_bio->devs[slot].rdev = rdev;
2649 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2650 		+ choose_data_offset(r10_bio, rdev);
2651 	bio->bi_bdev = rdev->bdev;
2652 	bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2653 	if (test_bit(FailFast, &rdev->flags) &&
2654 	    test_bit(R10BIO_FailFast, &r10_bio->state))
2655 		bio->bi_opf |= MD_FAILFAST;
2656 	bio->bi_private = r10_bio;
2657 	bio->bi_end_io = raid10_end_read_request;
2658 	trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2659 			      bio, bio_dev,
2660 			      bio_last_sector - r10_bio->sectors);
2661 
2662 	if (max_sectors < r10_bio->sectors) {
2663 		/* Drat - have to split this up more */
2664 		struct bio *mbio = r10_bio->master_bio;
2665 		int sectors_handled =
2666 			r10_bio->sector + max_sectors
2667 			- mbio->bi_iter.bi_sector;
2668 		r10_bio->sectors = max_sectors;
2669 		spin_lock_irq(&conf->device_lock);
2670 		if (mbio->bi_phys_segments == 0)
2671 			mbio->bi_phys_segments = 2;
2672 		else
2673 			mbio->bi_phys_segments++;
2674 		spin_unlock_irq(&conf->device_lock);
2675 		generic_make_request(bio);
2676 
2677 		r10_bio = mempool_alloc(conf->r10bio_pool,
2678 					GFP_NOIO);
2679 		r10_bio->master_bio = mbio;
2680 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2681 		r10_bio->state = 0;
2682 		set_bit(R10BIO_ReadError,
2683 			&r10_bio->state);
2684 		r10_bio->mddev = mddev;
2685 		r10_bio->sector = mbio->bi_iter.bi_sector
2686 			+ sectors_handled;
2687 
2688 		goto read_more;
2689 	} else
2690 		generic_make_request(bio);
2691 }
2692 
2693 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2694 {
2695 	/* Some sort of write request has finished and it
2696 	 * succeeded in writing where we thought there was a
2697 	 * bad block.  So forget the bad block.
2698 	 * Or possibly if failed and we need to record
2699 	 * a bad block.
2700 	 */
2701 	int m;
2702 	struct md_rdev *rdev;
2703 
2704 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2705 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2706 		for (m = 0; m < conf->copies; m++) {
2707 			int dev = r10_bio->devs[m].devnum;
2708 			rdev = conf->mirrors[dev].rdev;
2709 			if (r10_bio->devs[m].bio == NULL)
2710 				continue;
2711 			if (!r10_bio->devs[m].bio->bi_error) {
2712 				rdev_clear_badblocks(
2713 					rdev,
2714 					r10_bio->devs[m].addr,
2715 					r10_bio->sectors, 0);
2716 			} else {
2717 				if (!rdev_set_badblocks(
2718 					    rdev,
2719 					    r10_bio->devs[m].addr,
2720 					    r10_bio->sectors, 0))
2721 					md_error(conf->mddev, rdev);
2722 			}
2723 			rdev = conf->mirrors[dev].replacement;
2724 			if (r10_bio->devs[m].repl_bio == NULL)
2725 				continue;
2726 
2727 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2728 				rdev_clear_badblocks(
2729 					rdev,
2730 					r10_bio->devs[m].addr,
2731 					r10_bio->sectors, 0);
2732 			} else {
2733 				if (!rdev_set_badblocks(
2734 					    rdev,
2735 					    r10_bio->devs[m].addr,
2736 					    r10_bio->sectors, 0))
2737 					md_error(conf->mddev, rdev);
2738 			}
2739 		}
2740 		put_buf(r10_bio);
2741 	} else {
2742 		bool fail = false;
2743 		for (m = 0; m < conf->copies; m++) {
2744 			int dev = r10_bio->devs[m].devnum;
2745 			struct bio *bio = r10_bio->devs[m].bio;
2746 			rdev = conf->mirrors[dev].rdev;
2747 			if (bio == IO_MADE_GOOD) {
2748 				rdev_clear_badblocks(
2749 					rdev,
2750 					r10_bio->devs[m].addr,
2751 					r10_bio->sectors, 0);
2752 				rdev_dec_pending(rdev, conf->mddev);
2753 			} else if (bio != NULL && bio->bi_error) {
2754 				fail = true;
2755 				if (!narrow_write_error(r10_bio, m)) {
2756 					md_error(conf->mddev, rdev);
2757 					set_bit(R10BIO_Degraded,
2758 						&r10_bio->state);
2759 				}
2760 				rdev_dec_pending(rdev, conf->mddev);
2761 			}
2762 			bio = r10_bio->devs[m].repl_bio;
2763 			rdev = conf->mirrors[dev].replacement;
2764 			if (rdev && bio == IO_MADE_GOOD) {
2765 				rdev_clear_badblocks(
2766 					rdev,
2767 					r10_bio->devs[m].addr,
2768 					r10_bio->sectors, 0);
2769 				rdev_dec_pending(rdev, conf->mddev);
2770 			}
2771 		}
2772 		if (fail) {
2773 			spin_lock_irq(&conf->device_lock);
2774 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2775 			conf->nr_queued++;
2776 			spin_unlock_irq(&conf->device_lock);
2777 			md_wakeup_thread(conf->mddev->thread);
2778 		} else {
2779 			if (test_bit(R10BIO_WriteError,
2780 				     &r10_bio->state))
2781 				close_write(r10_bio);
2782 			raid_end_bio_io(r10_bio);
2783 		}
2784 	}
2785 }
2786 
2787 static void raid10d(struct md_thread *thread)
2788 {
2789 	struct mddev *mddev = thread->mddev;
2790 	struct r10bio *r10_bio;
2791 	unsigned long flags;
2792 	struct r10conf *conf = mddev->private;
2793 	struct list_head *head = &conf->retry_list;
2794 	struct blk_plug plug;
2795 
2796 	md_check_recovery(mddev);
2797 
2798 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2799 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2800 		LIST_HEAD(tmp);
2801 		spin_lock_irqsave(&conf->device_lock, flags);
2802 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2803 			while (!list_empty(&conf->bio_end_io_list)) {
2804 				list_move(conf->bio_end_io_list.prev, &tmp);
2805 				conf->nr_queued--;
2806 			}
2807 		}
2808 		spin_unlock_irqrestore(&conf->device_lock, flags);
2809 		while (!list_empty(&tmp)) {
2810 			r10_bio = list_first_entry(&tmp, struct r10bio,
2811 						   retry_list);
2812 			list_del(&r10_bio->retry_list);
2813 			if (mddev->degraded)
2814 				set_bit(R10BIO_Degraded, &r10_bio->state);
2815 
2816 			if (test_bit(R10BIO_WriteError,
2817 				     &r10_bio->state))
2818 				close_write(r10_bio);
2819 			raid_end_bio_io(r10_bio);
2820 		}
2821 	}
2822 
2823 	blk_start_plug(&plug);
2824 	for (;;) {
2825 
2826 		flush_pending_writes(conf);
2827 
2828 		spin_lock_irqsave(&conf->device_lock, flags);
2829 		if (list_empty(head)) {
2830 			spin_unlock_irqrestore(&conf->device_lock, flags);
2831 			break;
2832 		}
2833 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2834 		list_del(head->prev);
2835 		conf->nr_queued--;
2836 		spin_unlock_irqrestore(&conf->device_lock, flags);
2837 
2838 		mddev = r10_bio->mddev;
2839 		conf = mddev->private;
2840 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2841 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2842 			handle_write_completed(conf, r10_bio);
2843 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2844 			reshape_request_write(mddev, r10_bio);
2845 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2846 			sync_request_write(mddev, r10_bio);
2847 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2848 			recovery_request_write(mddev, r10_bio);
2849 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2850 			handle_read_error(mddev, r10_bio);
2851 		else {
2852 			/* just a partial read to be scheduled from a
2853 			 * separate context
2854 			 */
2855 			int slot = r10_bio->read_slot;
2856 			generic_make_request(r10_bio->devs[slot].bio);
2857 		}
2858 
2859 		cond_resched();
2860 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2861 			md_check_recovery(mddev);
2862 	}
2863 	blk_finish_plug(&plug);
2864 }
2865 
2866 static int init_resync(struct r10conf *conf)
2867 {
2868 	int buffs;
2869 	int i;
2870 
2871 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2872 	BUG_ON(conf->r10buf_pool);
2873 	conf->have_replacement = 0;
2874 	for (i = 0; i < conf->geo.raid_disks; i++)
2875 		if (conf->mirrors[i].replacement)
2876 			conf->have_replacement = 1;
2877 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2878 	if (!conf->r10buf_pool)
2879 		return -ENOMEM;
2880 	conf->next_resync = 0;
2881 	return 0;
2882 }
2883 
2884 /*
2885  * perform a "sync" on one "block"
2886  *
2887  * We need to make sure that no normal I/O request - particularly write
2888  * requests - conflict with active sync requests.
2889  *
2890  * This is achieved by tracking pending requests and a 'barrier' concept
2891  * that can be installed to exclude normal IO requests.
2892  *
2893  * Resync and recovery are handled very differently.
2894  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2895  *
2896  * For resync, we iterate over virtual addresses, read all copies,
2897  * and update if there are differences.  If only one copy is live,
2898  * skip it.
2899  * For recovery, we iterate over physical addresses, read a good
2900  * value for each non-in_sync drive, and over-write.
2901  *
2902  * So, for recovery we may have several outstanding complex requests for a
2903  * given address, one for each out-of-sync device.  We model this by allocating
2904  * a number of r10_bio structures, one for each out-of-sync device.
2905  * As we setup these structures, we collect all bio's together into a list
2906  * which we then process collectively to add pages, and then process again
2907  * to pass to generic_make_request.
2908  *
2909  * The r10_bio structures are linked using a borrowed master_bio pointer.
2910  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2911  * has its remaining count decremented to 0, the whole complex operation
2912  * is complete.
2913  *
2914  */
2915 
2916 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2917 			     int *skipped)
2918 {
2919 	struct r10conf *conf = mddev->private;
2920 	struct r10bio *r10_bio;
2921 	struct bio *biolist = NULL, *bio;
2922 	sector_t max_sector, nr_sectors;
2923 	int i;
2924 	int max_sync;
2925 	sector_t sync_blocks;
2926 	sector_t sectors_skipped = 0;
2927 	int chunks_skipped = 0;
2928 	sector_t chunk_mask = conf->geo.chunk_mask;
2929 
2930 	if (!conf->r10buf_pool)
2931 		if (init_resync(conf))
2932 			return 0;
2933 
2934 	/*
2935 	 * Allow skipping a full rebuild for incremental assembly
2936 	 * of a clean array, like RAID1 does.
2937 	 */
2938 	if (mddev->bitmap == NULL &&
2939 	    mddev->recovery_cp == MaxSector &&
2940 	    mddev->reshape_position == MaxSector &&
2941 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2942 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2943 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2944 	    conf->fullsync == 0) {
2945 		*skipped = 1;
2946 		return mddev->dev_sectors - sector_nr;
2947 	}
2948 
2949  skipped:
2950 	max_sector = mddev->dev_sectors;
2951 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2952 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2953 		max_sector = mddev->resync_max_sectors;
2954 	if (sector_nr >= max_sector) {
2955 		/* If we aborted, we need to abort the
2956 		 * sync on the 'current' bitmap chucks (there can
2957 		 * be several when recovering multiple devices).
2958 		 * as we may have started syncing it but not finished.
2959 		 * We can find the current address in
2960 		 * mddev->curr_resync, but for recovery,
2961 		 * we need to convert that to several
2962 		 * virtual addresses.
2963 		 */
2964 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2965 			end_reshape(conf);
2966 			close_sync(conf);
2967 			return 0;
2968 		}
2969 
2970 		if (mddev->curr_resync < max_sector) { /* aborted */
2971 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2972 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2973 						&sync_blocks, 1);
2974 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2975 				sector_t sect =
2976 					raid10_find_virt(conf, mddev->curr_resync, i);
2977 				bitmap_end_sync(mddev->bitmap, sect,
2978 						&sync_blocks, 1);
2979 			}
2980 		} else {
2981 			/* completed sync */
2982 			if ((!mddev->bitmap || conf->fullsync)
2983 			    && conf->have_replacement
2984 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2985 				/* Completed a full sync so the replacements
2986 				 * are now fully recovered.
2987 				 */
2988 				rcu_read_lock();
2989 				for (i = 0; i < conf->geo.raid_disks; i++) {
2990 					struct md_rdev *rdev =
2991 						rcu_dereference(conf->mirrors[i].replacement);
2992 					if (rdev)
2993 						rdev->recovery_offset = MaxSector;
2994 				}
2995 				rcu_read_unlock();
2996 			}
2997 			conf->fullsync = 0;
2998 		}
2999 		bitmap_close_sync(mddev->bitmap);
3000 		close_sync(conf);
3001 		*skipped = 1;
3002 		return sectors_skipped;
3003 	}
3004 
3005 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3006 		return reshape_request(mddev, sector_nr, skipped);
3007 
3008 	if (chunks_skipped >= conf->geo.raid_disks) {
3009 		/* if there has been nothing to do on any drive,
3010 		 * then there is nothing to do at all..
3011 		 */
3012 		*skipped = 1;
3013 		return (max_sector - sector_nr) + sectors_skipped;
3014 	}
3015 
3016 	if (max_sector > mddev->resync_max)
3017 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3018 
3019 	/* make sure whole request will fit in a chunk - if chunks
3020 	 * are meaningful
3021 	 */
3022 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3023 	    max_sector > (sector_nr | chunk_mask))
3024 		max_sector = (sector_nr | chunk_mask) + 1;
3025 
3026 	/*
3027 	 * If there is non-resync activity waiting for a turn, then let it
3028 	 * though before starting on this new sync request.
3029 	 */
3030 	if (conf->nr_waiting)
3031 		schedule_timeout_uninterruptible(1);
3032 
3033 	/* Again, very different code for resync and recovery.
3034 	 * Both must result in an r10bio with a list of bios that
3035 	 * have bi_end_io, bi_sector, bi_bdev set,
3036 	 * and bi_private set to the r10bio.
3037 	 * For recovery, we may actually create several r10bios
3038 	 * with 2 bios in each, that correspond to the bios in the main one.
3039 	 * In this case, the subordinate r10bios link back through a
3040 	 * borrowed master_bio pointer, and the counter in the master
3041 	 * includes a ref from each subordinate.
3042 	 */
3043 	/* First, we decide what to do and set ->bi_end_io
3044 	 * To end_sync_read if we want to read, and
3045 	 * end_sync_write if we will want to write.
3046 	 */
3047 
3048 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3049 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3050 		/* recovery... the complicated one */
3051 		int j;
3052 		r10_bio = NULL;
3053 
3054 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3055 			int still_degraded;
3056 			struct r10bio *rb2;
3057 			sector_t sect;
3058 			int must_sync;
3059 			int any_working;
3060 			struct raid10_info *mirror = &conf->mirrors[i];
3061 			struct md_rdev *mrdev, *mreplace;
3062 
3063 			rcu_read_lock();
3064 			mrdev = rcu_dereference(mirror->rdev);
3065 			mreplace = rcu_dereference(mirror->replacement);
3066 
3067 			if ((mrdev == NULL ||
3068 			     test_bit(Faulty, &mrdev->flags) ||
3069 			     test_bit(In_sync, &mrdev->flags)) &&
3070 			    (mreplace == NULL ||
3071 			     test_bit(Faulty, &mreplace->flags))) {
3072 				rcu_read_unlock();
3073 				continue;
3074 			}
3075 
3076 			still_degraded = 0;
3077 			/* want to reconstruct this device */
3078 			rb2 = r10_bio;
3079 			sect = raid10_find_virt(conf, sector_nr, i);
3080 			if (sect >= mddev->resync_max_sectors) {
3081 				/* last stripe is not complete - don't
3082 				 * try to recover this sector.
3083 				 */
3084 				rcu_read_unlock();
3085 				continue;
3086 			}
3087 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3088 				mreplace = NULL;
3089 			/* Unless we are doing a full sync, or a replacement
3090 			 * we only need to recover the block if it is set in
3091 			 * the bitmap
3092 			 */
3093 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3094 						      &sync_blocks, 1);
3095 			if (sync_blocks < max_sync)
3096 				max_sync = sync_blocks;
3097 			if (!must_sync &&
3098 			    mreplace == NULL &&
3099 			    !conf->fullsync) {
3100 				/* yep, skip the sync_blocks here, but don't assume
3101 				 * that there will never be anything to do here
3102 				 */
3103 				chunks_skipped = -1;
3104 				rcu_read_unlock();
3105 				continue;
3106 			}
3107 			atomic_inc(&mrdev->nr_pending);
3108 			if (mreplace)
3109 				atomic_inc(&mreplace->nr_pending);
3110 			rcu_read_unlock();
3111 
3112 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3113 			r10_bio->state = 0;
3114 			raise_barrier(conf, rb2 != NULL);
3115 			atomic_set(&r10_bio->remaining, 0);
3116 
3117 			r10_bio->master_bio = (struct bio*)rb2;
3118 			if (rb2)
3119 				atomic_inc(&rb2->remaining);
3120 			r10_bio->mddev = mddev;
3121 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3122 			r10_bio->sector = sect;
3123 
3124 			raid10_find_phys(conf, r10_bio);
3125 
3126 			/* Need to check if the array will still be
3127 			 * degraded
3128 			 */
3129 			rcu_read_lock();
3130 			for (j = 0; j < conf->geo.raid_disks; j++) {
3131 				struct md_rdev *rdev = rcu_dereference(
3132 					conf->mirrors[j].rdev);
3133 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3134 					still_degraded = 1;
3135 					break;
3136 				}
3137 			}
3138 
3139 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3140 						      &sync_blocks, still_degraded);
3141 
3142 			any_working = 0;
3143 			for (j=0; j<conf->copies;j++) {
3144 				int k;
3145 				int d = r10_bio->devs[j].devnum;
3146 				sector_t from_addr, to_addr;
3147 				struct md_rdev *rdev =
3148 					rcu_dereference(conf->mirrors[d].rdev);
3149 				sector_t sector, first_bad;
3150 				int bad_sectors;
3151 				if (!rdev ||
3152 				    !test_bit(In_sync, &rdev->flags))
3153 					continue;
3154 				/* This is where we read from */
3155 				any_working = 1;
3156 				sector = r10_bio->devs[j].addr;
3157 
3158 				if (is_badblock(rdev, sector, max_sync,
3159 						&first_bad, &bad_sectors)) {
3160 					if (first_bad > sector)
3161 						max_sync = first_bad - sector;
3162 					else {
3163 						bad_sectors -= (sector
3164 								- first_bad);
3165 						if (max_sync > bad_sectors)
3166 							max_sync = bad_sectors;
3167 						continue;
3168 					}
3169 				}
3170 				bio = r10_bio->devs[0].bio;
3171 				bio_reset(bio);
3172 				bio->bi_next = biolist;
3173 				biolist = bio;
3174 				bio->bi_private = r10_bio;
3175 				bio->bi_end_io = end_sync_read;
3176 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3177 				if (test_bit(FailFast, &rdev->flags))
3178 					bio->bi_opf |= MD_FAILFAST;
3179 				from_addr = r10_bio->devs[j].addr;
3180 				bio->bi_iter.bi_sector = from_addr +
3181 					rdev->data_offset;
3182 				bio->bi_bdev = rdev->bdev;
3183 				atomic_inc(&rdev->nr_pending);
3184 				/* and we write to 'i' (if not in_sync) */
3185 
3186 				for (k=0; k<conf->copies; k++)
3187 					if (r10_bio->devs[k].devnum == i)
3188 						break;
3189 				BUG_ON(k == conf->copies);
3190 				to_addr = r10_bio->devs[k].addr;
3191 				r10_bio->devs[0].devnum = d;
3192 				r10_bio->devs[0].addr = from_addr;
3193 				r10_bio->devs[1].devnum = i;
3194 				r10_bio->devs[1].addr = to_addr;
3195 
3196 				if (!test_bit(In_sync, &mrdev->flags)) {
3197 					bio = r10_bio->devs[1].bio;
3198 					bio_reset(bio);
3199 					bio->bi_next = biolist;
3200 					biolist = bio;
3201 					bio->bi_private = r10_bio;
3202 					bio->bi_end_io = end_sync_write;
3203 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3204 					bio->bi_iter.bi_sector = to_addr
3205 						+ mrdev->data_offset;
3206 					bio->bi_bdev = mrdev->bdev;
3207 					atomic_inc(&r10_bio->remaining);
3208 				} else
3209 					r10_bio->devs[1].bio->bi_end_io = NULL;
3210 
3211 				/* and maybe write to replacement */
3212 				bio = r10_bio->devs[1].repl_bio;
3213 				if (bio)
3214 					bio->bi_end_io = NULL;
3215 				/* Note: if mreplace != NULL, then bio
3216 				 * cannot be NULL as r10buf_pool_alloc will
3217 				 * have allocated it.
3218 				 * So the second test here is pointless.
3219 				 * But it keeps semantic-checkers happy, and
3220 				 * this comment keeps human reviewers
3221 				 * happy.
3222 				 */
3223 				if (mreplace == NULL || bio == NULL ||
3224 				    test_bit(Faulty, &mreplace->flags))
3225 					break;
3226 				bio_reset(bio);
3227 				bio->bi_next = biolist;
3228 				biolist = bio;
3229 				bio->bi_private = r10_bio;
3230 				bio->bi_end_io = end_sync_write;
3231 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3232 				bio->bi_iter.bi_sector = to_addr +
3233 					mreplace->data_offset;
3234 				bio->bi_bdev = mreplace->bdev;
3235 				atomic_inc(&r10_bio->remaining);
3236 				break;
3237 			}
3238 			rcu_read_unlock();
3239 			if (j == conf->copies) {
3240 				/* Cannot recover, so abort the recovery or
3241 				 * record a bad block */
3242 				if (any_working) {
3243 					/* problem is that there are bad blocks
3244 					 * on other device(s)
3245 					 */
3246 					int k;
3247 					for (k = 0; k < conf->copies; k++)
3248 						if (r10_bio->devs[k].devnum == i)
3249 							break;
3250 					if (!test_bit(In_sync,
3251 						      &mrdev->flags)
3252 					    && !rdev_set_badblocks(
3253 						    mrdev,
3254 						    r10_bio->devs[k].addr,
3255 						    max_sync, 0))
3256 						any_working = 0;
3257 					if (mreplace &&
3258 					    !rdev_set_badblocks(
3259 						    mreplace,
3260 						    r10_bio->devs[k].addr,
3261 						    max_sync, 0))
3262 						any_working = 0;
3263 				}
3264 				if (!any_working)  {
3265 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3266 							      &mddev->recovery))
3267 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3268 						       mdname(mddev));
3269 					mirror->recovery_disabled
3270 						= mddev->recovery_disabled;
3271 				}
3272 				put_buf(r10_bio);
3273 				if (rb2)
3274 					atomic_dec(&rb2->remaining);
3275 				r10_bio = rb2;
3276 				rdev_dec_pending(mrdev, mddev);
3277 				if (mreplace)
3278 					rdev_dec_pending(mreplace, mddev);
3279 				break;
3280 			}
3281 			rdev_dec_pending(mrdev, mddev);
3282 			if (mreplace)
3283 				rdev_dec_pending(mreplace, mddev);
3284 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3285 				/* Only want this if there is elsewhere to
3286 				 * read from. 'j' is currently the first
3287 				 * readable copy.
3288 				 */
3289 				int targets = 1;
3290 				for (; j < conf->copies; j++) {
3291 					int d = r10_bio->devs[j].devnum;
3292 					if (conf->mirrors[d].rdev &&
3293 					    test_bit(In_sync,
3294 						      &conf->mirrors[d].rdev->flags))
3295 						targets++;
3296 				}
3297 				if (targets == 1)
3298 					r10_bio->devs[0].bio->bi_opf
3299 						&= ~MD_FAILFAST;
3300 			}
3301 		}
3302 		if (biolist == NULL) {
3303 			while (r10_bio) {
3304 				struct r10bio *rb2 = r10_bio;
3305 				r10_bio = (struct r10bio*) rb2->master_bio;
3306 				rb2->master_bio = NULL;
3307 				put_buf(rb2);
3308 			}
3309 			goto giveup;
3310 		}
3311 	} else {
3312 		/* resync. Schedule a read for every block at this virt offset */
3313 		int count = 0;
3314 
3315 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3316 
3317 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3318 				       &sync_blocks, mddev->degraded) &&
3319 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3320 						 &mddev->recovery)) {
3321 			/* We can skip this block */
3322 			*skipped = 1;
3323 			return sync_blocks + sectors_skipped;
3324 		}
3325 		if (sync_blocks < max_sync)
3326 			max_sync = sync_blocks;
3327 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3328 		r10_bio->state = 0;
3329 
3330 		r10_bio->mddev = mddev;
3331 		atomic_set(&r10_bio->remaining, 0);
3332 		raise_barrier(conf, 0);
3333 		conf->next_resync = sector_nr;
3334 
3335 		r10_bio->master_bio = NULL;
3336 		r10_bio->sector = sector_nr;
3337 		set_bit(R10BIO_IsSync, &r10_bio->state);
3338 		raid10_find_phys(conf, r10_bio);
3339 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3340 
3341 		for (i = 0; i < conf->copies; i++) {
3342 			int d = r10_bio->devs[i].devnum;
3343 			sector_t first_bad, sector;
3344 			int bad_sectors;
3345 			struct md_rdev *rdev;
3346 
3347 			if (r10_bio->devs[i].repl_bio)
3348 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3349 
3350 			bio = r10_bio->devs[i].bio;
3351 			bio_reset(bio);
3352 			bio->bi_error = -EIO;
3353 			rcu_read_lock();
3354 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3355 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3356 				rcu_read_unlock();
3357 				continue;
3358 			}
3359 			sector = r10_bio->devs[i].addr;
3360 			if (is_badblock(rdev, sector, max_sync,
3361 					&first_bad, &bad_sectors)) {
3362 				if (first_bad > sector)
3363 					max_sync = first_bad - sector;
3364 				else {
3365 					bad_sectors -= (sector - first_bad);
3366 					if (max_sync > bad_sectors)
3367 						max_sync = bad_sectors;
3368 					rcu_read_unlock();
3369 					continue;
3370 				}
3371 			}
3372 			atomic_inc(&rdev->nr_pending);
3373 			atomic_inc(&r10_bio->remaining);
3374 			bio->bi_next = biolist;
3375 			biolist = bio;
3376 			bio->bi_private = r10_bio;
3377 			bio->bi_end_io = end_sync_read;
3378 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3379 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3380 				bio->bi_opf |= MD_FAILFAST;
3381 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3382 			bio->bi_bdev = rdev->bdev;
3383 			count++;
3384 
3385 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3386 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3387 				rcu_read_unlock();
3388 				continue;
3389 			}
3390 			atomic_inc(&rdev->nr_pending);
3391 			rcu_read_unlock();
3392 
3393 			/* Need to set up for writing to the replacement */
3394 			bio = r10_bio->devs[i].repl_bio;
3395 			bio_reset(bio);
3396 			bio->bi_error = -EIO;
3397 
3398 			sector = r10_bio->devs[i].addr;
3399 			bio->bi_next = biolist;
3400 			biolist = bio;
3401 			bio->bi_private = r10_bio;
3402 			bio->bi_end_io = end_sync_write;
3403 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3404 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3405 				bio->bi_opf |= MD_FAILFAST;
3406 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3407 			bio->bi_bdev = rdev->bdev;
3408 			count++;
3409 		}
3410 
3411 		if (count < 2) {
3412 			for (i=0; i<conf->copies; i++) {
3413 				int d = r10_bio->devs[i].devnum;
3414 				if (r10_bio->devs[i].bio->bi_end_io)
3415 					rdev_dec_pending(conf->mirrors[d].rdev,
3416 							 mddev);
3417 				if (r10_bio->devs[i].repl_bio &&
3418 				    r10_bio->devs[i].repl_bio->bi_end_io)
3419 					rdev_dec_pending(
3420 						conf->mirrors[d].replacement,
3421 						mddev);
3422 			}
3423 			put_buf(r10_bio);
3424 			biolist = NULL;
3425 			goto giveup;
3426 		}
3427 	}
3428 
3429 	nr_sectors = 0;
3430 	if (sector_nr + max_sync < max_sector)
3431 		max_sector = sector_nr + max_sync;
3432 	do {
3433 		struct page *page;
3434 		int len = PAGE_SIZE;
3435 		if (sector_nr + (len>>9) > max_sector)
3436 			len = (max_sector - sector_nr) << 9;
3437 		if (len == 0)
3438 			break;
3439 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3440 			struct bio *bio2;
3441 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3442 			if (bio_add_page(bio, page, len, 0))
3443 				continue;
3444 
3445 			/* stop here */
3446 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3447 			for (bio2 = biolist;
3448 			     bio2 && bio2 != bio;
3449 			     bio2 = bio2->bi_next) {
3450 				/* remove last page from this bio */
3451 				bio2->bi_vcnt--;
3452 				bio2->bi_iter.bi_size -= len;
3453 				bio_clear_flag(bio2, BIO_SEG_VALID);
3454 			}
3455 			goto bio_full;
3456 		}
3457 		nr_sectors += len>>9;
3458 		sector_nr += len>>9;
3459 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3460  bio_full:
3461 	r10_bio->sectors = nr_sectors;
3462 
3463 	while (biolist) {
3464 		bio = biolist;
3465 		biolist = biolist->bi_next;
3466 
3467 		bio->bi_next = NULL;
3468 		r10_bio = bio->bi_private;
3469 		r10_bio->sectors = nr_sectors;
3470 
3471 		if (bio->bi_end_io == end_sync_read) {
3472 			md_sync_acct(bio->bi_bdev, nr_sectors);
3473 			bio->bi_error = 0;
3474 			generic_make_request(bio);
3475 		}
3476 	}
3477 
3478 	if (sectors_skipped)
3479 		/* pretend they weren't skipped, it makes
3480 		 * no important difference in this case
3481 		 */
3482 		md_done_sync(mddev, sectors_skipped, 1);
3483 
3484 	return sectors_skipped + nr_sectors;
3485  giveup:
3486 	/* There is nowhere to write, so all non-sync
3487 	 * drives must be failed or in resync, all drives
3488 	 * have a bad block, so try the next chunk...
3489 	 */
3490 	if (sector_nr + max_sync < max_sector)
3491 		max_sector = sector_nr + max_sync;
3492 
3493 	sectors_skipped += (max_sector - sector_nr);
3494 	chunks_skipped ++;
3495 	sector_nr = max_sector;
3496 	goto skipped;
3497 }
3498 
3499 static sector_t
3500 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3501 {
3502 	sector_t size;
3503 	struct r10conf *conf = mddev->private;
3504 
3505 	if (!raid_disks)
3506 		raid_disks = min(conf->geo.raid_disks,
3507 				 conf->prev.raid_disks);
3508 	if (!sectors)
3509 		sectors = conf->dev_sectors;
3510 
3511 	size = sectors >> conf->geo.chunk_shift;
3512 	sector_div(size, conf->geo.far_copies);
3513 	size = size * raid_disks;
3514 	sector_div(size, conf->geo.near_copies);
3515 
3516 	return size << conf->geo.chunk_shift;
3517 }
3518 
3519 static void calc_sectors(struct r10conf *conf, sector_t size)
3520 {
3521 	/* Calculate the number of sectors-per-device that will
3522 	 * actually be used, and set conf->dev_sectors and
3523 	 * conf->stride
3524 	 */
3525 
3526 	size = size >> conf->geo.chunk_shift;
3527 	sector_div(size, conf->geo.far_copies);
3528 	size = size * conf->geo.raid_disks;
3529 	sector_div(size, conf->geo.near_copies);
3530 	/* 'size' is now the number of chunks in the array */
3531 	/* calculate "used chunks per device" */
3532 	size = size * conf->copies;
3533 
3534 	/* We need to round up when dividing by raid_disks to
3535 	 * get the stride size.
3536 	 */
3537 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3538 
3539 	conf->dev_sectors = size << conf->geo.chunk_shift;
3540 
3541 	if (conf->geo.far_offset)
3542 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3543 	else {
3544 		sector_div(size, conf->geo.far_copies);
3545 		conf->geo.stride = size << conf->geo.chunk_shift;
3546 	}
3547 }
3548 
3549 enum geo_type {geo_new, geo_old, geo_start};
3550 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3551 {
3552 	int nc, fc, fo;
3553 	int layout, chunk, disks;
3554 	switch (new) {
3555 	case geo_old:
3556 		layout = mddev->layout;
3557 		chunk = mddev->chunk_sectors;
3558 		disks = mddev->raid_disks - mddev->delta_disks;
3559 		break;
3560 	case geo_new:
3561 		layout = mddev->new_layout;
3562 		chunk = mddev->new_chunk_sectors;
3563 		disks = mddev->raid_disks;
3564 		break;
3565 	default: /* avoid 'may be unused' warnings */
3566 	case geo_start: /* new when starting reshape - raid_disks not
3567 			 * updated yet. */
3568 		layout = mddev->new_layout;
3569 		chunk = mddev->new_chunk_sectors;
3570 		disks = mddev->raid_disks + mddev->delta_disks;
3571 		break;
3572 	}
3573 	if (layout >> 19)
3574 		return -1;
3575 	if (chunk < (PAGE_SIZE >> 9) ||
3576 	    !is_power_of_2(chunk))
3577 		return -2;
3578 	nc = layout & 255;
3579 	fc = (layout >> 8) & 255;
3580 	fo = layout & (1<<16);
3581 	geo->raid_disks = disks;
3582 	geo->near_copies = nc;
3583 	geo->far_copies = fc;
3584 	geo->far_offset = fo;
3585 	switch (layout >> 17) {
3586 	case 0:	/* original layout.  simple but not always optimal */
3587 		geo->far_set_size = disks;
3588 		break;
3589 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3590 		 * actually using this, but leave code here just in case.*/
3591 		geo->far_set_size = disks/fc;
3592 		WARN(geo->far_set_size < fc,
3593 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3594 		break;
3595 	case 2: /* "improved" layout fixed to match documentation */
3596 		geo->far_set_size = fc * nc;
3597 		break;
3598 	default: /* Not a valid layout */
3599 		return -1;
3600 	}
3601 	geo->chunk_mask = chunk - 1;
3602 	geo->chunk_shift = ffz(~chunk);
3603 	return nc*fc;
3604 }
3605 
3606 static struct r10conf *setup_conf(struct mddev *mddev)
3607 {
3608 	struct r10conf *conf = NULL;
3609 	int err = -EINVAL;
3610 	struct geom geo;
3611 	int copies;
3612 
3613 	copies = setup_geo(&geo, mddev, geo_new);
3614 
3615 	if (copies == -2) {
3616 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3617 			mdname(mddev), PAGE_SIZE);
3618 		goto out;
3619 	}
3620 
3621 	if (copies < 2 || copies > mddev->raid_disks) {
3622 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3623 			mdname(mddev), mddev->new_layout);
3624 		goto out;
3625 	}
3626 
3627 	err = -ENOMEM;
3628 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3629 	if (!conf)
3630 		goto out;
3631 
3632 	/* FIXME calc properly */
3633 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3634 							    max(0,-mddev->delta_disks)),
3635 				GFP_KERNEL);
3636 	if (!conf->mirrors)
3637 		goto out;
3638 
3639 	conf->tmppage = alloc_page(GFP_KERNEL);
3640 	if (!conf->tmppage)
3641 		goto out;
3642 
3643 	conf->geo = geo;
3644 	conf->copies = copies;
3645 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3646 					   r10bio_pool_free, conf);
3647 	if (!conf->r10bio_pool)
3648 		goto out;
3649 
3650 	calc_sectors(conf, mddev->dev_sectors);
3651 	if (mddev->reshape_position == MaxSector) {
3652 		conf->prev = conf->geo;
3653 		conf->reshape_progress = MaxSector;
3654 	} else {
3655 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3656 			err = -EINVAL;
3657 			goto out;
3658 		}
3659 		conf->reshape_progress = mddev->reshape_position;
3660 		if (conf->prev.far_offset)
3661 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3662 		else
3663 			/* far_copies must be 1 */
3664 			conf->prev.stride = conf->dev_sectors;
3665 	}
3666 	conf->reshape_safe = conf->reshape_progress;
3667 	spin_lock_init(&conf->device_lock);
3668 	INIT_LIST_HEAD(&conf->retry_list);
3669 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3670 
3671 	spin_lock_init(&conf->resync_lock);
3672 	init_waitqueue_head(&conf->wait_barrier);
3673 	atomic_set(&conf->nr_pending, 0);
3674 
3675 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3676 	if (!conf->thread)
3677 		goto out;
3678 
3679 	conf->mddev = mddev;
3680 	return conf;
3681 
3682  out:
3683 	if (conf) {
3684 		mempool_destroy(conf->r10bio_pool);
3685 		kfree(conf->mirrors);
3686 		safe_put_page(conf->tmppage);
3687 		kfree(conf);
3688 	}
3689 	return ERR_PTR(err);
3690 }
3691 
3692 static int raid10_run(struct mddev *mddev)
3693 {
3694 	struct r10conf *conf;
3695 	int i, disk_idx, chunk_size;
3696 	struct raid10_info *disk;
3697 	struct md_rdev *rdev;
3698 	sector_t size;
3699 	sector_t min_offset_diff = 0;
3700 	int first = 1;
3701 	bool discard_supported = false;
3702 
3703 	if (mddev->private == NULL) {
3704 		conf = setup_conf(mddev);
3705 		if (IS_ERR(conf))
3706 			return PTR_ERR(conf);
3707 		mddev->private = conf;
3708 	}
3709 	conf = mddev->private;
3710 	if (!conf)
3711 		goto out;
3712 
3713 	mddev->thread = conf->thread;
3714 	conf->thread = NULL;
3715 
3716 	chunk_size = mddev->chunk_sectors << 9;
3717 	if (mddev->queue) {
3718 		blk_queue_max_discard_sectors(mddev->queue,
3719 					      mddev->chunk_sectors);
3720 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3721 		blk_queue_io_min(mddev->queue, chunk_size);
3722 		if (conf->geo.raid_disks % conf->geo.near_copies)
3723 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3724 		else
3725 			blk_queue_io_opt(mddev->queue, chunk_size *
3726 					 (conf->geo.raid_disks / conf->geo.near_copies));
3727 	}
3728 
3729 	rdev_for_each(rdev, mddev) {
3730 		long long diff;
3731 		struct request_queue *q;
3732 
3733 		disk_idx = rdev->raid_disk;
3734 		if (disk_idx < 0)
3735 			continue;
3736 		if (disk_idx >= conf->geo.raid_disks &&
3737 		    disk_idx >= conf->prev.raid_disks)
3738 			continue;
3739 		disk = conf->mirrors + disk_idx;
3740 
3741 		if (test_bit(Replacement, &rdev->flags)) {
3742 			if (disk->replacement)
3743 				goto out_free_conf;
3744 			disk->replacement = rdev;
3745 		} else {
3746 			if (disk->rdev)
3747 				goto out_free_conf;
3748 			disk->rdev = rdev;
3749 		}
3750 		q = bdev_get_queue(rdev->bdev);
3751 		diff = (rdev->new_data_offset - rdev->data_offset);
3752 		if (!mddev->reshape_backwards)
3753 			diff = -diff;
3754 		if (diff < 0)
3755 			diff = 0;
3756 		if (first || diff < min_offset_diff)
3757 			min_offset_diff = diff;
3758 
3759 		if (mddev->gendisk)
3760 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3761 					  rdev->data_offset << 9);
3762 
3763 		disk->head_position = 0;
3764 
3765 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3766 			discard_supported = true;
3767 	}
3768 
3769 	if (mddev->queue) {
3770 		if (discard_supported)
3771 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3772 						mddev->queue);
3773 		else
3774 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3775 						  mddev->queue);
3776 	}
3777 	/* need to check that every block has at least one working mirror */
3778 	if (!enough(conf, -1)) {
3779 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3780 		       mdname(mddev));
3781 		goto out_free_conf;
3782 	}
3783 
3784 	if (conf->reshape_progress != MaxSector) {
3785 		/* must ensure that shape change is supported */
3786 		if (conf->geo.far_copies != 1 &&
3787 		    conf->geo.far_offset == 0)
3788 			goto out_free_conf;
3789 		if (conf->prev.far_copies != 1 &&
3790 		    conf->prev.far_offset == 0)
3791 			goto out_free_conf;
3792 	}
3793 
3794 	mddev->degraded = 0;
3795 	for (i = 0;
3796 	     i < conf->geo.raid_disks
3797 		     || i < conf->prev.raid_disks;
3798 	     i++) {
3799 
3800 		disk = conf->mirrors + i;
3801 
3802 		if (!disk->rdev && disk->replacement) {
3803 			/* The replacement is all we have - use it */
3804 			disk->rdev = disk->replacement;
3805 			disk->replacement = NULL;
3806 			clear_bit(Replacement, &disk->rdev->flags);
3807 		}
3808 
3809 		if (!disk->rdev ||
3810 		    !test_bit(In_sync, &disk->rdev->flags)) {
3811 			disk->head_position = 0;
3812 			mddev->degraded++;
3813 			if (disk->rdev &&
3814 			    disk->rdev->saved_raid_disk < 0)
3815 				conf->fullsync = 1;
3816 		}
3817 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3818 	}
3819 
3820 	if (mddev->recovery_cp != MaxSector)
3821 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3822 			  mdname(mddev));
3823 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3824 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3825 		conf->geo.raid_disks);
3826 	/*
3827 	 * Ok, everything is just fine now
3828 	 */
3829 	mddev->dev_sectors = conf->dev_sectors;
3830 	size = raid10_size(mddev, 0, 0);
3831 	md_set_array_sectors(mddev, size);
3832 	mddev->resync_max_sectors = size;
3833 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3834 
3835 	if (mddev->queue) {
3836 		int stripe = conf->geo.raid_disks *
3837 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3838 
3839 		/* Calculate max read-ahead size.
3840 		 * We need to readahead at least twice a whole stripe....
3841 		 * maybe...
3842 		 */
3843 		stripe /= conf->geo.near_copies;
3844 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3845 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3846 	}
3847 
3848 	if (md_integrity_register(mddev))
3849 		goto out_free_conf;
3850 
3851 	if (conf->reshape_progress != MaxSector) {
3852 		unsigned long before_length, after_length;
3853 
3854 		before_length = ((1 << conf->prev.chunk_shift) *
3855 				 conf->prev.far_copies);
3856 		after_length = ((1 << conf->geo.chunk_shift) *
3857 				conf->geo.far_copies);
3858 
3859 		if (max(before_length, after_length) > min_offset_diff) {
3860 			/* This cannot work */
3861 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3862 			goto out_free_conf;
3863 		}
3864 		conf->offset_diff = min_offset_diff;
3865 
3866 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3867 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3868 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3869 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3870 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3871 							"reshape");
3872 	}
3873 
3874 	return 0;
3875 
3876 out_free_conf:
3877 	md_unregister_thread(&mddev->thread);
3878 	mempool_destroy(conf->r10bio_pool);
3879 	safe_put_page(conf->tmppage);
3880 	kfree(conf->mirrors);
3881 	kfree(conf);
3882 	mddev->private = NULL;
3883 out:
3884 	return -EIO;
3885 }
3886 
3887 static void raid10_free(struct mddev *mddev, void *priv)
3888 {
3889 	struct r10conf *conf = priv;
3890 
3891 	mempool_destroy(conf->r10bio_pool);
3892 	safe_put_page(conf->tmppage);
3893 	kfree(conf->mirrors);
3894 	kfree(conf->mirrors_old);
3895 	kfree(conf->mirrors_new);
3896 	kfree(conf);
3897 }
3898 
3899 static void raid10_quiesce(struct mddev *mddev, int state)
3900 {
3901 	struct r10conf *conf = mddev->private;
3902 
3903 	switch(state) {
3904 	case 1:
3905 		raise_barrier(conf, 0);
3906 		break;
3907 	case 0:
3908 		lower_barrier(conf);
3909 		break;
3910 	}
3911 }
3912 
3913 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3914 {
3915 	/* Resize of 'far' arrays is not supported.
3916 	 * For 'near' and 'offset' arrays we can set the
3917 	 * number of sectors used to be an appropriate multiple
3918 	 * of the chunk size.
3919 	 * For 'offset', this is far_copies*chunksize.
3920 	 * For 'near' the multiplier is the LCM of
3921 	 * near_copies and raid_disks.
3922 	 * So if far_copies > 1 && !far_offset, fail.
3923 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3924 	 * multiply by chunk_size.  Then round to this number.
3925 	 * This is mostly done by raid10_size()
3926 	 */
3927 	struct r10conf *conf = mddev->private;
3928 	sector_t oldsize, size;
3929 
3930 	if (mddev->reshape_position != MaxSector)
3931 		return -EBUSY;
3932 
3933 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3934 		return -EINVAL;
3935 
3936 	oldsize = raid10_size(mddev, 0, 0);
3937 	size = raid10_size(mddev, sectors, 0);
3938 	if (mddev->external_size &&
3939 	    mddev->array_sectors > size)
3940 		return -EINVAL;
3941 	if (mddev->bitmap) {
3942 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3943 		if (ret)
3944 			return ret;
3945 	}
3946 	md_set_array_sectors(mddev, size);
3947 	if (mddev->queue) {
3948 		set_capacity(mddev->gendisk, mddev->array_sectors);
3949 		revalidate_disk(mddev->gendisk);
3950 	}
3951 	if (sectors > mddev->dev_sectors &&
3952 	    mddev->recovery_cp > oldsize) {
3953 		mddev->recovery_cp = oldsize;
3954 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3955 	}
3956 	calc_sectors(conf, sectors);
3957 	mddev->dev_sectors = conf->dev_sectors;
3958 	mddev->resync_max_sectors = size;
3959 	return 0;
3960 }
3961 
3962 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3963 {
3964 	struct md_rdev *rdev;
3965 	struct r10conf *conf;
3966 
3967 	if (mddev->degraded > 0) {
3968 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3969 			mdname(mddev));
3970 		return ERR_PTR(-EINVAL);
3971 	}
3972 	sector_div(size, devs);
3973 
3974 	/* Set new parameters */
3975 	mddev->new_level = 10;
3976 	/* new layout: far_copies = 1, near_copies = 2 */
3977 	mddev->new_layout = (1<<8) + 2;
3978 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3979 	mddev->delta_disks = mddev->raid_disks;
3980 	mddev->raid_disks *= 2;
3981 	/* make sure it will be not marked as dirty */
3982 	mddev->recovery_cp = MaxSector;
3983 	mddev->dev_sectors = size;
3984 
3985 	conf = setup_conf(mddev);
3986 	if (!IS_ERR(conf)) {
3987 		rdev_for_each(rdev, mddev)
3988 			if (rdev->raid_disk >= 0) {
3989 				rdev->new_raid_disk = rdev->raid_disk * 2;
3990 				rdev->sectors = size;
3991 			}
3992 		conf->barrier = 1;
3993 	}
3994 
3995 	return conf;
3996 }
3997 
3998 static void *raid10_takeover(struct mddev *mddev)
3999 {
4000 	struct r0conf *raid0_conf;
4001 
4002 	/* raid10 can take over:
4003 	 *  raid0 - providing it has only two drives
4004 	 */
4005 	if (mddev->level == 0) {
4006 		/* for raid0 takeover only one zone is supported */
4007 		raid0_conf = mddev->private;
4008 		if (raid0_conf->nr_strip_zones > 1) {
4009 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4010 				mdname(mddev));
4011 			return ERR_PTR(-EINVAL);
4012 		}
4013 		return raid10_takeover_raid0(mddev,
4014 			raid0_conf->strip_zone->zone_end,
4015 			raid0_conf->strip_zone->nb_dev);
4016 	}
4017 	return ERR_PTR(-EINVAL);
4018 }
4019 
4020 static int raid10_check_reshape(struct mddev *mddev)
4021 {
4022 	/* Called when there is a request to change
4023 	 * - layout (to ->new_layout)
4024 	 * - chunk size (to ->new_chunk_sectors)
4025 	 * - raid_disks (by delta_disks)
4026 	 * or when trying to restart a reshape that was ongoing.
4027 	 *
4028 	 * We need to validate the request and possibly allocate
4029 	 * space if that might be an issue later.
4030 	 *
4031 	 * Currently we reject any reshape of a 'far' mode array,
4032 	 * allow chunk size to change if new is generally acceptable,
4033 	 * allow raid_disks to increase, and allow
4034 	 * a switch between 'near' mode and 'offset' mode.
4035 	 */
4036 	struct r10conf *conf = mddev->private;
4037 	struct geom geo;
4038 
4039 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4040 		return -EINVAL;
4041 
4042 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4043 		/* mustn't change number of copies */
4044 		return -EINVAL;
4045 	if (geo.far_copies > 1 && !geo.far_offset)
4046 		/* Cannot switch to 'far' mode */
4047 		return -EINVAL;
4048 
4049 	if (mddev->array_sectors & geo.chunk_mask)
4050 			/* not factor of array size */
4051 			return -EINVAL;
4052 
4053 	if (!enough(conf, -1))
4054 		return -EINVAL;
4055 
4056 	kfree(conf->mirrors_new);
4057 	conf->mirrors_new = NULL;
4058 	if (mddev->delta_disks > 0) {
4059 		/* allocate new 'mirrors' list */
4060 		conf->mirrors_new = kzalloc(
4061 			sizeof(struct raid10_info)
4062 			*(mddev->raid_disks +
4063 			  mddev->delta_disks),
4064 			GFP_KERNEL);
4065 		if (!conf->mirrors_new)
4066 			return -ENOMEM;
4067 	}
4068 	return 0;
4069 }
4070 
4071 /*
4072  * Need to check if array has failed when deciding whether to:
4073  *  - start an array
4074  *  - remove non-faulty devices
4075  *  - add a spare
4076  *  - allow a reshape
4077  * This determination is simple when no reshape is happening.
4078  * However if there is a reshape, we need to carefully check
4079  * both the before and after sections.
4080  * This is because some failed devices may only affect one
4081  * of the two sections, and some non-in_sync devices may
4082  * be insync in the section most affected by failed devices.
4083  */
4084 static int calc_degraded(struct r10conf *conf)
4085 {
4086 	int degraded, degraded2;
4087 	int i;
4088 
4089 	rcu_read_lock();
4090 	degraded = 0;
4091 	/* 'prev' section first */
4092 	for (i = 0; i < conf->prev.raid_disks; i++) {
4093 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4094 		if (!rdev || test_bit(Faulty, &rdev->flags))
4095 			degraded++;
4096 		else if (!test_bit(In_sync, &rdev->flags))
4097 			/* When we can reduce the number of devices in
4098 			 * an array, this might not contribute to
4099 			 * 'degraded'.  It does now.
4100 			 */
4101 			degraded++;
4102 	}
4103 	rcu_read_unlock();
4104 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4105 		return degraded;
4106 	rcu_read_lock();
4107 	degraded2 = 0;
4108 	for (i = 0; i < conf->geo.raid_disks; i++) {
4109 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4110 		if (!rdev || test_bit(Faulty, &rdev->flags))
4111 			degraded2++;
4112 		else if (!test_bit(In_sync, &rdev->flags)) {
4113 			/* If reshape is increasing the number of devices,
4114 			 * this section has already been recovered, so
4115 			 * it doesn't contribute to degraded.
4116 			 * else it does.
4117 			 */
4118 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4119 				degraded2++;
4120 		}
4121 	}
4122 	rcu_read_unlock();
4123 	if (degraded2 > degraded)
4124 		return degraded2;
4125 	return degraded;
4126 }
4127 
4128 static int raid10_start_reshape(struct mddev *mddev)
4129 {
4130 	/* A 'reshape' has been requested. This commits
4131 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4132 	 * This also checks if there are enough spares and adds them
4133 	 * to the array.
4134 	 * We currently require enough spares to make the final
4135 	 * array non-degraded.  We also require that the difference
4136 	 * between old and new data_offset - on each device - is
4137 	 * enough that we never risk over-writing.
4138 	 */
4139 
4140 	unsigned long before_length, after_length;
4141 	sector_t min_offset_diff = 0;
4142 	int first = 1;
4143 	struct geom new;
4144 	struct r10conf *conf = mddev->private;
4145 	struct md_rdev *rdev;
4146 	int spares = 0;
4147 	int ret;
4148 
4149 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4150 		return -EBUSY;
4151 
4152 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4153 		return -EINVAL;
4154 
4155 	before_length = ((1 << conf->prev.chunk_shift) *
4156 			 conf->prev.far_copies);
4157 	after_length = ((1 << conf->geo.chunk_shift) *
4158 			conf->geo.far_copies);
4159 
4160 	rdev_for_each(rdev, mddev) {
4161 		if (!test_bit(In_sync, &rdev->flags)
4162 		    && !test_bit(Faulty, &rdev->flags))
4163 			spares++;
4164 		if (rdev->raid_disk >= 0) {
4165 			long long diff = (rdev->new_data_offset
4166 					  - rdev->data_offset);
4167 			if (!mddev->reshape_backwards)
4168 				diff = -diff;
4169 			if (diff < 0)
4170 				diff = 0;
4171 			if (first || diff < min_offset_diff)
4172 				min_offset_diff = diff;
4173 		}
4174 	}
4175 
4176 	if (max(before_length, after_length) > min_offset_diff)
4177 		return -EINVAL;
4178 
4179 	if (spares < mddev->delta_disks)
4180 		return -EINVAL;
4181 
4182 	conf->offset_diff = min_offset_diff;
4183 	spin_lock_irq(&conf->device_lock);
4184 	if (conf->mirrors_new) {
4185 		memcpy(conf->mirrors_new, conf->mirrors,
4186 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4187 		smp_mb();
4188 		kfree(conf->mirrors_old);
4189 		conf->mirrors_old = conf->mirrors;
4190 		conf->mirrors = conf->mirrors_new;
4191 		conf->mirrors_new = NULL;
4192 	}
4193 	setup_geo(&conf->geo, mddev, geo_start);
4194 	smp_mb();
4195 	if (mddev->reshape_backwards) {
4196 		sector_t size = raid10_size(mddev, 0, 0);
4197 		if (size < mddev->array_sectors) {
4198 			spin_unlock_irq(&conf->device_lock);
4199 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4200 				mdname(mddev));
4201 			return -EINVAL;
4202 		}
4203 		mddev->resync_max_sectors = size;
4204 		conf->reshape_progress = size;
4205 	} else
4206 		conf->reshape_progress = 0;
4207 	conf->reshape_safe = conf->reshape_progress;
4208 	spin_unlock_irq(&conf->device_lock);
4209 
4210 	if (mddev->delta_disks && mddev->bitmap) {
4211 		ret = bitmap_resize(mddev->bitmap,
4212 				    raid10_size(mddev, 0,
4213 						conf->geo.raid_disks),
4214 				    0, 0);
4215 		if (ret)
4216 			goto abort;
4217 	}
4218 	if (mddev->delta_disks > 0) {
4219 		rdev_for_each(rdev, mddev)
4220 			if (rdev->raid_disk < 0 &&
4221 			    !test_bit(Faulty, &rdev->flags)) {
4222 				if (raid10_add_disk(mddev, rdev) == 0) {
4223 					if (rdev->raid_disk >=
4224 					    conf->prev.raid_disks)
4225 						set_bit(In_sync, &rdev->flags);
4226 					else
4227 						rdev->recovery_offset = 0;
4228 
4229 					if (sysfs_link_rdev(mddev, rdev))
4230 						/* Failure here  is OK */;
4231 				}
4232 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4233 				   && !test_bit(Faulty, &rdev->flags)) {
4234 				/* This is a spare that was manually added */
4235 				set_bit(In_sync, &rdev->flags);
4236 			}
4237 	}
4238 	/* When a reshape changes the number of devices,
4239 	 * ->degraded is measured against the larger of the
4240 	 * pre and  post numbers.
4241 	 */
4242 	spin_lock_irq(&conf->device_lock);
4243 	mddev->degraded = calc_degraded(conf);
4244 	spin_unlock_irq(&conf->device_lock);
4245 	mddev->raid_disks = conf->geo.raid_disks;
4246 	mddev->reshape_position = conf->reshape_progress;
4247 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4248 
4249 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4250 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4251 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4252 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4253 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4254 
4255 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4256 						"reshape");
4257 	if (!mddev->sync_thread) {
4258 		ret = -EAGAIN;
4259 		goto abort;
4260 	}
4261 	conf->reshape_checkpoint = jiffies;
4262 	md_wakeup_thread(mddev->sync_thread);
4263 	md_new_event(mddev);
4264 	return 0;
4265 
4266 abort:
4267 	mddev->recovery = 0;
4268 	spin_lock_irq(&conf->device_lock);
4269 	conf->geo = conf->prev;
4270 	mddev->raid_disks = conf->geo.raid_disks;
4271 	rdev_for_each(rdev, mddev)
4272 		rdev->new_data_offset = rdev->data_offset;
4273 	smp_wmb();
4274 	conf->reshape_progress = MaxSector;
4275 	conf->reshape_safe = MaxSector;
4276 	mddev->reshape_position = MaxSector;
4277 	spin_unlock_irq(&conf->device_lock);
4278 	return ret;
4279 }
4280 
4281 /* Calculate the last device-address that could contain
4282  * any block from the chunk that includes the array-address 's'
4283  * and report the next address.
4284  * i.e. the address returned will be chunk-aligned and after
4285  * any data that is in the chunk containing 's'.
4286  */
4287 static sector_t last_dev_address(sector_t s, struct geom *geo)
4288 {
4289 	s = (s | geo->chunk_mask) + 1;
4290 	s >>= geo->chunk_shift;
4291 	s *= geo->near_copies;
4292 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4293 	s *= geo->far_copies;
4294 	s <<= geo->chunk_shift;
4295 	return s;
4296 }
4297 
4298 /* Calculate the first device-address that could contain
4299  * any block from the chunk that includes the array-address 's'.
4300  * This too will be the start of a chunk
4301  */
4302 static sector_t first_dev_address(sector_t s, struct geom *geo)
4303 {
4304 	s >>= geo->chunk_shift;
4305 	s *= geo->near_copies;
4306 	sector_div(s, geo->raid_disks);
4307 	s *= geo->far_copies;
4308 	s <<= geo->chunk_shift;
4309 	return s;
4310 }
4311 
4312 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4313 				int *skipped)
4314 {
4315 	/* We simply copy at most one chunk (smallest of old and new)
4316 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4317 	 * or we hit a bad block or something.
4318 	 * This might mean we pause for normal IO in the middle of
4319 	 * a chunk, but that is not a problem as mddev->reshape_position
4320 	 * can record any location.
4321 	 *
4322 	 * If we will want to write to a location that isn't
4323 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4324 	 * we need to flush all reshape requests and update the metadata.
4325 	 *
4326 	 * When reshaping forwards (e.g. to more devices), we interpret
4327 	 * 'safe' as the earliest block which might not have been copied
4328 	 * down yet.  We divide this by previous stripe size and multiply
4329 	 * by previous stripe length to get lowest device offset that we
4330 	 * cannot write to yet.
4331 	 * We interpret 'sector_nr' as an address that we want to write to.
4332 	 * From this we use last_device_address() to find where we might
4333 	 * write to, and first_device_address on the  'safe' position.
4334 	 * If this 'next' write position is after the 'safe' position,
4335 	 * we must update the metadata to increase the 'safe' position.
4336 	 *
4337 	 * When reshaping backwards, we round in the opposite direction
4338 	 * and perform the reverse test:  next write position must not be
4339 	 * less than current safe position.
4340 	 *
4341 	 * In all this the minimum difference in data offsets
4342 	 * (conf->offset_diff - always positive) allows a bit of slack,
4343 	 * so next can be after 'safe', but not by more than offset_diff
4344 	 *
4345 	 * We need to prepare all the bios here before we start any IO
4346 	 * to ensure the size we choose is acceptable to all devices.
4347 	 * The means one for each copy for write-out and an extra one for
4348 	 * read-in.
4349 	 * We store the read-in bio in ->master_bio and the others in
4350 	 * ->devs[x].bio and ->devs[x].repl_bio.
4351 	 */
4352 	struct r10conf *conf = mddev->private;
4353 	struct r10bio *r10_bio;
4354 	sector_t next, safe, last;
4355 	int max_sectors;
4356 	int nr_sectors;
4357 	int s;
4358 	struct md_rdev *rdev;
4359 	int need_flush = 0;
4360 	struct bio *blist;
4361 	struct bio *bio, *read_bio;
4362 	int sectors_done = 0;
4363 
4364 	if (sector_nr == 0) {
4365 		/* If restarting in the middle, skip the initial sectors */
4366 		if (mddev->reshape_backwards &&
4367 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4368 			sector_nr = (raid10_size(mddev, 0, 0)
4369 				     - conf->reshape_progress);
4370 		} else if (!mddev->reshape_backwards &&
4371 			   conf->reshape_progress > 0)
4372 			sector_nr = conf->reshape_progress;
4373 		if (sector_nr) {
4374 			mddev->curr_resync_completed = sector_nr;
4375 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4376 			*skipped = 1;
4377 			return sector_nr;
4378 		}
4379 	}
4380 
4381 	/* We don't use sector_nr to track where we are up to
4382 	 * as that doesn't work well for ->reshape_backwards.
4383 	 * So just use ->reshape_progress.
4384 	 */
4385 	if (mddev->reshape_backwards) {
4386 		/* 'next' is the earliest device address that we might
4387 		 * write to for this chunk in the new layout
4388 		 */
4389 		next = first_dev_address(conf->reshape_progress - 1,
4390 					 &conf->geo);
4391 
4392 		/* 'safe' is the last device address that we might read from
4393 		 * in the old layout after a restart
4394 		 */
4395 		safe = last_dev_address(conf->reshape_safe - 1,
4396 					&conf->prev);
4397 
4398 		if (next + conf->offset_diff < safe)
4399 			need_flush = 1;
4400 
4401 		last = conf->reshape_progress - 1;
4402 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4403 					       & conf->prev.chunk_mask);
4404 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4405 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4406 	} else {
4407 		/* 'next' is after the last device address that we
4408 		 * might write to for this chunk in the new layout
4409 		 */
4410 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4411 
4412 		/* 'safe' is the earliest device address that we might
4413 		 * read from in the old layout after a restart
4414 		 */
4415 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4416 
4417 		/* Need to update metadata if 'next' might be beyond 'safe'
4418 		 * as that would possibly corrupt data
4419 		 */
4420 		if (next > safe + conf->offset_diff)
4421 			need_flush = 1;
4422 
4423 		sector_nr = conf->reshape_progress;
4424 		last  = sector_nr | (conf->geo.chunk_mask
4425 				     & conf->prev.chunk_mask);
4426 
4427 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4428 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4429 	}
4430 
4431 	if (need_flush ||
4432 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4433 		/* Need to update reshape_position in metadata */
4434 		wait_barrier(conf);
4435 		mddev->reshape_position = conf->reshape_progress;
4436 		if (mddev->reshape_backwards)
4437 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4438 				- conf->reshape_progress;
4439 		else
4440 			mddev->curr_resync_completed = conf->reshape_progress;
4441 		conf->reshape_checkpoint = jiffies;
4442 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4443 		md_wakeup_thread(mddev->thread);
4444 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4445 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4446 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4447 			allow_barrier(conf);
4448 			return sectors_done;
4449 		}
4450 		conf->reshape_safe = mddev->reshape_position;
4451 		allow_barrier(conf);
4452 	}
4453 
4454 read_more:
4455 	/* Now schedule reads for blocks from sector_nr to last */
4456 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4457 	r10_bio->state = 0;
4458 	raise_barrier(conf, sectors_done != 0);
4459 	atomic_set(&r10_bio->remaining, 0);
4460 	r10_bio->mddev = mddev;
4461 	r10_bio->sector = sector_nr;
4462 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4463 	r10_bio->sectors = last - sector_nr + 1;
4464 	rdev = read_balance(conf, r10_bio, &max_sectors);
4465 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4466 
4467 	if (!rdev) {
4468 		/* Cannot read from here, so need to record bad blocks
4469 		 * on all the target devices.
4470 		 */
4471 		// FIXME
4472 		mempool_free(r10_bio, conf->r10buf_pool);
4473 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4474 		return sectors_done;
4475 	}
4476 
4477 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4478 
4479 	read_bio->bi_bdev = rdev->bdev;
4480 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4481 			       + rdev->data_offset);
4482 	read_bio->bi_private = r10_bio;
4483 	read_bio->bi_end_io = end_sync_read;
4484 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4485 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4486 	read_bio->bi_error = 0;
4487 	read_bio->bi_vcnt = 0;
4488 	read_bio->bi_iter.bi_size = 0;
4489 	r10_bio->master_bio = read_bio;
4490 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4491 
4492 	/* Now find the locations in the new layout */
4493 	__raid10_find_phys(&conf->geo, r10_bio);
4494 
4495 	blist = read_bio;
4496 	read_bio->bi_next = NULL;
4497 
4498 	rcu_read_lock();
4499 	for (s = 0; s < conf->copies*2; s++) {
4500 		struct bio *b;
4501 		int d = r10_bio->devs[s/2].devnum;
4502 		struct md_rdev *rdev2;
4503 		if (s&1) {
4504 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4505 			b = r10_bio->devs[s/2].repl_bio;
4506 		} else {
4507 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4508 			b = r10_bio->devs[s/2].bio;
4509 		}
4510 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4511 			continue;
4512 
4513 		bio_reset(b);
4514 		b->bi_bdev = rdev2->bdev;
4515 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4516 			rdev2->new_data_offset;
4517 		b->bi_private = r10_bio;
4518 		b->bi_end_io = end_reshape_write;
4519 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4520 		b->bi_next = blist;
4521 		blist = b;
4522 	}
4523 
4524 	/* Now add as many pages as possible to all of these bios. */
4525 
4526 	nr_sectors = 0;
4527 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4528 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4529 		int len = (max_sectors - s) << 9;
4530 		if (len > PAGE_SIZE)
4531 			len = PAGE_SIZE;
4532 		for (bio = blist; bio ; bio = bio->bi_next) {
4533 			struct bio *bio2;
4534 			if (bio_add_page(bio, page, len, 0))
4535 				continue;
4536 
4537 			/* Didn't fit, must stop */
4538 			for (bio2 = blist;
4539 			     bio2 && bio2 != bio;
4540 			     bio2 = bio2->bi_next) {
4541 				/* Remove last page from this bio */
4542 				bio2->bi_vcnt--;
4543 				bio2->bi_iter.bi_size -= len;
4544 				bio_clear_flag(bio2, BIO_SEG_VALID);
4545 			}
4546 			goto bio_full;
4547 		}
4548 		sector_nr += len >> 9;
4549 		nr_sectors += len >> 9;
4550 	}
4551 bio_full:
4552 	rcu_read_unlock();
4553 	r10_bio->sectors = nr_sectors;
4554 
4555 	/* Now submit the read */
4556 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4557 	atomic_inc(&r10_bio->remaining);
4558 	read_bio->bi_next = NULL;
4559 	generic_make_request(read_bio);
4560 	sector_nr += nr_sectors;
4561 	sectors_done += nr_sectors;
4562 	if (sector_nr <= last)
4563 		goto read_more;
4564 
4565 	/* Now that we have done the whole section we can
4566 	 * update reshape_progress
4567 	 */
4568 	if (mddev->reshape_backwards)
4569 		conf->reshape_progress -= sectors_done;
4570 	else
4571 		conf->reshape_progress += sectors_done;
4572 
4573 	return sectors_done;
4574 }
4575 
4576 static void end_reshape_request(struct r10bio *r10_bio);
4577 static int handle_reshape_read_error(struct mddev *mddev,
4578 				     struct r10bio *r10_bio);
4579 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4580 {
4581 	/* Reshape read completed.  Hopefully we have a block
4582 	 * to write out.
4583 	 * If we got a read error then we do sync 1-page reads from
4584 	 * elsewhere until we find the data - or give up.
4585 	 */
4586 	struct r10conf *conf = mddev->private;
4587 	int s;
4588 
4589 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4590 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4591 			/* Reshape has been aborted */
4592 			md_done_sync(mddev, r10_bio->sectors, 0);
4593 			return;
4594 		}
4595 
4596 	/* We definitely have the data in the pages, schedule the
4597 	 * writes.
4598 	 */
4599 	atomic_set(&r10_bio->remaining, 1);
4600 	for (s = 0; s < conf->copies*2; s++) {
4601 		struct bio *b;
4602 		int d = r10_bio->devs[s/2].devnum;
4603 		struct md_rdev *rdev;
4604 		rcu_read_lock();
4605 		if (s&1) {
4606 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4607 			b = r10_bio->devs[s/2].repl_bio;
4608 		} else {
4609 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4610 			b = r10_bio->devs[s/2].bio;
4611 		}
4612 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4613 			rcu_read_unlock();
4614 			continue;
4615 		}
4616 		atomic_inc(&rdev->nr_pending);
4617 		rcu_read_unlock();
4618 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4619 		atomic_inc(&r10_bio->remaining);
4620 		b->bi_next = NULL;
4621 		generic_make_request(b);
4622 	}
4623 	end_reshape_request(r10_bio);
4624 }
4625 
4626 static void end_reshape(struct r10conf *conf)
4627 {
4628 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4629 		return;
4630 
4631 	spin_lock_irq(&conf->device_lock);
4632 	conf->prev = conf->geo;
4633 	md_finish_reshape(conf->mddev);
4634 	smp_wmb();
4635 	conf->reshape_progress = MaxSector;
4636 	conf->reshape_safe = MaxSector;
4637 	spin_unlock_irq(&conf->device_lock);
4638 
4639 	/* read-ahead size must cover two whole stripes, which is
4640 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4641 	 */
4642 	if (conf->mddev->queue) {
4643 		int stripe = conf->geo.raid_disks *
4644 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4645 		stripe /= conf->geo.near_copies;
4646 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4647 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4648 	}
4649 	conf->fullsync = 0;
4650 }
4651 
4652 static int handle_reshape_read_error(struct mddev *mddev,
4653 				     struct r10bio *r10_bio)
4654 {
4655 	/* Use sync reads to get the blocks from somewhere else */
4656 	int sectors = r10_bio->sectors;
4657 	struct r10conf *conf = mddev->private;
4658 	struct {
4659 		struct r10bio r10_bio;
4660 		struct r10dev devs[conf->copies];
4661 	} on_stack;
4662 	struct r10bio *r10b = &on_stack.r10_bio;
4663 	int slot = 0;
4664 	int idx = 0;
4665 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4666 
4667 	r10b->sector = r10_bio->sector;
4668 	__raid10_find_phys(&conf->prev, r10b);
4669 
4670 	while (sectors) {
4671 		int s = sectors;
4672 		int success = 0;
4673 		int first_slot = slot;
4674 
4675 		if (s > (PAGE_SIZE >> 9))
4676 			s = PAGE_SIZE >> 9;
4677 
4678 		rcu_read_lock();
4679 		while (!success) {
4680 			int d = r10b->devs[slot].devnum;
4681 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4682 			sector_t addr;
4683 			if (rdev == NULL ||
4684 			    test_bit(Faulty, &rdev->flags) ||
4685 			    !test_bit(In_sync, &rdev->flags))
4686 				goto failed;
4687 
4688 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4689 			atomic_inc(&rdev->nr_pending);
4690 			rcu_read_unlock();
4691 			success = sync_page_io(rdev,
4692 					       addr,
4693 					       s << 9,
4694 					       bvec[idx].bv_page,
4695 					       REQ_OP_READ, 0, false);
4696 			rdev_dec_pending(rdev, mddev);
4697 			rcu_read_lock();
4698 			if (success)
4699 				break;
4700 		failed:
4701 			slot++;
4702 			if (slot >= conf->copies)
4703 				slot = 0;
4704 			if (slot == first_slot)
4705 				break;
4706 		}
4707 		rcu_read_unlock();
4708 		if (!success) {
4709 			/* couldn't read this block, must give up */
4710 			set_bit(MD_RECOVERY_INTR,
4711 				&mddev->recovery);
4712 			return -EIO;
4713 		}
4714 		sectors -= s;
4715 		idx++;
4716 	}
4717 	return 0;
4718 }
4719 
4720 static void end_reshape_write(struct bio *bio)
4721 {
4722 	struct r10bio *r10_bio = bio->bi_private;
4723 	struct mddev *mddev = r10_bio->mddev;
4724 	struct r10conf *conf = mddev->private;
4725 	int d;
4726 	int slot;
4727 	int repl;
4728 	struct md_rdev *rdev = NULL;
4729 
4730 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4731 	if (repl)
4732 		rdev = conf->mirrors[d].replacement;
4733 	if (!rdev) {
4734 		smp_mb();
4735 		rdev = conf->mirrors[d].rdev;
4736 	}
4737 
4738 	if (bio->bi_error) {
4739 		/* FIXME should record badblock */
4740 		md_error(mddev, rdev);
4741 	}
4742 
4743 	rdev_dec_pending(rdev, mddev);
4744 	end_reshape_request(r10_bio);
4745 }
4746 
4747 static void end_reshape_request(struct r10bio *r10_bio)
4748 {
4749 	if (!atomic_dec_and_test(&r10_bio->remaining))
4750 		return;
4751 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4752 	bio_put(r10_bio->master_bio);
4753 	put_buf(r10_bio);
4754 }
4755 
4756 static void raid10_finish_reshape(struct mddev *mddev)
4757 {
4758 	struct r10conf *conf = mddev->private;
4759 
4760 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4761 		return;
4762 
4763 	if (mddev->delta_disks > 0) {
4764 		sector_t size = raid10_size(mddev, 0, 0);
4765 		md_set_array_sectors(mddev, size);
4766 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4767 			mddev->recovery_cp = mddev->resync_max_sectors;
4768 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4769 		}
4770 		mddev->resync_max_sectors = size;
4771 		if (mddev->queue) {
4772 			set_capacity(mddev->gendisk, mddev->array_sectors);
4773 			revalidate_disk(mddev->gendisk);
4774 		}
4775 	} else {
4776 		int d;
4777 		rcu_read_lock();
4778 		for (d = conf->geo.raid_disks ;
4779 		     d < conf->geo.raid_disks - mddev->delta_disks;
4780 		     d++) {
4781 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782 			if (rdev)
4783 				clear_bit(In_sync, &rdev->flags);
4784 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4785 			if (rdev)
4786 				clear_bit(In_sync, &rdev->flags);
4787 		}
4788 		rcu_read_unlock();
4789 	}
4790 	mddev->layout = mddev->new_layout;
4791 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4792 	mddev->reshape_position = MaxSector;
4793 	mddev->delta_disks = 0;
4794 	mddev->reshape_backwards = 0;
4795 }
4796 
4797 static struct md_personality raid10_personality =
4798 {
4799 	.name		= "raid10",
4800 	.level		= 10,
4801 	.owner		= THIS_MODULE,
4802 	.make_request	= raid10_make_request,
4803 	.run		= raid10_run,
4804 	.free		= raid10_free,
4805 	.status		= raid10_status,
4806 	.error_handler	= raid10_error,
4807 	.hot_add_disk	= raid10_add_disk,
4808 	.hot_remove_disk= raid10_remove_disk,
4809 	.spare_active	= raid10_spare_active,
4810 	.sync_request	= raid10_sync_request,
4811 	.quiesce	= raid10_quiesce,
4812 	.size		= raid10_size,
4813 	.resize		= raid10_resize,
4814 	.takeover	= raid10_takeover,
4815 	.check_reshape	= raid10_check_reshape,
4816 	.start_reshape	= raid10_start_reshape,
4817 	.finish_reshape	= raid10_finish_reshape,
4818 	.congested	= raid10_congested,
4819 };
4820 
4821 static int __init raid_init(void)
4822 {
4823 	return register_md_personality(&raid10_personality);
4824 }
4825 
4826 static void raid_exit(void)
4827 {
4828 	unregister_md_personality(&raid10_personality);
4829 }
4830 
4831 module_init(raid_init);
4832 module_exit(raid_exit);
4833 MODULE_LICENSE("GPL");
4834 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4835 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4836 MODULE_ALIAS("md-raid10");
4837 MODULE_ALIAS("md-level-10");
4838 
4839 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4840