1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 /* 114 * 'strct resync_pages' stores actual pages used for doing the resync 115 * IO, and it is per-bio, so make .bi_private points to it. 116 */ 117 static inline struct resync_pages *get_resync_pages(struct bio *bio) 118 { 119 return bio->bi_private; 120 } 121 122 /* 123 * for resync bio, r10bio pointer can be retrieved from the per-bio 124 * 'struct resync_pages'. 125 */ 126 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 127 { 128 return get_resync_pages(bio)->raid_bio; 129 } 130 131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 int size = offsetof(struct r10bio, devs[conf->copies]); 135 136 /* allocate a r10bio with room for raid_disks entries in the 137 * bios array */ 138 return kzalloc(size, gfp_flags); 139 } 140 141 static void r10bio_pool_free(void *r10_bio, void *data) 142 { 143 kfree(r10_bio); 144 } 145 146 /* amount of memory to reserve for resync requests */ 147 #define RESYNC_WINDOW (1024*1024) 148 /* maximum number of concurrent requests, memory permitting */ 149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 150 151 /* 152 * When performing a resync, we need to read and compare, so 153 * we need as many pages are there are copies. 154 * When performing a recovery, we need 2 bios, one for read, 155 * one for write (we recover only one drive per r10buf) 156 * 157 */ 158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 159 { 160 struct r10conf *conf = data; 161 struct r10bio *r10_bio; 162 struct bio *bio; 163 int j; 164 int nalloc, nalloc_rp; 165 struct resync_pages *rps; 166 167 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 168 if (!r10_bio) 169 return NULL; 170 171 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 172 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 173 nalloc = conf->copies; /* resync */ 174 else 175 nalloc = 2; /* recovery */ 176 177 /* allocate once for all bios */ 178 if (!conf->have_replacement) 179 nalloc_rp = nalloc; 180 else 181 nalloc_rp = nalloc * 2; 182 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 183 if (!rps) 184 goto out_free_r10bio; 185 186 /* 187 * Allocate bios. 188 */ 189 for (j = nalloc ; j-- ; ) { 190 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 191 if (!bio) 192 goto out_free_bio; 193 r10_bio->devs[j].bio = bio; 194 if (!conf->have_replacement) 195 continue; 196 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 197 if (!bio) 198 goto out_free_bio; 199 r10_bio->devs[j].repl_bio = bio; 200 } 201 /* 202 * Allocate RESYNC_PAGES data pages and attach them 203 * where needed. 204 */ 205 for (j = 0; j < nalloc; j++) { 206 struct bio *rbio = r10_bio->devs[j].repl_bio; 207 struct resync_pages *rp, *rp_repl; 208 209 rp = &rps[j]; 210 if (rbio) 211 rp_repl = &rps[nalloc + j]; 212 213 bio = r10_bio->devs[j].bio; 214 215 if (!j || test_bit(MD_RECOVERY_SYNC, 216 &conf->mddev->recovery)) { 217 if (resync_alloc_pages(rp, gfp_flags)) 218 goto out_free_pages; 219 } else { 220 memcpy(rp, &rps[0], sizeof(*rp)); 221 resync_get_all_pages(rp); 222 } 223 224 rp->idx = 0; 225 rp->raid_bio = r10_bio; 226 bio->bi_private = rp; 227 if (rbio) { 228 memcpy(rp_repl, rp, sizeof(*rp)); 229 rbio->bi_private = rp_repl; 230 } 231 } 232 233 return r10_bio; 234 235 out_free_pages: 236 while (--j >= 0) 237 resync_free_pages(&rps[j * 2]); 238 239 j = 0; 240 out_free_bio: 241 for ( ; j < nalloc; j++) { 242 if (r10_bio->devs[j].bio) 243 bio_put(r10_bio->devs[j].bio); 244 if (r10_bio->devs[j].repl_bio) 245 bio_put(r10_bio->devs[j].repl_bio); 246 } 247 kfree(rps); 248 out_free_r10bio: 249 r10bio_pool_free(r10_bio, conf); 250 return NULL; 251 } 252 253 static void r10buf_pool_free(void *__r10_bio, void *data) 254 { 255 struct r10conf *conf = data; 256 struct r10bio *r10bio = __r10_bio; 257 int j; 258 struct resync_pages *rp = NULL; 259 260 for (j = conf->copies; j--; ) { 261 struct bio *bio = r10bio->devs[j].bio; 262 263 rp = get_resync_pages(bio); 264 resync_free_pages(rp); 265 bio_put(bio); 266 267 bio = r10bio->devs[j].repl_bio; 268 if (bio) 269 bio_put(bio); 270 } 271 272 /* resync pages array stored in the 1st bio's .bi_private */ 273 kfree(rp); 274 275 r10bio_pool_free(r10bio, conf); 276 } 277 278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 279 { 280 int i; 281 282 for (i = 0; i < conf->copies; i++) { 283 struct bio **bio = & r10_bio->devs[i].bio; 284 if (!BIO_SPECIAL(*bio)) 285 bio_put(*bio); 286 *bio = NULL; 287 bio = &r10_bio->devs[i].repl_bio; 288 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 289 bio_put(*bio); 290 *bio = NULL; 291 } 292 } 293 294 static void free_r10bio(struct r10bio *r10_bio) 295 { 296 struct r10conf *conf = r10_bio->mddev->private; 297 298 put_all_bios(conf, r10_bio); 299 mempool_free(r10_bio, conf->r10bio_pool); 300 } 301 302 static void put_buf(struct r10bio *r10_bio) 303 { 304 struct r10conf *conf = r10_bio->mddev->private; 305 306 mempool_free(r10_bio, conf->r10buf_pool); 307 308 lower_barrier(conf); 309 } 310 311 static void reschedule_retry(struct r10bio *r10_bio) 312 { 313 unsigned long flags; 314 struct mddev *mddev = r10_bio->mddev; 315 struct r10conf *conf = mddev->private; 316 317 spin_lock_irqsave(&conf->device_lock, flags); 318 list_add(&r10_bio->retry_list, &conf->retry_list); 319 conf->nr_queued ++; 320 spin_unlock_irqrestore(&conf->device_lock, flags); 321 322 /* wake up frozen array... */ 323 wake_up(&conf->wait_barrier); 324 325 md_wakeup_thread(mddev->thread); 326 } 327 328 /* 329 * raid_end_bio_io() is called when we have finished servicing a mirrored 330 * operation and are ready to return a success/failure code to the buffer 331 * cache layer. 332 */ 333 static void raid_end_bio_io(struct r10bio *r10_bio) 334 { 335 struct bio *bio = r10_bio->master_bio; 336 struct r10conf *conf = r10_bio->mddev->private; 337 338 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 339 bio->bi_status = BLK_STS_IOERR; 340 341 bio_endio(bio); 342 /* 343 * Wake up any possible resync thread that waits for the device 344 * to go idle. 345 */ 346 allow_barrier(conf); 347 348 free_r10bio(r10_bio); 349 } 350 351 /* 352 * Update disk head position estimator based on IRQ completion info. 353 */ 354 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 355 { 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 359 r10_bio->devs[slot].addr + (r10_bio->sectors); 360 } 361 362 /* 363 * Find the disk number which triggered given bio 364 */ 365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 366 struct bio *bio, int *slotp, int *replp) 367 { 368 int slot; 369 int repl = 0; 370 371 for (slot = 0; slot < conf->copies; slot++) { 372 if (r10_bio->devs[slot].bio == bio) 373 break; 374 if (r10_bio->devs[slot].repl_bio == bio) { 375 repl = 1; 376 break; 377 } 378 } 379 380 BUG_ON(slot == conf->copies); 381 update_head_pos(slot, r10_bio); 382 383 if (slotp) 384 *slotp = slot; 385 if (replp) 386 *replp = repl; 387 return r10_bio->devs[slot].devnum; 388 } 389 390 static void raid10_end_read_request(struct bio *bio) 391 { 392 int uptodate = !bio->bi_status; 393 struct r10bio *r10_bio = bio->bi_private; 394 int slot, dev; 395 struct md_rdev *rdev; 396 struct r10conf *conf = r10_bio->mddev->private; 397 398 slot = r10_bio->read_slot; 399 dev = r10_bio->devs[slot].devnum; 400 rdev = r10_bio->devs[slot].rdev; 401 /* 402 * this branch is our 'one mirror IO has finished' event handler: 403 */ 404 update_head_pos(slot, r10_bio); 405 406 if (uptodate) { 407 /* 408 * Set R10BIO_Uptodate in our master bio, so that 409 * we will return a good error code to the higher 410 * levels even if IO on some other mirrored buffer fails. 411 * 412 * The 'master' represents the composite IO operation to 413 * user-side. So if something waits for IO, then it will 414 * wait for the 'master' bio. 415 */ 416 set_bit(R10BIO_Uptodate, &r10_bio->state); 417 } else { 418 /* If all other devices that store this block have 419 * failed, we want to return the error upwards rather 420 * than fail the last device. Here we redefine 421 * "uptodate" to mean "Don't want to retry" 422 */ 423 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 424 rdev->raid_disk)) 425 uptodate = 1; 426 } 427 if (uptodate) { 428 raid_end_bio_io(r10_bio); 429 rdev_dec_pending(rdev, conf->mddev); 430 } else { 431 /* 432 * oops, read error - keep the refcount on the rdev 433 */ 434 char b[BDEVNAME_SIZE]; 435 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 436 mdname(conf->mddev), 437 bdevname(rdev->bdev, b), 438 (unsigned long long)r10_bio->sector); 439 set_bit(R10BIO_ReadError, &r10_bio->state); 440 reschedule_retry(r10_bio); 441 } 442 } 443 444 static void close_write(struct r10bio *r10_bio) 445 { 446 /* clear the bitmap if all writes complete successfully */ 447 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 448 r10_bio->sectors, 449 !test_bit(R10BIO_Degraded, &r10_bio->state), 450 0); 451 md_write_end(r10_bio->mddev); 452 } 453 454 static void one_write_done(struct r10bio *r10_bio) 455 { 456 if (atomic_dec_and_test(&r10_bio->remaining)) { 457 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 458 reschedule_retry(r10_bio); 459 else { 460 close_write(r10_bio); 461 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 462 reschedule_retry(r10_bio); 463 else 464 raid_end_bio_io(r10_bio); 465 } 466 } 467 } 468 469 static void raid10_end_write_request(struct bio *bio) 470 { 471 struct r10bio *r10_bio = bio->bi_private; 472 int dev; 473 int dec_rdev = 1; 474 struct r10conf *conf = r10_bio->mddev->private; 475 int slot, repl; 476 struct md_rdev *rdev = NULL; 477 struct bio *to_put = NULL; 478 bool discard_error; 479 480 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 481 482 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 483 484 if (repl) 485 rdev = conf->mirrors[dev].replacement; 486 if (!rdev) { 487 smp_rmb(); 488 repl = 0; 489 rdev = conf->mirrors[dev].rdev; 490 } 491 /* 492 * this branch is our 'one mirror IO has finished' event handler: 493 */ 494 if (bio->bi_status && !discard_error) { 495 if (repl) 496 /* Never record new bad blocks to replacement, 497 * just fail it. 498 */ 499 md_error(rdev->mddev, rdev); 500 else { 501 set_bit(WriteErrorSeen, &rdev->flags); 502 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 503 set_bit(MD_RECOVERY_NEEDED, 504 &rdev->mddev->recovery); 505 506 dec_rdev = 0; 507 if (test_bit(FailFast, &rdev->flags) && 508 (bio->bi_opf & MD_FAILFAST)) { 509 md_error(rdev->mddev, rdev); 510 if (!test_bit(Faulty, &rdev->flags)) 511 /* This is the only remaining device, 512 * We need to retry the write without 513 * FailFast 514 */ 515 set_bit(R10BIO_WriteError, &r10_bio->state); 516 else { 517 r10_bio->devs[slot].bio = NULL; 518 to_put = bio; 519 dec_rdev = 1; 520 } 521 } else 522 set_bit(R10BIO_WriteError, &r10_bio->state); 523 } 524 } else { 525 /* 526 * Set R10BIO_Uptodate in our master bio, so that 527 * we will return a good error code for to the higher 528 * levels even if IO on some other mirrored buffer fails. 529 * 530 * The 'master' represents the composite IO operation to 531 * user-side. So if something waits for IO, then it will 532 * wait for the 'master' bio. 533 */ 534 sector_t first_bad; 535 int bad_sectors; 536 537 /* 538 * Do not set R10BIO_Uptodate if the current device is 539 * rebuilding or Faulty. This is because we cannot use 540 * such device for properly reading the data back (we could 541 * potentially use it, if the current write would have felt 542 * before rdev->recovery_offset, but for simplicity we don't 543 * check this here. 544 */ 545 if (test_bit(In_sync, &rdev->flags) && 546 !test_bit(Faulty, &rdev->flags)) 547 set_bit(R10BIO_Uptodate, &r10_bio->state); 548 549 /* Maybe we can clear some bad blocks. */ 550 if (is_badblock(rdev, 551 r10_bio->devs[slot].addr, 552 r10_bio->sectors, 553 &first_bad, &bad_sectors) && !discard_error) { 554 bio_put(bio); 555 if (repl) 556 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 557 else 558 r10_bio->devs[slot].bio = IO_MADE_GOOD; 559 dec_rdev = 0; 560 set_bit(R10BIO_MadeGood, &r10_bio->state); 561 } 562 } 563 564 /* 565 * 566 * Let's see if all mirrored write operations have finished 567 * already. 568 */ 569 one_write_done(r10_bio); 570 if (dec_rdev) 571 rdev_dec_pending(rdev, conf->mddev); 572 if (to_put) 573 bio_put(to_put); 574 } 575 576 /* 577 * RAID10 layout manager 578 * As well as the chunksize and raid_disks count, there are two 579 * parameters: near_copies and far_copies. 580 * near_copies * far_copies must be <= raid_disks. 581 * Normally one of these will be 1. 582 * If both are 1, we get raid0. 583 * If near_copies == raid_disks, we get raid1. 584 * 585 * Chunks are laid out in raid0 style with near_copies copies of the 586 * first chunk, followed by near_copies copies of the next chunk and 587 * so on. 588 * If far_copies > 1, then after 1/far_copies of the array has been assigned 589 * as described above, we start again with a device offset of near_copies. 590 * So we effectively have another copy of the whole array further down all 591 * the drives, but with blocks on different drives. 592 * With this layout, and block is never stored twice on the one device. 593 * 594 * raid10_find_phys finds the sector offset of a given virtual sector 595 * on each device that it is on. 596 * 597 * raid10_find_virt does the reverse mapping, from a device and a 598 * sector offset to a virtual address 599 */ 600 601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 602 { 603 int n,f; 604 sector_t sector; 605 sector_t chunk; 606 sector_t stripe; 607 int dev; 608 int slot = 0; 609 int last_far_set_start, last_far_set_size; 610 611 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 612 last_far_set_start *= geo->far_set_size; 613 614 last_far_set_size = geo->far_set_size; 615 last_far_set_size += (geo->raid_disks % geo->far_set_size); 616 617 /* now calculate first sector/dev */ 618 chunk = r10bio->sector >> geo->chunk_shift; 619 sector = r10bio->sector & geo->chunk_mask; 620 621 chunk *= geo->near_copies; 622 stripe = chunk; 623 dev = sector_div(stripe, geo->raid_disks); 624 if (geo->far_offset) 625 stripe *= geo->far_copies; 626 627 sector += stripe << geo->chunk_shift; 628 629 /* and calculate all the others */ 630 for (n = 0; n < geo->near_copies; n++) { 631 int d = dev; 632 int set; 633 sector_t s = sector; 634 r10bio->devs[slot].devnum = d; 635 r10bio->devs[slot].addr = s; 636 slot++; 637 638 for (f = 1; f < geo->far_copies; f++) { 639 set = d / geo->far_set_size; 640 d += geo->near_copies; 641 642 if ((geo->raid_disks % geo->far_set_size) && 643 (d > last_far_set_start)) { 644 d -= last_far_set_start; 645 d %= last_far_set_size; 646 d += last_far_set_start; 647 } else { 648 d %= geo->far_set_size; 649 d += geo->far_set_size * set; 650 } 651 s += geo->stride; 652 r10bio->devs[slot].devnum = d; 653 r10bio->devs[slot].addr = s; 654 slot++; 655 } 656 dev++; 657 if (dev >= geo->raid_disks) { 658 dev = 0; 659 sector += (geo->chunk_mask + 1); 660 } 661 } 662 } 663 664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 665 { 666 struct geom *geo = &conf->geo; 667 668 if (conf->reshape_progress != MaxSector && 669 ((r10bio->sector >= conf->reshape_progress) != 670 conf->mddev->reshape_backwards)) { 671 set_bit(R10BIO_Previous, &r10bio->state); 672 geo = &conf->prev; 673 } else 674 clear_bit(R10BIO_Previous, &r10bio->state); 675 676 __raid10_find_phys(geo, r10bio); 677 } 678 679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 680 { 681 sector_t offset, chunk, vchunk; 682 /* Never use conf->prev as this is only called during resync 683 * or recovery, so reshape isn't happening 684 */ 685 struct geom *geo = &conf->geo; 686 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 687 int far_set_size = geo->far_set_size; 688 int last_far_set_start; 689 690 if (geo->raid_disks % geo->far_set_size) { 691 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 692 last_far_set_start *= geo->far_set_size; 693 694 if (dev >= last_far_set_start) { 695 far_set_size = geo->far_set_size; 696 far_set_size += (geo->raid_disks % geo->far_set_size); 697 far_set_start = last_far_set_start; 698 } 699 } 700 701 offset = sector & geo->chunk_mask; 702 if (geo->far_offset) { 703 int fc; 704 chunk = sector >> geo->chunk_shift; 705 fc = sector_div(chunk, geo->far_copies); 706 dev -= fc * geo->near_copies; 707 if (dev < far_set_start) 708 dev += far_set_size; 709 } else { 710 while (sector >= geo->stride) { 711 sector -= geo->stride; 712 if (dev < (geo->near_copies + far_set_start)) 713 dev += far_set_size - geo->near_copies; 714 else 715 dev -= geo->near_copies; 716 } 717 chunk = sector >> geo->chunk_shift; 718 } 719 vchunk = chunk * geo->raid_disks + dev; 720 sector_div(vchunk, geo->near_copies); 721 return (vchunk << geo->chunk_shift) + offset; 722 } 723 724 /* 725 * This routine returns the disk from which the requested read should 726 * be done. There is a per-array 'next expected sequential IO' sector 727 * number - if this matches on the next IO then we use the last disk. 728 * There is also a per-disk 'last know head position' sector that is 729 * maintained from IRQ contexts, both the normal and the resync IO 730 * completion handlers update this position correctly. If there is no 731 * perfect sequential match then we pick the disk whose head is closest. 732 * 733 * If there are 2 mirrors in the same 2 devices, performance degrades 734 * because position is mirror, not device based. 735 * 736 * The rdev for the device selected will have nr_pending incremented. 737 */ 738 739 /* 740 * FIXME: possibly should rethink readbalancing and do it differently 741 * depending on near_copies / far_copies geometry. 742 */ 743 static struct md_rdev *read_balance(struct r10conf *conf, 744 struct r10bio *r10_bio, 745 int *max_sectors) 746 { 747 const sector_t this_sector = r10_bio->sector; 748 int disk, slot; 749 int sectors = r10_bio->sectors; 750 int best_good_sectors; 751 sector_t new_distance, best_dist; 752 struct md_rdev *best_rdev, *rdev = NULL; 753 int do_balance; 754 int best_slot; 755 struct geom *geo = &conf->geo; 756 757 raid10_find_phys(conf, r10_bio); 758 rcu_read_lock(); 759 sectors = r10_bio->sectors; 760 best_slot = -1; 761 best_rdev = NULL; 762 best_dist = MaxSector; 763 best_good_sectors = 0; 764 do_balance = 1; 765 clear_bit(R10BIO_FailFast, &r10_bio->state); 766 /* 767 * Check if we can balance. We can balance on the whole 768 * device if no resync is going on (recovery is ok), or below 769 * the resync window. We take the first readable disk when 770 * above the resync window. 771 */ 772 if (conf->mddev->recovery_cp < MaxSector 773 && (this_sector + sectors >= conf->next_resync)) 774 do_balance = 0; 775 776 for (slot = 0; slot < conf->copies ; slot++) { 777 sector_t first_bad; 778 int bad_sectors; 779 sector_t dev_sector; 780 781 if (r10_bio->devs[slot].bio == IO_BLOCKED) 782 continue; 783 disk = r10_bio->devs[slot].devnum; 784 rdev = rcu_dereference(conf->mirrors[disk].replacement); 785 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 786 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 787 rdev = rcu_dereference(conf->mirrors[disk].rdev); 788 if (rdev == NULL || 789 test_bit(Faulty, &rdev->flags)) 790 continue; 791 if (!test_bit(In_sync, &rdev->flags) && 792 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 793 continue; 794 795 dev_sector = r10_bio->devs[slot].addr; 796 if (is_badblock(rdev, dev_sector, sectors, 797 &first_bad, &bad_sectors)) { 798 if (best_dist < MaxSector) 799 /* Already have a better slot */ 800 continue; 801 if (first_bad <= dev_sector) { 802 /* Cannot read here. If this is the 803 * 'primary' device, then we must not read 804 * beyond 'bad_sectors' from another device. 805 */ 806 bad_sectors -= (dev_sector - first_bad); 807 if (!do_balance && sectors > bad_sectors) 808 sectors = bad_sectors; 809 if (best_good_sectors > sectors) 810 best_good_sectors = sectors; 811 } else { 812 sector_t good_sectors = 813 first_bad - dev_sector; 814 if (good_sectors > best_good_sectors) { 815 best_good_sectors = good_sectors; 816 best_slot = slot; 817 best_rdev = rdev; 818 } 819 if (!do_balance) 820 /* Must read from here */ 821 break; 822 } 823 continue; 824 } else 825 best_good_sectors = sectors; 826 827 if (!do_balance) 828 break; 829 830 if (best_slot >= 0) 831 /* At least 2 disks to choose from so failfast is OK */ 832 set_bit(R10BIO_FailFast, &r10_bio->state); 833 /* This optimisation is debatable, and completely destroys 834 * sequential read speed for 'far copies' arrays. So only 835 * keep it for 'near' arrays, and review those later. 836 */ 837 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 838 new_distance = 0; 839 840 /* for far > 1 always use the lowest address */ 841 else if (geo->far_copies > 1) 842 new_distance = r10_bio->devs[slot].addr; 843 else 844 new_distance = abs(r10_bio->devs[slot].addr - 845 conf->mirrors[disk].head_position); 846 if (new_distance < best_dist) { 847 best_dist = new_distance; 848 best_slot = slot; 849 best_rdev = rdev; 850 } 851 } 852 if (slot >= conf->copies) { 853 slot = best_slot; 854 rdev = best_rdev; 855 } 856 857 if (slot >= 0) { 858 atomic_inc(&rdev->nr_pending); 859 r10_bio->read_slot = slot; 860 } else 861 rdev = NULL; 862 rcu_read_unlock(); 863 *max_sectors = best_good_sectors; 864 865 return rdev; 866 } 867 868 static int raid10_congested(struct mddev *mddev, int bits) 869 { 870 struct r10conf *conf = mddev->private; 871 int i, ret = 0; 872 873 if ((bits & (1 << WB_async_congested)) && 874 conf->pending_count >= max_queued_requests) 875 return 1; 876 877 rcu_read_lock(); 878 for (i = 0; 879 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 880 && ret == 0; 881 i++) { 882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 883 if (rdev && !test_bit(Faulty, &rdev->flags)) { 884 struct request_queue *q = bdev_get_queue(rdev->bdev); 885 886 ret |= bdi_congested(q->backing_dev_info, bits); 887 } 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 893 static void flush_pending_writes(struct r10conf *conf) 894 { 895 /* Any writes that have been queued but are awaiting 896 * bitmap updates get flushed here. 897 */ 898 spin_lock_irq(&conf->device_lock); 899 900 if (conf->pending_bio_list.head) { 901 struct bio *bio; 902 bio = bio_list_get(&conf->pending_bio_list); 903 conf->pending_count = 0; 904 spin_unlock_irq(&conf->device_lock); 905 /* flush any pending bitmap writes to disk 906 * before proceeding w/ I/O */ 907 bitmap_unplug(conf->mddev->bitmap); 908 wake_up(&conf->wait_barrier); 909 910 while (bio) { /* submit pending writes */ 911 struct bio *next = bio->bi_next; 912 struct md_rdev *rdev = (void*)bio->bi_bdev; 913 bio->bi_next = NULL; 914 bio->bi_bdev = rdev->bdev; 915 if (test_bit(Faulty, &rdev->flags)) { 916 bio->bi_status = BLK_STS_IOERR; 917 bio_endio(bio); 918 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 919 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 920 /* Just ignore it */ 921 bio_endio(bio); 922 else 923 generic_make_request(bio); 924 bio = next; 925 } 926 } else 927 spin_unlock_irq(&conf->device_lock); 928 } 929 930 /* Barriers.... 931 * Sometimes we need to suspend IO while we do something else, 932 * either some resync/recovery, or reconfigure the array. 933 * To do this we raise a 'barrier'. 934 * The 'barrier' is a counter that can be raised multiple times 935 * to count how many activities are happening which preclude 936 * normal IO. 937 * We can only raise the barrier if there is no pending IO. 938 * i.e. if nr_pending == 0. 939 * We choose only to raise the barrier if no-one is waiting for the 940 * barrier to go down. This means that as soon as an IO request 941 * is ready, no other operations which require a barrier will start 942 * until the IO request has had a chance. 943 * 944 * So: regular IO calls 'wait_barrier'. When that returns there 945 * is no backgroup IO happening, It must arrange to call 946 * allow_barrier when it has finished its IO. 947 * backgroup IO calls must call raise_barrier. Once that returns 948 * there is no normal IO happeing. It must arrange to call 949 * lower_barrier when the particular background IO completes. 950 */ 951 952 static void raise_barrier(struct r10conf *conf, int force) 953 { 954 BUG_ON(force && !conf->barrier); 955 spin_lock_irq(&conf->resync_lock); 956 957 /* Wait until no block IO is waiting (unless 'force') */ 958 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 959 conf->resync_lock); 960 961 /* block any new IO from starting */ 962 conf->barrier++; 963 964 /* Now wait for all pending IO to complete */ 965 wait_event_lock_irq(conf->wait_barrier, 966 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 967 conf->resync_lock); 968 969 spin_unlock_irq(&conf->resync_lock); 970 } 971 972 static void lower_barrier(struct r10conf *conf) 973 { 974 unsigned long flags; 975 spin_lock_irqsave(&conf->resync_lock, flags); 976 conf->barrier--; 977 spin_unlock_irqrestore(&conf->resync_lock, flags); 978 wake_up(&conf->wait_barrier); 979 } 980 981 static void wait_barrier(struct r10conf *conf) 982 { 983 spin_lock_irq(&conf->resync_lock); 984 if (conf->barrier) { 985 conf->nr_waiting++; 986 /* Wait for the barrier to drop. 987 * However if there are already pending 988 * requests (preventing the barrier from 989 * rising completely), and the 990 * pre-process bio queue isn't empty, 991 * then don't wait, as we need to empty 992 * that queue to get the nr_pending 993 * count down. 994 */ 995 raid10_log(conf->mddev, "wait barrier"); 996 wait_event_lock_irq(conf->wait_barrier, 997 !conf->barrier || 998 (atomic_read(&conf->nr_pending) && 999 current->bio_list && 1000 (!bio_list_empty(¤t->bio_list[0]) || 1001 !bio_list_empty(¤t->bio_list[1]))), 1002 conf->resync_lock); 1003 conf->nr_waiting--; 1004 if (!conf->nr_waiting) 1005 wake_up(&conf->wait_barrier); 1006 } 1007 atomic_inc(&conf->nr_pending); 1008 spin_unlock_irq(&conf->resync_lock); 1009 } 1010 1011 static void allow_barrier(struct r10conf *conf) 1012 { 1013 if ((atomic_dec_and_test(&conf->nr_pending)) || 1014 (conf->array_freeze_pending)) 1015 wake_up(&conf->wait_barrier); 1016 } 1017 1018 static void freeze_array(struct r10conf *conf, int extra) 1019 { 1020 /* stop syncio and normal IO and wait for everything to 1021 * go quiet. 1022 * We increment barrier and nr_waiting, and then 1023 * wait until nr_pending match nr_queued+extra 1024 * This is called in the context of one normal IO request 1025 * that has failed. Thus any sync request that might be pending 1026 * will be blocked by nr_pending, and we need to wait for 1027 * pending IO requests to complete or be queued for re-try. 1028 * Thus the number queued (nr_queued) plus this request (extra) 1029 * must match the number of pending IOs (nr_pending) before 1030 * we continue. 1031 */ 1032 spin_lock_irq(&conf->resync_lock); 1033 conf->array_freeze_pending++; 1034 conf->barrier++; 1035 conf->nr_waiting++; 1036 wait_event_lock_irq_cmd(conf->wait_barrier, 1037 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1038 conf->resync_lock, 1039 flush_pending_writes(conf)); 1040 1041 conf->array_freeze_pending--; 1042 spin_unlock_irq(&conf->resync_lock); 1043 } 1044 1045 static void unfreeze_array(struct r10conf *conf) 1046 { 1047 /* reverse the effect of the freeze */ 1048 spin_lock_irq(&conf->resync_lock); 1049 conf->barrier--; 1050 conf->nr_waiting--; 1051 wake_up(&conf->wait_barrier); 1052 spin_unlock_irq(&conf->resync_lock); 1053 } 1054 1055 static sector_t choose_data_offset(struct r10bio *r10_bio, 1056 struct md_rdev *rdev) 1057 { 1058 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1059 test_bit(R10BIO_Previous, &r10_bio->state)) 1060 return rdev->data_offset; 1061 else 1062 return rdev->new_data_offset; 1063 } 1064 1065 struct raid10_plug_cb { 1066 struct blk_plug_cb cb; 1067 struct bio_list pending; 1068 int pending_cnt; 1069 }; 1070 1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1072 { 1073 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1074 cb); 1075 struct mddev *mddev = plug->cb.data; 1076 struct r10conf *conf = mddev->private; 1077 struct bio *bio; 1078 1079 if (from_schedule || current->bio_list) { 1080 spin_lock_irq(&conf->device_lock); 1081 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1082 conf->pending_count += plug->pending_cnt; 1083 spin_unlock_irq(&conf->device_lock); 1084 wake_up(&conf->wait_barrier); 1085 md_wakeup_thread(mddev->thread); 1086 kfree(plug); 1087 return; 1088 } 1089 1090 /* we aren't scheduling, so we can do the write-out directly. */ 1091 bio = bio_list_get(&plug->pending); 1092 bitmap_unplug(mddev->bitmap); 1093 wake_up(&conf->wait_barrier); 1094 1095 while (bio) { /* submit pending writes */ 1096 struct bio *next = bio->bi_next; 1097 struct md_rdev *rdev = (void*)bio->bi_bdev; 1098 bio->bi_next = NULL; 1099 bio->bi_bdev = rdev->bdev; 1100 if (test_bit(Faulty, &rdev->flags)) { 1101 bio->bi_status = BLK_STS_IOERR; 1102 bio_endio(bio); 1103 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1104 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1105 /* Just ignore it */ 1106 bio_endio(bio); 1107 else 1108 generic_make_request(bio); 1109 bio = next; 1110 } 1111 kfree(plug); 1112 } 1113 1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1115 struct r10bio *r10_bio) 1116 { 1117 struct r10conf *conf = mddev->private; 1118 struct bio *read_bio; 1119 const int op = bio_op(bio); 1120 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1121 int max_sectors; 1122 sector_t sectors; 1123 struct md_rdev *rdev; 1124 char b[BDEVNAME_SIZE]; 1125 int slot = r10_bio->read_slot; 1126 struct md_rdev *err_rdev = NULL; 1127 gfp_t gfp = GFP_NOIO; 1128 1129 if (r10_bio->devs[slot].rdev) { 1130 /* 1131 * This is an error retry, but we cannot 1132 * safely dereference the rdev in the r10_bio, 1133 * we must use the one in conf. 1134 * If it has already been disconnected (unlikely) 1135 * we lose the device name in error messages. 1136 */ 1137 int disk; 1138 /* 1139 * As we are blocking raid10, it is a little safer to 1140 * use __GFP_HIGH. 1141 */ 1142 gfp = GFP_NOIO | __GFP_HIGH; 1143 1144 rcu_read_lock(); 1145 disk = r10_bio->devs[slot].devnum; 1146 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1147 if (err_rdev) 1148 bdevname(err_rdev->bdev, b); 1149 else { 1150 strcpy(b, "???"); 1151 /* This never gets dereferenced */ 1152 err_rdev = r10_bio->devs[slot].rdev; 1153 } 1154 rcu_read_unlock(); 1155 } 1156 /* 1157 * Register the new request and wait if the reconstruction 1158 * thread has put up a bar for new requests. 1159 * Continue immediately if no resync is active currently. 1160 */ 1161 wait_barrier(conf); 1162 1163 sectors = r10_bio->sectors; 1164 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1165 bio->bi_iter.bi_sector < conf->reshape_progress && 1166 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1167 /* 1168 * IO spans the reshape position. Need to wait for reshape to 1169 * pass 1170 */ 1171 raid10_log(conf->mddev, "wait reshape"); 1172 allow_barrier(conf); 1173 wait_event(conf->wait_barrier, 1174 conf->reshape_progress <= bio->bi_iter.bi_sector || 1175 conf->reshape_progress >= bio->bi_iter.bi_sector + 1176 sectors); 1177 wait_barrier(conf); 1178 } 1179 1180 rdev = read_balance(conf, r10_bio, &max_sectors); 1181 if (!rdev) { 1182 if (err_rdev) { 1183 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1184 mdname(mddev), b, 1185 (unsigned long long)r10_bio->sector); 1186 } 1187 raid_end_bio_io(r10_bio); 1188 return; 1189 } 1190 if (err_rdev) 1191 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1192 mdname(mddev), 1193 bdevname(rdev->bdev, b), 1194 (unsigned long long)r10_bio->sector); 1195 if (max_sectors < bio_sectors(bio)) { 1196 struct bio *split = bio_split(bio, max_sectors, 1197 gfp, conf->bio_split); 1198 bio_chain(split, bio); 1199 generic_make_request(bio); 1200 bio = split; 1201 r10_bio->master_bio = bio; 1202 r10_bio->sectors = max_sectors; 1203 } 1204 slot = r10_bio->read_slot; 1205 1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1207 1208 r10_bio->devs[slot].bio = read_bio; 1209 r10_bio->devs[slot].rdev = rdev; 1210 1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1212 choose_data_offset(r10_bio, rdev); 1213 read_bio->bi_bdev = rdev->bdev; 1214 read_bio->bi_end_io = raid10_end_read_request; 1215 bio_set_op_attrs(read_bio, op, do_sync); 1216 if (test_bit(FailFast, &rdev->flags) && 1217 test_bit(R10BIO_FailFast, &r10_bio->state)) 1218 read_bio->bi_opf |= MD_FAILFAST; 1219 read_bio->bi_private = r10_bio; 1220 1221 if (mddev->gendisk) 1222 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1223 read_bio, disk_devt(mddev->gendisk), 1224 r10_bio->sector); 1225 generic_make_request(read_bio); 1226 return; 1227 } 1228 1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1230 struct bio *bio, bool replacement, 1231 int n_copy) 1232 { 1233 const int op = bio_op(bio); 1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1236 unsigned long flags; 1237 struct blk_plug_cb *cb; 1238 struct raid10_plug_cb *plug = NULL; 1239 struct r10conf *conf = mddev->private; 1240 struct md_rdev *rdev; 1241 int devnum = r10_bio->devs[n_copy].devnum; 1242 struct bio *mbio; 1243 1244 if (replacement) { 1245 rdev = conf->mirrors[devnum].replacement; 1246 if (rdev == NULL) { 1247 /* Replacement just got moved to main 'rdev' */ 1248 smp_mb(); 1249 rdev = conf->mirrors[devnum].rdev; 1250 } 1251 } else 1252 rdev = conf->mirrors[devnum].rdev; 1253 1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1255 if (replacement) 1256 r10_bio->devs[n_copy].repl_bio = mbio; 1257 else 1258 r10_bio->devs[n_copy].bio = mbio; 1259 1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1261 choose_data_offset(r10_bio, rdev)); 1262 mbio->bi_bdev = rdev->bdev; 1263 mbio->bi_end_io = raid10_end_write_request; 1264 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1265 if (!replacement && test_bit(FailFast, 1266 &conf->mirrors[devnum].rdev->flags) 1267 && enough(conf, devnum)) 1268 mbio->bi_opf |= MD_FAILFAST; 1269 mbio->bi_private = r10_bio; 1270 1271 if (conf->mddev->gendisk) 1272 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1273 mbio, disk_devt(conf->mddev->gendisk), 1274 r10_bio->sector); 1275 /* flush_pending_writes() needs access to the rdev so...*/ 1276 mbio->bi_bdev = (void *)rdev; 1277 1278 atomic_inc(&r10_bio->remaining); 1279 1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1281 if (cb) 1282 plug = container_of(cb, struct raid10_plug_cb, cb); 1283 else 1284 plug = NULL; 1285 if (plug) { 1286 bio_list_add(&plug->pending, mbio); 1287 plug->pending_cnt++; 1288 } else { 1289 spin_lock_irqsave(&conf->device_lock, flags); 1290 bio_list_add(&conf->pending_bio_list, mbio); 1291 conf->pending_count++; 1292 spin_unlock_irqrestore(&conf->device_lock, flags); 1293 md_wakeup_thread(mddev->thread); 1294 } 1295 } 1296 1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1298 struct r10bio *r10_bio) 1299 { 1300 struct r10conf *conf = mddev->private; 1301 int i; 1302 struct md_rdev *blocked_rdev; 1303 sector_t sectors; 1304 int max_sectors; 1305 1306 /* 1307 * Register the new request and wait if the reconstruction 1308 * thread has put up a bar for new requests. 1309 * Continue immediately if no resync is active currently. 1310 */ 1311 wait_barrier(conf); 1312 1313 sectors = r10_bio->sectors; 1314 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1315 bio->bi_iter.bi_sector < conf->reshape_progress && 1316 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1317 /* 1318 * IO spans the reshape position. Need to wait for reshape to 1319 * pass 1320 */ 1321 raid10_log(conf->mddev, "wait reshape"); 1322 allow_barrier(conf); 1323 wait_event(conf->wait_barrier, 1324 conf->reshape_progress <= bio->bi_iter.bi_sector || 1325 conf->reshape_progress >= bio->bi_iter.bi_sector + 1326 sectors); 1327 wait_barrier(conf); 1328 } 1329 1330 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1331 (mddev->reshape_backwards 1332 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1333 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1334 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1335 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1336 /* Need to update reshape_position in metadata */ 1337 mddev->reshape_position = conf->reshape_progress; 1338 set_mask_bits(&mddev->sb_flags, 0, 1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1340 md_wakeup_thread(mddev->thread); 1341 raid10_log(conf->mddev, "wait reshape metadata"); 1342 wait_event(mddev->sb_wait, 1343 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1344 1345 conf->reshape_safe = mddev->reshape_position; 1346 } 1347 1348 if (conf->pending_count >= max_queued_requests) { 1349 md_wakeup_thread(mddev->thread); 1350 raid10_log(mddev, "wait queued"); 1351 wait_event(conf->wait_barrier, 1352 conf->pending_count < max_queued_requests); 1353 } 1354 /* first select target devices under rcu_lock and 1355 * inc refcount on their rdev. Record them by setting 1356 * bios[x] to bio 1357 * If there are known/acknowledged bad blocks on any device 1358 * on which we have seen a write error, we want to avoid 1359 * writing to those blocks. This potentially requires several 1360 * writes to write around the bad blocks. Each set of writes 1361 * gets its own r10_bio with a set of bios attached. 1362 */ 1363 1364 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1365 raid10_find_phys(conf, r10_bio); 1366 retry_write: 1367 blocked_rdev = NULL; 1368 rcu_read_lock(); 1369 max_sectors = r10_bio->sectors; 1370 1371 for (i = 0; i < conf->copies; i++) { 1372 int d = r10_bio->devs[i].devnum; 1373 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1374 struct md_rdev *rrdev = rcu_dereference( 1375 conf->mirrors[d].replacement); 1376 if (rdev == rrdev) 1377 rrdev = NULL; 1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1379 atomic_inc(&rdev->nr_pending); 1380 blocked_rdev = rdev; 1381 break; 1382 } 1383 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1384 atomic_inc(&rrdev->nr_pending); 1385 blocked_rdev = rrdev; 1386 break; 1387 } 1388 if (rdev && (test_bit(Faulty, &rdev->flags))) 1389 rdev = NULL; 1390 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1391 rrdev = NULL; 1392 1393 r10_bio->devs[i].bio = NULL; 1394 r10_bio->devs[i].repl_bio = NULL; 1395 1396 if (!rdev && !rrdev) { 1397 set_bit(R10BIO_Degraded, &r10_bio->state); 1398 continue; 1399 } 1400 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1401 sector_t first_bad; 1402 sector_t dev_sector = r10_bio->devs[i].addr; 1403 int bad_sectors; 1404 int is_bad; 1405 1406 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1407 &first_bad, &bad_sectors); 1408 if (is_bad < 0) { 1409 /* Mustn't write here until the bad block 1410 * is acknowledged 1411 */ 1412 atomic_inc(&rdev->nr_pending); 1413 set_bit(BlockedBadBlocks, &rdev->flags); 1414 blocked_rdev = rdev; 1415 break; 1416 } 1417 if (is_bad && first_bad <= dev_sector) { 1418 /* Cannot write here at all */ 1419 bad_sectors -= (dev_sector - first_bad); 1420 if (bad_sectors < max_sectors) 1421 /* Mustn't write more than bad_sectors 1422 * to other devices yet 1423 */ 1424 max_sectors = bad_sectors; 1425 /* We don't set R10BIO_Degraded as that 1426 * only applies if the disk is missing, 1427 * so it might be re-added, and we want to 1428 * know to recover this chunk. 1429 * In this case the device is here, and the 1430 * fact that this chunk is not in-sync is 1431 * recorded in the bad block log. 1432 */ 1433 continue; 1434 } 1435 if (is_bad) { 1436 int good_sectors = first_bad - dev_sector; 1437 if (good_sectors < max_sectors) 1438 max_sectors = good_sectors; 1439 } 1440 } 1441 if (rdev) { 1442 r10_bio->devs[i].bio = bio; 1443 atomic_inc(&rdev->nr_pending); 1444 } 1445 if (rrdev) { 1446 r10_bio->devs[i].repl_bio = bio; 1447 atomic_inc(&rrdev->nr_pending); 1448 } 1449 } 1450 rcu_read_unlock(); 1451 1452 if (unlikely(blocked_rdev)) { 1453 /* Have to wait for this device to get unblocked, then retry */ 1454 int j; 1455 int d; 1456 1457 for (j = 0; j < i; j++) { 1458 if (r10_bio->devs[j].bio) { 1459 d = r10_bio->devs[j].devnum; 1460 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1461 } 1462 if (r10_bio->devs[j].repl_bio) { 1463 struct md_rdev *rdev; 1464 d = r10_bio->devs[j].devnum; 1465 rdev = conf->mirrors[d].replacement; 1466 if (!rdev) { 1467 /* Race with remove_disk */ 1468 smp_mb(); 1469 rdev = conf->mirrors[d].rdev; 1470 } 1471 rdev_dec_pending(rdev, mddev); 1472 } 1473 } 1474 allow_barrier(conf); 1475 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1476 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1477 wait_barrier(conf); 1478 goto retry_write; 1479 } 1480 1481 if (max_sectors < r10_bio->sectors) 1482 r10_bio->sectors = max_sectors; 1483 1484 if (r10_bio->sectors < bio_sectors(bio)) { 1485 struct bio *split = bio_split(bio, r10_bio->sectors, 1486 GFP_NOIO, conf->bio_split); 1487 bio_chain(split, bio); 1488 generic_make_request(bio); 1489 bio = split; 1490 r10_bio->master_bio = bio; 1491 } 1492 1493 atomic_set(&r10_bio->remaining, 1); 1494 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1495 1496 for (i = 0; i < conf->copies; i++) { 1497 if (r10_bio->devs[i].bio) 1498 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1499 if (r10_bio->devs[i].repl_bio) 1500 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1501 } 1502 one_write_done(r10_bio); 1503 } 1504 1505 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1506 { 1507 struct r10conf *conf = mddev->private; 1508 struct r10bio *r10_bio; 1509 1510 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1511 1512 r10_bio->master_bio = bio; 1513 r10_bio->sectors = sectors; 1514 1515 r10_bio->mddev = mddev; 1516 r10_bio->sector = bio->bi_iter.bi_sector; 1517 r10_bio->state = 0; 1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1519 1520 if (bio_data_dir(bio) == READ) 1521 raid10_read_request(mddev, bio, r10_bio); 1522 else 1523 raid10_write_request(mddev, bio, r10_bio); 1524 } 1525 1526 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1527 { 1528 struct r10conf *conf = mddev->private; 1529 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1530 int chunk_sects = chunk_mask + 1; 1531 int sectors = bio_sectors(bio); 1532 1533 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1534 md_flush_request(mddev, bio); 1535 return true; 1536 } 1537 1538 if (!md_write_start(mddev, bio)) 1539 return false; 1540 1541 /* 1542 * If this request crosses a chunk boundary, we need to split 1543 * it. 1544 */ 1545 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1546 sectors > chunk_sects 1547 && (conf->geo.near_copies < conf->geo.raid_disks 1548 || conf->prev.near_copies < 1549 conf->prev.raid_disks))) 1550 sectors = chunk_sects - 1551 (bio->bi_iter.bi_sector & 1552 (chunk_sects - 1)); 1553 __make_request(mddev, bio, sectors); 1554 1555 /* In case raid10d snuck in to freeze_array */ 1556 wake_up(&conf->wait_barrier); 1557 return true; 1558 } 1559 1560 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1561 { 1562 struct r10conf *conf = mddev->private; 1563 int i; 1564 1565 if (conf->geo.near_copies < conf->geo.raid_disks) 1566 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1567 if (conf->geo.near_copies > 1) 1568 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1569 if (conf->geo.far_copies > 1) { 1570 if (conf->geo.far_offset) 1571 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1572 else 1573 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1574 if (conf->geo.far_set_size != conf->geo.raid_disks) 1575 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1576 } 1577 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1578 conf->geo.raid_disks - mddev->degraded); 1579 rcu_read_lock(); 1580 for (i = 0; i < conf->geo.raid_disks; i++) { 1581 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1582 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1583 } 1584 rcu_read_unlock(); 1585 seq_printf(seq, "]"); 1586 } 1587 1588 /* check if there are enough drives for 1589 * every block to appear on atleast one. 1590 * Don't consider the device numbered 'ignore' 1591 * as we might be about to remove it. 1592 */ 1593 static int _enough(struct r10conf *conf, int previous, int ignore) 1594 { 1595 int first = 0; 1596 int has_enough = 0; 1597 int disks, ncopies; 1598 if (previous) { 1599 disks = conf->prev.raid_disks; 1600 ncopies = conf->prev.near_copies; 1601 } else { 1602 disks = conf->geo.raid_disks; 1603 ncopies = conf->geo.near_copies; 1604 } 1605 1606 rcu_read_lock(); 1607 do { 1608 int n = conf->copies; 1609 int cnt = 0; 1610 int this = first; 1611 while (n--) { 1612 struct md_rdev *rdev; 1613 if (this != ignore && 1614 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1615 test_bit(In_sync, &rdev->flags)) 1616 cnt++; 1617 this = (this+1) % disks; 1618 } 1619 if (cnt == 0) 1620 goto out; 1621 first = (first + ncopies) % disks; 1622 } while (first != 0); 1623 has_enough = 1; 1624 out: 1625 rcu_read_unlock(); 1626 return has_enough; 1627 } 1628 1629 static int enough(struct r10conf *conf, int ignore) 1630 { 1631 /* when calling 'enough', both 'prev' and 'geo' must 1632 * be stable. 1633 * This is ensured if ->reconfig_mutex or ->device_lock 1634 * is held. 1635 */ 1636 return _enough(conf, 0, ignore) && 1637 _enough(conf, 1, ignore); 1638 } 1639 1640 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1641 { 1642 char b[BDEVNAME_SIZE]; 1643 struct r10conf *conf = mddev->private; 1644 unsigned long flags; 1645 1646 /* 1647 * If it is not operational, then we have already marked it as dead 1648 * else if it is the last working disks, ignore the error, let the 1649 * next level up know. 1650 * else mark the drive as failed 1651 */ 1652 spin_lock_irqsave(&conf->device_lock, flags); 1653 if (test_bit(In_sync, &rdev->flags) 1654 && !enough(conf, rdev->raid_disk)) { 1655 /* 1656 * Don't fail the drive, just return an IO error. 1657 */ 1658 spin_unlock_irqrestore(&conf->device_lock, flags); 1659 return; 1660 } 1661 if (test_and_clear_bit(In_sync, &rdev->flags)) 1662 mddev->degraded++; 1663 /* 1664 * If recovery is running, make sure it aborts. 1665 */ 1666 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1667 set_bit(Blocked, &rdev->flags); 1668 set_bit(Faulty, &rdev->flags); 1669 set_mask_bits(&mddev->sb_flags, 0, 1670 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1671 spin_unlock_irqrestore(&conf->device_lock, flags); 1672 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1673 "md/raid10:%s: Operation continuing on %d devices.\n", 1674 mdname(mddev), bdevname(rdev->bdev, b), 1675 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1676 } 1677 1678 static void print_conf(struct r10conf *conf) 1679 { 1680 int i; 1681 struct md_rdev *rdev; 1682 1683 pr_debug("RAID10 conf printout:\n"); 1684 if (!conf) { 1685 pr_debug("(!conf)\n"); 1686 return; 1687 } 1688 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1689 conf->geo.raid_disks); 1690 1691 /* This is only called with ->reconfix_mutex held, so 1692 * rcu protection of rdev is not needed */ 1693 for (i = 0; i < conf->geo.raid_disks; i++) { 1694 char b[BDEVNAME_SIZE]; 1695 rdev = conf->mirrors[i].rdev; 1696 if (rdev) 1697 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1698 i, !test_bit(In_sync, &rdev->flags), 1699 !test_bit(Faulty, &rdev->flags), 1700 bdevname(rdev->bdev,b)); 1701 } 1702 } 1703 1704 static void close_sync(struct r10conf *conf) 1705 { 1706 wait_barrier(conf); 1707 allow_barrier(conf); 1708 1709 mempool_destroy(conf->r10buf_pool); 1710 conf->r10buf_pool = NULL; 1711 } 1712 1713 static int raid10_spare_active(struct mddev *mddev) 1714 { 1715 int i; 1716 struct r10conf *conf = mddev->private; 1717 struct raid10_info *tmp; 1718 int count = 0; 1719 unsigned long flags; 1720 1721 /* 1722 * Find all non-in_sync disks within the RAID10 configuration 1723 * and mark them in_sync 1724 */ 1725 for (i = 0; i < conf->geo.raid_disks; i++) { 1726 tmp = conf->mirrors + i; 1727 if (tmp->replacement 1728 && tmp->replacement->recovery_offset == MaxSector 1729 && !test_bit(Faulty, &tmp->replacement->flags) 1730 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1731 /* Replacement has just become active */ 1732 if (!tmp->rdev 1733 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1734 count++; 1735 if (tmp->rdev) { 1736 /* Replaced device not technically faulty, 1737 * but we need to be sure it gets removed 1738 * and never re-added. 1739 */ 1740 set_bit(Faulty, &tmp->rdev->flags); 1741 sysfs_notify_dirent_safe( 1742 tmp->rdev->sysfs_state); 1743 } 1744 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1745 } else if (tmp->rdev 1746 && tmp->rdev->recovery_offset == MaxSector 1747 && !test_bit(Faulty, &tmp->rdev->flags) 1748 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1749 count++; 1750 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1751 } 1752 } 1753 spin_lock_irqsave(&conf->device_lock, flags); 1754 mddev->degraded -= count; 1755 spin_unlock_irqrestore(&conf->device_lock, flags); 1756 1757 print_conf(conf); 1758 return count; 1759 } 1760 1761 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1762 { 1763 struct r10conf *conf = mddev->private; 1764 int err = -EEXIST; 1765 int mirror; 1766 int first = 0; 1767 int last = conf->geo.raid_disks - 1; 1768 1769 if (mddev->recovery_cp < MaxSector) 1770 /* only hot-add to in-sync arrays, as recovery is 1771 * very different from resync 1772 */ 1773 return -EBUSY; 1774 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1775 return -EINVAL; 1776 1777 if (md_integrity_add_rdev(rdev, mddev)) 1778 return -ENXIO; 1779 1780 if (rdev->raid_disk >= 0) 1781 first = last = rdev->raid_disk; 1782 1783 if (rdev->saved_raid_disk >= first && 1784 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1785 mirror = rdev->saved_raid_disk; 1786 else 1787 mirror = first; 1788 for ( ; mirror <= last ; mirror++) { 1789 struct raid10_info *p = &conf->mirrors[mirror]; 1790 if (p->recovery_disabled == mddev->recovery_disabled) 1791 continue; 1792 if (p->rdev) { 1793 if (!test_bit(WantReplacement, &p->rdev->flags) || 1794 p->replacement != NULL) 1795 continue; 1796 clear_bit(In_sync, &rdev->flags); 1797 set_bit(Replacement, &rdev->flags); 1798 rdev->raid_disk = mirror; 1799 err = 0; 1800 if (mddev->gendisk) 1801 disk_stack_limits(mddev->gendisk, rdev->bdev, 1802 rdev->data_offset << 9); 1803 conf->fullsync = 1; 1804 rcu_assign_pointer(p->replacement, rdev); 1805 break; 1806 } 1807 1808 if (mddev->gendisk) 1809 disk_stack_limits(mddev->gendisk, rdev->bdev, 1810 rdev->data_offset << 9); 1811 1812 p->head_position = 0; 1813 p->recovery_disabled = mddev->recovery_disabled - 1; 1814 rdev->raid_disk = mirror; 1815 err = 0; 1816 if (rdev->saved_raid_disk != mirror) 1817 conf->fullsync = 1; 1818 rcu_assign_pointer(p->rdev, rdev); 1819 break; 1820 } 1821 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1822 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1823 1824 print_conf(conf); 1825 return err; 1826 } 1827 1828 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1829 { 1830 struct r10conf *conf = mddev->private; 1831 int err = 0; 1832 int number = rdev->raid_disk; 1833 struct md_rdev **rdevp; 1834 struct raid10_info *p = conf->mirrors + number; 1835 1836 print_conf(conf); 1837 if (rdev == p->rdev) 1838 rdevp = &p->rdev; 1839 else if (rdev == p->replacement) 1840 rdevp = &p->replacement; 1841 else 1842 return 0; 1843 1844 if (test_bit(In_sync, &rdev->flags) || 1845 atomic_read(&rdev->nr_pending)) { 1846 err = -EBUSY; 1847 goto abort; 1848 } 1849 /* Only remove non-faulty devices if recovery 1850 * is not possible. 1851 */ 1852 if (!test_bit(Faulty, &rdev->flags) && 1853 mddev->recovery_disabled != p->recovery_disabled && 1854 (!p->replacement || p->replacement == rdev) && 1855 number < conf->geo.raid_disks && 1856 enough(conf, -1)) { 1857 err = -EBUSY; 1858 goto abort; 1859 } 1860 *rdevp = NULL; 1861 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1862 synchronize_rcu(); 1863 if (atomic_read(&rdev->nr_pending)) { 1864 /* lost the race, try later */ 1865 err = -EBUSY; 1866 *rdevp = rdev; 1867 goto abort; 1868 } 1869 } 1870 if (p->replacement) { 1871 /* We must have just cleared 'rdev' */ 1872 p->rdev = p->replacement; 1873 clear_bit(Replacement, &p->replacement->flags); 1874 smp_mb(); /* Make sure other CPUs may see both as identical 1875 * but will never see neither -- if they are careful. 1876 */ 1877 p->replacement = NULL; 1878 } 1879 1880 clear_bit(WantReplacement, &rdev->flags); 1881 err = md_integrity_register(mddev); 1882 1883 abort: 1884 1885 print_conf(conf); 1886 return err; 1887 } 1888 1889 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1890 { 1891 struct r10conf *conf = r10_bio->mddev->private; 1892 1893 if (!bio->bi_status) 1894 set_bit(R10BIO_Uptodate, &r10_bio->state); 1895 else 1896 /* The write handler will notice the lack of 1897 * R10BIO_Uptodate and record any errors etc 1898 */ 1899 atomic_add(r10_bio->sectors, 1900 &conf->mirrors[d].rdev->corrected_errors); 1901 1902 /* for reconstruct, we always reschedule after a read. 1903 * for resync, only after all reads 1904 */ 1905 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1906 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1907 atomic_dec_and_test(&r10_bio->remaining)) { 1908 /* we have read all the blocks, 1909 * do the comparison in process context in raid10d 1910 */ 1911 reschedule_retry(r10_bio); 1912 } 1913 } 1914 1915 static void end_sync_read(struct bio *bio) 1916 { 1917 struct r10bio *r10_bio = get_resync_r10bio(bio); 1918 struct r10conf *conf = r10_bio->mddev->private; 1919 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1920 1921 __end_sync_read(r10_bio, bio, d); 1922 } 1923 1924 static void end_reshape_read(struct bio *bio) 1925 { 1926 /* reshape read bio isn't allocated from r10buf_pool */ 1927 struct r10bio *r10_bio = bio->bi_private; 1928 1929 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1930 } 1931 1932 static void end_sync_request(struct r10bio *r10_bio) 1933 { 1934 struct mddev *mddev = r10_bio->mddev; 1935 1936 while (atomic_dec_and_test(&r10_bio->remaining)) { 1937 if (r10_bio->master_bio == NULL) { 1938 /* the primary of several recovery bios */ 1939 sector_t s = r10_bio->sectors; 1940 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1941 test_bit(R10BIO_WriteError, &r10_bio->state)) 1942 reschedule_retry(r10_bio); 1943 else 1944 put_buf(r10_bio); 1945 md_done_sync(mddev, s, 1); 1946 break; 1947 } else { 1948 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1949 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1950 test_bit(R10BIO_WriteError, &r10_bio->state)) 1951 reschedule_retry(r10_bio); 1952 else 1953 put_buf(r10_bio); 1954 r10_bio = r10_bio2; 1955 } 1956 } 1957 } 1958 1959 static void end_sync_write(struct bio *bio) 1960 { 1961 struct r10bio *r10_bio = get_resync_r10bio(bio); 1962 struct mddev *mddev = r10_bio->mddev; 1963 struct r10conf *conf = mddev->private; 1964 int d; 1965 sector_t first_bad; 1966 int bad_sectors; 1967 int slot; 1968 int repl; 1969 struct md_rdev *rdev = NULL; 1970 1971 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1972 if (repl) 1973 rdev = conf->mirrors[d].replacement; 1974 else 1975 rdev = conf->mirrors[d].rdev; 1976 1977 if (bio->bi_status) { 1978 if (repl) 1979 md_error(mddev, rdev); 1980 else { 1981 set_bit(WriteErrorSeen, &rdev->flags); 1982 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1983 set_bit(MD_RECOVERY_NEEDED, 1984 &rdev->mddev->recovery); 1985 set_bit(R10BIO_WriteError, &r10_bio->state); 1986 } 1987 } else if (is_badblock(rdev, 1988 r10_bio->devs[slot].addr, 1989 r10_bio->sectors, 1990 &first_bad, &bad_sectors)) 1991 set_bit(R10BIO_MadeGood, &r10_bio->state); 1992 1993 rdev_dec_pending(rdev, mddev); 1994 1995 end_sync_request(r10_bio); 1996 } 1997 1998 /* 1999 * Note: sync and recover and handled very differently for raid10 2000 * This code is for resync. 2001 * For resync, we read through virtual addresses and read all blocks. 2002 * If there is any error, we schedule a write. The lowest numbered 2003 * drive is authoritative. 2004 * However requests come for physical address, so we need to map. 2005 * For every physical address there are raid_disks/copies virtual addresses, 2006 * which is always are least one, but is not necessarly an integer. 2007 * This means that a physical address can span multiple chunks, so we may 2008 * have to submit multiple io requests for a single sync request. 2009 */ 2010 /* 2011 * We check if all blocks are in-sync and only write to blocks that 2012 * aren't in sync 2013 */ 2014 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2015 { 2016 struct r10conf *conf = mddev->private; 2017 int i, first; 2018 struct bio *tbio, *fbio; 2019 int vcnt; 2020 struct page **tpages, **fpages; 2021 2022 atomic_set(&r10_bio->remaining, 1); 2023 2024 /* find the first device with a block */ 2025 for (i=0; i<conf->copies; i++) 2026 if (!r10_bio->devs[i].bio->bi_status) 2027 break; 2028 2029 if (i == conf->copies) 2030 goto done; 2031 2032 first = i; 2033 fbio = r10_bio->devs[i].bio; 2034 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2035 fbio->bi_iter.bi_idx = 0; 2036 fpages = get_resync_pages(fbio)->pages; 2037 2038 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2039 /* now find blocks with errors */ 2040 for (i=0 ; i < conf->copies ; i++) { 2041 int j, d; 2042 struct md_rdev *rdev; 2043 struct resync_pages *rp; 2044 2045 tbio = r10_bio->devs[i].bio; 2046 2047 if (tbio->bi_end_io != end_sync_read) 2048 continue; 2049 if (i == first) 2050 continue; 2051 2052 tpages = get_resync_pages(tbio)->pages; 2053 d = r10_bio->devs[i].devnum; 2054 rdev = conf->mirrors[d].rdev; 2055 if (!r10_bio->devs[i].bio->bi_status) { 2056 /* We know that the bi_io_vec layout is the same for 2057 * both 'first' and 'i', so we just compare them. 2058 * All vec entries are PAGE_SIZE; 2059 */ 2060 int sectors = r10_bio->sectors; 2061 for (j = 0; j < vcnt; j++) { 2062 int len = PAGE_SIZE; 2063 if (sectors < (len / 512)) 2064 len = sectors * 512; 2065 if (memcmp(page_address(fpages[j]), 2066 page_address(tpages[j]), 2067 len)) 2068 break; 2069 sectors -= len/512; 2070 } 2071 if (j == vcnt) 2072 continue; 2073 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2074 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2075 /* Don't fix anything. */ 2076 continue; 2077 } else if (test_bit(FailFast, &rdev->flags)) { 2078 /* Just give up on this device */ 2079 md_error(rdev->mddev, rdev); 2080 continue; 2081 } 2082 /* Ok, we need to write this bio, either to correct an 2083 * inconsistency or to correct an unreadable block. 2084 * First we need to fixup bv_offset, bv_len and 2085 * bi_vecs, as the read request might have corrupted these 2086 */ 2087 rp = get_resync_pages(tbio); 2088 bio_reset(tbio); 2089 2090 tbio->bi_vcnt = vcnt; 2091 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size; 2092 rp->raid_bio = r10_bio; 2093 tbio->bi_private = rp; 2094 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2095 tbio->bi_end_io = end_sync_write; 2096 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2097 2098 bio_copy_data(tbio, fbio); 2099 2100 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2101 atomic_inc(&r10_bio->remaining); 2102 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2103 2104 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2105 tbio->bi_opf |= MD_FAILFAST; 2106 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2107 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2108 generic_make_request(tbio); 2109 } 2110 2111 /* Now write out to any replacement devices 2112 * that are active 2113 */ 2114 for (i = 0; i < conf->copies; i++) { 2115 int d; 2116 2117 tbio = r10_bio->devs[i].repl_bio; 2118 if (!tbio || !tbio->bi_end_io) 2119 continue; 2120 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2121 && r10_bio->devs[i].bio != fbio) 2122 bio_copy_data(tbio, fbio); 2123 d = r10_bio->devs[i].devnum; 2124 atomic_inc(&r10_bio->remaining); 2125 md_sync_acct(conf->mirrors[d].replacement->bdev, 2126 bio_sectors(tbio)); 2127 generic_make_request(tbio); 2128 } 2129 2130 done: 2131 if (atomic_dec_and_test(&r10_bio->remaining)) { 2132 md_done_sync(mddev, r10_bio->sectors, 1); 2133 put_buf(r10_bio); 2134 } 2135 } 2136 2137 /* 2138 * Now for the recovery code. 2139 * Recovery happens across physical sectors. 2140 * We recover all non-is_sync drives by finding the virtual address of 2141 * each, and then choose a working drive that also has that virt address. 2142 * There is a separate r10_bio for each non-in_sync drive. 2143 * Only the first two slots are in use. The first for reading, 2144 * The second for writing. 2145 * 2146 */ 2147 static void fix_recovery_read_error(struct r10bio *r10_bio) 2148 { 2149 /* We got a read error during recovery. 2150 * We repeat the read in smaller page-sized sections. 2151 * If a read succeeds, write it to the new device or record 2152 * a bad block if we cannot. 2153 * If a read fails, record a bad block on both old and 2154 * new devices. 2155 */ 2156 struct mddev *mddev = r10_bio->mddev; 2157 struct r10conf *conf = mddev->private; 2158 struct bio *bio = r10_bio->devs[0].bio; 2159 sector_t sect = 0; 2160 int sectors = r10_bio->sectors; 2161 int idx = 0; 2162 int dr = r10_bio->devs[0].devnum; 2163 int dw = r10_bio->devs[1].devnum; 2164 struct page **pages = get_resync_pages(bio)->pages; 2165 2166 while (sectors) { 2167 int s = sectors; 2168 struct md_rdev *rdev; 2169 sector_t addr; 2170 int ok; 2171 2172 if (s > (PAGE_SIZE>>9)) 2173 s = PAGE_SIZE >> 9; 2174 2175 rdev = conf->mirrors[dr].rdev; 2176 addr = r10_bio->devs[0].addr + sect, 2177 ok = sync_page_io(rdev, 2178 addr, 2179 s << 9, 2180 pages[idx], 2181 REQ_OP_READ, 0, false); 2182 if (ok) { 2183 rdev = conf->mirrors[dw].rdev; 2184 addr = r10_bio->devs[1].addr + sect; 2185 ok = sync_page_io(rdev, 2186 addr, 2187 s << 9, 2188 pages[idx], 2189 REQ_OP_WRITE, 0, false); 2190 if (!ok) { 2191 set_bit(WriteErrorSeen, &rdev->flags); 2192 if (!test_and_set_bit(WantReplacement, 2193 &rdev->flags)) 2194 set_bit(MD_RECOVERY_NEEDED, 2195 &rdev->mddev->recovery); 2196 } 2197 } 2198 if (!ok) { 2199 /* We don't worry if we cannot set a bad block - 2200 * it really is bad so there is no loss in not 2201 * recording it yet 2202 */ 2203 rdev_set_badblocks(rdev, addr, s, 0); 2204 2205 if (rdev != conf->mirrors[dw].rdev) { 2206 /* need bad block on destination too */ 2207 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2208 addr = r10_bio->devs[1].addr + sect; 2209 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2210 if (!ok) { 2211 /* just abort the recovery */ 2212 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2213 mdname(mddev)); 2214 2215 conf->mirrors[dw].recovery_disabled 2216 = mddev->recovery_disabled; 2217 set_bit(MD_RECOVERY_INTR, 2218 &mddev->recovery); 2219 break; 2220 } 2221 } 2222 } 2223 2224 sectors -= s; 2225 sect += s; 2226 idx++; 2227 } 2228 } 2229 2230 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2231 { 2232 struct r10conf *conf = mddev->private; 2233 int d; 2234 struct bio *wbio, *wbio2; 2235 2236 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2237 fix_recovery_read_error(r10_bio); 2238 end_sync_request(r10_bio); 2239 return; 2240 } 2241 2242 /* 2243 * share the pages with the first bio 2244 * and submit the write request 2245 */ 2246 d = r10_bio->devs[1].devnum; 2247 wbio = r10_bio->devs[1].bio; 2248 wbio2 = r10_bio->devs[1].repl_bio; 2249 /* Need to test wbio2->bi_end_io before we call 2250 * generic_make_request as if the former is NULL, 2251 * the latter is free to free wbio2. 2252 */ 2253 if (wbio2 && !wbio2->bi_end_io) 2254 wbio2 = NULL; 2255 if (wbio->bi_end_io) { 2256 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2257 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2258 generic_make_request(wbio); 2259 } 2260 if (wbio2) { 2261 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2262 md_sync_acct(conf->mirrors[d].replacement->bdev, 2263 bio_sectors(wbio2)); 2264 generic_make_request(wbio2); 2265 } 2266 } 2267 2268 /* 2269 * Used by fix_read_error() to decay the per rdev read_errors. 2270 * We halve the read error count for every hour that has elapsed 2271 * since the last recorded read error. 2272 * 2273 */ 2274 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2275 { 2276 long cur_time_mon; 2277 unsigned long hours_since_last; 2278 unsigned int read_errors = atomic_read(&rdev->read_errors); 2279 2280 cur_time_mon = ktime_get_seconds(); 2281 2282 if (rdev->last_read_error == 0) { 2283 /* first time we've seen a read error */ 2284 rdev->last_read_error = cur_time_mon; 2285 return; 2286 } 2287 2288 hours_since_last = (long)(cur_time_mon - 2289 rdev->last_read_error) / 3600; 2290 2291 rdev->last_read_error = cur_time_mon; 2292 2293 /* 2294 * if hours_since_last is > the number of bits in read_errors 2295 * just set read errors to 0. We do this to avoid 2296 * overflowing the shift of read_errors by hours_since_last. 2297 */ 2298 if (hours_since_last >= 8 * sizeof(read_errors)) 2299 atomic_set(&rdev->read_errors, 0); 2300 else 2301 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2302 } 2303 2304 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2305 int sectors, struct page *page, int rw) 2306 { 2307 sector_t first_bad; 2308 int bad_sectors; 2309 2310 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2311 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2312 return -1; 2313 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2314 /* success */ 2315 return 1; 2316 if (rw == WRITE) { 2317 set_bit(WriteErrorSeen, &rdev->flags); 2318 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2319 set_bit(MD_RECOVERY_NEEDED, 2320 &rdev->mddev->recovery); 2321 } 2322 /* need to record an error - either for the block or the device */ 2323 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2324 md_error(rdev->mddev, rdev); 2325 return 0; 2326 } 2327 2328 /* 2329 * This is a kernel thread which: 2330 * 2331 * 1. Retries failed read operations on working mirrors. 2332 * 2. Updates the raid superblock when problems encounter. 2333 * 3. Performs writes following reads for array synchronising. 2334 */ 2335 2336 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2337 { 2338 int sect = 0; /* Offset from r10_bio->sector */ 2339 int sectors = r10_bio->sectors; 2340 struct md_rdev*rdev; 2341 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2342 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2343 2344 /* still own a reference to this rdev, so it cannot 2345 * have been cleared recently. 2346 */ 2347 rdev = conf->mirrors[d].rdev; 2348 2349 if (test_bit(Faulty, &rdev->flags)) 2350 /* drive has already been failed, just ignore any 2351 more fix_read_error() attempts */ 2352 return; 2353 2354 check_decay_read_errors(mddev, rdev); 2355 atomic_inc(&rdev->read_errors); 2356 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2357 char b[BDEVNAME_SIZE]; 2358 bdevname(rdev->bdev, b); 2359 2360 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2361 mdname(mddev), b, 2362 atomic_read(&rdev->read_errors), max_read_errors); 2363 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2364 mdname(mddev), b); 2365 md_error(mddev, rdev); 2366 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2367 return; 2368 } 2369 2370 while(sectors) { 2371 int s = sectors; 2372 int sl = r10_bio->read_slot; 2373 int success = 0; 2374 int start; 2375 2376 if (s > (PAGE_SIZE>>9)) 2377 s = PAGE_SIZE >> 9; 2378 2379 rcu_read_lock(); 2380 do { 2381 sector_t first_bad; 2382 int bad_sectors; 2383 2384 d = r10_bio->devs[sl].devnum; 2385 rdev = rcu_dereference(conf->mirrors[d].rdev); 2386 if (rdev && 2387 test_bit(In_sync, &rdev->flags) && 2388 !test_bit(Faulty, &rdev->flags) && 2389 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2390 &first_bad, &bad_sectors) == 0) { 2391 atomic_inc(&rdev->nr_pending); 2392 rcu_read_unlock(); 2393 success = sync_page_io(rdev, 2394 r10_bio->devs[sl].addr + 2395 sect, 2396 s<<9, 2397 conf->tmppage, 2398 REQ_OP_READ, 0, false); 2399 rdev_dec_pending(rdev, mddev); 2400 rcu_read_lock(); 2401 if (success) 2402 break; 2403 } 2404 sl++; 2405 if (sl == conf->copies) 2406 sl = 0; 2407 } while (!success && sl != r10_bio->read_slot); 2408 rcu_read_unlock(); 2409 2410 if (!success) { 2411 /* Cannot read from anywhere, just mark the block 2412 * as bad on the first device to discourage future 2413 * reads. 2414 */ 2415 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2416 rdev = conf->mirrors[dn].rdev; 2417 2418 if (!rdev_set_badblocks( 2419 rdev, 2420 r10_bio->devs[r10_bio->read_slot].addr 2421 + sect, 2422 s, 0)) { 2423 md_error(mddev, rdev); 2424 r10_bio->devs[r10_bio->read_slot].bio 2425 = IO_BLOCKED; 2426 } 2427 break; 2428 } 2429 2430 start = sl; 2431 /* write it back and re-read */ 2432 rcu_read_lock(); 2433 while (sl != r10_bio->read_slot) { 2434 char b[BDEVNAME_SIZE]; 2435 2436 if (sl==0) 2437 sl = conf->copies; 2438 sl--; 2439 d = r10_bio->devs[sl].devnum; 2440 rdev = rcu_dereference(conf->mirrors[d].rdev); 2441 if (!rdev || 2442 test_bit(Faulty, &rdev->flags) || 2443 !test_bit(In_sync, &rdev->flags)) 2444 continue; 2445 2446 atomic_inc(&rdev->nr_pending); 2447 rcu_read_unlock(); 2448 if (r10_sync_page_io(rdev, 2449 r10_bio->devs[sl].addr + 2450 sect, 2451 s, conf->tmppage, WRITE) 2452 == 0) { 2453 /* Well, this device is dead */ 2454 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2455 mdname(mddev), s, 2456 (unsigned long long)( 2457 sect + 2458 choose_data_offset(r10_bio, 2459 rdev)), 2460 bdevname(rdev->bdev, b)); 2461 pr_notice("md/raid10:%s: %s: failing drive\n", 2462 mdname(mddev), 2463 bdevname(rdev->bdev, b)); 2464 } 2465 rdev_dec_pending(rdev, mddev); 2466 rcu_read_lock(); 2467 } 2468 sl = start; 2469 while (sl != r10_bio->read_slot) { 2470 char b[BDEVNAME_SIZE]; 2471 2472 if (sl==0) 2473 sl = conf->copies; 2474 sl--; 2475 d = r10_bio->devs[sl].devnum; 2476 rdev = rcu_dereference(conf->mirrors[d].rdev); 2477 if (!rdev || 2478 test_bit(Faulty, &rdev->flags) || 2479 !test_bit(In_sync, &rdev->flags)) 2480 continue; 2481 2482 atomic_inc(&rdev->nr_pending); 2483 rcu_read_unlock(); 2484 switch (r10_sync_page_io(rdev, 2485 r10_bio->devs[sl].addr + 2486 sect, 2487 s, conf->tmppage, 2488 READ)) { 2489 case 0: 2490 /* Well, this device is dead */ 2491 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2492 mdname(mddev), s, 2493 (unsigned long long)( 2494 sect + 2495 choose_data_offset(r10_bio, rdev)), 2496 bdevname(rdev->bdev, b)); 2497 pr_notice("md/raid10:%s: %s: failing drive\n", 2498 mdname(mddev), 2499 bdevname(rdev->bdev, b)); 2500 break; 2501 case 1: 2502 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2503 mdname(mddev), s, 2504 (unsigned long long)( 2505 sect + 2506 choose_data_offset(r10_bio, rdev)), 2507 bdevname(rdev->bdev, b)); 2508 atomic_add(s, &rdev->corrected_errors); 2509 } 2510 2511 rdev_dec_pending(rdev, mddev); 2512 rcu_read_lock(); 2513 } 2514 rcu_read_unlock(); 2515 2516 sectors -= s; 2517 sect += s; 2518 } 2519 } 2520 2521 static int narrow_write_error(struct r10bio *r10_bio, int i) 2522 { 2523 struct bio *bio = r10_bio->master_bio; 2524 struct mddev *mddev = r10_bio->mddev; 2525 struct r10conf *conf = mddev->private; 2526 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2527 /* bio has the data to be written to slot 'i' where 2528 * we just recently had a write error. 2529 * We repeatedly clone the bio and trim down to one block, 2530 * then try the write. Where the write fails we record 2531 * a bad block. 2532 * It is conceivable that the bio doesn't exactly align with 2533 * blocks. We must handle this. 2534 * 2535 * We currently own a reference to the rdev. 2536 */ 2537 2538 int block_sectors; 2539 sector_t sector; 2540 int sectors; 2541 int sect_to_write = r10_bio->sectors; 2542 int ok = 1; 2543 2544 if (rdev->badblocks.shift < 0) 2545 return 0; 2546 2547 block_sectors = roundup(1 << rdev->badblocks.shift, 2548 bdev_logical_block_size(rdev->bdev) >> 9); 2549 sector = r10_bio->sector; 2550 sectors = ((r10_bio->sector + block_sectors) 2551 & ~(sector_t)(block_sectors - 1)) 2552 - sector; 2553 2554 while (sect_to_write) { 2555 struct bio *wbio; 2556 sector_t wsector; 2557 if (sectors > sect_to_write) 2558 sectors = sect_to_write; 2559 /* Write at 'sector' for 'sectors' */ 2560 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2561 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2562 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2563 wbio->bi_iter.bi_sector = wsector + 2564 choose_data_offset(r10_bio, rdev); 2565 wbio->bi_bdev = rdev->bdev; 2566 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2567 2568 if (submit_bio_wait(wbio) < 0) 2569 /* Failure! */ 2570 ok = rdev_set_badblocks(rdev, wsector, 2571 sectors, 0) 2572 && ok; 2573 2574 bio_put(wbio); 2575 sect_to_write -= sectors; 2576 sector += sectors; 2577 sectors = block_sectors; 2578 } 2579 return ok; 2580 } 2581 2582 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2583 { 2584 int slot = r10_bio->read_slot; 2585 struct bio *bio; 2586 struct r10conf *conf = mddev->private; 2587 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2588 dev_t bio_dev; 2589 sector_t bio_last_sector; 2590 2591 /* we got a read error. Maybe the drive is bad. Maybe just 2592 * the block and we can fix it. 2593 * We freeze all other IO, and try reading the block from 2594 * other devices. When we find one, we re-write 2595 * and check it that fixes the read error. 2596 * This is all done synchronously while the array is 2597 * frozen. 2598 */ 2599 bio = r10_bio->devs[slot].bio; 2600 bio_dev = bio->bi_bdev->bd_dev; 2601 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors; 2602 bio_put(bio); 2603 r10_bio->devs[slot].bio = NULL; 2604 2605 if (mddev->ro) 2606 r10_bio->devs[slot].bio = IO_BLOCKED; 2607 else if (!test_bit(FailFast, &rdev->flags)) { 2608 freeze_array(conf, 1); 2609 fix_read_error(conf, mddev, r10_bio); 2610 unfreeze_array(conf); 2611 } else 2612 md_error(mddev, rdev); 2613 2614 rdev_dec_pending(rdev, mddev); 2615 allow_barrier(conf); 2616 r10_bio->state = 0; 2617 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2618 } 2619 2620 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2621 { 2622 /* Some sort of write request has finished and it 2623 * succeeded in writing where we thought there was a 2624 * bad block. So forget the bad block. 2625 * Or possibly if failed and we need to record 2626 * a bad block. 2627 */ 2628 int m; 2629 struct md_rdev *rdev; 2630 2631 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2632 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2633 for (m = 0; m < conf->copies; m++) { 2634 int dev = r10_bio->devs[m].devnum; 2635 rdev = conf->mirrors[dev].rdev; 2636 if (r10_bio->devs[m].bio == NULL) 2637 continue; 2638 if (!r10_bio->devs[m].bio->bi_status) { 2639 rdev_clear_badblocks( 2640 rdev, 2641 r10_bio->devs[m].addr, 2642 r10_bio->sectors, 0); 2643 } else { 2644 if (!rdev_set_badblocks( 2645 rdev, 2646 r10_bio->devs[m].addr, 2647 r10_bio->sectors, 0)) 2648 md_error(conf->mddev, rdev); 2649 } 2650 rdev = conf->mirrors[dev].replacement; 2651 if (r10_bio->devs[m].repl_bio == NULL) 2652 continue; 2653 2654 if (!r10_bio->devs[m].repl_bio->bi_status) { 2655 rdev_clear_badblocks( 2656 rdev, 2657 r10_bio->devs[m].addr, 2658 r10_bio->sectors, 0); 2659 } else { 2660 if (!rdev_set_badblocks( 2661 rdev, 2662 r10_bio->devs[m].addr, 2663 r10_bio->sectors, 0)) 2664 md_error(conf->mddev, rdev); 2665 } 2666 } 2667 put_buf(r10_bio); 2668 } else { 2669 bool fail = false; 2670 for (m = 0; m < conf->copies; m++) { 2671 int dev = r10_bio->devs[m].devnum; 2672 struct bio *bio = r10_bio->devs[m].bio; 2673 rdev = conf->mirrors[dev].rdev; 2674 if (bio == IO_MADE_GOOD) { 2675 rdev_clear_badblocks( 2676 rdev, 2677 r10_bio->devs[m].addr, 2678 r10_bio->sectors, 0); 2679 rdev_dec_pending(rdev, conf->mddev); 2680 } else if (bio != NULL && bio->bi_status) { 2681 fail = true; 2682 if (!narrow_write_error(r10_bio, m)) { 2683 md_error(conf->mddev, rdev); 2684 set_bit(R10BIO_Degraded, 2685 &r10_bio->state); 2686 } 2687 rdev_dec_pending(rdev, conf->mddev); 2688 } 2689 bio = r10_bio->devs[m].repl_bio; 2690 rdev = conf->mirrors[dev].replacement; 2691 if (rdev && bio == IO_MADE_GOOD) { 2692 rdev_clear_badblocks( 2693 rdev, 2694 r10_bio->devs[m].addr, 2695 r10_bio->sectors, 0); 2696 rdev_dec_pending(rdev, conf->mddev); 2697 } 2698 } 2699 if (fail) { 2700 spin_lock_irq(&conf->device_lock); 2701 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2702 conf->nr_queued++; 2703 spin_unlock_irq(&conf->device_lock); 2704 /* 2705 * In case freeze_array() is waiting for condition 2706 * nr_pending == nr_queued + extra to be true. 2707 */ 2708 wake_up(&conf->wait_barrier); 2709 md_wakeup_thread(conf->mddev->thread); 2710 } else { 2711 if (test_bit(R10BIO_WriteError, 2712 &r10_bio->state)) 2713 close_write(r10_bio); 2714 raid_end_bio_io(r10_bio); 2715 } 2716 } 2717 } 2718 2719 static void raid10d(struct md_thread *thread) 2720 { 2721 struct mddev *mddev = thread->mddev; 2722 struct r10bio *r10_bio; 2723 unsigned long flags; 2724 struct r10conf *conf = mddev->private; 2725 struct list_head *head = &conf->retry_list; 2726 struct blk_plug plug; 2727 2728 md_check_recovery(mddev); 2729 2730 if (!list_empty_careful(&conf->bio_end_io_list) && 2731 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2732 LIST_HEAD(tmp); 2733 spin_lock_irqsave(&conf->device_lock, flags); 2734 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2735 while (!list_empty(&conf->bio_end_io_list)) { 2736 list_move(conf->bio_end_io_list.prev, &tmp); 2737 conf->nr_queued--; 2738 } 2739 } 2740 spin_unlock_irqrestore(&conf->device_lock, flags); 2741 while (!list_empty(&tmp)) { 2742 r10_bio = list_first_entry(&tmp, struct r10bio, 2743 retry_list); 2744 list_del(&r10_bio->retry_list); 2745 if (mddev->degraded) 2746 set_bit(R10BIO_Degraded, &r10_bio->state); 2747 2748 if (test_bit(R10BIO_WriteError, 2749 &r10_bio->state)) 2750 close_write(r10_bio); 2751 raid_end_bio_io(r10_bio); 2752 } 2753 } 2754 2755 blk_start_plug(&plug); 2756 for (;;) { 2757 2758 flush_pending_writes(conf); 2759 2760 spin_lock_irqsave(&conf->device_lock, flags); 2761 if (list_empty(head)) { 2762 spin_unlock_irqrestore(&conf->device_lock, flags); 2763 break; 2764 } 2765 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2766 list_del(head->prev); 2767 conf->nr_queued--; 2768 spin_unlock_irqrestore(&conf->device_lock, flags); 2769 2770 mddev = r10_bio->mddev; 2771 conf = mddev->private; 2772 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2773 test_bit(R10BIO_WriteError, &r10_bio->state)) 2774 handle_write_completed(conf, r10_bio); 2775 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2776 reshape_request_write(mddev, r10_bio); 2777 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2778 sync_request_write(mddev, r10_bio); 2779 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2780 recovery_request_write(mddev, r10_bio); 2781 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2782 handle_read_error(mddev, r10_bio); 2783 else 2784 WARN_ON_ONCE(1); 2785 2786 cond_resched(); 2787 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2788 md_check_recovery(mddev); 2789 } 2790 blk_finish_plug(&plug); 2791 } 2792 2793 static int init_resync(struct r10conf *conf) 2794 { 2795 int buffs; 2796 int i; 2797 2798 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2799 BUG_ON(conf->r10buf_pool); 2800 conf->have_replacement = 0; 2801 for (i = 0; i < conf->geo.raid_disks; i++) 2802 if (conf->mirrors[i].replacement) 2803 conf->have_replacement = 1; 2804 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2805 if (!conf->r10buf_pool) 2806 return -ENOMEM; 2807 conf->next_resync = 0; 2808 return 0; 2809 } 2810 2811 /* 2812 * perform a "sync" on one "block" 2813 * 2814 * We need to make sure that no normal I/O request - particularly write 2815 * requests - conflict with active sync requests. 2816 * 2817 * This is achieved by tracking pending requests and a 'barrier' concept 2818 * that can be installed to exclude normal IO requests. 2819 * 2820 * Resync and recovery are handled very differently. 2821 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2822 * 2823 * For resync, we iterate over virtual addresses, read all copies, 2824 * and update if there are differences. If only one copy is live, 2825 * skip it. 2826 * For recovery, we iterate over physical addresses, read a good 2827 * value for each non-in_sync drive, and over-write. 2828 * 2829 * So, for recovery we may have several outstanding complex requests for a 2830 * given address, one for each out-of-sync device. We model this by allocating 2831 * a number of r10_bio structures, one for each out-of-sync device. 2832 * As we setup these structures, we collect all bio's together into a list 2833 * which we then process collectively to add pages, and then process again 2834 * to pass to generic_make_request. 2835 * 2836 * The r10_bio structures are linked using a borrowed master_bio pointer. 2837 * This link is counted in ->remaining. When the r10_bio that points to NULL 2838 * has its remaining count decremented to 0, the whole complex operation 2839 * is complete. 2840 * 2841 */ 2842 2843 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2844 int *skipped) 2845 { 2846 struct r10conf *conf = mddev->private; 2847 struct r10bio *r10_bio; 2848 struct bio *biolist = NULL, *bio; 2849 sector_t max_sector, nr_sectors; 2850 int i; 2851 int max_sync; 2852 sector_t sync_blocks; 2853 sector_t sectors_skipped = 0; 2854 int chunks_skipped = 0; 2855 sector_t chunk_mask = conf->geo.chunk_mask; 2856 2857 if (!conf->r10buf_pool) 2858 if (init_resync(conf)) 2859 return 0; 2860 2861 /* 2862 * Allow skipping a full rebuild for incremental assembly 2863 * of a clean array, like RAID1 does. 2864 */ 2865 if (mddev->bitmap == NULL && 2866 mddev->recovery_cp == MaxSector && 2867 mddev->reshape_position == MaxSector && 2868 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2869 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2870 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2871 conf->fullsync == 0) { 2872 *skipped = 1; 2873 return mddev->dev_sectors - sector_nr; 2874 } 2875 2876 skipped: 2877 max_sector = mddev->dev_sectors; 2878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2879 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2880 max_sector = mddev->resync_max_sectors; 2881 if (sector_nr >= max_sector) { 2882 /* If we aborted, we need to abort the 2883 * sync on the 'current' bitmap chucks (there can 2884 * be several when recovering multiple devices). 2885 * as we may have started syncing it but not finished. 2886 * We can find the current address in 2887 * mddev->curr_resync, but for recovery, 2888 * we need to convert that to several 2889 * virtual addresses. 2890 */ 2891 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2892 end_reshape(conf); 2893 close_sync(conf); 2894 return 0; 2895 } 2896 2897 if (mddev->curr_resync < max_sector) { /* aborted */ 2898 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2899 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2900 &sync_blocks, 1); 2901 else for (i = 0; i < conf->geo.raid_disks; i++) { 2902 sector_t sect = 2903 raid10_find_virt(conf, mddev->curr_resync, i); 2904 bitmap_end_sync(mddev->bitmap, sect, 2905 &sync_blocks, 1); 2906 } 2907 } else { 2908 /* completed sync */ 2909 if ((!mddev->bitmap || conf->fullsync) 2910 && conf->have_replacement 2911 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2912 /* Completed a full sync so the replacements 2913 * are now fully recovered. 2914 */ 2915 rcu_read_lock(); 2916 for (i = 0; i < conf->geo.raid_disks; i++) { 2917 struct md_rdev *rdev = 2918 rcu_dereference(conf->mirrors[i].replacement); 2919 if (rdev) 2920 rdev->recovery_offset = MaxSector; 2921 } 2922 rcu_read_unlock(); 2923 } 2924 conf->fullsync = 0; 2925 } 2926 bitmap_close_sync(mddev->bitmap); 2927 close_sync(conf); 2928 *skipped = 1; 2929 return sectors_skipped; 2930 } 2931 2932 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2933 return reshape_request(mddev, sector_nr, skipped); 2934 2935 if (chunks_skipped >= conf->geo.raid_disks) { 2936 /* if there has been nothing to do on any drive, 2937 * then there is nothing to do at all.. 2938 */ 2939 *skipped = 1; 2940 return (max_sector - sector_nr) + sectors_skipped; 2941 } 2942 2943 if (max_sector > mddev->resync_max) 2944 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2945 2946 /* make sure whole request will fit in a chunk - if chunks 2947 * are meaningful 2948 */ 2949 if (conf->geo.near_copies < conf->geo.raid_disks && 2950 max_sector > (sector_nr | chunk_mask)) 2951 max_sector = (sector_nr | chunk_mask) + 1; 2952 2953 /* 2954 * If there is non-resync activity waiting for a turn, then let it 2955 * though before starting on this new sync request. 2956 */ 2957 if (conf->nr_waiting) 2958 schedule_timeout_uninterruptible(1); 2959 2960 /* Again, very different code for resync and recovery. 2961 * Both must result in an r10bio with a list of bios that 2962 * have bi_end_io, bi_sector, bi_bdev set, 2963 * and bi_private set to the r10bio. 2964 * For recovery, we may actually create several r10bios 2965 * with 2 bios in each, that correspond to the bios in the main one. 2966 * In this case, the subordinate r10bios link back through a 2967 * borrowed master_bio pointer, and the counter in the master 2968 * includes a ref from each subordinate. 2969 */ 2970 /* First, we decide what to do and set ->bi_end_io 2971 * To end_sync_read if we want to read, and 2972 * end_sync_write if we will want to write. 2973 */ 2974 2975 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2976 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2977 /* recovery... the complicated one */ 2978 int j; 2979 r10_bio = NULL; 2980 2981 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2982 int still_degraded; 2983 struct r10bio *rb2; 2984 sector_t sect; 2985 int must_sync; 2986 int any_working; 2987 struct raid10_info *mirror = &conf->mirrors[i]; 2988 struct md_rdev *mrdev, *mreplace; 2989 2990 rcu_read_lock(); 2991 mrdev = rcu_dereference(mirror->rdev); 2992 mreplace = rcu_dereference(mirror->replacement); 2993 2994 if ((mrdev == NULL || 2995 test_bit(Faulty, &mrdev->flags) || 2996 test_bit(In_sync, &mrdev->flags)) && 2997 (mreplace == NULL || 2998 test_bit(Faulty, &mreplace->flags))) { 2999 rcu_read_unlock(); 3000 continue; 3001 } 3002 3003 still_degraded = 0; 3004 /* want to reconstruct this device */ 3005 rb2 = r10_bio; 3006 sect = raid10_find_virt(conf, sector_nr, i); 3007 if (sect >= mddev->resync_max_sectors) { 3008 /* last stripe is not complete - don't 3009 * try to recover this sector. 3010 */ 3011 rcu_read_unlock(); 3012 continue; 3013 } 3014 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3015 mreplace = NULL; 3016 /* Unless we are doing a full sync, or a replacement 3017 * we only need to recover the block if it is set in 3018 * the bitmap 3019 */ 3020 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3021 &sync_blocks, 1); 3022 if (sync_blocks < max_sync) 3023 max_sync = sync_blocks; 3024 if (!must_sync && 3025 mreplace == NULL && 3026 !conf->fullsync) { 3027 /* yep, skip the sync_blocks here, but don't assume 3028 * that there will never be anything to do here 3029 */ 3030 chunks_skipped = -1; 3031 rcu_read_unlock(); 3032 continue; 3033 } 3034 atomic_inc(&mrdev->nr_pending); 3035 if (mreplace) 3036 atomic_inc(&mreplace->nr_pending); 3037 rcu_read_unlock(); 3038 3039 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3040 r10_bio->state = 0; 3041 raise_barrier(conf, rb2 != NULL); 3042 atomic_set(&r10_bio->remaining, 0); 3043 3044 r10_bio->master_bio = (struct bio*)rb2; 3045 if (rb2) 3046 atomic_inc(&rb2->remaining); 3047 r10_bio->mddev = mddev; 3048 set_bit(R10BIO_IsRecover, &r10_bio->state); 3049 r10_bio->sector = sect; 3050 3051 raid10_find_phys(conf, r10_bio); 3052 3053 /* Need to check if the array will still be 3054 * degraded 3055 */ 3056 rcu_read_lock(); 3057 for (j = 0; j < conf->geo.raid_disks; j++) { 3058 struct md_rdev *rdev = rcu_dereference( 3059 conf->mirrors[j].rdev); 3060 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3061 still_degraded = 1; 3062 break; 3063 } 3064 } 3065 3066 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3067 &sync_blocks, still_degraded); 3068 3069 any_working = 0; 3070 for (j=0; j<conf->copies;j++) { 3071 int k; 3072 int d = r10_bio->devs[j].devnum; 3073 sector_t from_addr, to_addr; 3074 struct md_rdev *rdev = 3075 rcu_dereference(conf->mirrors[d].rdev); 3076 sector_t sector, first_bad; 3077 int bad_sectors; 3078 if (!rdev || 3079 !test_bit(In_sync, &rdev->flags)) 3080 continue; 3081 /* This is where we read from */ 3082 any_working = 1; 3083 sector = r10_bio->devs[j].addr; 3084 3085 if (is_badblock(rdev, sector, max_sync, 3086 &first_bad, &bad_sectors)) { 3087 if (first_bad > sector) 3088 max_sync = first_bad - sector; 3089 else { 3090 bad_sectors -= (sector 3091 - first_bad); 3092 if (max_sync > bad_sectors) 3093 max_sync = bad_sectors; 3094 continue; 3095 } 3096 } 3097 bio = r10_bio->devs[0].bio; 3098 bio->bi_next = biolist; 3099 biolist = bio; 3100 bio->bi_end_io = end_sync_read; 3101 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3102 if (test_bit(FailFast, &rdev->flags)) 3103 bio->bi_opf |= MD_FAILFAST; 3104 from_addr = r10_bio->devs[j].addr; 3105 bio->bi_iter.bi_sector = from_addr + 3106 rdev->data_offset; 3107 bio->bi_bdev = rdev->bdev; 3108 atomic_inc(&rdev->nr_pending); 3109 /* and we write to 'i' (if not in_sync) */ 3110 3111 for (k=0; k<conf->copies; k++) 3112 if (r10_bio->devs[k].devnum == i) 3113 break; 3114 BUG_ON(k == conf->copies); 3115 to_addr = r10_bio->devs[k].addr; 3116 r10_bio->devs[0].devnum = d; 3117 r10_bio->devs[0].addr = from_addr; 3118 r10_bio->devs[1].devnum = i; 3119 r10_bio->devs[1].addr = to_addr; 3120 3121 if (!test_bit(In_sync, &mrdev->flags)) { 3122 bio = r10_bio->devs[1].bio; 3123 bio->bi_next = biolist; 3124 biolist = bio; 3125 bio->bi_end_io = end_sync_write; 3126 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3127 bio->bi_iter.bi_sector = to_addr 3128 + mrdev->data_offset; 3129 bio->bi_bdev = mrdev->bdev; 3130 atomic_inc(&r10_bio->remaining); 3131 } else 3132 r10_bio->devs[1].bio->bi_end_io = NULL; 3133 3134 /* and maybe write to replacement */ 3135 bio = r10_bio->devs[1].repl_bio; 3136 if (bio) 3137 bio->bi_end_io = NULL; 3138 /* Note: if mreplace != NULL, then bio 3139 * cannot be NULL as r10buf_pool_alloc will 3140 * have allocated it. 3141 * So the second test here is pointless. 3142 * But it keeps semantic-checkers happy, and 3143 * this comment keeps human reviewers 3144 * happy. 3145 */ 3146 if (mreplace == NULL || bio == NULL || 3147 test_bit(Faulty, &mreplace->flags)) 3148 break; 3149 bio->bi_next = biolist; 3150 biolist = bio; 3151 bio->bi_end_io = end_sync_write; 3152 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3153 bio->bi_iter.bi_sector = to_addr + 3154 mreplace->data_offset; 3155 bio->bi_bdev = mreplace->bdev; 3156 atomic_inc(&r10_bio->remaining); 3157 break; 3158 } 3159 rcu_read_unlock(); 3160 if (j == conf->copies) { 3161 /* Cannot recover, so abort the recovery or 3162 * record a bad block */ 3163 if (any_working) { 3164 /* problem is that there are bad blocks 3165 * on other device(s) 3166 */ 3167 int k; 3168 for (k = 0; k < conf->copies; k++) 3169 if (r10_bio->devs[k].devnum == i) 3170 break; 3171 if (!test_bit(In_sync, 3172 &mrdev->flags) 3173 && !rdev_set_badblocks( 3174 mrdev, 3175 r10_bio->devs[k].addr, 3176 max_sync, 0)) 3177 any_working = 0; 3178 if (mreplace && 3179 !rdev_set_badblocks( 3180 mreplace, 3181 r10_bio->devs[k].addr, 3182 max_sync, 0)) 3183 any_working = 0; 3184 } 3185 if (!any_working) { 3186 if (!test_and_set_bit(MD_RECOVERY_INTR, 3187 &mddev->recovery)) 3188 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3189 mdname(mddev)); 3190 mirror->recovery_disabled 3191 = mddev->recovery_disabled; 3192 } 3193 put_buf(r10_bio); 3194 if (rb2) 3195 atomic_dec(&rb2->remaining); 3196 r10_bio = rb2; 3197 rdev_dec_pending(mrdev, mddev); 3198 if (mreplace) 3199 rdev_dec_pending(mreplace, mddev); 3200 break; 3201 } 3202 rdev_dec_pending(mrdev, mddev); 3203 if (mreplace) 3204 rdev_dec_pending(mreplace, mddev); 3205 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3206 /* Only want this if there is elsewhere to 3207 * read from. 'j' is currently the first 3208 * readable copy. 3209 */ 3210 int targets = 1; 3211 for (; j < conf->copies; j++) { 3212 int d = r10_bio->devs[j].devnum; 3213 if (conf->mirrors[d].rdev && 3214 test_bit(In_sync, 3215 &conf->mirrors[d].rdev->flags)) 3216 targets++; 3217 } 3218 if (targets == 1) 3219 r10_bio->devs[0].bio->bi_opf 3220 &= ~MD_FAILFAST; 3221 } 3222 } 3223 if (biolist == NULL) { 3224 while (r10_bio) { 3225 struct r10bio *rb2 = r10_bio; 3226 r10_bio = (struct r10bio*) rb2->master_bio; 3227 rb2->master_bio = NULL; 3228 put_buf(rb2); 3229 } 3230 goto giveup; 3231 } 3232 } else { 3233 /* resync. Schedule a read for every block at this virt offset */ 3234 int count = 0; 3235 3236 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3237 3238 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3239 &sync_blocks, mddev->degraded) && 3240 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3241 &mddev->recovery)) { 3242 /* We can skip this block */ 3243 *skipped = 1; 3244 return sync_blocks + sectors_skipped; 3245 } 3246 if (sync_blocks < max_sync) 3247 max_sync = sync_blocks; 3248 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3249 r10_bio->state = 0; 3250 3251 r10_bio->mddev = mddev; 3252 atomic_set(&r10_bio->remaining, 0); 3253 raise_barrier(conf, 0); 3254 conf->next_resync = sector_nr; 3255 3256 r10_bio->master_bio = NULL; 3257 r10_bio->sector = sector_nr; 3258 set_bit(R10BIO_IsSync, &r10_bio->state); 3259 raid10_find_phys(conf, r10_bio); 3260 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3261 3262 for (i = 0; i < conf->copies; i++) { 3263 int d = r10_bio->devs[i].devnum; 3264 sector_t first_bad, sector; 3265 int bad_sectors; 3266 struct md_rdev *rdev; 3267 3268 if (r10_bio->devs[i].repl_bio) 3269 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3270 3271 bio = r10_bio->devs[i].bio; 3272 bio->bi_status = BLK_STS_IOERR; 3273 rcu_read_lock(); 3274 rdev = rcu_dereference(conf->mirrors[d].rdev); 3275 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3276 rcu_read_unlock(); 3277 continue; 3278 } 3279 sector = r10_bio->devs[i].addr; 3280 if (is_badblock(rdev, sector, max_sync, 3281 &first_bad, &bad_sectors)) { 3282 if (first_bad > sector) 3283 max_sync = first_bad - sector; 3284 else { 3285 bad_sectors -= (sector - first_bad); 3286 if (max_sync > bad_sectors) 3287 max_sync = bad_sectors; 3288 rcu_read_unlock(); 3289 continue; 3290 } 3291 } 3292 atomic_inc(&rdev->nr_pending); 3293 atomic_inc(&r10_bio->remaining); 3294 bio->bi_next = biolist; 3295 biolist = bio; 3296 bio->bi_end_io = end_sync_read; 3297 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3298 if (test_bit(FailFast, &rdev->flags)) 3299 bio->bi_opf |= MD_FAILFAST; 3300 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3301 bio->bi_bdev = rdev->bdev; 3302 count++; 3303 3304 rdev = rcu_dereference(conf->mirrors[d].replacement); 3305 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3306 rcu_read_unlock(); 3307 continue; 3308 } 3309 atomic_inc(&rdev->nr_pending); 3310 3311 /* Need to set up for writing to the replacement */ 3312 bio = r10_bio->devs[i].repl_bio; 3313 bio->bi_status = BLK_STS_IOERR; 3314 3315 sector = r10_bio->devs[i].addr; 3316 bio->bi_next = biolist; 3317 biolist = bio; 3318 bio->bi_end_io = end_sync_write; 3319 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3320 if (test_bit(FailFast, &rdev->flags)) 3321 bio->bi_opf |= MD_FAILFAST; 3322 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3323 bio->bi_bdev = rdev->bdev; 3324 count++; 3325 rcu_read_unlock(); 3326 } 3327 3328 if (count < 2) { 3329 for (i=0; i<conf->copies; i++) { 3330 int d = r10_bio->devs[i].devnum; 3331 if (r10_bio->devs[i].bio->bi_end_io) 3332 rdev_dec_pending(conf->mirrors[d].rdev, 3333 mddev); 3334 if (r10_bio->devs[i].repl_bio && 3335 r10_bio->devs[i].repl_bio->bi_end_io) 3336 rdev_dec_pending( 3337 conf->mirrors[d].replacement, 3338 mddev); 3339 } 3340 put_buf(r10_bio); 3341 biolist = NULL; 3342 goto giveup; 3343 } 3344 } 3345 3346 nr_sectors = 0; 3347 if (sector_nr + max_sync < max_sector) 3348 max_sector = sector_nr + max_sync; 3349 do { 3350 struct page *page; 3351 int len = PAGE_SIZE; 3352 if (sector_nr + (len>>9) > max_sector) 3353 len = (max_sector - sector_nr) << 9; 3354 if (len == 0) 3355 break; 3356 for (bio= biolist ; bio ; bio=bio->bi_next) { 3357 struct resync_pages *rp = get_resync_pages(bio); 3358 page = resync_fetch_page(rp, rp->idx++); 3359 /* 3360 * won't fail because the vec table is big enough 3361 * to hold all these pages 3362 */ 3363 bio_add_page(bio, page, len, 0); 3364 } 3365 nr_sectors += len>>9; 3366 sector_nr += len>>9; 3367 } while (get_resync_pages(biolist)->idx < RESYNC_PAGES); 3368 r10_bio->sectors = nr_sectors; 3369 3370 while (biolist) { 3371 bio = biolist; 3372 biolist = biolist->bi_next; 3373 3374 bio->bi_next = NULL; 3375 r10_bio = get_resync_r10bio(bio); 3376 r10_bio->sectors = nr_sectors; 3377 3378 if (bio->bi_end_io == end_sync_read) { 3379 md_sync_acct(bio->bi_bdev, nr_sectors); 3380 bio->bi_status = 0; 3381 generic_make_request(bio); 3382 } 3383 } 3384 3385 if (sectors_skipped) 3386 /* pretend they weren't skipped, it makes 3387 * no important difference in this case 3388 */ 3389 md_done_sync(mddev, sectors_skipped, 1); 3390 3391 return sectors_skipped + nr_sectors; 3392 giveup: 3393 /* There is nowhere to write, so all non-sync 3394 * drives must be failed or in resync, all drives 3395 * have a bad block, so try the next chunk... 3396 */ 3397 if (sector_nr + max_sync < max_sector) 3398 max_sector = sector_nr + max_sync; 3399 3400 sectors_skipped += (max_sector - sector_nr); 3401 chunks_skipped ++; 3402 sector_nr = max_sector; 3403 goto skipped; 3404 } 3405 3406 static sector_t 3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3408 { 3409 sector_t size; 3410 struct r10conf *conf = mddev->private; 3411 3412 if (!raid_disks) 3413 raid_disks = min(conf->geo.raid_disks, 3414 conf->prev.raid_disks); 3415 if (!sectors) 3416 sectors = conf->dev_sectors; 3417 3418 size = sectors >> conf->geo.chunk_shift; 3419 sector_div(size, conf->geo.far_copies); 3420 size = size * raid_disks; 3421 sector_div(size, conf->geo.near_copies); 3422 3423 return size << conf->geo.chunk_shift; 3424 } 3425 3426 static void calc_sectors(struct r10conf *conf, sector_t size) 3427 { 3428 /* Calculate the number of sectors-per-device that will 3429 * actually be used, and set conf->dev_sectors and 3430 * conf->stride 3431 */ 3432 3433 size = size >> conf->geo.chunk_shift; 3434 sector_div(size, conf->geo.far_copies); 3435 size = size * conf->geo.raid_disks; 3436 sector_div(size, conf->geo.near_copies); 3437 /* 'size' is now the number of chunks in the array */ 3438 /* calculate "used chunks per device" */ 3439 size = size * conf->copies; 3440 3441 /* We need to round up when dividing by raid_disks to 3442 * get the stride size. 3443 */ 3444 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3445 3446 conf->dev_sectors = size << conf->geo.chunk_shift; 3447 3448 if (conf->geo.far_offset) 3449 conf->geo.stride = 1 << conf->geo.chunk_shift; 3450 else { 3451 sector_div(size, conf->geo.far_copies); 3452 conf->geo.stride = size << conf->geo.chunk_shift; 3453 } 3454 } 3455 3456 enum geo_type {geo_new, geo_old, geo_start}; 3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3458 { 3459 int nc, fc, fo; 3460 int layout, chunk, disks; 3461 switch (new) { 3462 case geo_old: 3463 layout = mddev->layout; 3464 chunk = mddev->chunk_sectors; 3465 disks = mddev->raid_disks - mddev->delta_disks; 3466 break; 3467 case geo_new: 3468 layout = mddev->new_layout; 3469 chunk = mddev->new_chunk_sectors; 3470 disks = mddev->raid_disks; 3471 break; 3472 default: /* avoid 'may be unused' warnings */ 3473 case geo_start: /* new when starting reshape - raid_disks not 3474 * updated yet. */ 3475 layout = mddev->new_layout; 3476 chunk = mddev->new_chunk_sectors; 3477 disks = mddev->raid_disks + mddev->delta_disks; 3478 break; 3479 } 3480 if (layout >> 19) 3481 return -1; 3482 if (chunk < (PAGE_SIZE >> 9) || 3483 !is_power_of_2(chunk)) 3484 return -2; 3485 nc = layout & 255; 3486 fc = (layout >> 8) & 255; 3487 fo = layout & (1<<16); 3488 geo->raid_disks = disks; 3489 geo->near_copies = nc; 3490 geo->far_copies = fc; 3491 geo->far_offset = fo; 3492 switch (layout >> 17) { 3493 case 0: /* original layout. simple but not always optimal */ 3494 geo->far_set_size = disks; 3495 break; 3496 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3497 * actually using this, but leave code here just in case.*/ 3498 geo->far_set_size = disks/fc; 3499 WARN(geo->far_set_size < fc, 3500 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3501 break; 3502 case 2: /* "improved" layout fixed to match documentation */ 3503 geo->far_set_size = fc * nc; 3504 break; 3505 default: /* Not a valid layout */ 3506 return -1; 3507 } 3508 geo->chunk_mask = chunk - 1; 3509 geo->chunk_shift = ffz(~chunk); 3510 return nc*fc; 3511 } 3512 3513 static struct r10conf *setup_conf(struct mddev *mddev) 3514 { 3515 struct r10conf *conf = NULL; 3516 int err = -EINVAL; 3517 struct geom geo; 3518 int copies; 3519 3520 copies = setup_geo(&geo, mddev, geo_new); 3521 3522 if (copies == -2) { 3523 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3524 mdname(mddev), PAGE_SIZE); 3525 goto out; 3526 } 3527 3528 if (copies < 2 || copies > mddev->raid_disks) { 3529 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3530 mdname(mddev), mddev->new_layout); 3531 goto out; 3532 } 3533 3534 err = -ENOMEM; 3535 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3536 if (!conf) 3537 goto out; 3538 3539 /* FIXME calc properly */ 3540 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3541 max(0,-mddev->delta_disks)), 3542 GFP_KERNEL); 3543 if (!conf->mirrors) 3544 goto out; 3545 3546 conf->tmppage = alloc_page(GFP_KERNEL); 3547 if (!conf->tmppage) 3548 goto out; 3549 3550 conf->geo = geo; 3551 conf->copies = copies; 3552 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3553 r10bio_pool_free, conf); 3554 if (!conf->r10bio_pool) 3555 goto out; 3556 3557 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 3558 if (!conf->bio_split) 3559 goto out; 3560 3561 calc_sectors(conf, mddev->dev_sectors); 3562 if (mddev->reshape_position == MaxSector) { 3563 conf->prev = conf->geo; 3564 conf->reshape_progress = MaxSector; 3565 } else { 3566 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3567 err = -EINVAL; 3568 goto out; 3569 } 3570 conf->reshape_progress = mddev->reshape_position; 3571 if (conf->prev.far_offset) 3572 conf->prev.stride = 1 << conf->prev.chunk_shift; 3573 else 3574 /* far_copies must be 1 */ 3575 conf->prev.stride = conf->dev_sectors; 3576 } 3577 conf->reshape_safe = conf->reshape_progress; 3578 spin_lock_init(&conf->device_lock); 3579 INIT_LIST_HEAD(&conf->retry_list); 3580 INIT_LIST_HEAD(&conf->bio_end_io_list); 3581 3582 spin_lock_init(&conf->resync_lock); 3583 init_waitqueue_head(&conf->wait_barrier); 3584 atomic_set(&conf->nr_pending, 0); 3585 3586 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3587 if (!conf->thread) 3588 goto out; 3589 3590 conf->mddev = mddev; 3591 return conf; 3592 3593 out: 3594 if (conf) { 3595 mempool_destroy(conf->r10bio_pool); 3596 kfree(conf->mirrors); 3597 safe_put_page(conf->tmppage); 3598 if (conf->bio_split) 3599 bioset_free(conf->bio_split); 3600 kfree(conf); 3601 } 3602 return ERR_PTR(err); 3603 } 3604 3605 static int raid10_run(struct mddev *mddev) 3606 { 3607 struct r10conf *conf; 3608 int i, disk_idx, chunk_size; 3609 struct raid10_info *disk; 3610 struct md_rdev *rdev; 3611 sector_t size; 3612 sector_t min_offset_diff = 0; 3613 int first = 1; 3614 bool discard_supported = false; 3615 3616 if (mddev_init_writes_pending(mddev) < 0) 3617 return -ENOMEM; 3618 3619 if (mddev->private == NULL) { 3620 conf = setup_conf(mddev); 3621 if (IS_ERR(conf)) 3622 return PTR_ERR(conf); 3623 mddev->private = conf; 3624 } 3625 conf = mddev->private; 3626 if (!conf) 3627 goto out; 3628 3629 mddev->thread = conf->thread; 3630 conf->thread = NULL; 3631 3632 chunk_size = mddev->chunk_sectors << 9; 3633 if (mddev->queue) { 3634 blk_queue_max_discard_sectors(mddev->queue, 3635 mddev->chunk_sectors); 3636 blk_queue_max_write_same_sectors(mddev->queue, 0); 3637 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3638 blk_queue_io_min(mddev->queue, chunk_size); 3639 if (conf->geo.raid_disks % conf->geo.near_copies) 3640 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3641 else 3642 blk_queue_io_opt(mddev->queue, chunk_size * 3643 (conf->geo.raid_disks / conf->geo.near_copies)); 3644 } 3645 3646 rdev_for_each(rdev, mddev) { 3647 long long diff; 3648 3649 disk_idx = rdev->raid_disk; 3650 if (disk_idx < 0) 3651 continue; 3652 if (disk_idx >= conf->geo.raid_disks && 3653 disk_idx >= conf->prev.raid_disks) 3654 continue; 3655 disk = conf->mirrors + disk_idx; 3656 3657 if (test_bit(Replacement, &rdev->flags)) { 3658 if (disk->replacement) 3659 goto out_free_conf; 3660 disk->replacement = rdev; 3661 } else { 3662 if (disk->rdev) 3663 goto out_free_conf; 3664 disk->rdev = rdev; 3665 } 3666 diff = (rdev->new_data_offset - rdev->data_offset); 3667 if (!mddev->reshape_backwards) 3668 diff = -diff; 3669 if (diff < 0) 3670 diff = 0; 3671 if (first || diff < min_offset_diff) 3672 min_offset_diff = diff; 3673 3674 if (mddev->gendisk) 3675 disk_stack_limits(mddev->gendisk, rdev->bdev, 3676 rdev->data_offset << 9); 3677 3678 disk->head_position = 0; 3679 3680 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3681 discard_supported = true; 3682 first = 0; 3683 } 3684 3685 if (mddev->queue) { 3686 if (discard_supported) 3687 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3688 mddev->queue); 3689 else 3690 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3691 mddev->queue); 3692 } 3693 /* need to check that every block has at least one working mirror */ 3694 if (!enough(conf, -1)) { 3695 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3696 mdname(mddev)); 3697 goto out_free_conf; 3698 } 3699 3700 if (conf->reshape_progress != MaxSector) { 3701 /* must ensure that shape change is supported */ 3702 if (conf->geo.far_copies != 1 && 3703 conf->geo.far_offset == 0) 3704 goto out_free_conf; 3705 if (conf->prev.far_copies != 1 && 3706 conf->prev.far_offset == 0) 3707 goto out_free_conf; 3708 } 3709 3710 mddev->degraded = 0; 3711 for (i = 0; 3712 i < conf->geo.raid_disks 3713 || i < conf->prev.raid_disks; 3714 i++) { 3715 3716 disk = conf->mirrors + i; 3717 3718 if (!disk->rdev && disk->replacement) { 3719 /* The replacement is all we have - use it */ 3720 disk->rdev = disk->replacement; 3721 disk->replacement = NULL; 3722 clear_bit(Replacement, &disk->rdev->flags); 3723 } 3724 3725 if (!disk->rdev || 3726 !test_bit(In_sync, &disk->rdev->flags)) { 3727 disk->head_position = 0; 3728 mddev->degraded++; 3729 if (disk->rdev && 3730 disk->rdev->saved_raid_disk < 0) 3731 conf->fullsync = 1; 3732 } 3733 disk->recovery_disabled = mddev->recovery_disabled - 1; 3734 } 3735 3736 if (mddev->recovery_cp != MaxSector) 3737 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3738 mdname(mddev)); 3739 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3740 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3741 conf->geo.raid_disks); 3742 /* 3743 * Ok, everything is just fine now 3744 */ 3745 mddev->dev_sectors = conf->dev_sectors; 3746 size = raid10_size(mddev, 0, 0); 3747 md_set_array_sectors(mddev, size); 3748 mddev->resync_max_sectors = size; 3749 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3750 3751 if (mddev->queue) { 3752 int stripe = conf->geo.raid_disks * 3753 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3754 3755 /* Calculate max read-ahead size. 3756 * We need to readahead at least twice a whole stripe.... 3757 * maybe... 3758 */ 3759 stripe /= conf->geo.near_copies; 3760 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3761 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3762 } 3763 3764 if (md_integrity_register(mddev)) 3765 goto out_free_conf; 3766 3767 if (conf->reshape_progress != MaxSector) { 3768 unsigned long before_length, after_length; 3769 3770 before_length = ((1 << conf->prev.chunk_shift) * 3771 conf->prev.far_copies); 3772 after_length = ((1 << conf->geo.chunk_shift) * 3773 conf->geo.far_copies); 3774 3775 if (max(before_length, after_length) > min_offset_diff) { 3776 /* This cannot work */ 3777 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3778 goto out_free_conf; 3779 } 3780 conf->offset_diff = min_offset_diff; 3781 3782 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3783 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3784 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3785 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3786 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3787 "reshape"); 3788 } 3789 3790 return 0; 3791 3792 out_free_conf: 3793 md_unregister_thread(&mddev->thread); 3794 mempool_destroy(conf->r10bio_pool); 3795 safe_put_page(conf->tmppage); 3796 kfree(conf->mirrors); 3797 kfree(conf); 3798 mddev->private = NULL; 3799 out: 3800 return -EIO; 3801 } 3802 3803 static void raid10_free(struct mddev *mddev, void *priv) 3804 { 3805 struct r10conf *conf = priv; 3806 3807 mempool_destroy(conf->r10bio_pool); 3808 safe_put_page(conf->tmppage); 3809 kfree(conf->mirrors); 3810 kfree(conf->mirrors_old); 3811 kfree(conf->mirrors_new); 3812 if (conf->bio_split) 3813 bioset_free(conf->bio_split); 3814 kfree(conf); 3815 } 3816 3817 static void raid10_quiesce(struct mddev *mddev, int state) 3818 { 3819 struct r10conf *conf = mddev->private; 3820 3821 switch(state) { 3822 case 1: 3823 raise_barrier(conf, 0); 3824 break; 3825 case 0: 3826 lower_barrier(conf); 3827 break; 3828 } 3829 } 3830 3831 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3832 { 3833 /* Resize of 'far' arrays is not supported. 3834 * For 'near' and 'offset' arrays we can set the 3835 * number of sectors used to be an appropriate multiple 3836 * of the chunk size. 3837 * For 'offset', this is far_copies*chunksize. 3838 * For 'near' the multiplier is the LCM of 3839 * near_copies and raid_disks. 3840 * So if far_copies > 1 && !far_offset, fail. 3841 * Else find LCM(raid_disks, near_copy)*far_copies and 3842 * multiply by chunk_size. Then round to this number. 3843 * This is mostly done by raid10_size() 3844 */ 3845 struct r10conf *conf = mddev->private; 3846 sector_t oldsize, size; 3847 3848 if (mddev->reshape_position != MaxSector) 3849 return -EBUSY; 3850 3851 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3852 return -EINVAL; 3853 3854 oldsize = raid10_size(mddev, 0, 0); 3855 size = raid10_size(mddev, sectors, 0); 3856 if (mddev->external_size && 3857 mddev->array_sectors > size) 3858 return -EINVAL; 3859 if (mddev->bitmap) { 3860 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3861 if (ret) 3862 return ret; 3863 } 3864 md_set_array_sectors(mddev, size); 3865 if (sectors > mddev->dev_sectors && 3866 mddev->recovery_cp > oldsize) { 3867 mddev->recovery_cp = oldsize; 3868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3869 } 3870 calc_sectors(conf, sectors); 3871 mddev->dev_sectors = conf->dev_sectors; 3872 mddev->resync_max_sectors = size; 3873 return 0; 3874 } 3875 3876 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3877 { 3878 struct md_rdev *rdev; 3879 struct r10conf *conf; 3880 3881 if (mddev->degraded > 0) { 3882 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3883 mdname(mddev)); 3884 return ERR_PTR(-EINVAL); 3885 } 3886 sector_div(size, devs); 3887 3888 /* Set new parameters */ 3889 mddev->new_level = 10; 3890 /* new layout: far_copies = 1, near_copies = 2 */ 3891 mddev->new_layout = (1<<8) + 2; 3892 mddev->new_chunk_sectors = mddev->chunk_sectors; 3893 mddev->delta_disks = mddev->raid_disks; 3894 mddev->raid_disks *= 2; 3895 /* make sure it will be not marked as dirty */ 3896 mddev->recovery_cp = MaxSector; 3897 mddev->dev_sectors = size; 3898 3899 conf = setup_conf(mddev); 3900 if (!IS_ERR(conf)) { 3901 rdev_for_each(rdev, mddev) 3902 if (rdev->raid_disk >= 0) { 3903 rdev->new_raid_disk = rdev->raid_disk * 2; 3904 rdev->sectors = size; 3905 } 3906 conf->barrier = 1; 3907 } 3908 3909 return conf; 3910 } 3911 3912 static void *raid10_takeover(struct mddev *mddev) 3913 { 3914 struct r0conf *raid0_conf; 3915 3916 /* raid10 can take over: 3917 * raid0 - providing it has only two drives 3918 */ 3919 if (mddev->level == 0) { 3920 /* for raid0 takeover only one zone is supported */ 3921 raid0_conf = mddev->private; 3922 if (raid0_conf->nr_strip_zones > 1) { 3923 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 3924 mdname(mddev)); 3925 return ERR_PTR(-EINVAL); 3926 } 3927 return raid10_takeover_raid0(mddev, 3928 raid0_conf->strip_zone->zone_end, 3929 raid0_conf->strip_zone->nb_dev); 3930 } 3931 return ERR_PTR(-EINVAL); 3932 } 3933 3934 static int raid10_check_reshape(struct mddev *mddev) 3935 { 3936 /* Called when there is a request to change 3937 * - layout (to ->new_layout) 3938 * - chunk size (to ->new_chunk_sectors) 3939 * - raid_disks (by delta_disks) 3940 * or when trying to restart a reshape that was ongoing. 3941 * 3942 * We need to validate the request and possibly allocate 3943 * space if that might be an issue later. 3944 * 3945 * Currently we reject any reshape of a 'far' mode array, 3946 * allow chunk size to change if new is generally acceptable, 3947 * allow raid_disks to increase, and allow 3948 * a switch between 'near' mode and 'offset' mode. 3949 */ 3950 struct r10conf *conf = mddev->private; 3951 struct geom geo; 3952 3953 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3954 return -EINVAL; 3955 3956 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3957 /* mustn't change number of copies */ 3958 return -EINVAL; 3959 if (geo.far_copies > 1 && !geo.far_offset) 3960 /* Cannot switch to 'far' mode */ 3961 return -EINVAL; 3962 3963 if (mddev->array_sectors & geo.chunk_mask) 3964 /* not factor of array size */ 3965 return -EINVAL; 3966 3967 if (!enough(conf, -1)) 3968 return -EINVAL; 3969 3970 kfree(conf->mirrors_new); 3971 conf->mirrors_new = NULL; 3972 if (mddev->delta_disks > 0) { 3973 /* allocate new 'mirrors' list */ 3974 conf->mirrors_new = kzalloc( 3975 sizeof(struct raid10_info) 3976 *(mddev->raid_disks + 3977 mddev->delta_disks), 3978 GFP_KERNEL); 3979 if (!conf->mirrors_new) 3980 return -ENOMEM; 3981 } 3982 return 0; 3983 } 3984 3985 /* 3986 * Need to check if array has failed when deciding whether to: 3987 * - start an array 3988 * - remove non-faulty devices 3989 * - add a spare 3990 * - allow a reshape 3991 * This determination is simple when no reshape is happening. 3992 * However if there is a reshape, we need to carefully check 3993 * both the before and after sections. 3994 * This is because some failed devices may only affect one 3995 * of the two sections, and some non-in_sync devices may 3996 * be insync in the section most affected by failed devices. 3997 */ 3998 static int calc_degraded(struct r10conf *conf) 3999 { 4000 int degraded, degraded2; 4001 int i; 4002 4003 rcu_read_lock(); 4004 degraded = 0; 4005 /* 'prev' section first */ 4006 for (i = 0; i < conf->prev.raid_disks; i++) { 4007 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4008 if (!rdev || test_bit(Faulty, &rdev->flags)) 4009 degraded++; 4010 else if (!test_bit(In_sync, &rdev->flags)) 4011 /* When we can reduce the number of devices in 4012 * an array, this might not contribute to 4013 * 'degraded'. It does now. 4014 */ 4015 degraded++; 4016 } 4017 rcu_read_unlock(); 4018 if (conf->geo.raid_disks == conf->prev.raid_disks) 4019 return degraded; 4020 rcu_read_lock(); 4021 degraded2 = 0; 4022 for (i = 0; i < conf->geo.raid_disks; i++) { 4023 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4024 if (!rdev || test_bit(Faulty, &rdev->flags)) 4025 degraded2++; 4026 else if (!test_bit(In_sync, &rdev->flags)) { 4027 /* If reshape is increasing the number of devices, 4028 * this section has already been recovered, so 4029 * it doesn't contribute to degraded. 4030 * else it does. 4031 */ 4032 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4033 degraded2++; 4034 } 4035 } 4036 rcu_read_unlock(); 4037 if (degraded2 > degraded) 4038 return degraded2; 4039 return degraded; 4040 } 4041 4042 static int raid10_start_reshape(struct mddev *mddev) 4043 { 4044 /* A 'reshape' has been requested. This commits 4045 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4046 * This also checks if there are enough spares and adds them 4047 * to the array. 4048 * We currently require enough spares to make the final 4049 * array non-degraded. We also require that the difference 4050 * between old and new data_offset - on each device - is 4051 * enough that we never risk over-writing. 4052 */ 4053 4054 unsigned long before_length, after_length; 4055 sector_t min_offset_diff = 0; 4056 int first = 1; 4057 struct geom new; 4058 struct r10conf *conf = mddev->private; 4059 struct md_rdev *rdev; 4060 int spares = 0; 4061 int ret; 4062 4063 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4064 return -EBUSY; 4065 4066 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4067 return -EINVAL; 4068 4069 before_length = ((1 << conf->prev.chunk_shift) * 4070 conf->prev.far_copies); 4071 after_length = ((1 << conf->geo.chunk_shift) * 4072 conf->geo.far_copies); 4073 4074 rdev_for_each(rdev, mddev) { 4075 if (!test_bit(In_sync, &rdev->flags) 4076 && !test_bit(Faulty, &rdev->flags)) 4077 spares++; 4078 if (rdev->raid_disk >= 0) { 4079 long long diff = (rdev->new_data_offset 4080 - rdev->data_offset); 4081 if (!mddev->reshape_backwards) 4082 diff = -diff; 4083 if (diff < 0) 4084 diff = 0; 4085 if (first || diff < min_offset_diff) 4086 min_offset_diff = diff; 4087 first = 0; 4088 } 4089 } 4090 4091 if (max(before_length, after_length) > min_offset_diff) 4092 return -EINVAL; 4093 4094 if (spares < mddev->delta_disks) 4095 return -EINVAL; 4096 4097 conf->offset_diff = min_offset_diff; 4098 spin_lock_irq(&conf->device_lock); 4099 if (conf->mirrors_new) { 4100 memcpy(conf->mirrors_new, conf->mirrors, 4101 sizeof(struct raid10_info)*conf->prev.raid_disks); 4102 smp_mb(); 4103 kfree(conf->mirrors_old); 4104 conf->mirrors_old = conf->mirrors; 4105 conf->mirrors = conf->mirrors_new; 4106 conf->mirrors_new = NULL; 4107 } 4108 setup_geo(&conf->geo, mddev, geo_start); 4109 smp_mb(); 4110 if (mddev->reshape_backwards) { 4111 sector_t size = raid10_size(mddev, 0, 0); 4112 if (size < mddev->array_sectors) { 4113 spin_unlock_irq(&conf->device_lock); 4114 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4115 mdname(mddev)); 4116 return -EINVAL; 4117 } 4118 mddev->resync_max_sectors = size; 4119 conf->reshape_progress = size; 4120 } else 4121 conf->reshape_progress = 0; 4122 conf->reshape_safe = conf->reshape_progress; 4123 spin_unlock_irq(&conf->device_lock); 4124 4125 if (mddev->delta_disks && mddev->bitmap) { 4126 ret = bitmap_resize(mddev->bitmap, 4127 raid10_size(mddev, 0, 4128 conf->geo.raid_disks), 4129 0, 0); 4130 if (ret) 4131 goto abort; 4132 } 4133 if (mddev->delta_disks > 0) { 4134 rdev_for_each(rdev, mddev) 4135 if (rdev->raid_disk < 0 && 4136 !test_bit(Faulty, &rdev->flags)) { 4137 if (raid10_add_disk(mddev, rdev) == 0) { 4138 if (rdev->raid_disk >= 4139 conf->prev.raid_disks) 4140 set_bit(In_sync, &rdev->flags); 4141 else 4142 rdev->recovery_offset = 0; 4143 4144 if (sysfs_link_rdev(mddev, rdev)) 4145 /* Failure here is OK */; 4146 } 4147 } else if (rdev->raid_disk >= conf->prev.raid_disks 4148 && !test_bit(Faulty, &rdev->flags)) { 4149 /* This is a spare that was manually added */ 4150 set_bit(In_sync, &rdev->flags); 4151 } 4152 } 4153 /* When a reshape changes the number of devices, 4154 * ->degraded is measured against the larger of the 4155 * pre and post numbers. 4156 */ 4157 spin_lock_irq(&conf->device_lock); 4158 mddev->degraded = calc_degraded(conf); 4159 spin_unlock_irq(&conf->device_lock); 4160 mddev->raid_disks = conf->geo.raid_disks; 4161 mddev->reshape_position = conf->reshape_progress; 4162 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4163 4164 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4165 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4166 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4167 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4168 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4169 4170 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4171 "reshape"); 4172 if (!mddev->sync_thread) { 4173 ret = -EAGAIN; 4174 goto abort; 4175 } 4176 conf->reshape_checkpoint = jiffies; 4177 md_wakeup_thread(mddev->sync_thread); 4178 md_new_event(mddev); 4179 return 0; 4180 4181 abort: 4182 mddev->recovery = 0; 4183 spin_lock_irq(&conf->device_lock); 4184 conf->geo = conf->prev; 4185 mddev->raid_disks = conf->geo.raid_disks; 4186 rdev_for_each(rdev, mddev) 4187 rdev->new_data_offset = rdev->data_offset; 4188 smp_wmb(); 4189 conf->reshape_progress = MaxSector; 4190 conf->reshape_safe = MaxSector; 4191 mddev->reshape_position = MaxSector; 4192 spin_unlock_irq(&conf->device_lock); 4193 return ret; 4194 } 4195 4196 /* Calculate the last device-address that could contain 4197 * any block from the chunk that includes the array-address 's' 4198 * and report the next address. 4199 * i.e. the address returned will be chunk-aligned and after 4200 * any data that is in the chunk containing 's'. 4201 */ 4202 static sector_t last_dev_address(sector_t s, struct geom *geo) 4203 { 4204 s = (s | geo->chunk_mask) + 1; 4205 s >>= geo->chunk_shift; 4206 s *= geo->near_copies; 4207 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4208 s *= geo->far_copies; 4209 s <<= geo->chunk_shift; 4210 return s; 4211 } 4212 4213 /* Calculate the first device-address that could contain 4214 * any block from the chunk that includes the array-address 's'. 4215 * This too will be the start of a chunk 4216 */ 4217 static sector_t first_dev_address(sector_t s, struct geom *geo) 4218 { 4219 s >>= geo->chunk_shift; 4220 s *= geo->near_copies; 4221 sector_div(s, geo->raid_disks); 4222 s *= geo->far_copies; 4223 s <<= geo->chunk_shift; 4224 return s; 4225 } 4226 4227 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4228 int *skipped) 4229 { 4230 /* We simply copy at most one chunk (smallest of old and new) 4231 * at a time, possibly less if that exceeds RESYNC_PAGES, 4232 * or we hit a bad block or something. 4233 * This might mean we pause for normal IO in the middle of 4234 * a chunk, but that is not a problem as mddev->reshape_position 4235 * can record any location. 4236 * 4237 * If we will want to write to a location that isn't 4238 * yet recorded as 'safe' (i.e. in metadata on disk) then 4239 * we need to flush all reshape requests and update the metadata. 4240 * 4241 * When reshaping forwards (e.g. to more devices), we interpret 4242 * 'safe' as the earliest block which might not have been copied 4243 * down yet. We divide this by previous stripe size and multiply 4244 * by previous stripe length to get lowest device offset that we 4245 * cannot write to yet. 4246 * We interpret 'sector_nr' as an address that we want to write to. 4247 * From this we use last_device_address() to find where we might 4248 * write to, and first_device_address on the 'safe' position. 4249 * If this 'next' write position is after the 'safe' position, 4250 * we must update the metadata to increase the 'safe' position. 4251 * 4252 * When reshaping backwards, we round in the opposite direction 4253 * and perform the reverse test: next write position must not be 4254 * less than current safe position. 4255 * 4256 * In all this the minimum difference in data offsets 4257 * (conf->offset_diff - always positive) allows a bit of slack, 4258 * so next can be after 'safe', but not by more than offset_diff 4259 * 4260 * We need to prepare all the bios here before we start any IO 4261 * to ensure the size we choose is acceptable to all devices. 4262 * The means one for each copy for write-out and an extra one for 4263 * read-in. 4264 * We store the read-in bio in ->master_bio and the others in 4265 * ->devs[x].bio and ->devs[x].repl_bio. 4266 */ 4267 struct r10conf *conf = mddev->private; 4268 struct r10bio *r10_bio; 4269 sector_t next, safe, last; 4270 int max_sectors; 4271 int nr_sectors; 4272 int s; 4273 struct md_rdev *rdev; 4274 int need_flush = 0; 4275 struct bio *blist; 4276 struct bio *bio, *read_bio; 4277 int sectors_done = 0; 4278 struct page **pages; 4279 4280 if (sector_nr == 0) { 4281 /* If restarting in the middle, skip the initial sectors */ 4282 if (mddev->reshape_backwards && 4283 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4284 sector_nr = (raid10_size(mddev, 0, 0) 4285 - conf->reshape_progress); 4286 } else if (!mddev->reshape_backwards && 4287 conf->reshape_progress > 0) 4288 sector_nr = conf->reshape_progress; 4289 if (sector_nr) { 4290 mddev->curr_resync_completed = sector_nr; 4291 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4292 *skipped = 1; 4293 return sector_nr; 4294 } 4295 } 4296 4297 /* We don't use sector_nr to track where we are up to 4298 * as that doesn't work well for ->reshape_backwards. 4299 * So just use ->reshape_progress. 4300 */ 4301 if (mddev->reshape_backwards) { 4302 /* 'next' is the earliest device address that we might 4303 * write to for this chunk in the new layout 4304 */ 4305 next = first_dev_address(conf->reshape_progress - 1, 4306 &conf->geo); 4307 4308 /* 'safe' is the last device address that we might read from 4309 * in the old layout after a restart 4310 */ 4311 safe = last_dev_address(conf->reshape_safe - 1, 4312 &conf->prev); 4313 4314 if (next + conf->offset_diff < safe) 4315 need_flush = 1; 4316 4317 last = conf->reshape_progress - 1; 4318 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4319 & conf->prev.chunk_mask); 4320 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4321 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4322 } else { 4323 /* 'next' is after the last device address that we 4324 * might write to for this chunk in the new layout 4325 */ 4326 next = last_dev_address(conf->reshape_progress, &conf->geo); 4327 4328 /* 'safe' is the earliest device address that we might 4329 * read from in the old layout after a restart 4330 */ 4331 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4332 4333 /* Need to update metadata if 'next' might be beyond 'safe' 4334 * as that would possibly corrupt data 4335 */ 4336 if (next > safe + conf->offset_diff) 4337 need_flush = 1; 4338 4339 sector_nr = conf->reshape_progress; 4340 last = sector_nr | (conf->geo.chunk_mask 4341 & conf->prev.chunk_mask); 4342 4343 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4344 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4345 } 4346 4347 if (need_flush || 4348 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4349 /* Need to update reshape_position in metadata */ 4350 wait_barrier(conf); 4351 mddev->reshape_position = conf->reshape_progress; 4352 if (mddev->reshape_backwards) 4353 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4354 - conf->reshape_progress; 4355 else 4356 mddev->curr_resync_completed = conf->reshape_progress; 4357 conf->reshape_checkpoint = jiffies; 4358 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4359 md_wakeup_thread(mddev->thread); 4360 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4361 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4362 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4363 allow_barrier(conf); 4364 return sectors_done; 4365 } 4366 conf->reshape_safe = mddev->reshape_position; 4367 allow_barrier(conf); 4368 } 4369 4370 read_more: 4371 /* Now schedule reads for blocks from sector_nr to last */ 4372 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4373 r10_bio->state = 0; 4374 raise_barrier(conf, sectors_done != 0); 4375 atomic_set(&r10_bio->remaining, 0); 4376 r10_bio->mddev = mddev; 4377 r10_bio->sector = sector_nr; 4378 set_bit(R10BIO_IsReshape, &r10_bio->state); 4379 r10_bio->sectors = last - sector_nr + 1; 4380 rdev = read_balance(conf, r10_bio, &max_sectors); 4381 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4382 4383 if (!rdev) { 4384 /* Cannot read from here, so need to record bad blocks 4385 * on all the target devices. 4386 */ 4387 // FIXME 4388 mempool_free(r10_bio, conf->r10buf_pool); 4389 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4390 return sectors_done; 4391 } 4392 4393 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4394 4395 read_bio->bi_bdev = rdev->bdev; 4396 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4397 + rdev->data_offset); 4398 read_bio->bi_private = r10_bio; 4399 read_bio->bi_end_io = end_reshape_read; 4400 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4401 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4402 read_bio->bi_status = 0; 4403 read_bio->bi_vcnt = 0; 4404 read_bio->bi_iter.bi_size = 0; 4405 r10_bio->master_bio = read_bio; 4406 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4407 4408 /* Now find the locations in the new layout */ 4409 __raid10_find_phys(&conf->geo, r10_bio); 4410 4411 blist = read_bio; 4412 read_bio->bi_next = NULL; 4413 4414 rcu_read_lock(); 4415 for (s = 0; s < conf->copies*2; s++) { 4416 struct bio *b; 4417 int d = r10_bio->devs[s/2].devnum; 4418 struct md_rdev *rdev2; 4419 if (s&1) { 4420 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4421 b = r10_bio->devs[s/2].repl_bio; 4422 } else { 4423 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4424 b = r10_bio->devs[s/2].bio; 4425 } 4426 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4427 continue; 4428 4429 b->bi_bdev = rdev2->bdev; 4430 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4431 rdev2->new_data_offset; 4432 b->bi_end_io = end_reshape_write; 4433 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4434 b->bi_next = blist; 4435 blist = b; 4436 } 4437 4438 /* Now add as many pages as possible to all of these bios. */ 4439 4440 nr_sectors = 0; 4441 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4442 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4443 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4444 int len = (max_sectors - s) << 9; 4445 if (len > PAGE_SIZE) 4446 len = PAGE_SIZE; 4447 for (bio = blist; bio ; bio = bio->bi_next) { 4448 /* 4449 * won't fail because the vec table is big enough 4450 * to hold all these pages 4451 */ 4452 bio_add_page(bio, page, len, 0); 4453 } 4454 sector_nr += len >> 9; 4455 nr_sectors += len >> 9; 4456 } 4457 rcu_read_unlock(); 4458 r10_bio->sectors = nr_sectors; 4459 4460 /* Now submit the read */ 4461 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4462 atomic_inc(&r10_bio->remaining); 4463 read_bio->bi_next = NULL; 4464 generic_make_request(read_bio); 4465 sector_nr += nr_sectors; 4466 sectors_done += nr_sectors; 4467 if (sector_nr <= last) 4468 goto read_more; 4469 4470 /* Now that we have done the whole section we can 4471 * update reshape_progress 4472 */ 4473 if (mddev->reshape_backwards) 4474 conf->reshape_progress -= sectors_done; 4475 else 4476 conf->reshape_progress += sectors_done; 4477 4478 return sectors_done; 4479 } 4480 4481 static void end_reshape_request(struct r10bio *r10_bio); 4482 static int handle_reshape_read_error(struct mddev *mddev, 4483 struct r10bio *r10_bio); 4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4485 { 4486 /* Reshape read completed. Hopefully we have a block 4487 * to write out. 4488 * If we got a read error then we do sync 1-page reads from 4489 * elsewhere until we find the data - or give up. 4490 */ 4491 struct r10conf *conf = mddev->private; 4492 int s; 4493 4494 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4495 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4496 /* Reshape has been aborted */ 4497 md_done_sync(mddev, r10_bio->sectors, 0); 4498 return; 4499 } 4500 4501 /* We definitely have the data in the pages, schedule the 4502 * writes. 4503 */ 4504 atomic_set(&r10_bio->remaining, 1); 4505 for (s = 0; s < conf->copies*2; s++) { 4506 struct bio *b; 4507 int d = r10_bio->devs[s/2].devnum; 4508 struct md_rdev *rdev; 4509 rcu_read_lock(); 4510 if (s&1) { 4511 rdev = rcu_dereference(conf->mirrors[d].replacement); 4512 b = r10_bio->devs[s/2].repl_bio; 4513 } else { 4514 rdev = rcu_dereference(conf->mirrors[d].rdev); 4515 b = r10_bio->devs[s/2].bio; 4516 } 4517 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4518 rcu_read_unlock(); 4519 continue; 4520 } 4521 atomic_inc(&rdev->nr_pending); 4522 rcu_read_unlock(); 4523 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4524 atomic_inc(&r10_bio->remaining); 4525 b->bi_next = NULL; 4526 generic_make_request(b); 4527 } 4528 end_reshape_request(r10_bio); 4529 } 4530 4531 static void end_reshape(struct r10conf *conf) 4532 { 4533 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4534 return; 4535 4536 spin_lock_irq(&conf->device_lock); 4537 conf->prev = conf->geo; 4538 md_finish_reshape(conf->mddev); 4539 smp_wmb(); 4540 conf->reshape_progress = MaxSector; 4541 conf->reshape_safe = MaxSector; 4542 spin_unlock_irq(&conf->device_lock); 4543 4544 /* read-ahead size must cover two whole stripes, which is 4545 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4546 */ 4547 if (conf->mddev->queue) { 4548 int stripe = conf->geo.raid_disks * 4549 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4550 stripe /= conf->geo.near_copies; 4551 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4552 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4553 } 4554 conf->fullsync = 0; 4555 } 4556 4557 static int handle_reshape_read_error(struct mddev *mddev, 4558 struct r10bio *r10_bio) 4559 { 4560 /* Use sync reads to get the blocks from somewhere else */ 4561 int sectors = r10_bio->sectors; 4562 struct r10conf *conf = mddev->private; 4563 struct { 4564 struct r10bio r10_bio; 4565 struct r10dev devs[conf->copies]; 4566 } on_stack; 4567 struct r10bio *r10b = &on_stack.r10_bio; 4568 int slot = 0; 4569 int idx = 0; 4570 struct page **pages; 4571 4572 /* reshape IOs share pages from .devs[0].bio */ 4573 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4574 4575 r10b->sector = r10_bio->sector; 4576 __raid10_find_phys(&conf->prev, r10b); 4577 4578 while (sectors) { 4579 int s = sectors; 4580 int success = 0; 4581 int first_slot = slot; 4582 4583 if (s > (PAGE_SIZE >> 9)) 4584 s = PAGE_SIZE >> 9; 4585 4586 rcu_read_lock(); 4587 while (!success) { 4588 int d = r10b->devs[slot].devnum; 4589 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4590 sector_t addr; 4591 if (rdev == NULL || 4592 test_bit(Faulty, &rdev->flags) || 4593 !test_bit(In_sync, &rdev->flags)) 4594 goto failed; 4595 4596 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4597 atomic_inc(&rdev->nr_pending); 4598 rcu_read_unlock(); 4599 success = sync_page_io(rdev, 4600 addr, 4601 s << 9, 4602 pages[idx], 4603 REQ_OP_READ, 0, false); 4604 rdev_dec_pending(rdev, mddev); 4605 rcu_read_lock(); 4606 if (success) 4607 break; 4608 failed: 4609 slot++; 4610 if (slot >= conf->copies) 4611 slot = 0; 4612 if (slot == first_slot) 4613 break; 4614 } 4615 rcu_read_unlock(); 4616 if (!success) { 4617 /* couldn't read this block, must give up */ 4618 set_bit(MD_RECOVERY_INTR, 4619 &mddev->recovery); 4620 return -EIO; 4621 } 4622 sectors -= s; 4623 idx++; 4624 } 4625 return 0; 4626 } 4627 4628 static void end_reshape_write(struct bio *bio) 4629 { 4630 struct r10bio *r10_bio = get_resync_r10bio(bio); 4631 struct mddev *mddev = r10_bio->mddev; 4632 struct r10conf *conf = mddev->private; 4633 int d; 4634 int slot; 4635 int repl; 4636 struct md_rdev *rdev = NULL; 4637 4638 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4639 if (repl) 4640 rdev = conf->mirrors[d].replacement; 4641 if (!rdev) { 4642 smp_mb(); 4643 rdev = conf->mirrors[d].rdev; 4644 } 4645 4646 if (bio->bi_status) { 4647 /* FIXME should record badblock */ 4648 md_error(mddev, rdev); 4649 } 4650 4651 rdev_dec_pending(rdev, mddev); 4652 end_reshape_request(r10_bio); 4653 } 4654 4655 static void end_reshape_request(struct r10bio *r10_bio) 4656 { 4657 if (!atomic_dec_and_test(&r10_bio->remaining)) 4658 return; 4659 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4660 bio_put(r10_bio->master_bio); 4661 put_buf(r10_bio); 4662 } 4663 4664 static void raid10_finish_reshape(struct mddev *mddev) 4665 { 4666 struct r10conf *conf = mddev->private; 4667 4668 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4669 return; 4670 4671 if (mddev->delta_disks > 0) { 4672 sector_t size = raid10_size(mddev, 0, 0); 4673 md_set_array_sectors(mddev, size); 4674 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4675 mddev->recovery_cp = mddev->resync_max_sectors; 4676 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4677 } 4678 mddev->resync_max_sectors = size; 4679 if (mddev->queue) { 4680 set_capacity(mddev->gendisk, mddev->array_sectors); 4681 revalidate_disk(mddev->gendisk); 4682 } 4683 } else { 4684 int d; 4685 rcu_read_lock(); 4686 for (d = conf->geo.raid_disks ; 4687 d < conf->geo.raid_disks - mddev->delta_disks; 4688 d++) { 4689 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4690 if (rdev) 4691 clear_bit(In_sync, &rdev->flags); 4692 rdev = rcu_dereference(conf->mirrors[d].replacement); 4693 if (rdev) 4694 clear_bit(In_sync, &rdev->flags); 4695 } 4696 rcu_read_unlock(); 4697 } 4698 mddev->layout = mddev->new_layout; 4699 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4700 mddev->reshape_position = MaxSector; 4701 mddev->delta_disks = 0; 4702 mddev->reshape_backwards = 0; 4703 } 4704 4705 static struct md_personality raid10_personality = 4706 { 4707 .name = "raid10", 4708 .level = 10, 4709 .owner = THIS_MODULE, 4710 .make_request = raid10_make_request, 4711 .run = raid10_run, 4712 .free = raid10_free, 4713 .status = raid10_status, 4714 .error_handler = raid10_error, 4715 .hot_add_disk = raid10_add_disk, 4716 .hot_remove_disk= raid10_remove_disk, 4717 .spare_active = raid10_spare_active, 4718 .sync_request = raid10_sync_request, 4719 .quiesce = raid10_quiesce, 4720 .size = raid10_size, 4721 .resize = raid10_resize, 4722 .takeover = raid10_takeover, 4723 .check_reshape = raid10_check_reshape, 4724 .start_reshape = raid10_start_reshape, 4725 .finish_reshape = raid10_finish_reshape, 4726 .congested = raid10_congested, 4727 }; 4728 4729 static int __init raid_init(void) 4730 { 4731 return register_md_personality(&raid10_personality); 4732 } 4733 4734 static void raid_exit(void) 4735 { 4736 unregister_md_personality(&raid10_personality); 4737 } 4738 4739 module_init(raid_init); 4740 module_exit(raid_exit); 4741 MODULE_LICENSE("GPL"); 4742 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4743 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4744 MODULE_ALIAS("md-raid10"); 4745 MODULE_ALIAS("md-level-10"); 4746 4747 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4748