xref: /openbmc/linux/drivers/md/raid10.c (revision 4da722ca)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 /*
114  * 'strct resync_pages' stores actual pages used for doing the resync
115  *  IO, and it is per-bio, so make .bi_private points to it.
116  */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119 	return bio->bi_private;
120 }
121 
122 /*
123  * for resync bio, r10bio pointer can be retrieved from the per-bio
124  * 'struct resync_pages'.
125  */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128 	return get_resync_pages(bio)->raid_bio;
129 }
130 
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	int size = offsetof(struct r10bio, devs[conf->copies]);
135 
136 	/* allocate a r10bio with room for raid_disks entries in the
137 	 * bios array */
138 	return kzalloc(size, gfp_flags);
139 }
140 
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143 	kfree(r10_bio);
144 }
145 
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150 
151 /*
152  * When performing a resync, we need to read and compare, so
153  * we need as many pages are there are copies.
154  * When performing a recovery, we need 2 bios, one for read,
155  * one for write (we recover only one drive per r10buf)
156  *
157  */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160 	struct r10conf *conf = data;
161 	struct r10bio *r10_bio;
162 	struct bio *bio;
163 	int j;
164 	int nalloc, nalloc_rp;
165 	struct resync_pages *rps;
166 
167 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168 	if (!r10_bio)
169 		return NULL;
170 
171 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173 		nalloc = conf->copies; /* resync */
174 	else
175 		nalloc = 2; /* recovery */
176 
177 	/* allocate once for all bios */
178 	if (!conf->have_replacement)
179 		nalloc_rp = nalloc;
180 	else
181 		nalloc_rp = nalloc * 2;
182 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183 	if (!rps)
184 		goto out_free_r10bio;
185 
186 	/*
187 	 * Allocate bios.
188 	 */
189 	for (j = nalloc ; j-- ; ) {
190 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191 		if (!bio)
192 			goto out_free_bio;
193 		r10_bio->devs[j].bio = bio;
194 		if (!conf->have_replacement)
195 			continue;
196 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197 		if (!bio)
198 			goto out_free_bio;
199 		r10_bio->devs[j].repl_bio = bio;
200 	}
201 	/*
202 	 * Allocate RESYNC_PAGES data pages and attach them
203 	 * where needed.
204 	 */
205 	for (j = 0; j < nalloc; j++) {
206 		struct bio *rbio = r10_bio->devs[j].repl_bio;
207 		struct resync_pages *rp, *rp_repl;
208 
209 		rp = &rps[j];
210 		if (rbio)
211 			rp_repl = &rps[nalloc + j];
212 
213 		bio = r10_bio->devs[j].bio;
214 
215 		if (!j || test_bit(MD_RECOVERY_SYNC,
216 				   &conf->mddev->recovery)) {
217 			if (resync_alloc_pages(rp, gfp_flags))
218 				goto out_free_pages;
219 		} else {
220 			memcpy(rp, &rps[0], sizeof(*rp));
221 			resync_get_all_pages(rp);
222 		}
223 
224 		rp->idx = 0;
225 		rp->raid_bio = r10_bio;
226 		bio->bi_private = rp;
227 		if (rbio) {
228 			memcpy(rp_repl, rp, sizeof(*rp));
229 			rbio->bi_private = rp_repl;
230 		}
231 	}
232 
233 	return r10_bio;
234 
235 out_free_pages:
236 	while (--j >= 0)
237 		resync_free_pages(&rps[j * 2]);
238 
239 	j = 0;
240 out_free_bio:
241 	for ( ; j < nalloc; j++) {
242 		if (r10_bio->devs[j].bio)
243 			bio_put(r10_bio->devs[j].bio);
244 		if (r10_bio->devs[j].repl_bio)
245 			bio_put(r10_bio->devs[j].repl_bio);
246 	}
247 	kfree(rps);
248 out_free_r10bio:
249 	r10bio_pool_free(r10_bio, conf);
250 	return NULL;
251 }
252 
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255 	struct r10conf *conf = data;
256 	struct r10bio *r10bio = __r10_bio;
257 	int j;
258 	struct resync_pages *rp = NULL;
259 
260 	for (j = conf->copies; j--; ) {
261 		struct bio *bio = r10bio->devs[j].bio;
262 
263 		rp = get_resync_pages(bio);
264 		resync_free_pages(rp);
265 		bio_put(bio);
266 
267 		bio = r10bio->devs[j].repl_bio;
268 		if (bio)
269 			bio_put(bio);
270 	}
271 
272 	/* resync pages array stored in the 1st bio's .bi_private */
273 	kfree(rp);
274 
275 	r10bio_pool_free(r10bio, conf);
276 }
277 
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280 	int i;
281 
282 	for (i = 0; i < conf->copies; i++) {
283 		struct bio **bio = & r10_bio->devs[i].bio;
284 		if (!BIO_SPECIAL(*bio))
285 			bio_put(*bio);
286 		*bio = NULL;
287 		bio = &r10_bio->devs[i].repl_bio;
288 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289 			bio_put(*bio);
290 		*bio = NULL;
291 	}
292 }
293 
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296 	struct r10conf *conf = r10_bio->mddev->private;
297 
298 	put_all_bios(conf, r10_bio);
299 	mempool_free(r10_bio, conf->r10bio_pool);
300 }
301 
302 static void put_buf(struct r10bio *r10_bio)
303 {
304 	struct r10conf *conf = r10_bio->mddev->private;
305 
306 	mempool_free(r10_bio, conf->r10buf_pool);
307 
308 	lower_barrier(conf);
309 }
310 
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313 	unsigned long flags;
314 	struct mddev *mddev = r10_bio->mddev;
315 	struct r10conf *conf = mddev->private;
316 
317 	spin_lock_irqsave(&conf->device_lock, flags);
318 	list_add(&r10_bio->retry_list, &conf->retry_list);
319 	conf->nr_queued ++;
320 	spin_unlock_irqrestore(&conf->device_lock, flags);
321 
322 	/* wake up frozen array... */
323 	wake_up(&conf->wait_barrier);
324 
325 	md_wakeup_thread(mddev->thread);
326 }
327 
328 /*
329  * raid_end_bio_io() is called when we have finished servicing a mirrored
330  * operation and are ready to return a success/failure code to the buffer
331  * cache layer.
332  */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335 	struct bio *bio = r10_bio->master_bio;
336 	struct r10conf *conf = r10_bio->mddev->private;
337 
338 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339 		bio->bi_status = BLK_STS_IOERR;
340 
341 	bio_endio(bio);
342 	/*
343 	 * Wake up any possible resync thread that waits for the device
344 	 * to go idle.
345 	 */
346 	allow_barrier(conf);
347 
348 	free_r10bio(r10_bio);
349 }
350 
351 /*
352  * Update disk head position estimator based on IRQ completion info.
353  */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356 	struct r10conf *conf = r10_bio->mddev->private;
357 
358 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359 		r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361 
362 /*
363  * Find the disk number which triggered given bio
364  */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366 			 struct bio *bio, int *slotp, int *replp)
367 {
368 	int slot;
369 	int repl = 0;
370 
371 	for (slot = 0; slot < conf->copies; slot++) {
372 		if (r10_bio->devs[slot].bio == bio)
373 			break;
374 		if (r10_bio->devs[slot].repl_bio == bio) {
375 			repl = 1;
376 			break;
377 		}
378 	}
379 
380 	BUG_ON(slot == conf->copies);
381 	update_head_pos(slot, r10_bio);
382 
383 	if (slotp)
384 		*slotp = slot;
385 	if (replp)
386 		*replp = repl;
387 	return r10_bio->devs[slot].devnum;
388 }
389 
390 static void raid10_end_read_request(struct bio *bio)
391 {
392 	int uptodate = !bio->bi_status;
393 	struct r10bio *r10_bio = bio->bi_private;
394 	int slot, dev;
395 	struct md_rdev *rdev;
396 	struct r10conf *conf = r10_bio->mddev->private;
397 
398 	slot = r10_bio->read_slot;
399 	dev = r10_bio->devs[slot].devnum;
400 	rdev = r10_bio->devs[slot].rdev;
401 	/*
402 	 * this branch is our 'one mirror IO has finished' event handler:
403 	 */
404 	update_head_pos(slot, r10_bio);
405 
406 	if (uptodate) {
407 		/*
408 		 * Set R10BIO_Uptodate in our master bio, so that
409 		 * we will return a good error code to the higher
410 		 * levels even if IO on some other mirrored buffer fails.
411 		 *
412 		 * The 'master' represents the composite IO operation to
413 		 * user-side. So if something waits for IO, then it will
414 		 * wait for the 'master' bio.
415 		 */
416 		set_bit(R10BIO_Uptodate, &r10_bio->state);
417 	} else {
418 		/* If all other devices that store this block have
419 		 * failed, we want to return the error upwards rather
420 		 * than fail the last device.  Here we redefine
421 		 * "uptodate" to mean "Don't want to retry"
422 		 */
423 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424 			     rdev->raid_disk))
425 			uptodate = 1;
426 	}
427 	if (uptodate) {
428 		raid_end_bio_io(r10_bio);
429 		rdev_dec_pending(rdev, conf->mddev);
430 	} else {
431 		/*
432 		 * oops, read error - keep the refcount on the rdev
433 		 */
434 		char b[BDEVNAME_SIZE];
435 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436 				   mdname(conf->mddev),
437 				   bdevname(rdev->bdev, b),
438 				   (unsigned long long)r10_bio->sector);
439 		set_bit(R10BIO_ReadError, &r10_bio->state);
440 		reschedule_retry(r10_bio);
441 	}
442 }
443 
444 static void close_write(struct r10bio *r10_bio)
445 {
446 	/* clear the bitmap if all writes complete successfully */
447 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448 			r10_bio->sectors,
449 			!test_bit(R10BIO_Degraded, &r10_bio->state),
450 			0);
451 	md_write_end(r10_bio->mddev);
452 }
453 
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456 	if (atomic_dec_and_test(&r10_bio->remaining)) {
457 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
458 			reschedule_retry(r10_bio);
459 		else {
460 			close_write(r10_bio);
461 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462 				reschedule_retry(r10_bio);
463 			else
464 				raid_end_bio_io(r10_bio);
465 		}
466 	}
467 }
468 
469 static void raid10_end_write_request(struct bio *bio)
470 {
471 	struct r10bio *r10_bio = bio->bi_private;
472 	int dev;
473 	int dec_rdev = 1;
474 	struct r10conf *conf = r10_bio->mddev->private;
475 	int slot, repl;
476 	struct md_rdev *rdev = NULL;
477 	struct bio *to_put = NULL;
478 	bool discard_error;
479 
480 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
481 
482 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483 
484 	if (repl)
485 		rdev = conf->mirrors[dev].replacement;
486 	if (!rdev) {
487 		smp_rmb();
488 		repl = 0;
489 		rdev = conf->mirrors[dev].rdev;
490 	}
491 	/*
492 	 * this branch is our 'one mirror IO has finished' event handler:
493 	 */
494 	if (bio->bi_status && !discard_error) {
495 		if (repl)
496 			/* Never record new bad blocks to replacement,
497 			 * just fail it.
498 			 */
499 			md_error(rdev->mddev, rdev);
500 		else {
501 			set_bit(WriteErrorSeen,	&rdev->flags);
502 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
503 				set_bit(MD_RECOVERY_NEEDED,
504 					&rdev->mddev->recovery);
505 
506 			dec_rdev = 0;
507 			if (test_bit(FailFast, &rdev->flags) &&
508 			    (bio->bi_opf & MD_FAILFAST)) {
509 				md_error(rdev->mddev, rdev);
510 				if (!test_bit(Faulty, &rdev->flags))
511 					/* This is the only remaining device,
512 					 * We need to retry the write without
513 					 * FailFast
514 					 */
515 					set_bit(R10BIO_WriteError, &r10_bio->state);
516 				else {
517 					r10_bio->devs[slot].bio = NULL;
518 					to_put = bio;
519 					dec_rdev = 1;
520 				}
521 			} else
522 				set_bit(R10BIO_WriteError, &r10_bio->state);
523 		}
524 	} else {
525 		/*
526 		 * Set R10BIO_Uptodate in our master bio, so that
527 		 * we will return a good error code for to the higher
528 		 * levels even if IO on some other mirrored buffer fails.
529 		 *
530 		 * The 'master' represents the composite IO operation to
531 		 * user-side. So if something waits for IO, then it will
532 		 * wait for the 'master' bio.
533 		 */
534 		sector_t first_bad;
535 		int bad_sectors;
536 
537 		/*
538 		 * Do not set R10BIO_Uptodate if the current device is
539 		 * rebuilding or Faulty. This is because we cannot use
540 		 * such device for properly reading the data back (we could
541 		 * potentially use it, if the current write would have felt
542 		 * before rdev->recovery_offset, but for simplicity we don't
543 		 * check this here.
544 		 */
545 		if (test_bit(In_sync, &rdev->flags) &&
546 		    !test_bit(Faulty, &rdev->flags))
547 			set_bit(R10BIO_Uptodate, &r10_bio->state);
548 
549 		/* Maybe we can clear some bad blocks. */
550 		if (is_badblock(rdev,
551 				r10_bio->devs[slot].addr,
552 				r10_bio->sectors,
553 				&first_bad, &bad_sectors) && !discard_error) {
554 			bio_put(bio);
555 			if (repl)
556 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557 			else
558 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
559 			dec_rdev = 0;
560 			set_bit(R10BIO_MadeGood, &r10_bio->state);
561 		}
562 	}
563 
564 	/*
565 	 *
566 	 * Let's see if all mirrored write operations have finished
567 	 * already.
568 	 */
569 	one_write_done(r10_bio);
570 	if (dec_rdev)
571 		rdev_dec_pending(rdev, conf->mddev);
572 	if (to_put)
573 		bio_put(to_put);
574 }
575 
576 /*
577  * RAID10 layout manager
578  * As well as the chunksize and raid_disks count, there are two
579  * parameters: near_copies and far_copies.
580  * near_copies * far_copies must be <= raid_disks.
581  * Normally one of these will be 1.
582  * If both are 1, we get raid0.
583  * If near_copies == raid_disks, we get raid1.
584  *
585  * Chunks are laid out in raid0 style with near_copies copies of the
586  * first chunk, followed by near_copies copies of the next chunk and
587  * so on.
588  * If far_copies > 1, then after 1/far_copies of the array has been assigned
589  * as described above, we start again with a device offset of near_copies.
590  * So we effectively have another copy of the whole array further down all
591  * the drives, but with blocks on different drives.
592  * With this layout, and block is never stored twice on the one device.
593  *
594  * raid10_find_phys finds the sector offset of a given virtual sector
595  * on each device that it is on.
596  *
597  * raid10_find_virt does the reverse mapping, from a device and a
598  * sector offset to a virtual address
599  */
600 
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603 	int n,f;
604 	sector_t sector;
605 	sector_t chunk;
606 	sector_t stripe;
607 	int dev;
608 	int slot = 0;
609 	int last_far_set_start, last_far_set_size;
610 
611 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612 	last_far_set_start *= geo->far_set_size;
613 
614 	last_far_set_size = geo->far_set_size;
615 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
616 
617 	/* now calculate first sector/dev */
618 	chunk = r10bio->sector >> geo->chunk_shift;
619 	sector = r10bio->sector & geo->chunk_mask;
620 
621 	chunk *= geo->near_copies;
622 	stripe = chunk;
623 	dev = sector_div(stripe, geo->raid_disks);
624 	if (geo->far_offset)
625 		stripe *= geo->far_copies;
626 
627 	sector += stripe << geo->chunk_shift;
628 
629 	/* and calculate all the others */
630 	for (n = 0; n < geo->near_copies; n++) {
631 		int d = dev;
632 		int set;
633 		sector_t s = sector;
634 		r10bio->devs[slot].devnum = d;
635 		r10bio->devs[slot].addr = s;
636 		slot++;
637 
638 		for (f = 1; f < geo->far_copies; f++) {
639 			set = d / geo->far_set_size;
640 			d += geo->near_copies;
641 
642 			if ((geo->raid_disks % geo->far_set_size) &&
643 			    (d > last_far_set_start)) {
644 				d -= last_far_set_start;
645 				d %= last_far_set_size;
646 				d += last_far_set_start;
647 			} else {
648 				d %= geo->far_set_size;
649 				d += geo->far_set_size * set;
650 			}
651 			s += geo->stride;
652 			r10bio->devs[slot].devnum = d;
653 			r10bio->devs[slot].addr = s;
654 			slot++;
655 		}
656 		dev++;
657 		if (dev >= geo->raid_disks) {
658 			dev = 0;
659 			sector += (geo->chunk_mask + 1);
660 		}
661 	}
662 }
663 
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666 	struct geom *geo = &conf->geo;
667 
668 	if (conf->reshape_progress != MaxSector &&
669 	    ((r10bio->sector >= conf->reshape_progress) !=
670 	     conf->mddev->reshape_backwards)) {
671 		set_bit(R10BIO_Previous, &r10bio->state);
672 		geo = &conf->prev;
673 	} else
674 		clear_bit(R10BIO_Previous, &r10bio->state);
675 
676 	__raid10_find_phys(geo, r10bio);
677 }
678 
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681 	sector_t offset, chunk, vchunk;
682 	/* Never use conf->prev as this is only called during resync
683 	 * or recovery, so reshape isn't happening
684 	 */
685 	struct geom *geo = &conf->geo;
686 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687 	int far_set_size = geo->far_set_size;
688 	int last_far_set_start;
689 
690 	if (geo->raid_disks % geo->far_set_size) {
691 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692 		last_far_set_start *= geo->far_set_size;
693 
694 		if (dev >= last_far_set_start) {
695 			far_set_size = geo->far_set_size;
696 			far_set_size += (geo->raid_disks % geo->far_set_size);
697 			far_set_start = last_far_set_start;
698 		}
699 	}
700 
701 	offset = sector & geo->chunk_mask;
702 	if (geo->far_offset) {
703 		int fc;
704 		chunk = sector >> geo->chunk_shift;
705 		fc = sector_div(chunk, geo->far_copies);
706 		dev -= fc * geo->near_copies;
707 		if (dev < far_set_start)
708 			dev += far_set_size;
709 	} else {
710 		while (sector >= geo->stride) {
711 			sector -= geo->stride;
712 			if (dev < (geo->near_copies + far_set_start))
713 				dev += far_set_size - geo->near_copies;
714 			else
715 				dev -= geo->near_copies;
716 		}
717 		chunk = sector >> geo->chunk_shift;
718 	}
719 	vchunk = chunk * geo->raid_disks + dev;
720 	sector_div(vchunk, geo->near_copies);
721 	return (vchunk << geo->chunk_shift) + offset;
722 }
723 
724 /*
725  * This routine returns the disk from which the requested read should
726  * be done. There is a per-array 'next expected sequential IO' sector
727  * number - if this matches on the next IO then we use the last disk.
728  * There is also a per-disk 'last know head position' sector that is
729  * maintained from IRQ contexts, both the normal and the resync IO
730  * completion handlers update this position correctly. If there is no
731  * perfect sequential match then we pick the disk whose head is closest.
732  *
733  * If there are 2 mirrors in the same 2 devices, performance degrades
734  * because position is mirror, not device based.
735  *
736  * The rdev for the device selected will have nr_pending incremented.
737  */
738 
739 /*
740  * FIXME: possibly should rethink readbalancing and do it differently
741  * depending on near_copies / far_copies geometry.
742  */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744 				    struct r10bio *r10_bio,
745 				    int *max_sectors)
746 {
747 	const sector_t this_sector = r10_bio->sector;
748 	int disk, slot;
749 	int sectors = r10_bio->sectors;
750 	int best_good_sectors;
751 	sector_t new_distance, best_dist;
752 	struct md_rdev *best_rdev, *rdev = NULL;
753 	int do_balance;
754 	int best_slot;
755 	struct geom *geo = &conf->geo;
756 
757 	raid10_find_phys(conf, r10_bio);
758 	rcu_read_lock();
759 	sectors = r10_bio->sectors;
760 	best_slot = -1;
761 	best_rdev = NULL;
762 	best_dist = MaxSector;
763 	best_good_sectors = 0;
764 	do_balance = 1;
765 	clear_bit(R10BIO_FailFast, &r10_bio->state);
766 	/*
767 	 * Check if we can balance. We can balance on the whole
768 	 * device if no resync is going on (recovery is ok), or below
769 	 * the resync window. We take the first readable disk when
770 	 * above the resync window.
771 	 */
772 	if (conf->mddev->recovery_cp < MaxSector
773 	    && (this_sector + sectors >= conf->next_resync))
774 		do_balance = 0;
775 
776 	for (slot = 0; slot < conf->copies ; slot++) {
777 		sector_t first_bad;
778 		int bad_sectors;
779 		sector_t dev_sector;
780 
781 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
782 			continue;
783 		disk = r10_bio->devs[slot].devnum;
784 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
785 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
788 		if (rdev == NULL ||
789 		    test_bit(Faulty, &rdev->flags))
790 			continue;
791 		if (!test_bit(In_sync, &rdev->flags) &&
792 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793 			continue;
794 
795 		dev_sector = r10_bio->devs[slot].addr;
796 		if (is_badblock(rdev, dev_sector, sectors,
797 				&first_bad, &bad_sectors)) {
798 			if (best_dist < MaxSector)
799 				/* Already have a better slot */
800 				continue;
801 			if (first_bad <= dev_sector) {
802 				/* Cannot read here.  If this is the
803 				 * 'primary' device, then we must not read
804 				 * beyond 'bad_sectors' from another device.
805 				 */
806 				bad_sectors -= (dev_sector - first_bad);
807 				if (!do_balance && sectors > bad_sectors)
808 					sectors = bad_sectors;
809 				if (best_good_sectors > sectors)
810 					best_good_sectors = sectors;
811 			} else {
812 				sector_t good_sectors =
813 					first_bad - dev_sector;
814 				if (good_sectors > best_good_sectors) {
815 					best_good_sectors = good_sectors;
816 					best_slot = slot;
817 					best_rdev = rdev;
818 				}
819 				if (!do_balance)
820 					/* Must read from here */
821 					break;
822 			}
823 			continue;
824 		} else
825 			best_good_sectors = sectors;
826 
827 		if (!do_balance)
828 			break;
829 
830 		if (best_slot >= 0)
831 			/* At least 2 disks to choose from so failfast is OK */
832 			set_bit(R10BIO_FailFast, &r10_bio->state);
833 		/* This optimisation is debatable, and completely destroys
834 		 * sequential read speed for 'far copies' arrays.  So only
835 		 * keep it for 'near' arrays, and review those later.
836 		 */
837 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838 			new_distance = 0;
839 
840 		/* for far > 1 always use the lowest address */
841 		else if (geo->far_copies > 1)
842 			new_distance = r10_bio->devs[slot].addr;
843 		else
844 			new_distance = abs(r10_bio->devs[slot].addr -
845 					   conf->mirrors[disk].head_position);
846 		if (new_distance < best_dist) {
847 			best_dist = new_distance;
848 			best_slot = slot;
849 			best_rdev = rdev;
850 		}
851 	}
852 	if (slot >= conf->copies) {
853 		slot = best_slot;
854 		rdev = best_rdev;
855 	}
856 
857 	if (slot >= 0) {
858 		atomic_inc(&rdev->nr_pending);
859 		r10_bio->read_slot = slot;
860 	} else
861 		rdev = NULL;
862 	rcu_read_unlock();
863 	*max_sectors = best_good_sectors;
864 
865 	return rdev;
866 }
867 
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870 	struct r10conf *conf = mddev->private;
871 	int i, ret = 0;
872 
873 	if ((bits & (1 << WB_async_congested)) &&
874 	    conf->pending_count >= max_queued_requests)
875 		return 1;
876 
877 	rcu_read_lock();
878 	for (i = 0;
879 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880 		     && ret == 0;
881 	     i++) {
882 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
884 			struct request_queue *q = bdev_get_queue(rdev->bdev);
885 
886 			ret |= bdi_congested(q->backing_dev_info, bits);
887 		}
888 	}
889 	rcu_read_unlock();
890 	return ret;
891 }
892 
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895 	/* Any writes that have been queued but are awaiting
896 	 * bitmap updates get flushed here.
897 	 */
898 	spin_lock_irq(&conf->device_lock);
899 
900 	if (conf->pending_bio_list.head) {
901 		struct bio *bio;
902 		bio = bio_list_get(&conf->pending_bio_list);
903 		conf->pending_count = 0;
904 		spin_unlock_irq(&conf->device_lock);
905 		/* flush any pending bitmap writes to disk
906 		 * before proceeding w/ I/O */
907 		bitmap_unplug(conf->mddev->bitmap);
908 		wake_up(&conf->wait_barrier);
909 
910 		while (bio) { /* submit pending writes */
911 			struct bio *next = bio->bi_next;
912 			struct md_rdev *rdev = (void*)bio->bi_bdev;
913 			bio->bi_next = NULL;
914 			bio->bi_bdev = rdev->bdev;
915 			if (test_bit(Faulty, &rdev->flags)) {
916 				bio->bi_status = BLK_STS_IOERR;
917 				bio_endio(bio);
918 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
919 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920 				/* Just ignore it */
921 				bio_endio(bio);
922 			else
923 				generic_make_request(bio);
924 			bio = next;
925 		}
926 	} else
927 		spin_unlock_irq(&conf->device_lock);
928 }
929 
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951 
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954 	BUG_ON(force && !conf->barrier);
955 	spin_lock_irq(&conf->resync_lock);
956 
957 	/* Wait until no block IO is waiting (unless 'force') */
958 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959 			    conf->resync_lock);
960 
961 	/* block any new IO from starting */
962 	conf->barrier++;
963 
964 	/* Now wait for all pending IO to complete */
965 	wait_event_lock_irq(conf->wait_barrier,
966 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967 			    conf->resync_lock);
968 
969 	spin_unlock_irq(&conf->resync_lock);
970 }
971 
972 static void lower_barrier(struct r10conf *conf)
973 {
974 	unsigned long flags;
975 	spin_lock_irqsave(&conf->resync_lock, flags);
976 	conf->barrier--;
977 	spin_unlock_irqrestore(&conf->resync_lock, flags);
978 	wake_up(&conf->wait_barrier);
979 }
980 
981 static void wait_barrier(struct r10conf *conf)
982 {
983 	spin_lock_irq(&conf->resync_lock);
984 	if (conf->barrier) {
985 		conf->nr_waiting++;
986 		/* Wait for the barrier to drop.
987 		 * However if there are already pending
988 		 * requests (preventing the barrier from
989 		 * rising completely), and the
990 		 * pre-process bio queue isn't empty,
991 		 * then don't wait, as we need to empty
992 		 * that queue to get the nr_pending
993 		 * count down.
994 		 */
995 		raid10_log(conf->mddev, "wait barrier");
996 		wait_event_lock_irq(conf->wait_barrier,
997 				    !conf->barrier ||
998 				    (atomic_read(&conf->nr_pending) &&
999 				     current->bio_list &&
1000 				     (!bio_list_empty(&current->bio_list[0]) ||
1001 				      !bio_list_empty(&current->bio_list[1]))),
1002 				    conf->resync_lock);
1003 		conf->nr_waiting--;
1004 		if (!conf->nr_waiting)
1005 			wake_up(&conf->wait_barrier);
1006 	}
1007 	atomic_inc(&conf->nr_pending);
1008 	spin_unlock_irq(&conf->resync_lock);
1009 }
1010 
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014 			(conf->array_freeze_pending))
1015 		wake_up(&conf->wait_barrier);
1016 }
1017 
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020 	/* stop syncio and normal IO and wait for everything to
1021 	 * go quiet.
1022 	 * We increment barrier and nr_waiting, and then
1023 	 * wait until nr_pending match nr_queued+extra
1024 	 * This is called in the context of one normal IO request
1025 	 * that has failed. Thus any sync request that might be pending
1026 	 * will be blocked by nr_pending, and we need to wait for
1027 	 * pending IO requests to complete or be queued for re-try.
1028 	 * Thus the number queued (nr_queued) plus this request (extra)
1029 	 * must match the number of pending IOs (nr_pending) before
1030 	 * we continue.
1031 	 */
1032 	spin_lock_irq(&conf->resync_lock);
1033 	conf->array_freeze_pending++;
1034 	conf->barrier++;
1035 	conf->nr_waiting++;
1036 	wait_event_lock_irq_cmd(conf->wait_barrier,
1037 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038 				conf->resync_lock,
1039 				flush_pending_writes(conf));
1040 
1041 	conf->array_freeze_pending--;
1042 	spin_unlock_irq(&conf->resync_lock);
1043 }
1044 
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047 	/* reverse the effect of the freeze */
1048 	spin_lock_irq(&conf->resync_lock);
1049 	conf->barrier--;
1050 	conf->nr_waiting--;
1051 	wake_up(&conf->wait_barrier);
1052 	spin_unlock_irq(&conf->resync_lock);
1053 }
1054 
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056 				   struct md_rdev *rdev)
1057 {
1058 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059 	    test_bit(R10BIO_Previous, &r10_bio->state))
1060 		return rdev->data_offset;
1061 	else
1062 		return rdev->new_data_offset;
1063 }
1064 
1065 struct raid10_plug_cb {
1066 	struct blk_plug_cb	cb;
1067 	struct bio_list		pending;
1068 	int			pending_cnt;
1069 };
1070 
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074 						   cb);
1075 	struct mddev *mddev = plug->cb.data;
1076 	struct r10conf *conf = mddev->private;
1077 	struct bio *bio;
1078 
1079 	if (from_schedule || current->bio_list) {
1080 		spin_lock_irq(&conf->device_lock);
1081 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082 		conf->pending_count += plug->pending_cnt;
1083 		spin_unlock_irq(&conf->device_lock);
1084 		wake_up(&conf->wait_barrier);
1085 		md_wakeup_thread(mddev->thread);
1086 		kfree(plug);
1087 		return;
1088 	}
1089 
1090 	/* we aren't scheduling, so we can do the write-out directly. */
1091 	bio = bio_list_get(&plug->pending);
1092 	bitmap_unplug(mddev->bitmap);
1093 	wake_up(&conf->wait_barrier);
1094 
1095 	while (bio) { /* submit pending writes */
1096 		struct bio *next = bio->bi_next;
1097 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1098 		bio->bi_next = NULL;
1099 		bio->bi_bdev = rdev->bdev;
1100 		if (test_bit(Faulty, &rdev->flags)) {
1101 			bio->bi_status = BLK_STS_IOERR;
1102 			bio_endio(bio);
1103 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1104 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105 			/* Just ignore it */
1106 			bio_endio(bio);
1107 		else
1108 			generic_make_request(bio);
1109 		bio = next;
1110 	}
1111 	kfree(plug);
1112 }
1113 
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115 				struct r10bio *r10_bio)
1116 {
1117 	struct r10conf *conf = mddev->private;
1118 	struct bio *read_bio;
1119 	const int op = bio_op(bio);
1120 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121 	int max_sectors;
1122 	sector_t sectors;
1123 	struct md_rdev *rdev;
1124 	char b[BDEVNAME_SIZE];
1125 	int slot = r10_bio->read_slot;
1126 	struct md_rdev *err_rdev = NULL;
1127 	gfp_t gfp = GFP_NOIO;
1128 
1129 	if (r10_bio->devs[slot].rdev) {
1130 		/*
1131 		 * This is an error retry, but we cannot
1132 		 * safely dereference the rdev in the r10_bio,
1133 		 * we must use the one in conf.
1134 		 * If it has already been disconnected (unlikely)
1135 		 * we lose the device name in error messages.
1136 		 */
1137 		int disk;
1138 		/*
1139 		 * As we are blocking raid10, it is a little safer to
1140 		 * use __GFP_HIGH.
1141 		 */
1142 		gfp = GFP_NOIO | __GFP_HIGH;
1143 
1144 		rcu_read_lock();
1145 		disk = r10_bio->devs[slot].devnum;
1146 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147 		if (err_rdev)
1148 			bdevname(err_rdev->bdev, b);
1149 		else {
1150 			strcpy(b, "???");
1151 			/* This never gets dereferenced */
1152 			err_rdev = r10_bio->devs[slot].rdev;
1153 		}
1154 		rcu_read_unlock();
1155 	}
1156 	/*
1157 	 * Register the new request and wait if the reconstruction
1158 	 * thread has put up a bar for new requests.
1159 	 * Continue immediately if no resync is active currently.
1160 	 */
1161 	wait_barrier(conf);
1162 
1163 	sectors = r10_bio->sectors;
1164 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1166 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167 		/*
1168 		 * IO spans the reshape position.  Need to wait for reshape to
1169 		 * pass
1170 		 */
1171 		raid10_log(conf->mddev, "wait reshape");
1172 		allow_barrier(conf);
1173 		wait_event(conf->wait_barrier,
1174 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1176 			   sectors);
1177 		wait_barrier(conf);
1178 	}
1179 
1180 	rdev = read_balance(conf, r10_bio, &max_sectors);
1181 	if (!rdev) {
1182 		if (err_rdev) {
1183 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184 					    mdname(mddev), b,
1185 					    (unsigned long long)r10_bio->sector);
1186 		}
1187 		raid_end_bio_io(r10_bio);
1188 		return;
1189 	}
1190 	if (err_rdev)
1191 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192 				   mdname(mddev),
1193 				   bdevname(rdev->bdev, b),
1194 				   (unsigned long long)r10_bio->sector);
1195 	if (max_sectors < bio_sectors(bio)) {
1196 		struct bio *split = bio_split(bio, max_sectors,
1197 					      gfp, conf->bio_split);
1198 		bio_chain(split, bio);
1199 		generic_make_request(bio);
1200 		bio = split;
1201 		r10_bio->master_bio = bio;
1202 		r10_bio->sectors = max_sectors;
1203 	}
1204 	slot = r10_bio->read_slot;
1205 
1206 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207 
1208 	r10_bio->devs[slot].bio = read_bio;
1209 	r10_bio->devs[slot].rdev = rdev;
1210 
1211 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 		choose_data_offset(r10_bio, rdev);
1213 	read_bio->bi_bdev = rdev->bdev;
1214 	read_bio->bi_end_io = raid10_end_read_request;
1215 	bio_set_op_attrs(read_bio, op, do_sync);
1216 	if (test_bit(FailFast, &rdev->flags) &&
1217 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1218 	        read_bio->bi_opf |= MD_FAILFAST;
1219 	read_bio->bi_private = r10_bio;
1220 
1221 	if (mddev->gendisk)
1222 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223 	                              read_bio, disk_devt(mddev->gendisk),
1224 	                              r10_bio->sector);
1225 	generic_make_request(read_bio);
1226 	return;
1227 }
1228 
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 				  struct bio *bio, bool replacement,
1231 				  int n_copy)
1232 {
1233 	const int op = bio_op(bio);
1234 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 	unsigned long flags;
1237 	struct blk_plug_cb *cb;
1238 	struct raid10_plug_cb *plug = NULL;
1239 	struct r10conf *conf = mddev->private;
1240 	struct md_rdev *rdev;
1241 	int devnum = r10_bio->devs[n_copy].devnum;
1242 	struct bio *mbio;
1243 
1244 	if (replacement) {
1245 		rdev = conf->mirrors[devnum].replacement;
1246 		if (rdev == NULL) {
1247 			/* Replacement just got moved to main 'rdev' */
1248 			smp_mb();
1249 			rdev = conf->mirrors[devnum].rdev;
1250 		}
1251 	} else
1252 		rdev = conf->mirrors[devnum].rdev;
1253 
1254 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 	if (replacement)
1256 		r10_bio->devs[n_copy].repl_bio = mbio;
1257 	else
1258 		r10_bio->devs[n_copy].bio = mbio;
1259 
1260 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1261 				   choose_data_offset(r10_bio, rdev));
1262 	mbio->bi_bdev = rdev->bdev;
1263 	mbio->bi_end_io	= raid10_end_write_request;
1264 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 	if (!replacement && test_bit(FailFast,
1266 				     &conf->mirrors[devnum].rdev->flags)
1267 			 && enough(conf, devnum))
1268 		mbio->bi_opf |= MD_FAILFAST;
1269 	mbio->bi_private = r10_bio;
1270 
1271 	if (conf->mddev->gendisk)
1272 		trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273 				      mbio, disk_devt(conf->mddev->gendisk),
1274 				      r10_bio->sector);
1275 	/* flush_pending_writes() needs access to the rdev so...*/
1276 	mbio->bi_bdev = (void *)rdev;
1277 
1278 	atomic_inc(&r10_bio->remaining);
1279 
1280 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 	if (cb)
1282 		plug = container_of(cb, struct raid10_plug_cb, cb);
1283 	else
1284 		plug = NULL;
1285 	if (plug) {
1286 		bio_list_add(&plug->pending, mbio);
1287 		plug->pending_cnt++;
1288 	} else {
1289 		spin_lock_irqsave(&conf->device_lock, flags);
1290 		bio_list_add(&conf->pending_bio_list, mbio);
1291 		conf->pending_count++;
1292 		spin_unlock_irqrestore(&conf->device_lock, flags);
1293 		md_wakeup_thread(mddev->thread);
1294 	}
1295 }
1296 
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 				 struct r10bio *r10_bio)
1299 {
1300 	struct r10conf *conf = mddev->private;
1301 	int i;
1302 	struct md_rdev *blocked_rdev;
1303 	sector_t sectors;
1304 	int max_sectors;
1305 
1306 	/*
1307 	 * Register the new request and wait if the reconstruction
1308 	 * thread has put up a bar for new requests.
1309 	 * Continue immediately if no resync is active currently.
1310 	 */
1311 	wait_barrier(conf);
1312 
1313 	sectors = r10_bio->sectors;
1314 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1315 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1316 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1317 		/*
1318 		 * IO spans the reshape position.  Need to wait for reshape to
1319 		 * pass
1320 		 */
1321 		raid10_log(conf->mddev, "wait reshape");
1322 		allow_barrier(conf);
1323 		wait_event(conf->wait_barrier,
1324 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1325 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1326 			   sectors);
1327 		wait_barrier(conf);
1328 	}
1329 
1330 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1331 	    (mddev->reshape_backwards
1332 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1333 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1334 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1335 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1336 		/* Need to update reshape_position in metadata */
1337 		mddev->reshape_position = conf->reshape_progress;
1338 		set_mask_bits(&mddev->sb_flags, 0,
1339 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340 		md_wakeup_thread(mddev->thread);
1341 		raid10_log(conf->mddev, "wait reshape metadata");
1342 		wait_event(mddev->sb_wait,
1343 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1344 
1345 		conf->reshape_safe = mddev->reshape_position;
1346 	}
1347 
1348 	if (conf->pending_count >= max_queued_requests) {
1349 		md_wakeup_thread(mddev->thread);
1350 		raid10_log(mddev, "wait queued");
1351 		wait_event(conf->wait_barrier,
1352 			   conf->pending_count < max_queued_requests);
1353 	}
1354 	/* first select target devices under rcu_lock and
1355 	 * inc refcount on their rdev.  Record them by setting
1356 	 * bios[x] to bio
1357 	 * If there are known/acknowledged bad blocks on any device
1358 	 * on which we have seen a write error, we want to avoid
1359 	 * writing to those blocks.  This potentially requires several
1360 	 * writes to write around the bad blocks.  Each set of writes
1361 	 * gets its own r10_bio with a set of bios attached.
1362 	 */
1363 
1364 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1365 	raid10_find_phys(conf, r10_bio);
1366 retry_write:
1367 	blocked_rdev = NULL;
1368 	rcu_read_lock();
1369 	max_sectors = r10_bio->sectors;
1370 
1371 	for (i = 0;  i < conf->copies; i++) {
1372 		int d = r10_bio->devs[i].devnum;
1373 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1374 		struct md_rdev *rrdev = rcu_dereference(
1375 			conf->mirrors[d].replacement);
1376 		if (rdev == rrdev)
1377 			rrdev = NULL;
1378 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1379 			atomic_inc(&rdev->nr_pending);
1380 			blocked_rdev = rdev;
1381 			break;
1382 		}
1383 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1384 			atomic_inc(&rrdev->nr_pending);
1385 			blocked_rdev = rrdev;
1386 			break;
1387 		}
1388 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1389 			rdev = NULL;
1390 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1391 			rrdev = NULL;
1392 
1393 		r10_bio->devs[i].bio = NULL;
1394 		r10_bio->devs[i].repl_bio = NULL;
1395 
1396 		if (!rdev && !rrdev) {
1397 			set_bit(R10BIO_Degraded, &r10_bio->state);
1398 			continue;
1399 		}
1400 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1401 			sector_t first_bad;
1402 			sector_t dev_sector = r10_bio->devs[i].addr;
1403 			int bad_sectors;
1404 			int is_bad;
1405 
1406 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1407 					     &first_bad, &bad_sectors);
1408 			if (is_bad < 0) {
1409 				/* Mustn't write here until the bad block
1410 				 * is acknowledged
1411 				 */
1412 				atomic_inc(&rdev->nr_pending);
1413 				set_bit(BlockedBadBlocks, &rdev->flags);
1414 				blocked_rdev = rdev;
1415 				break;
1416 			}
1417 			if (is_bad && first_bad <= dev_sector) {
1418 				/* Cannot write here at all */
1419 				bad_sectors -= (dev_sector - first_bad);
1420 				if (bad_sectors < max_sectors)
1421 					/* Mustn't write more than bad_sectors
1422 					 * to other devices yet
1423 					 */
1424 					max_sectors = bad_sectors;
1425 				/* We don't set R10BIO_Degraded as that
1426 				 * only applies if the disk is missing,
1427 				 * so it might be re-added, and we want to
1428 				 * know to recover this chunk.
1429 				 * In this case the device is here, and the
1430 				 * fact that this chunk is not in-sync is
1431 				 * recorded in the bad block log.
1432 				 */
1433 				continue;
1434 			}
1435 			if (is_bad) {
1436 				int good_sectors = first_bad - dev_sector;
1437 				if (good_sectors < max_sectors)
1438 					max_sectors = good_sectors;
1439 			}
1440 		}
1441 		if (rdev) {
1442 			r10_bio->devs[i].bio = bio;
1443 			atomic_inc(&rdev->nr_pending);
1444 		}
1445 		if (rrdev) {
1446 			r10_bio->devs[i].repl_bio = bio;
1447 			atomic_inc(&rrdev->nr_pending);
1448 		}
1449 	}
1450 	rcu_read_unlock();
1451 
1452 	if (unlikely(blocked_rdev)) {
1453 		/* Have to wait for this device to get unblocked, then retry */
1454 		int j;
1455 		int d;
1456 
1457 		for (j = 0; j < i; j++) {
1458 			if (r10_bio->devs[j].bio) {
1459 				d = r10_bio->devs[j].devnum;
1460 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1461 			}
1462 			if (r10_bio->devs[j].repl_bio) {
1463 				struct md_rdev *rdev;
1464 				d = r10_bio->devs[j].devnum;
1465 				rdev = conf->mirrors[d].replacement;
1466 				if (!rdev) {
1467 					/* Race with remove_disk */
1468 					smp_mb();
1469 					rdev = conf->mirrors[d].rdev;
1470 				}
1471 				rdev_dec_pending(rdev, mddev);
1472 			}
1473 		}
1474 		allow_barrier(conf);
1475 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1476 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1477 		wait_barrier(conf);
1478 		goto retry_write;
1479 	}
1480 
1481 	if (max_sectors < r10_bio->sectors)
1482 		r10_bio->sectors = max_sectors;
1483 
1484 	if (r10_bio->sectors < bio_sectors(bio)) {
1485 		struct bio *split = bio_split(bio, r10_bio->sectors,
1486 					      GFP_NOIO, conf->bio_split);
1487 		bio_chain(split, bio);
1488 		generic_make_request(bio);
1489 		bio = split;
1490 		r10_bio->master_bio = bio;
1491 	}
1492 
1493 	atomic_set(&r10_bio->remaining, 1);
1494 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495 
1496 	for (i = 0; i < conf->copies; i++) {
1497 		if (r10_bio->devs[i].bio)
1498 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1499 		if (r10_bio->devs[i].repl_bio)
1500 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1501 	}
1502 	one_write_done(r10_bio);
1503 }
1504 
1505 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1506 {
1507 	struct r10conf *conf = mddev->private;
1508 	struct r10bio *r10_bio;
1509 
1510 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1511 
1512 	r10_bio->master_bio = bio;
1513 	r10_bio->sectors = sectors;
1514 
1515 	r10_bio->mddev = mddev;
1516 	r10_bio->sector = bio->bi_iter.bi_sector;
1517 	r10_bio->state = 0;
1518 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1519 
1520 	if (bio_data_dir(bio) == READ)
1521 		raid10_read_request(mddev, bio, r10_bio);
1522 	else
1523 		raid10_write_request(mddev, bio, r10_bio);
1524 }
1525 
1526 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1527 {
1528 	struct r10conf *conf = mddev->private;
1529 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1530 	int chunk_sects = chunk_mask + 1;
1531 	int sectors = bio_sectors(bio);
1532 
1533 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1534 		md_flush_request(mddev, bio);
1535 		return true;
1536 	}
1537 
1538 	if (!md_write_start(mddev, bio))
1539 		return false;
1540 
1541 	/*
1542 	 * If this request crosses a chunk boundary, we need to split
1543 	 * it.
1544 	 */
1545 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1546 		     sectors > chunk_sects
1547 		     && (conf->geo.near_copies < conf->geo.raid_disks
1548 			 || conf->prev.near_copies <
1549 			 conf->prev.raid_disks)))
1550 		sectors = chunk_sects -
1551 			(bio->bi_iter.bi_sector &
1552 			 (chunk_sects - 1));
1553 	__make_request(mddev, bio, sectors);
1554 
1555 	/* In case raid10d snuck in to freeze_array */
1556 	wake_up(&conf->wait_barrier);
1557 	return true;
1558 }
1559 
1560 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1561 {
1562 	struct r10conf *conf = mddev->private;
1563 	int i;
1564 
1565 	if (conf->geo.near_copies < conf->geo.raid_disks)
1566 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1567 	if (conf->geo.near_copies > 1)
1568 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1569 	if (conf->geo.far_copies > 1) {
1570 		if (conf->geo.far_offset)
1571 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1572 		else
1573 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1574 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1575 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1576 	}
1577 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1578 					conf->geo.raid_disks - mddev->degraded);
1579 	rcu_read_lock();
1580 	for (i = 0; i < conf->geo.raid_disks; i++) {
1581 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1582 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1583 	}
1584 	rcu_read_unlock();
1585 	seq_printf(seq, "]");
1586 }
1587 
1588 /* check if there are enough drives for
1589  * every block to appear on atleast one.
1590  * Don't consider the device numbered 'ignore'
1591  * as we might be about to remove it.
1592  */
1593 static int _enough(struct r10conf *conf, int previous, int ignore)
1594 {
1595 	int first = 0;
1596 	int has_enough = 0;
1597 	int disks, ncopies;
1598 	if (previous) {
1599 		disks = conf->prev.raid_disks;
1600 		ncopies = conf->prev.near_copies;
1601 	} else {
1602 		disks = conf->geo.raid_disks;
1603 		ncopies = conf->geo.near_copies;
1604 	}
1605 
1606 	rcu_read_lock();
1607 	do {
1608 		int n = conf->copies;
1609 		int cnt = 0;
1610 		int this = first;
1611 		while (n--) {
1612 			struct md_rdev *rdev;
1613 			if (this != ignore &&
1614 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1615 			    test_bit(In_sync, &rdev->flags))
1616 				cnt++;
1617 			this = (this+1) % disks;
1618 		}
1619 		if (cnt == 0)
1620 			goto out;
1621 		first = (first + ncopies) % disks;
1622 	} while (first != 0);
1623 	has_enough = 1;
1624 out:
1625 	rcu_read_unlock();
1626 	return has_enough;
1627 }
1628 
1629 static int enough(struct r10conf *conf, int ignore)
1630 {
1631 	/* when calling 'enough', both 'prev' and 'geo' must
1632 	 * be stable.
1633 	 * This is ensured if ->reconfig_mutex or ->device_lock
1634 	 * is held.
1635 	 */
1636 	return _enough(conf, 0, ignore) &&
1637 		_enough(conf, 1, ignore);
1638 }
1639 
1640 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1641 {
1642 	char b[BDEVNAME_SIZE];
1643 	struct r10conf *conf = mddev->private;
1644 	unsigned long flags;
1645 
1646 	/*
1647 	 * If it is not operational, then we have already marked it as dead
1648 	 * else if it is the last working disks, ignore the error, let the
1649 	 * next level up know.
1650 	 * else mark the drive as failed
1651 	 */
1652 	spin_lock_irqsave(&conf->device_lock, flags);
1653 	if (test_bit(In_sync, &rdev->flags)
1654 	    && !enough(conf, rdev->raid_disk)) {
1655 		/*
1656 		 * Don't fail the drive, just return an IO error.
1657 		 */
1658 		spin_unlock_irqrestore(&conf->device_lock, flags);
1659 		return;
1660 	}
1661 	if (test_and_clear_bit(In_sync, &rdev->flags))
1662 		mddev->degraded++;
1663 	/*
1664 	 * If recovery is running, make sure it aborts.
1665 	 */
1666 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1667 	set_bit(Blocked, &rdev->flags);
1668 	set_bit(Faulty, &rdev->flags);
1669 	set_mask_bits(&mddev->sb_flags, 0,
1670 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1671 	spin_unlock_irqrestore(&conf->device_lock, flags);
1672 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1673 		"md/raid10:%s: Operation continuing on %d devices.\n",
1674 		mdname(mddev), bdevname(rdev->bdev, b),
1675 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1676 }
1677 
1678 static void print_conf(struct r10conf *conf)
1679 {
1680 	int i;
1681 	struct md_rdev *rdev;
1682 
1683 	pr_debug("RAID10 conf printout:\n");
1684 	if (!conf) {
1685 		pr_debug("(!conf)\n");
1686 		return;
1687 	}
1688 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1689 		 conf->geo.raid_disks);
1690 
1691 	/* This is only called with ->reconfix_mutex held, so
1692 	 * rcu protection of rdev is not needed */
1693 	for (i = 0; i < conf->geo.raid_disks; i++) {
1694 		char b[BDEVNAME_SIZE];
1695 		rdev = conf->mirrors[i].rdev;
1696 		if (rdev)
1697 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1698 				 i, !test_bit(In_sync, &rdev->flags),
1699 				 !test_bit(Faulty, &rdev->flags),
1700 				 bdevname(rdev->bdev,b));
1701 	}
1702 }
1703 
1704 static void close_sync(struct r10conf *conf)
1705 {
1706 	wait_barrier(conf);
1707 	allow_barrier(conf);
1708 
1709 	mempool_destroy(conf->r10buf_pool);
1710 	conf->r10buf_pool = NULL;
1711 }
1712 
1713 static int raid10_spare_active(struct mddev *mddev)
1714 {
1715 	int i;
1716 	struct r10conf *conf = mddev->private;
1717 	struct raid10_info *tmp;
1718 	int count = 0;
1719 	unsigned long flags;
1720 
1721 	/*
1722 	 * Find all non-in_sync disks within the RAID10 configuration
1723 	 * and mark them in_sync
1724 	 */
1725 	for (i = 0; i < conf->geo.raid_disks; i++) {
1726 		tmp = conf->mirrors + i;
1727 		if (tmp->replacement
1728 		    && tmp->replacement->recovery_offset == MaxSector
1729 		    && !test_bit(Faulty, &tmp->replacement->flags)
1730 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1731 			/* Replacement has just become active */
1732 			if (!tmp->rdev
1733 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1734 				count++;
1735 			if (tmp->rdev) {
1736 				/* Replaced device not technically faulty,
1737 				 * but we need to be sure it gets removed
1738 				 * and never re-added.
1739 				 */
1740 				set_bit(Faulty, &tmp->rdev->flags);
1741 				sysfs_notify_dirent_safe(
1742 					tmp->rdev->sysfs_state);
1743 			}
1744 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1745 		} else if (tmp->rdev
1746 			   && tmp->rdev->recovery_offset == MaxSector
1747 			   && !test_bit(Faulty, &tmp->rdev->flags)
1748 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1749 			count++;
1750 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1751 		}
1752 	}
1753 	spin_lock_irqsave(&conf->device_lock, flags);
1754 	mddev->degraded -= count;
1755 	spin_unlock_irqrestore(&conf->device_lock, flags);
1756 
1757 	print_conf(conf);
1758 	return count;
1759 }
1760 
1761 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1762 {
1763 	struct r10conf *conf = mddev->private;
1764 	int err = -EEXIST;
1765 	int mirror;
1766 	int first = 0;
1767 	int last = conf->geo.raid_disks - 1;
1768 
1769 	if (mddev->recovery_cp < MaxSector)
1770 		/* only hot-add to in-sync arrays, as recovery is
1771 		 * very different from resync
1772 		 */
1773 		return -EBUSY;
1774 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1775 		return -EINVAL;
1776 
1777 	if (md_integrity_add_rdev(rdev, mddev))
1778 		return -ENXIO;
1779 
1780 	if (rdev->raid_disk >= 0)
1781 		first = last = rdev->raid_disk;
1782 
1783 	if (rdev->saved_raid_disk >= first &&
1784 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1785 		mirror = rdev->saved_raid_disk;
1786 	else
1787 		mirror = first;
1788 	for ( ; mirror <= last ; mirror++) {
1789 		struct raid10_info *p = &conf->mirrors[mirror];
1790 		if (p->recovery_disabled == mddev->recovery_disabled)
1791 			continue;
1792 		if (p->rdev) {
1793 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1794 			    p->replacement != NULL)
1795 				continue;
1796 			clear_bit(In_sync, &rdev->flags);
1797 			set_bit(Replacement, &rdev->flags);
1798 			rdev->raid_disk = mirror;
1799 			err = 0;
1800 			if (mddev->gendisk)
1801 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1802 						  rdev->data_offset << 9);
1803 			conf->fullsync = 1;
1804 			rcu_assign_pointer(p->replacement, rdev);
1805 			break;
1806 		}
1807 
1808 		if (mddev->gendisk)
1809 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1810 					  rdev->data_offset << 9);
1811 
1812 		p->head_position = 0;
1813 		p->recovery_disabled = mddev->recovery_disabled - 1;
1814 		rdev->raid_disk = mirror;
1815 		err = 0;
1816 		if (rdev->saved_raid_disk != mirror)
1817 			conf->fullsync = 1;
1818 		rcu_assign_pointer(p->rdev, rdev);
1819 		break;
1820 	}
1821 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1822 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1823 
1824 	print_conf(conf);
1825 	return err;
1826 }
1827 
1828 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1829 {
1830 	struct r10conf *conf = mddev->private;
1831 	int err = 0;
1832 	int number = rdev->raid_disk;
1833 	struct md_rdev **rdevp;
1834 	struct raid10_info *p = conf->mirrors + number;
1835 
1836 	print_conf(conf);
1837 	if (rdev == p->rdev)
1838 		rdevp = &p->rdev;
1839 	else if (rdev == p->replacement)
1840 		rdevp = &p->replacement;
1841 	else
1842 		return 0;
1843 
1844 	if (test_bit(In_sync, &rdev->flags) ||
1845 	    atomic_read(&rdev->nr_pending)) {
1846 		err = -EBUSY;
1847 		goto abort;
1848 	}
1849 	/* Only remove non-faulty devices if recovery
1850 	 * is not possible.
1851 	 */
1852 	if (!test_bit(Faulty, &rdev->flags) &&
1853 	    mddev->recovery_disabled != p->recovery_disabled &&
1854 	    (!p->replacement || p->replacement == rdev) &&
1855 	    number < conf->geo.raid_disks &&
1856 	    enough(conf, -1)) {
1857 		err = -EBUSY;
1858 		goto abort;
1859 	}
1860 	*rdevp = NULL;
1861 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1862 		synchronize_rcu();
1863 		if (atomic_read(&rdev->nr_pending)) {
1864 			/* lost the race, try later */
1865 			err = -EBUSY;
1866 			*rdevp = rdev;
1867 			goto abort;
1868 		}
1869 	}
1870 	if (p->replacement) {
1871 		/* We must have just cleared 'rdev' */
1872 		p->rdev = p->replacement;
1873 		clear_bit(Replacement, &p->replacement->flags);
1874 		smp_mb(); /* Make sure other CPUs may see both as identical
1875 			   * but will never see neither -- if they are careful.
1876 			   */
1877 		p->replacement = NULL;
1878 	}
1879 
1880 	clear_bit(WantReplacement, &rdev->flags);
1881 	err = md_integrity_register(mddev);
1882 
1883 abort:
1884 
1885 	print_conf(conf);
1886 	return err;
1887 }
1888 
1889 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1890 {
1891 	struct r10conf *conf = r10_bio->mddev->private;
1892 
1893 	if (!bio->bi_status)
1894 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1895 	else
1896 		/* The write handler will notice the lack of
1897 		 * R10BIO_Uptodate and record any errors etc
1898 		 */
1899 		atomic_add(r10_bio->sectors,
1900 			   &conf->mirrors[d].rdev->corrected_errors);
1901 
1902 	/* for reconstruct, we always reschedule after a read.
1903 	 * for resync, only after all reads
1904 	 */
1905 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1906 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1907 	    atomic_dec_and_test(&r10_bio->remaining)) {
1908 		/* we have read all the blocks,
1909 		 * do the comparison in process context in raid10d
1910 		 */
1911 		reschedule_retry(r10_bio);
1912 	}
1913 }
1914 
1915 static void end_sync_read(struct bio *bio)
1916 {
1917 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1918 	struct r10conf *conf = r10_bio->mddev->private;
1919 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1920 
1921 	__end_sync_read(r10_bio, bio, d);
1922 }
1923 
1924 static void end_reshape_read(struct bio *bio)
1925 {
1926 	/* reshape read bio isn't allocated from r10buf_pool */
1927 	struct r10bio *r10_bio = bio->bi_private;
1928 
1929 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1930 }
1931 
1932 static void end_sync_request(struct r10bio *r10_bio)
1933 {
1934 	struct mddev *mddev = r10_bio->mddev;
1935 
1936 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1937 		if (r10_bio->master_bio == NULL) {
1938 			/* the primary of several recovery bios */
1939 			sector_t s = r10_bio->sectors;
1940 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1941 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1942 				reschedule_retry(r10_bio);
1943 			else
1944 				put_buf(r10_bio);
1945 			md_done_sync(mddev, s, 1);
1946 			break;
1947 		} else {
1948 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1949 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1950 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1951 				reschedule_retry(r10_bio);
1952 			else
1953 				put_buf(r10_bio);
1954 			r10_bio = r10_bio2;
1955 		}
1956 	}
1957 }
1958 
1959 static void end_sync_write(struct bio *bio)
1960 {
1961 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1962 	struct mddev *mddev = r10_bio->mddev;
1963 	struct r10conf *conf = mddev->private;
1964 	int d;
1965 	sector_t first_bad;
1966 	int bad_sectors;
1967 	int slot;
1968 	int repl;
1969 	struct md_rdev *rdev = NULL;
1970 
1971 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1972 	if (repl)
1973 		rdev = conf->mirrors[d].replacement;
1974 	else
1975 		rdev = conf->mirrors[d].rdev;
1976 
1977 	if (bio->bi_status) {
1978 		if (repl)
1979 			md_error(mddev, rdev);
1980 		else {
1981 			set_bit(WriteErrorSeen, &rdev->flags);
1982 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1983 				set_bit(MD_RECOVERY_NEEDED,
1984 					&rdev->mddev->recovery);
1985 			set_bit(R10BIO_WriteError, &r10_bio->state);
1986 		}
1987 	} else if (is_badblock(rdev,
1988 			     r10_bio->devs[slot].addr,
1989 			     r10_bio->sectors,
1990 			     &first_bad, &bad_sectors))
1991 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1992 
1993 	rdev_dec_pending(rdev, mddev);
1994 
1995 	end_sync_request(r10_bio);
1996 }
1997 
1998 /*
1999  * Note: sync and recover and handled very differently for raid10
2000  * This code is for resync.
2001  * For resync, we read through virtual addresses and read all blocks.
2002  * If there is any error, we schedule a write.  The lowest numbered
2003  * drive is authoritative.
2004  * However requests come for physical address, so we need to map.
2005  * For every physical address there are raid_disks/copies virtual addresses,
2006  * which is always are least one, but is not necessarly an integer.
2007  * This means that a physical address can span multiple chunks, so we may
2008  * have to submit multiple io requests for a single sync request.
2009  */
2010 /*
2011  * We check if all blocks are in-sync and only write to blocks that
2012  * aren't in sync
2013  */
2014 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2015 {
2016 	struct r10conf *conf = mddev->private;
2017 	int i, first;
2018 	struct bio *tbio, *fbio;
2019 	int vcnt;
2020 	struct page **tpages, **fpages;
2021 
2022 	atomic_set(&r10_bio->remaining, 1);
2023 
2024 	/* find the first device with a block */
2025 	for (i=0; i<conf->copies; i++)
2026 		if (!r10_bio->devs[i].bio->bi_status)
2027 			break;
2028 
2029 	if (i == conf->copies)
2030 		goto done;
2031 
2032 	first = i;
2033 	fbio = r10_bio->devs[i].bio;
2034 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2035 	fbio->bi_iter.bi_idx = 0;
2036 	fpages = get_resync_pages(fbio)->pages;
2037 
2038 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2039 	/* now find blocks with errors */
2040 	for (i=0 ; i < conf->copies ; i++) {
2041 		int  j, d;
2042 		struct md_rdev *rdev;
2043 		struct resync_pages *rp;
2044 
2045 		tbio = r10_bio->devs[i].bio;
2046 
2047 		if (tbio->bi_end_io != end_sync_read)
2048 			continue;
2049 		if (i == first)
2050 			continue;
2051 
2052 		tpages = get_resync_pages(tbio)->pages;
2053 		d = r10_bio->devs[i].devnum;
2054 		rdev = conf->mirrors[d].rdev;
2055 		if (!r10_bio->devs[i].bio->bi_status) {
2056 			/* We know that the bi_io_vec layout is the same for
2057 			 * both 'first' and 'i', so we just compare them.
2058 			 * All vec entries are PAGE_SIZE;
2059 			 */
2060 			int sectors = r10_bio->sectors;
2061 			for (j = 0; j < vcnt; j++) {
2062 				int len = PAGE_SIZE;
2063 				if (sectors < (len / 512))
2064 					len = sectors * 512;
2065 				if (memcmp(page_address(fpages[j]),
2066 					   page_address(tpages[j]),
2067 					   len))
2068 					break;
2069 				sectors -= len/512;
2070 			}
2071 			if (j == vcnt)
2072 				continue;
2073 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2074 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2075 				/* Don't fix anything. */
2076 				continue;
2077 		} else if (test_bit(FailFast, &rdev->flags)) {
2078 			/* Just give up on this device */
2079 			md_error(rdev->mddev, rdev);
2080 			continue;
2081 		}
2082 		/* Ok, we need to write this bio, either to correct an
2083 		 * inconsistency or to correct an unreadable block.
2084 		 * First we need to fixup bv_offset, bv_len and
2085 		 * bi_vecs, as the read request might have corrupted these
2086 		 */
2087 		rp = get_resync_pages(tbio);
2088 		bio_reset(tbio);
2089 
2090 		tbio->bi_vcnt = vcnt;
2091 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2092 		rp->raid_bio = r10_bio;
2093 		tbio->bi_private = rp;
2094 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2095 		tbio->bi_end_io = end_sync_write;
2096 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2097 
2098 		bio_copy_data(tbio, fbio);
2099 
2100 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2101 		atomic_inc(&r10_bio->remaining);
2102 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2103 
2104 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2105 			tbio->bi_opf |= MD_FAILFAST;
2106 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2107 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2108 		generic_make_request(tbio);
2109 	}
2110 
2111 	/* Now write out to any replacement devices
2112 	 * that are active
2113 	 */
2114 	for (i = 0; i < conf->copies; i++) {
2115 		int d;
2116 
2117 		tbio = r10_bio->devs[i].repl_bio;
2118 		if (!tbio || !tbio->bi_end_io)
2119 			continue;
2120 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2121 		    && r10_bio->devs[i].bio != fbio)
2122 			bio_copy_data(tbio, fbio);
2123 		d = r10_bio->devs[i].devnum;
2124 		atomic_inc(&r10_bio->remaining);
2125 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2126 			     bio_sectors(tbio));
2127 		generic_make_request(tbio);
2128 	}
2129 
2130 done:
2131 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2132 		md_done_sync(mddev, r10_bio->sectors, 1);
2133 		put_buf(r10_bio);
2134 	}
2135 }
2136 
2137 /*
2138  * Now for the recovery code.
2139  * Recovery happens across physical sectors.
2140  * We recover all non-is_sync drives by finding the virtual address of
2141  * each, and then choose a working drive that also has that virt address.
2142  * There is a separate r10_bio for each non-in_sync drive.
2143  * Only the first two slots are in use. The first for reading,
2144  * The second for writing.
2145  *
2146  */
2147 static void fix_recovery_read_error(struct r10bio *r10_bio)
2148 {
2149 	/* We got a read error during recovery.
2150 	 * We repeat the read in smaller page-sized sections.
2151 	 * If a read succeeds, write it to the new device or record
2152 	 * a bad block if we cannot.
2153 	 * If a read fails, record a bad block on both old and
2154 	 * new devices.
2155 	 */
2156 	struct mddev *mddev = r10_bio->mddev;
2157 	struct r10conf *conf = mddev->private;
2158 	struct bio *bio = r10_bio->devs[0].bio;
2159 	sector_t sect = 0;
2160 	int sectors = r10_bio->sectors;
2161 	int idx = 0;
2162 	int dr = r10_bio->devs[0].devnum;
2163 	int dw = r10_bio->devs[1].devnum;
2164 	struct page **pages = get_resync_pages(bio)->pages;
2165 
2166 	while (sectors) {
2167 		int s = sectors;
2168 		struct md_rdev *rdev;
2169 		sector_t addr;
2170 		int ok;
2171 
2172 		if (s > (PAGE_SIZE>>9))
2173 			s = PAGE_SIZE >> 9;
2174 
2175 		rdev = conf->mirrors[dr].rdev;
2176 		addr = r10_bio->devs[0].addr + sect,
2177 		ok = sync_page_io(rdev,
2178 				  addr,
2179 				  s << 9,
2180 				  pages[idx],
2181 				  REQ_OP_READ, 0, false);
2182 		if (ok) {
2183 			rdev = conf->mirrors[dw].rdev;
2184 			addr = r10_bio->devs[1].addr + sect;
2185 			ok = sync_page_io(rdev,
2186 					  addr,
2187 					  s << 9,
2188 					  pages[idx],
2189 					  REQ_OP_WRITE, 0, false);
2190 			if (!ok) {
2191 				set_bit(WriteErrorSeen, &rdev->flags);
2192 				if (!test_and_set_bit(WantReplacement,
2193 						      &rdev->flags))
2194 					set_bit(MD_RECOVERY_NEEDED,
2195 						&rdev->mddev->recovery);
2196 			}
2197 		}
2198 		if (!ok) {
2199 			/* We don't worry if we cannot set a bad block -
2200 			 * it really is bad so there is no loss in not
2201 			 * recording it yet
2202 			 */
2203 			rdev_set_badblocks(rdev, addr, s, 0);
2204 
2205 			if (rdev != conf->mirrors[dw].rdev) {
2206 				/* need bad block on destination too */
2207 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2208 				addr = r10_bio->devs[1].addr + sect;
2209 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2210 				if (!ok) {
2211 					/* just abort the recovery */
2212 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2213 						  mdname(mddev));
2214 
2215 					conf->mirrors[dw].recovery_disabled
2216 						= mddev->recovery_disabled;
2217 					set_bit(MD_RECOVERY_INTR,
2218 						&mddev->recovery);
2219 					break;
2220 				}
2221 			}
2222 		}
2223 
2224 		sectors -= s;
2225 		sect += s;
2226 		idx++;
2227 	}
2228 }
2229 
2230 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2231 {
2232 	struct r10conf *conf = mddev->private;
2233 	int d;
2234 	struct bio *wbio, *wbio2;
2235 
2236 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2237 		fix_recovery_read_error(r10_bio);
2238 		end_sync_request(r10_bio);
2239 		return;
2240 	}
2241 
2242 	/*
2243 	 * share the pages with the first bio
2244 	 * and submit the write request
2245 	 */
2246 	d = r10_bio->devs[1].devnum;
2247 	wbio = r10_bio->devs[1].bio;
2248 	wbio2 = r10_bio->devs[1].repl_bio;
2249 	/* Need to test wbio2->bi_end_io before we call
2250 	 * generic_make_request as if the former is NULL,
2251 	 * the latter is free to free wbio2.
2252 	 */
2253 	if (wbio2 && !wbio2->bi_end_io)
2254 		wbio2 = NULL;
2255 	if (wbio->bi_end_io) {
2256 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258 		generic_make_request(wbio);
2259 	}
2260 	if (wbio2) {
2261 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2263 			     bio_sectors(wbio2));
2264 		generic_make_request(wbio2);
2265 	}
2266 }
2267 
2268 /*
2269  * Used by fix_read_error() to decay the per rdev read_errors.
2270  * We halve the read error count for every hour that has elapsed
2271  * since the last recorded read error.
2272  *
2273  */
2274 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2275 {
2276 	long cur_time_mon;
2277 	unsigned long hours_since_last;
2278 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2279 
2280 	cur_time_mon = ktime_get_seconds();
2281 
2282 	if (rdev->last_read_error == 0) {
2283 		/* first time we've seen a read error */
2284 		rdev->last_read_error = cur_time_mon;
2285 		return;
2286 	}
2287 
2288 	hours_since_last = (long)(cur_time_mon -
2289 			    rdev->last_read_error) / 3600;
2290 
2291 	rdev->last_read_error = cur_time_mon;
2292 
2293 	/*
2294 	 * if hours_since_last is > the number of bits in read_errors
2295 	 * just set read errors to 0. We do this to avoid
2296 	 * overflowing the shift of read_errors by hours_since_last.
2297 	 */
2298 	if (hours_since_last >= 8 * sizeof(read_errors))
2299 		atomic_set(&rdev->read_errors, 0);
2300 	else
2301 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2302 }
2303 
2304 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2305 			    int sectors, struct page *page, int rw)
2306 {
2307 	sector_t first_bad;
2308 	int bad_sectors;
2309 
2310 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2311 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2312 		return -1;
2313 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2314 		/* success */
2315 		return 1;
2316 	if (rw == WRITE) {
2317 		set_bit(WriteErrorSeen, &rdev->flags);
2318 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319 			set_bit(MD_RECOVERY_NEEDED,
2320 				&rdev->mddev->recovery);
2321 	}
2322 	/* need to record an error - either for the block or the device */
2323 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2324 		md_error(rdev->mddev, rdev);
2325 	return 0;
2326 }
2327 
2328 /*
2329  * This is a kernel thread which:
2330  *
2331  *	1.	Retries failed read operations on working mirrors.
2332  *	2.	Updates the raid superblock when problems encounter.
2333  *	3.	Performs writes following reads for array synchronising.
2334  */
2335 
2336 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2337 {
2338 	int sect = 0; /* Offset from r10_bio->sector */
2339 	int sectors = r10_bio->sectors;
2340 	struct md_rdev*rdev;
2341 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2342 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2343 
2344 	/* still own a reference to this rdev, so it cannot
2345 	 * have been cleared recently.
2346 	 */
2347 	rdev = conf->mirrors[d].rdev;
2348 
2349 	if (test_bit(Faulty, &rdev->flags))
2350 		/* drive has already been failed, just ignore any
2351 		   more fix_read_error() attempts */
2352 		return;
2353 
2354 	check_decay_read_errors(mddev, rdev);
2355 	atomic_inc(&rdev->read_errors);
2356 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2357 		char b[BDEVNAME_SIZE];
2358 		bdevname(rdev->bdev, b);
2359 
2360 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2361 			  mdname(mddev), b,
2362 			  atomic_read(&rdev->read_errors), max_read_errors);
2363 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2364 			  mdname(mddev), b);
2365 		md_error(mddev, rdev);
2366 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2367 		return;
2368 	}
2369 
2370 	while(sectors) {
2371 		int s = sectors;
2372 		int sl = r10_bio->read_slot;
2373 		int success = 0;
2374 		int start;
2375 
2376 		if (s > (PAGE_SIZE>>9))
2377 			s = PAGE_SIZE >> 9;
2378 
2379 		rcu_read_lock();
2380 		do {
2381 			sector_t first_bad;
2382 			int bad_sectors;
2383 
2384 			d = r10_bio->devs[sl].devnum;
2385 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2386 			if (rdev &&
2387 			    test_bit(In_sync, &rdev->flags) &&
2388 			    !test_bit(Faulty, &rdev->flags) &&
2389 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2390 					&first_bad, &bad_sectors) == 0) {
2391 				atomic_inc(&rdev->nr_pending);
2392 				rcu_read_unlock();
2393 				success = sync_page_io(rdev,
2394 						       r10_bio->devs[sl].addr +
2395 						       sect,
2396 						       s<<9,
2397 						       conf->tmppage,
2398 						       REQ_OP_READ, 0, false);
2399 				rdev_dec_pending(rdev, mddev);
2400 				rcu_read_lock();
2401 				if (success)
2402 					break;
2403 			}
2404 			sl++;
2405 			if (sl == conf->copies)
2406 				sl = 0;
2407 		} while (!success && sl != r10_bio->read_slot);
2408 		rcu_read_unlock();
2409 
2410 		if (!success) {
2411 			/* Cannot read from anywhere, just mark the block
2412 			 * as bad on the first device to discourage future
2413 			 * reads.
2414 			 */
2415 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2416 			rdev = conf->mirrors[dn].rdev;
2417 
2418 			if (!rdev_set_badblocks(
2419 				    rdev,
2420 				    r10_bio->devs[r10_bio->read_slot].addr
2421 				    + sect,
2422 				    s, 0)) {
2423 				md_error(mddev, rdev);
2424 				r10_bio->devs[r10_bio->read_slot].bio
2425 					= IO_BLOCKED;
2426 			}
2427 			break;
2428 		}
2429 
2430 		start = sl;
2431 		/* write it back and re-read */
2432 		rcu_read_lock();
2433 		while (sl != r10_bio->read_slot) {
2434 			char b[BDEVNAME_SIZE];
2435 
2436 			if (sl==0)
2437 				sl = conf->copies;
2438 			sl--;
2439 			d = r10_bio->devs[sl].devnum;
2440 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2441 			if (!rdev ||
2442 			    test_bit(Faulty, &rdev->flags) ||
2443 			    !test_bit(In_sync, &rdev->flags))
2444 				continue;
2445 
2446 			atomic_inc(&rdev->nr_pending);
2447 			rcu_read_unlock();
2448 			if (r10_sync_page_io(rdev,
2449 					     r10_bio->devs[sl].addr +
2450 					     sect,
2451 					     s, conf->tmppage, WRITE)
2452 			    == 0) {
2453 				/* Well, this device is dead */
2454 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2455 					  mdname(mddev), s,
2456 					  (unsigned long long)(
2457 						  sect +
2458 						  choose_data_offset(r10_bio,
2459 								     rdev)),
2460 					  bdevname(rdev->bdev, b));
2461 				pr_notice("md/raid10:%s: %s: failing drive\n",
2462 					  mdname(mddev),
2463 					  bdevname(rdev->bdev, b));
2464 			}
2465 			rdev_dec_pending(rdev, mddev);
2466 			rcu_read_lock();
2467 		}
2468 		sl = start;
2469 		while (sl != r10_bio->read_slot) {
2470 			char b[BDEVNAME_SIZE];
2471 
2472 			if (sl==0)
2473 				sl = conf->copies;
2474 			sl--;
2475 			d = r10_bio->devs[sl].devnum;
2476 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2477 			if (!rdev ||
2478 			    test_bit(Faulty, &rdev->flags) ||
2479 			    !test_bit(In_sync, &rdev->flags))
2480 				continue;
2481 
2482 			atomic_inc(&rdev->nr_pending);
2483 			rcu_read_unlock();
2484 			switch (r10_sync_page_io(rdev,
2485 					     r10_bio->devs[sl].addr +
2486 					     sect,
2487 					     s, conf->tmppage,
2488 						 READ)) {
2489 			case 0:
2490 				/* Well, this device is dead */
2491 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2492 				       mdname(mddev), s,
2493 				       (unsigned long long)(
2494 					       sect +
2495 					       choose_data_offset(r10_bio, rdev)),
2496 				       bdevname(rdev->bdev, b));
2497 				pr_notice("md/raid10:%s: %s: failing drive\n",
2498 				       mdname(mddev),
2499 				       bdevname(rdev->bdev, b));
2500 				break;
2501 			case 1:
2502 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2503 				       mdname(mddev), s,
2504 				       (unsigned long long)(
2505 					       sect +
2506 					       choose_data_offset(r10_bio, rdev)),
2507 				       bdevname(rdev->bdev, b));
2508 				atomic_add(s, &rdev->corrected_errors);
2509 			}
2510 
2511 			rdev_dec_pending(rdev, mddev);
2512 			rcu_read_lock();
2513 		}
2514 		rcu_read_unlock();
2515 
2516 		sectors -= s;
2517 		sect += s;
2518 	}
2519 }
2520 
2521 static int narrow_write_error(struct r10bio *r10_bio, int i)
2522 {
2523 	struct bio *bio = r10_bio->master_bio;
2524 	struct mddev *mddev = r10_bio->mddev;
2525 	struct r10conf *conf = mddev->private;
2526 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2527 	/* bio has the data to be written to slot 'i' where
2528 	 * we just recently had a write error.
2529 	 * We repeatedly clone the bio and trim down to one block,
2530 	 * then try the write.  Where the write fails we record
2531 	 * a bad block.
2532 	 * It is conceivable that the bio doesn't exactly align with
2533 	 * blocks.  We must handle this.
2534 	 *
2535 	 * We currently own a reference to the rdev.
2536 	 */
2537 
2538 	int block_sectors;
2539 	sector_t sector;
2540 	int sectors;
2541 	int sect_to_write = r10_bio->sectors;
2542 	int ok = 1;
2543 
2544 	if (rdev->badblocks.shift < 0)
2545 		return 0;
2546 
2547 	block_sectors = roundup(1 << rdev->badblocks.shift,
2548 				bdev_logical_block_size(rdev->bdev) >> 9);
2549 	sector = r10_bio->sector;
2550 	sectors = ((r10_bio->sector + block_sectors)
2551 		   & ~(sector_t)(block_sectors - 1))
2552 		- sector;
2553 
2554 	while (sect_to_write) {
2555 		struct bio *wbio;
2556 		sector_t wsector;
2557 		if (sectors > sect_to_write)
2558 			sectors = sect_to_write;
2559 		/* Write at 'sector' for 'sectors' */
2560 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2561 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2562 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2563 		wbio->bi_iter.bi_sector = wsector +
2564 				   choose_data_offset(r10_bio, rdev);
2565 		wbio->bi_bdev = rdev->bdev;
2566 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2567 
2568 		if (submit_bio_wait(wbio) < 0)
2569 			/* Failure! */
2570 			ok = rdev_set_badblocks(rdev, wsector,
2571 						sectors, 0)
2572 				&& ok;
2573 
2574 		bio_put(wbio);
2575 		sect_to_write -= sectors;
2576 		sector += sectors;
2577 		sectors = block_sectors;
2578 	}
2579 	return ok;
2580 }
2581 
2582 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2583 {
2584 	int slot = r10_bio->read_slot;
2585 	struct bio *bio;
2586 	struct r10conf *conf = mddev->private;
2587 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2588 	dev_t bio_dev;
2589 	sector_t bio_last_sector;
2590 
2591 	/* we got a read error. Maybe the drive is bad.  Maybe just
2592 	 * the block and we can fix it.
2593 	 * We freeze all other IO, and try reading the block from
2594 	 * other devices.  When we find one, we re-write
2595 	 * and check it that fixes the read error.
2596 	 * This is all done synchronously while the array is
2597 	 * frozen.
2598 	 */
2599 	bio = r10_bio->devs[slot].bio;
2600 	bio_dev = bio->bi_bdev->bd_dev;
2601 	bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2602 	bio_put(bio);
2603 	r10_bio->devs[slot].bio = NULL;
2604 
2605 	if (mddev->ro)
2606 		r10_bio->devs[slot].bio = IO_BLOCKED;
2607 	else if (!test_bit(FailFast, &rdev->flags)) {
2608 		freeze_array(conf, 1);
2609 		fix_read_error(conf, mddev, r10_bio);
2610 		unfreeze_array(conf);
2611 	} else
2612 		md_error(mddev, rdev);
2613 
2614 	rdev_dec_pending(rdev, mddev);
2615 	allow_barrier(conf);
2616 	r10_bio->state = 0;
2617 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2618 }
2619 
2620 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2621 {
2622 	/* Some sort of write request has finished and it
2623 	 * succeeded in writing where we thought there was a
2624 	 * bad block.  So forget the bad block.
2625 	 * Or possibly if failed and we need to record
2626 	 * a bad block.
2627 	 */
2628 	int m;
2629 	struct md_rdev *rdev;
2630 
2631 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2632 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2633 		for (m = 0; m < conf->copies; m++) {
2634 			int dev = r10_bio->devs[m].devnum;
2635 			rdev = conf->mirrors[dev].rdev;
2636 			if (r10_bio->devs[m].bio == NULL)
2637 				continue;
2638 			if (!r10_bio->devs[m].bio->bi_status) {
2639 				rdev_clear_badblocks(
2640 					rdev,
2641 					r10_bio->devs[m].addr,
2642 					r10_bio->sectors, 0);
2643 			} else {
2644 				if (!rdev_set_badblocks(
2645 					    rdev,
2646 					    r10_bio->devs[m].addr,
2647 					    r10_bio->sectors, 0))
2648 					md_error(conf->mddev, rdev);
2649 			}
2650 			rdev = conf->mirrors[dev].replacement;
2651 			if (r10_bio->devs[m].repl_bio == NULL)
2652 				continue;
2653 
2654 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2655 				rdev_clear_badblocks(
2656 					rdev,
2657 					r10_bio->devs[m].addr,
2658 					r10_bio->sectors, 0);
2659 			} else {
2660 				if (!rdev_set_badblocks(
2661 					    rdev,
2662 					    r10_bio->devs[m].addr,
2663 					    r10_bio->sectors, 0))
2664 					md_error(conf->mddev, rdev);
2665 			}
2666 		}
2667 		put_buf(r10_bio);
2668 	} else {
2669 		bool fail = false;
2670 		for (m = 0; m < conf->copies; m++) {
2671 			int dev = r10_bio->devs[m].devnum;
2672 			struct bio *bio = r10_bio->devs[m].bio;
2673 			rdev = conf->mirrors[dev].rdev;
2674 			if (bio == IO_MADE_GOOD) {
2675 				rdev_clear_badblocks(
2676 					rdev,
2677 					r10_bio->devs[m].addr,
2678 					r10_bio->sectors, 0);
2679 				rdev_dec_pending(rdev, conf->mddev);
2680 			} else if (bio != NULL && bio->bi_status) {
2681 				fail = true;
2682 				if (!narrow_write_error(r10_bio, m)) {
2683 					md_error(conf->mddev, rdev);
2684 					set_bit(R10BIO_Degraded,
2685 						&r10_bio->state);
2686 				}
2687 				rdev_dec_pending(rdev, conf->mddev);
2688 			}
2689 			bio = r10_bio->devs[m].repl_bio;
2690 			rdev = conf->mirrors[dev].replacement;
2691 			if (rdev && bio == IO_MADE_GOOD) {
2692 				rdev_clear_badblocks(
2693 					rdev,
2694 					r10_bio->devs[m].addr,
2695 					r10_bio->sectors, 0);
2696 				rdev_dec_pending(rdev, conf->mddev);
2697 			}
2698 		}
2699 		if (fail) {
2700 			spin_lock_irq(&conf->device_lock);
2701 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2702 			conf->nr_queued++;
2703 			spin_unlock_irq(&conf->device_lock);
2704 			/*
2705 			 * In case freeze_array() is waiting for condition
2706 			 * nr_pending == nr_queued + extra to be true.
2707 			 */
2708 			wake_up(&conf->wait_barrier);
2709 			md_wakeup_thread(conf->mddev->thread);
2710 		} else {
2711 			if (test_bit(R10BIO_WriteError,
2712 				     &r10_bio->state))
2713 				close_write(r10_bio);
2714 			raid_end_bio_io(r10_bio);
2715 		}
2716 	}
2717 }
2718 
2719 static void raid10d(struct md_thread *thread)
2720 {
2721 	struct mddev *mddev = thread->mddev;
2722 	struct r10bio *r10_bio;
2723 	unsigned long flags;
2724 	struct r10conf *conf = mddev->private;
2725 	struct list_head *head = &conf->retry_list;
2726 	struct blk_plug plug;
2727 
2728 	md_check_recovery(mddev);
2729 
2730 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2731 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2732 		LIST_HEAD(tmp);
2733 		spin_lock_irqsave(&conf->device_lock, flags);
2734 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2735 			while (!list_empty(&conf->bio_end_io_list)) {
2736 				list_move(conf->bio_end_io_list.prev, &tmp);
2737 				conf->nr_queued--;
2738 			}
2739 		}
2740 		spin_unlock_irqrestore(&conf->device_lock, flags);
2741 		while (!list_empty(&tmp)) {
2742 			r10_bio = list_first_entry(&tmp, struct r10bio,
2743 						   retry_list);
2744 			list_del(&r10_bio->retry_list);
2745 			if (mddev->degraded)
2746 				set_bit(R10BIO_Degraded, &r10_bio->state);
2747 
2748 			if (test_bit(R10BIO_WriteError,
2749 				     &r10_bio->state))
2750 				close_write(r10_bio);
2751 			raid_end_bio_io(r10_bio);
2752 		}
2753 	}
2754 
2755 	blk_start_plug(&plug);
2756 	for (;;) {
2757 
2758 		flush_pending_writes(conf);
2759 
2760 		spin_lock_irqsave(&conf->device_lock, flags);
2761 		if (list_empty(head)) {
2762 			spin_unlock_irqrestore(&conf->device_lock, flags);
2763 			break;
2764 		}
2765 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766 		list_del(head->prev);
2767 		conf->nr_queued--;
2768 		spin_unlock_irqrestore(&conf->device_lock, flags);
2769 
2770 		mddev = r10_bio->mddev;
2771 		conf = mddev->private;
2772 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2774 			handle_write_completed(conf, r10_bio);
2775 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776 			reshape_request_write(mddev, r10_bio);
2777 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778 			sync_request_write(mddev, r10_bio);
2779 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780 			recovery_request_write(mddev, r10_bio);
2781 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782 			handle_read_error(mddev, r10_bio);
2783 		else
2784 			WARN_ON_ONCE(1);
2785 
2786 		cond_resched();
2787 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2788 			md_check_recovery(mddev);
2789 	}
2790 	blk_finish_plug(&plug);
2791 }
2792 
2793 static int init_resync(struct r10conf *conf)
2794 {
2795 	int buffs;
2796 	int i;
2797 
2798 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2799 	BUG_ON(conf->r10buf_pool);
2800 	conf->have_replacement = 0;
2801 	for (i = 0; i < conf->geo.raid_disks; i++)
2802 		if (conf->mirrors[i].replacement)
2803 			conf->have_replacement = 1;
2804 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2805 	if (!conf->r10buf_pool)
2806 		return -ENOMEM;
2807 	conf->next_resync = 0;
2808 	return 0;
2809 }
2810 
2811 /*
2812  * perform a "sync" on one "block"
2813  *
2814  * We need to make sure that no normal I/O request - particularly write
2815  * requests - conflict with active sync requests.
2816  *
2817  * This is achieved by tracking pending requests and a 'barrier' concept
2818  * that can be installed to exclude normal IO requests.
2819  *
2820  * Resync and recovery are handled very differently.
2821  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2822  *
2823  * For resync, we iterate over virtual addresses, read all copies,
2824  * and update if there are differences.  If only one copy is live,
2825  * skip it.
2826  * For recovery, we iterate over physical addresses, read a good
2827  * value for each non-in_sync drive, and over-write.
2828  *
2829  * So, for recovery we may have several outstanding complex requests for a
2830  * given address, one for each out-of-sync device.  We model this by allocating
2831  * a number of r10_bio structures, one for each out-of-sync device.
2832  * As we setup these structures, we collect all bio's together into a list
2833  * which we then process collectively to add pages, and then process again
2834  * to pass to generic_make_request.
2835  *
2836  * The r10_bio structures are linked using a borrowed master_bio pointer.
2837  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2838  * has its remaining count decremented to 0, the whole complex operation
2839  * is complete.
2840  *
2841  */
2842 
2843 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2844 			     int *skipped)
2845 {
2846 	struct r10conf *conf = mddev->private;
2847 	struct r10bio *r10_bio;
2848 	struct bio *biolist = NULL, *bio;
2849 	sector_t max_sector, nr_sectors;
2850 	int i;
2851 	int max_sync;
2852 	sector_t sync_blocks;
2853 	sector_t sectors_skipped = 0;
2854 	int chunks_skipped = 0;
2855 	sector_t chunk_mask = conf->geo.chunk_mask;
2856 
2857 	if (!conf->r10buf_pool)
2858 		if (init_resync(conf))
2859 			return 0;
2860 
2861 	/*
2862 	 * Allow skipping a full rebuild for incremental assembly
2863 	 * of a clean array, like RAID1 does.
2864 	 */
2865 	if (mddev->bitmap == NULL &&
2866 	    mddev->recovery_cp == MaxSector &&
2867 	    mddev->reshape_position == MaxSector &&
2868 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2869 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2870 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2871 	    conf->fullsync == 0) {
2872 		*skipped = 1;
2873 		return mddev->dev_sectors - sector_nr;
2874 	}
2875 
2876  skipped:
2877 	max_sector = mddev->dev_sectors;
2878 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2879 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2880 		max_sector = mddev->resync_max_sectors;
2881 	if (sector_nr >= max_sector) {
2882 		/* If we aborted, we need to abort the
2883 		 * sync on the 'current' bitmap chucks (there can
2884 		 * be several when recovering multiple devices).
2885 		 * as we may have started syncing it but not finished.
2886 		 * We can find the current address in
2887 		 * mddev->curr_resync, but for recovery,
2888 		 * we need to convert that to several
2889 		 * virtual addresses.
2890 		 */
2891 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2892 			end_reshape(conf);
2893 			close_sync(conf);
2894 			return 0;
2895 		}
2896 
2897 		if (mddev->curr_resync < max_sector) { /* aborted */
2898 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2899 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2900 						&sync_blocks, 1);
2901 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2902 				sector_t sect =
2903 					raid10_find_virt(conf, mddev->curr_resync, i);
2904 				bitmap_end_sync(mddev->bitmap, sect,
2905 						&sync_blocks, 1);
2906 			}
2907 		} else {
2908 			/* completed sync */
2909 			if ((!mddev->bitmap || conf->fullsync)
2910 			    && conf->have_replacement
2911 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2912 				/* Completed a full sync so the replacements
2913 				 * are now fully recovered.
2914 				 */
2915 				rcu_read_lock();
2916 				for (i = 0; i < conf->geo.raid_disks; i++) {
2917 					struct md_rdev *rdev =
2918 						rcu_dereference(conf->mirrors[i].replacement);
2919 					if (rdev)
2920 						rdev->recovery_offset = MaxSector;
2921 				}
2922 				rcu_read_unlock();
2923 			}
2924 			conf->fullsync = 0;
2925 		}
2926 		bitmap_close_sync(mddev->bitmap);
2927 		close_sync(conf);
2928 		*skipped = 1;
2929 		return sectors_skipped;
2930 	}
2931 
2932 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2933 		return reshape_request(mddev, sector_nr, skipped);
2934 
2935 	if (chunks_skipped >= conf->geo.raid_disks) {
2936 		/* if there has been nothing to do on any drive,
2937 		 * then there is nothing to do at all..
2938 		 */
2939 		*skipped = 1;
2940 		return (max_sector - sector_nr) + sectors_skipped;
2941 	}
2942 
2943 	if (max_sector > mddev->resync_max)
2944 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2945 
2946 	/* make sure whole request will fit in a chunk - if chunks
2947 	 * are meaningful
2948 	 */
2949 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2950 	    max_sector > (sector_nr | chunk_mask))
2951 		max_sector = (sector_nr | chunk_mask) + 1;
2952 
2953 	/*
2954 	 * If there is non-resync activity waiting for a turn, then let it
2955 	 * though before starting on this new sync request.
2956 	 */
2957 	if (conf->nr_waiting)
2958 		schedule_timeout_uninterruptible(1);
2959 
2960 	/* Again, very different code for resync and recovery.
2961 	 * Both must result in an r10bio with a list of bios that
2962 	 * have bi_end_io, bi_sector, bi_bdev set,
2963 	 * and bi_private set to the r10bio.
2964 	 * For recovery, we may actually create several r10bios
2965 	 * with 2 bios in each, that correspond to the bios in the main one.
2966 	 * In this case, the subordinate r10bios link back through a
2967 	 * borrowed master_bio pointer, and the counter in the master
2968 	 * includes a ref from each subordinate.
2969 	 */
2970 	/* First, we decide what to do and set ->bi_end_io
2971 	 * To end_sync_read if we want to read, and
2972 	 * end_sync_write if we will want to write.
2973 	 */
2974 
2975 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2976 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2977 		/* recovery... the complicated one */
2978 		int j;
2979 		r10_bio = NULL;
2980 
2981 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2982 			int still_degraded;
2983 			struct r10bio *rb2;
2984 			sector_t sect;
2985 			int must_sync;
2986 			int any_working;
2987 			struct raid10_info *mirror = &conf->mirrors[i];
2988 			struct md_rdev *mrdev, *mreplace;
2989 
2990 			rcu_read_lock();
2991 			mrdev = rcu_dereference(mirror->rdev);
2992 			mreplace = rcu_dereference(mirror->replacement);
2993 
2994 			if ((mrdev == NULL ||
2995 			     test_bit(Faulty, &mrdev->flags) ||
2996 			     test_bit(In_sync, &mrdev->flags)) &&
2997 			    (mreplace == NULL ||
2998 			     test_bit(Faulty, &mreplace->flags))) {
2999 				rcu_read_unlock();
3000 				continue;
3001 			}
3002 
3003 			still_degraded = 0;
3004 			/* want to reconstruct this device */
3005 			rb2 = r10_bio;
3006 			sect = raid10_find_virt(conf, sector_nr, i);
3007 			if (sect >= mddev->resync_max_sectors) {
3008 				/* last stripe is not complete - don't
3009 				 * try to recover this sector.
3010 				 */
3011 				rcu_read_unlock();
3012 				continue;
3013 			}
3014 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3015 				mreplace = NULL;
3016 			/* Unless we are doing a full sync, or a replacement
3017 			 * we only need to recover the block if it is set in
3018 			 * the bitmap
3019 			 */
3020 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3021 						      &sync_blocks, 1);
3022 			if (sync_blocks < max_sync)
3023 				max_sync = sync_blocks;
3024 			if (!must_sync &&
3025 			    mreplace == NULL &&
3026 			    !conf->fullsync) {
3027 				/* yep, skip the sync_blocks here, but don't assume
3028 				 * that there will never be anything to do here
3029 				 */
3030 				chunks_skipped = -1;
3031 				rcu_read_unlock();
3032 				continue;
3033 			}
3034 			atomic_inc(&mrdev->nr_pending);
3035 			if (mreplace)
3036 				atomic_inc(&mreplace->nr_pending);
3037 			rcu_read_unlock();
3038 
3039 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3040 			r10_bio->state = 0;
3041 			raise_barrier(conf, rb2 != NULL);
3042 			atomic_set(&r10_bio->remaining, 0);
3043 
3044 			r10_bio->master_bio = (struct bio*)rb2;
3045 			if (rb2)
3046 				atomic_inc(&rb2->remaining);
3047 			r10_bio->mddev = mddev;
3048 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3049 			r10_bio->sector = sect;
3050 
3051 			raid10_find_phys(conf, r10_bio);
3052 
3053 			/* Need to check if the array will still be
3054 			 * degraded
3055 			 */
3056 			rcu_read_lock();
3057 			for (j = 0; j < conf->geo.raid_disks; j++) {
3058 				struct md_rdev *rdev = rcu_dereference(
3059 					conf->mirrors[j].rdev);
3060 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3061 					still_degraded = 1;
3062 					break;
3063 				}
3064 			}
3065 
3066 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3067 						      &sync_blocks, still_degraded);
3068 
3069 			any_working = 0;
3070 			for (j=0; j<conf->copies;j++) {
3071 				int k;
3072 				int d = r10_bio->devs[j].devnum;
3073 				sector_t from_addr, to_addr;
3074 				struct md_rdev *rdev =
3075 					rcu_dereference(conf->mirrors[d].rdev);
3076 				sector_t sector, first_bad;
3077 				int bad_sectors;
3078 				if (!rdev ||
3079 				    !test_bit(In_sync, &rdev->flags))
3080 					continue;
3081 				/* This is where we read from */
3082 				any_working = 1;
3083 				sector = r10_bio->devs[j].addr;
3084 
3085 				if (is_badblock(rdev, sector, max_sync,
3086 						&first_bad, &bad_sectors)) {
3087 					if (first_bad > sector)
3088 						max_sync = first_bad - sector;
3089 					else {
3090 						bad_sectors -= (sector
3091 								- first_bad);
3092 						if (max_sync > bad_sectors)
3093 							max_sync = bad_sectors;
3094 						continue;
3095 					}
3096 				}
3097 				bio = r10_bio->devs[0].bio;
3098 				bio->bi_next = biolist;
3099 				biolist = bio;
3100 				bio->bi_end_io = end_sync_read;
3101 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3102 				if (test_bit(FailFast, &rdev->flags))
3103 					bio->bi_opf |= MD_FAILFAST;
3104 				from_addr = r10_bio->devs[j].addr;
3105 				bio->bi_iter.bi_sector = from_addr +
3106 					rdev->data_offset;
3107 				bio->bi_bdev = rdev->bdev;
3108 				atomic_inc(&rdev->nr_pending);
3109 				/* and we write to 'i' (if not in_sync) */
3110 
3111 				for (k=0; k<conf->copies; k++)
3112 					if (r10_bio->devs[k].devnum == i)
3113 						break;
3114 				BUG_ON(k == conf->copies);
3115 				to_addr = r10_bio->devs[k].addr;
3116 				r10_bio->devs[0].devnum = d;
3117 				r10_bio->devs[0].addr = from_addr;
3118 				r10_bio->devs[1].devnum = i;
3119 				r10_bio->devs[1].addr = to_addr;
3120 
3121 				if (!test_bit(In_sync, &mrdev->flags)) {
3122 					bio = r10_bio->devs[1].bio;
3123 					bio->bi_next = biolist;
3124 					biolist = bio;
3125 					bio->bi_end_io = end_sync_write;
3126 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3127 					bio->bi_iter.bi_sector = to_addr
3128 						+ mrdev->data_offset;
3129 					bio->bi_bdev = mrdev->bdev;
3130 					atomic_inc(&r10_bio->remaining);
3131 				} else
3132 					r10_bio->devs[1].bio->bi_end_io = NULL;
3133 
3134 				/* and maybe write to replacement */
3135 				bio = r10_bio->devs[1].repl_bio;
3136 				if (bio)
3137 					bio->bi_end_io = NULL;
3138 				/* Note: if mreplace != NULL, then bio
3139 				 * cannot be NULL as r10buf_pool_alloc will
3140 				 * have allocated it.
3141 				 * So the second test here is pointless.
3142 				 * But it keeps semantic-checkers happy, and
3143 				 * this comment keeps human reviewers
3144 				 * happy.
3145 				 */
3146 				if (mreplace == NULL || bio == NULL ||
3147 				    test_bit(Faulty, &mreplace->flags))
3148 					break;
3149 				bio->bi_next = biolist;
3150 				biolist = bio;
3151 				bio->bi_end_io = end_sync_write;
3152 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3153 				bio->bi_iter.bi_sector = to_addr +
3154 					mreplace->data_offset;
3155 				bio->bi_bdev = mreplace->bdev;
3156 				atomic_inc(&r10_bio->remaining);
3157 				break;
3158 			}
3159 			rcu_read_unlock();
3160 			if (j == conf->copies) {
3161 				/* Cannot recover, so abort the recovery or
3162 				 * record a bad block */
3163 				if (any_working) {
3164 					/* problem is that there are bad blocks
3165 					 * on other device(s)
3166 					 */
3167 					int k;
3168 					for (k = 0; k < conf->copies; k++)
3169 						if (r10_bio->devs[k].devnum == i)
3170 							break;
3171 					if (!test_bit(In_sync,
3172 						      &mrdev->flags)
3173 					    && !rdev_set_badblocks(
3174 						    mrdev,
3175 						    r10_bio->devs[k].addr,
3176 						    max_sync, 0))
3177 						any_working = 0;
3178 					if (mreplace &&
3179 					    !rdev_set_badblocks(
3180 						    mreplace,
3181 						    r10_bio->devs[k].addr,
3182 						    max_sync, 0))
3183 						any_working = 0;
3184 				}
3185 				if (!any_working)  {
3186 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3187 							      &mddev->recovery))
3188 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3189 						       mdname(mddev));
3190 					mirror->recovery_disabled
3191 						= mddev->recovery_disabled;
3192 				}
3193 				put_buf(r10_bio);
3194 				if (rb2)
3195 					atomic_dec(&rb2->remaining);
3196 				r10_bio = rb2;
3197 				rdev_dec_pending(mrdev, mddev);
3198 				if (mreplace)
3199 					rdev_dec_pending(mreplace, mddev);
3200 				break;
3201 			}
3202 			rdev_dec_pending(mrdev, mddev);
3203 			if (mreplace)
3204 				rdev_dec_pending(mreplace, mddev);
3205 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3206 				/* Only want this if there is elsewhere to
3207 				 * read from. 'j' is currently the first
3208 				 * readable copy.
3209 				 */
3210 				int targets = 1;
3211 				for (; j < conf->copies; j++) {
3212 					int d = r10_bio->devs[j].devnum;
3213 					if (conf->mirrors[d].rdev &&
3214 					    test_bit(In_sync,
3215 						      &conf->mirrors[d].rdev->flags))
3216 						targets++;
3217 				}
3218 				if (targets == 1)
3219 					r10_bio->devs[0].bio->bi_opf
3220 						&= ~MD_FAILFAST;
3221 			}
3222 		}
3223 		if (biolist == NULL) {
3224 			while (r10_bio) {
3225 				struct r10bio *rb2 = r10_bio;
3226 				r10_bio = (struct r10bio*) rb2->master_bio;
3227 				rb2->master_bio = NULL;
3228 				put_buf(rb2);
3229 			}
3230 			goto giveup;
3231 		}
3232 	} else {
3233 		/* resync. Schedule a read for every block at this virt offset */
3234 		int count = 0;
3235 
3236 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3237 
3238 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3239 				       &sync_blocks, mddev->degraded) &&
3240 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3241 						 &mddev->recovery)) {
3242 			/* We can skip this block */
3243 			*skipped = 1;
3244 			return sync_blocks + sectors_skipped;
3245 		}
3246 		if (sync_blocks < max_sync)
3247 			max_sync = sync_blocks;
3248 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3249 		r10_bio->state = 0;
3250 
3251 		r10_bio->mddev = mddev;
3252 		atomic_set(&r10_bio->remaining, 0);
3253 		raise_barrier(conf, 0);
3254 		conf->next_resync = sector_nr;
3255 
3256 		r10_bio->master_bio = NULL;
3257 		r10_bio->sector = sector_nr;
3258 		set_bit(R10BIO_IsSync, &r10_bio->state);
3259 		raid10_find_phys(conf, r10_bio);
3260 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3261 
3262 		for (i = 0; i < conf->copies; i++) {
3263 			int d = r10_bio->devs[i].devnum;
3264 			sector_t first_bad, sector;
3265 			int bad_sectors;
3266 			struct md_rdev *rdev;
3267 
3268 			if (r10_bio->devs[i].repl_bio)
3269 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3270 
3271 			bio = r10_bio->devs[i].bio;
3272 			bio->bi_status = BLK_STS_IOERR;
3273 			rcu_read_lock();
3274 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3275 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3276 				rcu_read_unlock();
3277 				continue;
3278 			}
3279 			sector = r10_bio->devs[i].addr;
3280 			if (is_badblock(rdev, sector, max_sync,
3281 					&first_bad, &bad_sectors)) {
3282 				if (first_bad > sector)
3283 					max_sync = first_bad - sector;
3284 				else {
3285 					bad_sectors -= (sector - first_bad);
3286 					if (max_sync > bad_sectors)
3287 						max_sync = bad_sectors;
3288 					rcu_read_unlock();
3289 					continue;
3290 				}
3291 			}
3292 			atomic_inc(&rdev->nr_pending);
3293 			atomic_inc(&r10_bio->remaining);
3294 			bio->bi_next = biolist;
3295 			biolist = bio;
3296 			bio->bi_end_io = end_sync_read;
3297 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3298 			if (test_bit(FailFast, &rdev->flags))
3299 				bio->bi_opf |= MD_FAILFAST;
3300 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3301 			bio->bi_bdev = rdev->bdev;
3302 			count++;
3303 
3304 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3305 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3306 				rcu_read_unlock();
3307 				continue;
3308 			}
3309 			atomic_inc(&rdev->nr_pending);
3310 
3311 			/* Need to set up for writing to the replacement */
3312 			bio = r10_bio->devs[i].repl_bio;
3313 			bio->bi_status = BLK_STS_IOERR;
3314 
3315 			sector = r10_bio->devs[i].addr;
3316 			bio->bi_next = biolist;
3317 			biolist = bio;
3318 			bio->bi_end_io = end_sync_write;
3319 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3320 			if (test_bit(FailFast, &rdev->flags))
3321 				bio->bi_opf |= MD_FAILFAST;
3322 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3323 			bio->bi_bdev = rdev->bdev;
3324 			count++;
3325 			rcu_read_unlock();
3326 		}
3327 
3328 		if (count < 2) {
3329 			for (i=0; i<conf->copies; i++) {
3330 				int d = r10_bio->devs[i].devnum;
3331 				if (r10_bio->devs[i].bio->bi_end_io)
3332 					rdev_dec_pending(conf->mirrors[d].rdev,
3333 							 mddev);
3334 				if (r10_bio->devs[i].repl_bio &&
3335 				    r10_bio->devs[i].repl_bio->bi_end_io)
3336 					rdev_dec_pending(
3337 						conf->mirrors[d].replacement,
3338 						mddev);
3339 			}
3340 			put_buf(r10_bio);
3341 			biolist = NULL;
3342 			goto giveup;
3343 		}
3344 	}
3345 
3346 	nr_sectors = 0;
3347 	if (sector_nr + max_sync < max_sector)
3348 		max_sector = sector_nr + max_sync;
3349 	do {
3350 		struct page *page;
3351 		int len = PAGE_SIZE;
3352 		if (sector_nr + (len>>9) > max_sector)
3353 			len = (max_sector - sector_nr) << 9;
3354 		if (len == 0)
3355 			break;
3356 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3357 			struct resync_pages *rp = get_resync_pages(bio);
3358 			page = resync_fetch_page(rp, rp->idx++);
3359 			/*
3360 			 * won't fail because the vec table is big enough
3361 			 * to hold all these pages
3362 			 */
3363 			bio_add_page(bio, page, len, 0);
3364 		}
3365 		nr_sectors += len>>9;
3366 		sector_nr += len>>9;
3367 	} while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3368 	r10_bio->sectors = nr_sectors;
3369 
3370 	while (biolist) {
3371 		bio = biolist;
3372 		biolist = biolist->bi_next;
3373 
3374 		bio->bi_next = NULL;
3375 		r10_bio = get_resync_r10bio(bio);
3376 		r10_bio->sectors = nr_sectors;
3377 
3378 		if (bio->bi_end_io == end_sync_read) {
3379 			md_sync_acct(bio->bi_bdev, nr_sectors);
3380 			bio->bi_status = 0;
3381 			generic_make_request(bio);
3382 		}
3383 	}
3384 
3385 	if (sectors_skipped)
3386 		/* pretend they weren't skipped, it makes
3387 		 * no important difference in this case
3388 		 */
3389 		md_done_sync(mddev, sectors_skipped, 1);
3390 
3391 	return sectors_skipped + nr_sectors;
3392  giveup:
3393 	/* There is nowhere to write, so all non-sync
3394 	 * drives must be failed or in resync, all drives
3395 	 * have a bad block, so try the next chunk...
3396 	 */
3397 	if (sector_nr + max_sync < max_sector)
3398 		max_sector = sector_nr + max_sync;
3399 
3400 	sectors_skipped += (max_sector - sector_nr);
3401 	chunks_skipped ++;
3402 	sector_nr = max_sector;
3403 	goto skipped;
3404 }
3405 
3406 static sector_t
3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3408 {
3409 	sector_t size;
3410 	struct r10conf *conf = mddev->private;
3411 
3412 	if (!raid_disks)
3413 		raid_disks = min(conf->geo.raid_disks,
3414 				 conf->prev.raid_disks);
3415 	if (!sectors)
3416 		sectors = conf->dev_sectors;
3417 
3418 	size = sectors >> conf->geo.chunk_shift;
3419 	sector_div(size, conf->geo.far_copies);
3420 	size = size * raid_disks;
3421 	sector_div(size, conf->geo.near_copies);
3422 
3423 	return size << conf->geo.chunk_shift;
3424 }
3425 
3426 static void calc_sectors(struct r10conf *conf, sector_t size)
3427 {
3428 	/* Calculate the number of sectors-per-device that will
3429 	 * actually be used, and set conf->dev_sectors and
3430 	 * conf->stride
3431 	 */
3432 
3433 	size = size >> conf->geo.chunk_shift;
3434 	sector_div(size, conf->geo.far_copies);
3435 	size = size * conf->geo.raid_disks;
3436 	sector_div(size, conf->geo.near_copies);
3437 	/* 'size' is now the number of chunks in the array */
3438 	/* calculate "used chunks per device" */
3439 	size = size * conf->copies;
3440 
3441 	/* We need to round up when dividing by raid_disks to
3442 	 * get the stride size.
3443 	 */
3444 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3445 
3446 	conf->dev_sectors = size << conf->geo.chunk_shift;
3447 
3448 	if (conf->geo.far_offset)
3449 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3450 	else {
3451 		sector_div(size, conf->geo.far_copies);
3452 		conf->geo.stride = size << conf->geo.chunk_shift;
3453 	}
3454 }
3455 
3456 enum geo_type {geo_new, geo_old, geo_start};
3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3458 {
3459 	int nc, fc, fo;
3460 	int layout, chunk, disks;
3461 	switch (new) {
3462 	case geo_old:
3463 		layout = mddev->layout;
3464 		chunk = mddev->chunk_sectors;
3465 		disks = mddev->raid_disks - mddev->delta_disks;
3466 		break;
3467 	case geo_new:
3468 		layout = mddev->new_layout;
3469 		chunk = mddev->new_chunk_sectors;
3470 		disks = mddev->raid_disks;
3471 		break;
3472 	default: /* avoid 'may be unused' warnings */
3473 	case geo_start: /* new when starting reshape - raid_disks not
3474 			 * updated yet. */
3475 		layout = mddev->new_layout;
3476 		chunk = mddev->new_chunk_sectors;
3477 		disks = mddev->raid_disks + mddev->delta_disks;
3478 		break;
3479 	}
3480 	if (layout >> 19)
3481 		return -1;
3482 	if (chunk < (PAGE_SIZE >> 9) ||
3483 	    !is_power_of_2(chunk))
3484 		return -2;
3485 	nc = layout & 255;
3486 	fc = (layout >> 8) & 255;
3487 	fo = layout & (1<<16);
3488 	geo->raid_disks = disks;
3489 	geo->near_copies = nc;
3490 	geo->far_copies = fc;
3491 	geo->far_offset = fo;
3492 	switch (layout >> 17) {
3493 	case 0:	/* original layout.  simple but not always optimal */
3494 		geo->far_set_size = disks;
3495 		break;
3496 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3497 		 * actually using this, but leave code here just in case.*/
3498 		geo->far_set_size = disks/fc;
3499 		WARN(geo->far_set_size < fc,
3500 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3501 		break;
3502 	case 2: /* "improved" layout fixed to match documentation */
3503 		geo->far_set_size = fc * nc;
3504 		break;
3505 	default: /* Not a valid layout */
3506 		return -1;
3507 	}
3508 	geo->chunk_mask = chunk - 1;
3509 	geo->chunk_shift = ffz(~chunk);
3510 	return nc*fc;
3511 }
3512 
3513 static struct r10conf *setup_conf(struct mddev *mddev)
3514 {
3515 	struct r10conf *conf = NULL;
3516 	int err = -EINVAL;
3517 	struct geom geo;
3518 	int copies;
3519 
3520 	copies = setup_geo(&geo, mddev, geo_new);
3521 
3522 	if (copies == -2) {
3523 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3524 			mdname(mddev), PAGE_SIZE);
3525 		goto out;
3526 	}
3527 
3528 	if (copies < 2 || copies > mddev->raid_disks) {
3529 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3530 			mdname(mddev), mddev->new_layout);
3531 		goto out;
3532 	}
3533 
3534 	err = -ENOMEM;
3535 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3536 	if (!conf)
3537 		goto out;
3538 
3539 	/* FIXME calc properly */
3540 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3541 							    max(0,-mddev->delta_disks)),
3542 				GFP_KERNEL);
3543 	if (!conf->mirrors)
3544 		goto out;
3545 
3546 	conf->tmppage = alloc_page(GFP_KERNEL);
3547 	if (!conf->tmppage)
3548 		goto out;
3549 
3550 	conf->geo = geo;
3551 	conf->copies = copies;
3552 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3553 					   r10bio_pool_free, conf);
3554 	if (!conf->r10bio_pool)
3555 		goto out;
3556 
3557 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3558 	if (!conf->bio_split)
3559 		goto out;
3560 
3561 	calc_sectors(conf, mddev->dev_sectors);
3562 	if (mddev->reshape_position == MaxSector) {
3563 		conf->prev = conf->geo;
3564 		conf->reshape_progress = MaxSector;
3565 	} else {
3566 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3567 			err = -EINVAL;
3568 			goto out;
3569 		}
3570 		conf->reshape_progress = mddev->reshape_position;
3571 		if (conf->prev.far_offset)
3572 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3573 		else
3574 			/* far_copies must be 1 */
3575 			conf->prev.stride = conf->dev_sectors;
3576 	}
3577 	conf->reshape_safe = conf->reshape_progress;
3578 	spin_lock_init(&conf->device_lock);
3579 	INIT_LIST_HEAD(&conf->retry_list);
3580 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3581 
3582 	spin_lock_init(&conf->resync_lock);
3583 	init_waitqueue_head(&conf->wait_barrier);
3584 	atomic_set(&conf->nr_pending, 0);
3585 
3586 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3587 	if (!conf->thread)
3588 		goto out;
3589 
3590 	conf->mddev = mddev;
3591 	return conf;
3592 
3593  out:
3594 	if (conf) {
3595 		mempool_destroy(conf->r10bio_pool);
3596 		kfree(conf->mirrors);
3597 		safe_put_page(conf->tmppage);
3598 		if (conf->bio_split)
3599 			bioset_free(conf->bio_split);
3600 		kfree(conf);
3601 	}
3602 	return ERR_PTR(err);
3603 }
3604 
3605 static int raid10_run(struct mddev *mddev)
3606 {
3607 	struct r10conf *conf;
3608 	int i, disk_idx, chunk_size;
3609 	struct raid10_info *disk;
3610 	struct md_rdev *rdev;
3611 	sector_t size;
3612 	sector_t min_offset_diff = 0;
3613 	int first = 1;
3614 	bool discard_supported = false;
3615 
3616 	if (mddev_init_writes_pending(mddev) < 0)
3617 		return -ENOMEM;
3618 
3619 	if (mddev->private == NULL) {
3620 		conf = setup_conf(mddev);
3621 		if (IS_ERR(conf))
3622 			return PTR_ERR(conf);
3623 		mddev->private = conf;
3624 	}
3625 	conf = mddev->private;
3626 	if (!conf)
3627 		goto out;
3628 
3629 	mddev->thread = conf->thread;
3630 	conf->thread = NULL;
3631 
3632 	chunk_size = mddev->chunk_sectors << 9;
3633 	if (mddev->queue) {
3634 		blk_queue_max_discard_sectors(mddev->queue,
3635 					      mddev->chunk_sectors);
3636 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3637 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3638 		blk_queue_io_min(mddev->queue, chunk_size);
3639 		if (conf->geo.raid_disks % conf->geo.near_copies)
3640 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3641 		else
3642 			blk_queue_io_opt(mddev->queue, chunk_size *
3643 					 (conf->geo.raid_disks / conf->geo.near_copies));
3644 	}
3645 
3646 	rdev_for_each(rdev, mddev) {
3647 		long long diff;
3648 
3649 		disk_idx = rdev->raid_disk;
3650 		if (disk_idx < 0)
3651 			continue;
3652 		if (disk_idx >= conf->geo.raid_disks &&
3653 		    disk_idx >= conf->prev.raid_disks)
3654 			continue;
3655 		disk = conf->mirrors + disk_idx;
3656 
3657 		if (test_bit(Replacement, &rdev->flags)) {
3658 			if (disk->replacement)
3659 				goto out_free_conf;
3660 			disk->replacement = rdev;
3661 		} else {
3662 			if (disk->rdev)
3663 				goto out_free_conf;
3664 			disk->rdev = rdev;
3665 		}
3666 		diff = (rdev->new_data_offset - rdev->data_offset);
3667 		if (!mddev->reshape_backwards)
3668 			diff = -diff;
3669 		if (diff < 0)
3670 			diff = 0;
3671 		if (first || diff < min_offset_diff)
3672 			min_offset_diff = diff;
3673 
3674 		if (mddev->gendisk)
3675 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3676 					  rdev->data_offset << 9);
3677 
3678 		disk->head_position = 0;
3679 
3680 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3681 			discard_supported = true;
3682 		first = 0;
3683 	}
3684 
3685 	if (mddev->queue) {
3686 		if (discard_supported)
3687 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3688 						mddev->queue);
3689 		else
3690 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3691 						  mddev->queue);
3692 	}
3693 	/* need to check that every block has at least one working mirror */
3694 	if (!enough(conf, -1)) {
3695 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3696 		       mdname(mddev));
3697 		goto out_free_conf;
3698 	}
3699 
3700 	if (conf->reshape_progress != MaxSector) {
3701 		/* must ensure that shape change is supported */
3702 		if (conf->geo.far_copies != 1 &&
3703 		    conf->geo.far_offset == 0)
3704 			goto out_free_conf;
3705 		if (conf->prev.far_copies != 1 &&
3706 		    conf->prev.far_offset == 0)
3707 			goto out_free_conf;
3708 	}
3709 
3710 	mddev->degraded = 0;
3711 	for (i = 0;
3712 	     i < conf->geo.raid_disks
3713 		     || i < conf->prev.raid_disks;
3714 	     i++) {
3715 
3716 		disk = conf->mirrors + i;
3717 
3718 		if (!disk->rdev && disk->replacement) {
3719 			/* The replacement is all we have - use it */
3720 			disk->rdev = disk->replacement;
3721 			disk->replacement = NULL;
3722 			clear_bit(Replacement, &disk->rdev->flags);
3723 		}
3724 
3725 		if (!disk->rdev ||
3726 		    !test_bit(In_sync, &disk->rdev->flags)) {
3727 			disk->head_position = 0;
3728 			mddev->degraded++;
3729 			if (disk->rdev &&
3730 			    disk->rdev->saved_raid_disk < 0)
3731 				conf->fullsync = 1;
3732 		}
3733 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3734 	}
3735 
3736 	if (mddev->recovery_cp != MaxSector)
3737 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3738 			  mdname(mddev));
3739 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3740 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3741 		conf->geo.raid_disks);
3742 	/*
3743 	 * Ok, everything is just fine now
3744 	 */
3745 	mddev->dev_sectors = conf->dev_sectors;
3746 	size = raid10_size(mddev, 0, 0);
3747 	md_set_array_sectors(mddev, size);
3748 	mddev->resync_max_sectors = size;
3749 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3750 
3751 	if (mddev->queue) {
3752 		int stripe = conf->geo.raid_disks *
3753 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3754 
3755 		/* Calculate max read-ahead size.
3756 		 * We need to readahead at least twice a whole stripe....
3757 		 * maybe...
3758 		 */
3759 		stripe /= conf->geo.near_copies;
3760 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3761 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3762 	}
3763 
3764 	if (md_integrity_register(mddev))
3765 		goto out_free_conf;
3766 
3767 	if (conf->reshape_progress != MaxSector) {
3768 		unsigned long before_length, after_length;
3769 
3770 		before_length = ((1 << conf->prev.chunk_shift) *
3771 				 conf->prev.far_copies);
3772 		after_length = ((1 << conf->geo.chunk_shift) *
3773 				conf->geo.far_copies);
3774 
3775 		if (max(before_length, after_length) > min_offset_diff) {
3776 			/* This cannot work */
3777 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3778 			goto out_free_conf;
3779 		}
3780 		conf->offset_diff = min_offset_diff;
3781 
3782 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3783 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3784 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3785 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3786 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3787 							"reshape");
3788 	}
3789 
3790 	return 0;
3791 
3792 out_free_conf:
3793 	md_unregister_thread(&mddev->thread);
3794 	mempool_destroy(conf->r10bio_pool);
3795 	safe_put_page(conf->tmppage);
3796 	kfree(conf->mirrors);
3797 	kfree(conf);
3798 	mddev->private = NULL;
3799 out:
3800 	return -EIO;
3801 }
3802 
3803 static void raid10_free(struct mddev *mddev, void *priv)
3804 {
3805 	struct r10conf *conf = priv;
3806 
3807 	mempool_destroy(conf->r10bio_pool);
3808 	safe_put_page(conf->tmppage);
3809 	kfree(conf->mirrors);
3810 	kfree(conf->mirrors_old);
3811 	kfree(conf->mirrors_new);
3812 	if (conf->bio_split)
3813 		bioset_free(conf->bio_split);
3814 	kfree(conf);
3815 }
3816 
3817 static void raid10_quiesce(struct mddev *mddev, int state)
3818 {
3819 	struct r10conf *conf = mddev->private;
3820 
3821 	switch(state) {
3822 	case 1:
3823 		raise_barrier(conf, 0);
3824 		break;
3825 	case 0:
3826 		lower_barrier(conf);
3827 		break;
3828 	}
3829 }
3830 
3831 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3832 {
3833 	/* Resize of 'far' arrays is not supported.
3834 	 * For 'near' and 'offset' arrays we can set the
3835 	 * number of sectors used to be an appropriate multiple
3836 	 * of the chunk size.
3837 	 * For 'offset', this is far_copies*chunksize.
3838 	 * For 'near' the multiplier is the LCM of
3839 	 * near_copies and raid_disks.
3840 	 * So if far_copies > 1 && !far_offset, fail.
3841 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3842 	 * multiply by chunk_size.  Then round to this number.
3843 	 * This is mostly done by raid10_size()
3844 	 */
3845 	struct r10conf *conf = mddev->private;
3846 	sector_t oldsize, size;
3847 
3848 	if (mddev->reshape_position != MaxSector)
3849 		return -EBUSY;
3850 
3851 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3852 		return -EINVAL;
3853 
3854 	oldsize = raid10_size(mddev, 0, 0);
3855 	size = raid10_size(mddev, sectors, 0);
3856 	if (mddev->external_size &&
3857 	    mddev->array_sectors > size)
3858 		return -EINVAL;
3859 	if (mddev->bitmap) {
3860 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3861 		if (ret)
3862 			return ret;
3863 	}
3864 	md_set_array_sectors(mddev, size);
3865 	if (sectors > mddev->dev_sectors &&
3866 	    mddev->recovery_cp > oldsize) {
3867 		mddev->recovery_cp = oldsize;
3868 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3869 	}
3870 	calc_sectors(conf, sectors);
3871 	mddev->dev_sectors = conf->dev_sectors;
3872 	mddev->resync_max_sectors = size;
3873 	return 0;
3874 }
3875 
3876 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3877 {
3878 	struct md_rdev *rdev;
3879 	struct r10conf *conf;
3880 
3881 	if (mddev->degraded > 0) {
3882 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3883 			mdname(mddev));
3884 		return ERR_PTR(-EINVAL);
3885 	}
3886 	sector_div(size, devs);
3887 
3888 	/* Set new parameters */
3889 	mddev->new_level = 10;
3890 	/* new layout: far_copies = 1, near_copies = 2 */
3891 	mddev->new_layout = (1<<8) + 2;
3892 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3893 	mddev->delta_disks = mddev->raid_disks;
3894 	mddev->raid_disks *= 2;
3895 	/* make sure it will be not marked as dirty */
3896 	mddev->recovery_cp = MaxSector;
3897 	mddev->dev_sectors = size;
3898 
3899 	conf = setup_conf(mddev);
3900 	if (!IS_ERR(conf)) {
3901 		rdev_for_each(rdev, mddev)
3902 			if (rdev->raid_disk >= 0) {
3903 				rdev->new_raid_disk = rdev->raid_disk * 2;
3904 				rdev->sectors = size;
3905 			}
3906 		conf->barrier = 1;
3907 	}
3908 
3909 	return conf;
3910 }
3911 
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914 	struct r0conf *raid0_conf;
3915 
3916 	/* raid10 can take over:
3917 	 *  raid0 - providing it has only two drives
3918 	 */
3919 	if (mddev->level == 0) {
3920 		/* for raid0 takeover only one zone is supported */
3921 		raid0_conf = mddev->private;
3922 		if (raid0_conf->nr_strip_zones > 1) {
3923 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3924 				mdname(mddev));
3925 			return ERR_PTR(-EINVAL);
3926 		}
3927 		return raid10_takeover_raid0(mddev,
3928 			raid0_conf->strip_zone->zone_end,
3929 			raid0_conf->strip_zone->nb_dev);
3930 	}
3931 	return ERR_PTR(-EINVAL);
3932 }
3933 
3934 static int raid10_check_reshape(struct mddev *mddev)
3935 {
3936 	/* Called when there is a request to change
3937 	 * - layout (to ->new_layout)
3938 	 * - chunk size (to ->new_chunk_sectors)
3939 	 * - raid_disks (by delta_disks)
3940 	 * or when trying to restart a reshape that was ongoing.
3941 	 *
3942 	 * We need to validate the request and possibly allocate
3943 	 * space if that might be an issue later.
3944 	 *
3945 	 * Currently we reject any reshape of a 'far' mode array,
3946 	 * allow chunk size to change if new is generally acceptable,
3947 	 * allow raid_disks to increase, and allow
3948 	 * a switch between 'near' mode and 'offset' mode.
3949 	 */
3950 	struct r10conf *conf = mddev->private;
3951 	struct geom geo;
3952 
3953 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3954 		return -EINVAL;
3955 
3956 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3957 		/* mustn't change number of copies */
3958 		return -EINVAL;
3959 	if (geo.far_copies > 1 && !geo.far_offset)
3960 		/* Cannot switch to 'far' mode */
3961 		return -EINVAL;
3962 
3963 	if (mddev->array_sectors & geo.chunk_mask)
3964 			/* not factor of array size */
3965 			return -EINVAL;
3966 
3967 	if (!enough(conf, -1))
3968 		return -EINVAL;
3969 
3970 	kfree(conf->mirrors_new);
3971 	conf->mirrors_new = NULL;
3972 	if (mddev->delta_disks > 0) {
3973 		/* allocate new 'mirrors' list */
3974 		conf->mirrors_new = kzalloc(
3975 			sizeof(struct raid10_info)
3976 			*(mddev->raid_disks +
3977 			  mddev->delta_disks),
3978 			GFP_KERNEL);
3979 		if (!conf->mirrors_new)
3980 			return -ENOMEM;
3981 	}
3982 	return 0;
3983 }
3984 
3985 /*
3986  * Need to check if array has failed when deciding whether to:
3987  *  - start an array
3988  *  - remove non-faulty devices
3989  *  - add a spare
3990  *  - allow a reshape
3991  * This determination is simple when no reshape is happening.
3992  * However if there is a reshape, we need to carefully check
3993  * both the before and after sections.
3994  * This is because some failed devices may only affect one
3995  * of the two sections, and some non-in_sync devices may
3996  * be insync in the section most affected by failed devices.
3997  */
3998 static int calc_degraded(struct r10conf *conf)
3999 {
4000 	int degraded, degraded2;
4001 	int i;
4002 
4003 	rcu_read_lock();
4004 	degraded = 0;
4005 	/* 'prev' section first */
4006 	for (i = 0; i < conf->prev.raid_disks; i++) {
4007 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4008 		if (!rdev || test_bit(Faulty, &rdev->flags))
4009 			degraded++;
4010 		else if (!test_bit(In_sync, &rdev->flags))
4011 			/* When we can reduce the number of devices in
4012 			 * an array, this might not contribute to
4013 			 * 'degraded'.  It does now.
4014 			 */
4015 			degraded++;
4016 	}
4017 	rcu_read_unlock();
4018 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4019 		return degraded;
4020 	rcu_read_lock();
4021 	degraded2 = 0;
4022 	for (i = 0; i < conf->geo.raid_disks; i++) {
4023 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4024 		if (!rdev || test_bit(Faulty, &rdev->flags))
4025 			degraded2++;
4026 		else if (!test_bit(In_sync, &rdev->flags)) {
4027 			/* If reshape is increasing the number of devices,
4028 			 * this section has already been recovered, so
4029 			 * it doesn't contribute to degraded.
4030 			 * else it does.
4031 			 */
4032 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4033 				degraded2++;
4034 		}
4035 	}
4036 	rcu_read_unlock();
4037 	if (degraded2 > degraded)
4038 		return degraded2;
4039 	return degraded;
4040 }
4041 
4042 static int raid10_start_reshape(struct mddev *mddev)
4043 {
4044 	/* A 'reshape' has been requested. This commits
4045 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4046 	 * This also checks if there are enough spares and adds them
4047 	 * to the array.
4048 	 * We currently require enough spares to make the final
4049 	 * array non-degraded.  We also require that the difference
4050 	 * between old and new data_offset - on each device - is
4051 	 * enough that we never risk over-writing.
4052 	 */
4053 
4054 	unsigned long before_length, after_length;
4055 	sector_t min_offset_diff = 0;
4056 	int first = 1;
4057 	struct geom new;
4058 	struct r10conf *conf = mddev->private;
4059 	struct md_rdev *rdev;
4060 	int spares = 0;
4061 	int ret;
4062 
4063 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4064 		return -EBUSY;
4065 
4066 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4067 		return -EINVAL;
4068 
4069 	before_length = ((1 << conf->prev.chunk_shift) *
4070 			 conf->prev.far_copies);
4071 	after_length = ((1 << conf->geo.chunk_shift) *
4072 			conf->geo.far_copies);
4073 
4074 	rdev_for_each(rdev, mddev) {
4075 		if (!test_bit(In_sync, &rdev->flags)
4076 		    && !test_bit(Faulty, &rdev->flags))
4077 			spares++;
4078 		if (rdev->raid_disk >= 0) {
4079 			long long diff = (rdev->new_data_offset
4080 					  - rdev->data_offset);
4081 			if (!mddev->reshape_backwards)
4082 				diff = -diff;
4083 			if (diff < 0)
4084 				diff = 0;
4085 			if (first || diff < min_offset_diff)
4086 				min_offset_diff = diff;
4087 			first = 0;
4088 		}
4089 	}
4090 
4091 	if (max(before_length, after_length) > min_offset_diff)
4092 		return -EINVAL;
4093 
4094 	if (spares < mddev->delta_disks)
4095 		return -EINVAL;
4096 
4097 	conf->offset_diff = min_offset_diff;
4098 	spin_lock_irq(&conf->device_lock);
4099 	if (conf->mirrors_new) {
4100 		memcpy(conf->mirrors_new, conf->mirrors,
4101 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4102 		smp_mb();
4103 		kfree(conf->mirrors_old);
4104 		conf->mirrors_old = conf->mirrors;
4105 		conf->mirrors = conf->mirrors_new;
4106 		conf->mirrors_new = NULL;
4107 	}
4108 	setup_geo(&conf->geo, mddev, geo_start);
4109 	smp_mb();
4110 	if (mddev->reshape_backwards) {
4111 		sector_t size = raid10_size(mddev, 0, 0);
4112 		if (size < mddev->array_sectors) {
4113 			spin_unlock_irq(&conf->device_lock);
4114 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4115 				mdname(mddev));
4116 			return -EINVAL;
4117 		}
4118 		mddev->resync_max_sectors = size;
4119 		conf->reshape_progress = size;
4120 	} else
4121 		conf->reshape_progress = 0;
4122 	conf->reshape_safe = conf->reshape_progress;
4123 	spin_unlock_irq(&conf->device_lock);
4124 
4125 	if (mddev->delta_disks && mddev->bitmap) {
4126 		ret = bitmap_resize(mddev->bitmap,
4127 				    raid10_size(mddev, 0,
4128 						conf->geo.raid_disks),
4129 				    0, 0);
4130 		if (ret)
4131 			goto abort;
4132 	}
4133 	if (mddev->delta_disks > 0) {
4134 		rdev_for_each(rdev, mddev)
4135 			if (rdev->raid_disk < 0 &&
4136 			    !test_bit(Faulty, &rdev->flags)) {
4137 				if (raid10_add_disk(mddev, rdev) == 0) {
4138 					if (rdev->raid_disk >=
4139 					    conf->prev.raid_disks)
4140 						set_bit(In_sync, &rdev->flags);
4141 					else
4142 						rdev->recovery_offset = 0;
4143 
4144 					if (sysfs_link_rdev(mddev, rdev))
4145 						/* Failure here  is OK */;
4146 				}
4147 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4148 				   && !test_bit(Faulty, &rdev->flags)) {
4149 				/* This is a spare that was manually added */
4150 				set_bit(In_sync, &rdev->flags);
4151 			}
4152 	}
4153 	/* When a reshape changes the number of devices,
4154 	 * ->degraded is measured against the larger of the
4155 	 * pre and  post numbers.
4156 	 */
4157 	spin_lock_irq(&conf->device_lock);
4158 	mddev->degraded = calc_degraded(conf);
4159 	spin_unlock_irq(&conf->device_lock);
4160 	mddev->raid_disks = conf->geo.raid_disks;
4161 	mddev->reshape_position = conf->reshape_progress;
4162 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4163 
4164 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4165 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4166 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4167 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4168 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4169 
4170 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4171 						"reshape");
4172 	if (!mddev->sync_thread) {
4173 		ret = -EAGAIN;
4174 		goto abort;
4175 	}
4176 	conf->reshape_checkpoint = jiffies;
4177 	md_wakeup_thread(mddev->sync_thread);
4178 	md_new_event(mddev);
4179 	return 0;
4180 
4181 abort:
4182 	mddev->recovery = 0;
4183 	spin_lock_irq(&conf->device_lock);
4184 	conf->geo = conf->prev;
4185 	mddev->raid_disks = conf->geo.raid_disks;
4186 	rdev_for_each(rdev, mddev)
4187 		rdev->new_data_offset = rdev->data_offset;
4188 	smp_wmb();
4189 	conf->reshape_progress = MaxSector;
4190 	conf->reshape_safe = MaxSector;
4191 	mddev->reshape_position = MaxSector;
4192 	spin_unlock_irq(&conf->device_lock);
4193 	return ret;
4194 }
4195 
4196 /* Calculate the last device-address that could contain
4197  * any block from the chunk that includes the array-address 's'
4198  * and report the next address.
4199  * i.e. the address returned will be chunk-aligned and after
4200  * any data that is in the chunk containing 's'.
4201  */
4202 static sector_t last_dev_address(sector_t s, struct geom *geo)
4203 {
4204 	s = (s | geo->chunk_mask) + 1;
4205 	s >>= geo->chunk_shift;
4206 	s *= geo->near_copies;
4207 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4208 	s *= geo->far_copies;
4209 	s <<= geo->chunk_shift;
4210 	return s;
4211 }
4212 
4213 /* Calculate the first device-address that could contain
4214  * any block from the chunk that includes the array-address 's'.
4215  * This too will be the start of a chunk
4216  */
4217 static sector_t first_dev_address(sector_t s, struct geom *geo)
4218 {
4219 	s >>= geo->chunk_shift;
4220 	s *= geo->near_copies;
4221 	sector_div(s, geo->raid_disks);
4222 	s *= geo->far_copies;
4223 	s <<= geo->chunk_shift;
4224 	return s;
4225 }
4226 
4227 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4228 				int *skipped)
4229 {
4230 	/* We simply copy at most one chunk (smallest of old and new)
4231 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4232 	 * or we hit a bad block or something.
4233 	 * This might mean we pause for normal IO in the middle of
4234 	 * a chunk, but that is not a problem as mddev->reshape_position
4235 	 * can record any location.
4236 	 *
4237 	 * If we will want to write to a location that isn't
4238 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4239 	 * we need to flush all reshape requests and update the metadata.
4240 	 *
4241 	 * When reshaping forwards (e.g. to more devices), we interpret
4242 	 * 'safe' as the earliest block which might not have been copied
4243 	 * down yet.  We divide this by previous stripe size and multiply
4244 	 * by previous stripe length to get lowest device offset that we
4245 	 * cannot write to yet.
4246 	 * We interpret 'sector_nr' as an address that we want to write to.
4247 	 * From this we use last_device_address() to find where we might
4248 	 * write to, and first_device_address on the  'safe' position.
4249 	 * If this 'next' write position is after the 'safe' position,
4250 	 * we must update the metadata to increase the 'safe' position.
4251 	 *
4252 	 * When reshaping backwards, we round in the opposite direction
4253 	 * and perform the reverse test:  next write position must not be
4254 	 * less than current safe position.
4255 	 *
4256 	 * In all this the minimum difference in data offsets
4257 	 * (conf->offset_diff - always positive) allows a bit of slack,
4258 	 * so next can be after 'safe', but not by more than offset_diff
4259 	 *
4260 	 * We need to prepare all the bios here before we start any IO
4261 	 * to ensure the size we choose is acceptable to all devices.
4262 	 * The means one for each copy for write-out and an extra one for
4263 	 * read-in.
4264 	 * We store the read-in bio in ->master_bio and the others in
4265 	 * ->devs[x].bio and ->devs[x].repl_bio.
4266 	 */
4267 	struct r10conf *conf = mddev->private;
4268 	struct r10bio *r10_bio;
4269 	sector_t next, safe, last;
4270 	int max_sectors;
4271 	int nr_sectors;
4272 	int s;
4273 	struct md_rdev *rdev;
4274 	int need_flush = 0;
4275 	struct bio *blist;
4276 	struct bio *bio, *read_bio;
4277 	int sectors_done = 0;
4278 	struct page **pages;
4279 
4280 	if (sector_nr == 0) {
4281 		/* If restarting in the middle, skip the initial sectors */
4282 		if (mddev->reshape_backwards &&
4283 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4284 			sector_nr = (raid10_size(mddev, 0, 0)
4285 				     - conf->reshape_progress);
4286 		} else if (!mddev->reshape_backwards &&
4287 			   conf->reshape_progress > 0)
4288 			sector_nr = conf->reshape_progress;
4289 		if (sector_nr) {
4290 			mddev->curr_resync_completed = sector_nr;
4291 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4292 			*skipped = 1;
4293 			return sector_nr;
4294 		}
4295 	}
4296 
4297 	/* We don't use sector_nr to track where we are up to
4298 	 * as that doesn't work well for ->reshape_backwards.
4299 	 * So just use ->reshape_progress.
4300 	 */
4301 	if (mddev->reshape_backwards) {
4302 		/* 'next' is the earliest device address that we might
4303 		 * write to for this chunk in the new layout
4304 		 */
4305 		next = first_dev_address(conf->reshape_progress - 1,
4306 					 &conf->geo);
4307 
4308 		/* 'safe' is the last device address that we might read from
4309 		 * in the old layout after a restart
4310 		 */
4311 		safe = last_dev_address(conf->reshape_safe - 1,
4312 					&conf->prev);
4313 
4314 		if (next + conf->offset_diff < safe)
4315 			need_flush = 1;
4316 
4317 		last = conf->reshape_progress - 1;
4318 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4319 					       & conf->prev.chunk_mask);
4320 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4321 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4322 	} else {
4323 		/* 'next' is after the last device address that we
4324 		 * might write to for this chunk in the new layout
4325 		 */
4326 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4327 
4328 		/* 'safe' is the earliest device address that we might
4329 		 * read from in the old layout after a restart
4330 		 */
4331 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4332 
4333 		/* Need to update metadata if 'next' might be beyond 'safe'
4334 		 * as that would possibly corrupt data
4335 		 */
4336 		if (next > safe + conf->offset_diff)
4337 			need_flush = 1;
4338 
4339 		sector_nr = conf->reshape_progress;
4340 		last  = sector_nr | (conf->geo.chunk_mask
4341 				     & conf->prev.chunk_mask);
4342 
4343 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4344 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4345 	}
4346 
4347 	if (need_flush ||
4348 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4349 		/* Need to update reshape_position in metadata */
4350 		wait_barrier(conf);
4351 		mddev->reshape_position = conf->reshape_progress;
4352 		if (mddev->reshape_backwards)
4353 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4354 				- conf->reshape_progress;
4355 		else
4356 			mddev->curr_resync_completed = conf->reshape_progress;
4357 		conf->reshape_checkpoint = jiffies;
4358 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4359 		md_wakeup_thread(mddev->thread);
4360 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4361 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4362 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4363 			allow_barrier(conf);
4364 			return sectors_done;
4365 		}
4366 		conf->reshape_safe = mddev->reshape_position;
4367 		allow_barrier(conf);
4368 	}
4369 
4370 read_more:
4371 	/* Now schedule reads for blocks from sector_nr to last */
4372 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4373 	r10_bio->state = 0;
4374 	raise_barrier(conf, sectors_done != 0);
4375 	atomic_set(&r10_bio->remaining, 0);
4376 	r10_bio->mddev = mddev;
4377 	r10_bio->sector = sector_nr;
4378 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4379 	r10_bio->sectors = last - sector_nr + 1;
4380 	rdev = read_balance(conf, r10_bio, &max_sectors);
4381 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4382 
4383 	if (!rdev) {
4384 		/* Cannot read from here, so need to record bad blocks
4385 		 * on all the target devices.
4386 		 */
4387 		// FIXME
4388 		mempool_free(r10_bio, conf->r10buf_pool);
4389 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4390 		return sectors_done;
4391 	}
4392 
4393 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4394 
4395 	read_bio->bi_bdev = rdev->bdev;
4396 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4397 			       + rdev->data_offset);
4398 	read_bio->bi_private = r10_bio;
4399 	read_bio->bi_end_io = end_reshape_read;
4400 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4401 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4402 	read_bio->bi_status = 0;
4403 	read_bio->bi_vcnt = 0;
4404 	read_bio->bi_iter.bi_size = 0;
4405 	r10_bio->master_bio = read_bio;
4406 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4407 
4408 	/* Now find the locations in the new layout */
4409 	__raid10_find_phys(&conf->geo, r10_bio);
4410 
4411 	blist = read_bio;
4412 	read_bio->bi_next = NULL;
4413 
4414 	rcu_read_lock();
4415 	for (s = 0; s < conf->copies*2; s++) {
4416 		struct bio *b;
4417 		int d = r10_bio->devs[s/2].devnum;
4418 		struct md_rdev *rdev2;
4419 		if (s&1) {
4420 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4421 			b = r10_bio->devs[s/2].repl_bio;
4422 		} else {
4423 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4424 			b = r10_bio->devs[s/2].bio;
4425 		}
4426 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4427 			continue;
4428 
4429 		b->bi_bdev = rdev2->bdev;
4430 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4431 			rdev2->new_data_offset;
4432 		b->bi_end_io = end_reshape_write;
4433 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4434 		b->bi_next = blist;
4435 		blist = b;
4436 	}
4437 
4438 	/* Now add as many pages as possible to all of these bios. */
4439 
4440 	nr_sectors = 0;
4441 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4442 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4443 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4444 		int len = (max_sectors - s) << 9;
4445 		if (len > PAGE_SIZE)
4446 			len = PAGE_SIZE;
4447 		for (bio = blist; bio ; bio = bio->bi_next) {
4448 			/*
4449 			 * won't fail because the vec table is big enough
4450 			 * to hold all these pages
4451 			 */
4452 			bio_add_page(bio, page, len, 0);
4453 		}
4454 		sector_nr += len >> 9;
4455 		nr_sectors += len >> 9;
4456 	}
4457 	rcu_read_unlock();
4458 	r10_bio->sectors = nr_sectors;
4459 
4460 	/* Now submit the read */
4461 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4462 	atomic_inc(&r10_bio->remaining);
4463 	read_bio->bi_next = NULL;
4464 	generic_make_request(read_bio);
4465 	sector_nr += nr_sectors;
4466 	sectors_done += nr_sectors;
4467 	if (sector_nr <= last)
4468 		goto read_more;
4469 
4470 	/* Now that we have done the whole section we can
4471 	 * update reshape_progress
4472 	 */
4473 	if (mddev->reshape_backwards)
4474 		conf->reshape_progress -= sectors_done;
4475 	else
4476 		conf->reshape_progress += sectors_done;
4477 
4478 	return sectors_done;
4479 }
4480 
4481 static void end_reshape_request(struct r10bio *r10_bio);
4482 static int handle_reshape_read_error(struct mddev *mddev,
4483 				     struct r10bio *r10_bio);
4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4485 {
4486 	/* Reshape read completed.  Hopefully we have a block
4487 	 * to write out.
4488 	 * If we got a read error then we do sync 1-page reads from
4489 	 * elsewhere until we find the data - or give up.
4490 	 */
4491 	struct r10conf *conf = mddev->private;
4492 	int s;
4493 
4494 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4495 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4496 			/* Reshape has been aborted */
4497 			md_done_sync(mddev, r10_bio->sectors, 0);
4498 			return;
4499 		}
4500 
4501 	/* We definitely have the data in the pages, schedule the
4502 	 * writes.
4503 	 */
4504 	atomic_set(&r10_bio->remaining, 1);
4505 	for (s = 0; s < conf->copies*2; s++) {
4506 		struct bio *b;
4507 		int d = r10_bio->devs[s/2].devnum;
4508 		struct md_rdev *rdev;
4509 		rcu_read_lock();
4510 		if (s&1) {
4511 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4512 			b = r10_bio->devs[s/2].repl_bio;
4513 		} else {
4514 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4515 			b = r10_bio->devs[s/2].bio;
4516 		}
4517 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4518 			rcu_read_unlock();
4519 			continue;
4520 		}
4521 		atomic_inc(&rdev->nr_pending);
4522 		rcu_read_unlock();
4523 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4524 		atomic_inc(&r10_bio->remaining);
4525 		b->bi_next = NULL;
4526 		generic_make_request(b);
4527 	}
4528 	end_reshape_request(r10_bio);
4529 }
4530 
4531 static void end_reshape(struct r10conf *conf)
4532 {
4533 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4534 		return;
4535 
4536 	spin_lock_irq(&conf->device_lock);
4537 	conf->prev = conf->geo;
4538 	md_finish_reshape(conf->mddev);
4539 	smp_wmb();
4540 	conf->reshape_progress = MaxSector;
4541 	conf->reshape_safe = MaxSector;
4542 	spin_unlock_irq(&conf->device_lock);
4543 
4544 	/* read-ahead size must cover two whole stripes, which is
4545 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4546 	 */
4547 	if (conf->mddev->queue) {
4548 		int stripe = conf->geo.raid_disks *
4549 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4550 		stripe /= conf->geo.near_copies;
4551 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4552 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4553 	}
4554 	conf->fullsync = 0;
4555 }
4556 
4557 static int handle_reshape_read_error(struct mddev *mddev,
4558 				     struct r10bio *r10_bio)
4559 {
4560 	/* Use sync reads to get the blocks from somewhere else */
4561 	int sectors = r10_bio->sectors;
4562 	struct r10conf *conf = mddev->private;
4563 	struct {
4564 		struct r10bio r10_bio;
4565 		struct r10dev devs[conf->copies];
4566 	} on_stack;
4567 	struct r10bio *r10b = &on_stack.r10_bio;
4568 	int slot = 0;
4569 	int idx = 0;
4570 	struct page **pages;
4571 
4572 	/* reshape IOs share pages from .devs[0].bio */
4573 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4574 
4575 	r10b->sector = r10_bio->sector;
4576 	__raid10_find_phys(&conf->prev, r10b);
4577 
4578 	while (sectors) {
4579 		int s = sectors;
4580 		int success = 0;
4581 		int first_slot = slot;
4582 
4583 		if (s > (PAGE_SIZE >> 9))
4584 			s = PAGE_SIZE >> 9;
4585 
4586 		rcu_read_lock();
4587 		while (!success) {
4588 			int d = r10b->devs[slot].devnum;
4589 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4590 			sector_t addr;
4591 			if (rdev == NULL ||
4592 			    test_bit(Faulty, &rdev->flags) ||
4593 			    !test_bit(In_sync, &rdev->flags))
4594 				goto failed;
4595 
4596 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4597 			atomic_inc(&rdev->nr_pending);
4598 			rcu_read_unlock();
4599 			success = sync_page_io(rdev,
4600 					       addr,
4601 					       s << 9,
4602 					       pages[idx],
4603 					       REQ_OP_READ, 0, false);
4604 			rdev_dec_pending(rdev, mddev);
4605 			rcu_read_lock();
4606 			if (success)
4607 				break;
4608 		failed:
4609 			slot++;
4610 			if (slot >= conf->copies)
4611 				slot = 0;
4612 			if (slot == first_slot)
4613 				break;
4614 		}
4615 		rcu_read_unlock();
4616 		if (!success) {
4617 			/* couldn't read this block, must give up */
4618 			set_bit(MD_RECOVERY_INTR,
4619 				&mddev->recovery);
4620 			return -EIO;
4621 		}
4622 		sectors -= s;
4623 		idx++;
4624 	}
4625 	return 0;
4626 }
4627 
4628 static void end_reshape_write(struct bio *bio)
4629 {
4630 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4631 	struct mddev *mddev = r10_bio->mddev;
4632 	struct r10conf *conf = mddev->private;
4633 	int d;
4634 	int slot;
4635 	int repl;
4636 	struct md_rdev *rdev = NULL;
4637 
4638 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4639 	if (repl)
4640 		rdev = conf->mirrors[d].replacement;
4641 	if (!rdev) {
4642 		smp_mb();
4643 		rdev = conf->mirrors[d].rdev;
4644 	}
4645 
4646 	if (bio->bi_status) {
4647 		/* FIXME should record badblock */
4648 		md_error(mddev, rdev);
4649 	}
4650 
4651 	rdev_dec_pending(rdev, mddev);
4652 	end_reshape_request(r10_bio);
4653 }
4654 
4655 static void end_reshape_request(struct r10bio *r10_bio)
4656 {
4657 	if (!atomic_dec_and_test(&r10_bio->remaining))
4658 		return;
4659 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4660 	bio_put(r10_bio->master_bio);
4661 	put_buf(r10_bio);
4662 }
4663 
4664 static void raid10_finish_reshape(struct mddev *mddev)
4665 {
4666 	struct r10conf *conf = mddev->private;
4667 
4668 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4669 		return;
4670 
4671 	if (mddev->delta_disks > 0) {
4672 		sector_t size = raid10_size(mddev, 0, 0);
4673 		md_set_array_sectors(mddev, size);
4674 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4675 			mddev->recovery_cp = mddev->resync_max_sectors;
4676 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4677 		}
4678 		mddev->resync_max_sectors = size;
4679 		if (mddev->queue) {
4680 			set_capacity(mddev->gendisk, mddev->array_sectors);
4681 			revalidate_disk(mddev->gendisk);
4682 		}
4683 	} else {
4684 		int d;
4685 		rcu_read_lock();
4686 		for (d = conf->geo.raid_disks ;
4687 		     d < conf->geo.raid_disks - mddev->delta_disks;
4688 		     d++) {
4689 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4690 			if (rdev)
4691 				clear_bit(In_sync, &rdev->flags);
4692 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4693 			if (rdev)
4694 				clear_bit(In_sync, &rdev->flags);
4695 		}
4696 		rcu_read_unlock();
4697 	}
4698 	mddev->layout = mddev->new_layout;
4699 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4700 	mddev->reshape_position = MaxSector;
4701 	mddev->delta_disks = 0;
4702 	mddev->reshape_backwards = 0;
4703 }
4704 
4705 static struct md_personality raid10_personality =
4706 {
4707 	.name		= "raid10",
4708 	.level		= 10,
4709 	.owner		= THIS_MODULE,
4710 	.make_request	= raid10_make_request,
4711 	.run		= raid10_run,
4712 	.free		= raid10_free,
4713 	.status		= raid10_status,
4714 	.error_handler	= raid10_error,
4715 	.hot_add_disk	= raid10_add_disk,
4716 	.hot_remove_disk= raid10_remove_disk,
4717 	.spare_active	= raid10_spare_active,
4718 	.sync_request	= raid10_sync_request,
4719 	.quiesce	= raid10_quiesce,
4720 	.size		= raid10_size,
4721 	.resize		= raid10_resize,
4722 	.takeover	= raid10_takeover,
4723 	.check_reshape	= raid10_check_reshape,
4724 	.start_reshape	= raid10_start_reshape,
4725 	.finish_reshape	= raid10_finish_reshape,
4726 	.congested	= raid10_congested,
4727 };
4728 
4729 static int __init raid_init(void)
4730 {
4731 	return register_md_personality(&raid10_personality);
4732 }
4733 
4734 static void raid_exit(void)
4735 {
4736 	unregister_md_personality(&raid10_personality);
4737 }
4738 
4739 module_init(raid_init);
4740 module_exit(raid_exit);
4741 MODULE_LICENSE("GPL");
4742 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4743 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4744 MODULE_ALIAS("md-raid10");
4745 MODULE_ALIAS("md-level-10");
4746 
4747 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4748