1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 } 469 470 /* 471 * When the device is faulty, it is not necessary to 472 * handle write error. 473 * For failfast, this is the only remaining device, 474 * We need to retry the write without FailFast. 475 */ 476 if (!test_bit(Faulty, &rdev->flags)) 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 else { 479 r10_bio->devs[slot].bio = NULL; 480 to_put = bio; 481 dec_rdev = 1; 482 } 483 } 484 } else { 485 /* 486 * Set R10BIO_Uptodate in our master bio, so that 487 * we will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer fails. 489 * 490 * The 'master' represents the composite IO operation to 491 * user-side. So if something waits for IO, then it will 492 * wait for the 'master' bio. 493 */ 494 sector_t first_bad; 495 int bad_sectors; 496 497 /* 498 * Do not set R10BIO_Uptodate if the current device is 499 * rebuilding or Faulty. This is because we cannot use 500 * such device for properly reading the data back (we could 501 * potentially use it, if the current write would have felt 502 * before rdev->recovery_offset, but for simplicity we don't 503 * check this here. 504 */ 505 if (test_bit(In_sync, &rdev->flags) && 506 !test_bit(Faulty, &rdev->flags)) 507 set_bit(R10BIO_Uptodate, &r10_bio->state); 508 509 /* Maybe we can clear some bad blocks. */ 510 if (is_badblock(rdev, 511 r10_bio->devs[slot].addr, 512 r10_bio->sectors, 513 &first_bad, &bad_sectors) && !discard_error) { 514 bio_put(bio); 515 if (repl) 516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 517 else 518 r10_bio->devs[slot].bio = IO_MADE_GOOD; 519 dec_rdev = 0; 520 set_bit(R10BIO_MadeGood, &r10_bio->state); 521 } 522 } 523 524 /* 525 * 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 one_write_done(r10_bio); 530 if (dec_rdev) 531 rdev_dec_pending(rdev, conf->mddev); 532 if (to_put) 533 bio_put(to_put); 534 } 535 536 /* 537 * RAID10 layout manager 538 * As well as the chunksize and raid_disks count, there are two 539 * parameters: near_copies and far_copies. 540 * near_copies * far_copies must be <= raid_disks. 541 * Normally one of these will be 1. 542 * If both are 1, we get raid0. 543 * If near_copies == raid_disks, we get raid1. 544 * 545 * Chunks are laid out in raid0 style with near_copies copies of the 546 * first chunk, followed by near_copies copies of the next chunk and 547 * so on. 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned 549 * as described above, we start again with a device offset of near_copies. 550 * So we effectively have another copy of the whole array further down all 551 * the drives, but with blocks on different drives. 552 * With this layout, and block is never stored twice on the one device. 553 * 554 * raid10_find_phys finds the sector offset of a given virtual sector 555 * on each device that it is on. 556 * 557 * raid10_find_virt does the reverse mapping, from a device and a 558 * sector offset to a virtual address 559 */ 560 561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 562 { 563 int n,f; 564 sector_t sector; 565 sector_t chunk; 566 sector_t stripe; 567 int dev; 568 int slot = 0; 569 int last_far_set_start, last_far_set_size; 570 571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 572 last_far_set_start *= geo->far_set_size; 573 574 last_far_set_size = geo->far_set_size; 575 last_far_set_size += (geo->raid_disks % geo->far_set_size); 576 577 /* now calculate first sector/dev */ 578 chunk = r10bio->sector >> geo->chunk_shift; 579 sector = r10bio->sector & geo->chunk_mask; 580 581 chunk *= geo->near_copies; 582 stripe = chunk; 583 dev = sector_div(stripe, geo->raid_disks); 584 if (geo->far_offset) 585 stripe *= geo->far_copies; 586 587 sector += stripe << geo->chunk_shift; 588 589 /* and calculate all the others */ 590 for (n = 0; n < geo->near_copies; n++) { 591 int d = dev; 592 int set; 593 sector_t s = sector; 594 r10bio->devs[slot].devnum = d; 595 r10bio->devs[slot].addr = s; 596 slot++; 597 598 for (f = 1; f < geo->far_copies; f++) { 599 set = d / geo->far_set_size; 600 d += geo->near_copies; 601 602 if ((geo->raid_disks % geo->far_set_size) && 603 (d > last_far_set_start)) { 604 d -= last_far_set_start; 605 d %= last_far_set_size; 606 d += last_far_set_start; 607 } else { 608 d %= geo->far_set_size; 609 d += geo->far_set_size * set; 610 } 611 s += geo->stride; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 } 616 dev++; 617 if (dev >= geo->raid_disks) { 618 dev = 0; 619 sector += (geo->chunk_mask + 1); 620 } 621 } 622 } 623 624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 625 { 626 struct geom *geo = &conf->geo; 627 628 if (conf->reshape_progress != MaxSector && 629 ((r10bio->sector >= conf->reshape_progress) != 630 conf->mddev->reshape_backwards)) { 631 set_bit(R10BIO_Previous, &r10bio->state); 632 geo = &conf->prev; 633 } else 634 clear_bit(R10BIO_Previous, &r10bio->state); 635 636 __raid10_find_phys(geo, r10bio); 637 } 638 639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 640 { 641 sector_t offset, chunk, vchunk; 642 /* Never use conf->prev as this is only called during resync 643 * or recovery, so reshape isn't happening 644 */ 645 struct geom *geo = &conf->geo; 646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 647 int far_set_size = geo->far_set_size; 648 int last_far_set_start; 649 650 if (geo->raid_disks % geo->far_set_size) { 651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 652 last_far_set_start *= geo->far_set_size; 653 654 if (dev >= last_far_set_start) { 655 far_set_size = geo->far_set_size; 656 far_set_size += (geo->raid_disks % geo->far_set_size); 657 far_set_start = last_far_set_start; 658 } 659 } 660 661 offset = sector & geo->chunk_mask; 662 if (geo->far_offset) { 663 int fc; 664 chunk = sector >> geo->chunk_shift; 665 fc = sector_div(chunk, geo->far_copies); 666 dev -= fc * geo->near_copies; 667 if (dev < far_set_start) 668 dev += far_set_size; 669 } else { 670 while (sector >= geo->stride) { 671 sector -= geo->stride; 672 if (dev < (geo->near_copies + far_set_start)) 673 dev += far_set_size - geo->near_copies; 674 else 675 dev -= geo->near_copies; 676 } 677 chunk = sector >> geo->chunk_shift; 678 } 679 vchunk = chunk * geo->raid_disks + dev; 680 sector_div(vchunk, geo->near_copies); 681 return (vchunk << geo->chunk_shift) + offset; 682 } 683 684 /* 685 * This routine returns the disk from which the requested read should 686 * be done. There is a per-array 'next expected sequential IO' sector 687 * number - if this matches on the next IO then we use the last disk. 688 * There is also a per-disk 'last know head position' sector that is 689 * maintained from IRQ contexts, both the normal and the resync IO 690 * completion handlers update this position correctly. If there is no 691 * perfect sequential match then we pick the disk whose head is closest. 692 * 693 * If there are 2 mirrors in the same 2 devices, performance degrades 694 * because position is mirror, not device based. 695 * 696 * The rdev for the device selected will have nr_pending incremented. 697 */ 698 699 /* 700 * FIXME: possibly should rethink readbalancing and do it differently 701 * depending on near_copies / far_copies geometry. 702 */ 703 static struct md_rdev *read_balance(struct r10conf *conf, 704 struct r10bio *r10_bio, 705 int *max_sectors) 706 { 707 const sector_t this_sector = r10_bio->sector; 708 int disk, slot; 709 int sectors = r10_bio->sectors; 710 int best_good_sectors; 711 sector_t new_distance, best_dist; 712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 713 int do_balance; 714 int best_dist_slot, best_pending_slot; 715 bool has_nonrot_disk = false; 716 unsigned int min_pending; 717 struct geom *geo = &conf->geo; 718 719 raid10_find_phys(conf, r10_bio); 720 rcu_read_lock(); 721 best_dist_slot = -1; 722 min_pending = UINT_MAX; 723 best_dist_rdev = NULL; 724 best_pending_rdev = NULL; 725 best_dist = MaxSector; 726 best_good_sectors = 0; 727 do_balance = 1; 728 clear_bit(R10BIO_FailFast, &r10_bio->state); 729 /* 730 * Check if we can balance. We can balance on the whole 731 * device if no resync is going on (recovery is ok), or below 732 * the resync window. We take the first readable disk when 733 * above the resync window. 734 */ 735 if ((conf->mddev->recovery_cp < MaxSector 736 && (this_sector + sectors >= conf->next_resync)) || 737 (mddev_is_clustered(conf->mddev) && 738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 739 this_sector + sectors))) 740 do_balance = 0; 741 742 for (slot = 0; slot < conf->copies ; slot++) { 743 sector_t first_bad; 744 int bad_sectors; 745 sector_t dev_sector; 746 unsigned int pending; 747 bool nonrot; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 755 rdev = rcu_dereference(conf->mirrors[disk].rdev); 756 if (rdev == NULL || 757 test_bit(Faulty, &rdev->flags)) 758 continue; 759 if (!test_bit(In_sync, &rdev->flags) && 760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 761 continue; 762 763 dev_sector = r10_bio->devs[slot].addr; 764 if (is_badblock(rdev, dev_sector, sectors, 765 &first_bad, &bad_sectors)) { 766 if (best_dist < MaxSector) 767 /* Already have a better slot */ 768 continue; 769 if (first_bad <= dev_sector) { 770 /* Cannot read here. If this is the 771 * 'primary' device, then we must not read 772 * beyond 'bad_sectors' from another device. 773 */ 774 bad_sectors -= (dev_sector - first_bad); 775 if (!do_balance && sectors > bad_sectors) 776 sectors = bad_sectors; 777 if (best_good_sectors > sectors) 778 best_good_sectors = sectors; 779 } else { 780 sector_t good_sectors = 781 first_bad - dev_sector; 782 if (good_sectors > best_good_sectors) { 783 best_good_sectors = good_sectors; 784 best_dist_slot = slot; 785 best_dist_rdev = rdev; 786 } 787 if (!do_balance) 788 /* Must read from here */ 789 break; 790 } 791 continue; 792 } else 793 best_good_sectors = sectors; 794 795 if (!do_balance) 796 break; 797 798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 799 has_nonrot_disk |= nonrot; 800 pending = atomic_read(&rdev->nr_pending); 801 if (min_pending > pending && nonrot) { 802 min_pending = pending; 803 best_pending_slot = slot; 804 best_pending_rdev = rdev; 805 } 806 807 if (best_dist_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !pending) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 824 if (new_distance < best_dist) { 825 best_dist = new_distance; 826 best_dist_slot = slot; 827 best_dist_rdev = rdev; 828 } 829 } 830 if (slot >= conf->copies) { 831 if (has_nonrot_disk) { 832 slot = best_pending_slot; 833 rdev = best_pending_rdev; 834 } else { 835 slot = best_dist_slot; 836 rdev = best_dist_rdev; 837 } 838 } 839 840 if (slot >= 0) { 841 atomic_inc(&rdev->nr_pending); 842 r10_bio->read_slot = slot; 843 } else 844 rdev = NULL; 845 rcu_read_unlock(); 846 *max_sectors = best_good_sectors; 847 848 return rdev; 849 } 850 851 static void flush_pending_writes(struct r10conf *conf) 852 { 853 /* Any writes that have been queued but are awaiting 854 * bitmap updates get flushed here. 855 */ 856 spin_lock_irq(&conf->device_lock); 857 858 if (conf->pending_bio_list.head) { 859 struct blk_plug plug; 860 struct bio *bio; 861 862 bio = bio_list_get(&conf->pending_bio_list); 863 conf->pending_count = 0; 864 spin_unlock_irq(&conf->device_lock); 865 866 /* 867 * As this is called in a wait_event() loop (see freeze_array), 868 * current->state might be TASK_UNINTERRUPTIBLE which will 869 * cause a warning when we prepare to wait again. As it is 870 * rare that this path is taken, it is perfectly safe to force 871 * us to go around the wait_event() loop again, so the warning 872 * is a false-positive. Silence the warning by resetting 873 * thread state 874 */ 875 __set_current_state(TASK_RUNNING); 876 877 blk_start_plug(&plug); 878 /* flush any pending bitmap writes to disk 879 * before proceeding w/ I/O */ 880 md_bitmap_unplug(conf->mddev->bitmap); 881 wake_up(&conf->wait_barrier); 882 883 while (bio) { /* submit pending writes */ 884 struct bio *next = bio->bi_next; 885 struct md_rdev *rdev = (void*)bio->bi_disk; 886 bio->bi_next = NULL; 887 bio_set_dev(bio, rdev->bdev); 888 if (test_bit(Faulty, &rdev->flags)) { 889 bio_io_error(bio); 890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 891 !blk_queue_discard(bio->bi_disk->queue))) 892 /* Just ignore it */ 893 bio_endio(bio); 894 else 895 submit_bio_noacct(bio); 896 bio = next; 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 BUG_ON(force && !conf->barrier); 928 spin_lock_irq(&conf->resync_lock); 929 930 /* Wait until no block IO is waiting (unless 'force') */ 931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 932 conf->resync_lock); 933 934 /* block any new IO from starting */ 935 conf->barrier++; 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_lock_irq(conf->wait_barrier, 939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 940 conf->resync_lock); 941 942 spin_unlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 spin_lock_irqsave(&conf->resync_lock, flags); 949 conf->barrier--; 950 spin_unlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static void wait_barrier(struct r10conf *conf) 955 { 956 spin_lock_irq(&conf->resync_lock); 957 if (conf->barrier) { 958 conf->nr_waiting++; 959 /* Wait for the barrier to drop. 960 * However if there are already pending 961 * requests (preventing the barrier from 962 * rising completely), and the 963 * pre-process bio queue isn't empty, 964 * then don't wait, as we need to empty 965 * that queue to get the nr_pending 966 * count down. 967 */ 968 raid10_log(conf->mddev, "wait barrier"); 969 wait_event_lock_irq(conf->wait_barrier, 970 !conf->barrier || 971 (atomic_read(&conf->nr_pending) && 972 current->bio_list && 973 (!bio_list_empty(¤t->bio_list[0]) || 974 !bio_list_empty(¤t->bio_list[1]))), 975 conf->resync_lock); 976 conf->nr_waiting--; 977 if (!conf->nr_waiting) 978 wake_up(&conf->wait_barrier); 979 } 980 atomic_inc(&conf->nr_pending); 981 spin_unlock_irq(&conf->resync_lock); 982 } 983 984 static void allow_barrier(struct r10conf *conf) 985 { 986 if ((atomic_dec_and_test(&conf->nr_pending)) || 987 (conf->array_freeze_pending)) 988 wake_up(&conf->wait_barrier); 989 } 990 991 static void freeze_array(struct r10conf *conf, int extra) 992 { 993 /* stop syncio and normal IO and wait for everything to 994 * go quiet. 995 * We increment barrier and nr_waiting, and then 996 * wait until nr_pending match nr_queued+extra 997 * This is called in the context of one normal IO request 998 * that has failed. Thus any sync request that might be pending 999 * will be blocked by nr_pending, and we need to wait for 1000 * pending IO requests to complete or be queued for re-try. 1001 * Thus the number queued (nr_queued) plus this request (extra) 1002 * must match the number of pending IOs (nr_pending) before 1003 * we continue. 1004 */ 1005 spin_lock_irq(&conf->resync_lock); 1006 conf->array_freeze_pending++; 1007 conf->barrier++; 1008 conf->nr_waiting++; 1009 wait_event_lock_irq_cmd(conf->wait_barrier, 1010 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1011 conf->resync_lock, 1012 flush_pending_writes(conf)); 1013 1014 conf->array_freeze_pending--; 1015 spin_unlock_irq(&conf->resync_lock); 1016 } 1017 1018 static void unfreeze_array(struct r10conf *conf) 1019 { 1020 /* reverse the effect of the freeze */ 1021 spin_lock_irq(&conf->resync_lock); 1022 conf->barrier--; 1023 conf->nr_waiting--; 1024 wake_up(&conf->wait_barrier); 1025 spin_unlock_irq(&conf->resync_lock); 1026 } 1027 1028 static sector_t choose_data_offset(struct r10bio *r10_bio, 1029 struct md_rdev *rdev) 1030 { 1031 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1032 test_bit(R10BIO_Previous, &r10_bio->state)) 1033 return rdev->data_offset; 1034 else 1035 return rdev->new_data_offset; 1036 } 1037 1038 struct raid10_plug_cb { 1039 struct blk_plug_cb cb; 1040 struct bio_list pending; 1041 int pending_cnt; 1042 }; 1043 1044 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1045 { 1046 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1047 cb); 1048 struct mddev *mddev = plug->cb.data; 1049 struct r10conf *conf = mddev->private; 1050 struct bio *bio; 1051 1052 if (from_schedule || current->bio_list) { 1053 spin_lock_irq(&conf->device_lock); 1054 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1055 conf->pending_count += plug->pending_cnt; 1056 spin_unlock_irq(&conf->device_lock); 1057 wake_up(&conf->wait_barrier); 1058 md_wakeup_thread(mddev->thread); 1059 kfree(plug); 1060 return; 1061 } 1062 1063 /* we aren't scheduling, so we can do the write-out directly. */ 1064 bio = bio_list_get(&plug->pending); 1065 md_bitmap_unplug(mddev->bitmap); 1066 wake_up(&conf->wait_barrier); 1067 1068 while (bio) { /* submit pending writes */ 1069 struct bio *next = bio->bi_next; 1070 struct md_rdev *rdev = (void*)bio->bi_disk; 1071 bio->bi_next = NULL; 1072 bio_set_dev(bio, rdev->bdev); 1073 if (test_bit(Faulty, &rdev->flags)) { 1074 bio_io_error(bio); 1075 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1076 !blk_queue_discard(bio->bi_disk->queue))) 1077 /* Just ignore it */ 1078 bio_endio(bio); 1079 else 1080 submit_bio_noacct(bio); 1081 bio = next; 1082 } 1083 kfree(plug); 1084 } 1085 1086 /* 1087 * 1. Register the new request and wait if the reconstruction thread has put 1088 * up a bar for new requests. Continue immediately if no resync is active 1089 * currently. 1090 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1091 */ 1092 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1093 struct bio *bio, sector_t sectors) 1094 { 1095 wait_barrier(conf); 1096 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1097 bio->bi_iter.bi_sector < conf->reshape_progress && 1098 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1099 raid10_log(conf->mddev, "wait reshape"); 1100 allow_barrier(conf); 1101 wait_event(conf->wait_barrier, 1102 conf->reshape_progress <= bio->bi_iter.bi_sector || 1103 conf->reshape_progress >= bio->bi_iter.bi_sector + 1104 sectors); 1105 wait_barrier(conf); 1106 } 1107 } 1108 1109 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1110 struct r10bio *r10_bio) 1111 { 1112 struct r10conf *conf = mddev->private; 1113 struct bio *read_bio; 1114 const int op = bio_op(bio); 1115 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1116 int max_sectors; 1117 struct md_rdev *rdev; 1118 char b[BDEVNAME_SIZE]; 1119 int slot = r10_bio->read_slot; 1120 struct md_rdev *err_rdev = NULL; 1121 gfp_t gfp = GFP_NOIO; 1122 1123 if (r10_bio->devs[slot].rdev) { 1124 /* 1125 * This is an error retry, but we cannot 1126 * safely dereference the rdev in the r10_bio, 1127 * we must use the one in conf. 1128 * If it has already been disconnected (unlikely) 1129 * we lose the device name in error messages. 1130 */ 1131 int disk; 1132 /* 1133 * As we are blocking raid10, it is a little safer to 1134 * use __GFP_HIGH. 1135 */ 1136 gfp = GFP_NOIO | __GFP_HIGH; 1137 1138 rcu_read_lock(); 1139 disk = r10_bio->devs[slot].devnum; 1140 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1141 if (err_rdev) 1142 bdevname(err_rdev->bdev, b); 1143 else { 1144 strcpy(b, "???"); 1145 /* This never gets dereferenced */ 1146 err_rdev = r10_bio->devs[slot].rdev; 1147 } 1148 rcu_read_unlock(); 1149 } 1150 1151 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1152 rdev = read_balance(conf, r10_bio, &max_sectors); 1153 if (!rdev) { 1154 if (err_rdev) { 1155 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1156 mdname(mddev), b, 1157 (unsigned long long)r10_bio->sector); 1158 } 1159 raid_end_bio_io(r10_bio); 1160 return; 1161 } 1162 if (err_rdev) 1163 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1164 mdname(mddev), 1165 bdevname(rdev->bdev, b), 1166 (unsigned long long)r10_bio->sector); 1167 if (max_sectors < bio_sectors(bio)) { 1168 struct bio *split = bio_split(bio, max_sectors, 1169 gfp, &conf->bio_split); 1170 bio_chain(split, bio); 1171 allow_barrier(conf); 1172 submit_bio_noacct(bio); 1173 wait_barrier(conf); 1174 bio = split; 1175 r10_bio->master_bio = bio; 1176 r10_bio->sectors = max_sectors; 1177 } 1178 slot = r10_bio->read_slot; 1179 1180 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1181 1182 r10_bio->devs[slot].bio = read_bio; 1183 r10_bio->devs[slot].rdev = rdev; 1184 1185 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1186 choose_data_offset(r10_bio, rdev); 1187 bio_set_dev(read_bio, rdev->bdev); 1188 read_bio->bi_end_io = raid10_end_read_request; 1189 bio_set_op_attrs(read_bio, op, do_sync); 1190 if (test_bit(FailFast, &rdev->flags) && 1191 test_bit(R10BIO_FailFast, &r10_bio->state)) 1192 read_bio->bi_opf |= MD_FAILFAST; 1193 read_bio->bi_private = r10_bio; 1194 1195 if (mddev->gendisk) 1196 trace_block_bio_remap(read_bio->bi_disk->queue, 1197 read_bio, disk_devt(mddev->gendisk), 1198 r10_bio->sector); 1199 submit_bio_noacct(read_bio); 1200 return; 1201 } 1202 1203 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1204 struct bio *bio, bool replacement, 1205 int n_copy) 1206 { 1207 const int op = bio_op(bio); 1208 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1209 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1210 unsigned long flags; 1211 struct blk_plug_cb *cb; 1212 struct raid10_plug_cb *plug = NULL; 1213 struct r10conf *conf = mddev->private; 1214 struct md_rdev *rdev; 1215 int devnum = r10_bio->devs[n_copy].devnum; 1216 struct bio *mbio; 1217 1218 if (replacement) { 1219 rdev = conf->mirrors[devnum].replacement; 1220 if (rdev == NULL) { 1221 /* Replacement just got moved to main 'rdev' */ 1222 smp_mb(); 1223 rdev = conf->mirrors[devnum].rdev; 1224 } 1225 } else 1226 rdev = conf->mirrors[devnum].rdev; 1227 1228 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1229 if (replacement) 1230 r10_bio->devs[n_copy].repl_bio = mbio; 1231 else 1232 r10_bio->devs[n_copy].bio = mbio; 1233 1234 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1235 choose_data_offset(r10_bio, rdev)); 1236 bio_set_dev(mbio, rdev->bdev); 1237 mbio->bi_end_io = raid10_end_write_request; 1238 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1239 if (!replacement && test_bit(FailFast, 1240 &conf->mirrors[devnum].rdev->flags) 1241 && enough(conf, devnum)) 1242 mbio->bi_opf |= MD_FAILFAST; 1243 mbio->bi_private = r10_bio; 1244 1245 if (conf->mddev->gendisk) 1246 trace_block_bio_remap(mbio->bi_disk->queue, 1247 mbio, disk_devt(conf->mddev->gendisk), 1248 r10_bio->sector); 1249 /* flush_pending_writes() needs access to the rdev so...*/ 1250 mbio->bi_disk = (void *)rdev; 1251 1252 atomic_inc(&r10_bio->remaining); 1253 1254 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1255 if (cb) 1256 plug = container_of(cb, struct raid10_plug_cb, cb); 1257 else 1258 plug = NULL; 1259 if (plug) { 1260 bio_list_add(&plug->pending, mbio); 1261 plug->pending_cnt++; 1262 } else { 1263 spin_lock_irqsave(&conf->device_lock, flags); 1264 bio_list_add(&conf->pending_bio_list, mbio); 1265 conf->pending_count++; 1266 spin_unlock_irqrestore(&conf->device_lock, flags); 1267 md_wakeup_thread(mddev->thread); 1268 } 1269 } 1270 1271 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1272 struct r10bio *r10_bio) 1273 { 1274 struct r10conf *conf = mddev->private; 1275 int i; 1276 struct md_rdev *blocked_rdev; 1277 sector_t sectors; 1278 int max_sectors; 1279 1280 if ((mddev_is_clustered(mddev) && 1281 md_cluster_ops->area_resyncing(mddev, WRITE, 1282 bio->bi_iter.bi_sector, 1283 bio_end_sector(bio)))) { 1284 DEFINE_WAIT(w); 1285 for (;;) { 1286 prepare_to_wait(&conf->wait_barrier, 1287 &w, TASK_IDLE); 1288 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1289 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1290 break; 1291 schedule(); 1292 } 1293 finish_wait(&conf->wait_barrier, &w); 1294 } 1295 1296 sectors = r10_bio->sectors; 1297 regular_request_wait(mddev, conf, bio, sectors); 1298 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1299 (mddev->reshape_backwards 1300 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1301 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1302 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1303 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1304 /* Need to update reshape_position in metadata */ 1305 mddev->reshape_position = conf->reshape_progress; 1306 set_mask_bits(&mddev->sb_flags, 0, 1307 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1308 md_wakeup_thread(mddev->thread); 1309 raid10_log(conf->mddev, "wait reshape metadata"); 1310 wait_event(mddev->sb_wait, 1311 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1312 1313 conf->reshape_safe = mddev->reshape_position; 1314 } 1315 1316 if (conf->pending_count >= max_queued_requests) { 1317 md_wakeup_thread(mddev->thread); 1318 raid10_log(mddev, "wait queued"); 1319 wait_event(conf->wait_barrier, 1320 conf->pending_count < max_queued_requests); 1321 } 1322 /* first select target devices under rcu_lock and 1323 * inc refcount on their rdev. Record them by setting 1324 * bios[x] to bio 1325 * If there are known/acknowledged bad blocks on any device 1326 * on which we have seen a write error, we want to avoid 1327 * writing to those blocks. This potentially requires several 1328 * writes to write around the bad blocks. Each set of writes 1329 * gets its own r10_bio with a set of bios attached. 1330 */ 1331 1332 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1333 raid10_find_phys(conf, r10_bio); 1334 retry_write: 1335 blocked_rdev = NULL; 1336 rcu_read_lock(); 1337 max_sectors = r10_bio->sectors; 1338 1339 for (i = 0; i < conf->copies; i++) { 1340 int d = r10_bio->devs[i].devnum; 1341 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1342 struct md_rdev *rrdev = rcu_dereference( 1343 conf->mirrors[d].replacement); 1344 if (rdev == rrdev) 1345 rrdev = NULL; 1346 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1347 atomic_inc(&rdev->nr_pending); 1348 blocked_rdev = rdev; 1349 break; 1350 } 1351 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1352 atomic_inc(&rrdev->nr_pending); 1353 blocked_rdev = rrdev; 1354 break; 1355 } 1356 if (rdev && (test_bit(Faulty, &rdev->flags))) 1357 rdev = NULL; 1358 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1359 rrdev = NULL; 1360 1361 r10_bio->devs[i].bio = NULL; 1362 r10_bio->devs[i].repl_bio = NULL; 1363 1364 if (!rdev && !rrdev) { 1365 set_bit(R10BIO_Degraded, &r10_bio->state); 1366 continue; 1367 } 1368 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1369 sector_t first_bad; 1370 sector_t dev_sector = r10_bio->devs[i].addr; 1371 int bad_sectors; 1372 int is_bad; 1373 1374 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1375 &first_bad, &bad_sectors); 1376 if (is_bad < 0) { 1377 /* Mustn't write here until the bad block 1378 * is acknowledged 1379 */ 1380 atomic_inc(&rdev->nr_pending); 1381 set_bit(BlockedBadBlocks, &rdev->flags); 1382 blocked_rdev = rdev; 1383 break; 1384 } 1385 if (is_bad && first_bad <= dev_sector) { 1386 /* Cannot write here at all */ 1387 bad_sectors -= (dev_sector - first_bad); 1388 if (bad_sectors < max_sectors) 1389 /* Mustn't write more than bad_sectors 1390 * to other devices yet 1391 */ 1392 max_sectors = bad_sectors; 1393 /* We don't set R10BIO_Degraded as that 1394 * only applies if the disk is missing, 1395 * so it might be re-added, and we want to 1396 * know to recover this chunk. 1397 * In this case the device is here, and the 1398 * fact that this chunk is not in-sync is 1399 * recorded in the bad block log. 1400 */ 1401 continue; 1402 } 1403 if (is_bad) { 1404 int good_sectors = first_bad - dev_sector; 1405 if (good_sectors < max_sectors) 1406 max_sectors = good_sectors; 1407 } 1408 } 1409 if (rdev) { 1410 r10_bio->devs[i].bio = bio; 1411 atomic_inc(&rdev->nr_pending); 1412 } 1413 if (rrdev) { 1414 r10_bio->devs[i].repl_bio = bio; 1415 atomic_inc(&rrdev->nr_pending); 1416 } 1417 } 1418 rcu_read_unlock(); 1419 1420 if (unlikely(blocked_rdev)) { 1421 /* Have to wait for this device to get unblocked, then retry */ 1422 int j; 1423 int d; 1424 1425 for (j = 0; j < i; j++) { 1426 if (r10_bio->devs[j].bio) { 1427 d = r10_bio->devs[j].devnum; 1428 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1429 } 1430 if (r10_bio->devs[j].repl_bio) { 1431 struct md_rdev *rdev; 1432 d = r10_bio->devs[j].devnum; 1433 rdev = conf->mirrors[d].replacement; 1434 if (!rdev) { 1435 /* Race with remove_disk */ 1436 smp_mb(); 1437 rdev = conf->mirrors[d].rdev; 1438 } 1439 rdev_dec_pending(rdev, mddev); 1440 } 1441 } 1442 allow_barrier(conf); 1443 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1444 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1445 wait_barrier(conf); 1446 goto retry_write; 1447 } 1448 1449 if (max_sectors < r10_bio->sectors) 1450 r10_bio->sectors = max_sectors; 1451 1452 if (r10_bio->sectors < bio_sectors(bio)) { 1453 struct bio *split = bio_split(bio, r10_bio->sectors, 1454 GFP_NOIO, &conf->bio_split); 1455 bio_chain(split, bio); 1456 allow_barrier(conf); 1457 submit_bio_noacct(bio); 1458 wait_barrier(conf); 1459 bio = split; 1460 r10_bio->master_bio = bio; 1461 } 1462 1463 atomic_set(&r10_bio->remaining, 1); 1464 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1465 1466 for (i = 0; i < conf->copies; i++) { 1467 if (r10_bio->devs[i].bio) 1468 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1469 if (r10_bio->devs[i].repl_bio) 1470 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1471 } 1472 one_write_done(r10_bio); 1473 } 1474 1475 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1476 { 1477 struct r10conf *conf = mddev->private; 1478 struct r10bio *r10_bio; 1479 1480 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1481 1482 r10_bio->master_bio = bio; 1483 r10_bio->sectors = sectors; 1484 1485 r10_bio->mddev = mddev; 1486 r10_bio->sector = bio->bi_iter.bi_sector; 1487 r10_bio->state = 0; 1488 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1489 1490 if (bio_data_dir(bio) == READ) 1491 raid10_read_request(mddev, bio, r10_bio); 1492 else 1493 raid10_write_request(mddev, bio, r10_bio); 1494 } 1495 1496 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1497 { 1498 struct r10conf *conf = mddev->private; 1499 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1500 int chunk_sects = chunk_mask + 1; 1501 int sectors = bio_sectors(bio); 1502 1503 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1504 && md_flush_request(mddev, bio)) 1505 return true; 1506 1507 if (!md_write_start(mddev, bio)) 1508 return false; 1509 1510 /* 1511 * If this request crosses a chunk boundary, we need to split 1512 * it. 1513 */ 1514 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1515 sectors > chunk_sects 1516 && (conf->geo.near_copies < conf->geo.raid_disks 1517 || conf->prev.near_copies < 1518 conf->prev.raid_disks))) 1519 sectors = chunk_sects - 1520 (bio->bi_iter.bi_sector & 1521 (chunk_sects - 1)); 1522 __make_request(mddev, bio, sectors); 1523 1524 /* In case raid10d snuck in to freeze_array */ 1525 wake_up(&conf->wait_barrier); 1526 return true; 1527 } 1528 1529 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1530 { 1531 struct r10conf *conf = mddev->private; 1532 int i; 1533 1534 if (conf->geo.near_copies < conf->geo.raid_disks) 1535 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1536 if (conf->geo.near_copies > 1) 1537 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1538 if (conf->geo.far_copies > 1) { 1539 if (conf->geo.far_offset) 1540 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1541 else 1542 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1543 if (conf->geo.far_set_size != conf->geo.raid_disks) 1544 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1545 } 1546 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1547 conf->geo.raid_disks - mddev->degraded); 1548 rcu_read_lock(); 1549 for (i = 0; i < conf->geo.raid_disks; i++) { 1550 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1551 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1552 } 1553 rcu_read_unlock(); 1554 seq_printf(seq, "]"); 1555 } 1556 1557 /* check if there are enough drives for 1558 * every block to appear on atleast one. 1559 * Don't consider the device numbered 'ignore' 1560 * as we might be about to remove it. 1561 */ 1562 static int _enough(struct r10conf *conf, int previous, int ignore) 1563 { 1564 int first = 0; 1565 int has_enough = 0; 1566 int disks, ncopies; 1567 if (previous) { 1568 disks = conf->prev.raid_disks; 1569 ncopies = conf->prev.near_copies; 1570 } else { 1571 disks = conf->geo.raid_disks; 1572 ncopies = conf->geo.near_copies; 1573 } 1574 1575 rcu_read_lock(); 1576 do { 1577 int n = conf->copies; 1578 int cnt = 0; 1579 int this = first; 1580 while (n--) { 1581 struct md_rdev *rdev; 1582 if (this != ignore && 1583 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1584 test_bit(In_sync, &rdev->flags)) 1585 cnt++; 1586 this = (this+1) % disks; 1587 } 1588 if (cnt == 0) 1589 goto out; 1590 first = (first + ncopies) % disks; 1591 } while (first != 0); 1592 has_enough = 1; 1593 out: 1594 rcu_read_unlock(); 1595 return has_enough; 1596 } 1597 1598 static int enough(struct r10conf *conf, int ignore) 1599 { 1600 /* when calling 'enough', both 'prev' and 'geo' must 1601 * be stable. 1602 * This is ensured if ->reconfig_mutex or ->device_lock 1603 * is held. 1604 */ 1605 return _enough(conf, 0, ignore) && 1606 _enough(conf, 1, ignore); 1607 } 1608 1609 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1610 { 1611 char b[BDEVNAME_SIZE]; 1612 struct r10conf *conf = mddev->private; 1613 unsigned long flags; 1614 1615 /* 1616 * If it is not operational, then we have already marked it as dead 1617 * else if it is the last working disks with "fail_last_dev == false", 1618 * ignore the error, let the next level up know. 1619 * else mark the drive as failed 1620 */ 1621 spin_lock_irqsave(&conf->device_lock, flags); 1622 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1623 && !enough(conf, rdev->raid_disk)) { 1624 /* 1625 * Don't fail the drive, just return an IO error. 1626 */ 1627 spin_unlock_irqrestore(&conf->device_lock, flags); 1628 return; 1629 } 1630 if (test_and_clear_bit(In_sync, &rdev->flags)) 1631 mddev->degraded++; 1632 /* 1633 * If recovery is running, make sure it aborts. 1634 */ 1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1636 set_bit(Blocked, &rdev->flags); 1637 set_bit(Faulty, &rdev->flags); 1638 set_mask_bits(&mddev->sb_flags, 0, 1639 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1640 spin_unlock_irqrestore(&conf->device_lock, flags); 1641 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1642 "md/raid10:%s: Operation continuing on %d devices.\n", 1643 mdname(mddev), bdevname(rdev->bdev, b), 1644 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1645 } 1646 1647 static void print_conf(struct r10conf *conf) 1648 { 1649 int i; 1650 struct md_rdev *rdev; 1651 1652 pr_debug("RAID10 conf printout:\n"); 1653 if (!conf) { 1654 pr_debug("(!conf)\n"); 1655 return; 1656 } 1657 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1658 conf->geo.raid_disks); 1659 1660 /* This is only called with ->reconfix_mutex held, so 1661 * rcu protection of rdev is not needed */ 1662 for (i = 0; i < conf->geo.raid_disks; i++) { 1663 char b[BDEVNAME_SIZE]; 1664 rdev = conf->mirrors[i].rdev; 1665 if (rdev) 1666 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1667 i, !test_bit(In_sync, &rdev->flags), 1668 !test_bit(Faulty, &rdev->flags), 1669 bdevname(rdev->bdev,b)); 1670 } 1671 } 1672 1673 static void close_sync(struct r10conf *conf) 1674 { 1675 wait_barrier(conf); 1676 allow_barrier(conf); 1677 1678 mempool_exit(&conf->r10buf_pool); 1679 } 1680 1681 static int raid10_spare_active(struct mddev *mddev) 1682 { 1683 int i; 1684 struct r10conf *conf = mddev->private; 1685 struct raid10_info *tmp; 1686 int count = 0; 1687 unsigned long flags; 1688 1689 /* 1690 * Find all non-in_sync disks within the RAID10 configuration 1691 * and mark them in_sync 1692 */ 1693 for (i = 0; i < conf->geo.raid_disks; i++) { 1694 tmp = conf->mirrors + i; 1695 if (tmp->replacement 1696 && tmp->replacement->recovery_offset == MaxSector 1697 && !test_bit(Faulty, &tmp->replacement->flags) 1698 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1699 /* Replacement has just become active */ 1700 if (!tmp->rdev 1701 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1702 count++; 1703 if (tmp->rdev) { 1704 /* Replaced device not technically faulty, 1705 * but we need to be sure it gets removed 1706 * and never re-added. 1707 */ 1708 set_bit(Faulty, &tmp->rdev->flags); 1709 sysfs_notify_dirent_safe( 1710 tmp->rdev->sysfs_state); 1711 } 1712 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1713 } else if (tmp->rdev 1714 && tmp->rdev->recovery_offset == MaxSector 1715 && !test_bit(Faulty, &tmp->rdev->flags) 1716 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1717 count++; 1718 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1719 } 1720 } 1721 spin_lock_irqsave(&conf->device_lock, flags); 1722 mddev->degraded -= count; 1723 spin_unlock_irqrestore(&conf->device_lock, flags); 1724 1725 print_conf(conf); 1726 return count; 1727 } 1728 1729 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1730 { 1731 struct r10conf *conf = mddev->private; 1732 int err = -EEXIST; 1733 int mirror; 1734 int first = 0; 1735 int last = conf->geo.raid_disks - 1; 1736 1737 if (mddev->recovery_cp < MaxSector) 1738 /* only hot-add to in-sync arrays, as recovery is 1739 * very different from resync 1740 */ 1741 return -EBUSY; 1742 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1743 return -EINVAL; 1744 1745 if (md_integrity_add_rdev(rdev, mddev)) 1746 return -ENXIO; 1747 1748 if (rdev->raid_disk >= 0) 1749 first = last = rdev->raid_disk; 1750 1751 if (rdev->saved_raid_disk >= first && 1752 rdev->saved_raid_disk < conf->geo.raid_disks && 1753 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1754 mirror = rdev->saved_raid_disk; 1755 else 1756 mirror = first; 1757 for ( ; mirror <= last ; mirror++) { 1758 struct raid10_info *p = &conf->mirrors[mirror]; 1759 if (p->recovery_disabled == mddev->recovery_disabled) 1760 continue; 1761 if (p->rdev) { 1762 if (!test_bit(WantReplacement, &p->rdev->flags) || 1763 p->replacement != NULL) 1764 continue; 1765 clear_bit(In_sync, &rdev->flags); 1766 set_bit(Replacement, &rdev->flags); 1767 rdev->raid_disk = mirror; 1768 err = 0; 1769 if (mddev->gendisk) 1770 disk_stack_limits(mddev->gendisk, rdev->bdev, 1771 rdev->data_offset << 9); 1772 conf->fullsync = 1; 1773 rcu_assign_pointer(p->replacement, rdev); 1774 break; 1775 } 1776 1777 if (mddev->gendisk) 1778 disk_stack_limits(mddev->gendisk, rdev->bdev, 1779 rdev->data_offset << 9); 1780 1781 p->head_position = 0; 1782 p->recovery_disabled = mddev->recovery_disabled - 1; 1783 rdev->raid_disk = mirror; 1784 err = 0; 1785 if (rdev->saved_raid_disk != mirror) 1786 conf->fullsync = 1; 1787 rcu_assign_pointer(p->rdev, rdev); 1788 break; 1789 } 1790 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1791 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1792 1793 print_conf(conf); 1794 return err; 1795 } 1796 1797 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1798 { 1799 struct r10conf *conf = mddev->private; 1800 int err = 0; 1801 int number = rdev->raid_disk; 1802 struct md_rdev **rdevp; 1803 struct raid10_info *p = conf->mirrors + number; 1804 1805 print_conf(conf); 1806 if (rdev == p->rdev) 1807 rdevp = &p->rdev; 1808 else if (rdev == p->replacement) 1809 rdevp = &p->replacement; 1810 else 1811 return 0; 1812 1813 if (test_bit(In_sync, &rdev->flags) || 1814 atomic_read(&rdev->nr_pending)) { 1815 err = -EBUSY; 1816 goto abort; 1817 } 1818 /* Only remove non-faulty devices if recovery 1819 * is not possible. 1820 */ 1821 if (!test_bit(Faulty, &rdev->flags) && 1822 mddev->recovery_disabled != p->recovery_disabled && 1823 (!p->replacement || p->replacement == rdev) && 1824 number < conf->geo.raid_disks && 1825 enough(conf, -1)) { 1826 err = -EBUSY; 1827 goto abort; 1828 } 1829 *rdevp = NULL; 1830 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1831 synchronize_rcu(); 1832 if (atomic_read(&rdev->nr_pending)) { 1833 /* lost the race, try later */ 1834 err = -EBUSY; 1835 *rdevp = rdev; 1836 goto abort; 1837 } 1838 } 1839 if (p->replacement) { 1840 /* We must have just cleared 'rdev' */ 1841 p->rdev = p->replacement; 1842 clear_bit(Replacement, &p->replacement->flags); 1843 smp_mb(); /* Make sure other CPUs may see both as identical 1844 * but will never see neither -- if they are careful. 1845 */ 1846 p->replacement = NULL; 1847 } 1848 1849 clear_bit(WantReplacement, &rdev->flags); 1850 err = md_integrity_register(mddev); 1851 1852 abort: 1853 1854 print_conf(conf); 1855 return err; 1856 } 1857 1858 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1859 { 1860 struct r10conf *conf = r10_bio->mddev->private; 1861 1862 if (!bio->bi_status) 1863 set_bit(R10BIO_Uptodate, &r10_bio->state); 1864 else 1865 /* The write handler will notice the lack of 1866 * R10BIO_Uptodate and record any errors etc 1867 */ 1868 atomic_add(r10_bio->sectors, 1869 &conf->mirrors[d].rdev->corrected_errors); 1870 1871 /* for reconstruct, we always reschedule after a read. 1872 * for resync, only after all reads 1873 */ 1874 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1875 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1876 atomic_dec_and_test(&r10_bio->remaining)) { 1877 /* we have read all the blocks, 1878 * do the comparison in process context in raid10d 1879 */ 1880 reschedule_retry(r10_bio); 1881 } 1882 } 1883 1884 static void end_sync_read(struct bio *bio) 1885 { 1886 struct r10bio *r10_bio = get_resync_r10bio(bio); 1887 struct r10conf *conf = r10_bio->mddev->private; 1888 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1889 1890 __end_sync_read(r10_bio, bio, d); 1891 } 1892 1893 static void end_reshape_read(struct bio *bio) 1894 { 1895 /* reshape read bio isn't allocated from r10buf_pool */ 1896 struct r10bio *r10_bio = bio->bi_private; 1897 1898 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1899 } 1900 1901 static void end_sync_request(struct r10bio *r10_bio) 1902 { 1903 struct mddev *mddev = r10_bio->mddev; 1904 1905 while (atomic_dec_and_test(&r10_bio->remaining)) { 1906 if (r10_bio->master_bio == NULL) { 1907 /* the primary of several recovery bios */ 1908 sector_t s = r10_bio->sectors; 1909 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1910 test_bit(R10BIO_WriteError, &r10_bio->state)) 1911 reschedule_retry(r10_bio); 1912 else 1913 put_buf(r10_bio); 1914 md_done_sync(mddev, s, 1); 1915 break; 1916 } else { 1917 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1918 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1919 test_bit(R10BIO_WriteError, &r10_bio->state)) 1920 reschedule_retry(r10_bio); 1921 else 1922 put_buf(r10_bio); 1923 r10_bio = r10_bio2; 1924 } 1925 } 1926 } 1927 1928 static void end_sync_write(struct bio *bio) 1929 { 1930 struct r10bio *r10_bio = get_resync_r10bio(bio); 1931 struct mddev *mddev = r10_bio->mddev; 1932 struct r10conf *conf = mddev->private; 1933 int d; 1934 sector_t first_bad; 1935 int bad_sectors; 1936 int slot; 1937 int repl; 1938 struct md_rdev *rdev = NULL; 1939 1940 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1941 if (repl) 1942 rdev = conf->mirrors[d].replacement; 1943 else 1944 rdev = conf->mirrors[d].rdev; 1945 1946 if (bio->bi_status) { 1947 if (repl) 1948 md_error(mddev, rdev); 1949 else { 1950 set_bit(WriteErrorSeen, &rdev->flags); 1951 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1952 set_bit(MD_RECOVERY_NEEDED, 1953 &rdev->mddev->recovery); 1954 set_bit(R10BIO_WriteError, &r10_bio->state); 1955 } 1956 } else if (is_badblock(rdev, 1957 r10_bio->devs[slot].addr, 1958 r10_bio->sectors, 1959 &first_bad, &bad_sectors)) 1960 set_bit(R10BIO_MadeGood, &r10_bio->state); 1961 1962 rdev_dec_pending(rdev, mddev); 1963 1964 end_sync_request(r10_bio); 1965 } 1966 1967 /* 1968 * Note: sync and recover and handled very differently for raid10 1969 * This code is for resync. 1970 * For resync, we read through virtual addresses and read all blocks. 1971 * If there is any error, we schedule a write. The lowest numbered 1972 * drive is authoritative. 1973 * However requests come for physical address, so we need to map. 1974 * For every physical address there are raid_disks/copies virtual addresses, 1975 * which is always are least one, but is not necessarly an integer. 1976 * This means that a physical address can span multiple chunks, so we may 1977 * have to submit multiple io requests for a single sync request. 1978 */ 1979 /* 1980 * We check if all blocks are in-sync and only write to blocks that 1981 * aren't in sync 1982 */ 1983 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1984 { 1985 struct r10conf *conf = mddev->private; 1986 int i, first; 1987 struct bio *tbio, *fbio; 1988 int vcnt; 1989 struct page **tpages, **fpages; 1990 1991 atomic_set(&r10_bio->remaining, 1); 1992 1993 /* find the first device with a block */ 1994 for (i=0; i<conf->copies; i++) 1995 if (!r10_bio->devs[i].bio->bi_status) 1996 break; 1997 1998 if (i == conf->copies) 1999 goto done; 2000 2001 first = i; 2002 fbio = r10_bio->devs[i].bio; 2003 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2004 fbio->bi_iter.bi_idx = 0; 2005 fpages = get_resync_pages(fbio)->pages; 2006 2007 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2008 /* now find blocks with errors */ 2009 for (i=0 ; i < conf->copies ; i++) { 2010 int j, d; 2011 struct md_rdev *rdev; 2012 struct resync_pages *rp; 2013 2014 tbio = r10_bio->devs[i].bio; 2015 2016 if (tbio->bi_end_io != end_sync_read) 2017 continue; 2018 if (i == first) 2019 continue; 2020 2021 tpages = get_resync_pages(tbio)->pages; 2022 d = r10_bio->devs[i].devnum; 2023 rdev = conf->mirrors[d].rdev; 2024 if (!r10_bio->devs[i].bio->bi_status) { 2025 /* We know that the bi_io_vec layout is the same for 2026 * both 'first' and 'i', so we just compare them. 2027 * All vec entries are PAGE_SIZE; 2028 */ 2029 int sectors = r10_bio->sectors; 2030 for (j = 0; j < vcnt; j++) { 2031 int len = PAGE_SIZE; 2032 if (sectors < (len / 512)) 2033 len = sectors * 512; 2034 if (memcmp(page_address(fpages[j]), 2035 page_address(tpages[j]), 2036 len)) 2037 break; 2038 sectors -= len/512; 2039 } 2040 if (j == vcnt) 2041 continue; 2042 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2043 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2044 /* Don't fix anything. */ 2045 continue; 2046 } else if (test_bit(FailFast, &rdev->flags)) { 2047 /* Just give up on this device */ 2048 md_error(rdev->mddev, rdev); 2049 continue; 2050 } 2051 /* Ok, we need to write this bio, either to correct an 2052 * inconsistency or to correct an unreadable block. 2053 * First we need to fixup bv_offset, bv_len and 2054 * bi_vecs, as the read request might have corrupted these 2055 */ 2056 rp = get_resync_pages(tbio); 2057 bio_reset(tbio); 2058 2059 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2060 2061 rp->raid_bio = r10_bio; 2062 tbio->bi_private = rp; 2063 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2064 tbio->bi_end_io = end_sync_write; 2065 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2066 2067 bio_copy_data(tbio, fbio); 2068 2069 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2070 atomic_inc(&r10_bio->remaining); 2071 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2072 2073 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2074 tbio->bi_opf |= MD_FAILFAST; 2075 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2076 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2077 submit_bio_noacct(tbio); 2078 } 2079 2080 /* Now write out to any replacement devices 2081 * that are active 2082 */ 2083 for (i = 0; i < conf->copies; i++) { 2084 int d; 2085 2086 tbio = r10_bio->devs[i].repl_bio; 2087 if (!tbio || !tbio->bi_end_io) 2088 continue; 2089 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2090 && r10_bio->devs[i].bio != fbio) 2091 bio_copy_data(tbio, fbio); 2092 d = r10_bio->devs[i].devnum; 2093 atomic_inc(&r10_bio->remaining); 2094 md_sync_acct(conf->mirrors[d].replacement->bdev, 2095 bio_sectors(tbio)); 2096 submit_bio_noacct(tbio); 2097 } 2098 2099 done: 2100 if (atomic_dec_and_test(&r10_bio->remaining)) { 2101 md_done_sync(mddev, r10_bio->sectors, 1); 2102 put_buf(r10_bio); 2103 } 2104 } 2105 2106 /* 2107 * Now for the recovery code. 2108 * Recovery happens across physical sectors. 2109 * We recover all non-is_sync drives by finding the virtual address of 2110 * each, and then choose a working drive that also has that virt address. 2111 * There is a separate r10_bio for each non-in_sync drive. 2112 * Only the first two slots are in use. The first for reading, 2113 * The second for writing. 2114 * 2115 */ 2116 static void fix_recovery_read_error(struct r10bio *r10_bio) 2117 { 2118 /* We got a read error during recovery. 2119 * We repeat the read in smaller page-sized sections. 2120 * If a read succeeds, write it to the new device or record 2121 * a bad block if we cannot. 2122 * If a read fails, record a bad block on both old and 2123 * new devices. 2124 */ 2125 struct mddev *mddev = r10_bio->mddev; 2126 struct r10conf *conf = mddev->private; 2127 struct bio *bio = r10_bio->devs[0].bio; 2128 sector_t sect = 0; 2129 int sectors = r10_bio->sectors; 2130 int idx = 0; 2131 int dr = r10_bio->devs[0].devnum; 2132 int dw = r10_bio->devs[1].devnum; 2133 struct page **pages = get_resync_pages(bio)->pages; 2134 2135 while (sectors) { 2136 int s = sectors; 2137 struct md_rdev *rdev; 2138 sector_t addr; 2139 int ok; 2140 2141 if (s > (PAGE_SIZE>>9)) 2142 s = PAGE_SIZE >> 9; 2143 2144 rdev = conf->mirrors[dr].rdev; 2145 addr = r10_bio->devs[0].addr + sect, 2146 ok = sync_page_io(rdev, 2147 addr, 2148 s << 9, 2149 pages[idx], 2150 REQ_OP_READ, 0, false); 2151 if (ok) { 2152 rdev = conf->mirrors[dw].rdev; 2153 addr = r10_bio->devs[1].addr + sect; 2154 ok = sync_page_io(rdev, 2155 addr, 2156 s << 9, 2157 pages[idx], 2158 REQ_OP_WRITE, 0, false); 2159 if (!ok) { 2160 set_bit(WriteErrorSeen, &rdev->flags); 2161 if (!test_and_set_bit(WantReplacement, 2162 &rdev->flags)) 2163 set_bit(MD_RECOVERY_NEEDED, 2164 &rdev->mddev->recovery); 2165 } 2166 } 2167 if (!ok) { 2168 /* We don't worry if we cannot set a bad block - 2169 * it really is bad so there is no loss in not 2170 * recording it yet 2171 */ 2172 rdev_set_badblocks(rdev, addr, s, 0); 2173 2174 if (rdev != conf->mirrors[dw].rdev) { 2175 /* need bad block on destination too */ 2176 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2177 addr = r10_bio->devs[1].addr + sect; 2178 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2179 if (!ok) { 2180 /* just abort the recovery */ 2181 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2182 mdname(mddev)); 2183 2184 conf->mirrors[dw].recovery_disabled 2185 = mddev->recovery_disabled; 2186 set_bit(MD_RECOVERY_INTR, 2187 &mddev->recovery); 2188 break; 2189 } 2190 } 2191 } 2192 2193 sectors -= s; 2194 sect += s; 2195 idx++; 2196 } 2197 } 2198 2199 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2200 { 2201 struct r10conf *conf = mddev->private; 2202 int d; 2203 struct bio *wbio, *wbio2; 2204 2205 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2206 fix_recovery_read_error(r10_bio); 2207 end_sync_request(r10_bio); 2208 return; 2209 } 2210 2211 /* 2212 * share the pages with the first bio 2213 * and submit the write request 2214 */ 2215 d = r10_bio->devs[1].devnum; 2216 wbio = r10_bio->devs[1].bio; 2217 wbio2 = r10_bio->devs[1].repl_bio; 2218 /* Need to test wbio2->bi_end_io before we call 2219 * submit_bio_noacct as if the former is NULL, 2220 * the latter is free to free wbio2. 2221 */ 2222 if (wbio2 && !wbio2->bi_end_io) 2223 wbio2 = NULL; 2224 if (wbio->bi_end_io) { 2225 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2226 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2227 submit_bio_noacct(wbio); 2228 } 2229 if (wbio2) { 2230 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2231 md_sync_acct(conf->mirrors[d].replacement->bdev, 2232 bio_sectors(wbio2)); 2233 submit_bio_noacct(wbio2); 2234 } 2235 } 2236 2237 /* 2238 * Used by fix_read_error() to decay the per rdev read_errors. 2239 * We halve the read error count for every hour that has elapsed 2240 * since the last recorded read error. 2241 * 2242 */ 2243 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2244 { 2245 long cur_time_mon; 2246 unsigned long hours_since_last; 2247 unsigned int read_errors = atomic_read(&rdev->read_errors); 2248 2249 cur_time_mon = ktime_get_seconds(); 2250 2251 if (rdev->last_read_error == 0) { 2252 /* first time we've seen a read error */ 2253 rdev->last_read_error = cur_time_mon; 2254 return; 2255 } 2256 2257 hours_since_last = (long)(cur_time_mon - 2258 rdev->last_read_error) / 3600; 2259 2260 rdev->last_read_error = cur_time_mon; 2261 2262 /* 2263 * if hours_since_last is > the number of bits in read_errors 2264 * just set read errors to 0. We do this to avoid 2265 * overflowing the shift of read_errors by hours_since_last. 2266 */ 2267 if (hours_since_last >= 8 * sizeof(read_errors)) 2268 atomic_set(&rdev->read_errors, 0); 2269 else 2270 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2271 } 2272 2273 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2274 int sectors, struct page *page, int rw) 2275 { 2276 sector_t first_bad; 2277 int bad_sectors; 2278 2279 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2280 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2281 return -1; 2282 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2283 /* success */ 2284 return 1; 2285 if (rw == WRITE) { 2286 set_bit(WriteErrorSeen, &rdev->flags); 2287 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2288 set_bit(MD_RECOVERY_NEEDED, 2289 &rdev->mddev->recovery); 2290 } 2291 /* need to record an error - either for the block or the device */ 2292 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2293 md_error(rdev->mddev, rdev); 2294 return 0; 2295 } 2296 2297 /* 2298 * This is a kernel thread which: 2299 * 2300 * 1. Retries failed read operations on working mirrors. 2301 * 2. Updates the raid superblock when problems encounter. 2302 * 3. Performs writes following reads for array synchronising. 2303 */ 2304 2305 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2306 { 2307 int sect = 0; /* Offset from r10_bio->sector */ 2308 int sectors = r10_bio->sectors; 2309 struct md_rdev *rdev; 2310 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2311 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2312 2313 /* still own a reference to this rdev, so it cannot 2314 * have been cleared recently. 2315 */ 2316 rdev = conf->mirrors[d].rdev; 2317 2318 if (test_bit(Faulty, &rdev->flags)) 2319 /* drive has already been failed, just ignore any 2320 more fix_read_error() attempts */ 2321 return; 2322 2323 check_decay_read_errors(mddev, rdev); 2324 atomic_inc(&rdev->read_errors); 2325 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2326 char b[BDEVNAME_SIZE]; 2327 bdevname(rdev->bdev, b); 2328 2329 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2330 mdname(mddev), b, 2331 atomic_read(&rdev->read_errors), max_read_errors); 2332 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2333 mdname(mddev), b); 2334 md_error(mddev, rdev); 2335 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2336 return; 2337 } 2338 2339 while(sectors) { 2340 int s = sectors; 2341 int sl = r10_bio->read_slot; 2342 int success = 0; 2343 int start; 2344 2345 if (s > (PAGE_SIZE>>9)) 2346 s = PAGE_SIZE >> 9; 2347 2348 rcu_read_lock(); 2349 do { 2350 sector_t first_bad; 2351 int bad_sectors; 2352 2353 d = r10_bio->devs[sl].devnum; 2354 rdev = rcu_dereference(conf->mirrors[d].rdev); 2355 if (rdev && 2356 test_bit(In_sync, &rdev->flags) && 2357 !test_bit(Faulty, &rdev->flags) && 2358 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2359 &first_bad, &bad_sectors) == 0) { 2360 atomic_inc(&rdev->nr_pending); 2361 rcu_read_unlock(); 2362 success = sync_page_io(rdev, 2363 r10_bio->devs[sl].addr + 2364 sect, 2365 s<<9, 2366 conf->tmppage, 2367 REQ_OP_READ, 0, false); 2368 rdev_dec_pending(rdev, mddev); 2369 rcu_read_lock(); 2370 if (success) 2371 break; 2372 } 2373 sl++; 2374 if (sl == conf->copies) 2375 sl = 0; 2376 } while (!success && sl != r10_bio->read_slot); 2377 rcu_read_unlock(); 2378 2379 if (!success) { 2380 /* Cannot read from anywhere, just mark the block 2381 * as bad on the first device to discourage future 2382 * reads. 2383 */ 2384 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2385 rdev = conf->mirrors[dn].rdev; 2386 2387 if (!rdev_set_badblocks( 2388 rdev, 2389 r10_bio->devs[r10_bio->read_slot].addr 2390 + sect, 2391 s, 0)) { 2392 md_error(mddev, rdev); 2393 r10_bio->devs[r10_bio->read_slot].bio 2394 = IO_BLOCKED; 2395 } 2396 break; 2397 } 2398 2399 start = sl; 2400 /* write it back and re-read */ 2401 rcu_read_lock(); 2402 while (sl != r10_bio->read_slot) { 2403 char b[BDEVNAME_SIZE]; 2404 2405 if (sl==0) 2406 sl = conf->copies; 2407 sl--; 2408 d = r10_bio->devs[sl].devnum; 2409 rdev = rcu_dereference(conf->mirrors[d].rdev); 2410 if (!rdev || 2411 test_bit(Faulty, &rdev->flags) || 2412 !test_bit(In_sync, &rdev->flags)) 2413 continue; 2414 2415 atomic_inc(&rdev->nr_pending); 2416 rcu_read_unlock(); 2417 if (r10_sync_page_io(rdev, 2418 r10_bio->devs[sl].addr + 2419 sect, 2420 s, conf->tmppage, WRITE) 2421 == 0) { 2422 /* Well, this device is dead */ 2423 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2424 mdname(mddev), s, 2425 (unsigned long long)( 2426 sect + 2427 choose_data_offset(r10_bio, 2428 rdev)), 2429 bdevname(rdev->bdev, b)); 2430 pr_notice("md/raid10:%s: %s: failing drive\n", 2431 mdname(mddev), 2432 bdevname(rdev->bdev, b)); 2433 } 2434 rdev_dec_pending(rdev, mddev); 2435 rcu_read_lock(); 2436 } 2437 sl = start; 2438 while (sl != r10_bio->read_slot) { 2439 char b[BDEVNAME_SIZE]; 2440 2441 if (sl==0) 2442 sl = conf->copies; 2443 sl--; 2444 d = r10_bio->devs[sl].devnum; 2445 rdev = rcu_dereference(conf->mirrors[d].rdev); 2446 if (!rdev || 2447 test_bit(Faulty, &rdev->flags) || 2448 !test_bit(In_sync, &rdev->flags)) 2449 continue; 2450 2451 atomic_inc(&rdev->nr_pending); 2452 rcu_read_unlock(); 2453 switch (r10_sync_page_io(rdev, 2454 r10_bio->devs[sl].addr + 2455 sect, 2456 s, conf->tmppage, 2457 READ)) { 2458 case 0: 2459 /* Well, this device is dead */ 2460 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2461 mdname(mddev), s, 2462 (unsigned long long)( 2463 sect + 2464 choose_data_offset(r10_bio, rdev)), 2465 bdevname(rdev->bdev, b)); 2466 pr_notice("md/raid10:%s: %s: failing drive\n", 2467 mdname(mddev), 2468 bdevname(rdev->bdev, b)); 2469 break; 2470 case 1: 2471 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2472 mdname(mddev), s, 2473 (unsigned long long)( 2474 sect + 2475 choose_data_offset(r10_bio, rdev)), 2476 bdevname(rdev->bdev, b)); 2477 atomic_add(s, &rdev->corrected_errors); 2478 } 2479 2480 rdev_dec_pending(rdev, mddev); 2481 rcu_read_lock(); 2482 } 2483 rcu_read_unlock(); 2484 2485 sectors -= s; 2486 sect += s; 2487 } 2488 } 2489 2490 static int narrow_write_error(struct r10bio *r10_bio, int i) 2491 { 2492 struct bio *bio = r10_bio->master_bio; 2493 struct mddev *mddev = r10_bio->mddev; 2494 struct r10conf *conf = mddev->private; 2495 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2496 /* bio has the data to be written to slot 'i' where 2497 * we just recently had a write error. 2498 * We repeatedly clone the bio and trim down to one block, 2499 * then try the write. Where the write fails we record 2500 * a bad block. 2501 * It is conceivable that the bio doesn't exactly align with 2502 * blocks. We must handle this. 2503 * 2504 * We currently own a reference to the rdev. 2505 */ 2506 2507 int block_sectors; 2508 sector_t sector; 2509 int sectors; 2510 int sect_to_write = r10_bio->sectors; 2511 int ok = 1; 2512 2513 if (rdev->badblocks.shift < 0) 2514 return 0; 2515 2516 block_sectors = roundup(1 << rdev->badblocks.shift, 2517 bdev_logical_block_size(rdev->bdev) >> 9); 2518 sector = r10_bio->sector; 2519 sectors = ((r10_bio->sector + block_sectors) 2520 & ~(sector_t)(block_sectors - 1)) 2521 - sector; 2522 2523 while (sect_to_write) { 2524 struct bio *wbio; 2525 sector_t wsector; 2526 if (sectors > sect_to_write) 2527 sectors = sect_to_write; 2528 /* Write at 'sector' for 'sectors' */ 2529 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2530 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2531 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2532 wbio->bi_iter.bi_sector = wsector + 2533 choose_data_offset(r10_bio, rdev); 2534 bio_set_dev(wbio, rdev->bdev); 2535 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2536 2537 if (submit_bio_wait(wbio) < 0) 2538 /* Failure! */ 2539 ok = rdev_set_badblocks(rdev, wsector, 2540 sectors, 0) 2541 && ok; 2542 2543 bio_put(wbio); 2544 sect_to_write -= sectors; 2545 sector += sectors; 2546 sectors = block_sectors; 2547 } 2548 return ok; 2549 } 2550 2551 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2552 { 2553 int slot = r10_bio->read_slot; 2554 struct bio *bio; 2555 struct r10conf *conf = mddev->private; 2556 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2557 2558 /* we got a read error. Maybe the drive is bad. Maybe just 2559 * the block and we can fix it. 2560 * We freeze all other IO, and try reading the block from 2561 * other devices. When we find one, we re-write 2562 * and check it that fixes the read error. 2563 * This is all done synchronously while the array is 2564 * frozen. 2565 */ 2566 bio = r10_bio->devs[slot].bio; 2567 bio_put(bio); 2568 r10_bio->devs[slot].bio = NULL; 2569 2570 if (mddev->ro) 2571 r10_bio->devs[slot].bio = IO_BLOCKED; 2572 else if (!test_bit(FailFast, &rdev->flags)) { 2573 freeze_array(conf, 1); 2574 fix_read_error(conf, mddev, r10_bio); 2575 unfreeze_array(conf); 2576 } else 2577 md_error(mddev, rdev); 2578 2579 rdev_dec_pending(rdev, mddev); 2580 allow_barrier(conf); 2581 r10_bio->state = 0; 2582 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2583 } 2584 2585 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2586 { 2587 /* Some sort of write request has finished and it 2588 * succeeded in writing where we thought there was a 2589 * bad block. So forget the bad block. 2590 * Or possibly if failed and we need to record 2591 * a bad block. 2592 */ 2593 int m; 2594 struct md_rdev *rdev; 2595 2596 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2597 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2598 for (m = 0; m < conf->copies; m++) { 2599 int dev = r10_bio->devs[m].devnum; 2600 rdev = conf->mirrors[dev].rdev; 2601 if (r10_bio->devs[m].bio == NULL || 2602 r10_bio->devs[m].bio->bi_end_io == NULL) 2603 continue; 2604 if (!r10_bio->devs[m].bio->bi_status) { 2605 rdev_clear_badblocks( 2606 rdev, 2607 r10_bio->devs[m].addr, 2608 r10_bio->sectors, 0); 2609 } else { 2610 if (!rdev_set_badblocks( 2611 rdev, 2612 r10_bio->devs[m].addr, 2613 r10_bio->sectors, 0)) 2614 md_error(conf->mddev, rdev); 2615 } 2616 rdev = conf->mirrors[dev].replacement; 2617 if (r10_bio->devs[m].repl_bio == NULL || 2618 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2619 continue; 2620 2621 if (!r10_bio->devs[m].repl_bio->bi_status) { 2622 rdev_clear_badblocks( 2623 rdev, 2624 r10_bio->devs[m].addr, 2625 r10_bio->sectors, 0); 2626 } else { 2627 if (!rdev_set_badblocks( 2628 rdev, 2629 r10_bio->devs[m].addr, 2630 r10_bio->sectors, 0)) 2631 md_error(conf->mddev, rdev); 2632 } 2633 } 2634 put_buf(r10_bio); 2635 } else { 2636 bool fail = false; 2637 for (m = 0; m < conf->copies; m++) { 2638 int dev = r10_bio->devs[m].devnum; 2639 struct bio *bio = r10_bio->devs[m].bio; 2640 rdev = conf->mirrors[dev].rdev; 2641 if (bio == IO_MADE_GOOD) { 2642 rdev_clear_badblocks( 2643 rdev, 2644 r10_bio->devs[m].addr, 2645 r10_bio->sectors, 0); 2646 rdev_dec_pending(rdev, conf->mddev); 2647 } else if (bio != NULL && bio->bi_status) { 2648 fail = true; 2649 if (!narrow_write_error(r10_bio, m)) { 2650 md_error(conf->mddev, rdev); 2651 set_bit(R10BIO_Degraded, 2652 &r10_bio->state); 2653 } 2654 rdev_dec_pending(rdev, conf->mddev); 2655 } 2656 bio = r10_bio->devs[m].repl_bio; 2657 rdev = conf->mirrors[dev].replacement; 2658 if (rdev && bio == IO_MADE_GOOD) { 2659 rdev_clear_badblocks( 2660 rdev, 2661 r10_bio->devs[m].addr, 2662 r10_bio->sectors, 0); 2663 rdev_dec_pending(rdev, conf->mddev); 2664 } 2665 } 2666 if (fail) { 2667 spin_lock_irq(&conf->device_lock); 2668 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2669 conf->nr_queued++; 2670 spin_unlock_irq(&conf->device_lock); 2671 /* 2672 * In case freeze_array() is waiting for condition 2673 * nr_pending == nr_queued + extra to be true. 2674 */ 2675 wake_up(&conf->wait_barrier); 2676 md_wakeup_thread(conf->mddev->thread); 2677 } else { 2678 if (test_bit(R10BIO_WriteError, 2679 &r10_bio->state)) 2680 close_write(r10_bio); 2681 raid_end_bio_io(r10_bio); 2682 } 2683 } 2684 } 2685 2686 static void raid10d(struct md_thread *thread) 2687 { 2688 struct mddev *mddev = thread->mddev; 2689 struct r10bio *r10_bio; 2690 unsigned long flags; 2691 struct r10conf *conf = mddev->private; 2692 struct list_head *head = &conf->retry_list; 2693 struct blk_plug plug; 2694 2695 md_check_recovery(mddev); 2696 2697 if (!list_empty_careful(&conf->bio_end_io_list) && 2698 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2699 LIST_HEAD(tmp); 2700 spin_lock_irqsave(&conf->device_lock, flags); 2701 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2702 while (!list_empty(&conf->bio_end_io_list)) { 2703 list_move(conf->bio_end_io_list.prev, &tmp); 2704 conf->nr_queued--; 2705 } 2706 } 2707 spin_unlock_irqrestore(&conf->device_lock, flags); 2708 while (!list_empty(&tmp)) { 2709 r10_bio = list_first_entry(&tmp, struct r10bio, 2710 retry_list); 2711 list_del(&r10_bio->retry_list); 2712 if (mddev->degraded) 2713 set_bit(R10BIO_Degraded, &r10_bio->state); 2714 2715 if (test_bit(R10BIO_WriteError, 2716 &r10_bio->state)) 2717 close_write(r10_bio); 2718 raid_end_bio_io(r10_bio); 2719 } 2720 } 2721 2722 blk_start_plug(&plug); 2723 for (;;) { 2724 2725 flush_pending_writes(conf); 2726 2727 spin_lock_irqsave(&conf->device_lock, flags); 2728 if (list_empty(head)) { 2729 spin_unlock_irqrestore(&conf->device_lock, flags); 2730 break; 2731 } 2732 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2733 list_del(head->prev); 2734 conf->nr_queued--; 2735 spin_unlock_irqrestore(&conf->device_lock, flags); 2736 2737 mddev = r10_bio->mddev; 2738 conf = mddev->private; 2739 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2740 test_bit(R10BIO_WriteError, &r10_bio->state)) 2741 handle_write_completed(conf, r10_bio); 2742 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2743 reshape_request_write(mddev, r10_bio); 2744 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2745 sync_request_write(mddev, r10_bio); 2746 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2747 recovery_request_write(mddev, r10_bio); 2748 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2749 handle_read_error(mddev, r10_bio); 2750 else 2751 WARN_ON_ONCE(1); 2752 2753 cond_resched(); 2754 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2755 md_check_recovery(mddev); 2756 } 2757 blk_finish_plug(&plug); 2758 } 2759 2760 static int init_resync(struct r10conf *conf) 2761 { 2762 int ret, buffs, i; 2763 2764 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2765 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2766 conf->have_replacement = 0; 2767 for (i = 0; i < conf->geo.raid_disks; i++) 2768 if (conf->mirrors[i].replacement) 2769 conf->have_replacement = 1; 2770 ret = mempool_init(&conf->r10buf_pool, buffs, 2771 r10buf_pool_alloc, r10buf_pool_free, conf); 2772 if (ret) 2773 return ret; 2774 conf->next_resync = 0; 2775 return 0; 2776 } 2777 2778 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2779 { 2780 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2781 struct rsync_pages *rp; 2782 struct bio *bio; 2783 int nalloc; 2784 int i; 2785 2786 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2787 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2788 nalloc = conf->copies; /* resync */ 2789 else 2790 nalloc = 2; /* recovery */ 2791 2792 for (i = 0; i < nalloc; i++) { 2793 bio = r10bio->devs[i].bio; 2794 rp = bio->bi_private; 2795 bio_reset(bio); 2796 bio->bi_private = rp; 2797 bio = r10bio->devs[i].repl_bio; 2798 if (bio) { 2799 rp = bio->bi_private; 2800 bio_reset(bio); 2801 bio->bi_private = rp; 2802 } 2803 } 2804 return r10bio; 2805 } 2806 2807 /* 2808 * Set cluster_sync_high since we need other nodes to add the 2809 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2810 */ 2811 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2812 { 2813 sector_t window_size; 2814 int extra_chunk, chunks; 2815 2816 /* 2817 * First, here we define "stripe" as a unit which across 2818 * all member devices one time, so we get chunks by use 2819 * raid_disks / near_copies. Otherwise, if near_copies is 2820 * close to raid_disks, then resync window could increases 2821 * linearly with the increase of raid_disks, which means 2822 * we will suspend a really large IO window while it is not 2823 * necessary. If raid_disks is not divisible by near_copies, 2824 * an extra chunk is needed to ensure the whole "stripe" is 2825 * covered. 2826 */ 2827 2828 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2829 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2830 extra_chunk = 0; 2831 else 2832 extra_chunk = 1; 2833 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2834 2835 /* 2836 * At least use a 32M window to align with raid1's resync window 2837 */ 2838 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2839 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2840 2841 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2842 } 2843 2844 /* 2845 * perform a "sync" on one "block" 2846 * 2847 * We need to make sure that no normal I/O request - particularly write 2848 * requests - conflict with active sync requests. 2849 * 2850 * This is achieved by tracking pending requests and a 'barrier' concept 2851 * that can be installed to exclude normal IO requests. 2852 * 2853 * Resync and recovery are handled very differently. 2854 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2855 * 2856 * For resync, we iterate over virtual addresses, read all copies, 2857 * and update if there are differences. If only one copy is live, 2858 * skip it. 2859 * For recovery, we iterate over physical addresses, read a good 2860 * value for each non-in_sync drive, and over-write. 2861 * 2862 * So, for recovery we may have several outstanding complex requests for a 2863 * given address, one for each out-of-sync device. We model this by allocating 2864 * a number of r10_bio structures, one for each out-of-sync device. 2865 * As we setup these structures, we collect all bio's together into a list 2866 * which we then process collectively to add pages, and then process again 2867 * to pass to submit_bio_noacct. 2868 * 2869 * The r10_bio structures are linked using a borrowed master_bio pointer. 2870 * This link is counted in ->remaining. When the r10_bio that points to NULL 2871 * has its remaining count decremented to 0, the whole complex operation 2872 * is complete. 2873 * 2874 */ 2875 2876 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2877 int *skipped) 2878 { 2879 struct r10conf *conf = mddev->private; 2880 struct r10bio *r10_bio; 2881 struct bio *biolist = NULL, *bio; 2882 sector_t max_sector, nr_sectors; 2883 int i; 2884 int max_sync; 2885 sector_t sync_blocks; 2886 sector_t sectors_skipped = 0; 2887 int chunks_skipped = 0; 2888 sector_t chunk_mask = conf->geo.chunk_mask; 2889 int page_idx = 0; 2890 2891 if (!mempool_initialized(&conf->r10buf_pool)) 2892 if (init_resync(conf)) 2893 return 0; 2894 2895 /* 2896 * Allow skipping a full rebuild for incremental assembly 2897 * of a clean array, like RAID1 does. 2898 */ 2899 if (mddev->bitmap == NULL && 2900 mddev->recovery_cp == MaxSector && 2901 mddev->reshape_position == MaxSector && 2902 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2903 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2904 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2905 conf->fullsync == 0) { 2906 *skipped = 1; 2907 return mddev->dev_sectors - sector_nr; 2908 } 2909 2910 skipped: 2911 max_sector = mddev->dev_sectors; 2912 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2913 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2914 max_sector = mddev->resync_max_sectors; 2915 if (sector_nr >= max_sector) { 2916 conf->cluster_sync_low = 0; 2917 conf->cluster_sync_high = 0; 2918 2919 /* If we aborted, we need to abort the 2920 * sync on the 'current' bitmap chucks (there can 2921 * be several when recovering multiple devices). 2922 * as we may have started syncing it but not finished. 2923 * We can find the current address in 2924 * mddev->curr_resync, but for recovery, 2925 * we need to convert that to several 2926 * virtual addresses. 2927 */ 2928 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2929 end_reshape(conf); 2930 close_sync(conf); 2931 return 0; 2932 } 2933 2934 if (mddev->curr_resync < max_sector) { /* aborted */ 2935 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2936 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2937 &sync_blocks, 1); 2938 else for (i = 0; i < conf->geo.raid_disks; i++) { 2939 sector_t sect = 2940 raid10_find_virt(conf, mddev->curr_resync, i); 2941 md_bitmap_end_sync(mddev->bitmap, sect, 2942 &sync_blocks, 1); 2943 } 2944 } else { 2945 /* completed sync */ 2946 if ((!mddev->bitmap || conf->fullsync) 2947 && conf->have_replacement 2948 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2949 /* Completed a full sync so the replacements 2950 * are now fully recovered. 2951 */ 2952 rcu_read_lock(); 2953 for (i = 0; i < conf->geo.raid_disks; i++) { 2954 struct md_rdev *rdev = 2955 rcu_dereference(conf->mirrors[i].replacement); 2956 if (rdev) 2957 rdev->recovery_offset = MaxSector; 2958 } 2959 rcu_read_unlock(); 2960 } 2961 conf->fullsync = 0; 2962 } 2963 md_bitmap_close_sync(mddev->bitmap); 2964 close_sync(conf); 2965 *skipped = 1; 2966 return sectors_skipped; 2967 } 2968 2969 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2970 return reshape_request(mddev, sector_nr, skipped); 2971 2972 if (chunks_skipped >= conf->geo.raid_disks) { 2973 /* if there has been nothing to do on any drive, 2974 * then there is nothing to do at all.. 2975 */ 2976 *skipped = 1; 2977 return (max_sector - sector_nr) + sectors_skipped; 2978 } 2979 2980 if (max_sector > mddev->resync_max) 2981 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2982 2983 /* make sure whole request will fit in a chunk - if chunks 2984 * are meaningful 2985 */ 2986 if (conf->geo.near_copies < conf->geo.raid_disks && 2987 max_sector > (sector_nr | chunk_mask)) 2988 max_sector = (sector_nr | chunk_mask) + 1; 2989 2990 /* 2991 * If there is non-resync activity waiting for a turn, then let it 2992 * though before starting on this new sync request. 2993 */ 2994 if (conf->nr_waiting) 2995 schedule_timeout_uninterruptible(1); 2996 2997 /* Again, very different code for resync and recovery. 2998 * Both must result in an r10bio with a list of bios that 2999 * have bi_end_io, bi_sector, bi_disk set, 3000 * and bi_private set to the r10bio. 3001 * For recovery, we may actually create several r10bios 3002 * with 2 bios in each, that correspond to the bios in the main one. 3003 * In this case, the subordinate r10bios link back through a 3004 * borrowed master_bio pointer, and the counter in the master 3005 * includes a ref from each subordinate. 3006 */ 3007 /* First, we decide what to do and set ->bi_end_io 3008 * To end_sync_read if we want to read, and 3009 * end_sync_write if we will want to write. 3010 */ 3011 3012 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3013 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3014 /* recovery... the complicated one */ 3015 int j; 3016 r10_bio = NULL; 3017 3018 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3019 int still_degraded; 3020 struct r10bio *rb2; 3021 sector_t sect; 3022 int must_sync; 3023 int any_working; 3024 int need_recover = 0; 3025 int need_replace = 0; 3026 struct raid10_info *mirror = &conf->mirrors[i]; 3027 struct md_rdev *mrdev, *mreplace; 3028 3029 rcu_read_lock(); 3030 mrdev = rcu_dereference(mirror->rdev); 3031 mreplace = rcu_dereference(mirror->replacement); 3032 3033 if (mrdev != NULL && 3034 !test_bit(Faulty, &mrdev->flags) && 3035 !test_bit(In_sync, &mrdev->flags)) 3036 need_recover = 1; 3037 if (mreplace != NULL && 3038 !test_bit(Faulty, &mreplace->flags)) 3039 need_replace = 1; 3040 3041 if (!need_recover && !need_replace) { 3042 rcu_read_unlock(); 3043 continue; 3044 } 3045 3046 still_degraded = 0; 3047 /* want to reconstruct this device */ 3048 rb2 = r10_bio; 3049 sect = raid10_find_virt(conf, sector_nr, i); 3050 if (sect >= mddev->resync_max_sectors) { 3051 /* last stripe is not complete - don't 3052 * try to recover this sector. 3053 */ 3054 rcu_read_unlock(); 3055 continue; 3056 } 3057 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3058 mreplace = NULL; 3059 /* Unless we are doing a full sync, or a replacement 3060 * we only need to recover the block if it is set in 3061 * the bitmap 3062 */ 3063 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3064 &sync_blocks, 1); 3065 if (sync_blocks < max_sync) 3066 max_sync = sync_blocks; 3067 if (!must_sync && 3068 mreplace == NULL && 3069 !conf->fullsync) { 3070 /* yep, skip the sync_blocks here, but don't assume 3071 * that there will never be anything to do here 3072 */ 3073 chunks_skipped = -1; 3074 rcu_read_unlock(); 3075 continue; 3076 } 3077 atomic_inc(&mrdev->nr_pending); 3078 if (mreplace) 3079 atomic_inc(&mreplace->nr_pending); 3080 rcu_read_unlock(); 3081 3082 r10_bio = raid10_alloc_init_r10buf(conf); 3083 r10_bio->state = 0; 3084 raise_barrier(conf, rb2 != NULL); 3085 atomic_set(&r10_bio->remaining, 0); 3086 3087 r10_bio->master_bio = (struct bio*)rb2; 3088 if (rb2) 3089 atomic_inc(&rb2->remaining); 3090 r10_bio->mddev = mddev; 3091 set_bit(R10BIO_IsRecover, &r10_bio->state); 3092 r10_bio->sector = sect; 3093 3094 raid10_find_phys(conf, r10_bio); 3095 3096 /* Need to check if the array will still be 3097 * degraded 3098 */ 3099 rcu_read_lock(); 3100 for (j = 0; j < conf->geo.raid_disks; j++) { 3101 struct md_rdev *rdev = rcu_dereference( 3102 conf->mirrors[j].rdev); 3103 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3104 still_degraded = 1; 3105 break; 3106 } 3107 } 3108 3109 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3110 &sync_blocks, still_degraded); 3111 3112 any_working = 0; 3113 for (j=0; j<conf->copies;j++) { 3114 int k; 3115 int d = r10_bio->devs[j].devnum; 3116 sector_t from_addr, to_addr; 3117 struct md_rdev *rdev = 3118 rcu_dereference(conf->mirrors[d].rdev); 3119 sector_t sector, first_bad; 3120 int bad_sectors; 3121 if (!rdev || 3122 !test_bit(In_sync, &rdev->flags)) 3123 continue; 3124 /* This is where we read from */ 3125 any_working = 1; 3126 sector = r10_bio->devs[j].addr; 3127 3128 if (is_badblock(rdev, sector, max_sync, 3129 &first_bad, &bad_sectors)) { 3130 if (first_bad > sector) 3131 max_sync = first_bad - sector; 3132 else { 3133 bad_sectors -= (sector 3134 - first_bad); 3135 if (max_sync > bad_sectors) 3136 max_sync = bad_sectors; 3137 continue; 3138 } 3139 } 3140 bio = r10_bio->devs[0].bio; 3141 bio->bi_next = biolist; 3142 biolist = bio; 3143 bio->bi_end_io = end_sync_read; 3144 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3145 if (test_bit(FailFast, &rdev->flags)) 3146 bio->bi_opf |= MD_FAILFAST; 3147 from_addr = r10_bio->devs[j].addr; 3148 bio->bi_iter.bi_sector = from_addr + 3149 rdev->data_offset; 3150 bio_set_dev(bio, rdev->bdev); 3151 atomic_inc(&rdev->nr_pending); 3152 /* and we write to 'i' (if not in_sync) */ 3153 3154 for (k=0; k<conf->copies; k++) 3155 if (r10_bio->devs[k].devnum == i) 3156 break; 3157 BUG_ON(k == conf->copies); 3158 to_addr = r10_bio->devs[k].addr; 3159 r10_bio->devs[0].devnum = d; 3160 r10_bio->devs[0].addr = from_addr; 3161 r10_bio->devs[1].devnum = i; 3162 r10_bio->devs[1].addr = to_addr; 3163 3164 if (need_recover) { 3165 bio = r10_bio->devs[1].bio; 3166 bio->bi_next = biolist; 3167 biolist = bio; 3168 bio->bi_end_io = end_sync_write; 3169 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3170 bio->bi_iter.bi_sector = to_addr 3171 + mrdev->data_offset; 3172 bio_set_dev(bio, mrdev->bdev); 3173 atomic_inc(&r10_bio->remaining); 3174 } else 3175 r10_bio->devs[1].bio->bi_end_io = NULL; 3176 3177 /* and maybe write to replacement */ 3178 bio = r10_bio->devs[1].repl_bio; 3179 if (bio) 3180 bio->bi_end_io = NULL; 3181 /* Note: if need_replace, then bio 3182 * cannot be NULL as r10buf_pool_alloc will 3183 * have allocated it. 3184 */ 3185 if (!need_replace) 3186 break; 3187 bio->bi_next = biolist; 3188 biolist = bio; 3189 bio->bi_end_io = end_sync_write; 3190 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3191 bio->bi_iter.bi_sector = to_addr + 3192 mreplace->data_offset; 3193 bio_set_dev(bio, mreplace->bdev); 3194 atomic_inc(&r10_bio->remaining); 3195 break; 3196 } 3197 rcu_read_unlock(); 3198 if (j == conf->copies) { 3199 /* Cannot recover, so abort the recovery or 3200 * record a bad block */ 3201 if (any_working) { 3202 /* problem is that there are bad blocks 3203 * on other device(s) 3204 */ 3205 int k; 3206 for (k = 0; k < conf->copies; k++) 3207 if (r10_bio->devs[k].devnum == i) 3208 break; 3209 if (!test_bit(In_sync, 3210 &mrdev->flags) 3211 && !rdev_set_badblocks( 3212 mrdev, 3213 r10_bio->devs[k].addr, 3214 max_sync, 0)) 3215 any_working = 0; 3216 if (mreplace && 3217 !rdev_set_badblocks( 3218 mreplace, 3219 r10_bio->devs[k].addr, 3220 max_sync, 0)) 3221 any_working = 0; 3222 } 3223 if (!any_working) { 3224 if (!test_and_set_bit(MD_RECOVERY_INTR, 3225 &mddev->recovery)) 3226 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3227 mdname(mddev)); 3228 mirror->recovery_disabled 3229 = mddev->recovery_disabled; 3230 } 3231 put_buf(r10_bio); 3232 if (rb2) 3233 atomic_dec(&rb2->remaining); 3234 r10_bio = rb2; 3235 rdev_dec_pending(mrdev, mddev); 3236 if (mreplace) 3237 rdev_dec_pending(mreplace, mddev); 3238 break; 3239 } 3240 rdev_dec_pending(mrdev, mddev); 3241 if (mreplace) 3242 rdev_dec_pending(mreplace, mddev); 3243 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3244 /* Only want this if there is elsewhere to 3245 * read from. 'j' is currently the first 3246 * readable copy. 3247 */ 3248 int targets = 1; 3249 for (; j < conf->copies; j++) { 3250 int d = r10_bio->devs[j].devnum; 3251 if (conf->mirrors[d].rdev && 3252 test_bit(In_sync, 3253 &conf->mirrors[d].rdev->flags)) 3254 targets++; 3255 } 3256 if (targets == 1) 3257 r10_bio->devs[0].bio->bi_opf 3258 &= ~MD_FAILFAST; 3259 } 3260 } 3261 if (biolist == NULL) { 3262 while (r10_bio) { 3263 struct r10bio *rb2 = r10_bio; 3264 r10_bio = (struct r10bio*) rb2->master_bio; 3265 rb2->master_bio = NULL; 3266 put_buf(rb2); 3267 } 3268 goto giveup; 3269 } 3270 } else { 3271 /* resync. Schedule a read for every block at this virt offset */ 3272 int count = 0; 3273 3274 /* 3275 * Since curr_resync_completed could probably not update in 3276 * time, and we will set cluster_sync_low based on it. 3277 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3278 * safety reason, which ensures curr_resync_completed is 3279 * updated in bitmap_cond_end_sync. 3280 */ 3281 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3282 mddev_is_clustered(mddev) && 3283 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3284 3285 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3286 &sync_blocks, mddev->degraded) && 3287 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3288 &mddev->recovery)) { 3289 /* We can skip this block */ 3290 *skipped = 1; 3291 return sync_blocks + sectors_skipped; 3292 } 3293 if (sync_blocks < max_sync) 3294 max_sync = sync_blocks; 3295 r10_bio = raid10_alloc_init_r10buf(conf); 3296 r10_bio->state = 0; 3297 3298 r10_bio->mddev = mddev; 3299 atomic_set(&r10_bio->remaining, 0); 3300 raise_barrier(conf, 0); 3301 conf->next_resync = sector_nr; 3302 3303 r10_bio->master_bio = NULL; 3304 r10_bio->sector = sector_nr; 3305 set_bit(R10BIO_IsSync, &r10_bio->state); 3306 raid10_find_phys(conf, r10_bio); 3307 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3308 3309 for (i = 0; i < conf->copies; i++) { 3310 int d = r10_bio->devs[i].devnum; 3311 sector_t first_bad, sector; 3312 int bad_sectors; 3313 struct md_rdev *rdev; 3314 3315 if (r10_bio->devs[i].repl_bio) 3316 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3317 3318 bio = r10_bio->devs[i].bio; 3319 bio->bi_status = BLK_STS_IOERR; 3320 rcu_read_lock(); 3321 rdev = rcu_dereference(conf->mirrors[d].rdev); 3322 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3323 rcu_read_unlock(); 3324 continue; 3325 } 3326 sector = r10_bio->devs[i].addr; 3327 if (is_badblock(rdev, sector, max_sync, 3328 &first_bad, &bad_sectors)) { 3329 if (first_bad > sector) 3330 max_sync = first_bad - sector; 3331 else { 3332 bad_sectors -= (sector - first_bad); 3333 if (max_sync > bad_sectors) 3334 max_sync = bad_sectors; 3335 rcu_read_unlock(); 3336 continue; 3337 } 3338 } 3339 atomic_inc(&rdev->nr_pending); 3340 atomic_inc(&r10_bio->remaining); 3341 bio->bi_next = biolist; 3342 biolist = bio; 3343 bio->bi_end_io = end_sync_read; 3344 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3345 if (test_bit(FailFast, &rdev->flags)) 3346 bio->bi_opf |= MD_FAILFAST; 3347 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3348 bio_set_dev(bio, rdev->bdev); 3349 count++; 3350 3351 rdev = rcu_dereference(conf->mirrors[d].replacement); 3352 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3353 rcu_read_unlock(); 3354 continue; 3355 } 3356 atomic_inc(&rdev->nr_pending); 3357 3358 /* Need to set up for writing to the replacement */ 3359 bio = r10_bio->devs[i].repl_bio; 3360 bio->bi_status = BLK_STS_IOERR; 3361 3362 sector = r10_bio->devs[i].addr; 3363 bio->bi_next = biolist; 3364 biolist = bio; 3365 bio->bi_end_io = end_sync_write; 3366 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3367 if (test_bit(FailFast, &rdev->flags)) 3368 bio->bi_opf |= MD_FAILFAST; 3369 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3370 bio_set_dev(bio, rdev->bdev); 3371 count++; 3372 rcu_read_unlock(); 3373 } 3374 3375 if (count < 2) { 3376 for (i=0; i<conf->copies; i++) { 3377 int d = r10_bio->devs[i].devnum; 3378 if (r10_bio->devs[i].bio->bi_end_io) 3379 rdev_dec_pending(conf->mirrors[d].rdev, 3380 mddev); 3381 if (r10_bio->devs[i].repl_bio && 3382 r10_bio->devs[i].repl_bio->bi_end_io) 3383 rdev_dec_pending( 3384 conf->mirrors[d].replacement, 3385 mddev); 3386 } 3387 put_buf(r10_bio); 3388 biolist = NULL; 3389 goto giveup; 3390 } 3391 } 3392 3393 nr_sectors = 0; 3394 if (sector_nr + max_sync < max_sector) 3395 max_sector = sector_nr + max_sync; 3396 do { 3397 struct page *page; 3398 int len = PAGE_SIZE; 3399 if (sector_nr + (len>>9) > max_sector) 3400 len = (max_sector - sector_nr) << 9; 3401 if (len == 0) 3402 break; 3403 for (bio= biolist ; bio ; bio=bio->bi_next) { 3404 struct resync_pages *rp = get_resync_pages(bio); 3405 page = resync_fetch_page(rp, page_idx); 3406 /* 3407 * won't fail because the vec table is big enough 3408 * to hold all these pages 3409 */ 3410 bio_add_page(bio, page, len, 0); 3411 } 3412 nr_sectors += len>>9; 3413 sector_nr += len>>9; 3414 } while (++page_idx < RESYNC_PAGES); 3415 r10_bio->sectors = nr_sectors; 3416 3417 if (mddev_is_clustered(mddev) && 3418 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3419 /* It is resync not recovery */ 3420 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3421 conf->cluster_sync_low = mddev->curr_resync_completed; 3422 raid10_set_cluster_sync_high(conf); 3423 /* Send resync message */ 3424 md_cluster_ops->resync_info_update(mddev, 3425 conf->cluster_sync_low, 3426 conf->cluster_sync_high); 3427 } 3428 } else if (mddev_is_clustered(mddev)) { 3429 /* This is recovery not resync */ 3430 sector_t sect_va1, sect_va2; 3431 bool broadcast_msg = false; 3432 3433 for (i = 0; i < conf->geo.raid_disks; i++) { 3434 /* 3435 * sector_nr is a device address for recovery, so we 3436 * need translate it to array address before compare 3437 * with cluster_sync_high. 3438 */ 3439 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3440 3441 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3442 broadcast_msg = true; 3443 /* 3444 * curr_resync_completed is similar as 3445 * sector_nr, so make the translation too. 3446 */ 3447 sect_va2 = raid10_find_virt(conf, 3448 mddev->curr_resync_completed, i); 3449 3450 if (conf->cluster_sync_low == 0 || 3451 conf->cluster_sync_low > sect_va2) 3452 conf->cluster_sync_low = sect_va2; 3453 } 3454 } 3455 if (broadcast_msg) { 3456 raid10_set_cluster_sync_high(conf); 3457 md_cluster_ops->resync_info_update(mddev, 3458 conf->cluster_sync_low, 3459 conf->cluster_sync_high); 3460 } 3461 } 3462 3463 while (biolist) { 3464 bio = biolist; 3465 biolist = biolist->bi_next; 3466 3467 bio->bi_next = NULL; 3468 r10_bio = get_resync_r10bio(bio); 3469 r10_bio->sectors = nr_sectors; 3470 3471 if (bio->bi_end_io == end_sync_read) { 3472 md_sync_acct_bio(bio, nr_sectors); 3473 bio->bi_status = 0; 3474 submit_bio_noacct(bio); 3475 } 3476 } 3477 3478 if (sectors_skipped) 3479 /* pretend they weren't skipped, it makes 3480 * no important difference in this case 3481 */ 3482 md_done_sync(mddev, sectors_skipped, 1); 3483 3484 return sectors_skipped + nr_sectors; 3485 giveup: 3486 /* There is nowhere to write, so all non-sync 3487 * drives must be failed or in resync, all drives 3488 * have a bad block, so try the next chunk... 3489 */ 3490 if (sector_nr + max_sync < max_sector) 3491 max_sector = sector_nr + max_sync; 3492 3493 sectors_skipped += (max_sector - sector_nr); 3494 chunks_skipped ++; 3495 sector_nr = max_sector; 3496 goto skipped; 3497 } 3498 3499 static sector_t 3500 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3501 { 3502 sector_t size; 3503 struct r10conf *conf = mddev->private; 3504 3505 if (!raid_disks) 3506 raid_disks = min(conf->geo.raid_disks, 3507 conf->prev.raid_disks); 3508 if (!sectors) 3509 sectors = conf->dev_sectors; 3510 3511 size = sectors >> conf->geo.chunk_shift; 3512 sector_div(size, conf->geo.far_copies); 3513 size = size * raid_disks; 3514 sector_div(size, conf->geo.near_copies); 3515 3516 return size << conf->geo.chunk_shift; 3517 } 3518 3519 static void calc_sectors(struct r10conf *conf, sector_t size) 3520 { 3521 /* Calculate the number of sectors-per-device that will 3522 * actually be used, and set conf->dev_sectors and 3523 * conf->stride 3524 */ 3525 3526 size = size >> conf->geo.chunk_shift; 3527 sector_div(size, conf->geo.far_copies); 3528 size = size * conf->geo.raid_disks; 3529 sector_div(size, conf->geo.near_copies); 3530 /* 'size' is now the number of chunks in the array */ 3531 /* calculate "used chunks per device" */ 3532 size = size * conf->copies; 3533 3534 /* We need to round up when dividing by raid_disks to 3535 * get the stride size. 3536 */ 3537 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3538 3539 conf->dev_sectors = size << conf->geo.chunk_shift; 3540 3541 if (conf->geo.far_offset) 3542 conf->geo.stride = 1 << conf->geo.chunk_shift; 3543 else { 3544 sector_div(size, conf->geo.far_copies); 3545 conf->geo.stride = size << conf->geo.chunk_shift; 3546 } 3547 } 3548 3549 enum geo_type {geo_new, geo_old, geo_start}; 3550 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3551 { 3552 int nc, fc, fo; 3553 int layout, chunk, disks; 3554 switch (new) { 3555 case geo_old: 3556 layout = mddev->layout; 3557 chunk = mddev->chunk_sectors; 3558 disks = mddev->raid_disks - mddev->delta_disks; 3559 break; 3560 case geo_new: 3561 layout = mddev->new_layout; 3562 chunk = mddev->new_chunk_sectors; 3563 disks = mddev->raid_disks; 3564 break; 3565 default: /* avoid 'may be unused' warnings */ 3566 case geo_start: /* new when starting reshape - raid_disks not 3567 * updated yet. */ 3568 layout = mddev->new_layout; 3569 chunk = mddev->new_chunk_sectors; 3570 disks = mddev->raid_disks + mddev->delta_disks; 3571 break; 3572 } 3573 if (layout >> 19) 3574 return -1; 3575 if (chunk < (PAGE_SIZE >> 9) || 3576 !is_power_of_2(chunk)) 3577 return -2; 3578 nc = layout & 255; 3579 fc = (layout >> 8) & 255; 3580 fo = layout & (1<<16); 3581 geo->raid_disks = disks; 3582 geo->near_copies = nc; 3583 geo->far_copies = fc; 3584 geo->far_offset = fo; 3585 switch (layout >> 17) { 3586 case 0: /* original layout. simple but not always optimal */ 3587 geo->far_set_size = disks; 3588 break; 3589 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3590 * actually using this, but leave code here just in case.*/ 3591 geo->far_set_size = disks/fc; 3592 WARN(geo->far_set_size < fc, 3593 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3594 break; 3595 case 2: /* "improved" layout fixed to match documentation */ 3596 geo->far_set_size = fc * nc; 3597 break; 3598 default: /* Not a valid layout */ 3599 return -1; 3600 } 3601 geo->chunk_mask = chunk - 1; 3602 geo->chunk_shift = ffz(~chunk); 3603 return nc*fc; 3604 } 3605 3606 static struct r10conf *setup_conf(struct mddev *mddev) 3607 { 3608 struct r10conf *conf = NULL; 3609 int err = -EINVAL; 3610 struct geom geo; 3611 int copies; 3612 3613 copies = setup_geo(&geo, mddev, geo_new); 3614 3615 if (copies == -2) { 3616 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3617 mdname(mddev), PAGE_SIZE); 3618 goto out; 3619 } 3620 3621 if (copies < 2 || copies > mddev->raid_disks) { 3622 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3623 mdname(mddev), mddev->new_layout); 3624 goto out; 3625 } 3626 3627 err = -ENOMEM; 3628 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3629 if (!conf) 3630 goto out; 3631 3632 /* FIXME calc properly */ 3633 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3634 sizeof(struct raid10_info), 3635 GFP_KERNEL); 3636 if (!conf->mirrors) 3637 goto out; 3638 3639 conf->tmppage = alloc_page(GFP_KERNEL); 3640 if (!conf->tmppage) 3641 goto out; 3642 3643 conf->geo = geo; 3644 conf->copies = copies; 3645 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3646 rbio_pool_free, conf); 3647 if (err) 3648 goto out; 3649 3650 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3651 if (err) 3652 goto out; 3653 3654 calc_sectors(conf, mddev->dev_sectors); 3655 if (mddev->reshape_position == MaxSector) { 3656 conf->prev = conf->geo; 3657 conf->reshape_progress = MaxSector; 3658 } else { 3659 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3660 err = -EINVAL; 3661 goto out; 3662 } 3663 conf->reshape_progress = mddev->reshape_position; 3664 if (conf->prev.far_offset) 3665 conf->prev.stride = 1 << conf->prev.chunk_shift; 3666 else 3667 /* far_copies must be 1 */ 3668 conf->prev.stride = conf->dev_sectors; 3669 } 3670 conf->reshape_safe = conf->reshape_progress; 3671 spin_lock_init(&conf->device_lock); 3672 INIT_LIST_HEAD(&conf->retry_list); 3673 INIT_LIST_HEAD(&conf->bio_end_io_list); 3674 3675 spin_lock_init(&conf->resync_lock); 3676 init_waitqueue_head(&conf->wait_barrier); 3677 atomic_set(&conf->nr_pending, 0); 3678 3679 err = -ENOMEM; 3680 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3681 if (!conf->thread) 3682 goto out; 3683 3684 conf->mddev = mddev; 3685 return conf; 3686 3687 out: 3688 if (conf) { 3689 mempool_exit(&conf->r10bio_pool); 3690 kfree(conf->mirrors); 3691 safe_put_page(conf->tmppage); 3692 bioset_exit(&conf->bio_split); 3693 kfree(conf); 3694 } 3695 return ERR_PTR(err); 3696 } 3697 3698 static int raid10_run(struct mddev *mddev) 3699 { 3700 struct r10conf *conf; 3701 int i, disk_idx, chunk_size; 3702 struct raid10_info *disk; 3703 struct md_rdev *rdev; 3704 sector_t size; 3705 sector_t min_offset_diff = 0; 3706 int first = 1; 3707 bool discard_supported = false; 3708 3709 if (mddev_init_writes_pending(mddev) < 0) 3710 return -ENOMEM; 3711 3712 if (mddev->private == NULL) { 3713 conf = setup_conf(mddev); 3714 if (IS_ERR(conf)) 3715 return PTR_ERR(conf); 3716 mddev->private = conf; 3717 } 3718 conf = mddev->private; 3719 if (!conf) 3720 goto out; 3721 3722 if (mddev_is_clustered(conf->mddev)) { 3723 int fc, fo; 3724 3725 fc = (mddev->layout >> 8) & 255; 3726 fo = mddev->layout & (1<<16); 3727 if (fc > 1 || fo > 0) { 3728 pr_err("only near layout is supported by clustered" 3729 " raid10\n"); 3730 goto out_free_conf; 3731 } 3732 } 3733 3734 mddev->thread = conf->thread; 3735 conf->thread = NULL; 3736 3737 chunk_size = mddev->chunk_sectors << 9; 3738 if (mddev->queue) { 3739 blk_queue_max_discard_sectors(mddev->queue, 3740 mddev->chunk_sectors); 3741 blk_queue_max_write_same_sectors(mddev->queue, 0); 3742 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3743 blk_queue_io_min(mddev->queue, chunk_size); 3744 if (conf->geo.raid_disks % conf->geo.near_copies) 3745 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3746 else 3747 blk_queue_io_opt(mddev->queue, chunk_size * 3748 (conf->geo.raid_disks / conf->geo.near_copies)); 3749 } 3750 3751 rdev_for_each(rdev, mddev) { 3752 long long diff; 3753 3754 disk_idx = rdev->raid_disk; 3755 if (disk_idx < 0) 3756 continue; 3757 if (disk_idx >= conf->geo.raid_disks && 3758 disk_idx >= conf->prev.raid_disks) 3759 continue; 3760 disk = conf->mirrors + disk_idx; 3761 3762 if (test_bit(Replacement, &rdev->flags)) { 3763 if (disk->replacement) 3764 goto out_free_conf; 3765 disk->replacement = rdev; 3766 } else { 3767 if (disk->rdev) 3768 goto out_free_conf; 3769 disk->rdev = rdev; 3770 } 3771 diff = (rdev->new_data_offset - rdev->data_offset); 3772 if (!mddev->reshape_backwards) 3773 diff = -diff; 3774 if (diff < 0) 3775 diff = 0; 3776 if (first || diff < min_offset_diff) 3777 min_offset_diff = diff; 3778 3779 if (mddev->gendisk) 3780 disk_stack_limits(mddev->gendisk, rdev->bdev, 3781 rdev->data_offset << 9); 3782 3783 disk->head_position = 0; 3784 3785 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3786 discard_supported = true; 3787 first = 0; 3788 } 3789 3790 if (mddev->queue) { 3791 if (discard_supported) 3792 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3793 mddev->queue); 3794 else 3795 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3796 mddev->queue); 3797 } 3798 /* need to check that every block has at least one working mirror */ 3799 if (!enough(conf, -1)) { 3800 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3801 mdname(mddev)); 3802 goto out_free_conf; 3803 } 3804 3805 if (conf->reshape_progress != MaxSector) { 3806 /* must ensure that shape change is supported */ 3807 if (conf->geo.far_copies != 1 && 3808 conf->geo.far_offset == 0) 3809 goto out_free_conf; 3810 if (conf->prev.far_copies != 1 && 3811 conf->prev.far_offset == 0) 3812 goto out_free_conf; 3813 } 3814 3815 mddev->degraded = 0; 3816 for (i = 0; 3817 i < conf->geo.raid_disks 3818 || i < conf->prev.raid_disks; 3819 i++) { 3820 3821 disk = conf->mirrors + i; 3822 3823 if (!disk->rdev && disk->replacement) { 3824 /* The replacement is all we have - use it */ 3825 disk->rdev = disk->replacement; 3826 disk->replacement = NULL; 3827 clear_bit(Replacement, &disk->rdev->flags); 3828 } 3829 3830 if (!disk->rdev || 3831 !test_bit(In_sync, &disk->rdev->flags)) { 3832 disk->head_position = 0; 3833 mddev->degraded++; 3834 if (disk->rdev && 3835 disk->rdev->saved_raid_disk < 0) 3836 conf->fullsync = 1; 3837 } 3838 3839 if (disk->replacement && 3840 !test_bit(In_sync, &disk->replacement->flags) && 3841 disk->replacement->saved_raid_disk < 0) { 3842 conf->fullsync = 1; 3843 } 3844 3845 disk->recovery_disabled = mddev->recovery_disabled - 1; 3846 } 3847 3848 if (mddev->recovery_cp != MaxSector) 3849 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3850 mdname(mddev)); 3851 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3852 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3853 conf->geo.raid_disks); 3854 /* 3855 * Ok, everything is just fine now 3856 */ 3857 mddev->dev_sectors = conf->dev_sectors; 3858 size = raid10_size(mddev, 0, 0); 3859 md_set_array_sectors(mddev, size); 3860 mddev->resync_max_sectors = size; 3861 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3862 3863 if (mddev->queue) { 3864 int stripe = conf->geo.raid_disks * 3865 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3866 3867 /* Calculate max read-ahead size. 3868 * We need to readahead at least twice a whole stripe.... 3869 * maybe... 3870 */ 3871 stripe /= conf->geo.near_copies; 3872 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3873 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3874 } 3875 3876 if (md_integrity_register(mddev)) 3877 goto out_free_conf; 3878 3879 if (conf->reshape_progress != MaxSector) { 3880 unsigned long before_length, after_length; 3881 3882 before_length = ((1 << conf->prev.chunk_shift) * 3883 conf->prev.far_copies); 3884 after_length = ((1 << conf->geo.chunk_shift) * 3885 conf->geo.far_copies); 3886 3887 if (max(before_length, after_length) > min_offset_diff) { 3888 /* This cannot work */ 3889 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3890 goto out_free_conf; 3891 } 3892 conf->offset_diff = min_offset_diff; 3893 3894 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3895 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3896 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3897 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3898 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3899 "reshape"); 3900 if (!mddev->sync_thread) 3901 goto out_free_conf; 3902 } 3903 3904 return 0; 3905 3906 out_free_conf: 3907 md_unregister_thread(&mddev->thread); 3908 mempool_exit(&conf->r10bio_pool); 3909 safe_put_page(conf->tmppage); 3910 kfree(conf->mirrors); 3911 kfree(conf); 3912 mddev->private = NULL; 3913 out: 3914 return -EIO; 3915 } 3916 3917 static void raid10_free(struct mddev *mddev, void *priv) 3918 { 3919 struct r10conf *conf = priv; 3920 3921 mempool_exit(&conf->r10bio_pool); 3922 safe_put_page(conf->tmppage); 3923 kfree(conf->mirrors); 3924 kfree(conf->mirrors_old); 3925 kfree(conf->mirrors_new); 3926 bioset_exit(&conf->bio_split); 3927 kfree(conf); 3928 } 3929 3930 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3931 { 3932 struct r10conf *conf = mddev->private; 3933 3934 if (quiesce) 3935 raise_barrier(conf, 0); 3936 else 3937 lower_barrier(conf); 3938 } 3939 3940 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3941 { 3942 /* Resize of 'far' arrays is not supported. 3943 * For 'near' and 'offset' arrays we can set the 3944 * number of sectors used to be an appropriate multiple 3945 * of the chunk size. 3946 * For 'offset', this is far_copies*chunksize. 3947 * For 'near' the multiplier is the LCM of 3948 * near_copies and raid_disks. 3949 * So if far_copies > 1 && !far_offset, fail. 3950 * Else find LCM(raid_disks, near_copy)*far_copies and 3951 * multiply by chunk_size. Then round to this number. 3952 * This is mostly done by raid10_size() 3953 */ 3954 struct r10conf *conf = mddev->private; 3955 sector_t oldsize, size; 3956 3957 if (mddev->reshape_position != MaxSector) 3958 return -EBUSY; 3959 3960 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3961 return -EINVAL; 3962 3963 oldsize = raid10_size(mddev, 0, 0); 3964 size = raid10_size(mddev, sectors, 0); 3965 if (mddev->external_size && 3966 mddev->array_sectors > size) 3967 return -EINVAL; 3968 if (mddev->bitmap) { 3969 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3970 if (ret) 3971 return ret; 3972 } 3973 md_set_array_sectors(mddev, size); 3974 if (sectors > mddev->dev_sectors && 3975 mddev->recovery_cp > oldsize) { 3976 mddev->recovery_cp = oldsize; 3977 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3978 } 3979 calc_sectors(conf, sectors); 3980 mddev->dev_sectors = conf->dev_sectors; 3981 mddev->resync_max_sectors = size; 3982 return 0; 3983 } 3984 3985 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3986 { 3987 struct md_rdev *rdev; 3988 struct r10conf *conf; 3989 3990 if (mddev->degraded > 0) { 3991 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3992 mdname(mddev)); 3993 return ERR_PTR(-EINVAL); 3994 } 3995 sector_div(size, devs); 3996 3997 /* Set new parameters */ 3998 mddev->new_level = 10; 3999 /* new layout: far_copies = 1, near_copies = 2 */ 4000 mddev->new_layout = (1<<8) + 2; 4001 mddev->new_chunk_sectors = mddev->chunk_sectors; 4002 mddev->delta_disks = mddev->raid_disks; 4003 mddev->raid_disks *= 2; 4004 /* make sure it will be not marked as dirty */ 4005 mddev->recovery_cp = MaxSector; 4006 mddev->dev_sectors = size; 4007 4008 conf = setup_conf(mddev); 4009 if (!IS_ERR(conf)) { 4010 rdev_for_each(rdev, mddev) 4011 if (rdev->raid_disk >= 0) { 4012 rdev->new_raid_disk = rdev->raid_disk * 2; 4013 rdev->sectors = size; 4014 } 4015 conf->barrier = 1; 4016 } 4017 4018 return conf; 4019 } 4020 4021 static void *raid10_takeover(struct mddev *mddev) 4022 { 4023 struct r0conf *raid0_conf; 4024 4025 /* raid10 can take over: 4026 * raid0 - providing it has only two drives 4027 */ 4028 if (mddev->level == 0) { 4029 /* for raid0 takeover only one zone is supported */ 4030 raid0_conf = mddev->private; 4031 if (raid0_conf->nr_strip_zones > 1) { 4032 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4033 mdname(mddev)); 4034 return ERR_PTR(-EINVAL); 4035 } 4036 return raid10_takeover_raid0(mddev, 4037 raid0_conf->strip_zone->zone_end, 4038 raid0_conf->strip_zone->nb_dev); 4039 } 4040 return ERR_PTR(-EINVAL); 4041 } 4042 4043 static int raid10_check_reshape(struct mddev *mddev) 4044 { 4045 /* Called when there is a request to change 4046 * - layout (to ->new_layout) 4047 * - chunk size (to ->new_chunk_sectors) 4048 * - raid_disks (by delta_disks) 4049 * or when trying to restart a reshape that was ongoing. 4050 * 4051 * We need to validate the request and possibly allocate 4052 * space if that might be an issue later. 4053 * 4054 * Currently we reject any reshape of a 'far' mode array, 4055 * allow chunk size to change if new is generally acceptable, 4056 * allow raid_disks to increase, and allow 4057 * a switch between 'near' mode and 'offset' mode. 4058 */ 4059 struct r10conf *conf = mddev->private; 4060 struct geom geo; 4061 4062 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4063 return -EINVAL; 4064 4065 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4066 /* mustn't change number of copies */ 4067 return -EINVAL; 4068 if (geo.far_copies > 1 && !geo.far_offset) 4069 /* Cannot switch to 'far' mode */ 4070 return -EINVAL; 4071 4072 if (mddev->array_sectors & geo.chunk_mask) 4073 /* not factor of array size */ 4074 return -EINVAL; 4075 4076 if (!enough(conf, -1)) 4077 return -EINVAL; 4078 4079 kfree(conf->mirrors_new); 4080 conf->mirrors_new = NULL; 4081 if (mddev->delta_disks > 0) { 4082 /* allocate new 'mirrors' list */ 4083 conf->mirrors_new = 4084 kcalloc(mddev->raid_disks + mddev->delta_disks, 4085 sizeof(struct raid10_info), 4086 GFP_KERNEL); 4087 if (!conf->mirrors_new) 4088 return -ENOMEM; 4089 } 4090 return 0; 4091 } 4092 4093 /* 4094 * Need to check if array has failed when deciding whether to: 4095 * - start an array 4096 * - remove non-faulty devices 4097 * - add a spare 4098 * - allow a reshape 4099 * This determination is simple when no reshape is happening. 4100 * However if there is a reshape, we need to carefully check 4101 * both the before and after sections. 4102 * This is because some failed devices may only affect one 4103 * of the two sections, and some non-in_sync devices may 4104 * be insync in the section most affected by failed devices. 4105 */ 4106 static int calc_degraded(struct r10conf *conf) 4107 { 4108 int degraded, degraded2; 4109 int i; 4110 4111 rcu_read_lock(); 4112 degraded = 0; 4113 /* 'prev' section first */ 4114 for (i = 0; i < conf->prev.raid_disks; i++) { 4115 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4116 if (!rdev || test_bit(Faulty, &rdev->flags)) 4117 degraded++; 4118 else if (!test_bit(In_sync, &rdev->flags)) 4119 /* When we can reduce the number of devices in 4120 * an array, this might not contribute to 4121 * 'degraded'. It does now. 4122 */ 4123 degraded++; 4124 } 4125 rcu_read_unlock(); 4126 if (conf->geo.raid_disks == conf->prev.raid_disks) 4127 return degraded; 4128 rcu_read_lock(); 4129 degraded2 = 0; 4130 for (i = 0; i < conf->geo.raid_disks; i++) { 4131 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4132 if (!rdev || test_bit(Faulty, &rdev->flags)) 4133 degraded2++; 4134 else if (!test_bit(In_sync, &rdev->flags)) { 4135 /* If reshape is increasing the number of devices, 4136 * this section has already been recovered, so 4137 * it doesn't contribute to degraded. 4138 * else it does. 4139 */ 4140 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4141 degraded2++; 4142 } 4143 } 4144 rcu_read_unlock(); 4145 if (degraded2 > degraded) 4146 return degraded2; 4147 return degraded; 4148 } 4149 4150 static int raid10_start_reshape(struct mddev *mddev) 4151 { 4152 /* A 'reshape' has been requested. This commits 4153 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4154 * This also checks if there are enough spares and adds them 4155 * to the array. 4156 * We currently require enough spares to make the final 4157 * array non-degraded. We also require that the difference 4158 * between old and new data_offset - on each device - is 4159 * enough that we never risk over-writing. 4160 */ 4161 4162 unsigned long before_length, after_length; 4163 sector_t min_offset_diff = 0; 4164 int first = 1; 4165 struct geom new; 4166 struct r10conf *conf = mddev->private; 4167 struct md_rdev *rdev; 4168 int spares = 0; 4169 int ret; 4170 4171 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4172 return -EBUSY; 4173 4174 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4175 return -EINVAL; 4176 4177 before_length = ((1 << conf->prev.chunk_shift) * 4178 conf->prev.far_copies); 4179 after_length = ((1 << conf->geo.chunk_shift) * 4180 conf->geo.far_copies); 4181 4182 rdev_for_each(rdev, mddev) { 4183 if (!test_bit(In_sync, &rdev->flags) 4184 && !test_bit(Faulty, &rdev->flags)) 4185 spares++; 4186 if (rdev->raid_disk >= 0) { 4187 long long diff = (rdev->new_data_offset 4188 - rdev->data_offset); 4189 if (!mddev->reshape_backwards) 4190 diff = -diff; 4191 if (diff < 0) 4192 diff = 0; 4193 if (first || diff < min_offset_diff) 4194 min_offset_diff = diff; 4195 first = 0; 4196 } 4197 } 4198 4199 if (max(before_length, after_length) > min_offset_diff) 4200 return -EINVAL; 4201 4202 if (spares < mddev->delta_disks) 4203 return -EINVAL; 4204 4205 conf->offset_diff = min_offset_diff; 4206 spin_lock_irq(&conf->device_lock); 4207 if (conf->mirrors_new) { 4208 memcpy(conf->mirrors_new, conf->mirrors, 4209 sizeof(struct raid10_info)*conf->prev.raid_disks); 4210 smp_mb(); 4211 kfree(conf->mirrors_old); 4212 conf->mirrors_old = conf->mirrors; 4213 conf->mirrors = conf->mirrors_new; 4214 conf->mirrors_new = NULL; 4215 } 4216 setup_geo(&conf->geo, mddev, geo_start); 4217 smp_mb(); 4218 if (mddev->reshape_backwards) { 4219 sector_t size = raid10_size(mddev, 0, 0); 4220 if (size < mddev->array_sectors) { 4221 spin_unlock_irq(&conf->device_lock); 4222 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4223 mdname(mddev)); 4224 return -EINVAL; 4225 } 4226 mddev->resync_max_sectors = size; 4227 conf->reshape_progress = size; 4228 } else 4229 conf->reshape_progress = 0; 4230 conf->reshape_safe = conf->reshape_progress; 4231 spin_unlock_irq(&conf->device_lock); 4232 4233 if (mddev->delta_disks && mddev->bitmap) { 4234 struct mdp_superblock_1 *sb = NULL; 4235 sector_t oldsize, newsize; 4236 4237 oldsize = raid10_size(mddev, 0, 0); 4238 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4239 4240 if (!mddev_is_clustered(mddev)) { 4241 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4242 if (ret) 4243 goto abort; 4244 else 4245 goto out; 4246 } 4247 4248 rdev_for_each(rdev, mddev) { 4249 if (rdev->raid_disk > -1 && 4250 !test_bit(Faulty, &rdev->flags)) 4251 sb = page_address(rdev->sb_page); 4252 } 4253 4254 /* 4255 * some node is already performing reshape, and no need to 4256 * call md_bitmap_resize again since it should be called when 4257 * receiving BITMAP_RESIZE msg 4258 */ 4259 if ((sb && (le32_to_cpu(sb->feature_map) & 4260 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4261 goto out; 4262 4263 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4264 if (ret) 4265 goto abort; 4266 4267 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4268 if (ret) { 4269 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4270 goto abort; 4271 } 4272 } 4273 out: 4274 if (mddev->delta_disks > 0) { 4275 rdev_for_each(rdev, mddev) 4276 if (rdev->raid_disk < 0 && 4277 !test_bit(Faulty, &rdev->flags)) { 4278 if (raid10_add_disk(mddev, rdev) == 0) { 4279 if (rdev->raid_disk >= 4280 conf->prev.raid_disks) 4281 set_bit(In_sync, &rdev->flags); 4282 else 4283 rdev->recovery_offset = 0; 4284 4285 if (sysfs_link_rdev(mddev, rdev)) 4286 /* Failure here is OK */; 4287 } 4288 } else if (rdev->raid_disk >= conf->prev.raid_disks 4289 && !test_bit(Faulty, &rdev->flags)) { 4290 /* This is a spare that was manually added */ 4291 set_bit(In_sync, &rdev->flags); 4292 } 4293 } 4294 /* When a reshape changes the number of devices, 4295 * ->degraded is measured against the larger of the 4296 * pre and post numbers. 4297 */ 4298 spin_lock_irq(&conf->device_lock); 4299 mddev->degraded = calc_degraded(conf); 4300 spin_unlock_irq(&conf->device_lock); 4301 mddev->raid_disks = conf->geo.raid_disks; 4302 mddev->reshape_position = conf->reshape_progress; 4303 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4304 4305 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4306 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4307 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4308 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4309 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4310 4311 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4312 "reshape"); 4313 if (!mddev->sync_thread) { 4314 ret = -EAGAIN; 4315 goto abort; 4316 } 4317 conf->reshape_checkpoint = jiffies; 4318 md_wakeup_thread(mddev->sync_thread); 4319 md_new_event(mddev); 4320 return 0; 4321 4322 abort: 4323 mddev->recovery = 0; 4324 spin_lock_irq(&conf->device_lock); 4325 conf->geo = conf->prev; 4326 mddev->raid_disks = conf->geo.raid_disks; 4327 rdev_for_each(rdev, mddev) 4328 rdev->new_data_offset = rdev->data_offset; 4329 smp_wmb(); 4330 conf->reshape_progress = MaxSector; 4331 conf->reshape_safe = MaxSector; 4332 mddev->reshape_position = MaxSector; 4333 spin_unlock_irq(&conf->device_lock); 4334 return ret; 4335 } 4336 4337 /* Calculate the last device-address that could contain 4338 * any block from the chunk that includes the array-address 's' 4339 * and report the next address. 4340 * i.e. the address returned will be chunk-aligned and after 4341 * any data that is in the chunk containing 's'. 4342 */ 4343 static sector_t last_dev_address(sector_t s, struct geom *geo) 4344 { 4345 s = (s | geo->chunk_mask) + 1; 4346 s >>= geo->chunk_shift; 4347 s *= geo->near_copies; 4348 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4349 s *= geo->far_copies; 4350 s <<= geo->chunk_shift; 4351 return s; 4352 } 4353 4354 /* Calculate the first device-address that could contain 4355 * any block from the chunk that includes the array-address 's'. 4356 * This too will be the start of a chunk 4357 */ 4358 static sector_t first_dev_address(sector_t s, struct geom *geo) 4359 { 4360 s >>= geo->chunk_shift; 4361 s *= geo->near_copies; 4362 sector_div(s, geo->raid_disks); 4363 s *= geo->far_copies; 4364 s <<= geo->chunk_shift; 4365 return s; 4366 } 4367 4368 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4369 int *skipped) 4370 { 4371 /* We simply copy at most one chunk (smallest of old and new) 4372 * at a time, possibly less if that exceeds RESYNC_PAGES, 4373 * or we hit a bad block or something. 4374 * This might mean we pause for normal IO in the middle of 4375 * a chunk, but that is not a problem as mddev->reshape_position 4376 * can record any location. 4377 * 4378 * If we will want to write to a location that isn't 4379 * yet recorded as 'safe' (i.e. in metadata on disk) then 4380 * we need to flush all reshape requests and update the metadata. 4381 * 4382 * When reshaping forwards (e.g. to more devices), we interpret 4383 * 'safe' as the earliest block which might not have been copied 4384 * down yet. We divide this by previous stripe size and multiply 4385 * by previous stripe length to get lowest device offset that we 4386 * cannot write to yet. 4387 * We interpret 'sector_nr' as an address that we want to write to. 4388 * From this we use last_device_address() to find where we might 4389 * write to, and first_device_address on the 'safe' position. 4390 * If this 'next' write position is after the 'safe' position, 4391 * we must update the metadata to increase the 'safe' position. 4392 * 4393 * When reshaping backwards, we round in the opposite direction 4394 * and perform the reverse test: next write position must not be 4395 * less than current safe position. 4396 * 4397 * In all this the minimum difference in data offsets 4398 * (conf->offset_diff - always positive) allows a bit of slack, 4399 * so next can be after 'safe', but not by more than offset_diff 4400 * 4401 * We need to prepare all the bios here before we start any IO 4402 * to ensure the size we choose is acceptable to all devices. 4403 * The means one for each copy for write-out and an extra one for 4404 * read-in. 4405 * We store the read-in bio in ->master_bio and the others in 4406 * ->devs[x].bio and ->devs[x].repl_bio. 4407 */ 4408 struct r10conf *conf = mddev->private; 4409 struct r10bio *r10_bio; 4410 sector_t next, safe, last; 4411 int max_sectors; 4412 int nr_sectors; 4413 int s; 4414 struct md_rdev *rdev; 4415 int need_flush = 0; 4416 struct bio *blist; 4417 struct bio *bio, *read_bio; 4418 int sectors_done = 0; 4419 struct page **pages; 4420 4421 if (sector_nr == 0) { 4422 /* If restarting in the middle, skip the initial sectors */ 4423 if (mddev->reshape_backwards && 4424 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4425 sector_nr = (raid10_size(mddev, 0, 0) 4426 - conf->reshape_progress); 4427 } else if (!mddev->reshape_backwards && 4428 conf->reshape_progress > 0) 4429 sector_nr = conf->reshape_progress; 4430 if (sector_nr) { 4431 mddev->curr_resync_completed = sector_nr; 4432 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4433 *skipped = 1; 4434 return sector_nr; 4435 } 4436 } 4437 4438 /* We don't use sector_nr to track where we are up to 4439 * as that doesn't work well for ->reshape_backwards. 4440 * So just use ->reshape_progress. 4441 */ 4442 if (mddev->reshape_backwards) { 4443 /* 'next' is the earliest device address that we might 4444 * write to for this chunk in the new layout 4445 */ 4446 next = first_dev_address(conf->reshape_progress - 1, 4447 &conf->geo); 4448 4449 /* 'safe' is the last device address that we might read from 4450 * in the old layout after a restart 4451 */ 4452 safe = last_dev_address(conf->reshape_safe - 1, 4453 &conf->prev); 4454 4455 if (next + conf->offset_diff < safe) 4456 need_flush = 1; 4457 4458 last = conf->reshape_progress - 1; 4459 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4460 & conf->prev.chunk_mask); 4461 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4462 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4463 } else { 4464 /* 'next' is after the last device address that we 4465 * might write to for this chunk in the new layout 4466 */ 4467 next = last_dev_address(conf->reshape_progress, &conf->geo); 4468 4469 /* 'safe' is the earliest device address that we might 4470 * read from in the old layout after a restart 4471 */ 4472 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4473 4474 /* Need to update metadata if 'next' might be beyond 'safe' 4475 * as that would possibly corrupt data 4476 */ 4477 if (next > safe + conf->offset_diff) 4478 need_flush = 1; 4479 4480 sector_nr = conf->reshape_progress; 4481 last = sector_nr | (conf->geo.chunk_mask 4482 & conf->prev.chunk_mask); 4483 4484 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4485 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4486 } 4487 4488 if (need_flush || 4489 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4490 /* Need to update reshape_position in metadata */ 4491 wait_barrier(conf); 4492 mddev->reshape_position = conf->reshape_progress; 4493 if (mddev->reshape_backwards) 4494 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4495 - conf->reshape_progress; 4496 else 4497 mddev->curr_resync_completed = conf->reshape_progress; 4498 conf->reshape_checkpoint = jiffies; 4499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4500 md_wakeup_thread(mddev->thread); 4501 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4502 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4503 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4504 allow_barrier(conf); 4505 return sectors_done; 4506 } 4507 conf->reshape_safe = mddev->reshape_position; 4508 allow_barrier(conf); 4509 } 4510 4511 raise_barrier(conf, 0); 4512 read_more: 4513 /* Now schedule reads for blocks from sector_nr to last */ 4514 r10_bio = raid10_alloc_init_r10buf(conf); 4515 r10_bio->state = 0; 4516 raise_barrier(conf, 1); 4517 atomic_set(&r10_bio->remaining, 0); 4518 r10_bio->mddev = mddev; 4519 r10_bio->sector = sector_nr; 4520 set_bit(R10BIO_IsReshape, &r10_bio->state); 4521 r10_bio->sectors = last - sector_nr + 1; 4522 rdev = read_balance(conf, r10_bio, &max_sectors); 4523 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4524 4525 if (!rdev) { 4526 /* Cannot read from here, so need to record bad blocks 4527 * on all the target devices. 4528 */ 4529 // FIXME 4530 mempool_free(r10_bio, &conf->r10buf_pool); 4531 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4532 return sectors_done; 4533 } 4534 4535 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4536 4537 bio_set_dev(read_bio, rdev->bdev); 4538 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4539 + rdev->data_offset); 4540 read_bio->bi_private = r10_bio; 4541 read_bio->bi_end_io = end_reshape_read; 4542 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4543 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4544 read_bio->bi_status = 0; 4545 read_bio->bi_vcnt = 0; 4546 read_bio->bi_iter.bi_size = 0; 4547 r10_bio->master_bio = read_bio; 4548 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4549 4550 /* 4551 * Broadcast RESYNC message to other nodes, so all nodes would not 4552 * write to the region to avoid conflict. 4553 */ 4554 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4555 struct mdp_superblock_1 *sb = NULL; 4556 int sb_reshape_pos = 0; 4557 4558 conf->cluster_sync_low = sector_nr; 4559 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4560 sb = page_address(rdev->sb_page); 4561 if (sb) { 4562 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4563 /* 4564 * Set cluster_sync_low again if next address for array 4565 * reshape is less than cluster_sync_low. Since we can't 4566 * update cluster_sync_low until it has finished reshape. 4567 */ 4568 if (sb_reshape_pos < conf->cluster_sync_low) 4569 conf->cluster_sync_low = sb_reshape_pos; 4570 } 4571 4572 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4573 conf->cluster_sync_high); 4574 } 4575 4576 /* Now find the locations in the new layout */ 4577 __raid10_find_phys(&conf->geo, r10_bio); 4578 4579 blist = read_bio; 4580 read_bio->bi_next = NULL; 4581 4582 rcu_read_lock(); 4583 for (s = 0; s < conf->copies*2; s++) { 4584 struct bio *b; 4585 int d = r10_bio->devs[s/2].devnum; 4586 struct md_rdev *rdev2; 4587 if (s&1) { 4588 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4589 b = r10_bio->devs[s/2].repl_bio; 4590 } else { 4591 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4592 b = r10_bio->devs[s/2].bio; 4593 } 4594 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4595 continue; 4596 4597 bio_set_dev(b, rdev2->bdev); 4598 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4599 rdev2->new_data_offset; 4600 b->bi_end_io = end_reshape_write; 4601 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4602 b->bi_next = blist; 4603 blist = b; 4604 } 4605 4606 /* Now add as many pages as possible to all of these bios. */ 4607 4608 nr_sectors = 0; 4609 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4610 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4611 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4612 int len = (max_sectors - s) << 9; 4613 if (len > PAGE_SIZE) 4614 len = PAGE_SIZE; 4615 for (bio = blist; bio ; bio = bio->bi_next) { 4616 /* 4617 * won't fail because the vec table is big enough 4618 * to hold all these pages 4619 */ 4620 bio_add_page(bio, page, len, 0); 4621 } 4622 sector_nr += len >> 9; 4623 nr_sectors += len >> 9; 4624 } 4625 rcu_read_unlock(); 4626 r10_bio->sectors = nr_sectors; 4627 4628 /* Now submit the read */ 4629 md_sync_acct_bio(read_bio, r10_bio->sectors); 4630 atomic_inc(&r10_bio->remaining); 4631 read_bio->bi_next = NULL; 4632 submit_bio_noacct(read_bio); 4633 sectors_done += nr_sectors; 4634 if (sector_nr <= last) 4635 goto read_more; 4636 4637 lower_barrier(conf); 4638 4639 /* Now that we have done the whole section we can 4640 * update reshape_progress 4641 */ 4642 if (mddev->reshape_backwards) 4643 conf->reshape_progress -= sectors_done; 4644 else 4645 conf->reshape_progress += sectors_done; 4646 4647 return sectors_done; 4648 } 4649 4650 static void end_reshape_request(struct r10bio *r10_bio); 4651 static int handle_reshape_read_error(struct mddev *mddev, 4652 struct r10bio *r10_bio); 4653 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4654 { 4655 /* Reshape read completed. Hopefully we have a block 4656 * to write out. 4657 * If we got a read error then we do sync 1-page reads from 4658 * elsewhere until we find the data - or give up. 4659 */ 4660 struct r10conf *conf = mddev->private; 4661 int s; 4662 4663 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4664 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4665 /* Reshape has been aborted */ 4666 md_done_sync(mddev, r10_bio->sectors, 0); 4667 return; 4668 } 4669 4670 /* We definitely have the data in the pages, schedule the 4671 * writes. 4672 */ 4673 atomic_set(&r10_bio->remaining, 1); 4674 for (s = 0; s < conf->copies*2; s++) { 4675 struct bio *b; 4676 int d = r10_bio->devs[s/2].devnum; 4677 struct md_rdev *rdev; 4678 rcu_read_lock(); 4679 if (s&1) { 4680 rdev = rcu_dereference(conf->mirrors[d].replacement); 4681 b = r10_bio->devs[s/2].repl_bio; 4682 } else { 4683 rdev = rcu_dereference(conf->mirrors[d].rdev); 4684 b = r10_bio->devs[s/2].bio; 4685 } 4686 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4687 rcu_read_unlock(); 4688 continue; 4689 } 4690 atomic_inc(&rdev->nr_pending); 4691 rcu_read_unlock(); 4692 md_sync_acct_bio(b, r10_bio->sectors); 4693 atomic_inc(&r10_bio->remaining); 4694 b->bi_next = NULL; 4695 submit_bio_noacct(b); 4696 } 4697 end_reshape_request(r10_bio); 4698 } 4699 4700 static void end_reshape(struct r10conf *conf) 4701 { 4702 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4703 return; 4704 4705 spin_lock_irq(&conf->device_lock); 4706 conf->prev = conf->geo; 4707 md_finish_reshape(conf->mddev); 4708 smp_wmb(); 4709 conf->reshape_progress = MaxSector; 4710 conf->reshape_safe = MaxSector; 4711 spin_unlock_irq(&conf->device_lock); 4712 4713 /* read-ahead size must cover two whole stripes, which is 4714 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4715 */ 4716 if (conf->mddev->queue) { 4717 int stripe = conf->geo.raid_disks * 4718 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4719 stripe /= conf->geo.near_copies; 4720 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4721 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4722 } 4723 conf->fullsync = 0; 4724 } 4725 4726 static void raid10_update_reshape_pos(struct mddev *mddev) 4727 { 4728 struct r10conf *conf = mddev->private; 4729 sector_t lo, hi; 4730 4731 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4732 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4733 || mddev->reshape_position == MaxSector) 4734 conf->reshape_progress = mddev->reshape_position; 4735 else 4736 WARN_ON_ONCE(1); 4737 } 4738 4739 static int handle_reshape_read_error(struct mddev *mddev, 4740 struct r10bio *r10_bio) 4741 { 4742 /* Use sync reads to get the blocks from somewhere else */ 4743 int sectors = r10_bio->sectors; 4744 struct r10conf *conf = mddev->private; 4745 struct r10bio *r10b; 4746 int slot = 0; 4747 int idx = 0; 4748 struct page **pages; 4749 4750 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4751 if (!r10b) { 4752 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4753 return -ENOMEM; 4754 } 4755 4756 /* reshape IOs share pages from .devs[0].bio */ 4757 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4758 4759 r10b->sector = r10_bio->sector; 4760 __raid10_find_phys(&conf->prev, r10b); 4761 4762 while (sectors) { 4763 int s = sectors; 4764 int success = 0; 4765 int first_slot = slot; 4766 4767 if (s > (PAGE_SIZE >> 9)) 4768 s = PAGE_SIZE >> 9; 4769 4770 rcu_read_lock(); 4771 while (!success) { 4772 int d = r10b->devs[slot].devnum; 4773 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4774 sector_t addr; 4775 if (rdev == NULL || 4776 test_bit(Faulty, &rdev->flags) || 4777 !test_bit(In_sync, &rdev->flags)) 4778 goto failed; 4779 4780 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4781 atomic_inc(&rdev->nr_pending); 4782 rcu_read_unlock(); 4783 success = sync_page_io(rdev, 4784 addr, 4785 s << 9, 4786 pages[idx], 4787 REQ_OP_READ, 0, false); 4788 rdev_dec_pending(rdev, mddev); 4789 rcu_read_lock(); 4790 if (success) 4791 break; 4792 failed: 4793 slot++; 4794 if (slot >= conf->copies) 4795 slot = 0; 4796 if (slot == first_slot) 4797 break; 4798 } 4799 rcu_read_unlock(); 4800 if (!success) { 4801 /* couldn't read this block, must give up */ 4802 set_bit(MD_RECOVERY_INTR, 4803 &mddev->recovery); 4804 kfree(r10b); 4805 return -EIO; 4806 } 4807 sectors -= s; 4808 idx++; 4809 } 4810 kfree(r10b); 4811 return 0; 4812 } 4813 4814 static void end_reshape_write(struct bio *bio) 4815 { 4816 struct r10bio *r10_bio = get_resync_r10bio(bio); 4817 struct mddev *mddev = r10_bio->mddev; 4818 struct r10conf *conf = mddev->private; 4819 int d; 4820 int slot; 4821 int repl; 4822 struct md_rdev *rdev = NULL; 4823 4824 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4825 if (repl) 4826 rdev = conf->mirrors[d].replacement; 4827 if (!rdev) { 4828 smp_mb(); 4829 rdev = conf->mirrors[d].rdev; 4830 } 4831 4832 if (bio->bi_status) { 4833 /* FIXME should record badblock */ 4834 md_error(mddev, rdev); 4835 } 4836 4837 rdev_dec_pending(rdev, mddev); 4838 end_reshape_request(r10_bio); 4839 } 4840 4841 static void end_reshape_request(struct r10bio *r10_bio) 4842 { 4843 if (!atomic_dec_and_test(&r10_bio->remaining)) 4844 return; 4845 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4846 bio_put(r10_bio->master_bio); 4847 put_buf(r10_bio); 4848 } 4849 4850 static void raid10_finish_reshape(struct mddev *mddev) 4851 { 4852 struct r10conf *conf = mddev->private; 4853 4854 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4855 return; 4856 4857 if (mddev->delta_disks > 0) { 4858 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4859 mddev->recovery_cp = mddev->resync_max_sectors; 4860 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4861 } 4862 mddev->resync_max_sectors = mddev->array_sectors; 4863 } else { 4864 int d; 4865 rcu_read_lock(); 4866 for (d = conf->geo.raid_disks ; 4867 d < conf->geo.raid_disks - mddev->delta_disks; 4868 d++) { 4869 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4870 if (rdev) 4871 clear_bit(In_sync, &rdev->flags); 4872 rdev = rcu_dereference(conf->mirrors[d].replacement); 4873 if (rdev) 4874 clear_bit(In_sync, &rdev->flags); 4875 } 4876 rcu_read_unlock(); 4877 } 4878 mddev->layout = mddev->new_layout; 4879 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4880 mddev->reshape_position = MaxSector; 4881 mddev->delta_disks = 0; 4882 mddev->reshape_backwards = 0; 4883 } 4884 4885 static struct md_personality raid10_personality = 4886 { 4887 .name = "raid10", 4888 .level = 10, 4889 .owner = THIS_MODULE, 4890 .make_request = raid10_make_request, 4891 .run = raid10_run, 4892 .free = raid10_free, 4893 .status = raid10_status, 4894 .error_handler = raid10_error, 4895 .hot_add_disk = raid10_add_disk, 4896 .hot_remove_disk= raid10_remove_disk, 4897 .spare_active = raid10_spare_active, 4898 .sync_request = raid10_sync_request, 4899 .quiesce = raid10_quiesce, 4900 .size = raid10_size, 4901 .resize = raid10_resize, 4902 .takeover = raid10_takeover, 4903 .check_reshape = raid10_check_reshape, 4904 .start_reshape = raid10_start_reshape, 4905 .finish_reshape = raid10_finish_reshape, 4906 .update_reshape_pos = raid10_update_reshape_pos, 4907 }; 4908 4909 static int __init raid_init(void) 4910 { 4911 return register_md_personality(&raid10_personality); 4912 } 4913 4914 static void raid_exit(void) 4915 { 4916 unregister_md_personality(&raid10_personality); 4917 } 4918 4919 module_init(raid_init); 4920 module_exit(raid_exit); 4921 MODULE_LICENSE("GPL"); 4922 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4923 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4924 MODULE_ALIAS("md-raid10"); 4925 MODULE_ALIAS("md-level-10"); 4926 4927 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4928