xref: /openbmc/linux/drivers/md/raid10.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 			}
469 
470 			/*
471 			 * When the device is faulty, it is not necessary to
472 			 * handle write error.
473 			 * For failfast, this is the only remaining device,
474 			 * We need to retry the write without FailFast.
475 			 */
476 			if (!test_bit(Faulty, &rdev->flags))
477 				set_bit(R10BIO_WriteError, &r10_bio->state);
478 			else {
479 				r10_bio->devs[slot].bio = NULL;
480 				to_put = bio;
481 				dec_rdev = 1;
482 			}
483 		}
484 	} else {
485 		/*
486 		 * Set R10BIO_Uptodate in our master bio, so that
487 		 * we will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer fails.
489 		 *
490 		 * The 'master' represents the composite IO operation to
491 		 * user-side. So if something waits for IO, then it will
492 		 * wait for the 'master' bio.
493 		 */
494 		sector_t first_bad;
495 		int bad_sectors;
496 
497 		/*
498 		 * Do not set R10BIO_Uptodate if the current device is
499 		 * rebuilding or Faulty. This is because we cannot use
500 		 * such device for properly reading the data back (we could
501 		 * potentially use it, if the current write would have felt
502 		 * before rdev->recovery_offset, but for simplicity we don't
503 		 * check this here.
504 		 */
505 		if (test_bit(In_sync, &rdev->flags) &&
506 		    !test_bit(Faulty, &rdev->flags))
507 			set_bit(R10BIO_Uptodate, &r10_bio->state);
508 
509 		/* Maybe we can clear some bad blocks. */
510 		if (is_badblock(rdev,
511 				r10_bio->devs[slot].addr,
512 				r10_bio->sectors,
513 				&first_bad, &bad_sectors) && !discard_error) {
514 			bio_put(bio);
515 			if (repl)
516 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 			else
518 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 			dec_rdev = 0;
520 			set_bit(R10BIO_MadeGood, &r10_bio->state);
521 		}
522 	}
523 
524 	/*
525 	 *
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	one_write_done(r10_bio);
530 	if (dec_rdev)
531 		rdev_dec_pending(rdev, conf->mddev);
532 	if (to_put)
533 		bio_put(to_put);
534 }
535 
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560 
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 	int n,f;
564 	sector_t sector;
565 	sector_t chunk;
566 	sector_t stripe;
567 	int dev;
568 	int slot = 0;
569 	int last_far_set_start, last_far_set_size;
570 
571 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 	last_far_set_start *= geo->far_set_size;
573 
574 	last_far_set_size = geo->far_set_size;
575 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576 
577 	/* now calculate first sector/dev */
578 	chunk = r10bio->sector >> geo->chunk_shift;
579 	sector = r10bio->sector & geo->chunk_mask;
580 
581 	chunk *= geo->near_copies;
582 	stripe = chunk;
583 	dev = sector_div(stripe, geo->raid_disks);
584 	if (geo->far_offset)
585 		stripe *= geo->far_copies;
586 
587 	sector += stripe << geo->chunk_shift;
588 
589 	/* and calculate all the others */
590 	for (n = 0; n < geo->near_copies; n++) {
591 		int d = dev;
592 		int set;
593 		sector_t s = sector;
594 		r10bio->devs[slot].devnum = d;
595 		r10bio->devs[slot].addr = s;
596 		slot++;
597 
598 		for (f = 1; f < geo->far_copies; f++) {
599 			set = d / geo->far_set_size;
600 			d += geo->near_copies;
601 
602 			if ((geo->raid_disks % geo->far_set_size) &&
603 			    (d > last_far_set_start)) {
604 				d -= last_far_set_start;
605 				d %= last_far_set_size;
606 				d += last_far_set_start;
607 			} else {
608 				d %= geo->far_set_size;
609 				d += geo->far_set_size * set;
610 			}
611 			s += geo->stride;
612 			r10bio->devs[slot].devnum = d;
613 			r10bio->devs[slot].addr = s;
614 			slot++;
615 		}
616 		dev++;
617 		if (dev >= geo->raid_disks) {
618 			dev = 0;
619 			sector += (geo->chunk_mask + 1);
620 		}
621 	}
622 }
623 
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 	struct geom *geo = &conf->geo;
627 
628 	if (conf->reshape_progress != MaxSector &&
629 	    ((r10bio->sector >= conf->reshape_progress) !=
630 	     conf->mddev->reshape_backwards)) {
631 		set_bit(R10BIO_Previous, &r10bio->state);
632 		geo = &conf->prev;
633 	} else
634 		clear_bit(R10BIO_Previous, &r10bio->state);
635 
636 	__raid10_find_phys(geo, r10bio);
637 }
638 
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 	sector_t offset, chunk, vchunk;
642 	/* Never use conf->prev as this is only called during resync
643 	 * or recovery, so reshape isn't happening
644 	 */
645 	struct geom *geo = &conf->geo;
646 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 	int far_set_size = geo->far_set_size;
648 	int last_far_set_start;
649 
650 	if (geo->raid_disks % geo->far_set_size) {
651 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 		last_far_set_start *= geo->far_set_size;
653 
654 		if (dev >= last_far_set_start) {
655 			far_set_size = geo->far_set_size;
656 			far_set_size += (geo->raid_disks % geo->far_set_size);
657 			far_set_start = last_far_set_start;
658 		}
659 	}
660 
661 	offset = sector & geo->chunk_mask;
662 	if (geo->far_offset) {
663 		int fc;
664 		chunk = sector >> geo->chunk_shift;
665 		fc = sector_div(chunk, geo->far_copies);
666 		dev -= fc * geo->near_copies;
667 		if (dev < far_set_start)
668 			dev += far_set_size;
669 	} else {
670 		while (sector >= geo->stride) {
671 			sector -= geo->stride;
672 			if (dev < (geo->near_copies + far_set_start))
673 				dev += far_set_size - geo->near_copies;
674 			else
675 				dev -= geo->near_copies;
676 		}
677 		chunk = sector >> geo->chunk_shift;
678 	}
679 	vchunk = chunk * geo->raid_disks + dev;
680 	sector_div(vchunk, geo->near_copies);
681 	return (vchunk << geo->chunk_shift) + offset;
682 }
683 
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698 
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 				    struct r10bio *r10_bio,
705 				    int *max_sectors)
706 {
707 	const sector_t this_sector = r10_bio->sector;
708 	int disk, slot;
709 	int sectors = r10_bio->sectors;
710 	int best_good_sectors;
711 	sector_t new_distance, best_dist;
712 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 	int do_balance;
714 	int best_dist_slot, best_pending_slot;
715 	bool has_nonrot_disk = false;
716 	unsigned int min_pending;
717 	struct geom *geo = &conf->geo;
718 
719 	raid10_find_phys(conf, r10_bio);
720 	rcu_read_lock();
721 	best_dist_slot = -1;
722 	min_pending = UINT_MAX;
723 	best_dist_rdev = NULL;
724 	best_pending_rdev = NULL;
725 	best_dist = MaxSector;
726 	best_good_sectors = 0;
727 	do_balance = 1;
728 	clear_bit(R10BIO_FailFast, &r10_bio->state);
729 	/*
730 	 * Check if we can balance. We can balance on the whole
731 	 * device if no resync is going on (recovery is ok), or below
732 	 * the resync window. We take the first readable disk when
733 	 * above the resync window.
734 	 */
735 	if ((conf->mddev->recovery_cp < MaxSector
736 	     && (this_sector + sectors >= conf->next_resync)) ||
737 	    (mddev_is_clustered(conf->mddev) &&
738 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 					    this_sector + sectors)))
740 		do_balance = 0;
741 
742 	for (slot = 0; slot < conf->copies ; slot++) {
743 		sector_t first_bad;
744 		int bad_sectors;
745 		sector_t dev_sector;
746 		unsigned int pending;
747 		bool nonrot;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 		if (rdev == NULL ||
757 		    test_bit(Faulty, &rdev->flags))
758 			continue;
759 		if (!test_bit(In_sync, &rdev->flags) &&
760 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 			continue;
762 
763 		dev_sector = r10_bio->devs[slot].addr;
764 		if (is_badblock(rdev, dev_sector, sectors,
765 				&first_bad, &bad_sectors)) {
766 			if (best_dist < MaxSector)
767 				/* Already have a better slot */
768 				continue;
769 			if (first_bad <= dev_sector) {
770 				/* Cannot read here.  If this is the
771 				 * 'primary' device, then we must not read
772 				 * beyond 'bad_sectors' from another device.
773 				 */
774 				bad_sectors -= (dev_sector - first_bad);
775 				if (!do_balance && sectors > bad_sectors)
776 					sectors = bad_sectors;
777 				if (best_good_sectors > sectors)
778 					best_good_sectors = sectors;
779 			} else {
780 				sector_t good_sectors =
781 					first_bad - dev_sector;
782 				if (good_sectors > best_good_sectors) {
783 					best_good_sectors = good_sectors;
784 					best_dist_slot = slot;
785 					best_dist_rdev = rdev;
786 				}
787 				if (!do_balance)
788 					/* Must read from here */
789 					break;
790 			}
791 			continue;
792 		} else
793 			best_good_sectors = sectors;
794 
795 		if (!do_balance)
796 			break;
797 
798 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 		has_nonrot_disk |= nonrot;
800 		pending = atomic_read(&rdev->nr_pending);
801 		if (min_pending > pending && nonrot) {
802 			min_pending = pending;
803 			best_pending_slot = slot;
804 			best_pending_rdev = rdev;
805 		}
806 
807 		if (best_dist_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !pending)
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 
824 		if (new_distance < best_dist) {
825 			best_dist = new_distance;
826 			best_dist_slot = slot;
827 			best_dist_rdev = rdev;
828 		}
829 	}
830 	if (slot >= conf->copies) {
831 		if (has_nonrot_disk) {
832 			slot = best_pending_slot;
833 			rdev = best_pending_rdev;
834 		} else {
835 			slot = best_dist_slot;
836 			rdev = best_dist_rdev;
837 		}
838 	}
839 
840 	if (slot >= 0) {
841 		atomic_inc(&rdev->nr_pending);
842 		r10_bio->read_slot = slot;
843 	} else
844 		rdev = NULL;
845 	rcu_read_unlock();
846 	*max_sectors = best_good_sectors;
847 
848 	return rdev;
849 }
850 
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 	/* Any writes that have been queued but are awaiting
854 	 * bitmap updates get flushed here.
855 	 */
856 	spin_lock_irq(&conf->device_lock);
857 
858 	if (conf->pending_bio_list.head) {
859 		struct blk_plug plug;
860 		struct bio *bio;
861 
862 		bio = bio_list_get(&conf->pending_bio_list);
863 		conf->pending_count = 0;
864 		spin_unlock_irq(&conf->device_lock);
865 
866 		/*
867 		 * As this is called in a wait_event() loop (see freeze_array),
868 		 * current->state might be TASK_UNINTERRUPTIBLE which will
869 		 * cause a warning when we prepare to wait again.  As it is
870 		 * rare that this path is taken, it is perfectly safe to force
871 		 * us to go around the wait_event() loop again, so the warning
872 		 * is a false-positive. Silence the warning by resetting
873 		 * thread state
874 		 */
875 		__set_current_state(TASK_RUNNING);
876 
877 		blk_start_plug(&plug);
878 		/* flush any pending bitmap writes to disk
879 		 * before proceeding w/ I/O */
880 		md_bitmap_unplug(conf->mddev->bitmap);
881 		wake_up(&conf->wait_barrier);
882 
883 		while (bio) { /* submit pending writes */
884 			struct bio *next = bio->bi_next;
885 			struct md_rdev *rdev = (void*)bio->bi_disk;
886 			bio->bi_next = NULL;
887 			bio_set_dev(bio, rdev->bdev);
888 			if (test_bit(Faulty, &rdev->flags)) {
889 				bio_io_error(bio);
890 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891 					    !blk_queue_discard(bio->bi_disk->queue)))
892 				/* Just ignore it */
893 				bio_endio(bio);
894 			else
895 				submit_bio_noacct(bio);
896 			bio = next;
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	BUG_ON(force && !conf->barrier);
928 	spin_lock_irq(&conf->resync_lock);
929 
930 	/* Wait until no block IO is waiting (unless 'force') */
931 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 			    conf->resync_lock);
933 
934 	/* block any new IO from starting */
935 	conf->barrier++;
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_lock_irq(conf->wait_barrier,
939 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 			    conf->resync_lock);
941 
942 	spin_unlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->barrier--;
950 	spin_unlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static void wait_barrier(struct r10conf *conf)
955 {
956 	spin_lock_irq(&conf->resync_lock);
957 	if (conf->barrier) {
958 		conf->nr_waiting++;
959 		/* Wait for the barrier to drop.
960 		 * However if there are already pending
961 		 * requests (preventing the barrier from
962 		 * rising completely), and the
963 		 * pre-process bio queue isn't empty,
964 		 * then don't wait, as we need to empty
965 		 * that queue to get the nr_pending
966 		 * count down.
967 		 */
968 		raid10_log(conf->mddev, "wait barrier");
969 		wait_event_lock_irq(conf->wait_barrier,
970 				    !conf->barrier ||
971 				    (atomic_read(&conf->nr_pending) &&
972 				     current->bio_list &&
973 				     (!bio_list_empty(&current->bio_list[0]) ||
974 				      !bio_list_empty(&current->bio_list[1]))),
975 				    conf->resync_lock);
976 		conf->nr_waiting--;
977 		if (!conf->nr_waiting)
978 			wake_up(&conf->wait_barrier);
979 	}
980 	atomic_inc(&conf->nr_pending);
981 	spin_unlock_irq(&conf->resync_lock);
982 }
983 
984 static void allow_barrier(struct r10conf *conf)
985 {
986 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
987 			(conf->array_freeze_pending))
988 		wake_up(&conf->wait_barrier);
989 }
990 
991 static void freeze_array(struct r10conf *conf, int extra)
992 {
993 	/* stop syncio and normal IO and wait for everything to
994 	 * go quiet.
995 	 * We increment barrier and nr_waiting, and then
996 	 * wait until nr_pending match nr_queued+extra
997 	 * This is called in the context of one normal IO request
998 	 * that has failed. Thus any sync request that might be pending
999 	 * will be blocked by nr_pending, and we need to wait for
1000 	 * pending IO requests to complete or be queued for re-try.
1001 	 * Thus the number queued (nr_queued) plus this request (extra)
1002 	 * must match the number of pending IOs (nr_pending) before
1003 	 * we continue.
1004 	 */
1005 	spin_lock_irq(&conf->resync_lock);
1006 	conf->array_freeze_pending++;
1007 	conf->barrier++;
1008 	conf->nr_waiting++;
1009 	wait_event_lock_irq_cmd(conf->wait_barrier,
1010 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1011 				conf->resync_lock,
1012 				flush_pending_writes(conf));
1013 
1014 	conf->array_freeze_pending--;
1015 	spin_unlock_irq(&conf->resync_lock);
1016 }
1017 
1018 static void unfreeze_array(struct r10conf *conf)
1019 {
1020 	/* reverse the effect of the freeze */
1021 	spin_lock_irq(&conf->resync_lock);
1022 	conf->barrier--;
1023 	conf->nr_waiting--;
1024 	wake_up(&conf->wait_barrier);
1025 	spin_unlock_irq(&conf->resync_lock);
1026 }
1027 
1028 static sector_t choose_data_offset(struct r10bio *r10_bio,
1029 				   struct md_rdev *rdev)
1030 {
1031 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1032 	    test_bit(R10BIO_Previous, &r10_bio->state))
1033 		return rdev->data_offset;
1034 	else
1035 		return rdev->new_data_offset;
1036 }
1037 
1038 struct raid10_plug_cb {
1039 	struct blk_plug_cb	cb;
1040 	struct bio_list		pending;
1041 	int			pending_cnt;
1042 };
1043 
1044 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045 {
1046 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1047 						   cb);
1048 	struct mddev *mddev = plug->cb.data;
1049 	struct r10conf *conf = mddev->private;
1050 	struct bio *bio;
1051 
1052 	if (from_schedule || current->bio_list) {
1053 		spin_lock_irq(&conf->device_lock);
1054 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055 		conf->pending_count += plug->pending_cnt;
1056 		spin_unlock_irq(&conf->device_lock);
1057 		wake_up(&conf->wait_barrier);
1058 		md_wakeup_thread(mddev->thread);
1059 		kfree(plug);
1060 		return;
1061 	}
1062 
1063 	/* we aren't scheduling, so we can do the write-out directly. */
1064 	bio = bio_list_get(&plug->pending);
1065 	md_bitmap_unplug(mddev->bitmap);
1066 	wake_up(&conf->wait_barrier);
1067 
1068 	while (bio) { /* submit pending writes */
1069 		struct bio *next = bio->bi_next;
1070 		struct md_rdev *rdev = (void*)bio->bi_disk;
1071 		bio->bi_next = NULL;
1072 		bio_set_dev(bio, rdev->bdev);
1073 		if (test_bit(Faulty, &rdev->flags)) {
1074 			bio_io_error(bio);
1075 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1076 				    !blk_queue_discard(bio->bi_disk->queue)))
1077 			/* Just ignore it */
1078 			bio_endio(bio);
1079 		else
1080 			submit_bio_noacct(bio);
1081 		bio = next;
1082 	}
1083 	kfree(plug);
1084 }
1085 
1086 /*
1087  * 1. Register the new request and wait if the reconstruction thread has put
1088  * up a bar for new requests. Continue immediately if no resync is active
1089  * currently.
1090  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1091  */
1092 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1093 				 struct bio *bio, sector_t sectors)
1094 {
1095 	wait_barrier(conf);
1096 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1098 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1099 		raid10_log(conf->mddev, "wait reshape");
1100 		allow_barrier(conf);
1101 		wait_event(conf->wait_barrier,
1102 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1103 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1104 			   sectors);
1105 		wait_barrier(conf);
1106 	}
1107 }
1108 
1109 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1110 				struct r10bio *r10_bio)
1111 {
1112 	struct r10conf *conf = mddev->private;
1113 	struct bio *read_bio;
1114 	const int op = bio_op(bio);
1115 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1116 	int max_sectors;
1117 	struct md_rdev *rdev;
1118 	char b[BDEVNAME_SIZE];
1119 	int slot = r10_bio->read_slot;
1120 	struct md_rdev *err_rdev = NULL;
1121 	gfp_t gfp = GFP_NOIO;
1122 
1123 	if (r10_bio->devs[slot].rdev) {
1124 		/*
1125 		 * This is an error retry, but we cannot
1126 		 * safely dereference the rdev in the r10_bio,
1127 		 * we must use the one in conf.
1128 		 * If it has already been disconnected (unlikely)
1129 		 * we lose the device name in error messages.
1130 		 */
1131 		int disk;
1132 		/*
1133 		 * As we are blocking raid10, it is a little safer to
1134 		 * use __GFP_HIGH.
1135 		 */
1136 		gfp = GFP_NOIO | __GFP_HIGH;
1137 
1138 		rcu_read_lock();
1139 		disk = r10_bio->devs[slot].devnum;
1140 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1141 		if (err_rdev)
1142 			bdevname(err_rdev->bdev, b);
1143 		else {
1144 			strcpy(b, "???");
1145 			/* This never gets dereferenced */
1146 			err_rdev = r10_bio->devs[slot].rdev;
1147 		}
1148 		rcu_read_unlock();
1149 	}
1150 
1151 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1152 	rdev = read_balance(conf, r10_bio, &max_sectors);
1153 	if (!rdev) {
1154 		if (err_rdev) {
1155 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1156 					    mdname(mddev), b,
1157 					    (unsigned long long)r10_bio->sector);
1158 		}
1159 		raid_end_bio_io(r10_bio);
1160 		return;
1161 	}
1162 	if (err_rdev)
1163 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1164 				   mdname(mddev),
1165 				   bdevname(rdev->bdev, b),
1166 				   (unsigned long long)r10_bio->sector);
1167 	if (max_sectors < bio_sectors(bio)) {
1168 		struct bio *split = bio_split(bio, max_sectors,
1169 					      gfp, &conf->bio_split);
1170 		bio_chain(split, bio);
1171 		allow_barrier(conf);
1172 		submit_bio_noacct(bio);
1173 		wait_barrier(conf);
1174 		bio = split;
1175 		r10_bio->master_bio = bio;
1176 		r10_bio->sectors = max_sectors;
1177 	}
1178 	slot = r10_bio->read_slot;
1179 
1180 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1181 
1182 	r10_bio->devs[slot].bio = read_bio;
1183 	r10_bio->devs[slot].rdev = rdev;
1184 
1185 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1186 		choose_data_offset(r10_bio, rdev);
1187 	bio_set_dev(read_bio, rdev->bdev);
1188 	read_bio->bi_end_io = raid10_end_read_request;
1189 	bio_set_op_attrs(read_bio, op, do_sync);
1190 	if (test_bit(FailFast, &rdev->flags) &&
1191 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1192 	        read_bio->bi_opf |= MD_FAILFAST;
1193 	read_bio->bi_private = r10_bio;
1194 
1195 	if (mddev->gendisk)
1196 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1197 	                              read_bio, disk_devt(mddev->gendisk),
1198 	                              r10_bio->sector);
1199 	submit_bio_noacct(read_bio);
1200 	return;
1201 }
1202 
1203 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1204 				  struct bio *bio, bool replacement,
1205 				  int n_copy)
1206 {
1207 	const int op = bio_op(bio);
1208 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1209 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1210 	unsigned long flags;
1211 	struct blk_plug_cb *cb;
1212 	struct raid10_plug_cb *plug = NULL;
1213 	struct r10conf *conf = mddev->private;
1214 	struct md_rdev *rdev;
1215 	int devnum = r10_bio->devs[n_copy].devnum;
1216 	struct bio *mbio;
1217 
1218 	if (replacement) {
1219 		rdev = conf->mirrors[devnum].replacement;
1220 		if (rdev == NULL) {
1221 			/* Replacement just got moved to main 'rdev' */
1222 			smp_mb();
1223 			rdev = conf->mirrors[devnum].rdev;
1224 		}
1225 	} else
1226 		rdev = conf->mirrors[devnum].rdev;
1227 
1228 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1229 	if (replacement)
1230 		r10_bio->devs[n_copy].repl_bio = mbio;
1231 	else
1232 		r10_bio->devs[n_copy].bio = mbio;
1233 
1234 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1235 				   choose_data_offset(r10_bio, rdev));
1236 	bio_set_dev(mbio, rdev->bdev);
1237 	mbio->bi_end_io	= raid10_end_write_request;
1238 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1239 	if (!replacement && test_bit(FailFast,
1240 				     &conf->mirrors[devnum].rdev->flags)
1241 			 && enough(conf, devnum))
1242 		mbio->bi_opf |= MD_FAILFAST;
1243 	mbio->bi_private = r10_bio;
1244 
1245 	if (conf->mddev->gendisk)
1246 		trace_block_bio_remap(mbio->bi_disk->queue,
1247 				      mbio, disk_devt(conf->mddev->gendisk),
1248 				      r10_bio->sector);
1249 	/* flush_pending_writes() needs access to the rdev so...*/
1250 	mbio->bi_disk = (void *)rdev;
1251 
1252 	atomic_inc(&r10_bio->remaining);
1253 
1254 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1255 	if (cb)
1256 		plug = container_of(cb, struct raid10_plug_cb, cb);
1257 	else
1258 		plug = NULL;
1259 	if (plug) {
1260 		bio_list_add(&plug->pending, mbio);
1261 		plug->pending_cnt++;
1262 	} else {
1263 		spin_lock_irqsave(&conf->device_lock, flags);
1264 		bio_list_add(&conf->pending_bio_list, mbio);
1265 		conf->pending_count++;
1266 		spin_unlock_irqrestore(&conf->device_lock, flags);
1267 		md_wakeup_thread(mddev->thread);
1268 	}
1269 }
1270 
1271 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1272 				 struct r10bio *r10_bio)
1273 {
1274 	struct r10conf *conf = mddev->private;
1275 	int i;
1276 	struct md_rdev *blocked_rdev;
1277 	sector_t sectors;
1278 	int max_sectors;
1279 
1280 	if ((mddev_is_clustered(mddev) &&
1281 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1282 					    bio->bi_iter.bi_sector,
1283 					    bio_end_sector(bio)))) {
1284 		DEFINE_WAIT(w);
1285 		for (;;) {
1286 			prepare_to_wait(&conf->wait_barrier,
1287 					&w, TASK_IDLE);
1288 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1289 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1290 				break;
1291 			schedule();
1292 		}
1293 		finish_wait(&conf->wait_barrier, &w);
1294 	}
1295 
1296 	sectors = r10_bio->sectors;
1297 	regular_request_wait(mddev, conf, bio, sectors);
1298 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1299 	    (mddev->reshape_backwards
1300 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1301 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1302 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1303 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1304 		/* Need to update reshape_position in metadata */
1305 		mddev->reshape_position = conf->reshape_progress;
1306 		set_mask_bits(&mddev->sb_flags, 0,
1307 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1308 		md_wakeup_thread(mddev->thread);
1309 		raid10_log(conf->mddev, "wait reshape metadata");
1310 		wait_event(mddev->sb_wait,
1311 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1312 
1313 		conf->reshape_safe = mddev->reshape_position;
1314 	}
1315 
1316 	if (conf->pending_count >= max_queued_requests) {
1317 		md_wakeup_thread(mddev->thread);
1318 		raid10_log(mddev, "wait queued");
1319 		wait_event(conf->wait_barrier,
1320 			   conf->pending_count < max_queued_requests);
1321 	}
1322 	/* first select target devices under rcu_lock and
1323 	 * inc refcount on their rdev.  Record them by setting
1324 	 * bios[x] to bio
1325 	 * If there are known/acknowledged bad blocks on any device
1326 	 * on which we have seen a write error, we want to avoid
1327 	 * writing to those blocks.  This potentially requires several
1328 	 * writes to write around the bad blocks.  Each set of writes
1329 	 * gets its own r10_bio with a set of bios attached.
1330 	 */
1331 
1332 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1333 	raid10_find_phys(conf, r10_bio);
1334 retry_write:
1335 	blocked_rdev = NULL;
1336 	rcu_read_lock();
1337 	max_sectors = r10_bio->sectors;
1338 
1339 	for (i = 0;  i < conf->copies; i++) {
1340 		int d = r10_bio->devs[i].devnum;
1341 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1342 		struct md_rdev *rrdev = rcu_dereference(
1343 			conf->mirrors[d].replacement);
1344 		if (rdev == rrdev)
1345 			rrdev = NULL;
1346 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1347 			atomic_inc(&rdev->nr_pending);
1348 			blocked_rdev = rdev;
1349 			break;
1350 		}
1351 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1352 			atomic_inc(&rrdev->nr_pending);
1353 			blocked_rdev = rrdev;
1354 			break;
1355 		}
1356 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1357 			rdev = NULL;
1358 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1359 			rrdev = NULL;
1360 
1361 		r10_bio->devs[i].bio = NULL;
1362 		r10_bio->devs[i].repl_bio = NULL;
1363 
1364 		if (!rdev && !rrdev) {
1365 			set_bit(R10BIO_Degraded, &r10_bio->state);
1366 			continue;
1367 		}
1368 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1369 			sector_t first_bad;
1370 			sector_t dev_sector = r10_bio->devs[i].addr;
1371 			int bad_sectors;
1372 			int is_bad;
1373 
1374 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1375 					     &first_bad, &bad_sectors);
1376 			if (is_bad < 0) {
1377 				/* Mustn't write here until the bad block
1378 				 * is acknowledged
1379 				 */
1380 				atomic_inc(&rdev->nr_pending);
1381 				set_bit(BlockedBadBlocks, &rdev->flags);
1382 				blocked_rdev = rdev;
1383 				break;
1384 			}
1385 			if (is_bad && first_bad <= dev_sector) {
1386 				/* Cannot write here at all */
1387 				bad_sectors -= (dev_sector - first_bad);
1388 				if (bad_sectors < max_sectors)
1389 					/* Mustn't write more than bad_sectors
1390 					 * to other devices yet
1391 					 */
1392 					max_sectors = bad_sectors;
1393 				/* We don't set R10BIO_Degraded as that
1394 				 * only applies if the disk is missing,
1395 				 * so it might be re-added, and we want to
1396 				 * know to recover this chunk.
1397 				 * In this case the device is here, and the
1398 				 * fact that this chunk is not in-sync is
1399 				 * recorded in the bad block log.
1400 				 */
1401 				continue;
1402 			}
1403 			if (is_bad) {
1404 				int good_sectors = first_bad - dev_sector;
1405 				if (good_sectors < max_sectors)
1406 					max_sectors = good_sectors;
1407 			}
1408 		}
1409 		if (rdev) {
1410 			r10_bio->devs[i].bio = bio;
1411 			atomic_inc(&rdev->nr_pending);
1412 		}
1413 		if (rrdev) {
1414 			r10_bio->devs[i].repl_bio = bio;
1415 			atomic_inc(&rrdev->nr_pending);
1416 		}
1417 	}
1418 	rcu_read_unlock();
1419 
1420 	if (unlikely(blocked_rdev)) {
1421 		/* Have to wait for this device to get unblocked, then retry */
1422 		int j;
1423 		int d;
1424 
1425 		for (j = 0; j < i; j++) {
1426 			if (r10_bio->devs[j].bio) {
1427 				d = r10_bio->devs[j].devnum;
1428 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1429 			}
1430 			if (r10_bio->devs[j].repl_bio) {
1431 				struct md_rdev *rdev;
1432 				d = r10_bio->devs[j].devnum;
1433 				rdev = conf->mirrors[d].replacement;
1434 				if (!rdev) {
1435 					/* Race with remove_disk */
1436 					smp_mb();
1437 					rdev = conf->mirrors[d].rdev;
1438 				}
1439 				rdev_dec_pending(rdev, mddev);
1440 			}
1441 		}
1442 		allow_barrier(conf);
1443 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1444 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1445 		wait_barrier(conf);
1446 		goto retry_write;
1447 	}
1448 
1449 	if (max_sectors < r10_bio->sectors)
1450 		r10_bio->sectors = max_sectors;
1451 
1452 	if (r10_bio->sectors < bio_sectors(bio)) {
1453 		struct bio *split = bio_split(bio, r10_bio->sectors,
1454 					      GFP_NOIO, &conf->bio_split);
1455 		bio_chain(split, bio);
1456 		allow_barrier(conf);
1457 		submit_bio_noacct(bio);
1458 		wait_barrier(conf);
1459 		bio = split;
1460 		r10_bio->master_bio = bio;
1461 	}
1462 
1463 	atomic_set(&r10_bio->remaining, 1);
1464 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1465 
1466 	for (i = 0; i < conf->copies; i++) {
1467 		if (r10_bio->devs[i].bio)
1468 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1469 		if (r10_bio->devs[i].repl_bio)
1470 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1471 	}
1472 	one_write_done(r10_bio);
1473 }
1474 
1475 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1476 {
1477 	struct r10conf *conf = mddev->private;
1478 	struct r10bio *r10_bio;
1479 
1480 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1481 
1482 	r10_bio->master_bio = bio;
1483 	r10_bio->sectors = sectors;
1484 
1485 	r10_bio->mddev = mddev;
1486 	r10_bio->sector = bio->bi_iter.bi_sector;
1487 	r10_bio->state = 0;
1488 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1489 
1490 	if (bio_data_dir(bio) == READ)
1491 		raid10_read_request(mddev, bio, r10_bio);
1492 	else
1493 		raid10_write_request(mddev, bio, r10_bio);
1494 }
1495 
1496 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1497 {
1498 	struct r10conf *conf = mddev->private;
1499 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1500 	int chunk_sects = chunk_mask + 1;
1501 	int sectors = bio_sectors(bio);
1502 
1503 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1504 	    && md_flush_request(mddev, bio))
1505 		return true;
1506 
1507 	if (!md_write_start(mddev, bio))
1508 		return false;
1509 
1510 	/*
1511 	 * If this request crosses a chunk boundary, we need to split
1512 	 * it.
1513 	 */
1514 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1515 		     sectors > chunk_sects
1516 		     && (conf->geo.near_copies < conf->geo.raid_disks
1517 			 || conf->prev.near_copies <
1518 			 conf->prev.raid_disks)))
1519 		sectors = chunk_sects -
1520 			(bio->bi_iter.bi_sector &
1521 			 (chunk_sects - 1));
1522 	__make_request(mddev, bio, sectors);
1523 
1524 	/* In case raid10d snuck in to freeze_array */
1525 	wake_up(&conf->wait_barrier);
1526 	return true;
1527 }
1528 
1529 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1530 {
1531 	struct r10conf *conf = mddev->private;
1532 	int i;
1533 
1534 	if (conf->geo.near_copies < conf->geo.raid_disks)
1535 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1536 	if (conf->geo.near_copies > 1)
1537 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1538 	if (conf->geo.far_copies > 1) {
1539 		if (conf->geo.far_offset)
1540 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1541 		else
1542 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1543 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1544 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1545 	}
1546 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1547 					conf->geo.raid_disks - mddev->degraded);
1548 	rcu_read_lock();
1549 	for (i = 0; i < conf->geo.raid_disks; i++) {
1550 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1551 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1552 	}
1553 	rcu_read_unlock();
1554 	seq_printf(seq, "]");
1555 }
1556 
1557 /* check if there are enough drives for
1558  * every block to appear on atleast one.
1559  * Don't consider the device numbered 'ignore'
1560  * as we might be about to remove it.
1561  */
1562 static int _enough(struct r10conf *conf, int previous, int ignore)
1563 {
1564 	int first = 0;
1565 	int has_enough = 0;
1566 	int disks, ncopies;
1567 	if (previous) {
1568 		disks = conf->prev.raid_disks;
1569 		ncopies = conf->prev.near_copies;
1570 	} else {
1571 		disks = conf->geo.raid_disks;
1572 		ncopies = conf->geo.near_copies;
1573 	}
1574 
1575 	rcu_read_lock();
1576 	do {
1577 		int n = conf->copies;
1578 		int cnt = 0;
1579 		int this = first;
1580 		while (n--) {
1581 			struct md_rdev *rdev;
1582 			if (this != ignore &&
1583 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1584 			    test_bit(In_sync, &rdev->flags))
1585 				cnt++;
1586 			this = (this+1) % disks;
1587 		}
1588 		if (cnt == 0)
1589 			goto out;
1590 		first = (first + ncopies) % disks;
1591 	} while (first != 0);
1592 	has_enough = 1;
1593 out:
1594 	rcu_read_unlock();
1595 	return has_enough;
1596 }
1597 
1598 static int enough(struct r10conf *conf, int ignore)
1599 {
1600 	/* when calling 'enough', both 'prev' and 'geo' must
1601 	 * be stable.
1602 	 * This is ensured if ->reconfig_mutex or ->device_lock
1603 	 * is held.
1604 	 */
1605 	return _enough(conf, 0, ignore) &&
1606 		_enough(conf, 1, ignore);
1607 }
1608 
1609 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1610 {
1611 	char b[BDEVNAME_SIZE];
1612 	struct r10conf *conf = mddev->private;
1613 	unsigned long flags;
1614 
1615 	/*
1616 	 * If it is not operational, then we have already marked it as dead
1617 	 * else if it is the last working disks with "fail_last_dev == false",
1618 	 * ignore the error, let the next level up know.
1619 	 * else mark the drive as failed
1620 	 */
1621 	spin_lock_irqsave(&conf->device_lock, flags);
1622 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1623 	    && !enough(conf, rdev->raid_disk)) {
1624 		/*
1625 		 * Don't fail the drive, just return an IO error.
1626 		 */
1627 		spin_unlock_irqrestore(&conf->device_lock, flags);
1628 		return;
1629 	}
1630 	if (test_and_clear_bit(In_sync, &rdev->flags))
1631 		mddev->degraded++;
1632 	/*
1633 	 * If recovery is running, make sure it aborts.
1634 	 */
1635 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 	set_bit(Blocked, &rdev->flags);
1637 	set_bit(Faulty, &rdev->flags);
1638 	set_mask_bits(&mddev->sb_flags, 0,
1639 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1640 	spin_unlock_irqrestore(&conf->device_lock, flags);
1641 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1642 		"md/raid10:%s: Operation continuing on %d devices.\n",
1643 		mdname(mddev), bdevname(rdev->bdev, b),
1644 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1645 }
1646 
1647 static void print_conf(struct r10conf *conf)
1648 {
1649 	int i;
1650 	struct md_rdev *rdev;
1651 
1652 	pr_debug("RAID10 conf printout:\n");
1653 	if (!conf) {
1654 		pr_debug("(!conf)\n");
1655 		return;
1656 	}
1657 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1658 		 conf->geo.raid_disks);
1659 
1660 	/* This is only called with ->reconfix_mutex held, so
1661 	 * rcu protection of rdev is not needed */
1662 	for (i = 0; i < conf->geo.raid_disks; i++) {
1663 		char b[BDEVNAME_SIZE];
1664 		rdev = conf->mirrors[i].rdev;
1665 		if (rdev)
1666 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1667 				 i, !test_bit(In_sync, &rdev->flags),
1668 				 !test_bit(Faulty, &rdev->flags),
1669 				 bdevname(rdev->bdev,b));
1670 	}
1671 }
1672 
1673 static void close_sync(struct r10conf *conf)
1674 {
1675 	wait_barrier(conf);
1676 	allow_barrier(conf);
1677 
1678 	mempool_exit(&conf->r10buf_pool);
1679 }
1680 
1681 static int raid10_spare_active(struct mddev *mddev)
1682 {
1683 	int i;
1684 	struct r10conf *conf = mddev->private;
1685 	struct raid10_info *tmp;
1686 	int count = 0;
1687 	unsigned long flags;
1688 
1689 	/*
1690 	 * Find all non-in_sync disks within the RAID10 configuration
1691 	 * and mark them in_sync
1692 	 */
1693 	for (i = 0; i < conf->geo.raid_disks; i++) {
1694 		tmp = conf->mirrors + i;
1695 		if (tmp->replacement
1696 		    && tmp->replacement->recovery_offset == MaxSector
1697 		    && !test_bit(Faulty, &tmp->replacement->flags)
1698 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1699 			/* Replacement has just become active */
1700 			if (!tmp->rdev
1701 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1702 				count++;
1703 			if (tmp->rdev) {
1704 				/* Replaced device not technically faulty,
1705 				 * but we need to be sure it gets removed
1706 				 * and never re-added.
1707 				 */
1708 				set_bit(Faulty, &tmp->rdev->flags);
1709 				sysfs_notify_dirent_safe(
1710 					tmp->rdev->sysfs_state);
1711 			}
1712 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1713 		} else if (tmp->rdev
1714 			   && tmp->rdev->recovery_offset == MaxSector
1715 			   && !test_bit(Faulty, &tmp->rdev->flags)
1716 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1717 			count++;
1718 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1719 		}
1720 	}
1721 	spin_lock_irqsave(&conf->device_lock, flags);
1722 	mddev->degraded -= count;
1723 	spin_unlock_irqrestore(&conf->device_lock, flags);
1724 
1725 	print_conf(conf);
1726 	return count;
1727 }
1728 
1729 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1730 {
1731 	struct r10conf *conf = mddev->private;
1732 	int err = -EEXIST;
1733 	int mirror;
1734 	int first = 0;
1735 	int last = conf->geo.raid_disks - 1;
1736 
1737 	if (mddev->recovery_cp < MaxSector)
1738 		/* only hot-add to in-sync arrays, as recovery is
1739 		 * very different from resync
1740 		 */
1741 		return -EBUSY;
1742 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1743 		return -EINVAL;
1744 
1745 	if (md_integrity_add_rdev(rdev, mddev))
1746 		return -ENXIO;
1747 
1748 	if (rdev->raid_disk >= 0)
1749 		first = last = rdev->raid_disk;
1750 
1751 	if (rdev->saved_raid_disk >= first &&
1752 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1753 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1754 		mirror = rdev->saved_raid_disk;
1755 	else
1756 		mirror = first;
1757 	for ( ; mirror <= last ; mirror++) {
1758 		struct raid10_info *p = &conf->mirrors[mirror];
1759 		if (p->recovery_disabled == mddev->recovery_disabled)
1760 			continue;
1761 		if (p->rdev) {
1762 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1763 			    p->replacement != NULL)
1764 				continue;
1765 			clear_bit(In_sync, &rdev->flags);
1766 			set_bit(Replacement, &rdev->flags);
1767 			rdev->raid_disk = mirror;
1768 			err = 0;
1769 			if (mddev->gendisk)
1770 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1771 						  rdev->data_offset << 9);
1772 			conf->fullsync = 1;
1773 			rcu_assign_pointer(p->replacement, rdev);
1774 			break;
1775 		}
1776 
1777 		if (mddev->gendisk)
1778 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1779 					  rdev->data_offset << 9);
1780 
1781 		p->head_position = 0;
1782 		p->recovery_disabled = mddev->recovery_disabled - 1;
1783 		rdev->raid_disk = mirror;
1784 		err = 0;
1785 		if (rdev->saved_raid_disk != mirror)
1786 			conf->fullsync = 1;
1787 		rcu_assign_pointer(p->rdev, rdev);
1788 		break;
1789 	}
1790 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1791 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1792 
1793 	print_conf(conf);
1794 	return err;
1795 }
1796 
1797 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1798 {
1799 	struct r10conf *conf = mddev->private;
1800 	int err = 0;
1801 	int number = rdev->raid_disk;
1802 	struct md_rdev **rdevp;
1803 	struct raid10_info *p = conf->mirrors + number;
1804 
1805 	print_conf(conf);
1806 	if (rdev == p->rdev)
1807 		rdevp = &p->rdev;
1808 	else if (rdev == p->replacement)
1809 		rdevp = &p->replacement;
1810 	else
1811 		return 0;
1812 
1813 	if (test_bit(In_sync, &rdev->flags) ||
1814 	    atomic_read(&rdev->nr_pending)) {
1815 		err = -EBUSY;
1816 		goto abort;
1817 	}
1818 	/* Only remove non-faulty devices if recovery
1819 	 * is not possible.
1820 	 */
1821 	if (!test_bit(Faulty, &rdev->flags) &&
1822 	    mddev->recovery_disabled != p->recovery_disabled &&
1823 	    (!p->replacement || p->replacement == rdev) &&
1824 	    number < conf->geo.raid_disks &&
1825 	    enough(conf, -1)) {
1826 		err = -EBUSY;
1827 		goto abort;
1828 	}
1829 	*rdevp = NULL;
1830 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1831 		synchronize_rcu();
1832 		if (atomic_read(&rdev->nr_pending)) {
1833 			/* lost the race, try later */
1834 			err = -EBUSY;
1835 			*rdevp = rdev;
1836 			goto abort;
1837 		}
1838 	}
1839 	if (p->replacement) {
1840 		/* We must have just cleared 'rdev' */
1841 		p->rdev = p->replacement;
1842 		clear_bit(Replacement, &p->replacement->flags);
1843 		smp_mb(); /* Make sure other CPUs may see both as identical
1844 			   * but will never see neither -- if they are careful.
1845 			   */
1846 		p->replacement = NULL;
1847 	}
1848 
1849 	clear_bit(WantReplacement, &rdev->flags);
1850 	err = md_integrity_register(mddev);
1851 
1852 abort:
1853 
1854 	print_conf(conf);
1855 	return err;
1856 }
1857 
1858 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1859 {
1860 	struct r10conf *conf = r10_bio->mddev->private;
1861 
1862 	if (!bio->bi_status)
1863 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1864 	else
1865 		/* The write handler will notice the lack of
1866 		 * R10BIO_Uptodate and record any errors etc
1867 		 */
1868 		atomic_add(r10_bio->sectors,
1869 			   &conf->mirrors[d].rdev->corrected_errors);
1870 
1871 	/* for reconstruct, we always reschedule after a read.
1872 	 * for resync, only after all reads
1873 	 */
1874 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1875 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1876 	    atomic_dec_and_test(&r10_bio->remaining)) {
1877 		/* we have read all the blocks,
1878 		 * do the comparison in process context in raid10d
1879 		 */
1880 		reschedule_retry(r10_bio);
1881 	}
1882 }
1883 
1884 static void end_sync_read(struct bio *bio)
1885 {
1886 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1887 	struct r10conf *conf = r10_bio->mddev->private;
1888 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1889 
1890 	__end_sync_read(r10_bio, bio, d);
1891 }
1892 
1893 static void end_reshape_read(struct bio *bio)
1894 {
1895 	/* reshape read bio isn't allocated from r10buf_pool */
1896 	struct r10bio *r10_bio = bio->bi_private;
1897 
1898 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1899 }
1900 
1901 static void end_sync_request(struct r10bio *r10_bio)
1902 {
1903 	struct mddev *mddev = r10_bio->mddev;
1904 
1905 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1906 		if (r10_bio->master_bio == NULL) {
1907 			/* the primary of several recovery bios */
1908 			sector_t s = r10_bio->sectors;
1909 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1910 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1911 				reschedule_retry(r10_bio);
1912 			else
1913 				put_buf(r10_bio);
1914 			md_done_sync(mddev, s, 1);
1915 			break;
1916 		} else {
1917 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1918 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1919 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1920 				reschedule_retry(r10_bio);
1921 			else
1922 				put_buf(r10_bio);
1923 			r10_bio = r10_bio2;
1924 		}
1925 	}
1926 }
1927 
1928 static void end_sync_write(struct bio *bio)
1929 {
1930 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1931 	struct mddev *mddev = r10_bio->mddev;
1932 	struct r10conf *conf = mddev->private;
1933 	int d;
1934 	sector_t first_bad;
1935 	int bad_sectors;
1936 	int slot;
1937 	int repl;
1938 	struct md_rdev *rdev = NULL;
1939 
1940 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1941 	if (repl)
1942 		rdev = conf->mirrors[d].replacement;
1943 	else
1944 		rdev = conf->mirrors[d].rdev;
1945 
1946 	if (bio->bi_status) {
1947 		if (repl)
1948 			md_error(mddev, rdev);
1949 		else {
1950 			set_bit(WriteErrorSeen, &rdev->flags);
1951 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1952 				set_bit(MD_RECOVERY_NEEDED,
1953 					&rdev->mddev->recovery);
1954 			set_bit(R10BIO_WriteError, &r10_bio->state);
1955 		}
1956 	} else if (is_badblock(rdev,
1957 			     r10_bio->devs[slot].addr,
1958 			     r10_bio->sectors,
1959 			     &first_bad, &bad_sectors))
1960 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1961 
1962 	rdev_dec_pending(rdev, mddev);
1963 
1964 	end_sync_request(r10_bio);
1965 }
1966 
1967 /*
1968  * Note: sync and recover and handled very differently for raid10
1969  * This code is for resync.
1970  * For resync, we read through virtual addresses and read all blocks.
1971  * If there is any error, we schedule a write.  The lowest numbered
1972  * drive is authoritative.
1973  * However requests come for physical address, so we need to map.
1974  * For every physical address there are raid_disks/copies virtual addresses,
1975  * which is always are least one, but is not necessarly an integer.
1976  * This means that a physical address can span multiple chunks, so we may
1977  * have to submit multiple io requests for a single sync request.
1978  */
1979 /*
1980  * We check if all blocks are in-sync and only write to blocks that
1981  * aren't in sync
1982  */
1983 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1984 {
1985 	struct r10conf *conf = mddev->private;
1986 	int i, first;
1987 	struct bio *tbio, *fbio;
1988 	int vcnt;
1989 	struct page **tpages, **fpages;
1990 
1991 	atomic_set(&r10_bio->remaining, 1);
1992 
1993 	/* find the first device with a block */
1994 	for (i=0; i<conf->copies; i++)
1995 		if (!r10_bio->devs[i].bio->bi_status)
1996 			break;
1997 
1998 	if (i == conf->copies)
1999 		goto done;
2000 
2001 	first = i;
2002 	fbio = r10_bio->devs[i].bio;
2003 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2004 	fbio->bi_iter.bi_idx = 0;
2005 	fpages = get_resync_pages(fbio)->pages;
2006 
2007 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2008 	/* now find blocks with errors */
2009 	for (i=0 ; i < conf->copies ; i++) {
2010 		int  j, d;
2011 		struct md_rdev *rdev;
2012 		struct resync_pages *rp;
2013 
2014 		tbio = r10_bio->devs[i].bio;
2015 
2016 		if (tbio->bi_end_io != end_sync_read)
2017 			continue;
2018 		if (i == first)
2019 			continue;
2020 
2021 		tpages = get_resync_pages(tbio)->pages;
2022 		d = r10_bio->devs[i].devnum;
2023 		rdev = conf->mirrors[d].rdev;
2024 		if (!r10_bio->devs[i].bio->bi_status) {
2025 			/* We know that the bi_io_vec layout is the same for
2026 			 * both 'first' and 'i', so we just compare them.
2027 			 * All vec entries are PAGE_SIZE;
2028 			 */
2029 			int sectors = r10_bio->sectors;
2030 			for (j = 0; j < vcnt; j++) {
2031 				int len = PAGE_SIZE;
2032 				if (sectors < (len / 512))
2033 					len = sectors * 512;
2034 				if (memcmp(page_address(fpages[j]),
2035 					   page_address(tpages[j]),
2036 					   len))
2037 					break;
2038 				sectors -= len/512;
2039 			}
2040 			if (j == vcnt)
2041 				continue;
2042 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2043 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2044 				/* Don't fix anything. */
2045 				continue;
2046 		} else if (test_bit(FailFast, &rdev->flags)) {
2047 			/* Just give up on this device */
2048 			md_error(rdev->mddev, rdev);
2049 			continue;
2050 		}
2051 		/* Ok, we need to write this bio, either to correct an
2052 		 * inconsistency or to correct an unreadable block.
2053 		 * First we need to fixup bv_offset, bv_len and
2054 		 * bi_vecs, as the read request might have corrupted these
2055 		 */
2056 		rp = get_resync_pages(tbio);
2057 		bio_reset(tbio);
2058 
2059 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2060 
2061 		rp->raid_bio = r10_bio;
2062 		tbio->bi_private = rp;
2063 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2064 		tbio->bi_end_io = end_sync_write;
2065 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2066 
2067 		bio_copy_data(tbio, fbio);
2068 
2069 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2070 		atomic_inc(&r10_bio->remaining);
2071 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2072 
2073 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2074 			tbio->bi_opf |= MD_FAILFAST;
2075 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2076 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2077 		submit_bio_noacct(tbio);
2078 	}
2079 
2080 	/* Now write out to any replacement devices
2081 	 * that are active
2082 	 */
2083 	for (i = 0; i < conf->copies; i++) {
2084 		int d;
2085 
2086 		tbio = r10_bio->devs[i].repl_bio;
2087 		if (!tbio || !tbio->bi_end_io)
2088 			continue;
2089 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2090 		    && r10_bio->devs[i].bio != fbio)
2091 			bio_copy_data(tbio, fbio);
2092 		d = r10_bio->devs[i].devnum;
2093 		atomic_inc(&r10_bio->remaining);
2094 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2095 			     bio_sectors(tbio));
2096 		submit_bio_noacct(tbio);
2097 	}
2098 
2099 done:
2100 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2101 		md_done_sync(mddev, r10_bio->sectors, 1);
2102 		put_buf(r10_bio);
2103 	}
2104 }
2105 
2106 /*
2107  * Now for the recovery code.
2108  * Recovery happens across physical sectors.
2109  * We recover all non-is_sync drives by finding the virtual address of
2110  * each, and then choose a working drive that also has that virt address.
2111  * There is a separate r10_bio for each non-in_sync drive.
2112  * Only the first two slots are in use. The first for reading,
2113  * The second for writing.
2114  *
2115  */
2116 static void fix_recovery_read_error(struct r10bio *r10_bio)
2117 {
2118 	/* We got a read error during recovery.
2119 	 * We repeat the read in smaller page-sized sections.
2120 	 * If a read succeeds, write it to the new device or record
2121 	 * a bad block if we cannot.
2122 	 * If a read fails, record a bad block on both old and
2123 	 * new devices.
2124 	 */
2125 	struct mddev *mddev = r10_bio->mddev;
2126 	struct r10conf *conf = mddev->private;
2127 	struct bio *bio = r10_bio->devs[0].bio;
2128 	sector_t sect = 0;
2129 	int sectors = r10_bio->sectors;
2130 	int idx = 0;
2131 	int dr = r10_bio->devs[0].devnum;
2132 	int dw = r10_bio->devs[1].devnum;
2133 	struct page **pages = get_resync_pages(bio)->pages;
2134 
2135 	while (sectors) {
2136 		int s = sectors;
2137 		struct md_rdev *rdev;
2138 		sector_t addr;
2139 		int ok;
2140 
2141 		if (s > (PAGE_SIZE>>9))
2142 			s = PAGE_SIZE >> 9;
2143 
2144 		rdev = conf->mirrors[dr].rdev;
2145 		addr = r10_bio->devs[0].addr + sect,
2146 		ok = sync_page_io(rdev,
2147 				  addr,
2148 				  s << 9,
2149 				  pages[idx],
2150 				  REQ_OP_READ, 0, false);
2151 		if (ok) {
2152 			rdev = conf->mirrors[dw].rdev;
2153 			addr = r10_bio->devs[1].addr + sect;
2154 			ok = sync_page_io(rdev,
2155 					  addr,
2156 					  s << 9,
2157 					  pages[idx],
2158 					  REQ_OP_WRITE, 0, false);
2159 			if (!ok) {
2160 				set_bit(WriteErrorSeen, &rdev->flags);
2161 				if (!test_and_set_bit(WantReplacement,
2162 						      &rdev->flags))
2163 					set_bit(MD_RECOVERY_NEEDED,
2164 						&rdev->mddev->recovery);
2165 			}
2166 		}
2167 		if (!ok) {
2168 			/* We don't worry if we cannot set a bad block -
2169 			 * it really is bad so there is no loss in not
2170 			 * recording it yet
2171 			 */
2172 			rdev_set_badblocks(rdev, addr, s, 0);
2173 
2174 			if (rdev != conf->mirrors[dw].rdev) {
2175 				/* need bad block on destination too */
2176 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2177 				addr = r10_bio->devs[1].addr + sect;
2178 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2179 				if (!ok) {
2180 					/* just abort the recovery */
2181 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2182 						  mdname(mddev));
2183 
2184 					conf->mirrors[dw].recovery_disabled
2185 						= mddev->recovery_disabled;
2186 					set_bit(MD_RECOVERY_INTR,
2187 						&mddev->recovery);
2188 					break;
2189 				}
2190 			}
2191 		}
2192 
2193 		sectors -= s;
2194 		sect += s;
2195 		idx++;
2196 	}
2197 }
2198 
2199 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2200 {
2201 	struct r10conf *conf = mddev->private;
2202 	int d;
2203 	struct bio *wbio, *wbio2;
2204 
2205 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2206 		fix_recovery_read_error(r10_bio);
2207 		end_sync_request(r10_bio);
2208 		return;
2209 	}
2210 
2211 	/*
2212 	 * share the pages with the first bio
2213 	 * and submit the write request
2214 	 */
2215 	d = r10_bio->devs[1].devnum;
2216 	wbio = r10_bio->devs[1].bio;
2217 	wbio2 = r10_bio->devs[1].repl_bio;
2218 	/* Need to test wbio2->bi_end_io before we call
2219 	 * submit_bio_noacct as if the former is NULL,
2220 	 * the latter is free to free wbio2.
2221 	 */
2222 	if (wbio2 && !wbio2->bi_end_io)
2223 		wbio2 = NULL;
2224 	if (wbio->bi_end_io) {
2225 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2226 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2227 		submit_bio_noacct(wbio);
2228 	}
2229 	if (wbio2) {
2230 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2231 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2232 			     bio_sectors(wbio2));
2233 		submit_bio_noacct(wbio2);
2234 	}
2235 }
2236 
2237 /*
2238  * Used by fix_read_error() to decay the per rdev read_errors.
2239  * We halve the read error count for every hour that has elapsed
2240  * since the last recorded read error.
2241  *
2242  */
2243 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2244 {
2245 	long cur_time_mon;
2246 	unsigned long hours_since_last;
2247 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2248 
2249 	cur_time_mon = ktime_get_seconds();
2250 
2251 	if (rdev->last_read_error == 0) {
2252 		/* first time we've seen a read error */
2253 		rdev->last_read_error = cur_time_mon;
2254 		return;
2255 	}
2256 
2257 	hours_since_last = (long)(cur_time_mon -
2258 			    rdev->last_read_error) / 3600;
2259 
2260 	rdev->last_read_error = cur_time_mon;
2261 
2262 	/*
2263 	 * if hours_since_last is > the number of bits in read_errors
2264 	 * just set read errors to 0. We do this to avoid
2265 	 * overflowing the shift of read_errors by hours_since_last.
2266 	 */
2267 	if (hours_since_last >= 8 * sizeof(read_errors))
2268 		atomic_set(&rdev->read_errors, 0);
2269 	else
2270 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2271 }
2272 
2273 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2274 			    int sectors, struct page *page, int rw)
2275 {
2276 	sector_t first_bad;
2277 	int bad_sectors;
2278 
2279 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2280 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2281 		return -1;
2282 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2283 		/* success */
2284 		return 1;
2285 	if (rw == WRITE) {
2286 		set_bit(WriteErrorSeen, &rdev->flags);
2287 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2288 			set_bit(MD_RECOVERY_NEEDED,
2289 				&rdev->mddev->recovery);
2290 	}
2291 	/* need to record an error - either for the block or the device */
2292 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2293 		md_error(rdev->mddev, rdev);
2294 	return 0;
2295 }
2296 
2297 /*
2298  * This is a kernel thread which:
2299  *
2300  *	1.	Retries failed read operations on working mirrors.
2301  *	2.	Updates the raid superblock when problems encounter.
2302  *	3.	Performs writes following reads for array synchronising.
2303  */
2304 
2305 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2306 {
2307 	int sect = 0; /* Offset from r10_bio->sector */
2308 	int sectors = r10_bio->sectors;
2309 	struct md_rdev *rdev;
2310 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2311 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2312 
2313 	/* still own a reference to this rdev, so it cannot
2314 	 * have been cleared recently.
2315 	 */
2316 	rdev = conf->mirrors[d].rdev;
2317 
2318 	if (test_bit(Faulty, &rdev->flags))
2319 		/* drive has already been failed, just ignore any
2320 		   more fix_read_error() attempts */
2321 		return;
2322 
2323 	check_decay_read_errors(mddev, rdev);
2324 	atomic_inc(&rdev->read_errors);
2325 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2326 		char b[BDEVNAME_SIZE];
2327 		bdevname(rdev->bdev, b);
2328 
2329 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2330 			  mdname(mddev), b,
2331 			  atomic_read(&rdev->read_errors), max_read_errors);
2332 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2333 			  mdname(mddev), b);
2334 		md_error(mddev, rdev);
2335 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2336 		return;
2337 	}
2338 
2339 	while(sectors) {
2340 		int s = sectors;
2341 		int sl = r10_bio->read_slot;
2342 		int success = 0;
2343 		int start;
2344 
2345 		if (s > (PAGE_SIZE>>9))
2346 			s = PAGE_SIZE >> 9;
2347 
2348 		rcu_read_lock();
2349 		do {
2350 			sector_t first_bad;
2351 			int bad_sectors;
2352 
2353 			d = r10_bio->devs[sl].devnum;
2354 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2355 			if (rdev &&
2356 			    test_bit(In_sync, &rdev->flags) &&
2357 			    !test_bit(Faulty, &rdev->flags) &&
2358 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2359 					&first_bad, &bad_sectors) == 0) {
2360 				atomic_inc(&rdev->nr_pending);
2361 				rcu_read_unlock();
2362 				success = sync_page_io(rdev,
2363 						       r10_bio->devs[sl].addr +
2364 						       sect,
2365 						       s<<9,
2366 						       conf->tmppage,
2367 						       REQ_OP_READ, 0, false);
2368 				rdev_dec_pending(rdev, mddev);
2369 				rcu_read_lock();
2370 				if (success)
2371 					break;
2372 			}
2373 			sl++;
2374 			if (sl == conf->copies)
2375 				sl = 0;
2376 		} while (!success && sl != r10_bio->read_slot);
2377 		rcu_read_unlock();
2378 
2379 		if (!success) {
2380 			/* Cannot read from anywhere, just mark the block
2381 			 * as bad on the first device to discourage future
2382 			 * reads.
2383 			 */
2384 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2385 			rdev = conf->mirrors[dn].rdev;
2386 
2387 			if (!rdev_set_badblocks(
2388 				    rdev,
2389 				    r10_bio->devs[r10_bio->read_slot].addr
2390 				    + sect,
2391 				    s, 0)) {
2392 				md_error(mddev, rdev);
2393 				r10_bio->devs[r10_bio->read_slot].bio
2394 					= IO_BLOCKED;
2395 			}
2396 			break;
2397 		}
2398 
2399 		start = sl;
2400 		/* write it back and re-read */
2401 		rcu_read_lock();
2402 		while (sl != r10_bio->read_slot) {
2403 			char b[BDEVNAME_SIZE];
2404 
2405 			if (sl==0)
2406 				sl = conf->copies;
2407 			sl--;
2408 			d = r10_bio->devs[sl].devnum;
2409 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2410 			if (!rdev ||
2411 			    test_bit(Faulty, &rdev->flags) ||
2412 			    !test_bit(In_sync, &rdev->flags))
2413 				continue;
2414 
2415 			atomic_inc(&rdev->nr_pending);
2416 			rcu_read_unlock();
2417 			if (r10_sync_page_io(rdev,
2418 					     r10_bio->devs[sl].addr +
2419 					     sect,
2420 					     s, conf->tmppage, WRITE)
2421 			    == 0) {
2422 				/* Well, this device is dead */
2423 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2424 					  mdname(mddev), s,
2425 					  (unsigned long long)(
2426 						  sect +
2427 						  choose_data_offset(r10_bio,
2428 								     rdev)),
2429 					  bdevname(rdev->bdev, b));
2430 				pr_notice("md/raid10:%s: %s: failing drive\n",
2431 					  mdname(mddev),
2432 					  bdevname(rdev->bdev, b));
2433 			}
2434 			rdev_dec_pending(rdev, mddev);
2435 			rcu_read_lock();
2436 		}
2437 		sl = start;
2438 		while (sl != r10_bio->read_slot) {
2439 			char b[BDEVNAME_SIZE];
2440 
2441 			if (sl==0)
2442 				sl = conf->copies;
2443 			sl--;
2444 			d = r10_bio->devs[sl].devnum;
2445 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2446 			if (!rdev ||
2447 			    test_bit(Faulty, &rdev->flags) ||
2448 			    !test_bit(In_sync, &rdev->flags))
2449 				continue;
2450 
2451 			atomic_inc(&rdev->nr_pending);
2452 			rcu_read_unlock();
2453 			switch (r10_sync_page_io(rdev,
2454 					     r10_bio->devs[sl].addr +
2455 					     sect,
2456 					     s, conf->tmppage,
2457 						 READ)) {
2458 			case 0:
2459 				/* Well, this device is dead */
2460 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2461 				       mdname(mddev), s,
2462 				       (unsigned long long)(
2463 					       sect +
2464 					       choose_data_offset(r10_bio, rdev)),
2465 				       bdevname(rdev->bdev, b));
2466 				pr_notice("md/raid10:%s: %s: failing drive\n",
2467 				       mdname(mddev),
2468 				       bdevname(rdev->bdev, b));
2469 				break;
2470 			case 1:
2471 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2472 				       mdname(mddev), s,
2473 				       (unsigned long long)(
2474 					       sect +
2475 					       choose_data_offset(r10_bio, rdev)),
2476 				       bdevname(rdev->bdev, b));
2477 				atomic_add(s, &rdev->corrected_errors);
2478 			}
2479 
2480 			rdev_dec_pending(rdev, mddev);
2481 			rcu_read_lock();
2482 		}
2483 		rcu_read_unlock();
2484 
2485 		sectors -= s;
2486 		sect += s;
2487 	}
2488 }
2489 
2490 static int narrow_write_error(struct r10bio *r10_bio, int i)
2491 {
2492 	struct bio *bio = r10_bio->master_bio;
2493 	struct mddev *mddev = r10_bio->mddev;
2494 	struct r10conf *conf = mddev->private;
2495 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2496 	/* bio has the data to be written to slot 'i' where
2497 	 * we just recently had a write error.
2498 	 * We repeatedly clone the bio and trim down to one block,
2499 	 * then try the write.  Where the write fails we record
2500 	 * a bad block.
2501 	 * It is conceivable that the bio doesn't exactly align with
2502 	 * blocks.  We must handle this.
2503 	 *
2504 	 * We currently own a reference to the rdev.
2505 	 */
2506 
2507 	int block_sectors;
2508 	sector_t sector;
2509 	int sectors;
2510 	int sect_to_write = r10_bio->sectors;
2511 	int ok = 1;
2512 
2513 	if (rdev->badblocks.shift < 0)
2514 		return 0;
2515 
2516 	block_sectors = roundup(1 << rdev->badblocks.shift,
2517 				bdev_logical_block_size(rdev->bdev) >> 9);
2518 	sector = r10_bio->sector;
2519 	sectors = ((r10_bio->sector + block_sectors)
2520 		   & ~(sector_t)(block_sectors - 1))
2521 		- sector;
2522 
2523 	while (sect_to_write) {
2524 		struct bio *wbio;
2525 		sector_t wsector;
2526 		if (sectors > sect_to_write)
2527 			sectors = sect_to_write;
2528 		/* Write at 'sector' for 'sectors' */
2529 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2530 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2531 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2532 		wbio->bi_iter.bi_sector = wsector +
2533 				   choose_data_offset(r10_bio, rdev);
2534 		bio_set_dev(wbio, rdev->bdev);
2535 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2536 
2537 		if (submit_bio_wait(wbio) < 0)
2538 			/* Failure! */
2539 			ok = rdev_set_badblocks(rdev, wsector,
2540 						sectors, 0)
2541 				&& ok;
2542 
2543 		bio_put(wbio);
2544 		sect_to_write -= sectors;
2545 		sector += sectors;
2546 		sectors = block_sectors;
2547 	}
2548 	return ok;
2549 }
2550 
2551 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2552 {
2553 	int slot = r10_bio->read_slot;
2554 	struct bio *bio;
2555 	struct r10conf *conf = mddev->private;
2556 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2557 
2558 	/* we got a read error. Maybe the drive is bad.  Maybe just
2559 	 * the block and we can fix it.
2560 	 * We freeze all other IO, and try reading the block from
2561 	 * other devices.  When we find one, we re-write
2562 	 * and check it that fixes the read error.
2563 	 * This is all done synchronously while the array is
2564 	 * frozen.
2565 	 */
2566 	bio = r10_bio->devs[slot].bio;
2567 	bio_put(bio);
2568 	r10_bio->devs[slot].bio = NULL;
2569 
2570 	if (mddev->ro)
2571 		r10_bio->devs[slot].bio = IO_BLOCKED;
2572 	else if (!test_bit(FailFast, &rdev->flags)) {
2573 		freeze_array(conf, 1);
2574 		fix_read_error(conf, mddev, r10_bio);
2575 		unfreeze_array(conf);
2576 	} else
2577 		md_error(mddev, rdev);
2578 
2579 	rdev_dec_pending(rdev, mddev);
2580 	allow_barrier(conf);
2581 	r10_bio->state = 0;
2582 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2583 }
2584 
2585 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2586 {
2587 	/* Some sort of write request has finished and it
2588 	 * succeeded in writing where we thought there was a
2589 	 * bad block.  So forget the bad block.
2590 	 * Or possibly if failed and we need to record
2591 	 * a bad block.
2592 	 */
2593 	int m;
2594 	struct md_rdev *rdev;
2595 
2596 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2597 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2598 		for (m = 0; m < conf->copies; m++) {
2599 			int dev = r10_bio->devs[m].devnum;
2600 			rdev = conf->mirrors[dev].rdev;
2601 			if (r10_bio->devs[m].bio == NULL ||
2602 				r10_bio->devs[m].bio->bi_end_io == NULL)
2603 				continue;
2604 			if (!r10_bio->devs[m].bio->bi_status) {
2605 				rdev_clear_badblocks(
2606 					rdev,
2607 					r10_bio->devs[m].addr,
2608 					r10_bio->sectors, 0);
2609 			} else {
2610 				if (!rdev_set_badblocks(
2611 					    rdev,
2612 					    r10_bio->devs[m].addr,
2613 					    r10_bio->sectors, 0))
2614 					md_error(conf->mddev, rdev);
2615 			}
2616 			rdev = conf->mirrors[dev].replacement;
2617 			if (r10_bio->devs[m].repl_bio == NULL ||
2618 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2619 				continue;
2620 
2621 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2622 				rdev_clear_badblocks(
2623 					rdev,
2624 					r10_bio->devs[m].addr,
2625 					r10_bio->sectors, 0);
2626 			} else {
2627 				if (!rdev_set_badblocks(
2628 					    rdev,
2629 					    r10_bio->devs[m].addr,
2630 					    r10_bio->sectors, 0))
2631 					md_error(conf->mddev, rdev);
2632 			}
2633 		}
2634 		put_buf(r10_bio);
2635 	} else {
2636 		bool fail = false;
2637 		for (m = 0; m < conf->copies; m++) {
2638 			int dev = r10_bio->devs[m].devnum;
2639 			struct bio *bio = r10_bio->devs[m].bio;
2640 			rdev = conf->mirrors[dev].rdev;
2641 			if (bio == IO_MADE_GOOD) {
2642 				rdev_clear_badblocks(
2643 					rdev,
2644 					r10_bio->devs[m].addr,
2645 					r10_bio->sectors, 0);
2646 				rdev_dec_pending(rdev, conf->mddev);
2647 			} else if (bio != NULL && bio->bi_status) {
2648 				fail = true;
2649 				if (!narrow_write_error(r10_bio, m)) {
2650 					md_error(conf->mddev, rdev);
2651 					set_bit(R10BIO_Degraded,
2652 						&r10_bio->state);
2653 				}
2654 				rdev_dec_pending(rdev, conf->mddev);
2655 			}
2656 			bio = r10_bio->devs[m].repl_bio;
2657 			rdev = conf->mirrors[dev].replacement;
2658 			if (rdev && bio == IO_MADE_GOOD) {
2659 				rdev_clear_badblocks(
2660 					rdev,
2661 					r10_bio->devs[m].addr,
2662 					r10_bio->sectors, 0);
2663 				rdev_dec_pending(rdev, conf->mddev);
2664 			}
2665 		}
2666 		if (fail) {
2667 			spin_lock_irq(&conf->device_lock);
2668 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2669 			conf->nr_queued++;
2670 			spin_unlock_irq(&conf->device_lock);
2671 			/*
2672 			 * In case freeze_array() is waiting for condition
2673 			 * nr_pending == nr_queued + extra to be true.
2674 			 */
2675 			wake_up(&conf->wait_barrier);
2676 			md_wakeup_thread(conf->mddev->thread);
2677 		} else {
2678 			if (test_bit(R10BIO_WriteError,
2679 				     &r10_bio->state))
2680 				close_write(r10_bio);
2681 			raid_end_bio_io(r10_bio);
2682 		}
2683 	}
2684 }
2685 
2686 static void raid10d(struct md_thread *thread)
2687 {
2688 	struct mddev *mddev = thread->mddev;
2689 	struct r10bio *r10_bio;
2690 	unsigned long flags;
2691 	struct r10conf *conf = mddev->private;
2692 	struct list_head *head = &conf->retry_list;
2693 	struct blk_plug plug;
2694 
2695 	md_check_recovery(mddev);
2696 
2697 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2698 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2699 		LIST_HEAD(tmp);
2700 		spin_lock_irqsave(&conf->device_lock, flags);
2701 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2702 			while (!list_empty(&conf->bio_end_io_list)) {
2703 				list_move(conf->bio_end_io_list.prev, &tmp);
2704 				conf->nr_queued--;
2705 			}
2706 		}
2707 		spin_unlock_irqrestore(&conf->device_lock, flags);
2708 		while (!list_empty(&tmp)) {
2709 			r10_bio = list_first_entry(&tmp, struct r10bio,
2710 						   retry_list);
2711 			list_del(&r10_bio->retry_list);
2712 			if (mddev->degraded)
2713 				set_bit(R10BIO_Degraded, &r10_bio->state);
2714 
2715 			if (test_bit(R10BIO_WriteError,
2716 				     &r10_bio->state))
2717 				close_write(r10_bio);
2718 			raid_end_bio_io(r10_bio);
2719 		}
2720 	}
2721 
2722 	blk_start_plug(&plug);
2723 	for (;;) {
2724 
2725 		flush_pending_writes(conf);
2726 
2727 		spin_lock_irqsave(&conf->device_lock, flags);
2728 		if (list_empty(head)) {
2729 			spin_unlock_irqrestore(&conf->device_lock, flags);
2730 			break;
2731 		}
2732 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2733 		list_del(head->prev);
2734 		conf->nr_queued--;
2735 		spin_unlock_irqrestore(&conf->device_lock, flags);
2736 
2737 		mddev = r10_bio->mddev;
2738 		conf = mddev->private;
2739 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2740 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2741 			handle_write_completed(conf, r10_bio);
2742 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2743 			reshape_request_write(mddev, r10_bio);
2744 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2745 			sync_request_write(mddev, r10_bio);
2746 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2747 			recovery_request_write(mddev, r10_bio);
2748 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2749 			handle_read_error(mddev, r10_bio);
2750 		else
2751 			WARN_ON_ONCE(1);
2752 
2753 		cond_resched();
2754 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2755 			md_check_recovery(mddev);
2756 	}
2757 	blk_finish_plug(&plug);
2758 }
2759 
2760 static int init_resync(struct r10conf *conf)
2761 {
2762 	int ret, buffs, i;
2763 
2764 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2765 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2766 	conf->have_replacement = 0;
2767 	for (i = 0; i < conf->geo.raid_disks; i++)
2768 		if (conf->mirrors[i].replacement)
2769 			conf->have_replacement = 1;
2770 	ret = mempool_init(&conf->r10buf_pool, buffs,
2771 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2772 	if (ret)
2773 		return ret;
2774 	conf->next_resync = 0;
2775 	return 0;
2776 }
2777 
2778 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2779 {
2780 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2781 	struct rsync_pages *rp;
2782 	struct bio *bio;
2783 	int nalloc;
2784 	int i;
2785 
2786 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2787 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2788 		nalloc = conf->copies; /* resync */
2789 	else
2790 		nalloc = 2; /* recovery */
2791 
2792 	for (i = 0; i < nalloc; i++) {
2793 		bio = r10bio->devs[i].bio;
2794 		rp = bio->bi_private;
2795 		bio_reset(bio);
2796 		bio->bi_private = rp;
2797 		bio = r10bio->devs[i].repl_bio;
2798 		if (bio) {
2799 			rp = bio->bi_private;
2800 			bio_reset(bio);
2801 			bio->bi_private = rp;
2802 		}
2803 	}
2804 	return r10bio;
2805 }
2806 
2807 /*
2808  * Set cluster_sync_high since we need other nodes to add the
2809  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2810  */
2811 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2812 {
2813 	sector_t window_size;
2814 	int extra_chunk, chunks;
2815 
2816 	/*
2817 	 * First, here we define "stripe" as a unit which across
2818 	 * all member devices one time, so we get chunks by use
2819 	 * raid_disks / near_copies. Otherwise, if near_copies is
2820 	 * close to raid_disks, then resync window could increases
2821 	 * linearly with the increase of raid_disks, which means
2822 	 * we will suspend a really large IO window while it is not
2823 	 * necessary. If raid_disks is not divisible by near_copies,
2824 	 * an extra chunk is needed to ensure the whole "stripe" is
2825 	 * covered.
2826 	 */
2827 
2828 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2829 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2830 		extra_chunk = 0;
2831 	else
2832 		extra_chunk = 1;
2833 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2834 
2835 	/*
2836 	 * At least use a 32M window to align with raid1's resync window
2837 	 */
2838 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2839 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2840 
2841 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2842 }
2843 
2844 /*
2845  * perform a "sync" on one "block"
2846  *
2847  * We need to make sure that no normal I/O request - particularly write
2848  * requests - conflict with active sync requests.
2849  *
2850  * This is achieved by tracking pending requests and a 'barrier' concept
2851  * that can be installed to exclude normal IO requests.
2852  *
2853  * Resync and recovery are handled very differently.
2854  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2855  *
2856  * For resync, we iterate over virtual addresses, read all copies,
2857  * and update if there are differences.  If only one copy is live,
2858  * skip it.
2859  * For recovery, we iterate over physical addresses, read a good
2860  * value for each non-in_sync drive, and over-write.
2861  *
2862  * So, for recovery we may have several outstanding complex requests for a
2863  * given address, one for each out-of-sync device.  We model this by allocating
2864  * a number of r10_bio structures, one for each out-of-sync device.
2865  * As we setup these structures, we collect all bio's together into a list
2866  * which we then process collectively to add pages, and then process again
2867  * to pass to submit_bio_noacct.
2868  *
2869  * The r10_bio structures are linked using a borrowed master_bio pointer.
2870  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2871  * has its remaining count decremented to 0, the whole complex operation
2872  * is complete.
2873  *
2874  */
2875 
2876 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2877 			     int *skipped)
2878 {
2879 	struct r10conf *conf = mddev->private;
2880 	struct r10bio *r10_bio;
2881 	struct bio *biolist = NULL, *bio;
2882 	sector_t max_sector, nr_sectors;
2883 	int i;
2884 	int max_sync;
2885 	sector_t sync_blocks;
2886 	sector_t sectors_skipped = 0;
2887 	int chunks_skipped = 0;
2888 	sector_t chunk_mask = conf->geo.chunk_mask;
2889 	int page_idx = 0;
2890 
2891 	if (!mempool_initialized(&conf->r10buf_pool))
2892 		if (init_resync(conf))
2893 			return 0;
2894 
2895 	/*
2896 	 * Allow skipping a full rebuild for incremental assembly
2897 	 * of a clean array, like RAID1 does.
2898 	 */
2899 	if (mddev->bitmap == NULL &&
2900 	    mddev->recovery_cp == MaxSector &&
2901 	    mddev->reshape_position == MaxSector &&
2902 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2903 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2904 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2905 	    conf->fullsync == 0) {
2906 		*skipped = 1;
2907 		return mddev->dev_sectors - sector_nr;
2908 	}
2909 
2910  skipped:
2911 	max_sector = mddev->dev_sectors;
2912 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2913 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2914 		max_sector = mddev->resync_max_sectors;
2915 	if (sector_nr >= max_sector) {
2916 		conf->cluster_sync_low = 0;
2917 		conf->cluster_sync_high = 0;
2918 
2919 		/* If we aborted, we need to abort the
2920 		 * sync on the 'current' bitmap chucks (there can
2921 		 * be several when recovering multiple devices).
2922 		 * as we may have started syncing it but not finished.
2923 		 * We can find the current address in
2924 		 * mddev->curr_resync, but for recovery,
2925 		 * we need to convert that to several
2926 		 * virtual addresses.
2927 		 */
2928 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2929 			end_reshape(conf);
2930 			close_sync(conf);
2931 			return 0;
2932 		}
2933 
2934 		if (mddev->curr_resync < max_sector) { /* aborted */
2935 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2936 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2937 						   &sync_blocks, 1);
2938 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2939 				sector_t sect =
2940 					raid10_find_virt(conf, mddev->curr_resync, i);
2941 				md_bitmap_end_sync(mddev->bitmap, sect,
2942 						   &sync_blocks, 1);
2943 			}
2944 		} else {
2945 			/* completed sync */
2946 			if ((!mddev->bitmap || conf->fullsync)
2947 			    && conf->have_replacement
2948 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2949 				/* Completed a full sync so the replacements
2950 				 * are now fully recovered.
2951 				 */
2952 				rcu_read_lock();
2953 				for (i = 0; i < conf->geo.raid_disks; i++) {
2954 					struct md_rdev *rdev =
2955 						rcu_dereference(conf->mirrors[i].replacement);
2956 					if (rdev)
2957 						rdev->recovery_offset = MaxSector;
2958 				}
2959 				rcu_read_unlock();
2960 			}
2961 			conf->fullsync = 0;
2962 		}
2963 		md_bitmap_close_sync(mddev->bitmap);
2964 		close_sync(conf);
2965 		*skipped = 1;
2966 		return sectors_skipped;
2967 	}
2968 
2969 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2970 		return reshape_request(mddev, sector_nr, skipped);
2971 
2972 	if (chunks_skipped >= conf->geo.raid_disks) {
2973 		/* if there has been nothing to do on any drive,
2974 		 * then there is nothing to do at all..
2975 		 */
2976 		*skipped = 1;
2977 		return (max_sector - sector_nr) + sectors_skipped;
2978 	}
2979 
2980 	if (max_sector > mddev->resync_max)
2981 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2982 
2983 	/* make sure whole request will fit in a chunk - if chunks
2984 	 * are meaningful
2985 	 */
2986 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2987 	    max_sector > (sector_nr | chunk_mask))
2988 		max_sector = (sector_nr | chunk_mask) + 1;
2989 
2990 	/*
2991 	 * If there is non-resync activity waiting for a turn, then let it
2992 	 * though before starting on this new sync request.
2993 	 */
2994 	if (conf->nr_waiting)
2995 		schedule_timeout_uninterruptible(1);
2996 
2997 	/* Again, very different code for resync and recovery.
2998 	 * Both must result in an r10bio with a list of bios that
2999 	 * have bi_end_io, bi_sector, bi_disk set,
3000 	 * and bi_private set to the r10bio.
3001 	 * For recovery, we may actually create several r10bios
3002 	 * with 2 bios in each, that correspond to the bios in the main one.
3003 	 * In this case, the subordinate r10bios link back through a
3004 	 * borrowed master_bio pointer, and the counter in the master
3005 	 * includes a ref from each subordinate.
3006 	 */
3007 	/* First, we decide what to do and set ->bi_end_io
3008 	 * To end_sync_read if we want to read, and
3009 	 * end_sync_write if we will want to write.
3010 	 */
3011 
3012 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3013 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3014 		/* recovery... the complicated one */
3015 		int j;
3016 		r10_bio = NULL;
3017 
3018 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3019 			int still_degraded;
3020 			struct r10bio *rb2;
3021 			sector_t sect;
3022 			int must_sync;
3023 			int any_working;
3024 			int need_recover = 0;
3025 			int need_replace = 0;
3026 			struct raid10_info *mirror = &conf->mirrors[i];
3027 			struct md_rdev *mrdev, *mreplace;
3028 
3029 			rcu_read_lock();
3030 			mrdev = rcu_dereference(mirror->rdev);
3031 			mreplace = rcu_dereference(mirror->replacement);
3032 
3033 			if (mrdev != NULL &&
3034 			    !test_bit(Faulty, &mrdev->flags) &&
3035 			    !test_bit(In_sync, &mrdev->flags))
3036 				need_recover = 1;
3037 			if (mreplace != NULL &&
3038 			    !test_bit(Faulty, &mreplace->flags))
3039 				need_replace = 1;
3040 
3041 			if (!need_recover && !need_replace) {
3042 				rcu_read_unlock();
3043 				continue;
3044 			}
3045 
3046 			still_degraded = 0;
3047 			/* want to reconstruct this device */
3048 			rb2 = r10_bio;
3049 			sect = raid10_find_virt(conf, sector_nr, i);
3050 			if (sect >= mddev->resync_max_sectors) {
3051 				/* last stripe is not complete - don't
3052 				 * try to recover this sector.
3053 				 */
3054 				rcu_read_unlock();
3055 				continue;
3056 			}
3057 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3058 				mreplace = NULL;
3059 			/* Unless we are doing a full sync, or a replacement
3060 			 * we only need to recover the block if it is set in
3061 			 * the bitmap
3062 			 */
3063 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3064 							 &sync_blocks, 1);
3065 			if (sync_blocks < max_sync)
3066 				max_sync = sync_blocks;
3067 			if (!must_sync &&
3068 			    mreplace == NULL &&
3069 			    !conf->fullsync) {
3070 				/* yep, skip the sync_blocks here, but don't assume
3071 				 * that there will never be anything to do here
3072 				 */
3073 				chunks_skipped = -1;
3074 				rcu_read_unlock();
3075 				continue;
3076 			}
3077 			atomic_inc(&mrdev->nr_pending);
3078 			if (mreplace)
3079 				atomic_inc(&mreplace->nr_pending);
3080 			rcu_read_unlock();
3081 
3082 			r10_bio = raid10_alloc_init_r10buf(conf);
3083 			r10_bio->state = 0;
3084 			raise_barrier(conf, rb2 != NULL);
3085 			atomic_set(&r10_bio->remaining, 0);
3086 
3087 			r10_bio->master_bio = (struct bio*)rb2;
3088 			if (rb2)
3089 				atomic_inc(&rb2->remaining);
3090 			r10_bio->mddev = mddev;
3091 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3092 			r10_bio->sector = sect;
3093 
3094 			raid10_find_phys(conf, r10_bio);
3095 
3096 			/* Need to check if the array will still be
3097 			 * degraded
3098 			 */
3099 			rcu_read_lock();
3100 			for (j = 0; j < conf->geo.raid_disks; j++) {
3101 				struct md_rdev *rdev = rcu_dereference(
3102 					conf->mirrors[j].rdev);
3103 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3104 					still_degraded = 1;
3105 					break;
3106 				}
3107 			}
3108 
3109 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3110 							 &sync_blocks, still_degraded);
3111 
3112 			any_working = 0;
3113 			for (j=0; j<conf->copies;j++) {
3114 				int k;
3115 				int d = r10_bio->devs[j].devnum;
3116 				sector_t from_addr, to_addr;
3117 				struct md_rdev *rdev =
3118 					rcu_dereference(conf->mirrors[d].rdev);
3119 				sector_t sector, first_bad;
3120 				int bad_sectors;
3121 				if (!rdev ||
3122 				    !test_bit(In_sync, &rdev->flags))
3123 					continue;
3124 				/* This is where we read from */
3125 				any_working = 1;
3126 				sector = r10_bio->devs[j].addr;
3127 
3128 				if (is_badblock(rdev, sector, max_sync,
3129 						&first_bad, &bad_sectors)) {
3130 					if (first_bad > sector)
3131 						max_sync = first_bad - sector;
3132 					else {
3133 						bad_sectors -= (sector
3134 								- first_bad);
3135 						if (max_sync > bad_sectors)
3136 							max_sync = bad_sectors;
3137 						continue;
3138 					}
3139 				}
3140 				bio = r10_bio->devs[0].bio;
3141 				bio->bi_next = biolist;
3142 				biolist = bio;
3143 				bio->bi_end_io = end_sync_read;
3144 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3145 				if (test_bit(FailFast, &rdev->flags))
3146 					bio->bi_opf |= MD_FAILFAST;
3147 				from_addr = r10_bio->devs[j].addr;
3148 				bio->bi_iter.bi_sector = from_addr +
3149 					rdev->data_offset;
3150 				bio_set_dev(bio, rdev->bdev);
3151 				atomic_inc(&rdev->nr_pending);
3152 				/* and we write to 'i' (if not in_sync) */
3153 
3154 				for (k=0; k<conf->copies; k++)
3155 					if (r10_bio->devs[k].devnum == i)
3156 						break;
3157 				BUG_ON(k == conf->copies);
3158 				to_addr = r10_bio->devs[k].addr;
3159 				r10_bio->devs[0].devnum = d;
3160 				r10_bio->devs[0].addr = from_addr;
3161 				r10_bio->devs[1].devnum = i;
3162 				r10_bio->devs[1].addr = to_addr;
3163 
3164 				if (need_recover) {
3165 					bio = r10_bio->devs[1].bio;
3166 					bio->bi_next = biolist;
3167 					biolist = bio;
3168 					bio->bi_end_io = end_sync_write;
3169 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3170 					bio->bi_iter.bi_sector = to_addr
3171 						+ mrdev->data_offset;
3172 					bio_set_dev(bio, mrdev->bdev);
3173 					atomic_inc(&r10_bio->remaining);
3174 				} else
3175 					r10_bio->devs[1].bio->bi_end_io = NULL;
3176 
3177 				/* and maybe write to replacement */
3178 				bio = r10_bio->devs[1].repl_bio;
3179 				if (bio)
3180 					bio->bi_end_io = NULL;
3181 				/* Note: if need_replace, then bio
3182 				 * cannot be NULL as r10buf_pool_alloc will
3183 				 * have allocated it.
3184 				 */
3185 				if (!need_replace)
3186 					break;
3187 				bio->bi_next = biolist;
3188 				biolist = bio;
3189 				bio->bi_end_io = end_sync_write;
3190 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3191 				bio->bi_iter.bi_sector = to_addr +
3192 					mreplace->data_offset;
3193 				bio_set_dev(bio, mreplace->bdev);
3194 				atomic_inc(&r10_bio->remaining);
3195 				break;
3196 			}
3197 			rcu_read_unlock();
3198 			if (j == conf->copies) {
3199 				/* Cannot recover, so abort the recovery or
3200 				 * record a bad block */
3201 				if (any_working) {
3202 					/* problem is that there are bad blocks
3203 					 * on other device(s)
3204 					 */
3205 					int k;
3206 					for (k = 0; k < conf->copies; k++)
3207 						if (r10_bio->devs[k].devnum == i)
3208 							break;
3209 					if (!test_bit(In_sync,
3210 						      &mrdev->flags)
3211 					    && !rdev_set_badblocks(
3212 						    mrdev,
3213 						    r10_bio->devs[k].addr,
3214 						    max_sync, 0))
3215 						any_working = 0;
3216 					if (mreplace &&
3217 					    !rdev_set_badblocks(
3218 						    mreplace,
3219 						    r10_bio->devs[k].addr,
3220 						    max_sync, 0))
3221 						any_working = 0;
3222 				}
3223 				if (!any_working)  {
3224 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3225 							      &mddev->recovery))
3226 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3227 						       mdname(mddev));
3228 					mirror->recovery_disabled
3229 						= mddev->recovery_disabled;
3230 				}
3231 				put_buf(r10_bio);
3232 				if (rb2)
3233 					atomic_dec(&rb2->remaining);
3234 				r10_bio = rb2;
3235 				rdev_dec_pending(mrdev, mddev);
3236 				if (mreplace)
3237 					rdev_dec_pending(mreplace, mddev);
3238 				break;
3239 			}
3240 			rdev_dec_pending(mrdev, mddev);
3241 			if (mreplace)
3242 				rdev_dec_pending(mreplace, mddev);
3243 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3244 				/* Only want this if there is elsewhere to
3245 				 * read from. 'j' is currently the first
3246 				 * readable copy.
3247 				 */
3248 				int targets = 1;
3249 				for (; j < conf->copies; j++) {
3250 					int d = r10_bio->devs[j].devnum;
3251 					if (conf->mirrors[d].rdev &&
3252 					    test_bit(In_sync,
3253 						      &conf->mirrors[d].rdev->flags))
3254 						targets++;
3255 				}
3256 				if (targets == 1)
3257 					r10_bio->devs[0].bio->bi_opf
3258 						&= ~MD_FAILFAST;
3259 			}
3260 		}
3261 		if (biolist == NULL) {
3262 			while (r10_bio) {
3263 				struct r10bio *rb2 = r10_bio;
3264 				r10_bio = (struct r10bio*) rb2->master_bio;
3265 				rb2->master_bio = NULL;
3266 				put_buf(rb2);
3267 			}
3268 			goto giveup;
3269 		}
3270 	} else {
3271 		/* resync. Schedule a read for every block at this virt offset */
3272 		int count = 0;
3273 
3274 		/*
3275 		 * Since curr_resync_completed could probably not update in
3276 		 * time, and we will set cluster_sync_low based on it.
3277 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3278 		 * safety reason, which ensures curr_resync_completed is
3279 		 * updated in bitmap_cond_end_sync.
3280 		 */
3281 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3282 					mddev_is_clustered(mddev) &&
3283 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3284 
3285 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3286 					  &sync_blocks, mddev->degraded) &&
3287 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3288 						 &mddev->recovery)) {
3289 			/* We can skip this block */
3290 			*skipped = 1;
3291 			return sync_blocks + sectors_skipped;
3292 		}
3293 		if (sync_blocks < max_sync)
3294 			max_sync = sync_blocks;
3295 		r10_bio = raid10_alloc_init_r10buf(conf);
3296 		r10_bio->state = 0;
3297 
3298 		r10_bio->mddev = mddev;
3299 		atomic_set(&r10_bio->remaining, 0);
3300 		raise_barrier(conf, 0);
3301 		conf->next_resync = sector_nr;
3302 
3303 		r10_bio->master_bio = NULL;
3304 		r10_bio->sector = sector_nr;
3305 		set_bit(R10BIO_IsSync, &r10_bio->state);
3306 		raid10_find_phys(conf, r10_bio);
3307 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3308 
3309 		for (i = 0; i < conf->copies; i++) {
3310 			int d = r10_bio->devs[i].devnum;
3311 			sector_t first_bad, sector;
3312 			int bad_sectors;
3313 			struct md_rdev *rdev;
3314 
3315 			if (r10_bio->devs[i].repl_bio)
3316 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3317 
3318 			bio = r10_bio->devs[i].bio;
3319 			bio->bi_status = BLK_STS_IOERR;
3320 			rcu_read_lock();
3321 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3322 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3323 				rcu_read_unlock();
3324 				continue;
3325 			}
3326 			sector = r10_bio->devs[i].addr;
3327 			if (is_badblock(rdev, sector, max_sync,
3328 					&first_bad, &bad_sectors)) {
3329 				if (first_bad > sector)
3330 					max_sync = first_bad - sector;
3331 				else {
3332 					bad_sectors -= (sector - first_bad);
3333 					if (max_sync > bad_sectors)
3334 						max_sync = bad_sectors;
3335 					rcu_read_unlock();
3336 					continue;
3337 				}
3338 			}
3339 			atomic_inc(&rdev->nr_pending);
3340 			atomic_inc(&r10_bio->remaining);
3341 			bio->bi_next = biolist;
3342 			biolist = bio;
3343 			bio->bi_end_io = end_sync_read;
3344 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3345 			if (test_bit(FailFast, &rdev->flags))
3346 				bio->bi_opf |= MD_FAILFAST;
3347 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3348 			bio_set_dev(bio, rdev->bdev);
3349 			count++;
3350 
3351 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3352 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3353 				rcu_read_unlock();
3354 				continue;
3355 			}
3356 			atomic_inc(&rdev->nr_pending);
3357 
3358 			/* Need to set up for writing to the replacement */
3359 			bio = r10_bio->devs[i].repl_bio;
3360 			bio->bi_status = BLK_STS_IOERR;
3361 
3362 			sector = r10_bio->devs[i].addr;
3363 			bio->bi_next = biolist;
3364 			biolist = bio;
3365 			bio->bi_end_io = end_sync_write;
3366 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3367 			if (test_bit(FailFast, &rdev->flags))
3368 				bio->bi_opf |= MD_FAILFAST;
3369 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3370 			bio_set_dev(bio, rdev->bdev);
3371 			count++;
3372 			rcu_read_unlock();
3373 		}
3374 
3375 		if (count < 2) {
3376 			for (i=0; i<conf->copies; i++) {
3377 				int d = r10_bio->devs[i].devnum;
3378 				if (r10_bio->devs[i].bio->bi_end_io)
3379 					rdev_dec_pending(conf->mirrors[d].rdev,
3380 							 mddev);
3381 				if (r10_bio->devs[i].repl_bio &&
3382 				    r10_bio->devs[i].repl_bio->bi_end_io)
3383 					rdev_dec_pending(
3384 						conf->mirrors[d].replacement,
3385 						mddev);
3386 			}
3387 			put_buf(r10_bio);
3388 			biolist = NULL;
3389 			goto giveup;
3390 		}
3391 	}
3392 
3393 	nr_sectors = 0;
3394 	if (sector_nr + max_sync < max_sector)
3395 		max_sector = sector_nr + max_sync;
3396 	do {
3397 		struct page *page;
3398 		int len = PAGE_SIZE;
3399 		if (sector_nr + (len>>9) > max_sector)
3400 			len = (max_sector - sector_nr) << 9;
3401 		if (len == 0)
3402 			break;
3403 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3404 			struct resync_pages *rp = get_resync_pages(bio);
3405 			page = resync_fetch_page(rp, page_idx);
3406 			/*
3407 			 * won't fail because the vec table is big enough
3408 			 * to hold all these pages
3409 			 */
3410 			bio_add_page(bio, page, len, 0);
3411 		}
3412 		nr_sectors += len>>9;
3413 		sector_nr += len>>9;
3414 	} while (++page_idx < RESYNC_PAGES);
3415 	r10_bio->sectors = nr_sectors;
3416 
3417 	if (mddev_is_clustered(mddev) &&
3418 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3419 		/* It is resync not recovery */
3420 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3421 			conf->cluster_sync_low = mddev->curr_resync_completed;
3422 			raid10_set_cluster_sync_high(conf);
3423 			/* Send resync message */
3424 			md_cluster_ops->resync_info_update(mddev,
3425 						conf->cluster_sync_low,
3426 						conf->cluster_sync_high);
3427 		}
3428 	} else if (mddev_is_clustered(mddev)) {
3429 		/* This is recovery not resync */
3430 		sector_t sect_va1, sect_va2;
3431 		bool broadcast_msg = false;
3432 
3433 		for (i = 0; i < conf->geo.raid_disks; i++) {
3434 			/*
3435 			 * sector_nr is a device address for recovery, so we
3436 			 * need translate it to array address before compare
3437 			 * with cluster_sync_high.
3438 			 */
3439 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3440 
3441 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3442 				broadcast_msg = true;
3443 				/*
3444 				 * curr_resync_completed is similar as
3445 				 * sector_nr, so make the translation too.
3446 				 */
3447 				sect_va2 = raid10_find_virt(conf,
3448 					mddev->curr_resync_completed, i);
3449 
3450 				if (conf->cluster_sync_low == 0 ||
3451 				    conf->cluster_sync_low > sect_va2)
3452 					conf->cluster_sync_low = sect_va2;
3453 			}
3454 		}
3455 		if (broadcast_msg) {
3456 			raid10_set_cluster_sync_high(conf);
3457 			md_cluster_ops->resync_info_update(mddev,
3458 						conf->cluster_sync_low,
3459 						conf->cluster_sync_high);
3460 		}
3461 	}
3462 
3463 	while (biolist) {
3464 		bio = biolist;
3465 		biolist = biolist->bi_next;
3466 
3467 		bio->bi_next = NULL;
3468 		r10_bio = get_resync_r10bio(bio);
3469 		r10_bio->sectors = nr_sectors;
3470 
3471 		if (bio->bi_end_io == end_sync_read) {
3472 			md_sync_acct_bio(bio, nr_sectors);
3473 			bio->bi_status = 0;
3474 			submit_bio_noacct(bio);
3475 		}
3476 	}
3477 
3478 	if (sectors_skipped)
3479 		/* pretend they weren't skipped, it makes
3480 		 * no important difference in this case
3481 		 */
3482 		md_done_sync(mddev, sectors_skipped, 1);
3483 
3484 	return sectors_skipped + nr_sectors;
3485  giveup:
3486 	/* There is nowhere to write, so all non-sync
3487 	 * drives must be failed or in resync, all drives
3488 	 * have a bad block, so try the next chunk...
3489 	 */
3490 	if (sector_nr + max_sync < max_sector)
3491 		max_sector = sector_nr + max_sync;
3492 
3493 	sectors_skipped += (max_sector - sector_nr);
3494 	chunks_skipped ++;
3495 	sector_nr = max_sector;
3496 	goto skipped;
3497 }
3498 
3499 static sector_t
3500 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3501 {
3502 	sector_t size;
3503 	struct r10conf *conf = mddev->private;
3504 
3505 	if (!raid_disks)
3506 		raid_disks = min(conf->geo.raid_disks,
3507 				 conf->prev.raid_disks);
3508 	if (!sectors)
3509 		sectors = conf->dev_sectors;
3510 
3511 	size = sectors >> conf->geo.chunk_shift;
3512 	sector_div(size, conf->geo.far_copies);
3513 	size = size * raid_disks;
3514 	sector_div(size, conf->geo.near_copies);
3515 
3516 	return size << conf->geo.chunk_shift;
3517 }
3518 
3519 static void calc_sectors(struct r10conf *conf, sector_t size)
3520 {
3521 	/* Calculate the number of sectors-per-device that will
3522 	 * actually be used, and set conf->dev_sectors and
3523 	 * conf->stride
3524 	 */
3525 
3526 	size = size >> conf->geo.chunk_shift;
3527 	sector_div(size, conf->geo.far_copies);
3528 	size = size * conf->geo.raid_disks;
3529 	sector_div(size, conf->geo.near_copies);
3530 	/* 'size' is now the number of chunks in the array */
3531 	/* calculate "used chunks per device" */
3532 	size = size * conf->copies;
3533 
3534 	/* We need to round up when dividing by raid_disks to
3535 	 * get the stride size.
3536 	 */
3537 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3538 
3539 	conf->dev_sectors = size << conf->geo.chunk_shift;
3540 
3541 	if (conf->geo.far_offset)
3542 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3543 	else {
3544 		sector_div(size, conf->geo.far_copies);
3545 		conf->geo.stride = size << conf->geo.chunk_shift;
3546 	}
3547 }
3548 
3549 enum geo_type {geo_new, geo_old, geo_start};
3550 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3551 {
3552 	int nc, fc, fo;
3553 	int layout, chunk, disks;
3554 	switch (new) {
3555 	case geo_old:
3556 		layout = mddev->layout;
3557 		chunk = mddev->chunk_sectors;
3558 		disks = mddev->raid_disks - mddev->delta_disks;
3559 		break;
3560 	case geo_new:
3561 		layout = mddev->new_layout;
3562 		chunk = mddev->new_chunk_sectors;
3563 		disks = mddev->raid_disks;
3564 		break;
3565 	default: /* avoid 'may be unused' warnings */
3566 	case geo_start: /* new when starting reshape - raid_disks not
3567 			 * updated yet. */
3568 		layout = mddev->new_layout;
3569 		chunk = mddev->new_chunk_sectors;
3570 		disks = mddev->raid_disks + mddev->delta_disks;
3571 		break;
3572 	}
3573 	if (layout >> 19)
3574 		return -1;
3575 	if (chunk < (PAGE_SIZE >> 9) ||
3576 	    !is_power_of_2(chunk))
3577 		return -2;
3578 	nc = layout & 255;
3579 	fc = (layout >> 8) & 255;
3580 	fo = layout & (1<<16);
3581 	geo->raid_disks = disks;
3582 	geo->near_copies = nc;
3583 	geo->far_copies = fc;
3584 	geo->far_offset = fo;
3585 	switch (layout >> 17) {
3586 	case 0:	/* original layout.  simple but not always optimal */
3587 		geo->far_set_size = disks;
3588 		break;
3589 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3590 		 * actually using this, but leave code here just in case.*/
3591 		geo->far_set_size = disks/fc;
3592 		WARN(geo->far_set_size < fc,
3593 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3594 		break;
3595 	case 2: /* "improved" layout fixed to match documentation */
3596 		geo->far_set_size = fc * nc;
3597 		break;
3598 	default: /* Not a valid layout */
3599 		return -1;
3600 	}
3601 	geo->chunk_mask = chunk - 1;
3602 	geo->chunk_shift = ffz(~chunk);
3603 	return nc*fc;
3604 }
3605 
3606 static struct r10conf *setup_conf(struct mddev *mddev)
3607 {
3608 	struct r10conf *conf = NULL;
3609 	int err = -EINVAL;
3610 	struct geom geo;
3611 	int copies;
3612 
3613 	copies = setup_geo(&geo, mddev, geo_new);
3614 
3615 	if (copies == -2) {
3616 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3617 			mdname(mddev), PAGE_SIZE);
3618 		goto out;
3619 	}
3620 
3621 	if (copies < 2 || copies > mddev->raid_disks) {
3622 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3623 			mdname(mddev), mddev->new_layout);
3624 		goto out;
3625 	}
3626 
3627 	err = -ENOMEM;
3628 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3629 	if (!conf)
3630 		goto out;
3631 
3632 	/* FIXME calc properly */
3633 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3634 				sizeof(struct raid10_info),
3635 				GFP_KERNEL);
3636 	if (!conf->mirrors)
3637 		goto out;
3638 
3639 	conf->tmppage = alloc_page(GFP_KERNEL);
3640 	if (!conf->tmppage)
3641 		goto out;
3642 
3643 	conf->geo = geo;
3644 	conf->copies = copies;
3645 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3646 			   rbio_pool_free, conf);
3647 	if (err)
3648 		goto out;
3649 
3650 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3651 	if (err)
3652 		goto out;
3653 
3654 	calc_sectors(conf, mddev->dev_sectors);
3655 	if (mddev->reshape_position == MaxSector) {
3656 		conf->prev = conf->geo;
3657 		conf->reshape_progress = MaxSector;
3658 	} else {
3659 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3660 			err = -EINVAL;
3661 			goto out;
3662 		}
3663 		conf->reshape_progress = mddev->reshape_position;
3664 		if (conf->prev.far_offset)
3665 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3666 		else
3667 			/* far_copies must be 1 */
3668 			conf->prev.stride = conf->dev_sectors;
3669 	}
3670 	conf->reshape_safe = conf->reshape_progress;
3671 	spin_lock_init(&conf->device_lock);
3672 	INIT_LIST_HEAD(&conf->retry_list);
3673 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3674 
3675 	spin_lock_init(&conf->resync_lock);
3676 	init_waitqueue_head(&conf->wait_barrier);
3677 	atomic_set(&conf->nr_pending, 0);
3678 
3679 	err = -ENOMEM;
3680 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3681 	if (!conf->thread)
3682 		goto out;
3683 
3684 	conf->mddev = mddev;
3685 	return conf;
3686 
3687  out:
3688 	if (conf) {
3689 		mempool_exit(&conf->r10bio_pool);
3690 		kfree(conf->mirrors);
3691 		safe_put_page(conf->tmppage);
3692 		bioset_exit(&conf->bio_split);
3693 		kfree(conf);
3694 	}
3695 	return ERR_PTR(err);
3696 }
3697 
3698 static int raid10_run(struct mddev *mddev)
3699 {
3700 	struct r10conf *conf;
3701 	int i, disk_idx, chunk_size;
3702 	struct raid10_info *disk;
3703 	struct md_rdev *rdev;
3704 	sector_t size;
3705 	sector_t min_offset_diff = 0;
3706 	int first = 1;
3707 	bool discard_supported = false;
3708 
3709 	if (mddev_init_writes_pending(mddev) < 0)
3710 		return -ENOMEM;
3711 
3712 	if (mddev->private == NULL) {
3713 		conf = setup_conf(mddev);
3714 		if (IS_ERR(conf))
3715 			return PTR_ERR(conf);
3716 		mddev->private = conf;
3717 	}
3718 	conf = mddev->private;
3719 	if (!conf)
3720 		goto out;
3721 
3722 	if (mddev_is_clustered(conf->mddev)) {
3723 		int fc, fo;
3724 
3725 		fc = (mddev->layout >> 8) & 255;
3726 		fo = mddev->layout & (1<<16);
3727 		if (fc > 1 || fo > 0) {
3728 			pr_err("only near layout is supported by clustered"
3729 				" raid10\n");
3730 			goto out_free_conf;
3731 		}
3732 	}
3733 
3734 	mddev->thread = conf->thread;
3735 	conf->thread = NULL;
3736 
3737 	chunk_size = mddev->chunk_sectors << 9;
3738 	if (mddev->queue) {
3739 		blk_queue_max_discard_sectors(mddev->queue,
3740 					      mddev->chunk_sectors);
3741 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3742 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3743 		blk_queue_io_min(mddev->queue, chunk_size);
3744 		if (conf->geo.raid_disks % conf->geo.near_copies)
3745 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3746 		else
3747 			blk_queue_io_opt(mddev->queue, chunk_size *
3748 					 (conf->geo.raid_disks / conf->geo.near_copies));
3749 	}
3750 
3751 	rdev_for_each(rdev, mddev) {
3752 		long long diff;
3753 
3754 		disk_idx = rdev->raid_disk;
3755 		if (disk_idx < 0)
3756 			continue;
3757 		if (disk_idx >= conf->geo.raid_disks &&
3758 		    disk_idx >= conf->prev.raid_disks)
3759 			continue;
3760 		disk = conf->mirrors + disk_idx;
3761 
3762 		if (test_bit(Replacement, &rdev->flags)) {
3763 			if (disk->replacement)
3764 				goto out_free_conf;
3765 			disk->replacement = rdev;
3766 		} else {
3767 			if (disk->rdev)
3768 				goto out_free_conf;
3769 			disk->rdev = rdev;
3770 		}
3771 		diff = (rdev->new_data_offset - rdev->data_offset);
3772 		if (!mddev->reshape_backwards)
3773 			diff = -diff;
3774 		if (diff < 0)
3775 			diff = 0;
3776 		if (first || diff < min_offset_diff)
3777 			min_offset_diff = diff;
3778 
3779 		if (mddev->gendisk)
3780 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3781 					  rdev->data_offset << 9);
3782 
3783 		disk->head_position = 0;
3784 
3785 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3786 			discard_supported = true;
3787 		first = 0;
3788 	}
3789 
3790 	if (mddev->queue) {
3791 		if (discard_supported)
3792 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3793 						mddev->queue);
3794 		else
3795 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3796 						  mddev->queue);
3797 	}
3798 	/* need to check that every block has at least one working mirror */
3799 	if (!enough(conf, -1)) {
3800 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3801 		       mdname(mddev));
3802 		goto out_free_conf;
3803 	}
3804 
3805 	if (conf->reshape_progress != MaxSector) {
3806 		/* must ensure that shape change is supported */
3807 		if (conf->geo.far_copies != 1 &&
3808 		    conf->geo.far_offset == 0)
3809 			goto out_free_conf;
3810 		if (conf->prev.far_copies != 1 &&
3811 		    conf->prev.far_offset == 0)
3812 			goto out_free_conf;
3813 	}
3814 
3815 	mddev->degraded = 0;
3816 	for (i = 0;
3817 	     i < conf->geo.raid_disks
3818 		     || i < conf->prev.raid_disks;
3819 	     i++) {
3820 
3821 		disk = conf->mirrors + i;
3822 
3823 		if (!disk->rdev && disk->replacement) {
3824 			/* The replacement is all we have - use it */
3825 			disk->rdev = disk->replacement;
3826 			disk->replacement = NULL;
3827 			clear_bit(Replacement, &disk->rdev->flags);
3828 		}
3829 
3830 		if (!disk->rdev ||
3831 		    !test_bit(In_sync, &disk->rdev->flags)) {
3832 			disk->head_position = 0;
3833 			mddev->degraded++;
3834 			if (disk->rdev &&
3835 			    disk->rdev->saved_raid_disk < 0)
3836 				conf->fullsync = 1;
3837 		}
3838 
3839 		if (disk->replacement &&
3840 		    !test_bit(In_sync, &disk->replacement->flags) &&
3841 		    disk->replacement->saved_raid_disk < 0) {
3842 			conf->fullsync = 1;
3843 		}
3844 
3845 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3846 	}
3847 
3848 	if (mddev->recovery_cp != MaxSector)
3849 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3850 			  mdname(mddev));
3851 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3852 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3853 		conf->geo.raid_disks);
3854 	/*
3855 	 * Ok, everything is just fine now
3856 	 */
3857 	mddev->dev_sectors = conf->dev_sectors;
3858 	size = raid10_size(mddev, 0, 0);
3859 	md_set_array_sectors(mddev, size);
3860 	mddev->resync_max_sectors = size;
3861 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3862 
3863 	if (mddev->queue) {
3864 		int stripe = conf->geo.raid_disks *
3865 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3866 
3867 		/* Calculate max read-ahead size.
3868 		 * We need to readahead at least twice a whole stripe....
3869 		 * maybe...
3870 		 */
3871 		stripe /= conf->geo.near_copies;
3872 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3873 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3874 	}
3875 
3876 	if (md_integrity_register(mddev))
3877 		goto out_free_conf;
3878 
3879 	if (conf->reshape_progress != MaxSector) {
3880 		unsigned long before_length, after_length;
3881 
3882 		before_length = ((1 << conf->prev.chunk_shift) *
3883 				 conf->prev.far_copies);
3884 		after_length = ((1 << conf->geo.chunk_shift) *
3885 				conf->geo.far_copies);
3886 
3887 		if (max(before_length, after_length) > min_offset_diff) {
3888 			/* This cannot work */
3889 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3890 			goto out_free_conf;
3891 		}
3892 		conf->offset_diff = min_offset_diff;
3893 
3894 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3895 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3896 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3897 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3898 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3899 							"reshape");
3900 		if (!mddev->sync_thread)
3901 			goto out_free_conf;
3902 	}
3903 
3904 	return 0;
3905 
3906 out_free_conf:
3907 	md_unregister_thread(&mddev->thread);
3908 	mempool_exit(&conf->r10bio_pool);
3909 	safe_put_page(conf->tmppage);
3910 	kfree(conf->mirrors);
3911 	kfree(conf);
3912 	mddev->private = NULL;
3913 out:
3914 	return -EIO;
3915 }
3916 
3917 static void raid10_free(struct mddev *mddev, void *priv)
3918 {
3919 	struct r10conf *conf = priv;
3920 
3921 	mempool_exit(&conf->r10bio_pool);
3922 	safe_put_page(conf->tmppage);
3923 	kfree(conf->mirrors);
3924 	kfree(conf->mirrors_old);
3925 	kfree(conf->mirrors_new);
3926 	bioset_exit(&conf->bio_split);
3927 	kfree(conf);
3928 }
3929 
3930 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3931 {
3932 	struct r10conf *conf = mddev->private;
3933 
3934 	if (quiesce)
3935 		raise_barrier(conf, 0);
3936 	else
3937 		lower_barrier(conf);
3938 }
3939 
3940 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3941 {
3942 	/* Resize of 'far' arrays is not supported.
3943 	 * For 'near' and 'offset' arrays we can set the
3944 	 * number of sectors used to be an appropriate multiple
3945 	 * of the chunk size.
3946 	 * For 'offset', this is far_copies*chunksize.
3947 	 * For 'near' the multiplier is the LCM of
3948 	 * near_copies and raid_disks.
3949 	 * So if far_copies > 1 && !far_offset, fail.
3950 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3951 	 * multiply by chunk_size.  Then round to this number.
3952 	 * This is mostly done by raid10_size()
3953 	 */
3954 	struct r10conf *conf = mddev->private;
3955 	sector_t oldsize, size;
3956 
3957 	if (mddev->reshape_position != MaxSector)
3958 		return -EBUSY;
3959 
3960 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3961 		return -EINVAL;
3962 
3963 	oldsize = raid10_size(mddev, 0, 0);
3964 	size = raid10_size(mddev, sectors, 0);
3965 	if (mddev->external_size &&
3966 	    mddev->array_sectors > size)
3967 		return -EINVAL;
3968 	if (mddev->bitmap) {
3969 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3970 		if (ret)
3971 			return ret;
3972 	}
3973 	md_set_array_sectors(mddev, size);
3974 	if (sectors > mddev->dev_sectors &&
3975 	    mddev->recovery_cp > oldsize) {
3976 		mddev->recovery_cp = oldsize;
3977 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3978 	}
3979 	calc_sectors(conf, sectors);
3980 	mddev->dev_sectors = conf->dev_sectors;
3981 	mddev->resync_max_sectors = size;
3982 	return 0;
3983 }
3984 
3985 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3986 {
3987 	struct md_rdev *rdev;
3988 	struct r10conf *conf;
3989 
3990 	if (mddev->degraded > 0) {
3991 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3992 			mdname(mddev));
3993 		return ERR_PTR(-EINVAL);
3994 	}
3995 	sector_div(size, devs);
3996 
3997 	/* Set new parameters */
3998 	mddev->new_level = 10;
3999 	/* new layout: far_copies = 1, near_copies = 2 */
4000 	mddev->new_layout = (1<<8) + 2;
4001 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4002 	mddev->delta_disks = mddev->raid_disks;
4003 	mddev->raid_disks *= 2;
4004 	/* make sure it will be not marked as dirty */
4005 	mddev->recovery_cp = MaxSector;
4006 	mddev->dev_sectors = size;
4007 
4008 	conf = setup_conf(mddev);
4009 	if (!IS_ERR(conf)) {
4010 		rdev_for_each(rdev, mddev)
4011 			if (rdev->raid_disk >= 0) {
4012 				rdev->new_raid_disk = rdev->raid_disk * 2;
4013 				rdev->sectors = size;
4014 			}
4015 		conf->barrier = 1;
4016 	}
4017 
4018 	return conf;
4019 }
4020 
4021 static void *raid10_takeover(struct mddev *mddev)
4022 {
4023 	struct r0conf *raid0_conf;
4024 
4025 	/* raid10 can take over:
4026 	 *  raid0 - providing it has only two drives
4027 	 */
4028 	if (mddev->level == 0) {
4029 		/* for raid0 takeover only one zone is supported */
4030 		raid0_conf = mddev->private;
4031 		if (raid0_conf->nr_strip_zones > 1) {
4032 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4033 				mdname(mddev));
4034 			return ERR_PTR(-EINVAL);
4035 		}
4036 		return raid10_takeover_raid0(mddev,
4037 			raid0_conf->strip_zone->zone_end,
4038 			raid0_conf->strip_zone->nb_dev);
4039 	}
4040 	return ERR_PTR(-EINVAL);
4041 }
4042 
4043 static int raid10_check_reshape(struct mddev *mddev)
4044 {
4045 	/* Called when there is a request to change
4046 	 * - layout (to ->new_layout)
4047 	 * - chunk size (to ->new_chunk_sectors)
4048 	 * - raid_disks (by delta_disks)
4049 	 * or when trying to restart a reshape that was ongoing.
4050 	 *
4051 	 * We need to validate the request and possibly allocate
4052 	 * space if that might be an issue later.
4053 	 *
4054 	 * Currently we reject any reshape of a 'far' mode array,
4055 	 * allow chunk size to change if new is generally acceptable,
4056 	 * allow raid_disks to increase, and allow
4057 	 * a switch between 'near' mode and 'offset' mode.
4058 	 */
4059 	struct r10conf *conf = mddev->private;
4060 	struct geom geo;
4061 
4062 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4063 		return -EINVAL;
4064 
4065 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4066 		/* mustn't change number of copies */
4067 		return -EINVAL;
4068 	if (geo.far_copies > 1 && !geo.far_offset)
4069 		/* Cannot switch to 'far' mode */
4070 		return -EINVAL;
4071 
4072 	if (mddev->array_sectors & geo.chunk_mask)
4073 			/* not factor of array size */
4074 			return -EINVAL;
4075 
4076 	if (!enough(conf, -1))
4077 		return -EINVAL;
4078 
4079 	kfree(conf->mirrors_new);
4080 	conf->mirrors_new = NULL;
4081 	if (mddev->delta_disks > 0) {
4082 		/* allocate new 'mirrors' list */
4083 		conf->mirrors_new =
4084 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4085 				sizeof(struct raid10_info),
4086 				GFP_KERNEL);
4087 		if (!conf->mirrors_new)
4088 			return -ENOMEM;
4089 	}
4090 	return 0;
4091 }
4092 
4093 /*
4094  * Need to check if array has failed when deciding whether to:
4095  *  - start an array
4096  *  - remove non-faulty devices
4097  *  - add a spare
4098  *  - allow a reshape
4099  * This determination is simple when no reshape is happening.
4100  * However if there is a reshape, we need to carefully check
4101  * both the before and after sections.
4102  * This is because some failed devices may only affect one
4103  * of the two sections, and some non-in_sync devices may
4104  * be insync in the section most affected by failed devices.
4105  */
4106 static int calc_degraded(struct r10conf *conf)
4107 {
4108 	int degraded, degraded2;
4109 	int i;
4110 
4111 	rcu_read_lock();
4112 	degraded = 0;
4113 	/* 'prev' section first */
4114 	for (i = 0; i < conf->prev.raid_disks; i++) {
4115 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4116 		if (!rdev || test_bit(Faulty, &rdev->flags))
4117 			degraded++;
4118 		else if (!test_bit(In_sync, &rdev->flags))
4119 			/* When we can reduce the number of devices in
4120 			 * an array, this might not contribute to
4121 			 * 'degraded'.  It does now.
4122 			 */
4123 			degraded++;
4124 	}
4125 	rcu_read_unlock();
4126 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4127 		return degraded;
4128 	rcu_read_lock();
4129 	degraded2 = 0;
4130 	for (i = 0; i < conf->geo.raid_disks; i++) {
4131 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4132 		if (!rdev || test_bit(Faulty, &rdev->flags))
4133 			degraded2++;
4134 		else if (!test_bit(In_sync, &rdev->flags)) {
4135 			/* If reshape is increasing the number of devices,
4136 			 * this section has already been recovered, so
4137 			 * it doesn't contribute to degraded.
4138 			 * else it does.
4139 			 */
4140 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4141 				degraded2++;
4142 		}
4143 	}
4144 	rcu_read_unlock();
4145 	if (degraded2 > degraded)
4146 		return degraded2;
4147 	return degraded;
4148 }
4149 
4150 static int raid10_start_reshape(struct mddev *mddev)
4151 {
4152 	/* A 'reshape' has been requested. This commits
4153 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4154 	 * This also checks if there are enough spares and adds them
4155 	 * to the array.
4156 	 * We currently require enough spares to make the final
4157 	 * array non-degraded.  We also require that the difference
4158 	 * between old and new data_offset - on each device - is
4159 	 * enough that we never risk over-writing.
4160 	 */
4161 
4162 	unsigned long before_length, after_length;
4163 	sector_t min_offset_diff = 0;
4164 	int first = 1;
4165 	struct geom new;
4166 	struct r10conf *conf = mddev->private;
4167 	struct md_rdev *rdev;
4168 	int spares = 0;
4169 	int ret;
4170 
4171 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4172 		return -EBUSY;
4173 
4174 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4175 		return -EINVAL;
4176 
4177 	before_length = ((1 << conf->prev.chunk_shift) *
4178 			 conf->prev.far_copies);
4179 	after_length = ((1 << conf->geo.chunk_shift) *
4180 			conf->geo.far_copies);
4181 
4182 	rdev_for_each(rdev, mddev) {
4183 		if (!test_bit(In_sync, &rdev->flags)
4184 		    && !test_bit(Faulty, &rdev->flags))
4185 			spares++;
4186 		if (rdev->raid_disk >= 0) {
4187 			long long diff = (rdev->new_data_offset
4188 					  - rdev->data_offset);
4189 			if (!mddev->reshape_backwards)
4190 				diff = -diff;
4191 			if (diff < 0)
4192 				diff = 0;
4193 			if (first || diff < min_offset_diff)
4194 				min_offset_diff = diff;
4195 			first = 0;
4196 		}
4197 	}
4198 
4199 	if (max(before_length, after_length) > min_offset_diff)
4200 		return -EINVAL;
4201 
4202 	if (spares < mddev->delta_disks)
4203 		return -EINVAL;
4204 
4205 	conf->offset_diff = min_offset_diff;
4206 	spin_lock_irq(&conf->device_lock);
4207 	if (conf->mirrors_new) {
4208 		memcpy(conf->mirrors_new, conf->mirrors,
4209 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4210 		smp_mb();
4211 		kfree(conf->mirrors_old);
4212 		conf->mirrors_old = conf->mirrors;
4213 		conf->mirrors = conf->mirrors_new;
4214 		conf->mirrors_new = NULL;
4215 	}
4216 	setup_geo(&conf->geo, mddev, geo_start);
4217 	smp_mb();
4218 	if (mddev->reshape_backwards) {
4219 		sector_t size = raid10_size(mddev, 0, 0);
4220 		if (size < mddev->array_sectors) {
4221 			spin_unlock_irq(&conf->device_lock);
4222 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4223 				mdname(mddev));
4224 			return -EINVAL;
4225 		}
4226 		mddev->resync_max_sectors = size;
4227 		conf->reshape_progress = size;
4228 	} else
4229 		conf->reshape_progress = 0;
4230 	conf->reshape_safe = conf->reshape_progress;
4231 	spin_unlock_irq(&conf->device_lock);
4232 
4233 	if (mddev->delta_disks && mddev->bitmap) {
4234 		struct mdp_superblock_1 *sb = NULL;
4235 		sector_t oldsize, newsize;
4236 
4237 		oldsize = raid10_size(mddev, 0, 0);
4238 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4239 
4240 		if (!mddev_is_clustered(mddev)) {
4241 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4242 			if (ret)
4243 				goto abort;
4244 			else
4245 				goto out;
4246 		}
4247 
4248 		rdev_for_each(rdev, mddev) {
4249 			if (rdev->raid_disk > -1 &&
4250 			    !test_bit(Faulty, &rdev->flags))
4251 				sb = page_address(rdev->sb_page);
4252 		}
4253 
4254 		/*
4255 		 * some node is already performing reshape, and no need to
4256 		 * call md_bitmap_resize again since it should be called when
4257 		 * receiving BITMAP_RESIZE msg
4258 		 */
4259 		if ((sb && (le32_to_cpu(sb->feature_map) &
4260 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4261 			goto out;
4262 
4263 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4264 		if (ret)
4265 			goto abort;
4266 
4267 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4268 		if (ret) {
4269 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4270 			goto abort;
4271 		}
4272 	}
4273 out:
4274 	if (mddev->delta_disks > 0) {
4275 		rdev_for_each(rdev, mddev)
4276 			if (rdev->raid_disk < 0 &&
4277 			    !test_bit(Faulty, &rdev->flags)) {
4278 				if (raid10_add_disk(mddev, rdev) == 0) {
4279 					if (rdev->raid_disk >=
4280 					    conf->prev.raid_disks)
4281 						set_bit(In_sync, &rdev->flags);
4282 					else
4283 						rdev->recovery_offset = 0;
4284 
4285 					if (sysfs_link_rdev(mddev, rdev))
4286 						/* Failure here  is OK */;
4287 				}
4288 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4289 				   && !test_bit(Faulty, &rdev->flags)) {
4290 				/* This is a spare that was manually added */
4291 				set_bit(In_sync, &rdev->flags);
4292 			}
4293 	}
4294 	/* When a reshape changes the number of devices,
4295 	 * ->degraded is measured against the larger of the
4296 	 * pre and  post numbers.
4297 	 */
4298 	spin_lock_irq(&conf->device_lock);
4299 	mddev->degraded = calc_degraded(conf);
4300 	spin_unlock_irq(&conf->device_lock);
4301 	mddev->raid_disks = conf->geo.raid_disks;
4302 	mddev->reshape_position = conf->reshape_progress;
4303 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4304 
4305 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4306 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4307 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4308 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4309 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4310 
4311 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4312 						"reshape");
4313 	if (!mddev->sync_thread) {
4314 		ret = -EAGAIN;
4315 		goto abort;
4316 	}
4317 	conf->reshape_checkpoint = jiffies;
4318 	md_wakeup_thread(mddev->sync_thread);
4319 	md_new_event(mddev);
4320 	return 0;
4321 
4322 abort:
4323 	mddev->recovery = 0;
4324 	spin_lock_irq(&conf->device_lock);
4325 	conf->geo = conf->prev;
4326 	mddev->raid_disks = conf->geo.raid_disks;
4327 	rdev_for_each(rdev, mddev)
4328 		rdev->new_data_offset = rdev->data_offset;
4329 	smp_wmb();
4330 	conf->reshape_progress = MaxSector;
4331 	conf->reshape_safe = MaxSector;
4332 	mddev->reshape_position = MaxSector;
4333 	spin_unlock_irq(&conf->device_lock);
4334 	return ret;
4335 }
4336 
4337 /* Calculate the last device-address that could contain
4338  * any block from the chunk that includes the array-address 's'
4339  * and report the next address.
4340  * i.e. the address returned will be chunk-aligned and after
4341  * any data that is in the chunk containing 's'.
4342  */
4343 static sector_t last_dev_address(sector_t s, struct geom *geo)
4344 {
4345 	s = (s | geo->chunk_mask) + 1;
4346 	s >>= geo->chunk_shift;
4347 	s *= geo->near_copies;
4348 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4349 	s *= geo->far_copies;
4350 	s <<= geo->chunk_shift;
4351 	return s;
4352 }
4353 
4354 /* Calculate the first device-address that could contain
4355  * any block from the chunk that includes the array-address 's'.
4356  * This too will be the start of a chunk
4357  */
4358 static sector_t first_dev_address(sector_t s, struct geom *geo)
4359 {
4360 	s >>= geo->chunk_shift;
4361 	s *= geo->near_copies;
4362 	sector_div(s, geo->raid_disks);
4363 	s *= geo->far_copies;
4364 	s <<= geo->chunk_shift;
4365 	return s;
4366 }
4367 
4368 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4369 				int *skipped)
4370 {
4371 	/* We simply copy at most one chunk (smallest of old and new)
4372 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4373 	 * or we hit a bad block or something.
4374 	 * This might mean we pause for normal IO in the middle of
4375 	 * a chunk, but that is not a problem as mddev->reshape_position
4376 	 * can record any location.
4377 	 *
4378 	 * If we will want to write to a location that isn't
4379 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4380 	 * we need to flush all reshape requests and update the metadata.
4381 	 *
4382 	 * When reshaping forwards (e.g. to more devices), we interpret
4383 	 * 'safe' as the earliest block which might not have been copied
4384 	 * down yet.  We divide this by previous stripe size and multiply
4385 	 * by previous stripe length to get lowest device offset that we
4386 	 * cannot write to yet.
4387 	 * We interpret 'sector_nr' as an address that we want to write to.
4388 	 * From this we use last_device_address() to find where we might
4389 	 * write to, and first_device_address on the  'safe' position.
4390 	 * If this 'next' write position is after the 'safe' position,
4391 	 * we must update the metadata to increase the 'safe' position.
4392 	 *
4393 	 * When reshaping backwards, we round in the opposite direction
4394 	 * and perform the reverse test:  next write position must not be
4395 	 * less than current safe position.
4396 	 *
4397 	 * In all this the minimum difference in data offsets
4398 	 * (conf->offset_diff - always positive) allows a bit of slack,
4399 	 * so next can be after 'safe', but not by more than offset_diff
4400 	 *
4401 	 * We need to prepare all the bios here before we start any IO
4402 	 * to ensure the size we choose is acceptable to all devices.
4403 	 * The means one for each copy for write-out and an extra one for
4404 	 * read-in.
4405 	 * We store the read-in bio in ->master_bio and the others in
4406 	 * ->devs[x].bio and ->devs[x].repl_bio.
4407 	 */
4408 	struct r10conf *conf = mddev->private;
4409 	struct r10bio *r10_bio;
4410 	sector_t next, safe, last;
4411 	int max_sectors;
4412 	int nr_sectors;
4413 	int s;
4414 	struct md_rdev *rdev;
4415 	int need_flush = 0;
4416 	struct bio *blist;
4417 	struct bio *bio, *read_bio;
4418 	int sectors_done = 0;
4419 	struct page **pages;
4420 
4421 	if (sector_nr == 0) {
4422 		/* If restarting in the middle, skip the initial sectors */
4423 		if (mddev->reshape_backwards &&
4424 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4425 			sector_nr = (raid10_size(mddev, 0, 0)
4426 				     - conf->reshape_progress);
4427 		} else if (!mddev->reshape_backwards &&
4428 			   conf->reshape_progress > 0)
4429 			sector_nr = conf->reshape_progress;
4430 		if (sector_nr) {
4431 			mddev->curr_resync_completed = sector_nr;
4432 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4433 			*skipped = 1;
4434 			return sector_nr;
4435 		}
4436 	}
4437 
4438 	/* We don't use sector_nr to track where we are up to
4439 	 * as that doesn't work well for ->reshape_backwards.
4440 	 * So just use ->reshape_progress.
4441 	 */
4442 	if (mddev->reshape_backwards) {
4443 		/* 'next' is the earliest device address that we might
4444 		 * write to for this chunk in the new layout
4445 		 */
4446 		next = first_dev_address(conf->reshape_progress - 1,
4447 					 &conf->geo);
4448 
4449 		/* 'safe' is the last device address that we might read from
4450 		 * in the old layout after a restart
4451 		 */
4452 		safe = last_dev_address(conf->reshape_safe - 1,
4453 					&conf->prev);
4454 
4455 		if (next + conf->offset_diff < safe)
4456 			need_flush = 1;
4457 
4458 		last = conf->reshape_progress - 1;
4459 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4460 					       & conf->prev.chunk_mask);
4461 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4462 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4463 	} else {
4464 		/* 'next' is after the last device address that we
4465 		 * might write to for this chunk in the new layout
4466 		 */
4467 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4468 
4469 		/* 'safe' is the earliest device address that we might
4470 		 * read from in the old layout after a restart
4471 		 */
4472 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4473 
4474 		/* Need to update metadata if 'next' might be beyond 'safe'
4475 		 * as that would possibly corrupt data
4476 		 */
4477 		if (next > safe + conf->offset_diff)
4478 			need_flush = 1;
4479 
4480 		sector_nr = conf->reshape_progress;
4481 		last  = sector_nr | (conf->geo.chunk_mask
4482 				     & conf->prev.chunk_mask);
4483 
4484 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4485 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4486 	}
4487 
4488 	if (need_flush ||
4489 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4490 		/* Need to update reshape_position in metadata */
4491 		wait_barrier(conf);
4492 		mddev->reshape_position = conf->reshape_progress;
4493 		if (mddev->reshape_backwards)
4494 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4495 				- conf->reshape_progress;
4496 		else
4497 			mddev->curr_resync_completed = conf->reshape_progress;
4498 		conf->reshape_checkpoint = jiffies;
4499 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4500 		md_wakeup_thread(mddev->thread);
4501 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4502 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4503 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4504 			allow_barrier(conf);
4505 			return sectors_done;
4506 		}
4507 		conf->reshape_safe = mddev->reshape_position;
4508 		allow_barrier(conf);
4509 	}
4510 
4511 	raise_barrier(conf, 0);
4512 read_more:
4513 	/* Now schedule reads for blocks from sector_nr to last */
4514 	r10_bio = raid10_alloc_init_r10buf(conf);
4515 	r10_bio->state = 0;
4516 	raise_barrier(conf, 1);
4517 	atomic_set(&r10_bio->remaining, 0);
4518 	r10_bio->mddev = mddev;
4519 	r10_bio->sector = sector_nr;
4520 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4521 	r10_bio->sectors = last - sector_nr + 1;
4522 	rdev = read_balance(conf, r10_bio, &max_sectors);
4523 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4524 
4525 	if (!rdev) {
4526 		/* Cannot read from here, so need to record bad blocks
4527 		 * on all the target devices.
4528 		 */
4529 		// FIXME
4530 		mempool_free(r10_bio, &conf->r10buf_pool);
4531 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4532 		return sectors_done;
4533 	}
4534 
4535 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4536 
4537 	bio_set_dev(read_bio, rdev->bdev);
4538 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4539 			       + rdev->data_offset);
4540 	read_bio->bi_private = r10_bio;
4541 	read_bio->bi_end_io = end_reshape_read;
4542 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4543 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4544 	read_bio->bi_status = 0;
4545 	read_bio->bi_vcnt = 0;
4546 	read_bio->bi_iter.bi_size = 0;
4547 	r10_bio->master_bio = read_bio;
4548 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4549 
4550 	/*
4551 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4552 	 * write to the region to avoid conflict.
4553 	*/
4554 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4555 		struct mdp_superblock_1 *sb = NULL;
4556 		int sb_reshape_pos = 0;
4557 
4558 		conf->cluster_sync_low = sector_nr;
4559 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4560 		sb = page_address(rdev->sb_page);
4561 		if (sb) {
4562 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4563 			/*
4564 			 * Set cluster_sync_low again if next address for array
4565 			 * reshape is less than cluster_sync_low. Since we can't
4566 			 * update cluster_sync_low until it has finished reshape.
4567 			 */
4568 			if (sb_reshape_pos < conf->cluster_sync_low)
4569 				conf->cluster_sync_low = sb_reshape_pos;
4570 		}
4571 
4572 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4573 							  conf->cluster_sync_high);
4574 	}
4575 
4576 	/* Now find the locations in the new layout */
4577 	__raid10_find_phys(&conf->geo, r10_bio);
4578 
4579 	blist = read_bio;
4580 	read_bio->bi_next = NULL;
4581 
4582 	rcu_read_lock();
4583 	for (s = 0; s < conf->copies*2; s++) {
4584 		struct bio *b;
4585 		int d = r10_bio->devs[s/2].devnum;
4586 		struct md_rdev *rdev2;
4587 		if (s&1) {
4588 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4589 			b = r10_bio->devs[s/2].repl_bio;
4590 		} else {
4591 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4592 			b = r10_bio->devs[s/2].bio;
4593 		}
4594 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4595 			continue;
4596 
4597 		bio_set_dev(b, rdev2->bdev);
4598 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4599 			rdev2->new_data_offset;
4600 		b->bi_end_io = end_reshape_write;
4601 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4602 		b->bi_next = blist;
4603 		blist = b;
4604 	}
4605 
4606 	/* Now add as many pages as possible to all of these bios. */
4607 
4608 	nr_sectors = 0;
4609 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4610 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4611 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4612 		int len = (max_sectors - s) << 9;
4613 		if (len > PAGE_SIZE)
4614 			len = PAGE_SIZE;
4615 		for (bio = blist; bio ; bio = bio->bi_next) {
4616 			/*
4617 			 * won't fail because the vec table is big enough
4618 			 * to hold all these pages
4619 			 */
4620 			bio_add_page(bio, page, len, 0);
4621 		}
4622 		sector_nr += len >> 9;
4623 		nr_sectors += len >> 9;
4624 	}
4625 	rcu_read_unlock();
4626 	r10_bio->sectors = nr_sectors;
4627 
4628 	/* Now submit the read */
4629 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4630 	atomic_inc(&r10_bio->remaining);
4631 	read_bio->bi_next = NULL;
4632 	submit_bio_noacct(read_bio);
4633 	sectors_done += nr_sectors;
4634 	if (sector_nr <= last)
4635 		goto read_more;
4636 
4637 	lower_barrier(conf);
4638 
4639 	/* Now that we have done the whole section we can
4640 	 * update reshape_progress
4641 	 */
4642 	if (mddev->reshape_backwards)
4643 		conf->reshape_progress -= sectors_done;
4644 	else
4645 		conf->reshape_progress += sectors_done;
4646 
4647 	return sectors_done;
4648 }
4649 
4650 static void end_reshape_request(struct r10bio *r10_bio);
4651 static int handle_reshape_read_error(struct mddev *mddev,
4652 				     struct r10bio *r10_bio);
4653 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4654 {
4655 	/* Reshape read completed.  Hopefully we have a block
4656 	 * to write out.
4657 	 * If we got a read error then we do sync 1-page reads from
4658 	 * elsewhere until we find the data - or give up.
4659 	 */
4660 	struct r10conf *conf = mddev->private;
4661 	int s;
4662 
4663 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4664 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4665 			/* Reshape has been aborted */
4666 			md_done_sync(mddev, r10_bio->sectors, 0);
4667 			return;
4668 		}
4669 
4670 	/* We definitely have the data in the pages, schedule the
4671 	 * writes.
4672 	 */
4673 	atomic_set(&r10_bio->remaining, 1);
4674 	for (s = 0; s < conf->copies*2; s++) {
4675 		struct bio *b;
4676 		int d = r10_bio->devs[s/2].devnum;
4677 		struct md_rdev *rdev;
4678 		rcu_read_lock();
4679 		if (s&1) {
4680 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4681 			b = r10_bio->devs[s/2].repl_bio;
4682 		} else {
4683 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4684 			b = r10_bio->devs[s/2].bio;
4685 		}
4686 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4687 			rcu_read_unlock();
4688 			continue;
4689 		}
4690 		atomic_inc(&rdev->nr_pending);
4691 		rcu_read_unlock();
4692 		md_sync_acct_bio(b, r10_bio->sectors);
4693 		atomic_inc(&r10_bio->remaining);
4694 		b->bi_next = NULL;
4695 		submit_bio_noacct(b);
4696 	}
4697 	end_reshape_request(r10_bio);
4698 }
4699 
4700 static void end_reshape(struct r10conf *conf)
4701 {
4702 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4703 		return;
4704 
4705 	spin_lock_irq(&conf->device_lock);
4706 	conf->prev = conf->geo;
4707 	md_finish_reshape(conf->mddev);
4708 	smp_wmb();
4709 	conf->reshape_progress = MaxSector;
4710 	conf->reshape_safe = MaxSector;
4711 	spin_unlock_irq(&conf->device_lock);
4712 
4713 	/* read-ahead size must cover two whole stripes, which is
4714 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4715 	 */
4716 	if (conf->mddev->queue) {
4717 		int stripe = conf->geo.raid_disks *
4718 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4719 		stripe /= conf->geo.near_copies;
4720 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4721 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4722 	}
4723 	conf->fullsync = 0;
4724 }
4725 
4726 static void raid10_update_reshape_pos(struct mddev *mddev)
4727 {
4728 	struct r10conf *conf = mddev->private;
4729 	sector_t lo, hi;
4730 
4731 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4732 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4733 	    || mddev->reshape_position == MaxSector)
4734 		conf->reshape_progress = mddev->reshape_position;
4735 	else
4736 		WARN_ON_ONCE(1);
4737 }
4738 
4739 static int handle_reshape_read_error(struct mddev *mddev,
4740 				     struct r10bio *r10_bio)
4741 {
4742 	/* Use sync reads to get the blocks from somewhere else */
4743 	int sectors = r10_bio->sectors;
4744 	struct r10conf *conf = mddev->private;
4745 	struct r10bio *r10b;
4746 	int slot = 0;
4747 	int idx = 0;
4748 	struct page **pages;
4749 
4750 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4751 	if (!r10b) {
4752 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4753 		return -ENOMEM;
4754 	}
4755 
4756 	/* reshape IOs share pages from .devs[0].bio */
4757 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4758 
4759 	r10b->sector = r10_bio->sector;
4760 	__raid10_find_phys(&conf->prev, r10b);
4761 
4762 	while (sectors) {
4763 		int s = sectors;
4764 		int success = 0;
4765 		int first_slot = slot;
4766 
4767 		if (s > (PAGE_SIZE >> 9))
4768 			s = PAGE_SIZE >> 9;
4769 
4770 		rcu_read_lock();
4771 		while (!success) {
4772 			int d = r10b->devs[slot].devnum;
4773 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4774 			sector_t addr;
4775 			if (rdev == NULL ||
4776 			    test_bit(Faulty, &rdev->flags) ||
4777 			    !test_bit(In_sync, &rdev->flags))
4778 				goto failed;
4779 
4780 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4781 			atomic_inc(&rdev->nr_pending);
4782 			rcu_read_unlock();
4783 			success = sync_page_io(rdev,
4784 					       addr,
4785 					       s << 9,
4786 					       pages[idx],
4787 					       REQ_OP_READ, 0, false);
4788 			rdev_dec_pending(rdev, mddev);
4789 			rcu_read_lock();
4790 			if (success)
4791 				break;
4792 		failed:
4793 			slot++;
4794 			if (slot >= conf->copies)
4795 				slot = 0;
4796 			if (slot == first_slot)
4797 				break;
4798 		}
4799 		rcu_read_unlock();
4800 		if (!success) {
4801 			/* couldn't read this block, must give up */
4802 			set_bit(MD_RECOVERY_INTR,
4803 				&mddev->recovery);
4804 			kfree(r10b);
4805 			return -EIO;
4806 		}
4807 		sectors -= s;
4808 		idx++;
4809 	}
4810 	kfree(r10b);
4811 	return 0;
4812 }
4813 
4814 static void end_reshape_write(struct bio *bio)
4815 {
4816 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4817 	struct mddev *mddev = r10_bio->mddev;
4818 	struct r10conf *conf = mddev->private;
4819 	int d;
4820 	int slot;
4821 	int repl;
4822 	struct md_rdev *rdev = NULL;
4823 
4824 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4825 	if (repl)
4826 		rdev = conf->mirrors[d].replacement;
4827 	if (!rdev) {
4828 		smp_mb();
4829 		rdev = conf->mirrors[d].rdev;
4830 	}
4831 
4832 	if (bio->bi_status) {
4833 		/* FIXME should record badblock */
4834 		md_error(mddev, rdev);
4835 	}
4836 
4837 	rdev_dec_pending(rdev, mddev);
4838 	end_reshape_request(r10_bio);
4839 }
4840 
4841 static void end_reshape_request(struct r10bio *r10_bio)
4842 {
4843 	if (!atomic_dec_and_test(&r10_bio->remaining))
4844 		return;
4845 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4846 	bio_put(r10_bio->master_bio);
4847 	put_buf(r10_bio);
4848 }
4849 
4850 static void raid10_finish_reshape(struct mddev *mddev)
4851 {
4852 	struct r10conf *conf = mddev->private;
4853 
4854 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4855 		return;
4856 
4857 	if (mddev->delta_disks > 0) {
4858 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4859 			mddev->recovery_cp = mddev->resync_max_sectors;
4860 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4861 		}
4862 		mddev->resync_max_sectors = mddev->array_sectors;
4863 	} else {
4864 		int d;
4865 		rcu_read_lock();
4866 		for (d = conf->geo.raid_disks ;
4867 		     d < conf->geo.raid_disks - mddev->delta_disks;
4868 		     d++) {
4869 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4870 			if (rdev)
4871 				clear_bit(In_sync, &rdev->flags);
4872 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4873 			if (rdev)
4874 				clear_bit(In_sync, &rdev->flags);
4875 		}
4876 		rcu_read_unlock();
4877 	}
4878 	mddev->layout = mddev->new_layout;
4879 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4880 	mddev->reshape_position = MaxSector;
4881 	mddev->delta_disks = 0;
4882 	mddev->reshape_backwards = 0;
4883 }
4884 
4885 static struct md_personality raid10_personality =
4886 {
4887 	.name		= "raid10",
4888 	.level		= 10,
4889 	.owner		= THIS_MODULE,
4890 	.make_request	= raid10_make_request,
4891 	.run		= raid10_run,
4892 	.free		= raid10_free,
4893 	.status		= raid10_status,
4894 	.error_handler	= raid10_error,
4895 	.hot_add_disk	= raid10_add_disk,
4896 	.hot_remove_disk= raid10_remove_disk,
4897 	.spare_active	= raid10_spare_active,
4898 	.sync_request	= raid10_sync_request,
4899 	.quiesce	= raid10_quiesce,
4900 	.size		= raid10_size,
4901 	.resize		= raid10_resize,
4902 	.takeover	= raid10_takeover,
4903 	.check_reshape	= raid10_check_reshape,
4904 	.start_reshape	= raid10_start_reshape,
4905 	.finish_reshape	= raid10_finish_reshape,
4906 	.update_reshape_pos = raid10_update_reshape_pos,
4907 };
4908 
4909 static int __init raid_init(void)
4910 {
4911 	return register_md_personality(&raid10_personality);
4912 }
4913 
4914 static void raid_exit(void)
4915 {
4916 	unregister_md_personality(&raid10_personality);
4917 }
4918 
4919 module_init(raid_init);
4920 module_exit(raid_exit);
4921 MODULE_LICENSE("GPL");
4922 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4923 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4924 MODULE_ALIAS("md-raid10");
4925 MODULE_ALIAS("md-level-10");
4926 
4927 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4928