xref: /openbmc/linux/drivers/md/raid10.c (revision 4bacd796)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29 
30 /*
31  * RAID10 provides a combination of RAID0 and RAID1 functionality.
32  * The layout of data is defined by
33  *    chunk_size
34  *    raid_disks
35  *    near_copies (stored in low byte of layout)
36  *    far_copies (stored in second byte of layout)
37  *    far_offset (stored in bit 16 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.
40  * Each device is divided into far_copies sections.
41  * In each section, chunks are laid out in a style similar to raid0, but
42  * near_copies copies of each chunk is stored (each on a different drive).
43  * The starting device for each section is offset near_copies from the starting
44  * device of the previous section.
45  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46  * drive.
47  * near_copies and far_copies must be at least one, and their product is at most
48  * raid_disks.
49  *
50  * If far_offset is true, then the far_copies are handled a bit differently.
51  * The copies are still in different stripes, but instead of be very far apart
52  * on disk, there are adjacent stripes.
53  */
54 
55 /*
56  * Number of guaranteed r10bios in case of extreme VM load:
57  */
58 #define	NR_RAID10_BIOS 256
59 
60 static void unplug_slaves(mddev_t *mddev);
61 
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
64 
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 {
67 	conf_t *conf = data;
68 	r10bio_t *r10_bio;
69 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
70 
71 	/* allocate a r10bio with room for raid_disks entries in the bios array */
72 	r10_bio = kzalloc(size, gfp_flags);
73 	if (!r10_bio && conf->mddev)
74 		unplug_slaves(conf->mddev);
75 
76 	return r10_bio;
77 }
78 
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81 	kfree(r10_bio);
82 }
83 
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91 
92 /*
93  * When performing a resync, we need to read and compare, so
94  * we need as many pages are there are copies.
95  * When performing a recovery, we need 2 bios, one for read,
96  * one for write (we recover only one drive per r10buf)
97  *
98  */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101 	conf_t *conf = data;
102 	struct page *page;
103 	r10bio_t *r10_bio;
104 	struct bio *bio;
105 	int i, j;
106 	int nalloc;
107 
108 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 	if (!r10_bio) {
110 		unplug_slaves(conf->mddev);
111 		return NULL;
112 	}
113 
114 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 		nalloc = conf->copies; /* resync */
116 	else
117 		nalloc = 2; /* recovery */
118 
119 	/*
120 	 * Allocate bios.
121 	 */
122 	for (j = nalloc ; j-- ; ) {
123 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
124 		if (!bio)
125 			goto out_free_bio;
126 		r10_bio->devs[j].bio = bio;
127 	}
128 	/*
129 	 * Allocate RESYNC_PAGES data pages and attach them
130 	 * where needed.
131 	 */
132 	for (j = 0 ; j < nalloc; j++) {
133 		bio = r10_bio->devs[j].bio;
134 		for (i = 0; i < RESYNC_PAGES; i++) {
135 			page = alloc_page(gfp_flags);
136 			if (unlikely(!page))
137 				goto out_free_pages;
138 
139 			bio->bi_io_vec[i].bv_page = page;
140 		}
141 	}
142 
143 	return r10_bio;
144 
145 out_free_pages:
146 	for ( ; i > 0 ; i--)
147 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
148 	while (j--)
149 		for (i = 0; i < RESYNC_PAGES ; i++)
150 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151 	j = -1;
152 out_free_bio:
153 	while ( ++j < nalloc )
154 		bio_put(r10_bio->devs[j].bio);
155 	r10bio_pool_free(r10_bio, conf);
156 	return NULL;
157 }
158 
159 static void r10buf_pool_free(void *__r10_bio, void *data)
160 {
161 	int i;
162 	conf_t *conf = data;
163 	r10bio_t *r10bio = __r10_bio;
164 	int j;
165 
166 	for (j=0; j < conf->copies; j++) {
167 		struct bio *bio = r10bio->devs[j].bio;
168 		if (bio) {
169 			for (i = 0; i < RESYNC_PAGES; i++) {
170 				safe_put_page(bio->bi_io_vec[i].bv_page);
171 				bio->bi_io_vec[i].bv_page = NULL;
172 			}
173 			bio_put(bio);
174 		}
175 	}
176 	r10bio_pool_free(r10bio, conf);
177 }
178 
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->copies; i++) {
184 		struct bio **bio = & r10_bio->devs[i].bio;
185 		if (*bio && *bio != IO_BLOCKED)
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r10bio(r10bio_t *r10_bio)
192 {
193 	conf_t *conf = r10_bio->mddev->private;
194 
195 	/*
196 	 * Wake up any possible resync thread that waits for the device
197 	 * to go idle.
198 	 */
199 	allow_barrier(conf);
200 
201 	put_all_bios(conf, r10_bio);
202 	mempool_free(r10_bio, conf->r10bio_pool);
203 }
204 
205 static void put_buf(r10bio_t *r10_bio)
206 {
207 	conf_t *conf = r10_bio->mddev->private;
208 
209 	mempool_free(r10_bio, conf->r10buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r10bio_t *r10_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r10_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r10_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	/* wake up frozen array... */
226 	wake_up(&conf->wait_barrier);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = r10_bio->mddev->private;
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static void raid10_end_read_request(struct bio *bio, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t *r10_bio = bio->bi_private;
260 	int slot, dev;
261 	conf_t *conf = r10_bio->mddev->private;
262 
263 
264 	slot = r10_bio->read_slot;
265 	dev = r10_bio->devs[slot].devnum;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(slot, r10_bio);
270 
271 	if (uptodate) {
272 		/*
273 		 * Set R10BIO_Uptodate in our master bio, so that
274 		 * we will return a good error code to the higher
275 		 * levels even if IO on some other mirrored buffer fails.
276 		 *
277 		 * The 'master' represents the composite IO operation to
278 		 * user-side. So if something waits for IO, then it will
279 		 * wait for the 'master' bio.
280 		 */
281 		set_bit(R10BIO_Uptodate, &r10_bio->state);
282 		raid_end_bio_io(r10_bio);
283 	} else {
284 		/*
285 		 * oops, read error:
286 		 */
287 		char b[BDEVNAME_SIZE];
288 		if (printk_ratelimit())
289 			printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 			       mdname(conf->mddev),
291 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 		reschedule_retry(r10_bio);
293 	}
294 
295 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 }
297 
298 static void raid10_end_write_request(struct bio *bio, int error)
299 {
300 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301 	r10bio_t *r10_bio = bio->bi_private;
302 	int slot, dev;
303 	conf_t *conf = r10_bio->mddev->private;
304 
305 	for (slot = 0; slot < conf->copies; slot++)
306 		if (r10_bio->devs[slot].bio == bio)
307 			break;
308 	dev = r10_bio->devs[slot].devnum;
309 
310 	/*
311 	 * this branch is our 'one mirror IO has finished' event handler:
312 	 */
313 	if (!uptodate) {
314 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315 		/* an I/O failed, we can't clear the bitmap */
316 		set_bit(R10BIO_Degraded, &r10_bio->state);
317 	} else
318 		/*
319 		 * Set R10BIO_Uptodate in our master bio, so that
320 		 * we will return a good error code for to the higher
321 		 * levels even if IO on some other mirrored buffer fails.
322 		 *
323 		 * The 'master' represents the composite IO operation to
324 		 * user-side. So if something waits for IO, then it will
325 		 * wait for the 'master' bio.
326 		 */
327 		set_bit(R10BIO_Uptodate, &r10_bio->state);
328 
329 	update_head_pos(slot, r10_bio);
330 
331 	/*
332 	 *
333 	 * Let's see if all mirrored write operations have finished
334 	 * already.
335 	 */
336 	if (atomic_dec_and_test(&r10_bio->remaining)) {
337 		/* clear the bitmap if all writes complete successfully */
338 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 				r10_bio->sectors,
340 				!test_bit(R10BIO_Degraded, &r10_bio->state),
341 				0);
342 		md_write_end(r10_bio->mddev);
343 		raid_end_bio_io(r10_bio);
344 	}
345 
346 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
347 }
348 
349 
350 /*
351  * RAID10 layout manager
352  * Aswell as the chunksize and raid_disks count, there are two
353  * parameters: near_copies and far_copies.
354  * near_copies * far_copies must be <= raid_disks.
355  * Normally one of these will be 1.
356  * If both are 1, we get raid0.
357  * If near_copies == raid_disks, we get raid1.
358  *
359  * Chunks are layed out in raid0 style with near_copies copies of the
360  * first chunk, followed by near_copies copies of the next chunk and
361  * so on.
362  * If far_copies > 1, then after 1/far_copies of the array has been assigned
363  * as described above, we start again with a device offset of near_copies.
364  * So we effectively have another copy of the whole array further down all
365  * the drives, but with blocks on different drives.
366  * With this layout, and block is never stored twice on the one device.
367  *
368  * raid10_find_phys finds the sector offset of a given virtual sector
369  * on each device that it is on.
370  *
371  * raid10_find_virt does the reverse mapping, from a device and a
372  * sector offset to a virtual address
373  */
374 
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376 {
377 	int n,f;
378 	sector_t sector;
379 	sector_t chunk;
380 	sector_t stripe;
381 	int dev;
382 
383 	int slot = 0;
384 
385 	/* now calculate first sector/dev */
386 	chunk = r10bio->sector >> conf->chunk_shift;
387 	sector = r10bio->sector & conf->chunk_mask;
388 
389 	chunk *= conf->near_copies;
390 	stripe = chunk;
391 	dev = sector_div(stripe, conf->raid_disks);
392 	if (conf->far_offset)
393 		stripe *= conf->far_copies;
394 
395 	sector += stripe << conf->chunk_shift;
396 
397 	/* and calculate all the others */
398 	for (n=0; n < conf->near_copies; n++) {
399 		int d = dev;
400 		sector_t s = sector;
401 		r10bio->devs[slot].addr = sector;
402 		r10bio->devs[slot].devnum = d;
403 		slot++;
404 
405 		for (f = 1; f < conf->far_copies; f++) {
406 			d += conf->near_copies;
407 			if (d >= conf->raid_disks)
408 				d -= conf->raid_disks;
409 			s += conf->stride;
410 			r10bio->devs[slot].devnum = d;
411 			r10bio->devs[slot].addr = s;
412 			slot++;
413 		}
414 		dev++;
415 		if (dev >= conf->raid_disks) {
416 			dev = 0;
417 			sector += (conf->chunk_mask + 1);
418 		}
419 	}
420 	BUG_ON(slot != conf->copies);
421 }
422 
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424 {
425 	sector_t offset, chunk, vchunk;
426 
427 	offset = sector & conf->chunk_mask;
428 	if (conf->far_offset) {
429 		int fc;
430 		chunk = sector >> conf->chunk_shift;
431 		fc = sector_div(chunk, conf->far_copies);
432 		dev -= fc * conf->near_copies;
433 		if (dev < 0)
434 			dev += conf->raid_disks;
435 	} else {
436 		while (sector >= conf->stride) {
437 			sector -= conf->stride;
438 			if (dev < conf->near_copies)
439 				dev += conf->raid_disks - conf->near_copies;
440 			else
441 				dev -= conf->near_copies;
442 		}
443 		chunk = sector >> conf->chunk_shift;
444 	}
445 	vchunk = chunk * conf->raid_disks + dev;
446 	sector_div(vchunk, conf->near_copies);
447 	return (vchunk << conf->chunk_shift) + offset;
448 }
449 
450 /**
451  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452  *	@q: request queue
453  *	@bvm: properties of new bio
454  *	@biovec: the request that could be merged to it.
455  *
456  *	Return amount of bytes we can accept at this offset
457  *      If near_copies == raid_disk, there are no striping issues,
458  *      but in that case, the function isn't called at all.
459  */
460 static int raid10_mergeable_bvec(struct request_queue *q,
461 				 struct bvec_merge_data *bvm,
462 				 struct bio_vec *biovec)
463 {
464 	mddev_t *mddev = q->queuedata;
465 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466 	int max;
467 	unsigned int chunk_sectors = mddev->chunk_sectors;
468 	unsigned int bio_sectors = bvm->bi_size >> 9;
469 
470 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472 	if (max <= biovec->bv_len && bio_sectors == 0)
473 		return biovec->bv_len;
474 	else
475 		return max;
476 }
477 
478 /*
479  * This routine returns the disk from which the requested read should
480  * be done. There is a per-array 'next expected sequential IO' sector
481  * number - if this matches on the next IO then we use the last disk.
482  * There is also a per-disk 'last know head position' sector that is
483  * maintained from IRQ contexts, both the normal and the resync IO
484  * completion handlers update this position correctly. If there is no
485  * perfect sequential match then we pick the disk whose head is closest.
486  *
487  * If there are 2 mirrors in the same 2 devices, performance degrades
488  * because position is mirror, not device based.
489  *
490  * The rdev for the device selected will have nr_pending incremented.
491  */
492 
493 /*
494  * FIXME: possibly should rethink readbalancing and do it differently
495  * depending on near_copies / far_copies geometry.
496  */
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498 {
499 	const sector_t this_sector = r10_bio->sector;
500 	int disk, slot, nslot;
501 	const int sectors = r10_bio->sectors;
502 	sector_t new_distance, current_distance;
503 	mdk_rdev_t *rdev;
504 
505 	raid10_find_phys(conf, r10_bio);
506 	rcu_read_lock();
507 	/*
508 	 * Check if we can balance. We can balance on the whole
509 	 * device if no resync is going on (recovery is ok), or below
510 	 * the resync window. We take the first readable disk when
511 	 * above the resync window.
512 	 */
513 	if (conf->mddev->recovery_cp < MaxSector
514 	    && (this_sector + sectors >= conf->next_resync)) {
515 		/* make sure that disk is operational */
516 		slot = 0;
517 		disk = r10_bio->devs[slot].devnum;
518 
519 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
521 		       !test_bit(In_sync, &rdev->flags)) {
522 			slot++;
523 			if (slot == conf->copies) {
524 				slot = 0;
525 				disk = -1;
526 				break;
527 			}
528 			disk = r10_bio->devs[slot].devnum;
529 		}
530 		goto rb_out;
531 	}
532 
533 
534 	/* make sure the disk is operational */
535 	slot = 0;
536 	disk = r10_bio->devs[slot].devnum;
537 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
539 	       !test_bit(In_sync, &rdev->flags)) {
540 		slot ++;
541 		if (slot == conf->copies) {
542 			disk = -1;
543 			goto rb_out;
544 		}
545 		disk = r10_bio->devs[slot].devnum;
546 	}
547 
548 
549 	current_distance = abs(r10_bio->devs[slot].addr -
550 			       conf->mirrors[disk].head_position);
551 
552 	/* Find the disk whose head is closest,
553 	 * or - for far > 1 - find the closest to partition beginning */
554 
555 	for (nslot = slot; nslot < conf->copies; nslot++) {
556 		int ndisk = r10_bio->devs[nslot].devnum;
557 
558 
559 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
561 		    !test_bit(In_sync, &rdev->flags))
562 			continue;
563 
564 		/* This optimisation is debatable, and completely destroys
565 		 * sequential read speed for 'far copies' arrays.  So only
566 		 * keep it for 'near' arrays, and review those later.
567 		 */
568 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569 			disk = ndisk;
570 			slot = nslot;
571 			break;
572 		}
573 
574 		/* for far > 1 always use the lowest address */
575 		if (conf->far_copies > 1)
576 			new_distance = r10_bio->devs[nslot].addr;
577 		else
578 			new_distance = abs(r10_bio->devs[nslot].addr -
579 					   conf->mirrors[ndisk].head_position);
580 		if (new_distance < current_distance) {
581 			current_distance = new_distance;
582 			disk = ndisk;
583 			slot = nslot;
584 		}
585 	}
586 
587 rb_out:
588 	r10_bio->read_slot = slot;
589 /*	conf->next_seq_sect = this_sector + sectors;*/
590 
591 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593 	else
594 		disk = -1;
595 	rcu_read_unlock();
596 
597 	return disk;
598 }
599 
600 static void unplug_slaves(mddev_t *mddev)
601 {
602 	conf_t *conf = mddev->private;
603 	int i;
604 
605 	rcu_read_lock();
606 	for (i=0; i < conf->raid_disks; i++) {
607 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
610 
611 			atomic_inc(&rdev->nr_pending);
612 			rcu_read_unlock();
613 
614 			blk_unplug(r_queue);
615 
616 			rdev_dec_pending(rdev, mddev);
617 			rcu_read_lock();
618 		}
619 	}
620 	rcu_read_unlock();
621 }
622 
623 static void raid10_unplug(struct request_queue *q)
624 {
625 	mddev_t *mddev = q->queuedata;
626 
627 	unplug_slaves(q->queuedata);
628 	md_wakeup_thread(mddev->thread);
629 }
630 
631 static int raid10_congested(void *data, int bits)
632 {
633 	mddev_t *mddev = data;
634 	conf_t *conf = mddev->private;
635 	int i, ret = 0;
636 
637 	if (mddev_congested(mddev, bits))
638 		return 1;
639 	rcu_read_lock();
640 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
643 			struct request_queue *q = bdev_get_queue(rdev->bdev);
644 
645 			ret |= bdi_congested(&q->backing_dev_info, bits);
646 		}
647 	}
648 	rcu_read_unlock();
649 	return ret;
650 }
651 
652 static int flush_pending_writes(conf_t *conf)
653 {
654 	/* Any writes that have been queued but are awaiting
655 	 * bitmap updates get flushed here.
656 	 * We return 1 if any requests were actually submitted.
657 	 */
658 	int rv = 0;
659 
660 	spin_lock_irq(&conf->device_lock);
661 
662 	if (conf->pending_bio_list.head) {
663 		struct bio *bio;
664 		bio = bio_list_get(&conf->pending_bio_list);
665 		blk_remove_plug(conf->mddev->queue);
666 		spin_unlock_irq(&conf->device_lock);
667 		/* flush any pending bitmap writes to disk
668 		 * before proceeding w/ I/O */
669 		bitmap_unplug(conf->mddev->bitmap);
670 
671 		while (bio) { /* submit pending writes */
672 			struct bio *next = bio->bi_next;
673 			bio->bi_next = NULL;
674 			generic_make_request(bio);
675 			bio = next;
676 		}
677 		rv = 1;
678 	} else
679 		spin_unlock_irq(&conf->device_lock);
680 	return rv;
681 }
682 /* Barriers....
683  * Sometimes we need to suspend IO while we do something else,
684  * either some resync/recovery, or reconfigure the array.
685  * To do this we raise a 'barrier'.
686  * The 'barrier' is a counter that can be raised multiple times
687  * to count how many activities are happening which preclude
688  * normal IO.
689  * We can only raise the barrier if there is no pending IO.
690  * i.e. if nr_pending == 0.
691  * We choose only to raise the barrier if no-one is waiting for the
692  * barrier to go down.  This means that as soon as an IO request
693  * is ready, no other operations which require a barrier will start
694  * until the IO request has had a chance.
695  *
696  * So: regular IO calls 'wait_barrier'.  When that returns there
697  *    is no backgroup IO happening,  It must arrange to call
698  *    allow_barrier when it has finished its IO.
699  * backgroup IO calls must call raise_barrier.  Once that returns
700  *    there is no normal IO happeing.  It must arrange to call
701  *    lower_barrier when the particular background IO completes.
702  */
703 
704 static void raise_barrier(conf_t *conf, int force)
705 {
706 	BUG_ON(force && !conf->barrier);
707 	spin_lock_irq(&conf->resync_lock);
708 
709 	/* Wait until no block IO is waiting (unless 'force') */
710 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
711 			    conf->resync_lock,
712 			    raid10_unplug(conf->mddev->queue));
713 
714 	/* block any new IO from starting */
715 	conf->barrier++;
716 
717 	/* No wait for all pending IO to complete */
718 	wait_event_lock_irq(conf->wait_barrier,
719 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 			    conf->resync_lock,
721 			    raid10_unplug(conf->mddev->queue));
722 
723 	spin_unlock_irq(&conf->resync_lock);
724 }
725 
726 static void lower_barrier(conf_t *conf)
727 {
728 	unsigned long flags;
729 	spin_lock_irqsave(&conf->resync_lock, flags);
730 	conf->barrier--;
731 	spin_unlock_irqrestore(&conf->resync_lock, flags);
732 	wake_up(&conf->wait_barrier);
733 }
734 
735 static void wait_barrier(conf_t *conf)
736 {
737 	spin_lock_irq(&conf->resync_lock);
738 	if (conf->barrier) {
739 		conf->nr_waiting++;
740 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 				    conf->resync_lock,
742 				    raid10_unplug(conf->mddev->queue));
743 		conf->nr_waiting--;
744 	}
745 	conf->nr_pending++;
746 	spin_unlock_irq(&conf->resync_lock);
747 }
748 
749 static void allow_barrier(conf_t *conf)
750 {
751 	unsigned long flags;
752 	spin_lock_irqsave(&conf->resync_lock, flags);
753 	conf->nr_pending--;
754 	spin_unlock_irqrestore(&conf->resync_lock, flags);
755 	wake_up(&conf->wait_barrier);
756 }
757 
758 static void freeze_array(conf_t *conf)
759 {
760 	/* stop syncio and normal IO and wait for everything to
761 	 * go quiet.
762 	 * We increment barrier and nr_waiting, and then
763 	 * wait until nr_pending match nr_queued+1
764 	 * This is called in the context of one normal IO request
765 	 * that has failed. Thus any sync request that might be pending
766 	 * will be blocked by nr_pending, and we need to wait for
767 	 * pending IO requests to complete or be queued for re-try.
768 	 * Thus the number queued (nr_queued) plus this request (1)
769 	 * must match the number of pending IOs (nr_pending) before
770 	 * we continue.
771 	 */
772 	spin_lock_irq(&conf->resync_lock);
773 	conf->barrier++;
774 	conf->nr_waiting++;
775 	wait_event_lock_irq(conf->wait_barrier,
776 			    conf->nr_pending == conf->nr_queued+1,
777 			    conf->resync_lock,
778 			    ({ flush_pending_writes(conf);
779 			       raid10_unplug(conf->mddev->queue); }));
780 	spin_unlock_irq(&conf->resync_lock);
781 }
782 
783 static void unfreeze_array(conf_t *conf)
784 {
785 	/* reverse the effect of the freeze */
786 	spin_lock_irq(&conf->resync_lock);
787 	conf->barrier--;
788 	conf->nr_waiting--;
789 	wake_up(&conf->wait_barrier);
790 	spin_unlock_irq(&conf->resync_lock);
791 }
792 
793 static int make_request(mddev_t *mddev, struct bio * bio)
794 {
795 	conf_t *conf = mddev->private;
796 	mirror_info_t *mirror;
797 	r10bio_t *r10_bio;
798 	struct bio *read_bio;
799 	int i;
800 	int chunk_sects = conf->chunk_mask + 1;
801 	const int rw = bio_data_dir(bio);
802 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
803 	struct bio_list bl;
804 	unsigned long flags;
805 	mdk_rdev_t *blocked_rdev;
806 
807 	if (unlikely(bio->bi_rw & REQ_HARDBARRIER)) {
808 		md_barrier_request(mddev, bio);
809 		return 0;
810 	}
811 
812 	/* If this request crosses a chunk boundary, we need to
813 	 * split it.  This will only happen for 1 PAGE (or less) requests.
814 	 */
815 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
816 		      > chunk_sects &&
817 		    conf->near_copies < conf->raid_disks)) {
818 		struct bio_pair *bp;
819 		/* Sanity check -- queue functions should prevent this happening */
820 		if (bio->bi_vcnt != 1 ||
821 		    bio->bi_idx != 0)
822 			goto bad_map;
823 		/* This is a one page bio that upper layers
824 		 * refuse to split for us, so we need to split it.
825 		 */
826 		bp = bio_split(bio,
827 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
828 
829 		/* Each of these 'make_request' calls will call 'wait_barrier'.
830 		 * If the first succeeds but the second blocks due to the resync
831 		 * thread raising the barrier, we will deadlock because the
832 		 * IO to the underlying device will be queued in generic_make_request
833 		 * and will never complete, so will never reduce nr_pending.
834 		 * So increment nr_waiting here so no new raise_barriers will
835 		 * succeed, and so the second wait_barrier cannot block.
836 		 */
837 		spin_lock_irq(&conf->resync_lock);
838 		conf->nr_waiting++;
839 		spin_unlock_irq(&conf->resync_lock);
840 
841 		if (make_request(mddev, &bp->bio1))
842 			generic_make_request(&bp->bio1);
843 		if (make_request(mddev, &bp->bio2))
844 			generic_make_request(&bp->bio2);
845 
846 		spin_lock_irq(&conf->resync_lock);
847 		conf->nr_waiting--;
848 		wake_up(&conf->wait_barrier);
849 		spin_unlock_irq(&conf->resync_lock);
850 
851 		bio_pair_release(bp);
852 		return 0;
853 	bad_map:
854 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
855 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
856 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
857 
858 		bio_io_error(bio);
859 		return 0;
860 	}
861 
862 	md_write_start(mddev, bio);
863 
864 	/*
865 	 * Register the new request and wait if the reconstruction
866 	 * thread has put up a bar for new requests.
867 	 * Continue immediately if no resync is active currently.
868 	 */
869 	wait_barrier(conf);
870 
871 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
872 
873 	r10_bio->master_bio = bio;
874 	r10_bio->sectors = bio->bi_size >> 9;
875 
876 	r10_bio->mddev = mddev;
877 	r10_bio->sector = bio->bi_sector;
878 	r10_bio->state = 0;
879 
880 	if (rw == READ) {
881 		/*
882 		 * read balancing logic:
883 		 */
884 		int disk = read_balance(conf, r10_bio);
885 		int slot = r10_bio->read_slot;
886 		if (disk < 0) {
887 			raid_end_bio_io(r10_bio);
888 			return 0;
889 		}
890 		mirror = conf->mirrors + disk;
891 
892 		read_bio = bio_clone(bio, GFP_NOIO);
893 
894 		r10_bio->devs[slot].bio = read_bio;
895 
896 		read_bio->bi_sector = r10_bio->devs[slot].addr +
897 			mirror->rdev->data_offset;
898 		read_bio->bi_bdev = mirror->rdev->bdev;
899 		read_bio->bi_end_io = raid10_end_read_request;
900 		read_bio->bi_rw = READ | do_sync;
901 		read_bio->bi_private = r10_bio;
902 
903 		generic_make_request(read_bio);
904 		return 0;
905 	}
906 
907 	/*
908 	 * WRITE:
909 	 */
910 	/* first select target devices under rcu_lock and
911 	 * inc refcount on their rdev.  Record them by setting
912 	 * bios[x] to bio
913 	 */
914 	raid10_find_phys(conf, r10_bio);
915  retry_write:
916 	blocked_rdev = NULL;
917 	rcu_read_lock();
918 	for (i = 0;  i < conf->copies; i++) {
919 		int d = r10_bio->devs[i].devnum;
920 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
921 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
922 			atomic_inc(&rdev->nr_pending);
923 			blocked_rdev = rdev;
924 			break;
925 		}
926 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
927 			atomic_inc(&rdev->nr_pending);
928 			r10_bio->devs[i].bio = bio;
929 		} else {
930 			r10_bio->devs[i].bio = NULL;
931 			set_bit(R10BIO_Degraded, &r10_bio->state);
932 		}
933 	}
934 	rcu_read_unlock();
935 
936 	if (unlikely(blocked_rdev)) {
937 		/* Have to wait for this device to get unblocked, then retry */
938 		int j;
939 		int d;
940 
941 		for (j = 0; j < i; j++)
942 			if (r10_bio->devs[j].bio) {
943 				d = r10_bio->devs[j].devnum;
944 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
945 			}
946 		allow_barrier(conf);
947 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
948 		wait_barrier(conf);
949 		goto retry_write;
950 	}
951 
952 	atomic_set(&r10_bio->remaining, 0);
953 
954 	bio_list_init(&bl);
955 	for (i = 0; i < conf->copies; i++) {
956 		struct bio *mbio;
957 		int d = r10_bio->devs[i].devnum;
958 		if (!r10_bio->devs[i].bio)
959 			continue;
960 
961 		mbio = bio_clone(bio, GFP_NOIO);
962 		r10_bio->devs[i].bio = mbio;
963 
964 		mbio->bi_sector	= r10_bio->devs[i].addr+
965 			conf->mirrors[d].rdev->data_offset;
966 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
967 		mbio->bi_end_io	= raid10_end_write_request;
968 		mbio->bi_rw = WRITE | do_sync;
969 		mbio->bi_private = r10_bio;
970 
971 		atomic_inc(&r10_bio->remaining);
972 		bio_list_add(&bl, mbio);
973 	}
974 
975 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
976 		/* the array is dead */
977 		md_write_end(mddev);
978 		raid_end_bio_io(r10_bio);
979 		return 0;
980 	}
981 
982 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
983 	spin_lock_irqsave(&conf->device_lock, flags);
984 	bio_list_merge(&conf->pending_bio_list, &bl);
985 	blk_plug_device(mddev->queue);
986 	spin_unlock_irqrestore(&conf->device_lock, flags);
987 
988 	/* In case raid10d snuck in to freeze_array */
989 	wake_up(&conf->wait_barrier);
990 
991 	if (do_sync)
992 		md_wakeup_thread(mddev->thread);
993 
994 	return 0;
995 }
996 
997 static void status(struct seq_file *seq, mddev_t *mddev)
998 {
999 	conf_t *conf = mddev->private;
1000 	int i;
1001 
1002 	if (conf->near_copies < conf->raid_disks)
1003 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1004 	if (conf->near_copies > 1)
1005 		seq_printf(seq, " %d near-copies", conf->near_copies);
1006 	if (conf->far_copies > 1) {
1007 		if (conf->far_offset)
1008 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1009 		else
1010 			seq_printf(seq, " %d far-copies", conf->far_copies);
1011 	}
1012 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1013 					conf->raid_disks - mddev->degraded);
1014 	for (i = 0; i < conf->raid_disks; i++)
1015 		seq_printf(seq, "%s",
1016 			      conf->mirrors[i].rdev &&
1017 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1018 	seq_printf(seq, "]");
1019 }
1020 
1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1022 {
1023 	char b[BDEVNAME_SIZE];
1024 	conf_t *conf = mddev->private;
1025 
1026 	/*
1027 	 * If it is not operational, then we have already marked it as dead
1028 	 * else if it is the last working disks, ignore the error, let the
1029 	 * next level up know.
1030 	 * else mark the drive as failed
1031 	 */
1032 	if (test_bit(In_sync, &rdev->flags)
1033 	    && conf->raid_disks-mddev->degraded == 1)
1034 		/*
1035 		 * Don't fail the drive, just return an IO error.
1036 		 * The test should really be more sophisticated than
1037 		 * "working_disks == 1", but it isn't critical, and
1038 		 * can wait until we do more sophisticated "is the drive
1039 		 * really dead" tests...
1040 		 */
1041 		return;
1042 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1043 		unsigned long flags;
1044 		spin_lock_irqsave(&conf->device_lock, flags);
1045 		mddev->degraded++;
1046 		spin_unlock_irqrestore(&conf->device_lock, flags);
1047 		/*
1048 		 * if recovery is running, make sure it aborts.
1049 		 */
1050 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1051 	}
1052 	set_bit(Faulty, &rdev->flags);
1053 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1054 	printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n"
1055 	       KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n",
1056 	       mdname(mddev), bdevname(rdev->bdev, b),
1057 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1058 }
1059 
1060 static void print_conf(conf_t *conf)
1061 {
1062 	int i;
1063 	mirror_info_t *tmp;
1064 
1065 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1066 	if (!conf) {
1067 		printk(KERN_DEBUG "(!conf)\n");
1068 		return;
1069 	}
1070 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1071 		conf->raid_disks);
1072 
1073 	for (i = 0; i < conf->raid_disks; i++) {
1074 		char b[BDEVNAME_SIZE];
1075 		tmp = conf->mirrors + i;
1076 		if (tmp->rdev)
1077 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1078 				i, !test_bit(In_sync, &tmp->rdev->flags),
1079 			        !test_bit(Faulty, &tmp->rdev->flags),
1080 				bdevname(tmp->rdev->bdev,b));
1081 	}
1082 }
1083 
1084 static void close_sync(conf_t *conf)
1085 {
1086 	wait_barrier(conf);
1087 	allow_barrier(conf);
1088 
1089 	mempool_destroy(conf->r10buf_pool);
1090 	conf->r10buf_pool = NULL;
1091 }
1092 
1093 /* check if there are enough drives for
1094  * every block to appear on atleast one
1095  */
1096 static int enough(conf_t *conf)
1097 {
1098 	int first = 0;
1099 
1100 	do {
1101 		int n = conf->copies;
1102 		int cnt = 0;
1103 		while (n--) {
1104 			if (conf->mirrors[first].rdev)
1105 				cnt++;
1106 			first = (first+1) % conf->raid_disks;
1107 		}
1108 		if (cnt == 0)
1109 			return 0;
1110 	} while (first != 0);
1111 	return 1;
1112 }
1113 
1114 static int raid10_spare_active(mddev_t *mddev)
1115 {
1116 	int i;
1117 	conf_t *conf = mddev->private;
1118 	mirror_info_t *tmp;
1119 	int count = 0;
1120 	unsigned long flags;
1121 
1122 	/*
1123 	 * Find all non-in_sync disks within the RAID10 configuration
1124 	 * and mark them in_sync
1125 	 */
1126 	for (i = 0; i < conf->raid_disks; i++) {
1127 		tmp = conf->mirrors + i;
1128 		if (tmp->rdev
1129 		    && !test_bit(Faulty, &tmp->rdev->flags)
1130 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1131 			count++;
1132 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1133 		}
1134 	}
1135 	spin_lock_irqsave(&conf->device_lock, flags);
1136 	mddev->degraded -= count;
1137 	spin_unlock_irqrestore(&conf->device_lock, flags);
1138 
1139 	print_conf(conf);
1140 	return count;
1141 }
1142 
1143 
1144 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1145 {
1146 	conf_t *conf = mddev->private;
1147 	int err = -EEXIST;
1148 	int mirror;
1149 	mirror_info_t *p;
1150 	int first = 0;
1151 	int last = conf->raid_disks - 1;
1152 
1153 	if (mddev->recovery_cp < MaxSector)
1154 		/* only hot-add to in-sync arrays, as recovery is
1155 		 * very different from resync
1156 		 */
1157 		return -EBUSY;
1158 	if (!enough(conf))
1159 		return -EINVAL;
1160 
1161 	if (rdev->raid_disk >= 0)
1162 		first = last = rdev->raid_disk;
1163 
1164 	if (rdev->saved_raid_disk >= 0 &&
1165 	    rdev->saved_raid_disk >= first &&
1166 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1167 		mirror = rdev->saved_raid_disk;
1168 	else
1169 		mirror = first;
1170 	for ( ; mirror <= last ; mirror++)
1171 		if ( !(p=conf->mirrors+mirror)->rdev) {
1172 
1173 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1174 					  rdev->data_offset << 9);
1175 			/* as we don't honour merge_bvec_fn, we must
1176 			 * never risk violating it, so limit
1177 			 * ->max_segments to one lying with a single
1178 			 * page, as a one page request is never in
1179 			 * violation.
1180 			 */
1181 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1182 				blk_queue_max_segments(mddev->queue, 1);
1183 				blk_queue_segment_boundary(mddev->queue,
1184 							   PAGE_CACHE_SIZE - 1);
1185 			}
1186 
1187 			p->head_position = 0;
1188 			rdev->raid_disk = mirror;
1189 			err = 0;
1190 			if (rdev->saved_raid_disk != mirror)
1191 				conf->fullsync = 1;
1192 			rcu_assign_pointer(p->rdev, rdev);
1193 			break;
1194 		}
1195 
1196 	md_integrity_add_rdev(rdev, mddev);
1197 	print_conf(conf);
1198 	return err;
1199 }
1200 
1201 static int raid10_remove_disk(mddev_t *mddev, int number)
1202 {
1203 	conf_t *conf = mddev->private;
1204 	int err = 0;
1205 	mdk_rdev_t *rdev;
1206 	mirror_info_t *p = conf->mirrors+ number;
1207 
1208 	print_conf(conf);
1209 	rdev = p->rdev;
1210 	if (rdev) {
1211 		if (test_bit(In_sync, &rdev->flags) ||
1212 		    atomic_read(&rdev->nr_pending)) {
1213 			err = -EBUSY;
1214 			goto abort;
1215 		}
1216 		/* Only remove faulty devices in recovery
1217 		 * is not possible.
1218 		 */
1219 		if (!test_bit(Faulty, &rdev->flags) &&
1220 		    enough(conf)) {
1221 			err = -EBUSY;
1222 			goto abort;
1223 		}
1224 		p->rdev = NULL;
1225 		synchronize_rcu();
1226 		if (atomic_read(&rdev->nr_pending)) {
1227 			/* lost the race, try later */
1228 			err = -EBUSY;
1229 			p->rdev = rdev;
1230 			goto abort;
1231 		}
1232 		md_integrity_register(mddev);
1233 	}
1234 abort:
1235 
1236 	print_conf(conf);
1237 	return err;
1238 }
1239 
1240 
1241 static void end_sync_read(struct bio *bio, int error)
1242 {
1243 	r10bio_t *r10_bio = bio->bi_private;
1244 	conf_t *conf = r10_bio->mddev->private;
1245 	int i,d;
1246 
1247 	for (i=0; i<conf->copies; i++)
1248 		if (r10_bio->devs[i].bio == bio)
1249 			break;
1250 	BUG_ON(i == conf->copies);
1251 	update_head_pos(i, r10_bio);
1252 	d = r10_bio->devs[i].devnum;
1253 
1254 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1255 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1256 	else {
1257 		atomic_add(r10_bio->sectors,
1258 			   &conf->mirrors[d].rdev->corrected_errors);
1259 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1260 			md_error(r10_bio->mddev,
1261 				 conf->mirrors[d].rdev);
1262 	}
1263 
1264 	/* for reconstruct, we always reschedule after a read.
1265 	 * for resync, only after all reads
1266 	 */
1267 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1268 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1269 	    atomic_dec_and_test(&r10_bio->remaining)) {
1270 		/* we have read all the blocks,
1271 		 * do the comparison in process context in raid10d
1272 		 */
1273 		reschedule_retry(r10_bio);
1274 	}
1275 }
1276 
1277 static void end_sync_write(struct bio *bio, int error)
1278 {
1279 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1280 	r10bio_t *r10_bio = bio->bi_private;
1281 	mddev_t *mddev = r10_bio->mddev;
1282 	conf_t *conf = mddev->private;
1283 	int i,d;
1284 
1285 	for (i = 0; i < conf->copies; i++)
1286 		if (r10_bio->devs[i].bio == bio)
1287 			break;
1288 	d = r10_bio->devs[i].devnum;
1289 
1290 	if (!uptodate)
1291 		md_error(mddev, conf->mirrors[d].rdev);
1292 
1293 	update_head_pos(i, r10_bio);
1294 
1295 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1296 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1297 		if (r10_bio->master_bio == NULL) {
1298 			/* the primary of several recovery bios */
1299 			sector_t s = r10_bio->sectors;
1300 			put_buf(r10_bio);
1301 			md_done_sync(mddev, s, 1);
1302 			break;
1303 		} else {
1304 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1305 			put_buf(r10_bio);
1306 			r10_bio = r10_bio2;
1307 		}
1308 	}
1309 }
1310 
1311 /*
1312  * Note: sync and recover and handled very differently for raid10
1313  * This code is for resync.
1314  * For resync, we read through virtual addresses and read all blocks.
1315  * If there is any error, we schedule a write.  The lowest numbered
1316  * drive is authoritative.
1317  * However requests come for physical address, so we need to map.
1318  * For every physical address there are raid_disks/copies virtual addresses,
1319  * which is always are least one, but is not necessarly an integer.
1320  * This means that a physical address can span multiple chunks, so we may
1321  * have to submit multiple io requests for a single sync request.
1322  */
1323 /*
1324  * We check if all blocks are in-sync and only write to blocks that
1325  * aren't in sync
1326  */
1327 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1328 {
1329 	conf_t *conf = mddev->private;
1330 	int i, first;
1331 	struct bio *tbio, *fbio;
1332 
1333 	atomic_set(&r10_bio->remaining, 1);
1334 
1335 	/* find the first device with a block */
1336 	for (i=0; i<conf->copies; i++)
1337 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1338 			break;
1339 
1340 	if (i == conf->copies)
1341 		goto done;
1342 
1343 	first = i;
1344 	fbio = r10_bio->devs[i].bio;
1345 
1346 	/* now find blocks with errors */
1347 	for (i=0 ; i < conf->copies ; i++) {
1348 		int  j, d;
1349 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1350 
1351 		tbio = r10_bio->devs[i].bio;
1352 
1353 		if (tbio->bi_end_io != end_sync_read)
1354 			continue;
1355 		if (i == first)
1356 			continue;
1357 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1358 			/* We know that the bi_io_vec layout is the same for
1359 			 * both 'first' and 'i', so we just compare them.
1360 			 * All vec entries are PAGE_SIZE;
1361 			 */
1362 			for (j = 0; j < vcnt; j++)
1363 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1364 					   page_address(tbio->bi_io_vec[j].bv_page),
1365 					   PAGE_SIZE))
1366 					break;
1367 			if (j == vcnt)
1368 				continue;
1369 			mddev->resync_mismatches += r10_bio->sectors;
1370 		}
1371 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1372 			/* Don't fix anything. */
1373 			continue;
1374 		/* Ok, we need to write this bio
1375 		 * First we need to fixup bv_offset, bv_len and
1376 		 * bi_vecs, as the read request might have corrupted these
1377 		 */
1378 		tbio->bi_vcnt = vcnt;
1379 		tbio->bi_size = r10_bio->sectors << 9;
1380 		tbio->bi_idx = 0;
1381 		tbio->bi_phys_segments = 0;
1382 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1383 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1384 		tbio->bi_next = NULL;
1385 		tbio->bi_rw = WRITE;
1386 		tbio->bi_private = r10_bio;
1387 		tbio->bi_sector = r10_bio->devs[i].addr;
1388 
1389 		for (j=0; j < vcnt ; j++) {
1390 			tbio->bi_io_vec[j].bv_offset = 0;
1391 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1392 
1393 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1394 			       page_address(fbio->bi_io_vec[j].bv_page),
1395 			       PAGE_SIZE);
1396 		}
1397 		tbio->bi_end_io = end_sync_write;
1398 
1399 		d = r10_bio->devs[i].devnum;
1400 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1401 		atomic_inc(&r10_bio->remaining);
1402 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1403 
1404 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1405 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1406 		generic_make_request(tbio);
1407 	}
1408 
1409 done:
1410 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1411 		md_done_sync(mddev, r10_bio->sectors, 1);
1412 		put_buf(r10_bio);
1413 	}
1414 }
1415 
1416 /*
1417  * Now for the recovery code.
1418  * Recovery happens across physical sectors.
1419  * We recover all non-is_sync drives by finding the virtual address of
1420  * each, and then choose a working drive that also has that virt address.
1421  * There is a separate r10_bio for each non-in_sync drive.
1422  * Only the first two slots are in use. The first for reading,
1423  * The second for writing.
1424  *
1425  */
1426 
1427 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1428 {
1429 	conf_t *conf = mddev->private;
1430 	int i, d;
1431 	struct bio *bio, *wbio;
1432 
1433 
1434 	/* move the pages across to the second bio
1435 	 * and submit the write request
1436 	 */
1437 	bio = r10_bio->devs[0].bio;
1438 	wbio = r10_bio->devs[1].bio;
1439 	for (i=0; i < wbio->bi_vcnt; i++) {
1440 		struct page *p = bio->bi_io_vec[i].bv_page;
1441 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1442 		wbio->bi_io_vec[i].bv_page = p;
1443 	}
1444 	d = r10_bio->devs[1].devnum;
1445 
1446 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1447 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1448 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1449 		generic_make_request(wbio);
1450 	else
1451 		bio_endio(wbio, -EIO);
1452 }
1453 
1454 
1455 /*
1456  * Used by fix_read_error() to decay the per rdev read_errors.
1457  * We halve the read error count for every hour that has elapsed
1458  * since the last recorded read error.
1459  *
1460  */
1461 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1462 {
1463 	struct timespec cur_time_mon;
1464 	unsigned long hours_since_last;
1465 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1466 
1467 	ktime_get_ts(&cur_time_mon);
1468 
1469 	if (rdev->last_read_error.tv_sec == 0 &&
1470 	    rdev->last_read_error.tv_nsec == 0) {
1471 		/* first time we've seen a read error */
1472 		rdev->last_read_error = cur_time_mon;
1473 		return;
1474 	}
1475 
1476 	hours_since_last = (cur_time_mon.tv_sec -
1477 			    rdev->last_read_error.tv_sec) / 3600;
1478 
1479 	rdev->last_read_error = cur_time_mon;
1480 
1481 	/*
1482 	 * if hours_since_last is > the number of bits in read_errors
1483 	 * just set read errors to 0. We do this to avoid
1484 	 * overflowing the shift of read_errors by hours_since_last.
1485 	 */
1486 	if (hours_since_last >= 8 * sizeof(read_errors))
1487 		atomic_set(&rdev->read_errors, 0);
1488 	else
1489 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1490 }
1491 
1492 /*
1493  * This is a kernel thread which:
1494  *
1495  *	1.	Retries failed read operations on working mirrors.
1496  *	2.	Updates the raid superblock when problems encounter.
1497  *	3.	Performs writes following reads for array synchronising.
1498  */
1499 
1500 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1501 {
1502 	int sect = 0; /* Offset from r10_bio->sector */
1503 	int sectors = r10_bio->sectors;
1504 	mdk_rdev_t*rdev;
1505 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1506 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1507 
1508 	rcu_read_lock();
1509 	rdev = rcu_dereference(conf->mirrors[d].rdev);
1510 	if (rdev) { /* If rdev is not NULL */
1511 		char b[BDEVNAME_SIZE];
1512 		int cur_read_error_count = 0;
1513 
1514 		bdevname(rdev->bdev, b);
1515 
1516 		if (test_bit(Faulty, &rdev->flags)) {
1517 			rcu_read_unlock();
1518 			/* drive has already been failed, just ignore any
1519 			   more fix_read_error() attempts */
1520 			return;
1521 		}
1522 
1523 		check_decay_read_errors(mddev, rdev);
1524 		atomic_inc(&rdev->read_errors);
1525 		cur_read_error_count = atomic_read(&rdev->read_errors);
1526 		if (cur_read_error_count > max_read_errors) {
1527 			rcu_read_unlock();
1528 			printk(KERN_NOTICE
1529 			       "md/raid10:%s: %s: Raid device exceeded "
1530 			       "read_error threshold "
1531 			       "[cur %d:max %d]\n",
1532 			       mdname(mddev),
1533 			       b, cur_read_error_count, max_read_errors);
1534 			printk(KERN_NOTICE
1535 			       "md/raid10:%s: %s: Failing raid "
1536 			       "device\n", mdname(mddev), b);
1537 			md_error(mddev, conf->mirrors[d].rdev);
1538 			return;
1539 		}
1540 	}
1541 	rcu_read_unlock();
1542 
1543 	while(sectors) {
1544 		int s = sectors;
1545 		int sl = r10_bio->read_slot;
1546 		int success = 0;
1547 		int start;
1548 
1549 		if (s > (PAGE_SIZE>>9))
1550 			s = PAGE_SIZE >> 9;
1551 
1552 		rcu_read_lock();
1553 		do {
1554 			d = r10_bio->devs[sl].devnum;
1555 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1556 			if (rdev &&
1557 			    test_bit(In_sync, &rdev->flags)) {
1558 				atomic_inc(&rdev->nr_pending);
1559 				rcu_read_unlock();
1560 				success = sync_page_io(rdev->bdev,
1561 						       r10_bio->devs[sl].addr +
1562 						       sect + rdev->data_offset,
1563 						       s<<9,
1564 						       conf->tmppage, READ);
1565 				rdev_dec_pending(rdev, mddev);
1566 				rcu_read_lock();
1567 				if (success)
1568 					break;
1569 			}
1570 			sl++;
1571 			if (sl == conf->copies)
1572 				sl = 0;
1573 		} while (!success && sl != r10_bio->read_slot);
1574 		rcu_read_unlock();
1575 
1576 		if (!success) {
1577 			/* Cannot read from anywhere -- bye bye array */
1578 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1579 			md_error(mddev, conf->mirrors[dn].rdev);
1580 			break;
1581 		}
1582 
1583 		start = sl;
1584 		/* write it back and re-read */
1585 		rcu_read_lock();
1586 		while (sl != r10_bio->read_slot) {
1587 			char b[BDEVNAME_SIZE];
1588 
1589 			if (sl==0)
1590 				sl = conf->copies;
1591 			sl--;
1592 			d = r10_bio->devs[sl].devnum;
1593 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1594 			if (rdev &&
1595 			    test_bit(In_sync, &rdev->flags)) {
1596 				atomic_inc(&rdev->nr_pending);
1597 				rcu_read_unlock();
1598 				atomic_add(s, &rdev->corrected_errors);
1599 				if (sync_page_io(rdev->bdev,
1600 						 r10_bio->devs[sl].addr +
1601 						 sect + rdev->data_offset,
1602 						 s<<9, conf->tmppage, WRITE)
1603 				    == 0) {
1604 					/* Well, this device is dead */
1605 					printk(KERN_NOTICE
1606 					       "md/raid10:%s: read correction "
1607 					       "write failed"
1608 					       " (%d sectors at %llu on %s)\n",
1609 					       mdname(mddev), s,
1610 					       (unsigned long long)(sect+
1611 					       rdev->data_offset),
1612 					       bdevname(rdev->bdev, b));
1613 					printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1614 					       "drive\n",
1615 					       mdname(mddev),
1616 					       bdevname(rdev->bdev, b));
1617 					md_error(mddev, rdev);
1618 				}
1619 				rdev_dec_pending(rdev, mddev);
1620 				rcu_read_lock();
1621 			}
1622 		}
1623 		sl = start;
1624 		while (sl != r10_bio->read_slot) {
1625 
1626 			if (sl==0)
1627 				sl = conf->copies;
1628 			sl--;
1629 			d = r10_bio->devs[sl].devnum;
1630 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1631 			if (rdev &&
1632 			    test_bit(In_sync, &rdev->flags)) {
1633 				char b[BDEVNAME_SIZE];
1634 				atomic_inc(&rdev->nr_pending);
1635 				rcu_read_unlock();
1636 				if (sync_page_io(rdev->bdev,
1637 						 r10_bio->devs[sl].addr +
1638 						 sect + rdev->data_offset,
1639 						 s<<9, conf->tmppage,
1640 						 READ) == 0) {
1641 					/* Well, this device is dead */
1642 					printk(KERN_NOTICE
1643 					       "md/raid10:%s: unable to read back "
1644 					       "corrected sectors"
1645 					       " (%d sectors at %llu on %s)\n",
1646 					       mdname(mddev), s,
1647 					       (unsigned long long)(sect+
1648 						    rdev->data_offset),
1649 					       bdevname(rdev->bdev, b));
1650 					printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1651 					       mdname(mddev),
1652 					       bdevname(rdev->bdev, b));
1653 
1654 					md_error(mddev, rdev);
1655 				} else {
1656 					printk(KERN_INFO
1657 					       "md/raid10:%s: read error corrected"
1658 					       " (%d sectors at %llu on %s)\n",
1659 					       mdname(mddev), s,
1660 					       (unsigned long long)(sect+
1661 					            rdev->data_offset),
1662 					       bdevname(rdev->bdev, b));
1663 				}
1664 
1665 				rdev_dec_pending(rdev, mddev);
1666 				rcu_read_lock();
1667 			}
1668 		}
1669 		rcu_read_unlock();
1670 
1671 		sectors -= s;
1672 		sect += s;
1673 	}
1674 }
1675 
1676 static void raid10d(mddev_t *mddev)
1677 {
1678 	r10bio_t *r10_bio;
1679 	struct bio *bio;
1680 	unsigned long flags;
1681 	conf_t *conf = mddev->private;
1682 	struct list_head *head = &conf->retry_list;
1683 	int unplug=0;
1684 	mdk_rdev_t *rdev;
1685 
1686 	md_check_recovery(mddev);
1687 
1688 	for (;;) {
1689 		char b[BDEVNAME_SIZE];
1690 
1691 		unplug += flush_pending_writes(conf);
1692 
1693 		spin_lock_irqsave(&conf->device_lock, flags);
1694 		if (list_empty(head)) {
1695 			spin_unlock_irqrestore(&conf->device_lock, flags);
1696 			break;
1697 		}
1698 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1699 		list_del(head->prev);
1700 		conf->nr_queued--;
1701 		spin_unlock_irqrestore(&conf->device_lock, flags);
1702 
1703 		mddev = r10_bio->mddev;
1704 		conf = mddev->private;
1705 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1706 			sync_request_write(mddev, r10_bio);
1707 			unplug = 1;
1708 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1709 			recovery_request_write(mddev, r10_bio);
1710 			unplug = 1;
1711 		} else {
1712 			int mirror;
1713 			/* we got a read error. Maybe the drive is bad.  Maybe just
1714 			 * the block and we can fix it.
1715 			 * We freeze all other IO, and try reading the block from
1716 			 * other devices.  When we find one, we re-write
1717 			 * and check it that fixes the read error.
1718 			 * This is all done synchronously while the array is
1719 			 * frozen.
1720 			 */
1721 			if (mddev->ro == 0) {
1722 				freeze_array(conf);
1723 				fix_read_error(conf, mddev, r10_bio);
1724 				unfreeze_array(conf);
1725 			}
1726 
1727 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1728 			r10_bio->devs[r10_bio->read_slot].bio =
1729 				mddev->ro ? IO_BLOCKED : NULL;
1730 			mirror = read_balance(conf, r10_bio);
1731 			if (mirror == -1) {
1732 				printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1733 				       " read error for block %llu\n",
1734 				       mdname(mddev),
1735 				       bdevname(bio->bi_bdev,b),
1736 				       (unsigned long long)r10_bio->sector);
1737 				raid_end_bio_io(r10_bio);
1738 				bio_put(bio);
1739 			} else {
1740 				const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1741 				bio_put(bio);
1742 				rdev = conf->mirrors[mirror].rdev;
1743 				if (printk_ratelimit())
1744 					printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1745 					       " another mirror\n",
1746 					       mdname(mddev),
1747 					       bdevname(rdev->bdev,b),
1748 					       (unsigned long long)r10_bio->sector);
1749 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1750 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1751 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1752 					+ rdev->data_offset;
1753 				bio->bi_bdev = rdev->bdev;
1754 				bio->bi_rw = READ | do_sync;
1755 				bio->bi_private = r10_bio;
1756 				bio->bi_end_io = raid10_end_read_request;
1757 				unplug = 1;
1758 				generic_make_request(bio);
1759 			}
1760 		}
1761 		cond_resched();
1762 	}
1763 	if (unplug)
1764 		unplug_slaves(mddev);
1765 }
1766 
1767 
1768 static int init_resync(conf_t *conf)
1769 {
1770 	int buffs;
1771 
1772 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1773 	BUG_ON(conf->r10buf_pool);
1774 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1775 	if (!conf->r10buf_pool)
1776 		return -ENOMEM;
1777 	conf->next_resync = 0;
1778 	return 0;
1779 }
1780 
1781 /*
1782  * perform a "sync" on one "block"
1783  *
1784  * We need to make sure that no normal I/O request - particularly write
1785  * requests - conflict with active sync requests.
1786  *
1787  * This is achieved by tracking pending requests and a 'barrier' concept
1788  * that can be installed to exclude normal IO requests.
1789  *
1790  * Resync and recovery are handled very differently.
1791  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1792  *
1793  * For resync, we iterate over virtual addresses, read all copies,
1794  * and update if there are differences.  If only one copy is live,
1795  * skip it.
1796  * For recovery, we iterate over physical addresses, read a good
1797  * value for each non-in_sync drive, and over-write.
1798  *
1799  * So, for recovery we may have several outstanding complex requests for a
1800  * given address, one for each out-of-sync device.  We model this by allocating
1801  * a number of r10_bio structures, one for each out-of-sync device.
1802  * As we setup these structures, we collect all bio's together into a list
1803  * which we then process collectively to add pages, and then process again
1804  * to pass to generic_make_request.
1805  *
1806  * The r10_bio structures are linked using a borrowed master_bio pointer.
1807  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1808  * has its remaining count decremented to 0, the whole complex operation
1809  * is complete.
1810  *
1811  */
1812 
1813 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1814 {
1815 	conf_t *conf = mddev->private;
1816 	r10bio_t *r10_bio;
1817 	struct bio *biolist = NULL, *bio;
1818 	sector_t max_sector, nr_sectors;
1819 	int disk;
1820 	int i;
1821 	int max_sync;
1822 	int sync_blocks;
1823 
1824 	sector_t sectors_skipped = 0;
1825 	int chunks_skipped = 0;
1826 
1827 	if (!conf->r10buf_pool)
1828 		if (init_resync(conf))
1829 			return 0;
1830 
1831  skipped:
1832 	max_sector = mddev->dev_sectors;
1833 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1834 		max_sector = mddev->resync_max_sectors;
1835 	if (sector_nr >= max_sector) {
1836 		/* If we aborted, we need to abort the
1837 		 * sync on the 'current' bitmap chucks (there can
1838 		 * be several when recovering multiple devices).
1839 		 * as we may have started syncing it but not finished.
1840 		 * We can find the current address in
1841 		 * mddev->curr_resync, but for recovery,
1842 		 * we need to convert that to several
1843 		 * virtual addresses.
1844 		 */
1845 		if (mddev->curr_resync < max_sector) { /* aborted */
1846 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1847 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1848 						&sync_blocks, 1);
1849 			else for (i=0; i<conf->raid_disks; i++) {
1850 				sector_t sect =
1851 					raid10_find_virt(conf, mddev->curr_resync, i);
1852 				bitmap_end_sync(mddev->bitmap, sect,
1853 						&sync_blocks, 1);
1854 			}
1855 		} else /* completed sync */
1856 			conf->fullsync = 0;
1857 
1858 		bitmap_close_sync(mddev->bitmap);
1859 		close_sync(conf);
1860 		*skipped = 1;
1861 		return sectors_skipped;
1862 	}
1863 	if (chunks_skipped >= conf->raid_disks) {
1864 		/* if there has been nothing to do on any drive,
1865 		 * then there is nothing to do at all..
1866 		 */
1867 		*skipped = 1;
1868 		return (max_sector - sector_nr) + sectors_skipped;
1869 	}
1870 
1871 	if (max_sector > mddev->resync_max)
1872 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1873 
1874 	/* make sure whole request will fit in a chunk - if chunks
1875 	 * are meaningful
1876 	 */
1877 	if (conf->near_copies < conf->raid_disks &&
1878 	    max_sector > (sector_nr | conf->chunk_mask))
1879 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1880 	/*
1881 	 * If there is non-resync activity waiting for us then
1882 	 * put in a delay to throttle resync.
1883 	 */
1884 	if (!go_faster && conf->nr_waiting)
1885 		msleep_interruptible(1000);
1886 
1887 	/* Again, very different code for resync and recovery.
1888 	 * Both must result in an r10bio with a list of bios that
1889 	 * have bi_end_io, bi_sector, bi_bdev set,
1890 	 * and bi_private set to the r10bio.
1891 	 * For recovery, we may actually create several r10bios
1892 	 * with 2 bios in each, that correspond to the bios in the main one.
1893 	 * In this case, the subordinate r10bios link back through a
1894 	 * borrowed master_bio pointer, and the counter in the master
1895 	 * includes a ref from each subordinate.
1896 	 */
1897 	/* First, we decide what to do and set ->bi_end_io
1898 	 * To end_sync_read if we want to read, and
1899 	 * end_sync_write if we will want to write.
1900 	 */
1901 
1902 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1903 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1904 		/* recovery... the complicated one */
1905 		int j, k;
1906 		r10_bio = NULL;
1907 
1908 		for (i=0 ; i<conf->raid_disks; i++)
1909 			if (conf->mirrors[i].rdev &&
1910 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1911 				int still_degraded = 0;
1912 				/* want to reconstruct this device */
1913 				r10bio_t *rb2 = r10_bio;
1914 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1915 				int must_sync;
1916 				/* Unless we are doing a full sync, we only need
1917 				 * to recover the block if it is set in the bitmap
1918 				 */
1919 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1920 							      &sync_blocks, 1);
1921 				if (sync_blocks < max_sync)
1922 					max_sync = sync_blocks;
1923 				if (!must_sync &&
1924 				    !conf->fullsync) {
1925 					/* yep, skip the sync_blocks here, but don't assume
1926 					 * that there will never be anything to do here
1927 					 */
1928 					chunks_skipped = -1;
1929 					continue;
1930 				}
1931 
1932 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1933 				raise_barrier(conf, rb2 != NULL);
1934 				atomic_set(&r10_bio->remaining, 0);
1935 
1936 				r10_bio->master_bio = (struct bio*)rb2;
1937 				if (rb2)
1938 					atomic_inc(&rb2->remaining);
1939 				r10_bio->mddev = mddev;
1940 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1941 				r10_bio->sector = sect;
1942 
1943 				raid10_find_phys(conf, r10_bio);
1944 
1945 				/* Need to check if the array will still be
1946 				 * degraded
1947 				 */
1948 				for (j=0; j<conf->raid_disks; j++)
1949 					if (conf->mirrors[j].rdev == NULL ||
1950 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1951 						still_degraded = 1;
1952 						break;
1953 					}
1954 
1955 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1956 							      &sync_blocks, still_degraded);
1957 
1958 				for (j=0; j<conf->copies;j++) {
1959 					int d = r10_bio->devs[j].devnum;
1960 					if (conf->mirrors[d].rdev &&
1961 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1962 						/* This is where we read from */
1963 						bio = r10_bio->devs[0].bio;
1964 						bio->bi_next = biolist;
1965 						biolist = bio;
1966 						bio->bi_private = r10_bio;
1967 						bio->bi_end_io = end_sync_read;
1968 						bio->bi_rw = READ;
1969 						bio->bi_sector = r10_bio->devs[j].addr +
1970 							conf->mirrors[d].rdev->data_offset;
1971 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1972 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1973 						atomic_inc(&r10_bio->remaining);
1974 						/* and we write to 'i' */
1975 
1976 						for (k=0; k<conf->copies; k++)
1977 							if (r10_bio->devs[k].devnum == i)
1978 								break;
1979 						BUG_ON(k == conf->copies);
1980 						bio = r10_bio->devs[1].bio;
1981 						bio->bi_next = biolist;
1982 						biolist = bio;
1983 						bio->bi_private = r10_bio;
1984 						bio->bi_end_io = end_sync_write;
1985 						bio->bi_rw = WRITE;
1986 						bio->bi_sector = r10_bio->devs[k].addr +
1987 							conf->mirrors[i].rdev->data_offset;
1988 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1989 
1990 						r10_bio->devs[0].devnum = d;
1991 						r10_bio->devs[1].devnum = i;
1992 
1993 						break;
1994 					}
1995 				}
1996 				if (j == conf->copies) {
1997 					/* Cannot recover, so abort the recovery */
1998 					put_buf(r10_bio);
1999 					if (rb2)
2000 						atomic_dec(&rb2->remaining);
2001 					r10_bio = rb2;
2002 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2003 							      &mddev->recovery))
2004 						printk(KERN_INFO "md/raid10:%s: insufficient "
2005 						       "working devices for recovery.\n",
2006 						       mdname(mddev));
2007 					break;
2008 				}
2009 			}
2010 		if (biolist == NULL) {
2011 			while (r10_bio) {
2012 				r10bio_t *rb2 = r10_bio;
2013 				r10_bio = (r10bio_t*) rb2->master_bio;
2014 				rb2->master_bio = NULL;
2015 				put_buf(rb2);
2016 			}
2017 			goto giveup;
2018 		}
2019 	} else {
2020 		/* resync. Schedule a read for every block at this virt offset */
2021 		int count = 0;
2022 
2023 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2024 
2025 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2026 				       &sync_blocks, mddev->degraded) &&
2027 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2028 			/* We can skip this block */
2029 			*skipped = 1;
2030 			return sync_blocks + sectors_skipped;
2031 		}
2032 		if (sync_blocks < max_sync)
2033 			max_sync = sync_blocks;
2034 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2035 
2036 		r10_bio->mddev = mddev;
2037 		atomic_set(&r10_bio->remaining, 0);
2038 		raise_barrier(conf, 0);
2039 		conf->next_resync = sector_nr;
2040 
2041 		r10_bio->master_bio = NULL;
2042 		r10_bio->sector = sector_nr;
2043 		set_bit(R10BIO_IsSync, &r10_bio->state);
2044 		raid10_find_phys(conf, r10_bio);
2045 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2046 
2047 		for (i=0; i<conf->copies; i++) {
2048 			int d = r10_bio->devs[i].devnum;
2049 			bio = r10_bio->devs[i].bio;
2050 			bio->bi_end_io = NULL;
2051 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2052 			if (conf->mirrors[d].rdev == NULL ||
2053 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2054 				continue;
2055 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2056 			atomic_inc(&r10_bio->remaining);
2057 			bio->bi_next = biolist;
2058 			biolist = bio;
2059 			bio->bi_private = r10_bio;
2060 			bio->bi_end_io = end_sync_read;
2061 			bio->bi_rw = READ;
2062 			bio->bi_sector = r10_bio->devs[i].addr +
2063 				conf->mirrors[d].rdev->data_offset;
2064 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2065 			count++;
2066 		}
2067 
2068 		if (count < 2) {
2069 			for (i=0; i<conf->copies; i++) {
2070 				int d = r10_bio->devs[i].devnum;
2071 				if (r10_bio->devs[i].bio->bi_end_io)
2072 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2073 			}
2074 			put_buf(r10_bio);
2075 			biolist = NULL;
2076 			goto giveup;
2077 		}
2078 	}
2079 
2080 	for (bio = biolist; bio ; bio=bio->bi_next) {
2081 
2082 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2083 		if (bio->bi_end_io)
2084 			bio->bi_flags |= 1 << BIO_UPTODATE;
2085 		bio->bi_vcnt = 0;
2086 		bio->bi_idx = 0;
2087 		bio->bi_phys_segments = 0;
2088 		bio->bi_size = 0;
2089 	}
2090 
2091 	nr_sectors = 0;
2092 	if (sector_nr + max_sync < max_sector)
2093 		max_sector = sector_nr + max_sync;
2094 	do {
2095 		struct page *page;
2096 		int len = PAGE_SIZE;
2097 		disk = 0;
2098 		if (sector_nr + (len>>9) > max_sector)
2099 			len = (max_sector - sector_nr) << 9;
2100 		if (len == 0)
2101 			break;
2102 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2103 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2104 			if (bio_add_page(bio, page, len, 0) == 0) {
2105 				/* stop here */
2106 				struct bio *bio2;
2107 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2108 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2109 					/* remove last page from this bio */
2110 					bio2->bi_vcnt--;
2111 					bio2->bi_size -= len;
2112 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2113 				}
2114 				goto bio_full;
2115 			}
2116 			disk = i;
2117 		}
2118 		nr_sectors += len>>9;
2119 		sector_nr += len>>9;
2120 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2121  bio_full:
2122 	r10_bio->sectors = nr_sectors;
2123 
2124 	while (biolist) {
2125 		bio = biolist;
2126 		biolist = biolist->bi_next;
2127 
2128 		bio->bi_next = NULL;
2129 		r10_bio = bio->bi_private;
2130 		r10_bio->sectors = nr_sectors;
2131 
2132 		if (bio->bi_end_io == end_sync_read) {
2133 			md_sync_acct(bio->bi_bdev, nr_sectors);
2134 			generic_make_request(bio);
2135 		}
2136 	}
2137 
2138 	if (sectors_skipped)
2139 		/* pretend they weren't skipped, it makes
2140 		 * no important difference in this case
2141 		 */
2142 		md_done_sync(mddev, sectors_skipped, 1);
2143 
2144 	return sectors_skipped + nr_sectors;
2145  giveup:
2146 	/* There is nowhere to write, so all non-sync
2147 	 * drives must be failed, so try the next chunk...
2148 	 */
2149 	if (sector_nr + max_sync < max_sector)
2150 		max_sector = sector_nr + max_sync;
2151 
2152 	sectors_skipped += (max_sector - sector_nr);
2153 	chunks_skipped ++;
2154 	sector_nr = max_sector;
2155 	goto skipped;
2156 }
2157 
2158 static sector_t
2159 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2160 {
2161 	sector_t size;
2162 	conf_t *conf = mddev->private;
2163 
2164 	if (!raid_disks)
2165 		raid_disks = conf->raid_disks;
2166 	if (!sectors)
2167 		sectors = conf->dev_sectors;
2168 
2169 	size = sectors >> conf->chunk_shift;
2170 	sector_div(size, conf->far_copies);
2171 	size = size * raid_disks;
2172 	sector_div(size, conf->near_copies);
2173 
2174 	return size << conf->chunk_shift;
2175 }
2176 
2177 
2178 static conf_t *setup_conf(mddev_t *mddev)
2179 {
2180 	conf_t *conf = NULL;
2181 	int nc, fc, fo;
2182 	sector_t stride, size;
2183 	int err = -EINVAL;
2184 
2185 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2186 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2187 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2188 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2189 		       mdname(mddev), PAGE_SIZE);
2190 		goto out;
2191 	}
2192 
2193 	nc = mddev->new_layout & 255;
2194 	fc = (mddev->new_layout >> 8) & 255;
2195 	fo = mddev->new_layout & (1<<16);
2196 
2197 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2198 	    (mddev->new_layout >> 17)) {
2199 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2200 		       mdname(mddev), mddev->new_layout);
2201 		goto out;
2202 	}
2203 
2204 	err = -ENOMEM;
2205 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2206 	if (!conf)
2207 		goto out;
2208 
2209 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2210 				GFP_KERNEL);
2211 	if (!conf->mirrors)
2212 		goto out;
2213 
2214 	conf->tmppage = alloc_page(GFP_KERNEL);
2215 	if (!conf->tmppage)
2216 		goto out;
2217 
2218 
2219 	conf->raid_disks = mddev->raid_disks;
2220 	conf->near_copies = nc;
2221 	conf->far_copies = fc;
2222 	conf->copies = nc*fc;
2223 	conf->far_offset = fo;
2224 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2225 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2226 
2227 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2228 					   r10bio_pool_free, conf);
2229 	if (!conf->r10bio_pool)
2230 		goto out;
2231 
2232 	size = mddev->dev_sectors >> conf->chunk_shift;
2233 	sector_div(size, fc);
2234 	size = size * conf->raid_disks;
2235 	sector_div(size, nc);
2236 	/* 'size' is now the number of chunks in the array */
2237 	/* calculate "used chunks per device" in 'stride' */
2238 	stride = size * conf->copies;
2239 
2240 	/* We need to round up when dividing by raid_disks to
2241 	 * get the stride size.
2242 	 */
2243 	stride += conf->raid_disks - 1;
2244 	sector_div(stride, conf->raid_disks);
2245 
2246 	conf->dev_sectors = stride << conf->chunk_shift;
2247 
2248 	if (fo)
2249 		stride = 1;
2250 	else
2251 		sector_div(stride, fc);
2252 	conf->stride = stride << conf->chunk_shift;
2253 
2254 
2255 	spin_lock_init(&conf->device_lock);
2256 	INIT_LIST_HEAD(&conf->retry_list);
2257 
2258 	spin_lock_init(&conf->resync_lock);
2259 	init_waitqueue_head(&conf->wait_barrier);
2260 
2261 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2262 	if (!conf->thread)
2263 		goto out;
2264 
2265 	conf->mddev = mddev;
2266 	return conf;
2267 
2268  out:
2269 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2270 	       mdname(mddev));
2271 	if (conf) {
2272 		if (conf->r10bio_pool)
2273 			mempool_destroy(conf->r10bio_pool);
2274 		kfree(conf->mirrors);
2275 		safe_put_page(conf->tmppage);
2276 		kfree(conf);
2277 	}
2278 	return ERR_PTR(err);
2279 }
2280 
2281 static int run(mddev_t *mddev)
2282 {
2283 	conf_t *conf;
2284 	int i, disk_idx, chunk_size;
2285 	mirror_info_t *disk;
2286 	mdk_rdev_t *rdev;
2287 	sector_t size;
2288 
2289 	/*
2290 	 * copy the already verified devices into our private RAID10
2291 	 * bookkeeping area. [whatever we allocate in run(),
2292 	 * should be freed in stop()]
2293 	 */
2294 
2295 	if (mddev->private == NULL) {
2296 		conf = setup_conf(mddev);
2297 		if (IS_ERR(conf))
2298 			return PTR_ERR(conf);
2299 		mddev->private = conf;
2300 	}
2301 	conf = mddev->private;
2302 	if (!conf)
2303 		goto out;
2304 
2305 	mddev->queue->queue_lock = &conf->device_lock;
2306 
2307 	mddev->thread = conf->thread;
2308 	conf->thread = NULL;
2309 
2310 	chunk_size = mddev->chunk_sectors << 9;
2311 	blk_queue_io_min(mddev->queue, chunk_size);
2312 	if (conf->raid_disks % conf->near_copies)
2313 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2314 	else
2315 		blk_queue_io_opt(mddev->queue, chunk_size *
2316 				 (conf->raid_disks / conf->near_copies));
2317 
2318 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2319 		disk_idx = rdev->raid_disk;
2320 		if (disk_idx >= conf->raid_disks
2321 		    || disk_idx < 0)
2322 			continue;
2323 		disk = conf->mirrors + disk_idx;
2324 
2325 		disk->rdev = rdev;
2326 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2327 				  rdev->data_offset << 9);
2328 		/* as we don't honour merge_bvec_fn, we must never risk
2329 		 * violating it, so limit max_segments to 1 lying
2330 		 * within a single page.
2331 		 */
2332 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2333 			blk_queue_max_segments(mddev->queue, 1);
2334 			blk_queue_segment_boundary(mddev->queue,
2335 						   PAGE_CACHE_SIZE - 1);
2336 		}
2337 
2338 		disk->head_position = 0;
2339 	}
2340 	/* need to check that every block has at least one working mirror */
2341 	if (!enough(conf)) {
2342 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2343 		       mdname(mddev));
2344 		goto out_free_conf;
2345 	}
2346 
2347 	mddev->degraded = 0;
2348 	for (i = 0; i < conf->raid_disks; i++) {
2349 
2350 		disk = conf->mirrors + i;
2351 
2352 		if (!disk->rdev ||
2353 		    !test_bit(In_sync, &disk->rdev->flags)) {
2354 			disk->head_position = 0;
2355 			mddev->degraded++;
2356 			if (disk->rdev)
2357 				conf->fullsync = 1;
2358 		}
2359 	}
2360 
2361 	if (mddev->recovery_cp != MaxSector)
2362 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2363 		       " -- starting background reconstruction\n",
2364 		       mdname(mddev));
2365 	printk(KERN_INFO
2366 		"md/raid10:%s: active with %d out of %d devices\n",
2367 		mdname(mddev), conf->raid_disks - mddev->degraded,
2368 		conf->raid_disks);
2369 	/*
2370 	 * Ok, everything is just fine now
2371 	 */
2372 	mddev->dev_sectors = conf->dev_sectors;
2373 	size = raid10_size(mddev, 0, 0);
2374 	md_set_array_sectors(mddev, size);
2375 	mddev->resync_max_sectors = size;
2376 
2377 	mddev->queue->unplug_fn = raid10_unplug;
2378 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2379 	mddev->queue->backing_dev_info.congested_data = mddev;
2380 
2381 	/* Calculate max read-ahead size.
2382 	 * We need to readahead at least twice a whole stripe....
2383 	 * maybe...
2384 	 */
2385 	{
2386 		int stripe = conf->raid_disks *
2387 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2388 		stripe /= conf->near_copies;
2389 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2390 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2391 	}
2392 
2393 	if (conf->near_copies < conf->raid_disks)
2394 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2395 	md_integrity_register(mddev);
2396 	return 0;
2397 
2398 out_free_conf:
2399 	if (conf->r10bio_pool)
2400 		mempool_destroy(conf->r10bio_pool);
2401 	safe_put_page(conf->tmppage);
2402 	kfree(conf->mirrors);
2403 	kfree(conf);
2404 	mddev->private = NULL;
2405 	md_unregister_thread(mddev->thread);
2406 out:
2407 	return -EIO;
2408 }
2409 
2410 static int stop(mddev_t *mddev)
2411 {
2412 	conf_t *conf = mddev->private;
2413 
2414 	raise_barrier(conf, 0);
2415 	lower_barrier(conf);
2416 
2417 	md_unregister_thread(mddev->thread);
2418 	mddev->thread = NULL;
2419 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2420 	if (conf->r10bio_pool)
2421 		mempool_destroy(conf->r10bio_pool);
2422 	kfree(conf->mirrors);
2423 	kfree(conf);
2424 	mddev->private = NULL;
2425 	return 0;
2426 }
2427 
2428 static void raid10_quiesce(mddev_t *mddev, int state)
2429 {
2430 	conf_t *conf = mddev->private;
2431 
2432 	switch(state) {
2433 	case 1:
2434 		raise_barrier(conf, 0);
2435 		break;
2436 	case 0:
2437 		lower_barrier(conf);
2438 		break;
2439 	}
2440 }
2441 
2442 static void *raid10_takeover_raid0(mddev_t *mddev)
2443 {
2444 	mdk_rdev_t *rdev;
2445 	conf_t *conf;
2446 
2447 	if (mddev->degraded > 0) {
2448 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2449 		       mdname(mddev));
2450 		return ERR_PTR(-EINVAL);
2451 	}
2452 
2453 	/* Set new parameters */
2454 	mddev->new_level = 10;
2455 	/* new layout: far_copies = 1, near_copies = 2 */
2456 	mddev->new_layout = (1<<8) + 2;
2457 	mddev->new_chunk_sectors = mddev->chunk_sectors;
2458 	mddev->delta_disks = mddev->raid_disks;
2459 	mddev->raid_disks *= 2;
2460 	/* make sure it will be not marked as dirty */
2461 	mddev->recovery_cp = MaxSector;
2462 
2463 	conf = setup_conf(mddev);
2464 	if (!IS_ERR(conf))
2465 		list_for_each_entry(rdev, &mddev->disks, same_set)
2466 			if (rdev->raid_disk >= 0)
2467 				rdev->new_raid_disk = rdev->raid_disk * 2;
2468 
2469 	return conf;
2470 }
2471 
2472 static void *raid10_takeover(mddev_t *mddev)
2473 {
2474 	struct raid0_private_data *raid0_priv;
2475 
2476 	/* raid10 can take over:
2477 	 *  raid0 - providing it has only two drives
2478 	 */
2479 	if (mddev->level == 0) {
2480 		/* for raid0 takeover only one zone is supported */
2481 		raid0_priv = mddev->private;
2482 		if (raid0_priv->nr_strip_zones > 1) {
2483 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2484 			       " with more than one zone.\n",
2485 			       mdname(mddev));
2486 			return ERR_PTR(-EINVAL);
2487 		}
2488 		return raid10_takeover_raid0(mddev);
2489 	}
2490 	return ERR_PTR(-EINVAL);
2491 }
2492 
2493 static struct mdk_personality raid10_personality =
2494 {
2495 	.name		= "raid10",
2496 	.level		= 10,
2497 	.owner		= THIS_MODULE,
2498 	.make_request	= make_request,
2499 	.run		= run,
2500 	.stop		= stop,
2501 	.status		= status,
2502 	.error_handler	= error,
2503 	.hot_add_disk	= raid10_add_disk,
2504 	.hot_remove_disk= raid10_remove_disk,
2505 	.spare_active	= raid10_spare_active,
2506 	.sync_request	= sync_request,
2507 	.quiesce	= raid10_quiesce,
2508 	.size		= raid10_size,
2509 	.takeover	= raid10_takeover,
2510 };
2511 
2512 static int __init raid_init(void)
2513 {
2514 	return register_md_personality(&raid10_personality);
2515 }
2516 
2517 static void raid_exit(void)
2518 {
2519 	unregister_md_personality(&raid10_personality);
2520 }
2521 
2522 module_init(raid_init);
2523 module_exit(raid_exit);
2524 MODULE_LICENSE("GPL");
2525 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2526 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2527 MODULE_ALIAS("md-raid10");
2528 MODULE_ALIAS("md-level-10");
2529