xref: /openbmc/linux/drivers/md/raid10.c (revision 3821a065)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		bio->bi_error = -EIO;
311 	if (done) {
312 		bio_endio(bio);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio)
362 {
363 	int uptodate = !bio->bi_error;
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 	slot = r10_bio->read_slot;
370 	dev = r10_bio->devs[slot].devnum;
371 	rdev = r10_bio->devs[slot].rdev;
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(slot, r10_bio);
376 
377 	if (uptodate) {
378 		/*
379 		 * Set R10BIO_Uptodate in our master bio, so that
380 		 * we will return a good error code to the higher
381 		 * levels even if IO on some other mirrored buffer fails.
382 		 *
383 		 * The 'master' represents the composite IO operation to
384 		 * user-side. So if something waits for IO, then it will
385 		 * wait for the 'master' bio.
386 		 */
387 		set_bit(R10BIO_Uptodate, &r10_bio->state);
388 	} else {
389 		/* If all other devices that store this block have
390 		 * failed, we want to return the error upwards rather
391 		 * than fail the last device.  Here we redefine
392 		 * "uptodate" to mean "Don't want to retry"
393 		 */
394 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 			     rdev->raid_disk))
396 			uptodate = 1;
397 	}
398 	if (uptodate) {
399 		raid_end_bio_io(r10_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error - keep the refcount on the rdev
404 		 */
405 		char b[BDEVNAME_SIZE];
406 		printk_ratelimited(KERN_ERR
407 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
408 				   mdname(conf->mddev),
409 				   bdevname(rdev->bdev, b),
410 				   (unsigned long long)r10_bio->sector);
411 		set_bit(R10BIO_ReadError, &r10_bio->state);
412 		reschedule_retry(r10_bio);
413 	}
414 }
415 
416 static void close_write(struct r10bio *r10_bio)
417 {
418 	/* clear the bitmap if all writes complete successfully */
419 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 			r10_bio->sectors,
421 			!test_bit(R10BIO_Degraded, &r10_bio->state),
422 			0);
423 	md_write_end(r10_bio->mddev);
424 }
425 
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 	if (atomic_dec_and_test(&r10_bio->remaining)) {
429 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 			reschedule_retry(r10_bio);
431 		else {
432 			close_write(r10_bio);
433 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 				reschedule_retry(r10_bio);
435 			else
436 				raid_end_bio_io(r10_bio);
437 		}
438 	}
439 }
440 
441 static void raid10_end_write_request(struct bio *bio)
442 {
443 	struct r10bio *r10_bio = bio->bi_private;
444 	int dev;
445 	int dec_rdev = 1;
446 	struct r10conf *conf = r10_bio->mddev->private;
447 	int slot, repl;
448 	struct md_rdev *rdev = NULL;
449 
450 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
451 
452 	if (repl)
453 		rdev = conf->mirrors[dev].replacement;
454 	if (!rdev) {
455 		smp_rmb();
456 		repl = 0;
457 		rdev = conf->mirrors[dev].rdev;
458 	}
459 	/*
460 	 * this branch is our 'one mirror IO has finished' event handler:
461 	 */
462 	if (bio->bi_error) {
463 		if (repl)
464 			/* Never record new bad blocks to replacement,
465 			 * just fail it.
466 			 */
467 			md_error(rdev->mddev, rdev);
468 		else {
469 			set_bit(WriteErrorSeen,	&rdev->flags);
470 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
471 				set_bit(MD_RECOVERY_NEEDED,
472 					&rdev->mddev->recovery);
473 			set_bit(R10BIO_WriteError, &r10_bio->state);
474 			dec_rdev = 0;
475 		}
476 	} else {
477 		/*
478 		 * Set R10BIO_Uptodate in our master bio, so that
479 		 * we will return a good error code for to the higher
480 		 * levels even if IO on some other mirrored buffer fails.
481 		 *
482 		 * The 'master' represents the composite IO operation to
483 		 * user-side. So if something waits for IO, then it will
484 		 * wait for the 'master' bio.
485 		 */
486 		sector_t first_bad;
487 		int bad_sectors;
488 
489 		/*
490 		 * Do not set R10BIO_Uptodate if the current device is
491 		 * rebuilding or Faulty. This is because we cannot use
492 		 * such device for properly reading the data back (we could
493 		 * potentially use it, if the current write would have felt
494 		 * before rdev->recovery_offset, but for simplicity we don't
495 		 * check this here.
496 		 */
497 		if (test_bit(In_sync, &rdev->flags) &&
498 		    !test_bit(Faulty, &rdev->flags))
499 			set_bit(R10BIO_Uptodate, &r10_bio->state);
500 
501 		/* Maybe we can clear some bad blocks. */
502 		if (is_badblock(rdev,
503 				r10_bio->devs[slot].addr,
504 				r10_bio->sectors,
505 				&first_bad, &bad_sectors)) {
506 			bio_put(bio);
507 			if (repl)
508 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
509 			else
510 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
511 			dec_rdev = 0;
512 			set_bit(R10BIO_MadeGood, &r10_bio->state);
513 		}
514 	}
515 
516 	/*
517 	 *
518 	 * Let's see if all mirrored write operations have finished
519 	 * already.
520 	 */
521 	one_write_done(r10_bio);
522 	if (dec_rdev)
523 		rdev_dec_pending(rdev, conf->mddev);
524 }
525 
526 /*
527  * RAID10 layout manager
528  * As well as the chunksize and raid_disks count, there are two
529  * parameters: near_copies and far_copies.
530  * near_copies * far_copies must be <= raid_disks.
531  * Normally one of these will be 1.
532  * If both are 1, we get raid0.
533  * If near_copies == raid_disks, we get raid1.
534  *
535  * Chunks are laid out in raid0 style with near_copies copies of the
536  * first chunk, followed by near_copies copies of the next chunk and
537  * so on.
538  * If far_copies > 1, then after 1/far_copies of the array has been assigned
539  * as described above, we start again with a device offset of near_copies.
540  * So we effectively have another copy of the whole array further down all
541  * the drives, but with blocks on different drives.
542  * With this layout, and block is never stored twice on the one device.
543  *
544  * raid10_find_phys finds the sector offset of a given virtual sector
545  * on each device that it is on.
546  *
547  * raid10_find_virt does the reverse mapping, from a device and a
548  * sector offset to a virtual address
549  */
550 
551 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
552 {
553 	int n,f;
554 	sector_t sector;
555 	sector_t chunk;
556 	sector_t stripe;
557 	int dev;
558 	int slot = 0;
559 	int last_far_set_start, last_far_set_size;
560 
561 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
562 	last_far_set_start *= geo->far_set_size;
563 
564 	last_far_set_size = geo->far_set_size;
565 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
566 
567 	/* now calculate first sector/dev */
568 	chunk = r10bio->sector >> geo->chunk_shift;
569 	sector = r10bio->sector & geo->chunk_mask;
570 
571 	chunk *= geo->near_copies;
572 	stripe = chunk;
573 	dev = sector_div(stripe, geo->raid_disks);
574 	if (geo->far_offset)
575 		stripe *= geo->far_copies;
576 
577 	sector += stripe << geo->chunk_shift;
578 
579 	/* and calculate all the others */
580 	for (n = 0; n < geo->near_copies; n++) {
581 		int d = dev;
582 		int set;
583 		sector_t s = sector;
584 		r10bio->devs[slot].devnum = d;
585 		r10bio->devs[slot].addr = s;
586 		slot++;
587 
588 		for (f = 1; f < geo->far_copies; f++) {
589 			set = d / geo->far_set_size;
590 			d += geo->near_copies;
591 
592 			if ((geo->raid_disks % geo->far_set_size) &&
593 			    (d > last_far_set_start)) {
594 				d -= last_far_set_start;
595 				d %= last_far_set_size;
596 				d += last_far_set_start;
597 			} else {
598 				d %= geo->far_set_size;
599 				d += geo->far_set_size * set;
600 			}
601 			s += geo->stride;
602 			r10bio->devs[slot].devnum = d;
603 			r10bio->devs[slot].addr = s;
604 			slot++;
605 		}
606 		dev++;
607 		if (dev >= geo->raid_disks) {
608 			dev = 0;
609 			sector += (geo->chunk_mask + 1);
610 		}
611 	}
612 }
613 
614 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
615 {
616 	struct geom *geo = &conf->geo;
617 
618 	if (conf->reshape_progress != MaxSector &&
619 	    ((r10bio->sector >= conf->reshape_progress) !=
620 	     conf->mddev->reshape_backwards)) {
621 		set_bit(R10BIO_Previous, &r10bio->state);
622 		geo = &conf->prev;
623 	} else
624 		clear_bit(R10BIO_Previous, &r10bio->state);
625 
626 	__raid10_find_phys(geo, r10bio);
627 }
628 
629 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
630 {
631 	sector_t offset, chunk, vchunk;
632 	/* Never use conf->prev as this is only called during resync
633 	 * or recovery, so reshape isn't happening
634 	 */
635 	struct geom *geo = &conf->geo;
636 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
637 	int far_set_size = geo->far_set_size;
638 	int last_far_set_start;
639 
640 	if (geo->raid_disks % geo->far_set_size) {
641 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
642 		last_far_set_start *= geo->far_set_size;
643 
644 		if (dev >= last_far_set_start) {
645 			far_set_size = geo->far_set_size;
646 			far_set_size += (geo->raid_disks % geo->far_set_size);
647 			far_set_start = last_far_set_start;
648 		}
649 	}
650 
651 	offset = sector & geo->chunk_mask;
652 	if (geo->far_offset) {
653 		int fc;
654 		chunk = sector >> geo->chunk_shift;
655 		fc = sector_div(chunk, geo->far_copies);
656 		dev -= fc * geo->near_copies;
657 		if (dev < far_set_start)
658 			dev += far_set_size;
659 	} else {
660 		while (sector >= geo->stride) {
661 			sector -= geo->stride;
662 			if (dev < (geo->near_copies + far_set_start))
663 				dev += far_set_size - geo->near_copies;
664 			else
665 				dev -= geo->near_copies;
666 		}
667 		chunk = sector >> geo->chunk_shift;
668 	}
669 	vchunk = chunk * geo->raid_disks + dev;
670 	sector_div(vchunk, geo->near_copies);
671 	return (vchunk << geo->chunk_shift) + offset;
672 }
673 
674 /*
675  * This routine returns the disk from which the requested read should
676  * be done. There is a per-array 'next expected sequential IO' sector
677  * number - if this matches on the next IO then we use the last disk.
678  * There is also a per-disk 'last know head position' sector that is
679  * maintained from IRQ contexts, both the normal and the resync IO
680  * completion handlers update this position correctly. If there is no
681  * perfect sequential match then we pick the disk whose head is closest.
682  *
683  * If there are 2 mirrors in the same 2 devices, performance degrades
684  * because position is mirror, not device based.
685  *
686  * The rdev for the device selected will have nr_pending incremented.
687  */
688 
689 /*
690  * FIXME: possibly should rethink readbalancing and do it differently
691  * depending on near_copies / far_copies geometry.
692  */
693 static struct md_rdev *read_balance(struct r10conf *conf,
694 				    struct r10bio *r10_bio,
695 				    int *max_sectors)
696 {
697 	const sector_t this_sector = r10_bio->sector;
698 	int disk, slot;
699 	int sectors = r10_bio->sectors;
700 	int best_good_sectors;
701 	sector_t new_distance, best_dist;
702 	struct md_rdev *best_rdev, *rdev = NULL;
703 	int do_balance;
704 	int best_slot;
705 	struct geom *geo = &conf->geo;
706 
707 	raid10_find_phys(conf, r10_bio);
708 	rcu_read_lock();
709 retry:
710 	sectors = r10_bio->sectors;
711 	best_slot = -1;
712 	best_rdev = NULL;
713 	best_dist = MaxSector;
714 	best_good_sectors = 0;
715 	do_balance = 1;
716 	/*
717 	 * Check if we can balance. We can balance on the whole
718 	 * device if no resync is going on (recovery is ok), or below
719 	 * the resync window. We take the first readable disk when
720 	 * above the resync window.
721 	 */
722 	if (conf->mddev->recovery_cp < MaxSector
723 	    && (this_sector + sectors >= conf->next_resync))
724 		do_balance = 0;
725 
726 	for (slot = 0; slot < conf->copies ; slot++) {
727 		sector_t first_bad;
728 		int bad_sectors;
729 		sector_t dev_sector;
730 
731 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 			continue;
733 		disk = r10_bio->devs[slot].devnum;
734 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 		if (rdev == NULL ||
739 		    test_bit(Faulty, &rdev->flags))
740 			continue;
741 		if (!test_bit(In_sync, &rdev->flags) &&
742 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 			continue;
744 
745 		dev_sector = r10_bio->devs[slot].addr;
746 		if (is_badblock(rdev, dev_sector, sectors,
747 				&first_bad, &bad_sectors)) {
748 			if (best_dist < MaxSector)
749 				/* Already have a better slot */
750 				continue;
751 			if (first_bad <= dev_sector) {
752 				/* Cannot read here.  If this is the
753 				 * 'primary' device, then we must not read
754 				 * beyond 'bad_sectors' from another device.
755 				 */
756 				bad_sectors -= (dev_sector - first_bad);
757 				if (!do_balance && sectors > bad_sectors)
758 					sectors = bad_sectors;
759 				if (best_good_sectors > sectors)
760 					best_good_sectors = sectors;
761 			} else {
762 				sector_t good_sectors =
763 					first_bad - dev_sector;
764 				if (good_sectors > best_good_sectors) {
765 					best_good_sectors = good_sectors;
766 					best_slot = slot;
767 					best_rdev = rdev;
768 				}
769 				if (!do_balance)
770 					/* Must read from here */
771 					break;
772 			}
773 			continue;
774 		} else
775 			best_good_sectors = sectors;
776 
777 		if (!do_balance)
778 			break;
779 
780 		/* This optimisation is debatable, and completely destroys
781 		 * sequential read speed for 'far copies' arrays.  So only
782 		 * keep it for 'near' arrays, and review those later.
783 		 */
784 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 			break;
786 
787 		/* for far > 1 always use the lowest address */
788 		if (geo->far_copies > 1)
789 			new_distance = r10_bio->devs[slot].addr;
790 		else
791 			new_distance = abs(r10_bio->devs[slot].addr -
792 					   conf->mirrors[disk].head_position);
793 		if (new_distance < best_dist) {
794 			best_dist = new_distance;
795 			best_slot = slot;
796 			best_rdev = rdev;
797 		}
798 	}
799 	if (slot >= conf->copies) {
800 		slot = best_slot;
801 		rdev = best_rdev;
802 	}
803 
804 	if (slot >= 0) {
805 		atomic_inc(&rdev->nr_pending);
806 		if (test_bit(Faulty, &rdev->flags)) {
807 			/* Cannot risk returning a device that failed
808 			 * before we inc'ed nr_pending
809 			 */
810 			rdev_dec_pending(rdev, conf->mddev);
811 			goto retry;
812 		}
813 		r10_bio->read_slot = slot;
814 	} else
815 		rdev = NULL;
816 	rcu_read_unlock();
817 	*max_sectors = best_good_sectors;
818 
819 	return rdev;
820 }
821 
822 static int raid10_congested(struct mddev *mddev, int bits)
823 {
824 	struct r10conf *conf = mddev->private;
825 	int i, ret = 0;
826 
827 	if ((bits & (1 << WB_async_congested)) &&
828 	    conf->pending_count >= max_queued_requests)
829 		return 1;
830 
831 	rcu_read_lock();
832 	for (i = 0;
833 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
834 		     && ret == 0;
835 	     i++) {
836 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
837 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
838 			struct request_queue *q = bdev_get_queue(rdev->bdev);
839 
840 			ret |= bdi_congested(&q->backing_dev_info, bits);
841 		}
842 	}
843 	rcu_read_unlock();
844 	return ret;
845 }
846 
847 static void flush_pending_writes(struct r10conf *conf)
848 {
849 	/* Any writes that have been queued but are awaiting
850 	 * bitmap updates get flushed here.
851 	 */
852 	spin_lock_irq(&conf->device_lock);
853 
854 	if (conf->pending_bio_list.head) {
855 		struct bio *bio;
856 		bio = bio_list_get(&conf->pending_bio_list);
857 		conf->pending_count = 0;
858 		spin_unlock_irq(&conf->device_lock);
859 		/* flush any pending bitmap writes to disk
860 		 * before proceeding w/ I/O */
861 		bitmap_unplug(conf->mddev->bitmap);
862 		wake_up(&conf->wait_barrier);
863 
864 		while (bio) { /* submit pending writes */
865 			struct bio *next = bio->bi_next;
866 			bio->bi_next = NULL;
867 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
868 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
869 				/* Just ignore it */
870 				bio_endio(bio);
871 			else
872 				generic_make_request(bio);
873 			bio = next;
874 		}
875 	} else
876 		spin_unlock_irq(&conf->device_lock);
877 }
878 
879 /* Barriers....
880  * Sometimes we need to suspend IO while we do something else,
881  * either some resync/recovery, or reconfigure the array.
882  * To do this we raise a 'barrier'.
883  * The 'barrier' is a counter that can be raised multiple times
884  * to count how many activities are happening which preclude
885  * normal IO.
886  * We can only raise the barrier if there is no pending IO.
887  * i.e. if nr_pending == 0.
888  * We choose only to raise the barrier if no-one is waiting for the
889  * barrier to go down.  This means that as soon as an IO request
890  * is ready, no other operations which require a barrier will start
891  * until the IO request has had a chance.
892  *
893  * So: regular IO calls 'wait_barrier'.  When that returns there
894  *    is no backgroup IO happening,  It must arrange to call
895  *    allow_barrier when it has finished its IO.
896  * backgroup IO calls must call raise_barrier.  Once that returns
897  *    there is no normal IO happeing.  It must arrange to call
898  *    lower_barrier when the particular background IO completes.
899  */
900 
901 static void raise_barrier(struct r10conf *conf, int force)
902 {
903 	BUG_ON(force && !conf->barrier);
904 	spin_lock_irq(&conf->resync_lock);
905 
906 	/* Wait until no block IO is waiting (unless 'force') */
907 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
908 			    conf->resync_lock);
909 
910 	/* block any new IO from starting */
911 	conf->barrier++;
912 
913 	/* Now wait for all pending IO to complete */
914 	wait_event_lock_irq(conf->wait_barrier,
915 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
916 			    conf->resync_lock);
917 
918 	spin_unlock_irq(&conf->resync_lock);
919 }
920 
921 static void lower_barrier(struct r10conf *conf)
922 {
923 	unsigned long flags;
924 	spin_lock_irqsave(&conf->resync_lock, flags);
925 	conf->barrier--;
926 	spin_unlock_irqrestore(&conf->resync_lock, flags);
927 	wake_up(&conf->wait_barrier);
928 }
929 
930 static void wait_barrier(struct r10conf *conf)
931 {
932 	spin_lock_irq(&conf->resync_lock);
933 	if (conf->barrier) {
934 		conf->nr_waiting++;
935 		/* Wait for the barrier to drop.
936 		 * However if there are already pending
937 		 * requests (preventing the barrier from
938 		 * rising completely), and the
939 		 * pre-process bio queue isn't empty,
940 		 * then don't wait, as we need to empty
941 		 * that queue to get the nr_pending
942 		 * count down.
943 		 */
944 		wait_event_lock_irq(conf->wait_barrier,
945 				    !conf->barrier ||
946 				    (conf->nr_pending &&
947 				     current->bio_list &&
948 				     !bio_list_empty(current->bio_list)),
949 				    conf->resync_lock);
950 		conf->nr_waiting--;
951 	}
952 	conf->nr_pending++;
953 	spin_unlock_irq(&conf->resync_lock);
954 }
955 
956 static void allow_barrier(struct r10conf *conf)
957 {
958 	unsigned long flags;
959 	spin_lock_irqsave(&conf->resync_lock, flags);
960 	conf->nr_pending--;
961 	spin_unlock_irqrestore(&conf->resync_lock, flags);
962 	wake_up(&conf->wait_barrier);
963 }
964 
965 static void freeze_array(struct r10conf *conf, int extra)
966 {
967 	/* stop syncio and normal IO and wait for everything to
968 	 * go quiet.
969 	 * We increment barrier and nr_waiting, and then
970 	 * wait until nr_pending match nr_queued+extra
971 	 * This is called in the context of one normal IO request
972 	 * that has failed. Thus any sync request that might be pending
973 	 * will be blocked by nr_pending, and we need to wait for
974 	 * pending IO requests to complete or be queued for re-try.
975 	 * Thus the number queued (nr_queued) plus this request (extra)
976 	 * must match the number of pending IOs (nr_pending) before
977 	 * we continue.
978 	 */
979 	spin_lock_irq(&conf->resync_lock);
980 	conf->barrier++;
981 	conf->nr_waiting++;
982 	wait_event_lock_irq_cmd(conf->wait_barrier,
983 				conf->nr_pending == conf->nr_queued+extra,
984 				conf->resync_lock,
985 				flush_pending_writes(conf));
986 
987 	spin_unlock_irq(&conf->resync_lock);
988 }
989 
990 static void unfreeze_array(struct r10conf *conf)
991 {
992 	/* reverse the effect of the freeze */
993 	spin_lock_irq(&conf->resync_lock);
994 	conf->barrier--;
995 	conf->nr_waiting--;
996 	wake_up(&conf->wait_barrier);
997 	spin_unlock_irq(&conf->resync_lock);
998 }
999 
1000 static sector_t choose_data_offset(struct r10bio *r10_bio,
1001 				   struct md_rdev *rdev)
1002 {
1003 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1004 	    test_bit(R10BIO_Previous, &r10_bio->state))
1005 		return rdev->data_offset;
1006 	else
1007 		return rdev->new_data_offset;
1008 }
1009 
1010 struct raid10_plug_cb {
1011 	struct blk_plug_cb	cb;
1012 	struct bio_list		pending;
1013 	int			pending_cnt;
1014 };
1015 
1016 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1017 {
1018 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1019 						   cb);
1020 	struct mddev *mddev = plug->cb.data;
1021 	struct r10conf *conf = mddev->private;
1022 	struct bio *bio;
1023 
1024 	if (from_schedule || current->bio_list) {
1025 		spin_lock_irq(&conf->device_lock);
1026 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1027 		conf->pending_count += plug->pending_cnt;
1028 		spin_unlock_irq(&conf->device_lock);
1029 		wake_up(&conf->wait_barrier);
1030 		md_wakeup_thread(mddev->thread);
1031 		kfree(plug);
1032 		return;
1033 	}
1034 
1035 	/* we aren't scheduling, so we can do the write-out directly. */
1036 	bio = bio_list_get(&plug->pending);
1037 	bitmap_unplug(mddev->bitmap);
1038 	wake_up(&conf->wait_barrier);
1039 
1040 	while (bio) { /* submit pending writes */
1041 		struct bio *next = bio->bi_next;
1042 		bio->bi_next = NULL;
1043 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1044 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1045 			/* Just ignore it */
1046 			bio_endio(bio);
1047 		else
1048 			generic_make_request(bio);
1049 		bio = next;
1050 	}
1051 	kfree(plug);
1052 }
1053 
1054 static void __make_request(struct mddev *mddev, struct bio *bio)
1055 {
1056 	struct r10conf *conf = mddev->private;
1057 	struct r10bio *r10_bio;
1058 	struct bio *read_bio;
1059 	int i;
1060 	const int rw = bio_data_dir(bio);
1061 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1062 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1063 	const unsigned long do_discard = (bio->bi_rw
1064 					  & (REQ_DISCARD | REQ_SECURE));
1065 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1066 	unsigned long flags;
1067 	struct md_rdev *blocked_rdev;
1068 	struct blk_plug_cb *cb;
1069 	struct raid10_plug_cb *plug = NULL;
1070 	int sectors_handled;
1071 	int max_sectors;
1072 	int sectors;
1073 
1074 	/*
1075 	 * Register the new request and wait if the reconstruction
1076 	 * thread has put up a bar for new requests.
1077 	 * Continue immediately if no resync is active currently.
1078 	 */
1079 	wait_barrier(conf);
1080 
1081 	sectors = bio_sectors(bio);
1082 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1083 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1084 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1085 		/* IO spans the reshape position.  Need to wait for
1086 		 * reshape to pass
1087 		 */
1088 		allow_barrier(conf);
1089 		wait_event(conf->wait_barrier,
1090 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1091 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1092 			   sectors);
1093 		wait_barrier(conf);
1094 	}
1095 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1096 	    bio_data_dir(bio) == WRITE &&
1097 	    (mddev->reshape_backwards
1098 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1099 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1100 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1101 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1102 		/* Need to update reshape_position in metadata */
1103 		mddev->reshape_position = conf->reshape_progress;
1104 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1105 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1106 		md_wakeup_thread(mddev->thread);
1107 		wait_event(mddev->sb_wait,
1108 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1109 
1110 		conf->reshape_safe = mddev->reshape_position;
1111 	}
1112 
1113 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1114 
1115 	r10_bio->master_bio = bio;
1116 	r10_bio->sectors = sectors;
1117 
1118 	r10_bio->mddev = mddev;
1119 	r10_bio->sector = bio->bi_iter.bi_sector;
1120 	r10_bio->state = 0;
1121 
1122 	/* We might need to issue multiple reads to different
1123 	 * devices if there are bad blocks around, so we keep
1124 	 * track of the number of reads in bio->bi_phys_segments.
1125 	 * If this is 0, there is only one r10_bio and no locking
1126 	 * will be needed when the request completes.  If it is
1127 	 * non-zero, then it is the number of not-completed requests.
1128 	 */
1129 	bio->bi_phys_segments = 0;
1130 	bio_clear_flag(bio, BIO_SEG_VALID);
1131 
1132 	if (rw == READ) {
1133 		/*
1134 		 * read balancing logic:
1135 		 */
1136 		struct md_rdev *rdev;
1137 		int slot;
1138 
1139 read_again:
1140 		rdev = read_balance(conf, r10_bio, &max_sectors);
1141 		if (!rdev) {
1142 			raid_end_bio_io(r10_bio);
1143 			return;
1144 		}
1145 		slot = r10_bio->read_slot;
1146 
1147 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1149 			 max_sectors);
1150 
1151 		r10_bio->devs[slot].bio = read_bio;
1152 		r10_bio->devs[slot].rdev = rdev;
1153 
1154 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1155 			choose_data_offset(r10_bio, rdev);
1156 		read_bio->bi_bdev = rdev->bdev;
1157 		read_bio->bi_end_io = raid10_end_read_request;
1158 		read_bio->bi_rw = READ | do_sync;
1159 		read_bio->bi_private = r10_bio;
1160 
1161 		if (max_sectors < r10_bio->sectors) {
1162 			/* Could not read all from this device, so we will
1163 			 * need another r10_bio.
1164 			 */
1165 			sectors_handled = (r10_bio->sector + max_sectors
1166 					   - bio->bi_iter.bi_sector);
1167 			r10_bio->sectors = max_sectors;
1168 			spin_lock_irq(&conf->device_lock);
1169 			if (bio->bi_phys_segments == 0)
1170 				bio->bi_phys_segments = 2;
1171 			else
1172 				bio->bi_phys_segments++;
1173 			spin_unlock_irq(&conf->device_lock);
1174 			/* Cannot call generic_make_request directly
1175 			 * as that will be queued in __generic_make_request
1176 			 * and subsequent mempool_alloc might block
1177 			 * waiting for it.  so hand bio over to raid10d.
1178 			 */
1179 			reschedule_retry(r10_bio);
1180 
1181 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1182 
1183 			r10_bio->master_bio = bio;
1184 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1185 			r10_bio->state = 0;
1186 			r10_bio->mddev = mddev;
1187 			r10_bio->sector = bio->bi_iter.bi_sector +
1188 				sectors_handled;
1189 			goto read_again;
1190 		} else
1191 			generic_make_request(read_bio);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * WRITE:
1197 	 */
1198 	if (conf->pending_count >= max_queued_requests) {
1199 		md_wakeup_thread(mddev->thread);
1200 		wait_event(conf->wait_barrier,
1201 			   conf->pending_count < max_queued_requests);
1202 	}
1203 	/* first select target devices under rcu_lock and
1204 	 * inc refcount on their rdev.  Record them by setting
1205 	 * bios[x] to bio
1206 	 * If there are known/acknowledged bad blocks on any device
1207 	 * on which we have seen a write error, we want to avoid
1208 	 * writing to those blocks.  This potentially requires several
1209 	 * writes to write around the bad blocks.  Each set of writes
1210 	 * gets its own r10_bio with a set of bios attached.  The number
1211 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1212 	 * the read case.
1213 	 */
1214 
1215 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1216 	raid10_find_phys(conf, r10_bio);
1217 retry_write:
1218 	blocked_rdev = NULL;
1219 	rcu_read_lock();
1220 	max_sectors = r10_bio->sectors;
1221 
1222 	for (i = 0;  i < conf->copies; i++) {
1223 		int d = r10_bio->devs[i].devnum;
1224 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1225 		struct md_rdev *rrdev = rcu_dereference(
1226 			conf->mirrors[d].replacement);
1227 		if (rdev == rrdev)
1228 			rrdev = NULL;
1229 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1230 			atomic_inc(&rdev->nr_pending);
1231 			blocked_rdev = rdev;
1232 			break;
1233 		}
1234 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1235 			atomic_inc(&rrdev->nr_pending);
1236 			blocked_rdev = rrdev;
1237 			break;
1238 		}
1239 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1240 			rdev = NULL;
1241 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1242 			rrdev = NULL;
1243 
1244 		r10_bio->devs[i].bio = NULL;
1245 		r10_bio->devs[i].repl_bio = NULL;
1246 
1247 		if (!rdev && !rrdev) {
1248 			set_bit(R10BIO_Degraded, &r10_bio->state);
1249 			continue;
1250 		}
1251 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1252 			sector_t first_bad;
1253 			sector_t dev_sector = r10_bio->devs[i].addr;
1254 			int bad_sectors;
1255 			int is_bad;
1256 
1257 			is_bad = is_badblock(rdev, dev_sector,
1258 					     max_sectors,
1259 					     &first_bad, &bad_sectors);
1260 			if (is_bad < 0) {
1261 				/* Mustn't write here until the bad block
1262 				 * is acknowledged
1263 				 */
1264 				atomic_inc(&rdev->nr_pending);
1265 				set_bit(BlockedBadBlocks, &rdev->flags);
1266 				blocked_rdev = rdev;
1267 				break;
1268 			}
1269 			if (is_bad && first_bad <= dev_sector) {
1270 				/* Cannot write here at all */
1271 				bad_sectors -= (dev_sector - first_bad);
1272 				if (bad_sectors < max_sectors)
1273 					/* Mustn't write more than bad_sectors
1274 					 * to other devices yet
1275 					 */
1276 					max_sectors = bad_sectors;
1277 				/* We don't set R10BIO_Degraded as that
1278 				 * only applies if the disk is missing,
1279 				 * so it might be re-added, and we want to
1280 				 * know to recover this chunk.
1281 				 * In this case the device is here, and the
1282 				 * fact that this chunk is not in-sync is
1283 				 * recorded in the bad block log.
1284 				 */
1285 				continue;
1286 			}
1287 			if (is_bad) {
1288 				int good_sectors = first_bad - dev_sector;
1289 				if (good_sectors < max_sectors)
1290 					max_sectors = good_sectors;
1291 			}
1292 		}
1293 		if (rdev) {
1294 			r10_bio->devs[i].bio = bio;
1295 			atomic_inc(&rdev->nr_pending);
1296 		}
1297 		if (rrdev) {
1298 			r10_bio->devs[i].repl_bio = bio;
1299 			atomic_inc(&rrdev->nr_pending);
1300 		}
1301 	}
1302 	rcu_read_unlock();
1303 
1304 	if (unlikely(blocked_rdev)) {
1305 		/* Have to wait for this device to get unblocked, then retry */
1306 		int j;
1307 		int d;
1308 
1309 		for (j = 0; j < i; j++) {
1310 			if (r10_bio->devs[j].bio) {
1311 				d = r10_bio->devs[j].devnum;
1312 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1313 			}
1314 			if (r10_bio->devs[j].repl_bio) {
1315 				struct md_rdev *rdev;
1316 				d = r10_bio->devs[j].devnum;
1317 				rdev = conf->mirrors[d].replacement;
1318 				if (!rdev) {
1319 					/* Race with remove_disk */
1320 					smp_mb();
1321 					rdev = conf->mirrors[d].rdev;
1322 				}
1323 				rdev_dec_pending(rdev, mddev);
1324 			}
1325 		}
1326 		allow_barrier(conf);
1327 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328 		wait_barrier(conf);
1329 		goto retry_write;
1330 	}
1331 
1332 	if (max_sectors < r10_bio->sectors) {
1333 		/* We are splitting this into multiple parts, so
1334 		 * we need to prepare for allocating another r10_bio.
1335 		 */
1336 		r10_bio->sectors = max_sectors;
1337 		spin_lock_irq(&conf->device_lock);
1338 		if (bio->bi_phys_segments == 0)
1339 			bio->bi_phys_segments = 2;
1340 		else
1341 			bio->bi_phys_segments++;
1342 		spin_unlock_irq(&conf->device_lock);
1343 	}
1344 	sectors_handled = r10_bio->sector + max_sectors -
1345 		bio->bi_iter.bi_sector;
1346 
1347 	atomic_set(&r10_bio->remaining, 1);
1348 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1349 
1350 	for (i = 0; i < conf->copies; i++) {
1351 		struct bio *mbio;
1352 		int d = r10_bio->devs[i].devnum;
1353 		if (r10_bio->devs[i].bio) {
1354 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1355 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1356 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1357 				 max_sectors);
1358 			r10_bio->devs[i].bio = mbio;
1359 
1360 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1361 					   choose_data_offset(r10_bio,
1362 							      rdev));
1363 			mbio->bi_bdev = rdev->bdev;
1364 			mbio->bi_end_io	= raid10_end_write_request;
1365 			mbio->bi_rw =
1366 				WRITE | do_sync | do_fua | do_discard | do_same;
1367 			mbio->bi_private = r10_bio;
1368 
1369 			atomic_inc(&r10_bio->remaining);
1370 
1371 			cb = blk_check_plugged(raid10_unplug, mddev,
1372 					       sizeof(*plug));
1373 			if (cb)
1374 				plug = container_of(cb, struct raid10_plug_cb,
1375 						    cb);
1376 			else
1377 				plug = NULL;
1378 			spin_lock_irqsave(&conf->device_lock, flags);
1379 			if (plug) {
1380 				bio_list_add(&plug->pending, mbio);
1381 				plug->pending_cnt++;
1382 			} else {
1383 				bio_list_add(&conf->pending_bio_list, mbio);
1384 				conf->pending_count++;
1385 			}
1386 			spin_unlock_irqrestore(&conf->device_lock, flags);
1387 			if (!plug)
1388 				md_wakeup_thread(mddev->thread);
1389 		}
1390 
1391 		if (r10_bio->devs[i].repl_bio) {
1392 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1393 			if (rdev == NULL) {
1394 				/* Replacement just got moved to main 'rdev' */
1395 				smp_mb();
1396 				rdev = conf->mirrors[d].rdev;
1397 			}
1398 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1399 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1400 				 max_sectors);
1401 			r10_bio->devs[i].repl_bio = mbio;
1402 
1403 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1404 					   choose_data_offset(
1405 						   r10_bio, rdev));
1406 			mbio->bi_bdev = rdev->bdev;
1407 			mbio->bi_end_io	= raid10_end_write_request;
1408 			mbio->bi_rw =
1409 				WRITE | do_sync | do_fua | do_discard | do_same;
1410 			mbio->bi_private = r10_bio;
1411 
1412 			atomic_inc(&r10_bio->remaining);
1413 			spin_lock_irqsave(&conf->device_lock, flags);
1414 			bio_list_add(&conf->pending_bio_list, mbio);
1415 			conf->pending_count++;
1416 			spin_unlock_irqrestore(&conf->device_lock, flags);
1417 			if (!mddev_check_plugged(mddev))
1418 				md_wakeup_thread(mddev->thread);
1419 		}
1420 	}
1421 
1422 	/* Don't remove the bias on 'remaining' (one_write_done) until
1423 	 * after checking if we need to go around again.
1424 	 */
1425 
1426 	if (sectors_handled < bio_sectors(bio)) {
1427 		one_write_done(r10_bio);
1428 		/* We need another r10_bio.  It has already been counted
1429 		 * in bio->bi_phys_segments.
1430 		 */
1431 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1432 
1433 		r10_bio->master_bio = bio;
1434 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1435 
1436 		r10_bio->mddev = mddev;
1437 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1438 		r10_bio->state = 0;
1439 		goto retry_write;
1440 	}
1441 	one_write_done(r10_bio);
1442 }
1443 
1444 static void make_request(struct mddev *mddev, struct bio *bio)
1445 {
1446 	struct r10conf *conf = mddev->private;
1447 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1448 	int chunk_sects = chunk_mask + 1;
1449 
1450 	struct bio *split;
1451 
1452 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1453 		md_flush_request(mddev, bio);
1454 		return;
1455 	}
1456 
1457 	md_write_start(mddev, bio);
1458 
1459 	do {
1460 
1461 		/*
1462 		 * If this request crosses a chunk boundary, we need to split
1463 		 * it.
1464 		 */
1465 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1466 			     bio_sectors(bio) > chunk_sects
1467 			     && (conf->geo.near_copies < conf->geo.raid_disks
1468 				 || conf->prev.near_copies <
1469 				 conf->prev.raid_disks))) {
1470 			split = bio_split(bio, chunk_sects -
1471 					  (bio->bi_iter.bi_sector &
1472 					   (chunk_sects - 1)),
1473 					  GFP_NOIO, fs_bio_set);
1474 			bio_chain(split, bio);
1475 		} else {
1476 			split = bio;
1477 		}
1478 
1479 		__make_request(mddev, split);
1480 	} while (split != bio);
1481 
1482 	/* In case raid10d snuck in to freeze_array */
1483 	wake_up(&conf->wait_barrier);
1484 }
1485 
1486 static void status(struct seq_file *seq, struct mddev *mddev)
1487 {
1488 	struct r10conf *conf = mddev->private;
1489 	int i;
1490 
1491 	if (conf->geo.near_copies < conf->geo.raid_disks)
1492 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1493 	if (conf->geo.near_copies > 1)
1494 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1495 	if (conf->geo.far_copies > 1) {
1496 		if (conf->geo.far_offset)
1497 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1498 		else
1499 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1500 	}
1501 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1502 					conf->geo.raid_disks - mddev->degraded);
1503 	for (i = 0; i < conf->geo.raid_disks; i++)
1504 		seq_printf(seq, "%s",
1505 			      conf->mirrors[i].rdev &&
1506 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1507 	seq_printf(seq, "]");
1508 }
1509 
1510 /* check if there are enough drives for
1511  * every block to appear on atleast one.
1512  * Don't consider the device numbered 'ignore'
1513  * as we might be about to remove it.
1514  */
1515 static int _enough(struct r10conf *conf, int previous, int ignore)
1516 {
1517 	int first = 0;
1518 	int has_enough = 0;
1519 	int disks, ncopies;
1520 	if (previous) {
1521 		disks = conf->prev.raid_disks;
1522 		ncopies = conf->prev.near_copies;
1523 	} else {
1524 		disks = conf->geo.raid_disks;
1525 		ncopies = conf->geo.near_copies;
1526 	}
1527 
1528 	rcu_read_lock();
1529 	do {
1530 		int n = conf->copies;
1531 		int cnt = 0;
1532 		int this = first;
1533 		while (n--) {
1534 			struct md_rdev *rdev;
1535 			if (this != ignore &&
1536 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1537 			    test_bit(In_sync, &rdev->flags))
1538 				cnt++;
1539 			this = (this+1) % disks;
1540 		}
1541 		if (cnt == 0)
1542 			goto out;
1543 		first = (first + ncopies) % disks;
1544 	} while (first != 0);
1545 	has_enough = 1;
1546 out:
1547 	rcu_read_unlock();
1548 	return has_enough;
1549 }
1550 
1551 static int enough(struct r10conf *conf, int ignore)
1552 {
1553 	/* when calling 'enough', both 'prev' and 'geo' must
1554 	 * be stable.
1555 	 * This is ensured if ->reconfig_mutex or ->device_lock
1556 	 * is held.
1557 	 */
1558 	return _enough(conf, 0, ignore) &&
1559 		_enough(conf, 1, ignore);
1560 }
1561 
1562 static void error(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564 	char b[BDEVNAME_SIZE];
1565 	struct r10conf *conf = mddev->private;
1566 	unsigned long flags;
1567 
1568 	/*
1569 	 * If it is not operational, then we have already marked it as dead
1570 	 * else if it is the last working disks, ignore the error, let the
1571 	 * next level up know.
1572 	 * else mark the drive as failed
1573 	 */
1574 	spin_lock_irqsave(&conf->device_lock, flags);
1575 	if (test_bit(In_sync, &rdev->flags)
1576 	    && !enough(conf, rdev->raid_disk)) {
1577 		/*
1578 		 * Don't fail the drive, just return an IO error.
1579 		 */
1580 		spin_unlock_irqrestore(&conf->device_lock, flags);
1581 		return;
1582 	}
1583 	if (test_and_clear_bit(In_sync, &rdev->flags))
1584 		mddev->degraded++;
1585 	/*
1586 	 * If recovery is running, make sure it aborts.
1587 	 */
1588 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1589 	set_bit(Blocked, &rdev->flags);
1590 	set_bit(Faulty, &rdev->flags);
1591 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1592 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1593 	spin_unlock_irqrestore(&conf->device_lock, flags);
1594 	printk(KERN_ALERT
1595 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1596 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1597 	       mdname(mddev), bdevname(rdev->bdev, b),
1598 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1599 }
1600 
1601 static void print_conf(struct r10conf *conf)
1602 {
1603 	int i;
1604 	struct raid10_info *tmp;
1605 
1606 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1607 	if (!conf) {
1608 		printk(KERN_DEBUG "(!conf)\n");
1609 		return;
1610 	}
1611 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1612 		conf->geo.raid_disks);
1613 
1614 	for (i = 0; i < conf->geo.raid_disks; i++) {
1615 		char b[BDEVNAME_SIZE];
1616 		tmp = conf->mirrors + i;
1617 		if (tmp->rdev)
1618 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619 				i, !test_bit(In_sync, &tmp->rdev->flags),
1620 			        !test_bit(Faulty, &tmp->rdev->flags),
1621 				bdevname(tmp->rdev->bdev,b));
1622 	}
1623 }
1624 
1625 static void close_sync(struct r10conf *conf)
1626 {
1627 	wait_barrier(conf);
1628 	allow_barrier(conf);
1629 
1630 	mempool_destroy(conf->r10buf_pool);
1631 	conf->r10buf_pool = NULL;
1632 }
1633 
1634 static int raid10_spare_active(struct mddev *mddev)
1635 {
1636 	int i;
1637 	struct r10conf *conf = mddev->private;
1638 	struct raid10_info *tmp;
1639 	int count = 0;
1640 	unsigned long flags;
1641 
1642 	/*
1643 	 * Find all non-in_sync disks within the RAID10 configuration
1644 	 * and mark them in_sync
1645 	 */
1646 	for (i = 0; i < conf->geo.raid_disks; i++) {
1647 		tmp = conf->mirrors + i;
1648 		if (tmp->replacement
1649 		    && tmp->replacement->recovery_offset == MaxSector
1650 		    && !test_bit(Faulty, &tmp->replacement->flags)
1651 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652 			/* Replacement has just become active */
1653 			if (!tmp->rdev
1654 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655 				count++;
1656 			if (tmp->rdev) {
1657 				/* Replaced device not technically faulty,
1658 				 * but we need to be sure it gets removed
1659 				 * and never re-added.
1660 				 */
1661 				set_bit(Faulty, &tmp->rdev->flags);
1662 				sysfs_notify_dirent_safe(
1663 					tmp->rdev->sysfs_state);
1664 			}
1665 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666 		} else if (tmp->rdev
1667 			   && tmp->rdev->recovery_offset == MaxSector
1668 			   && !test_bit(Faulty, &tmp->rdev->flags)
1669 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670 			count++;
1671 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672 		}
1673 	}
1674 	spin_lock_irqsave(&conf->device_lock, flags);
1675 	mddev->degraded -= count;
1676 	spin_unlock_irqrestore(&conf->device_lock, flags);
1677 
1678 	print_conf(conf);
1679 	return count;
1680 }
1681 
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct r10conf *conf = mddev->private;
1685 	int err = -EEXIST;
1686 	int mirror;
1687 	int first = 0;
1688 	int last = conf->geo.raid_disks - 1;
1689 
1690 	if (mddev->recovery_cp < MaxSector)
1691 		/* only hot-add to in-sync arrays, as recovery is
1692 		 * very different from resync
1693 		 */
1694 		return -EBUSY;
1695 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696 		return -EINVAL;
1697 
1698 	if (rdev->raid_disk >= 0)
1699 		first = last = rdev->raid_disk;
1700 
1701 	if (rdev->saved_raid_disk >= first &&
1702 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 		mirror = rdev->saved_raid_disk;
1704 	else
1705 		mirror = first;
1706 	for ( ; mirror <= last ; mirror++) {
1707 		struct raid10_info *p = &conf->mirrors[mirror];
1708 		if (p->recovery_disabled == mddev->recovery_disabled)
1709 			continue;
1710 		if (p->rdev) {
1711 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 			    p->replacement != NULL)
1713 				continue;
1714 			clear_bit(In_sync, &rdev->flags);
1715 			set_bit(Replacement, &rdev->flags);
1716 			rdev->raid_disk = mirror;
1717 			err = 0;
1718 			if (mddev->gendisk)
1719 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 						  rdev->data_offset << 9);
1721 			conf->fullsync = 1;
1722 			rcu_assign_pointer(p->replacement, rdev);
1723 			break;
1724 		}
1725 
1726 		if (mddev->gendisk)
1727 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 					  rdev->data_offset << 9);
1729 
1730 		p->head_position = 0;
1731 		p->recovery_disabled = mddev->recovery_disabled - 1;
1732 		rdev->raid_disk = mirror;
1733 		err = 0;
1734 		if (rdev->saved_raid_disk != mirror)
1735 			conf->fullsync = 1;
1736 		rcu_assign_pointer(p->rdev, rdev);
1737 		break;
1738 	}
1739 	md_integrity_add_rdev(rdev, mddev);
1740 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1741 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1742 
1743 	print_conf(conf);
1744 	return err;
1745 }
1746 
1747 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1748 {
1749 	struct r10conf *conf = mddev->private;
1750 	int err = 0;
1751 	int number = rdev->raid_disk;
1752 	struct md_rdev **rdevp;
1753 	struct raid10_info *p = conf->mirrors + number;
1754 
1755 	print_conf(conf);
1756 	if (rdev == p->rdev)
1757 		rdevp = &p->rdev;
1758 	else if (rdev == p->replacement)
1759 		rdevp = &p->replacement;
1760 	else
1761 		return 0;
1762 
1763 	if (test_bit(In_sync, &rdev->flags) ||
1764 	    atomic_read(&rdev->nr_pending)) {
1765 		err = -EBUSY;
1766 		goto abort;
1767 	}
1768 	/* Only remove faulty devices if recovery
1769 	 * is not possible.
1770 	 */
1771 	if (!test_bit(Faulty, &rdev->flags) &&
1772 	    mddev->recovery_disabled != p->recovery_disabled &&
1773 	    (!p->replacement || p->replacement == rdev) &&
1774 	    number < conf->geo.raid_disks &&
1775 	    enough(conf, -1)) {
1776 		err = -EBUSY;
1777 		goto abort;
1778 	}
1779 	*rdevp = NULL;
1780 	synchronize_rcu();
1781 	if (atomic_read(&rdev->nr_pending)) {
1782 		/* lost the race, try later */
1783 		err = -EBUSY;
1784 		*rdevp = rdev;
1785 		goto abort;
1786 	} else if (p->replacement) {
1787 		/* We must have just cleared 'rdev' */
1788 		p->rdev = p->replacement;
1789 		clear_bit(Replacement, &p->replacement->flags);
1790 		smp_mb(); /* Make sure other CPUs may see both as identical
1791 			   * but will never see neither -- if they are careful.
1792 			   */
1793 		p->replacement = NULL;
1794 		clear_bit(WantReplacement, &rdev->flags);
1795 	} else
1796 		/* We might have just remove the Replacement as faulty
1797 		 * Clear the flag just in case
1798 		 */
1799 		clear_bit(WantReplacement, &rdev->flags);
1800 
1801 	err = md_integrity_register(mddev);
1802 
1803 abort:
1804 
1805 	print_conf(conf);
1806 	return err;
1807 }
1808 
1809 static void end_sync_read(struct bio *bio)
1810 {
1811 	struct r10bio *r10_bio = bio->bi_private;
1812 	struct r10conf *conf = r10_bio->mddev->private;
1813 	int d;
1814 
1815 	if (bio == r10_bio->master_bio) {
1816 		/* this is a reshape read */
1817 		d = r10_bio->read_slot; /* really the read dev */
1818 	} else
1819 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1820 
1821 	if (!bio->bi_error)
1822 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1823 	else
1824 		/* The write handler will notice the lack of
1825 		 * R10BIO_Uptodate and record any errors etc
1826 		 */
1827 		atomic_add(r10_bio->sectors,
1828 			   &conf->mirrors[d].rdev->corrected_errors);
1829 
1830 	/* for reconstruct, we always reschedule after a read.
1831 	 * for resync, only after all reads
1832 	 */
1833 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1834 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1835 	    atomic_dec_and_test(&r10_bio->remaining)) {
1836 		/* we have read all the blocks,
1837 		 * do the comparison in process context in raid10d
1838 		 */
1839 		reschedule_retry(r10_bio);
1840 	}
1841 }
1842 
1843 static void end_sync_request(struct r10bio *r10_bio)
1844 {
1845 	struct mddev *mddev = r10_bio->mddev;
1846 
1847 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1848 		if (r10_bio->master_bio == NULL) {
1849 			/* the primary of several recovery bios */
1850 			sector_t s = r10_bio->sectors;
1851 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1852 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1853 				reschedule_retry(r10_bio);
1854 			else
1855 				put_buf(r10_bio);
1856 			md_done_sync(mddev, s, 1);
1857 			break;
1858 		} else {
1859 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1860 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1861 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1862 				reschedule_retry(r10_bio);
1863 			else
1864 				put_buf(r10_bio);
1865 			r10_bio = r10_bio2;
1866 		}
1867 	}
1868 }
1869 
1870 static void end_sync_write(struct bio *bio)
1871 {
1872 	struct r10bio *r10_bio = bio->bi_private;
1873 	struct mddev *mddev = r10_bio->mddev;
1874 	struct r10conf *conf = mddev->private;
1875 	int d;
1876 	sector_t first_bad;
1877 	int bad_sectors;
1878 	int slot;
1879 	int repl;
1880 	struct md_rdev *rdev = NULL;
1881 
1882 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1883 	if (repl)
1884 		rdev = conf->mirrors[d].replacement;
1885 	else
1886 		rdev = conf->mirrors[d].rdev;
1887 
1888 	if (bio->bi_error) {
1889 		if (repl)
1890 			md_error(mddev, rdev);
1891 		else {
1892 			set_bit(WriteErrorSeen, &rdev->flags);
1893 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1894 				set_bit(MD_RECOVERY_NEEDED,
1895 					&rdev->mddev->recovery);
1896 			set_bit(R10BIO_WriteError, &r10_bio->state);
1897 		}
1898 	} else if (is_badblock(rdev,
1899 			     r10_bio->devs[slot].addr,
1900 			     r10_bio->sectors,
1901 			     &first_bad, &bad_sectors))
1902 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1903 
1904 	rdev_dec_pending(rdev, mddev);
1905 
1906 	end_sync_request(r10_bio);
1907 }
1908 
1909 /*
1910  * Note: sync and recover and handled very differently for raid10
1911  * This code is for resync.
1912  * For resync, we read through virtual addresses and read all blocks.
1913  * If there is any error, we schedule a write.  The lowest numbered
1914  * drive is authoritative.
1915  * However requests come for physical address, so we need to map.
1916  * For every physical address there are raid_disks/copies virtual addresses,
1917  * which is always are least one, but is not necessarly an integer.
1918  * This means that a physical address can span multiple chunks, so we may
1919  * have to submit multiple io requests for a single sync request.
1920  */
1921 /*
1922  * We check if all blocks are in-sync and only write to blocks that
1923  * aren't in sync
1924  */
1925 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1926 {
1927 	struct r10conf *conf = mddev->private;
1928 	int i, first;
1929 	struct bio *tbio, *fbio;
1930 	int vcnt;
1931 
1932 	atomic_set(&r10_bio->remaining, 1);
1933 
1934 	/* find the first device with a block */
1935 	for (i=0; i<conf->copies; i++)
1936 		if (!r10_bio->devs[i].bio->bi_error)
1937 			break;
1938 
1939 	if (i == conf->copies)
1940 		goto done;
1941 
1942 	first = i;
1943 	fbio = r10_bio->devs[i].bio;
1944 
1945 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1946 	/* now find blocks with errors */
1947 	for (i=0 ; i < conf->copies ; i++) {
1948 		int  j, d;
1949 
1950 		tbio = r10_bio->devs[i].bio;
1951 
1952 		if (tbio->bi_end_io != end_sync_read)
1953 			continue;
1954 		if (i == first)
1955 			continue;
1956 		if (!r10_bio->devs[i].bio->bi_error) {
1957 			/* We know that the bi_io_vec layout is the same for
1958 			 * both 'first' and 'i', so we just compare them.
1959 			 * All vec entries are PAGE_SIZE;
1960 			 */
1961 			int sectors = r10_bio->sectors;
1962 			for (j = 0; j < vcnt; j++) {
1963 				int len = PAGE_SIZE;
1964 				if (sectors < (len / 512))
1965 					len = sectors * 512;
1966 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1967 					   page_address(tbio->bi_io_vec[j].bv_page),
1968 					   len))
1969 					break;
1970 				sectors -= len/512;
1971 			}
1972 			if (j == vcnt)
1973 				continue;
1974 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1975 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1976 				/* Don't fix anything. */
1977 				continue;
1978 		}
1979 		/* Ok, we need to write this bio, either to correct an
1980 		 * inconsistency or to correct an unreadable block.
1981 		 * First we need to fixup bv_offset, bv_len and
1982 		 * bi_vecs, as the read request might have corrupted these
1983 		 */
1984 		bio_reset(tbio);
1985 
1986 		tbio->bi_vcnt = vcnt;
1987 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1988 		tbio->bi_rw = WRITE;
1989 		tbio->bi_private = r10_bio;
1990 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1991 		tbio->bi_end_io = end_sync_write;
1992 
1993 		bio_copy_data(tbio, fbio);
1994 
1995 		d = r10_bio->devs[i].devnum;
1996 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1997 		atomic_inc(&r10_bio->remaining);
1998 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1999 
2000 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2001 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2002 		generic_make_request(tbio);
2003 	}
2004 
2005 	/* Now write out to any replacement devices
2006 	 * that are active
2007 	 */
2008 	for (i = 0; i < conf->copies; i++) {
2009 		int d;
2010 
2011 		tbio = r10_bio->devs[i].repl_bio;
2012 		if (!tbio || !tbio->bi_end_io)
2013 			continue;
2014 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2015 		    && r10_bio->devs[i].bio != fbio)
2016 			bio_copy_data(tbio, fbio);
2017 		d = r10_bio->devs[i].devnum;
2018 		atomic_inc(&r10_bio->remaining);
2019 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2020 			     bio_sectors(tbio));
2021 		generic_make_request(tbio);
2022 	}
2023 
2024 done:
2025 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2026 		md_done_sync(mddev, r10_bio->sectors, 1);
2027 		put_buf(r10_bio);
2028 	}
2029 }
2030 
2031 /*
2032  * Now for the recovery code.
2033  * Recovery happens across physical sectors.
2034  * We recover all non-is_sync drives by finding the virtual address of
2035  * each, and then choose a working drive that also has that virt address.
2036  * There is a separate r10_bio for each non-in_sync drive.
2037  * Only the first two slots are in use. The first for reading,
2038  * The second for writing.
2039  *
2040  */
2041 static void fix_recovery_read_error(struct r10bio *r10_bio)
2042 {
2043 	/* We got a read error during recovery.
2044 	 * We repeat the read in smaller page-sized sections.
2045 	 * If a read succeeds, write it to the new device or record
2046 	 * a bad block if we cannot.
2047 	 * If a read fails, record a bad block on both old and
2048 	 * new devices.
2049 	 */
2050 	struct mddev *mddev = r10_bio->mddev;
2051 	struct r10conf *conf = mddev->private;
2052 	struct bio *bio = r10_bio->devs[0].bio;
2053 	sector_t sect = 0;
2054 	int sectors = r10_bio->sectors;
2055 	int idx = 0;
2056 	int dr = r10_bio->devs[0].devnum;
2057 	int dw = r10_bio->devs[1].devnum;
2058 
2059 	while (sectors) {
2060 		int s = sectors;
2061 		struct md_rdev *rdev;
2062 		sector_t addr;
2063 		int ok;
2064 
2065 		if (s > (PAGE_SIZE>>9))
2066 			s = PAGE_SIZE >> 9;
2067 
2068 		rdev = conf->mirrors[dr].rdev;
2069 		addr = r10_bio->devs[0].addr + sect,
2070 		ok = sync_page_io(rdev,
2071 				  addr,
2072 				  s << 9,
2073 				  bio->bi_io_vec[idx].bv_page,
2074 				  READ, false);
2075 		if (ok) {
2076 			rdev = conf->mirrors[dw].rdev;
2077 			addr = r10_bio->devs[1].addr + sect;
2078 			ok = sync_page_io(rdev,
2079 					  addr,
2080 					  s << 9,
2081 					  bio->bi_io_vec[idx].bv_page,
2082 					  WRITE, false);
2083 			if (!ok) {
2084 				set_bit(WriteErrorSeen, &rdev->flags);
2085 				if (!test_and_set_bit(WantReplacement,
2086 						      &rdev->flags))
2087 					set_bit(MD_RECOVERY_NEEDED,
2088 						&rdev->mddev->recovery);
2089 			}
2090 		}
2091 		if (!ok) {
2092 			/* We don't worry if we cannot set a bad block -
2093 			 * it really is bad so there is no loss in not
2094 			 * recording it yet
2095 			 */
2096 			rdev_set_badblocks(rdev, addr, s, 0);
2097 
2098 			if (rdev != conf->mirrors[dw].rdev) {
2099 				/* need bad block on destination too */
2100 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2101 				addr = r10_bio->devs[1].addr + sect;
2102 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2103 				if (!ok) {
2104 					/* just abort the recovery */
2105 					printk(KERN_NOTICE
2106 					       "md/raid10:%s: recovery aborted"
2107 					       " due to read error\n",
2108 					       mdname(mddev));
2109 
2110 					conf->mirrors[dw].recovery_disabled
2111 						= mddev->recovery_disabled;
2112 					set_bit(MD_RECOVERY_INTR,
2113 						&mddev->recovery);
2114 					break;
2115 				}
2116 			}
2117 		}
2118 
2119 		sectors -= s;
2120 		sect += s;
2121 		idx++;
2122 	}
2123 }
2124 
2125 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2126 {
2127 	struct r10conf *conf = mddev->private;
2128 	int d;
2129 	struct bio *wbio, *wbio2;
2130 
2131 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2132 		fix_recovery_read_error(r10_bio);
2133 		end_sync_request(r10_bio);
2134 		return;
2135 	}
2136 
2137 	/*
2138 	 * share the pages with the first bio
2139 	 * and submit the write request
2140 	 */
2141 	d = r10_bio->devs[1].devnum;
2142 	wbio = r10_bio->devs[1].bio;
2143 	wbio2 = r10_bio->devs[1].repl_bio;
2144 	/* Need to test wbio2->bi_end_io before we call
2145 	 * generic_make_request as if the former is NULL,
2146 	 * the latter is free to free wbio2.
2147 	 */
2148 	if (wbio2 && !wbio2->bi_end_io)
2149 		wbio2 = NULL;
2150 	if (wbio->bi_end_io) {
2151 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2152 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2153 		generic_make_request(wbio);
2154 	}
2155 	if (wbio2) {
2156 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2157 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2158 			     bio_sectors(wbio2));
2159 		generic_make_request(wbio2);
2160 	}
2161 }
2162 
2163 /*
2164  * Used by fix_read_error() to decay the per rdev read_errors.
2165  * We halve the read error count for every hour that has elapsed
2166  * since the last recorded read error.
2167  *
2168  */
2169 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2170 {
2171 	struct timespec cur_time_mon;
2172 	unsigned long hours_since_last;
2173 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2174 
2175 	ktime_get_ts(&cur_time_mon);
2176 
2177 	if (rdev->last_read_error.tv_sec == 0 &&
2178 	    rdev->last_read_error.tv_nsec == 0) {
2179 		/* first time we've seen a read error */
2180 		rdev->last_read_error = cur_time_mon;
2181 		return;
2182 	}
2183 
2184 	hours_since_last = (cur_time_mon.tv_sec -
2185 			    rdev->last_read_error.tv_sec) / 3600;
2186 
2187 	rdev->last_read_error = cur_time_mon;
2188 
2189 	/*
2190 	 * if hours_since_last is > the number of bits in read_errors
2191 	 * just set read errors to 0. We do this to avoid
2192 	 * overflowing the shift of read_errors by hours_since_last.
2193 	 */
2194 	if (hours_since_last >= 8 * sizeof(read_errors))
2195 		atomic_set(&rdev->read_errors, 0);
2196 	else
2197 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2198 }
2199 
2200 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2201 			    int sectors, struct page *page, int rw)
2202 {
2203 	sector_t first_bad;
2204 	int bad_sectors;
2205 
2206 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2207 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2208 		return -1;
2209 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2210 		/* success */
2211 		return 1;
2212 	if (rw == WRITE) {
2213 		set_bit(WriteErrorSeen, &rdev->flags);
2214 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2215 			set_bit(MD_RECOVERY_NEEDED,
2216 				&rdev->mddev->recovery);
2217 	}
2218 	/* need to record an error - either for the block or the device */
2219 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2220 		md_error(rdev->mddev, rdev);
2221 	return 0;
2222 }
2223 
2224 /*
2225  * This is a kernel thread which:
2226  *
2227  *	1.	Retries failed read operations on working mirrors.
2228  *	2.	Updates the raid superblock when problems encounter.
2229  *	3.	Performs writes following reads for array synchronising.
2230  */
2231 
2232 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2233 {
2234 	int sect = 0; /* Offset from r10_bio->sector */
2235 	int sectors = r10_bio->sectors;
2236 	struct md_rdev*rdev;
2237 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2238 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2239 
2240 	/* still own a reference to this rdev, so it cannot
2241 	 * have been cleared recently.
2242 	 */
2243 	rdev = conf->mirrors[d].rdev;
2244 
2245 	if (test_bit(Faulty, &rdev->flags))
2246 		/* drive has already been failed, just ignore any
2247 		   more fix_read_error() attempts */
2248 		return;
2249 
2250 	check_decay_read_errors(mddev, rdev);
2251 	atomic_inc(&rdev->read_errors);
2252 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2253 		char b[BDEVNAME_SIZE];
2254 		bdevname(rdev->bdev, b);
2255 
2256 		printk(KERN_NOTICE
2257 		       "md/raid10:%s: %s: Raid device exceeded "
2258 		       "read_error threshold [cur %d:max %d]\n",
2259 		       mdname(mddev), b,
2260 		       atomic_read(&rdev->read_errors), max_read_errors);
2261 		printk(KERN_NOTICE
2262 		       "md/raid10:%s: %s: Failing raid device\n",
2263 		       mdname(mddev), b);
2264 		md_error(mddev, conf->mirrors[d].rdev);
2265 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2266 		return;
2267 	}
2268 
2269 	while(sectors) {
2270 		int s = sectors;
2271 		int sl = r10_bio->read_slot;
2272 		int success = 0;
2273 		int start;
2274 
2275 		if (s > (PAGE_SIZE>>9))
2276 			s = PAGE_SIZE >> 9;
2277 
2278 		rcu_read_lock();
2279 		do {
2280 			sector_t first_bad;
2281 			int bad_sectors;
2282 
2283 			d = r10_bio->devs[sl].devnum;
2284 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2285 			if (rdev &&
2286 			    test_bit(In_sync, &rdev->flags) &&
2287 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2288 					&first_bad, &bad_sectors) == 0) {
2289 				atomic_inc(&rdev->nr_pending);
2290 				rcu_read_unlock();
2291 				success = sync_page_io(rdev,
2292 						       r10_bio->devs[sl].addr +
2293 						       sect,
2294 						       s<<9,
2295 						       conf->tmppage, READ, false);
2296 				rdev_dec_pending(rdev, mddev);
2297 				rcu_read_lock();
2298 				if (success)
2299 					break;
2300 			}
2301 			sl++;
2302 			if (sl == conf->copies)
2303 				sl = 0;
2304 		} while (!success && sl != r10_bio->read_slot);
2305 		rcu_read_unlock();
2306 
2307 		if (!success) {
2308 			/* Cannot read from anywhere, just mark the block
2309 			 * as bad on the first device to discourage future
2310 			 * reads.
2311 			 */
2312 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2313 			rdev = conf->mirrors[dn].rdev;
2314 
2315 			if (!rdev_set_badblocks(
2316 				    rdev,
2317 				    r10_bio->devs[r10_bio->read_slot].addr
2318 				    + sect,
2319 				    s, 0)) {
2320 				md_error(mddev, rdev);
2321 				r10_bio->devs[r10_bio->read_slot].bio
2322 					= IO_BLOCKED;
2323 			}
2324 			break;
2325 		}
2326 
2327 		start = sl;
2328 		/* write it back and re-read */
2329 		rcu_read_lock();
2330 		while (sl != r10_bio->read_slot) {
2331 			char b[BDEVNAME_SIZE];
2332 
2333 			if (sl==0)
2334 				sl = conf->copies;
2335 			sl--;
2336 			d = r10_bio->devs[sl].devnum;
2337 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2338 			if (!rdev ||
2339 			    !test_bit(In_sync, &rdev->flags))
2340 				continue;
2341 
2342 			atomic_inc(&rdev->nr_pending);
2343 			rcu_read_unlock();
2344 			if (r10_sync_page_io(rdev,
2345 					     r10_bio->devs[sl].addr +
2346 					     sect,
2347 					     s, conf->tmppage, WRITE)
2348 			    == 0) {
2349 				/* Well, this device is dead */
2350 				printk(KERN_NOTICE
2351 				       "md/raid10:%s: read correction "
2352 				       "write failed"
2353 				       " (%d sectors at %llu on %s)\n",
2354 				       mdname(mddev), s,
2355 				       (unsigned long long)(
2356 					       sect +
2357 					       choose_data_offset(r10_bio,
2358 								  rdev)),
2359 				       bdevname(rdev->bdev, b));
2360 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2361 				       "drive\n",
2362 				       mdname(mddev),
2363 				       bdevname(rdev->bdev, b));
2364 			}
2365 			rdev_dec_pending(rdev, mddev);
2366 			rcu_read_lock();
2367 		}
2368 		sl = start;
2369 		while (sl != r10_bio->read_slot) {
2370 			char b[BDEVNAME_SIZE];
2371 
2372 			if (sl==0)
2373 				sl = conf->copies;
2374 			sl--;
2375 			d = r10_bio->devs[sl].devnum;
2376 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2377 			if (!rdev ||
2378 			    !test_bit(In_sync, &rdev->flags))
2379 				continue;
2380 
2381 			atomic_inc(&rdev->nr_pending);
2382 			rcu_read_unlock();
2383 			switch (r10_sync_page_io(rdev,
2384 					     r10_bio->devs[sl].addr +
2385 					     sect,
2386 					     s, conf->tmppage,
2387 						 READ)) {
2388 			case 0:
2389 				/* Well, this device is dead */
2390 				printk(KERN_NOTICE
2391 				       "md/raid10:%s: unable to read back "
2392 				       "corrected sectors"
2393 				       " (%d sectors at %llu on %s)\n",
2394 				       mdname(mddev), s,
2395 				       (unsigned long long)(
2396 					       sect +
2397 					       choose_data_offset(r10_bio, rdev)),
2398 				       bdevname(rdev->bdev, b));
2399 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2400 				       "drive\n",
2401 				       mdname(mddev),
2402 				       bdevname(rdev->bdev, b));
2403 				break;
2404 			case 1:
2405 				printk(KERN_INFO
2406 				       "md/raid10:%s: read error corrected"
2407 				       " (%d sectors at %llu on %s)\n",
2408 				       mdname(mddev), s,
2409 				       (unsigned long long)(
2410 					       sect +
2411 					       choose_data_offset(r10_bio, rdev)),
2412 				       bdevname(rdev->bdev, b));
2413 				atomic_add(s, &rdev->corrected_errors);
2414 			}
2415 
2416 			rdev_dec_pending(rdev, mddev);
2417 			rcu_read_lock();
2418 		}
2419 		rcu_read_unlock();
2420 
2421 		sectors -= s;
2422 		sect += s;
2423 	}
2424 }
2425 
2426 static int narrow_write_error(struct r10bio *r10_bio, int i)
2427 {
2428 	struct bio *bio = r10_bio->master_bio;
2429 	struct mddev *mddev = r10_bio->mddev;
2430 	struct r10conf *conf = mddev->private;
2431 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2432 	/* bio has the data to be written to slot 'i' where
2433 	 * we just recently had a write error.
2434 	 * We repeatedly clone the bio and trim down to one block,
2435 	 * then try the write.  Where the write fails we record
2436 	 * a bad block.
2437 	 * It is conceivable that the bio doesn't exactly align with
2438 	 * blocks.  We must handle this.
2439 	 *
2440 	 * We currently own a reference to the rdev.
2441 	 */
2442 
2443 	int block_sectors;
2444 	sector_t sector;
2445 	int sectors;
2446 	int sect_to_write = r10_bio->sectors;
2447 	int ok = 1;
2448 
2449 	if (rdev->badblocks.shift < 0)
2450 		return 0;
2451 
2452 	block_sectors = roundup(1 << rdev->badblocks.shift,
2453 				bdev_logical_block_size(rdev->bdev) >> 9);
2454 	sector = r10_bio->sector;
2455 	sectors = ((r10_bio->sector + block_sectors)
2456 		   & ~(sector_t)(block_sectors - 1))
2457 		- sector;
2458 
2459 	while (sect_to_write) {
2460 		struct bio *wbio;
2461 		if (sectors > sect_to_write)
2462 			sectors = sect_to_write;
2463 		/* Write at 'sector' for 'sectors' */
2464 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2465 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2466 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2467 				   choose_data_offset(r10_bio, rdev) +
2468 				   (sector - r10_bio->sector));
2469 		wbio->bi_bdev = rdev->bdev;
2470 		if (submit_bio_wait(WRITE, wbio) == 0)
2471 			/* Failure! */
2472 			ok = rdev_set_badblocks(rdev, sector,
2473 						sectors, 0)
2474 				&& ok;
2475 
2476 		bio_put(wbio);
2477 		sect_to_write -= sectors;
2478 		sector += sectors;
2479 		sectors = block_sectors;
2480 	}
2481 	return ok;
2482 }
2483 
2484 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2485 {
2486 	int slot = r10_bio->read_slot;
2487 	struct bio *bio;
2488 	struct r10conf *conf = mddev->private;
2489 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2490 	char b[BDEVNAME_SIZE];
2491 	unsigned long do_sync;
2492 	int max_sectors;
2493 
2494 	/* we got a read error. Maybe the drive is bad.  Maybe just
2495 	 * the block and we can fix it.
2496 	 * We freeze all other IO, and try reading the block from
2497 	 * other devices.  When we find one, we re-write
2498 	 * and check it that fixes the read error.
2499 	 * This is all done synchronously while the array is
2500 	 * frozen.
2501 	 */
2502 	bio = r10_bio->devs[slot].bio;
2503 	bdevname(bio->bi_bdev, b);
2504 	bio_put(bio);
2505 	r10_bio->devs[slot].bio = NULL;
2506 
2507 	if (mddev->ro == 0) {
2508 		freeze_array(conf, 1);
2509 		fix_read_error(conf, mddev, r10_bio);
2510 		unfreeze_array(conf);
2511 	} else
2512 		r10_bio->devs[slot].bio = IO_BLOCKED;
2513 
2514 	rdev_dec_pending(rdev, mddev);
2515 
2516 read_more:
2517 	rdev = read_balance(conf, r10_bio, &max_sectors);
2518 	if (rdev == NULL) {
2519 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2520 		       " read error for block %llu\n",
2521 		       mdname(mddev), b,
2522 		       (unsigned long long)r10_bio->sector);
2523 		raid_end_bio_io(r10_bio);
2524 		return;
2525 	}
2526 
2527 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2528 	slot = r10_bio->read_slot;
2529 	printk_ratelimited(
2530 		KERN_ERR
2531 		"md/raid10:%s: %s: redirecting "
2532 		"sector %llu to another mirror\n",
2533 		mdname(mddev),
2534 		bdevname(rdev->bdev, b),
2535 		(unsigned long long)r10_bio->sector);
2536 	bio = bio_clone_mddev(r10_bio->master_bio,
2537 			      GFP_NOIO, mddev);
2538 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2539 	r10_bio->devs[slot].bio = bio;
2540 	r10_bio->devs[slot].rdev = rdev;
2541 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2542 		+ choose_data_offset(r10_bio, rdev);
2543 	bio->bi_bdev = rdev->bdev;
2544 	bio->bi_rw = READ | do_sync;
2545 	bio->bi_private = r10_bio;
2546 	bio->bi_end_io = raid10_end_read_request;
2547 	if (max_sectors < r10_bio->sectors) {
2548 		/* Drat - have to split this up more */
2549 		struct bio *mbio = r10_bio->master_bio;
2550 		int sectors_handled =
2551 			r10_bio->sector + max_sectors
2552 			- mbio->bi_iter.bi_sector;
2553 		r10_bio->sectors = max_sectors;
2554 		spin_lock_irq(&conf->device_lock);
2555 		if (mbio->bi_phys_segments == 0)
2556 			mbio->bi_phys_segments = 2;
2557 		else
2558 			mbio->bi_phys_segments++;
2559 		spin_unlock_irq(&conf->device_lock);
2560 		generic_make_request(bio);
2561 
2562 		r10_bio = mempool_alloc(conf->r10bio_pool,
2563 					GFP_NOIO);
2564 		r10_bio->master_bio = mbio;
2565 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2566 		r10_bio->state = 0;
2567 		set_bit(R10BIO_ReadError,
2568 			&r10_bio->state);
2569 		r10_bio->mddev = mddev;
2570 		r10_bio->sector = mbio->bi_iter.bi_sector
2571 			+ sectors_handled;
2572 
2573 		goto read_more;
2574 	} else
2575 		generic_make_request(bio);
2576 }
2577 
2578 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2579 {
2580 	/* Some sort of write request has finished and it
2581 	 * succeeded in writing where we thought there was a
2582 	 * bad block.  So forget the bad block.
2583 	 * Or possibly if failed and we need to record
2584 	 * a bad block.
2585 	 */
2586 	int m;
2587 	struct md_rdev *rdev;
2588 
2589 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2590 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2591 		for (m = 0; m < conf->copies; m++) {
2592 			int dev = r10_bio->devs[m].devnum;
2593 			rdev = conf->mirrors[dev].rdev;
2594 			if (r10_bio->devs[m].bio == NULL)
2595 				continue;
2596 			if (!r10_bio->devs[m].bio->bi_error) {
2597 				rdev_clear_badblocks(
2598 					rdev,
2599 					r10_bio->devs[m].addr,
2600 					r10_bio->sectors, 0);
2601 			} else {
2602 				if (!rdev_set_badblocks(
2603 					    rdev,
2604 					    r10_bio->devs[m].addr,
2605 					    r10_bio->sectors, 0))
2606 					md_error(conf->mddev, rdev);
2607 			}
2608 			rdev = conf->mirrors[dev].replacement;
2609 			if (r10_bio->devs[m].repl_bio == NULL)
2610 				continue;
2611 
2612 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2613 				rdev_clear_badblocks(
2614 					rdev,
2615 					r10_bio->devs[m].addr,
2616 					r10_bio->sectors, 0);
2617 			} else {
2618 				if (!rdev_set_badblocks(
2619 					    rdev,
2620 					    r10_bio->devs[m].addr,
2621 					    r10_bio->sectors, 0))
2622 					md_error(conf->mddev, rdev);
2623 			}
2624 		}
2625 		put_buf(r10_bio);
2626 	} else {
2627 		bool fail = false;
2628 		for (m = 0; m < conf->copies; m++) {
2629 			int dev = r10_bio->devs[m].devnum;
2630 			struct bio *bio = r10_bio->devs[m].bio;
2631 			rdev = conf->mirrors[dev].rdev;
2632 			if (bio == IO_MADE_GOOD) {
2633 				rdev_clear_badblocks(
2634 					rdev,
2635 					r10_bio->devs[m].addr,
2636 					r10_bio->sectors, 0);
2637 				rdev_dec_pending(rdev, conf->mddev);
2638 			} else if (bio != NULL && bio->bi_error) {
2639 				fail = true;
2640 				if (!narrow_write_error(r10_bio, m)) {
2641 					md_error(conf->mddev, rdev);
2642 					set_bit(R10BIO_Degraded,
2643 						&r10_bio->state);
2644 				}
2645 				rdev_dec_pending(rdev, conf->mddev);
2646 			}
2647 			bio = r10_bio->devs[m].repl_bio;
2648 			rdev = conf->mirrors[dev].replacement;
2649 			if (rdev && bio == IO_MADE_GOOD) {
2650 				rdev_clear_badblocks(
2651 					rdev,
2652 					r10_bio->devs[m].addr,
2653 					r10_bio->sectors, 0);
2654 				rdev_dec_pending(rdev, conf->mddev);
2655 			}
2656 		}
2657 		if (test_bit(R10BIO_WriteError,
2658 			     &r10_bio->state))
2659 			close_write(r10_bio);
2660 		if (fail) {
2661 			spin_lock_irq(&conf->device_lock);
2662 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2663 			spin_unlock_irq(&conf->device_lock);
2664 			md_wakeup_thread(conf->mddev->thread);
2665 		} else
2666 			raid_end_bio_io(r10_bio);
2667 	}
2668 }
2669 
2670 static void raid10d(struct md_thread *thread)
2671 {
2672 	struct mddev *mddev = thread->mddev;
2673 	struct r10bio *r10_bio;
2674 	unsigned long flags;
2675 	struct r10conf *conf = mddev->private;
2676 	struct list_head *head = &conf->retry_list;
2677 	struct blk_plug plug;
2678 
2679 	md_check_recovery(mddev);
2680 
2681 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2682 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2683 		LIST_HEAD(tmp);
2684 		spin_lock_irqsave(&conf->device_lock, flags);
2685 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2686 			list_add(&tmp, &conf->bio_end_io_list);
2687 			list_del_init(&conf->bio_end_io_list);
2688 		}
2689 		spin_unlock_irqrestore(&conf->device_lock, flags);
2690 		while (!list_empty(&tmp)) {
2691 			r10_bio = list_first_entry(&conf->bio_end_io_list,
2692 						  struct r10bio, retry_list);
2693 			list_del(&r10_bio->retry_list);
2694 			raid_end_bio_io(r10_bio);
2695 		}
2696 	}
2697 
2698 	blk_start_plug(&plug);
2699 	for (;;) {
2700 
2701 		flush_pending_writes(conf);
2702 
2703 		spin_lock_irqsave(&conf->device_lock, flags);
2704 		if (list_empty(head)) {
2705 			spin_unlock_irqrestore(&conf->device_lock, flags);
2706 			break;
2707 		}
2708 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2709 		list_del(head->prev);
2710 		conf->nr_queued--;
2711 		spin_unlock_irqrestore(&conf->device_lock, flags);
2712 
2713 		mddev = r10_bio->mddev;
2714 		conf = mddev->private;
2715 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2716 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2717 			handle_write_completed(conf, r10_bio);
2718 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2719 			reshape_request_write(mddev, r10_bio);
2720 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2721 			sync_request_write(mddev, r10_bio);
2722 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2723 			recovery_request_write(mddev, r10_bio);
2724 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2725 			handle_read_error(mddev, r10_bio);
2726 		else {
2727 			/* just a partial read to be scheduled from a
2728 			 * separate context
2729 			 */
2730 			int slot = r10_bio->read_slot;
2731 			generic_make_request(r10_bio->devs[slot].bio);
2732 		}
2733 
2734 		cond_resched();
2735 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2736 			md_check_recovery(mddev);
2737 	}
2738 	blk_finish_plug(&plug);
2739 }
2740 
2741 static int init_resync(struct r10conf *conf)
2742 {
2743 	int buffs;
2744 	int i;
2745 
2746 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2747 	BUG_ON(conf->r10buf_pool);
2748 	conf->have_replacement = 0;
2749 	for (i = 0; i < conf->geo.raid_disks; i++)
2750 		if (conf->mirrors[i].replacement)
2751 			conf->have_replacement = 1;
2752 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2753 	if (!conf->r10buf_pool)
2754 		return -ENOMEM;
2755 	conf->next_resync = 0;
2756 	return 0;
2757 }
2758 
2759 /*
2760  * perform a "sync" on one "block"
2761  *
2762  * We need to make sure that no normal I/O request - particularly write
2763  * requests - conflict with active sync requests.
2764  *
2765  * This is achieved by tracking pending requests and a 'barrier' concept
2766  * that can be installed to exclude normal IO requests.
2767  *
2768  * Resync and recovery are handled very differently.
2769  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2770  *
2771  * For resync, we iterate over virtual addresses, read all copies,
2772  * and update if there are differences.  If only one copy is live,
2773  * skip it.
2774  * For recovery, we iterate over physical addresses, read a good
2775  * value for each non-in_sync drive, and over-write.
2776  *
2777  * So, for recovery we may have several outstanding complex requests for a
2778  * given address, one for each out-of-sync device.  We model this by allocating
2779  * a number of r10_bio structures, one for each out-of-sync device.
2780  * As we setup these structures, we collect all bio's together into a list
2781  * which we then process collectively to add pages, and then process again
2782  * to pass to generic_make_request.
2783  *
2784  * The r10_bio structures are linked using a borrowed master_bio pointer.
2785  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2786  * has its remaining count decremented to 0, the whole complex operation
2787  * is complete.
2788  *
2789  */
2790 
2791 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2792 			     int *skipped)
2793 {
2794 	struct r10conf *conf = mddev->private;
2795 	struct r10bio *r10_bio;
2796 	struct bio *biolist = NULL, *bio;
2797 	sector_t max_sector, nr_sectors;
2798 	int i;
2799 	int max_sync;
2800 	sector_t sync_blocks;
2801 	sector_t sectors_skipped = 0;
2802 	int chunks_skipped = 0;
2803 	sector_t chunk_mask = conf->geo.chunk_mask;
2804 
2805 	if (!conf->r10buf_pool)
2806 		if (init_resync(conf))
2807 			return 0;
2808 
2809 	/*
2810 	 * Allow skipping a full rebuild for incremental assembly
2811 	 * of a clean array, like RAID1 does.
2812 	 */
2813 	if (mddev->bitmap == NULL &&
2814 	    mddev->recovery_cp == MaxSector &&
2815 	    mddev->reshape_position == MaxSector &&
2816 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2817 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2818 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2819 	    conf->fullsync == 0) {
2820 		*skipped = 1;
2821 		return mddev->dev_sectors - sector_nr;
2822 	}
2823 
2824  skipped:
2825 	max_sector = mddev->dev_sectors;
2826 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2827 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2828 		max_sector = mddev->resync_max_sectors;
2829 	if (sector_nr >= max_sector) {
2830 		/* If we aborted, we need to abort the
2831 		 * sync on the 'current' bitmap chucks (there can
2832 		 * be several when recovering multiple devices).
2833 		 * as we may have started syncing it but not finished.
2834 		 * We can find the current address in
2835 		 * mddev->curr_resync, but for recovery,
2836 		 * we need to convert that to several
2837 		 * virtual addresses.
2838 		 */
2839 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2840 			end_reshape(conf);
2841 			close_sync(conf);
2842 			return 0;
2843 		}
2844 
2845 		if (mddev->curr_resync < max_sector) { /* aborted */
2846 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2847 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2848 						&sync_blocks, 1);
2849 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2850 				sector_t sect =
2851 					raid10_find_virt(conf, mddev->curr_resync, i);
2852 				bitmap_end_sync(mddev->bitmap, sect,
2853 						&sync_blocks, 1);
2854 			}
2855 		} else {
2856 			/* completed sync */
2857 			if ((!mddev->bitmap || conf->fullsync)
2858 			    && conf->have_replacement
2859 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2860 				/* Completed a full sync so the replacements
2861 				 * are now fully recovered.
2862 				 */
2863 				for (i = 0; i < conf->geo.raid_disks; i++)
2864 					if (conf->mirrors[i].replacement)
2865 						conf->mirrors[i].replacement
2866 							->recovery_offset
2867 							= MaxSector;
2868 			}
2869 			conf->fullsync = 0;
2870 		}
2871 		bitmap_close_sync(mddev->bitmap);
2872 		close_sync(conf);
2873 		*skipped = 1;
2874 		return sectors_skipped;
2875 	}
2876 
2877 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2878 		return reshape_request(mddev, sector_nr, skipped);
2879 
2880 	if (chunks_skipped >= conf->geo.raid_disks) {
2881 		/* if there has been nothing to do on any drive,
2882 		 * then there is nothing to do at all..
2883 		 */
2884 		*skipped = 1;
2885 		return (max_sector - sector_nr) + sectors_skipped;
2886 	}
2887 
2888 	if (max_sector > mddev->resync_max)
2889 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2890 
2891 	/* make sure whole request will fit in a chunk - if chunks
2892 	 * are meaningful
2893 	 */
2894 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2895 	    max_sector > (sector_nr | chunk_mask))
2896 		max_sector = (sector_nr | chunk_mask) + 1;
2897 
2898 	/* Again, very different code for resync and recovery.
2899 	 * Both must result in an r10bio with a list of bios that
2900 	 * have bi_end_io, bi_sector, bi_bdev set,
2901 	 * and bi_private set to the r10bio.
2902 	 * For recovery, we may actually create several r10bios
2903 	 * with 2 bios in each, that correspond to the bios in the main one.
2904 	 * In this case, the subordinate r10bios link back through a
2905 	 * borrowed master_bio pointer, and the counter in the master
2906 	 * includes a ref from each subordinate.
2907 	 */
2908 	/* First, we decide what to do and set ->bi_end_io
2909 	 * To end_sync_read if we want to read, and
2910 	 * end_sync_write if we will want to write.
2911 	 */
2912 
2913 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2914 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2915 		/* recovery... the complicated one */
2916 		int j;
2917 		r10_bio = NULL;
2918 
2919 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2920 			int still_degraded;
2921 			struct r10bio *rb2;
2922 			sector_t sect;
2923 			int must_sync;
2924 			int any_working;
2925 			struct raid10_info *mirror = &conf->mirrors[i];
2926 
2927 			if ((mirror->rdev == NULL ||
2928 			     test_bit(In_sync, &mirror->rdev->flags))
2929 			    &&
2930 			    (mirror->replacement == NULL ||
2931 			     test_bit(Faulty,
2932 				      &mirror->replacement->flags)))
2933 				continue;
2934 
2935 			still_degraded = 0;
2936 			/* want to reconstruct this device */
2937 			rb2 = r10_bio;
2938 			sect = raid10_find_virt(conf, sector_nr, i);
2939 			if (sect >= mddev->resync_max_sectors) {
2940 				/* last stripe is not complete - don't
2941 				 * try to recover this sector.
2942 				 */
2943 				continue;
2944 			}
2945 			/* Unless we are doing a full sync, or a replacement
2946 			 * we only need to recover the block if it is set in
2947 			 * the bitmap
2948 			 */
2949 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2950 						      &sync_blocks, 1);
2951 			if (sync_blocks < max_sync)
2952 				max_sync = sync_blocks;
2953 			if (!must_sync &&
2954 			    mirror->replacement == NULL &&
2955 			    !conf->fullsync) {
2956 				/* yep, skip the sync_blocks here, but don't assume
2957 				 * that there will never be anything to do here
2958 				 */
2959 				chunks_skipped = -1;
2960 				continue;
2961 			}
2962 
2963 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2964 			r10_bio->state = 0;
2965 			raise_barrier(conf, rb2 != NULL);
2966 			atomic_set(&r10_bio->remaining, 0);
2967 
2968 			r10_bio->master_bio = (struct bio*)rb2;
2969 			if (rb2)
2970 				atomic_inc(&rb2->remaining);
2971 			r10_bio->mddev = mddev;
2972 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2973 			r10_bio->sector = sect;
2974 
2975 			raid10_find_phys(conf, r10_bio);
2976 
2977 			/* Need to check if the array will still be
2978 			 * degraded
2979 			 */
2980 			for (j = 0; j < conf->geo.raid_disks; j++)
2981 				if (conf->mirrors[j].rdev == NULL ||
2982 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2983 					still_degraded = 1;
2984 					break;
2985 				}
2986 
2987 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2988 						      &sync_blocks, still_degraded);
2989 
2990 			any_working = 0;
2991 			for (j=0; j<conf->copies;j++) {
2992 				int k;
2993 				int d = r10_bio->devs[j].devnum;
2994 				sector_t from_addr, to_addr;
2995 				struct md_rdev *rdev;
2996 				sector_t sector, first_bad;
2997 				int bad_sectors;
2998 				if (!conf->mirrors[d].rdev ||
2999 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3000 					continue;
3001 				/* This is where we read from */
3002 				any_working = 1;
3003 				rdev = conf->mirrors[d].rdev;
3004 				sector = r10_bio->devs[j].addr;
3005 
3006 				if (is_badblock(rdev, sector, max_sync,
3007 						&first_bad, &bad_sectors)) {
3008 					if (first_bad > sector)
3009 						max_sync = first_bad - sector;
3010 					else {
3011 						bad_sectors -= (sector
3012 								- first_bad);
3013 						if (max_sync > bad_sectors)
3014 							max_sync = bad_sectors;
3015 						continue;
3016 					}
3017 				}
3018 				bio = r10_bio->devs[0].bio;
3019 				bio_reset(bio);
3020 				bio->bi_next = biolist;
3021 				biolist = bio;
3022 				bio->bi_private = r10_bio;
3023 				bio->bi_end_io = end_sync_read;
3024 				bio->bi_rw = READ;
3025 				from_addr = r10_bio->devs[j].addr;
3026 				bio->bi_iter.bi_sector = from_addr +
3027 					rdev->data_offset;
3028 				bio->bi_bdev = rdev->bdev;
3029 				atomic_inc(&rdev->nr_pending);
3030 				/* and we write to 'i' (if not in_sync) */
3031 
3032 				for (k=0; k<conf->copies; k++)
3033 					if (r10_bio->devs[k].devnum == i)
3034 						break;
3035 				BUG_ON(k == conf->copies);
3036 				to_addr = r10_bio->devs[k].addr;
3037 				r10_bio->devs[0].devnum = d;
3038 				r10_bio->devs[0].addr = from_addr;
3039 				r10_bio->devs[1].devnum = i;
3040 				r10_bio->devs[1].addr = to_addr;
3041 
3042 				rdev = mirror->rdev;
3043 				if (!test_bit(In_sync, &rdev->flags)) {
3044 					bio = r10_bio->devs[1].bio;
3045 					bio_reset(bio);
3046 					bio->bi_next = biolist;
3047 					biolist = bio;
3048 					bio->bi_private = r10_bio;
3049 					bio->bi_end_io = end_sync_write;
3050 					bio->bi_rw = WRITE;
3051 					bio->bi_iter.bi_sector = to_addr
3052 						+ rdev->data_offset;
3053 					bio->bi_bdev = rdev->bdev;
3054 					atomic_inc(&r10_bio->remaining);
3055 				} else
3056 					r10_bio->devs[1].bio->bi_end_io = NULL;
3057 
3058 				/* and maybe write to replacement */
3059 				bio = r10_bio->devs[1].repl_bio;
3060 				if (bio)
3061 					bio->bi_end_io = NULL;
3062 				rdev = mirror->replacement;
3063 				/* Note: if rdev != NULL, then bio
3064 				 * cannot be NULL as r10buf_pool_alloc will
3065 				 * have allocated it.
3066 				 * So the second test here is pointless.
3067 				 * But it keeps semantic-checkers happy, and
3068 				 * this comment keeps human reviewers
3069 				 * happy.
3070 				 */
3071 				if (rdev == NULL || bio == NULL ||
3072 				    test_bit(Faulty, &rdev->flags))
3073 					break;
3074 				bio_reset(bio);
3075 				bio->bi_next = biolist;
3076 				biolist = bio;
3077 				bio->bi_private = r10_bio;
3078 				bio->bi_end_io = end_sync_write;
3079 				bio->bi_rw = WRITE;
3080 				bio->bi_iter.bi_sector = to_addr +
3081 					rdev->data_offset;
3082 				bio->bi_bdev = rdev->bdev;
3083 				atomic_inc(&r10_bio->remaining);
3084 				break;
3085 			}
3086 			if (j == conf->copies) {
3087 				/* Cannot recover, so abort the recovery or
3088 				 * record a bad block */
3089 				if (any_working) {
3090 					/* problem is that there are bad blocks
3091 					 * on other device(s)
3092 					 */
3093 					int k;
3094 					for (k = 0; k < conf->copies; k++)
3095 						if (r10_bio->devs[k].devnum == i)
3096 							break;
3097 					if (!test_bit(In_sync,
3098 						      &mirror->rdev->flags)
3099 					    && !rdev_set_badblocks(
3100 						    mirror->rdev,
3101 						    r10_bio->devs[k].addr,
3102 						    max_sync, 0))
3103 						any_working = 0;
3104 					if (mirror->replacement &&
3105 					    !rdev_set_badblocks(
3106 						    mirror->replacement,
3107 						    r10_bio->devs[k].addr,
3108 						    max_sync, 0))
3109 						any_working = 0;
3110 				}
3111 				if (!any_working)  {
3112 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3113 							      &mddev->recovery))
3114 						printk(KERN_INFO "md/raid10:%s: insufficient "
3115 						       "working devices for recovery.\n",
3116 						       mdname(mddev));
3117 					mirror->recovery_disabled
3118 						= mddev->recovery_disabled;
3119 				}
3120 				put_buf(r10_bio);
3121 				if (rb2)
3122 					atomic_dec(&rb2->remaining);
3123 				r10_bio = rb2;
3124 				break;
3125 			}
3126 		}
3127 		if (biolist == NULL) {
3128 			while (r10_bio) {
3129 				struct r10bio *rb2 = r10_bio;
3130 				r10_bio = (struct r10bio*) rb2->master_bio;
3131 				rb2->master_bio = NULL;
3132 				put_buf(rb2);
3133 			}
3134 			goto giveup;
3135 		}
3136 	} else {
3137 		/* resync. Schedule a read for every block at this virt offset */
3138 		int count = 0;
3139 
3140 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3141 
3142 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3143 				       &sync_blocks, mddev->degraded) &&
3144 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3145 						 &mddev->recovery)) {
3146 			/* We can skip this block */
3147 			*skipped = 1;
3148 			return sync_blocks + sectors_skipped;
3149 		}
3150 		if (sync_blocks < max_sync)
3151 			max_sync = sync_blocks;
3152 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3153 		r10_bio->state = 0;
3154 
3155 		r10_bio->mddev = mddev;
3156 		atomic_set(&r10_bio->remaining, 0);
3157 		raise_barrier(conf, 0);
3158 		conf->next_resync = sector_nr;
3159 
3160 		r10_bio->master_bio = NULL;
3161 		r10_bio->sector = sector_nr;
3162 		set_bit(R10BIO_IsSync, &r10_bio->state);
3163 		raid10_find_phys(conf, r10_bio);
3164 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3165 
3166 		for (i = 0; i < conf->copies; i++) {
3167 			int d = r10_bio->devs[i].devnum;
3168 			sector_t first_bad, sector;
3169 			int bad_sectors;
3170 
3171 			if (r10_bio->devs[i].repl_bio)
3172 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3173 
3174 			bio = r10_bio->devs[i].bio;
3175 			bio_reset(bio);
3176 			bio->bi_error = -EIO;
3177 			if (conf->mirrors[d].rdev == NULL ||
3178 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3179 				continue;
3180 			sector = r10_bio->devs[i].addr;
3181 			if (is_badblock(conf->mirrors[d].rdev,
3182 					sector, max_sync,
3183 					&first_bad, &bad_sectors)) {
3184 				if (first_bad > sector)
3185 					max_sync = first_bad - sector;
3186 				else {
3187 					bad_sectors -= (sector - first_bad);
3188 					if (max_sync > bad_sectors)
3189 						max_sync = bad_sectors;
3190 					continue;
3191 				}
3192 			}
3193 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3194 			atomic_inc(&r10_bio->remaining);
3195 			bio->bi_next = biolist;
3196 			biolist = bio;
3197 			bio->bi_private = r10_bio;
3198 			bio->bi_end_io = end_sync_read;
3199 			bio->bi_rw = READ;
3200 			bio->bi_iter.bi_sector = sector +
3201 				conf->mirrors[d].rdev->data_offset;
3202 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3203 			count++;
3204 
3205 			if (conf->mirrors[d].replacement == NULL ||
3206 			    test_bit(Faulty,
3207 				     &conf->mirrors[d].replacement->flags))
3208 				continue;
3209 
3210 			/* Need to set up for writing to the replacement */
3211 			bio = r10_bio->devs[i].repl_bio;
3212 			bio_reset(bio);
3213 			bio->bi_error = -EIO;
3214 
3215 			sector = r10_bio->devs[i].addr;
3216 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3217 			bio->bi_next = biolist;
3218 			biolist = bio;
3219 			bio->bi_private = r10_bio;
3220 			bio->bi_end_io = end_sync_write;
3221 			bio->bi_rw = WRITE;
3222 			bio->bi_iter.bi_sector = sector +
3223 				conf->mirrors[d].replacement->data_offset;
3224 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3225 			count++;
3226 		}
3227 
3228 		if (count < 2) {
3229 			for (i=0; i<conf->copies; i++) {
3230 				int d = r10_bio->devs[i].devnum;
3231 				if (r10_bio->devs[i].bio->bi_end_io)
3232 					rdev_dec_pending(conf->mirrors[d].rdev,
3233 							 mddev);
3234 				if (r10_bio->devs[i].repl_bio &&
3235 				    r10_bio->devs[i].repl_bio->bi_end_io)
3236 					rdev_dec_pending(
3237 						conf->mirrors[d].replacement,
3238 						mddev);
3239 			}
3240 			put_buf(r10_bio);
3241 			biolist = NULL;
3242 			goto giveup;
3243 		}
3244 	}
3245 
3246 	nr_sectors = 0;
3247 	if (sector_nr + max_sync < max_sector)
3248 		max_sector = sector_nr + max_sync;
3249 	do {
3250 		struct page *page;
3251 		int len = PAGE_SIZE;
3252 		if (sector_nr + (len>>9) > max_sector)
3253 			len = (max_sector - sector_nr) << 9;
3254 		if (len == 0)
3255 			break;
3256 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3257 			struct bio *bio2;
3258 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3259 			if (bio_add_page(bio, page, len, 0))
3260 				continue;
3261 
3262 			/* stop here */
3263 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3264 			for (bio2 = biolist;
3265 			     bio2 && bio2 != bio;
3266 			     bio2 = bio2->bi_next) {
3267 				/* remove last page from this bio */
3268 				bio2->bi_vcnt--;
3269 				bio2->bi_iter.bi_size -= len;
3270 				bio_clear_flag(bio2, BIO_SEG_VALID);
3271 			}
3272 			goto bio_full;
3273 		}
3274 		nr_sectors += len>>9;
3275 		sector_nr += len>>9;
3276 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3277  bio_full:
3278 	r10_bio->sectors = nr_sectors;
3279 
3280 	while (biolist) {
3281 		bio = biolist;
3282 		biolist = biolist->bi_next;
3283 
3284 		bio->bi_next = NULL;
3285 		r10_bio = bio->bi_private;
3286 		r10_bio->sectors = nr_sectors;
3287 
3288 		if (bio->bi_end_io == end_sync_read) {
3289 			md_sync_acct(bio->bi_bdev, nr_sectors);
3290 			bio->bi_error = 0;
3291 			generic_make_request(bio);
3292 		}
3293 	}
3294 
3295 	if (sectors_skipped)
3296 		/* pretend they weren't skipped, it makes
3297 		 * no important difference in this case
3298 		 */
3299 		md_done_sync(mddev, sectors_skipped, 1);
3300 
3301 	return sectors_skipped + nr_sectors;
3302  giveup:
3303 	/* There is nowhere to write, so all non-sync
3304 	 * drives must be failed or in resync, all drives
3305 	 * have a bad block, so try the next chunk...
3306 	 */
3307 	if (sector_nr + max_sync < max_sector)
3308 		max_sector = sector_nr + max_sync;
3309 
3310 	sectors_skipped += (max_sector - sector_nr);
3311 	chunks_skipped ++;
3312 	sector_nr = max_sector;
3313 	goto skipped;
3314 }
3315 
3316 static sector_t
3317 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3318 {
3319 	sector_t size;
3320 	struct r10conf *conf = mddev->private;
3321 
3322 	if (!raid_disks)
3323 		raid_disks = min(conf->geo.raid_disks,
3324 				 conf->prev.raid_disks);
3325 	if (!sectors)
3326 		sectors = conf->dev_sectors;
3327 
3328 	size = sectors >> conf->geo.chunk_shift;
3329 	sector_div(size, conf->geo.far_copies);
3330 	size = size * raid_disks;
3331 	sector_div(size, conf->geo.near_copies);
3332 
3333 	return size << conf->geo.chunk_shift;
3334 }
3335 
3336 static void calc_sectors(struct r10conf *conf, sector_t size)
3337 {
3338 	/* Calculate the number of sectors-per-device that will
3339 	 * actually be used, and set conf->dev_sectors and
3340 	 * conf->stride
3341 	 */
3342 
3343 	size = size >> conf->geo.chunk_shift;
3344 	sector_div(size, conf->geo.far_copies);
3345 	size = size * conf->geo.raid_disks;
3346 	sector_div(size, conf->geo.near_copies);
3347 	/* 'size' is now the number of chunks in the array */
3348 	/* calculate "used chunks per device" */
3349 	size = size * conf->copies;
3350 
3351 	/* We need to round up when dividing by raid_disks to
3352 	 * get the stride size.
3353 	 */
3354 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3355 
3356 	conf->dev_sectors = size << conf->geo.chunk_shift;
3357 
3358 	if (conf->geo.far_offset)
3359 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3360 	else {
3361 		sector_div(size, conf->geo.far_copies);
3362 		conf->geo.stride = size << conf->geo.chunk_shift;
3363 	}
3364 }
3365 
3366 enum geo_type {geo_new, geo_old, geo_start};
3367 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3368 {
3369 	int nc, fc, fo;
3370 	int layout, chunk, disks;
3371 	switch (new) {
3372 	case geo_old:
3373 		layout = mddev->layout;
3374 		chunk = mddev->chunk_sectors;
3375 		disks = mddev->raid_disks - mddev->delta_disks;
3376 		break;
3377 	case geo_new:
3378 		layout = mddev->new_layout;
3379 		chunk = mddev->new_chunk_sectors;
3380 		disks = mddev->raid_disks;
3381 		break;
3382 	default: /* avoid 'may be unused' warnings */
3383 	case geo_start: /* new when starting reshape - raid_disks not
3384 			 * updated yet. */
3385 		layout = mddev->new_layout;
3386 		chunk = mddev->new_chunk_sectors;
3387 		disks = mddev->raid_disks + mddev->delta_disks;
3388 		break;
3389 	}
3390 	if (layout >> 18)
3391 		return -1;
3392 	if (chunk < (PAGE_SIZE >> 9) ||
3393 	    !is_power_of_2(chunk))
3394 		return -2;
3395 	nc = layout & 255;
3396 	fc = (layout >> 8) & 255;
3397 	fo = layout & (1<<16);
3398 	geo->raid_disks = disks;
3399 	geo->near_copies = nc;
3400 	geo->far_copies = fc;
3401 	geo->far_offset = fo;
3402 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3403 	geo->chunk_mask = chunk - 1;
3404 	geo->chunk_shift = ffz(~chunk);
3405 	return nc*fc;
3406 }
3407 
3408 static struct r10conf *setup_conf(struct mddev *mddev)
3409 {
3410 	struct r10conf *conf = NULL;
3411 	int err = -EINVAL;
3412 	struct geom geo;
3413 	int copies;
3414 
3415 	copies = setup_geo(&geo, mddev, geo_new);
3416 
3417 	if (copies == -2) {
3418 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3419 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3420 		       mdname(mddev), PAGE_SIZE);
3421 		goto out;
3422 	}
3423 
3424 	if (copies < 2 || copies > mddev->raid_disks) {
3425 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3426 		       mdname(mddev), mddev->new_layout);
3427 		goto out;
3428 	}
3429 
3430 	err = -ENOMEM;
3431 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3432 	if (!conf)
3433 		goto out;
3434 
3435 	/* FIXME calc properly */
3436 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3437 							    max(0,-mddev->delta_disks)),
3438 				GFP_KERNEL);
3439 	if (!conf->mirrors)
3440 		goto out;
3441 
3442 	conf->tmppage = alloc_page(GFP_KERNEL);
3443 	if (!conf->tmppage)
3444 		goto out;
3445 
3446 	conf->geo = geo;
3447 	conf->copies = copies;
3448 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3449 					   r10bio_pool_free, conf);
3450 	if (!conf->r10bio_pool)
3451 		goto out;
3452 
3453 	calc_sectors(conf, mddev->dev_sectors);
3454 	if (mddev->reshape_position == MaxSector) {
3455 		conf->prev = conf->geo;
3456 		conf->reshape_progress = MaxSector;
3457 	} else {
3458 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3459 			err = -EINVAL;
3460 			goto out;
3461 		}
3462 		conf->reshape_progress = mddev->reshape_position;
3463 		if (conf->prev.far_offset)
3464 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3465 		else
3466 			/* far_copies must be 1 */
3467 			conf->prev.stride = conf->dev_sectors;
3468 	}
3469 	conf->reshape_safe = conf->reshape_progress;
3470 	spin_lock_init(&conf->device_lock);
3471 	INIT_LIST_HEAD(&conf->retry_list);
3472 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3473 
3474 	spin_lock_init(&conf->resync_lock);
3475 	init_waitqueue_head(&conf->wait_barrier);
3476 
3477 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3478 	if (!conf->thread)
3479 		goto out;
3480 
3481 	conf->mddev = mddev;
3482 	return conf;
3483 
3484  out:
3485 	if (err == -ENOMEM)
3486 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3487 		       mdname(mddev));
3488 	if (conf) {
3489 		if (conf->r10bio_pool)
3490 			mempool_destroy(conf->r10bio_pool);
3491 		kfree(conf->mirrors);
3492 		safe_put_page(conf->tmppage);
3493 		kfree(conf);
3494 	}
3495 	return ERR_PTR(err);
3496 }
3497 
3498 static int run(struct mddev *mddev)
3499 {
3500 	struct r10conf *conf;
3501 	int i, disk_idx, chunk_size;
3502 	struct raid10_info *disk;
3503 	struct md_rdev *rdev;
3504 	sector_t size;
3505 	sector_t min_offset_diff = 0;
3506 	int first = 1;
3507 	bool discard_supported = false;
3508 
3509 	if (mddev->private == NULL) {
3510 		conf = setup_conf(mddev);
3511 		if (IS_ERR(conf))
3512 			return PTR_ERR(conf);
3513 		mddev->private = conf;
3514 	}
3515 	conf = mddev->private;
3516 	if (!conf)
3517 		goto out;
3518 
3519 	mddev->thread = conf->thread;
3520 	conf->thread = NULL;
3521 
3522 	chunk_size = mddev->chunk_sectors << 9;
3523 	if (mddev->queue) {
3524 		blk_queue_max_discard_sectors(mddev->queue,
3525 					      mddev->chunk_sectors);
3526 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3527 		blk_queue_io_min(mddev->queue, chunk_size);
3528 		if (conf->geo.raid_disks % conf->geo.near_copies)
3529 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3530 		else
3531 			blk_queue_io_opt(mddev->queue, chunk_size *
3532 					 (conf->geo.raid_disks / conf->geo.near_copies));
3533 	}
3534 
3535 	rdev_for_each(rdev, mddev) {
3536 		long long diff;
3537 		struct request_queue *q;
3538 
3539 		disk_idx = rdev->raid_disk;
3540 		if (disk_idx < 0)
3541 			continue;
3542 		if (disk_idx >= conf->geo.raid_disks &&
3543 		    disk_idx >= conf->prev.raid_disks)
3544 			continue;
3545 		disk = conf->mirrors + disk_idx;
3546 
3547 		if (test_bit(Replacement, &rdev->flags)) {
3548 			if (disk->replacement)
3549 				goto out_free_conf;
3550 			disk->replacement = rdev;
3551 		} else {
3552 			if (disk->rdev)
3553 				goto out_free_conf;
3554 			disk->rdev = rdev;
3555 		}
3556 		q = bdev_get_queue(rdev->bdev);
3557 		diff = (rdev->new_data_offset - rdev->data_offset);
3558 		if (!mddev->reshape_backwards)
3559 			diff = -diff;
3560 		if (diff < 0)
3561 			diff = 0;
3562 		if (first || diff < min_offset_diff)
3563 			min_offset_diff = diff;
3564 
3565 		if (mddev->gendisk)
3566 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3567 					  rdev->data_offset << 9);
3568 
3569 		disk->head_position = 0;
3570 
3571 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3572 			discard_supported = true;
3573 	}
3574 
3575 	if (mddev->queue) {
3576 		if (discard_supported)
3577 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3578 						mddev->queue);
3579 		else
3580 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3581 						  mddev->queue);
3582 	}
3583 	/* need to check that every block has at least one working mirror */
3584 	if (!enough(conf, -1)) {
3585 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3586 		       mdname(mddev));
3587 		goto out_free_conf;
3588 	}
3589 
3590 	if (conf->reshape_progress != MaxSector) {
3591 		/* must ensure that shape change is supported */
3592 		if (conf->geo.far_copies != 1 &&
3593 		    conf->geo.far_offset == 0)
3594 			goto out_free_conf;
3595 		if (conf->prev.far_copies != 1 &&
3596 		    conf->prev.far_offset == 0)
3597 			goto out_free_conf;
3598 	}
3599 
3600 	mddev->degraded = 0;
3601 	for (i = 0;
3602 	     i < conf->geo.raid_disks
3603 		     || i < conf->prev.raid_disks;
3604 	     i++) {
3605 
3606 		disk = conf->mirrors + i;
3607 
3608 		if (!disk->rdev && disk->replacement) {
3609 			/* The replacement is all we have - use it */
3610 			disk->rdev = disk->replacement;
3611 			disk->replacement = NULL;
3612 			clear_bit(Replacement, &disk->rdev->flags);
3613 		}
3614 
3615 		if (!disk->rdev ||
3616 		    !test_bit(In_sync, &disk->rdev->flags)) {
3617 			disk->head_position = 0;
3618 			mddev->degraded++;
3619 			if (disk->rdev &&
3620 			    disk->rdev->saved_raid_disk < 0)
3621 				conf->fullsync = 1;
3622 		}
3623 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3624 	}
3625 
3626 	if (mddev->recovery_cp != MaxSector)
3627 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3628 		       " -- starting background reconstruction\n",
3629 		       mdname(mddev));
3630 	printk(KERN_INFO
3631 		"md/raid10:%s: active with %d out of %d devices\n",
3632 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3633 		conf->geo.raid_disks);
3634 	/*
3635 	 * Ok, everything is just fine now
3636 	 */
3637 	mddev->dev_sectors = conf->dev_sectors;
3638 	size = raid10_size(mddev, 0, 0);
3639 	md_set_array_sectors(mddev, size);
3640 	mddev->resync_max_sectors = size;
3641 
3642 	if (mddev->queue) {
3643 		int stripe = conf->geo.raid_disks *
3644 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3645 
3646 		/* Calculate max read-ahead size.
3647 		 * We need to readahead at least twice a whole stripe....
3648 		 * maybe...
3649 		 */
3650 		stripe /= conf->geo.near_copies;
3651 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3652 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3653 	}
3654 
3655 	if (md_integrity_register(mddev))
3656 		goto out_free_conf;
3657 
3658 	if (conf->reshape_progress != MaxSector) {
3659 		unsigned long before_length, after_length;
3660 
3661 		before_length = ((1 << conf->prev.chunk_shift) *
3662 				 conf->prev.far_copies);
3663 		after_length = ((1 << conf->geo.chunk_shift) *
3664 				conf->geo.far_copies);
3665 
3666 		if (max(before_length, after_length) > min_offset_diff) {
3667 			/* This cannot work */
3668 			printk("md/raid10: offset difference not enough to continue reshape\n");
3669 			goto out_free_conf;
3670 		}
3671 		conf->offset_diff = min_offset_diff;
3672 
3673 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3674 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3675 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3676 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3677 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3678 							"reshape");
3679 	}
3680 
3681 	return 0;
3682 
3683 out_free_conf:
3684 	md_unregister_thread(&mddev->thread);
3685 	if (conf->r10bio_pool)
3686 		mempool_destroy(conf->r10bio_pool);
3687 	safe_put_page(conf->tmppage);
3688 	kfree(conf->mirrors);
3689 	kfree(conf);
3690 	mddev->private = NULL;
3691 out:
3692 	return -EIO;
3693 }
3694 
3695 static void raid10_free(struct mddev *mddev, void *priv)
3696 {
3697 	struct r10conf *conf = priv;
3698 
3699 	if (conf->r10bio_pool)
3700 		mempool_destroy(conf->r10bio_pool);
3701 	safe_put_page(conf->tmppage);
3702 	kfree(conf->mirrors);
3703 	kfree(conf->mirrors_old);
3704 	kfree(conf->mirrors_new);
3705 	kfree(conf);
3706 }
3707 
3708 static void raid10_quiesce(struct mddev *mddev, int state)
3709 {
3710 	struct r10conf *conf = mddev->private;
3711 
3712 	switch(state) {
3713 	case 1:
3714 		raise_barrier(conf, 0);
3715 		break;
3716 	case 0:
3717 		lower_barrier(conf);
3718 		break;
3719 	}
3720 }
3721 
3722 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3723 {
3724 	/* Resize of 'far' arrays is not supported.
3725 	 * For 'near' and 'offset' arrays we can set the
3726 	 * number of sectors used to be an appropriate multiple
3727 	 * of the chunk size.
3728 	 * For 'offset', this is far_copies*chunksize.
3729 	 * For 'near' the multiplier is the LCM of
3730 	 * near_copies and raid_disks.
3731 	 * So if far_copies > 1 && !far_offset, fail.
3732 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3733 	 * multiply by chunk_size.  Then round to this number.
3734 	 * This is mostly done by raid10_size()
3735 	 */
3736 	struct r10conf *conf = mddev->private;
3737 	sector_t oldsize, size;
3738 
3739 	if (mddev->reshape_position != MaxSector)
3740 		return -EBUSY;
3741 
3742 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3743 		return -EINVAL;
3744 
3745 	oldsize = raid10_size(mddev, 0, 0);
3746 	size = raid10_size(mddev, sectors, 0);
3747 	if (mddev->external_size &&
3748 	    mddev->array_sectors > size)
3749 		return -EINVAL;
3750 	if (mddev->bitmap) {
3751 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3752 		if (ret)
3753 			return ret;
3754 	}
3755 	md_set_array_sectors(mddev, size);
3756 	set_capacity(mddev->gendisk, mddev->array_sectors);
3757 	revalidate_disk(mddev->gendisk);
3758 	if (sectors > mddev->dev_sectors &&
3759 	    mddev->recovery_cp > oldsize) {
3760 		mddev->recovery_cp = oldsize;
3761 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3762 	}
3763 	calc_sectors(conf, sectors);
3764 	mddev->dev_sectors = conf->dev_sectors;
3765 	mddev->resync_max_sectors = size;
3766 	return 0;
3767 }
3768 
3769 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3770 {
3771 	struct md_rdev *rdev;
3772 	struct r10conf *conf;
3773 
3774 	if (mddev->degraded > 0) {
3775 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3776 		       mdname(mddev));
3777 		return ERR_PTR(-EINVAL);
3778 	}
3779 	sector_div(size, devs);
3780 
3781 	/* Set new parameters */
3782 	mddev->new_level = 10;
3783 	/* new layout: far_copies = 1, near_copies = 2 */
3784 	mddev->new_layout = (1<<8) + 2;
3785 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3786 	mddev->delta_disks = mddev->raid_disks;
3787 	mddev->raid_disks *= 2;
3788 	/* make sure it will be not marked as dirty */
3789 	mddev->recovery_cp = MaxSector;
3790 	mddev->dev_sectors = size;
3791 
3792 	conf = setup_conf(mddev);
3793 	if (!IS_ERR(conf)) {
3794 		rdev_for_each(rdev, mddev)
3795 			if (rdev->raid_disk >= 0) {
3796 				rdev->new_raid_disk = rdev->raid_disk * 2;
3797 				rdev->sectors = size;
3798 			}
3799 		conf->barrier = 1;
3800 	}
3801 
3802 	return conf;
3803 }
3804 
3805 static void *raid10_takeover(struct mddev *mddev)
3806 {
3807 	struct r0conf *raid0_conf;
3808 
3809 	/* raid10 can take over:
3810 	 *  raid0 - providing it has only two drives
3811 	 */
3812 	if (mddev->level == 0) {
3813 		/* for raid0 takeover only one zone is supported */
3814 		raid0_conf = mddev->private;
3815 		if (raid0_conf->nr_strip_zones > 1) {
3816 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3817 			       " with more than one zone.\n",
3818 			       mdname(mddev));
3819 			return ERR_PTR(-EINVAL);
3820 		}
3821 		return raid10_takeover_raid0(mddev,
3822 			raid0_conf->strip_zone->zone_end,
3823 			raid0_conf->strip_zone->nb_dev);
3824 	}
3825 	return ERR_PTR(-EINVAL);
3826 }
3827 
3828 static int raid10_check_reshape(struct mddev *mddev)
3829 {
3830 	/* Called when there is a request to change
3831 	 * - layout (to ->new_layout)
3832 	 * - chunk size (to ->new_chunk_sectors)
3833 	 * - raid_disks (by delta_disks)
3834 	 * or when trying to restart a reshape that was ongoing.
3835 	 *
3836 	 * We need to validate the request and possibly allocate
3837 	 * space if that might be an issue later.
3838 	 *
3839 	 * Currently we reject any reshape of a 'far' mode array,
3840 	 * allow chunk size to change if new is generally acceptable,
3841 	 * allow raid_disks to increase, and allow
3842 	 * a switch between 'near' mode and 'offset' mode.
3843 	 */
3844 	struct r10conf *conf = mddev->private;
3845 	struct geom geo;
3846 
3847 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3848 		return -EINVAL;
3849 
3850 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3851 		/* mustn't change number of copies */
3852 		return -EINVAL;
3853 	if (geo.far_copies > 1 && !geo.far_offset)
3854 		/* Cannot switch to 'far' mode */
3855 		return -EINVAL;
3856 
3857 	if (mddev->array_sectors & geo.chunk_mask)
3858 			/* not factor of array size */
3859 			return -EINVAL;
3860 
3861 	if (!enough(conf, -1))
3862 		return -EINVAL;
3863 
3864 	kfree(conf->mirrors_new);
3865 	conf->mirrors_new = NULL;
3866 	if (mddev->delta_disks > 0) {
3867 		/* allocate new 'mirrors' list */
3868 		conf->mirrors_new = kzalloc(
3869 			sizeof(struct raid10_info)
3870 			*(mddev->raid_disks +
3871 			  mddev->delta_disks),
3872 			GFP_KERNEL);
3873 		if (!conf->mirrors_new)
3874 			return -ENOMEM;
3875 	}
3876 	return 0;
3877 }
3878 
3879 /*
3880  * Need to check if array has failed when deciding whether to:
3881  *  - start an array
3882  *  - remove non-faulty devices
3883  *  - add a spare
3884  *  - allow a reshape
3885  * This determination is simple when no reshape is happening.
3886  * However if there is a reshape, we need to carefully check
3887  * both the before and after sections.
3888  * This is because some failed devices may only affect one
3889  * of the two sections, and some non-in_sync devices may
3890  * be insync in the section most affected by failed devices.
3891  */
3892 static int calc_degraded(struct r10conf *conf)
3893 {
3894 	int degraded, degraded2;
3895 	int i;
3896 
3897 	rcu_read_lock();
3898 	degraded = 0;
3899 	/* 'prev' section first */
3900 	for (i = 0; i < conf->prev.raid_disks; i++) {
3901 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3902 		if (!rdev || test_bit(Faulty, &rdev->flags))
3903 			degraded++;
3904 		else if (!test_bit(In_sync, &rdev->flags))
3905 			/* When we can reduce the number of devices in
3906 			 * an array, this might not contribute to
3907 			 * 'degraded'.  It does now.
3908 			 */
3909 			degraded++;
3910 	}
3911 	rcu_read_unlock();
3912 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3913 		return degraded;
3914 	rcu_read_lock();
3915 	degraded2 = 0;
3916 	for (i = 0; i < conf->geo.raid_disks; i++) {
3917 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3918 		if (!rdev || test_bit(Faulty, &rdev->flags))
3919 			degraded2++;
3920 		else if (!test_bit(In_sync, &rdev->flags)) {
3921 			/* If reshape is increasing the number of devices,
3922 			 * this section has already been recovered, so
3923 			 * it doesn't contribute to degraded.
3924 			 * else it does.
3925 			 */
3926 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3927 				degraded2++;
3928 		}
3929 	}
3930 	rcu_read_unlock();
3931 	if (degraded2 > degraded)
3932 		return degraded2;
3933 	return degraded;
3934 }
3935 
3936 static int raid10_start_reshape(struct mddev *mddev)
3937 {
3938 	/* A 'reshape' has been requested. This commits
3939 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3940 	 * This also checks if there are enough spares and adds them
3941 	 * to the array.
3942 	 * We currently require enough spares to make the final
3943 	 * array non-degraded.  We also require that the difference
3944 	 * between old and new data_offset - on each device - is
3945 	 * enough that we never risk over-writing.
3946 	 */
3947 
3948 	unsigned long before_length, after_length;
3949 	sector_t min_offset_diff = 0;
3950 	int first = 1;
3951 	struct geom new;
3952 	struct r10conf *conf = mddev->private;
3953 	struct md_rdev *rdev;
3954 	int spares = 0;
3955 	int ret;
3956 
3957 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3958 		return -EBUSY;
3959 
3960 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3961 		return -EINVAL;
3962 
3963 	before_length = ((1 << conf->prev.chunk_shift) *
3964 			 conf->prev.far_copies);
3965 	after_length = ((1 << conf->geo.chunk_shift) *
3966 			conf->geo.far_copies);
3967 
3968 	rdev_for_each(rdev, mddev) {
3969 		if (!test_bit(In_sync, &rdev->flags)
3970 		    && !test_bit(Faulty, &rdev->flags))
3971 			spares++;
3972 		if (rdev->raid_disk >= 0) {
3973 			long long diff = (rdev->new_data_offset
3974 					  - rdev->data_offset);
3975 			if (!mddev->reshape_backwards)
3976 				diff = -diff;
3977 			if (diff < 0)
3978 				diff = 0;
3979 			if (first || diff < min_offset_diff)
3980 				min_offset_diff = diff;
3981 		}
3982 	}
3983 
3984 	if (max(before_length, after_length) > min_offset_diff)
3985 		return -EINVAL;
3986 
3987 	if (spares < mddev->delta_disks)
3988 		return -EINVAL;
3989 
3990 	conf->offset_diff = min_offset_diff;
3991 	spin_lock_irq(&conf->device_lock);
3992 	if (conf->mirrors_new) {
3993 		memcpy(conf->mirrors_new, conf->mirrors,
3994 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
3995 		smp_mb();
3996 		kfree(conf->mirrors_old);
3997 		conf->mirrors_old = conf->mirrors;
3998 		conf->mirrors = conf->mirrors_new;
3999 		conf->mirrors_new = NULL;
4000 	}
4001 	setup_geo(&conf->geo, mddev, geo_start);
4002 	smp_mb();
4003 	if (mddev->reshape_backwards) {
4004 		sector_t size = raid10_size(mddev, 0, 0);
4005 		if (size < mddev->array_sectors) {
4006 			spin_unlock_irq(&conf->device_lock);
4007 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4008 			       mdname(mddev));
4009 			return -EINVAL;
4010 		}
4011 		mddev->resync_max_sectors = size;
4012 		conf->reshape_progress = size;
4013 	} else
4014 		conf->reshape_progress = 0;
4015 	conf->reshape_safe = conf->reshape_progress;
4016 	spin_unlock_irq(&conf->device_lock);
4017 
4018 	if (mddev->delta_disks && mddev->bitmap) {
4019 		ret = bitmap_resize(mddev->bitmap,
4020 				    raid10_size(mddev, 0,
4021 						conf->geo.raid_disks),
4022 				    0, 0);
4023 		if (ret)
4024 			goto abort;
4025 	}
4026 	if (mddev->delta_disks > 0) {
4027 		rdev_for_each(rdev, mddev)
4028 			if (rdev->raid_disk < 0 &&
4029 			    !test_bit(Faulty, &rdev->flags)) {
4030 				if (raid10_add_disk(mddev, rdev) == 0) {
4031 					if (rdev->raid_disk >=
4032 					    conf->prev.raid_disks)
4033 						set_bit(In_sync, &rdev->flags);
4034 					else
4035 						rdev->recovery_offset = 0;
4036 
4037 					if (sysfs_link_rdev(mddev, rdev))
4038 						/* Failure here  is OK */;
4039 				}
4040 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4041 				   && !test_bit(Faulty, &rdev->flags)) {
4042 				/* This is a spare that was manually added */
4043 				set_bit(In_sync, &rdev->flags);
4044 			}
4045 	}
4046 	/* When a reshape changes the number of devices,
4047 	 * ->degraded is measured against the larger of the
4048 	 * pre and  post numbers.
4049 	 */
4050 	spin_lock_irq(&conf->device_lock);
4051 	mddev->degraded = calc_degraded(conf);
4052 	spin_unlock_irq(&conf->device_lock);
4053 	mddev->raid_disks = conf->geo.raid_disks;
4054 	mddev->reshape_position = conf->reshape_progress;
4055 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4056 
4057 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4058 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4059 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4060 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4061 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4062 
4063 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4064 						"reshape");
4065 	if (!mddev->sync_thread) {
4066 		ret = -EAGAIN;
4067 		goto abort;
4068 	}
4069 	conf->reshape_checkpoint = jiffies;
4070 	md_wakeup_thread(mddev->sync_thread);
4071 	md_new_event(mddev);
4072 	return 0;
4073 
4074 abort:
4075 	mddev->recovery = 0;
4076 	spin_lock_irq(&conf->device_lock);
4077 	conf->geo = conf->prev;
4078 	mddev->raid_disks = conf->geo.raid_disks;
4079 	rdev_for_each(rdev, mddev)
4080 		rdev->new_data_offset = rdev->data_offset;
4081 	smp_wmb();
4082 	conf->reshape_progress = MaxSector;
4083 	conf->reshape_safe = MaxSector;
4084 	mddev->reshape_position = MaxSector;
4085 	spin_unlock_irq(&conf->device_lock);
4086 	return ret;
4087 }
4088 
4089 /* Calculate the last device-address that could contain
4090  * any block from the chunk that includes the array-address 's'
4091  * and report the next address.
4092  * i.e. the address returned will be chunk-aligned and after
4093  * any data that is in the chunk containing 's'.
4094  */
4095 static sector_t last_dev_address(sector_t s, struct geom *geo)
4096 {
4097 	s = (s | geo->chunk_mask) + 1;
4098 	s >>= geo->chunk_shift;
4099 	s *= geo->near_copies;
4100 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4101 	s *= geo->far_copies;
4102 	s <<= geo->chunk_shift;
4103 	return s;
4104 }
4105 
4106 /* Calculate the first device-address that could contain
4107  * any block from the chunk that includes the array-address 's'.
4108  * This too will be the start of a chunk
4109  */
4110 static sector_t first_dev_address(sector_t s, struct geom *geo)
4111 {
4112 	s >>= geo->chunk_shift;
4113 	s *= geo->near_copies;
4114 	sector_div(s, geo->raid_disks);
4115 	s *= geo->far_copies;
4116 	s <<= geo->chunk_shift;
4117 	return s;
4118 }
4119 
4120 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4121 				int *skipped)
4122 {
4123 	/* We simply copy at most one chunk (smallest of old and new)
4124 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4125 	 * or we hit a bad block or something.
4126 	 * This might mean we pause for normal IO in the middle of
4127 	 * a chunk, but that is not a problem as mddev->reshape_position
4128 	 * can record any location.
4129 	 *
4130 	 * If we will want to write to a location that isn't
4131 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4132 	 * we need to flush all reshape requests and update the metadata.
4133 	 *
4134 	 * When reshaping forwards (e.g. to more devices), we interpret
4135 	 * 'safe' as the earliest block which might not have been copied
4136 	 * down yet.  We divide this by previous stripe size and multiply
4137 	 * by previous stripe length to get lowest device offset that we
4138 	 * cannot write to yet.
4139 	 * We interpret 'sector_nr' as an address that we want to write to.
4140 	 * From this we use last_device_address() to find where we might
4141 	 * write to, and first_device_address on the  'safe' position.
4142 	 * If this 'next' write position is after the 'safe' position,
4143 	 * we must update the metadata to increase the 'safe' position.
4144 	 *
4145 	 * When reshaping backwards, we round in the opposite direction
4146 	 * and perform the reverse test:  next write position must not be
4147 	 * less than current safe position.
4148 	 *
4149 	 * In all this the minimum difference in data offsets
4150 	 * (conf->offset_diff - always positive) allows a bit of slack,
4151 	 * so next can be after 'safe', but not by more than offset_diff
4152 	 *
4153 	 * We need to prepare all the bios here before we start any IO
4154 	 * to ensure the size we choose is acceptable to all devices.
4155 	 * The means one for each copy for write-out and an extra one for
4156 	 * read-in.
4157 	 * We store the read-in bio in ->master_bio and the others in
4158 	 * ->devs[x].bio and ->devs[x].repl_bio.
4159 	 */
4160 	struct r10conf *conf = mddev->private;
4161 	struct r10bio *r10_bio;
4162 	sector_t next, safe, last;
4163 	int max_sectors;
4164 	int nr_sectors;
4165 	int s;
4166 	struct md_rdev *rdev;
4167 	int need_flush = 0;
4168 	struct bio *blist;
4169 	struct bio *bio, *read_bio;
4170 	int sectors_done = 0;
4171 
4172 	if (sector_nr == 0) {
4173 		/* If restarting in the middle, skip the initial sectors */
4174 		if (mddev->reshape_backwards &&
4175 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4176 			sector_nr = (raid10_size(mddev, 0, 0)
4177 				     - conf->reshape_progress);
4178 		} else if (!mddev->reshape_backwards &&
4179 			   conf->reshape_progress > 0)
4180 			sector_nr = conf->reshape_progress;
4181 		if (sector_nr) {
4182 			mddev->curr_resync_completed = sector_nr;
4183 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4184 			*skipped = 1;
4185 			return sector_nr;
4186 		}
4187 	}
4188 
4189 	/* We don't use sector_nr to track where we are up to
4190 	 * as that doesn't work well for ->reshape_backwards.
4191 	 * So just use ->reshape_progress.
4192 	 */
4193 	if (mddev->reshape_backwards) {
4194 		/* 'next' is the earliest device address that we might
4195 		 * write to for this chunk in the new layout
4196 		 */
4197 		next = first_dev_address(conf->reshape_progress - 1,
4198 					 &conf->geo);
4199 
4200 		/* 'safe' is the last device address that we might read from
4201 		 * in the old layout after a restart
4202 		 */
4203 		safe = last_dev_address(conf->reshape_safe - 1,
4204 					&conf->prev);
4205 
4206 		if (next + conf->offset_diff < safe)
4207 			need_flush = 1;
4208 
4209 		last = conf->reshape_progress - 1;
4210 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4211 					       & conf->prev.chunk_mask);
4212 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4213 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4214 	} else {
4215 		/* 'next' is after the last device address that we
4216 		 * might write to for this chunk in the new layout
4217 		 */
4218 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4219 
4220 		/* 'safe' is the earliest device address that we might
4221 		 * read from in the old layout after a restart
4222 		 */
4223 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4224 
4225 		/* Need to update metadata if 'next' might be beyond 'safe'
4226 		 * as that would possibly corrupt data
4227 		 */
4228 		if (next > safe + conf->offset_diff)
4229 			need_flush = 1;
4230 
4231 		sector_nr = conf->reshape_progress;
4232 		last  = sector_nr | (conf->geo.chunk_mask
4233 				     & conf->prev.chunk_mask);
4234 
4235 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4236 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4237 	}
4238 
4239 	if (need_flush ||
4240 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4241 		/* Need to update reshape_position in metadata */
4242 		wait_barrier(conf);
4243 		mddev->reshape_position = conf->reshape_progress;
4244 		if (mddev->reshape_backwards)
4245 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4246 				- conf->reshape_progress;
4247 		else
4248 			mddev->curr_resync_completed = conf->reshape_progress;
4249 		conf->reshape_checkpoint = jiffies;
4250 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4251 		md_wakeup_thread(mddev->thread);
4252 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4253 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4254 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4255 			allow_barrier(conf);
4256 			return sectors_done;
4257 		}
4258 		conf->reshape_safe = mddev->reshape_position;
4259 		allow_barrier(conf);
4260 	}
4261 
4262 read_more:
4263 	/* Now schedule reads for blocks from sector_nr to last */
4264 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4265 	r10_bio->state = 0;
4266 	raise_barrier(conf, sectors_done != 0);
4267 	atomic_set(&r10_bio->remaining, 0);
4268 	r10_bio->mddev = mddev;
4269 	r10_bio->sector = sector_nr;
4270 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4271 	r10_bio->sectors = last - sector_nr + 1;
4272 	rdev = read_balance(conf, r10_bio, &max_sectors);
4273 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4274 
4275 	if (!rdev) {
4276 		/* Cannot read from here, so need to record bad blocks
4277 		 * on all the target devices.
4278 		 */
4279 		// FIXME
4280 		mempool_free(r10_bio, conf->r10buf_pool);
4281 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4282 		return sectors_done;
4283 	}
4284 
4285 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4286 
4287 	read_bio->bi_bdev = rdev->bdev;
4288 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4289 			       + rdev->data_offset);
4290 	read_bio->bi_private = r10_bio;
4291 	read_bio->bi_end_io = end_sync_read;
4292 	read_bio->bi_rw = READ;
4293 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4294 	read_bio->bi_error = 0;
4295 	read_bio->bi_vcnt = 0;
4296 	read_bio->bi_iter.bi_size = 0;
4297 	r10_bio->master_bio = read_bio;
4298 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4299 
4300 	/* Now find the locations in the new layout */
4301 	__raid10_find_phys(&conf->geo, r10_bio);
4302 
4303 	blist = read_bio;
4304 	read_bio->bi_next = NULL;
4305 
4306 	for (s = 0; s < conf->copies*2; s++) {
4307 		struct bio *b;
4308 		int d = r10_bio->devs[s/2].devnum;
4309 		struct md_rdev *rdev2;
4310 		if (s&1) {
4311 			rdev2 = conf->mirrors[d].replacement;
4312 			b = r10_bio->devs[s/2].repl_bio;
4313 		} else {
4314 			rdev2 = conf->mirrors[d].rdev;
4315 			b = r10_bio->devs[s/2].bio;
4316 		}
4317 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4318 			continue;
4319 
4320 		bio_reset(b);
4321 		b->bi_bdev = rdev2->bdev;
4322 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4323 			rdev2->new_data_offset;
4324 		b->bi_private = r10_bio;
4325 		b->bi_end_io = end_reshape_write;
4326 		b->bi_rw = WRITE;
4327 		b->bi_next = blist;
4328 		blist = b;
4329 	}
4330 
4331 	/* Now add as many pages as possible to all of these bios. */
4332 
4333 	nr_sectors = 0;
4334 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4335 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4336 		int len = (max_sectors - s) << 9;
4337 		if (len > PAGE_SIZE)
4338 			len = PAGE_SIZE;
4339 		for (bio = blist; bio ; bio = bio->bi_next) {
4340 			struct bio *bio2;
4341 			if (bio_add_page(bio, page, len, 0))
4342 				continue;
4343 
4344 			/* Didn't fit, must stop */
4345 			for (bio2 = blist;
4346 			     bio2 && bio2 != bio;
4347 			     bio2 = bio2->bi_next) {
4348 				/* Remove last page from this bio */
4349 				bio2->bi_vcnt--;
4350 				bio2->bi_iter.bi_size -= len;
4351 				bio_clear_flag(bio2, BIO_SEG_VALID);
4352 			}
4353 			goto bio_full;
4354 		}
4355 		sector_nr += len >> 9;
4356 		nr_sectors += len >> 9;
4357 	}
4358 bio_full:
4359 	r10_bio->sectors = nr_sectors;
4360 
4361 	/* Now submit the read */
4362 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4363 	atomic_inc(&r10_bio->remaining);
4364 	read_bio->bi_next = NULL;
4365 	generic_make_request(read_bio);
4366 	sector_nr += nr_sectors;
4367 	sectors_done += nr_sectors;
4368 	if (sector_nr <= last)
4369 		goto read_more;
4370 
4371 	/* Now that we have done the whole section we can
4372 	 * update reshape_progress
4373 	 */
4374 	if (mddev->reshape_backwards)
4375 		conf->reshape_progress -= sectors_done;
4376 	else
4377 		conf->reshape_progress += sectors_done;
4378 
4379 	return sectors_done;
4380 }
4381 
4382 static void end_reshape_request(struct r10bio *r10_bio);
4383 static int handle_reshape_read_error(struct mddev *mddev,
4384 				     struct r10bio *r10_bio);
4385 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4386 {
4387 	/* Reshape read completed.  Hopefully we have a block
4388 	 * to write out.
4389 	 * If we got a read error then we do sync 1-page reads from
4390 	 * elsewhere until we find the data - or give up.
4391 	 */
4392 	struct r10conf *conf = mddev->private;
4393 	int s;
4394 
4395 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4396 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4397 			/* Reshape has been aborted */
4398 			md_done_sync(mddev, r10_bio->sectors, 0);
4399 			return;
4400 		}
4401 
4402 	/* We definitely have the data in the pages, schedule the
4403 	 * writes.
4404 	 */
4405 	atomic_set(&r10_bio->remaining, 1);
4406 	for (s = 0; s < conf->copies*2; s++) {
4407 		struct bio *b;
4408 		int d = r10_bio->devs[s/2].devnum;
4409 		struct md_rdev *rdev;
4410 		if (s&1) {
4411 			rdev = conf->mirrors[d].replacement;
4412 			b = r10_bio->devs[s/2].repl_bio;
4413 		} else {
4414 			rdev = conf->mirrors[d].rdev;
4415 			b = r10_bio->devs[s/2].bio;
4416 		}
4417 		if (!rdev || test_bit(Faulty, &rdev->flags))
4418 			continue;
4419 		atomic_inc(&rdev->nr_pending);
4420 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4421 		atomic_inc(&r10_bio->remaining);
4422 		b->bi_next = NULL;
4423 		generic_make_request(b);
4424 	}
4425 	end_reshape_request(r10_bio);
4426 }
4427 
4428 static void end_reshape(struct r10conf *conf)
4429 {
4430 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4431 		return;
4432 
4433 	spin_lock_irq(&conf->device_lock);
4434 	conf->prev = conf->geo;
4435 	md_finish_reshape(conf->mddev);
4436 	smp_wmb();
4437 	conf->reshape_progress = MaxSector;
4438 	conf->reshape_safe = MaxSector;
4439 	spin_unlock_irq(&conf->device_lock);
4440 
4441 	/* read-ahead size must cover two whole stripes, which is
4442 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4443 	 */
4444 	if (conf->mddev->queue) {
4445 		int stripe = conf->geo.raid_disks *
4446 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4447 		stripe /= conf->geo.near_copies;
4448 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4449 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4450 	}
4451 	conf->fullsync = 0;
4452 }
4453 
4454 static int handle_reshape_read_error(struct mddev *mddev,
4455 				     struct r10bio *r10_bio)
4456 {
4457 	/* Use sync reads to get the blocks from somewhere else */
4458 	int sectors = r10_bio->sectors;
4459 	struct r10conf *conf = mddev->private;
4460 	struct {
4461 		struct r10bio r10_bio;
4462 		struct r10dev devs[conf->copies];
4463 	} on_stack;
4464 	struct r10bio *r10b = &on_stack.r10_bio;
4465 	int slot = 0;
4466 	int idx = 0;
4467 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4468 
4469 	r10b->sector = r10_bio->sector;
4470 	__raid10_find_phys(&conf->prev, r10b);
4471 
4472 	while (sectors) {
4473 		int s = sectors;
4474 		int success = 0;
4475 		int first_slot = slot;
4476 
4477 		if (s > (PAGE_SIZE >> 9))
4478 			s = PAGE_SIZE >> 9;
4479 
4480 		while (!success) {
4481 			int d = r10b->devs[slot].devnum;
4482 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4483 			sector_t addr;
4484 			if (rdev == NULL ||
4485 			    test_bit(Faulty, &rdev->flags) ||
4486 			    !test_bit(In_sync, &rdev->flags))
4487 				goto failed;
4488 
4489 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4490 			success = sync_page_io(rdev,
4491 					       addr,
4492 					       s << 9,
4493 					       bvec[idx].bv_page,
4494 					       READ, false);
4495 			if (success)
4496 				break;
4497 		failed:
4498 			slot++;
4499 			if (slot >= conf->copies)
4500 				slot = 0;
4501 			if (slot == first_slot)
4502 				break;
4503 		}
4504 		if (!success) {
4505 			/* couldn't read this block, must give up */
4506 			set_bit(MD_RECOVERY_INTR,
4507 				&mddev->recovery);
4508 			return -EIO;
4509 		}
4510 		sectors -= s;
4511 		idx++;
4512 	}
4513 	return 0;
4514 }
4515 
4516 static void end_reshape_write(struct bio *bio)
4517 {
4518 	struct r10bio *r10_bio = bio->bi_private;
4519 	struct mddev *mddev = r10_bio->mddev;
4520 	struct r10conf *conf = mddev->private;
4521 	int d;
4522 	int slot;
4523 	int repl;
4524 	struct md_rdev *rdev = NULL;
4525 
4526 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4527 	if (repl)
4528 		rdev = conf->mirrors[d].replacement;
4529 	if (!rdev) {
4530 		smp_mb();
4531 		rdev = conf->mirrors[d].rdev;
4532 	}
4533 
4534 	if (bio->bi_error) {
4535 		/* FIXME should record badblock */
4536 		md_error(mddev, rdev);
4537 	}
4538 
4539 	rdev_dec_pending(rdev, mddev);
4540 	end_reshape_request(r10_bio);
4541 }
4542 
4543 static void end_reshape_request(struct r10bio *r10_bio)
4544 {
4545 	if (!atomic_dec_and_test(&r10_bio->remaining))
4546 		return;
4547 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4548 	bio_put(r10_bio->master_bio);
4549 	put_buf(r10_bio);
4550 }
4551 
4552 static void raid10_finish_reshape(struct mddev *mddev)
4553 {
4554 	struct r10conf *conf = mddev->private;
4555 
4556 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4557 		return;
4558 
4559 	if (mddev->delta_disks > 0) {
4560 		sector_t size = raid10_size(mddev, 0, 0);
4561 		md_set_array_sectors(mddev, size);
4562 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4563 			mddev->recovery_cp = mddev->resync_max_sectors;
4564 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4565 		}
4566 		mddev->resync_max_sectors = size;
4567 		set_capacity(mddev->gendisk, mddev->array_sectors);
4568 		revalidate_disk(mddev->gendisk);
4569 	} else {
4570 		int d;
4571 		for (d = conf->geo.raid_disks ;
4572 		     d < conf->geo.raid_disks - mddev->delta_disks;
4573 		     d++) {
4574 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4575 			if (rdev)
4576 				clear_bit(In_sync, &rdev->flags);
4577 			rdev = conf->mirrors[d].replacement;
4578 			if (rdev)
4579 				clear_bit(In_sync, &rdev->flags);
4580 		}
4581 	}
4582 	mddev->layout = mddev->new_layout;
4583 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4584 	mddev->reshape_position = MaxSector;
4585 	mddev->delta_disks = 0;
4586 	mddev->reshape_backwards = 0;
4587 }
4588 
4589 static struct md_personality raid10_personality =
4590 {
4591 	.name		= "raid10",
4592 	.level		= 10,
4593 	.owner		= THIS_MODULE,
4594 	.make_request	= make_request,
4595 	.run		= run,
4596 	.free		= raid10_free,
4597 	.status		= status,
4598 	.error_handler	= error,
4599 	.hot_add_disk	= raid10_add_disk,
4600 	.hot_remove_disk= raid10_remove_disk,
4601 	.spare_active	= raid10_spare_active,
4602 	.sync_request	= sync_request,
4603 	.quiesce	= raid10_quiesce,
4604 	.size		= raid10_size,
4605 	.resize		= raid10_resize,
4606 	.takeover	= raid10_takeover,
4607 	.check_reshape	= raid10_check_reshape,
4608 	.start_reshape	= raid10_start_reshape,
4609 	.finish_reshape	= raid10_finish_reshape,
4610 	.congested	= raid10_congested,
4611 };
4612 
4613 static int __init raid_init(void)
4614 {
4615 	return register_md_personality(&raid10_personality);
4616 }
4617 
4618 static void raid_exit(void)
4619 {
4620 	unregister_md_personality(&raid10_personality);
4621 }
4622 
4623 module_init(raid_init);
4624 module_exit(raid_exit);
4625 MODULE_LICENSE("GPL");
4626 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4627 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4628 MODULE_ALIAS("md-raid10");
4629 MODULE_ALIAS("md-level-10");
4630 
4631 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4632