1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/delay.h> 23 #include <linux/raid/raid10.h> 24 #include <linux/raid/bitmap.h> 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * 35 * The data to be stored is divided into chunks using chunksize. 36 * Each device is divided into far_copies sections. 37 * In each section, chunks are laid out in a style similar to raid0, but 38 * near_copies copies of each chunk is stored (each on a different drive). 39 * The starting device for each section is offset near_copies from the starting 40 * device of the previous section. 41 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 42 * drive. 43 * near_copies and far_copies must be at least one, and their product is at most 44 * raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of be very far apart 48 * on disk, there are adjacent stripes. 49 */ 50 51 /* 52 * Number of guaranteed r10bios in case of extreme VM load: 53 */ 54 #define NR_RAID10_BIOS 256 55 56 static void unplug_slaves(mddev_t *mddev); 57 58 static void allow_barrier(conf_t *conf); 59 static void lower_barrier(conf_t *conf); 60 61 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 62 { 63 conf_t *conf = data; 64 r10bio_t *r10_bio; 65 int size = offsetof(struct r10bio_s, devs[conf->copies]); 66 67 /* allocate a r10bio with room for raid_disks entries in the bios array */ 68 r10_bio = kzalloc(size, gfp_flags); 69 if (!r10_bio) 70 unplug_slaves(conf->mddev); 71 72 return r10_bio; 73 } 74 75 static void r10bio_pool_free(void *r10_bio, void *data) 76 { 77 kfree(r10_bio); 78 } 79 80 /* Maximum size of each resync request */ 81 #define RESYNC_BLOCK_SIZE (64*1024) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 /* amount of memory to reserve for resync requests */ 84 #define RESYNC_WINDOW (1024*1024) 85 /* maximum number of concurrent requests, memory permitting */ 86 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 87 88 /* 89 * When performing a resync, we need to read and compare, so 90 * we need as many pages are there are copies. 91 * When performing a recovery, we need 2 bios, one for read, 92 * one for write (we recover only one drive per r10buf) 93 * 94 */ 95 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 conf_t *conf = data; 98 struct page *page; 99 r10bio_t *r10_bio; 100 struct bio *bio; 101 int i, j; 102 int nalloc; 103 104 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 105 if (!r10_bio) { 106 unplug_slaves(conf->mddev); 107 return NULL; 108 } 109 110 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 111 nalloc = conf->copies; /* resync */ 112 else 113 nalloc = 2; /* recovery */ 114 115 /* 116 * Allocate bios. 117 */ 118 for (j = nalloc ; j-- ; ) { 119 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 120 if (!bio) 121 goto out_free_bio; 122 r10_bio->devs[j].bio = bio; 123 } 124 /* 125 * Allocate RESYNC_PAGES data pages and attach them 126 * where needed. 127 */ 128 for (j = 0 ; j < nalloc; j++) { 129 bio = r10_bio->devs[j].bio; 130 for (i = 0; i < RESYNC_PAGES; i++) { 131 page = alloc_page(gfp_flags); 132 if (unlikely(!page)) 133 goto out_free_pages; 134 135 bio->bi_io_vec[i].bv_page = page; 136 } 137 } 138 139 return r10_bio; 140 141 out_free_pages: 142 for ( ; i > 0 ; i--) 143 safe_put_page(bio->bi_io_vec[i-1].bv_page); 144 while (j--) 145 for (i = 0; i < RESYNC_PAGES ; i++) 146 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 147 j = -1; 148 out_free_bio: 149 while ( ++j < nalloc ) 150 bio_put(r10_bio->devs[j].bio); 151 r10bio_pool_free(r10_bio, conf); 152 return NULL; 153 } 154 155 static void r10buf_pool_free(void *__r10_bio, void *data) 156 { 157 int i; 158 conf_t *conf = data; 159 r10bio_t *r10bio = __r10_bio; 160 int j; 161 162 for (j=0; j < conf->copies; j++) { 163 struct bio *bio = r10bio->devs[j].bio; 164 if (bio) { 165 for (i = 0; i < RESYNC_PAGES; i++) { 166 safe_put_page(bio->bi_io_vec[i].bv_page); 167 bio->bi_io_vec[i].bv_page = NULL; 168 } 169 bio_put(bio); 170 } 171 } 172 r10bio_pool_free(r10bio, conf); 173 } 174 175 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 176 { 177 int i; 178 179 for (i = 0; i < conf->copies; i++) { 180 struct bio **bio = & r10_bio->devs[i].bio; 181 if (*bio && *bio != IO_BLOCKED) 182 bio_put(*bio); 183 *bio = NULL; 184 } 185 } 186 187 static void free_r10bio(r10bio_t *r10_bio) 188 { 189 conf_t *conf = mddev_to_conf(r10_bio->mddev); 190 191 /* 192 * Wake up any possible resync thread that waits for the device 193 * to go idle. 194 */ 195 allow_barrier(conf); 196 197 put_all_bios(conf, r10_bio); 198 mempool_free(r10_bio, conf->r10bio_pool); 199 } 200 201 static void put_buf(r10bio_t *r10_bio) 202 { 203 conf_t *conf = mddev_to_conf(r10_bio->mddev); 204 205 mempool_free(r10_bio, conf->r10buf_pool); 206 207 lower_barrier(conf); 208 } 209 210 static void reschedule_retry(r10bio_t *r10_bio) 211 { 212 unsigned long flags; 213 mddev_t *mddev = r10_bio->mddev; 214 conf_t *conf = mddev_to_conf(mddev); 215 216 spin_lock_irqsave(&conf->device_lock, flags); 217 list_add(&r10_bio->retry_list, &conf->retry_list); 218 conf->nr_queued ++; 219 spin_unlock_irqrestore(&conf->device_lock, flags); 220 221 /* wake up frozen array... */ 222 wake_up(&conf->wait_barrier); 223 224 md_wakeup_thread(mddev->thread); 225 } 226 227 /* 228 * raid_end_bio_io() is called when we have finished servicing a mirrored 229 * operation and are ready to return a success/failure code to the buffer 230 * cache layer. 231 */ 232 static void raid_end_bio_io(r10bio_t *r10_bio) 233 { 234 struct bio *bio = r10_bio->master_bio; 235 236 bio_endio(bio, 237 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 238 free_r10bio(r10_bio); 239 } 240 241 /* 242 * Update disk head position estimator based on IRQ completion info. 243 */ 244 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 245 { 246 conf_t *conf = mddev_to_conf(r10_bio->mddev); 247 248 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 249 r10_bio->devs[slot].addr + (r10_bio->sectors); 250 } 251 252 static void raid10_end_read_request(struct bio *bio, int error) 253 { 254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 255 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 256 int slot, dev; 257 conf_t *conf = mddev_to_conf(r10_bio->mddev); 258 259 260 slot = r10_bio->read_slot; 261 dev = r10_bio->devs[slot].devnum; 262 /* 263 * this branch is our 'one mirror IO has finished' event handler: 264 */ 265 update_head_pos(slot, r10_bio); 266 267 if (uptodate) { 268 /* 269 * Set R10BIO_Uptodate in our master bio, so that 270 * we will return a good error code to the higher 271 * levels even if IO on some other mirrored buffer fails. 272 * 273 * The 'master' represents the composite IO operation to 274 * user-side. So if something waits for IO, then it will 275 * wait for the 'master' bio. 276 */ 277 set_bit(R10BIO_Uptodate, &r10_bio->state); 278 raid_end_bio_io(r10_bio); 279 } else { 280 /* 281 * oops, read error: 282 */ 283 char b[BDEVNAME_SIZE]; 284 if (printk_ratelimit()) 285 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 286 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 287 reschedule_retry(r10_bio); 288 } 289 290 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 291 } 292 293 static void raid10_end_write_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 297 int slot, dev; 298 conf_t *conf = mddev_to_conf(r10_bio->mddev); 299 300 for (slot = 0; slot < conf->copies; slot++) 301 if (r10_bio->devs[slot].bio == bio) 302 break; 303 dev = r10_bio->devs[slot].devnum; 304 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 if (!uptodate) { 309 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 310 /* an I/O failed, we can't clear the bitmap */ 311 set_bit(R10BIO_Degraded, &r10_bio->state); 312 } else 313 /* 314 * Set R10BIO_Uptodate in our master bio, so that 315 * we will return a good error code for to the higher 316 * levels even if IO on some other mirrored buffer fails. 317 * 318 * The 'master' represents the composite IO operation to 319 * user-side. So if something waits for IO, then it will 320 * wait for the 'master' bio. 321 */ 322 set_bit(R10BIO_Uptodate, &r10_bio->state); 323 324 update_head_pos(slot, r10_bio); 325 326 /* 327 * 328 * Let's see if all mirrored write operations have finished 329 * already. 330 */ 331 if (atomic_dec_and_test(&r10_bio->remaining)) { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 334 r10_bio->sectors, 335 !test_bit(R10BIO_Degraded, &r10_bio->state), 336 0); 337 md_write_end(r10_bio->mddev); 338 raid_end_bio_io(r10_bio); 339 } 340 341 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 342 } 343 344 345 /* 346 * RAID10 layout manager 347 * Aswell as the chunksize and raid_disks count, there are two 348 * parameters: near_copies and far_copies. 349 * near_copies * far_copies must be <= raid_disks. 350 * Normally one of these will be 1. 351 * If both are 1, we get raid0. 352 * If near_copies == raid_disks, we get raid1. 353 * 354 * Chunks are layed out in raid0 style with near_copies copies of the 355 * first chunk, followed by near_copies copies of the next chunk and 356 * so on. 357 * If far_copies > 1, then after 1/far_copies of the array has been assigned 358 * as described above, we start again with a device offset of near_copies. 359 * So we effectively have another copy of the whole array further down all 360 * the drives, but with blocks on different drives. 361 * With this layout, and block is never stored twice on the one device. 362 * 363 * raid10_find_phys finds the sector offset of a given virtual sector 364 * on each device that it is on. 365 * 366 * raid10_find_virt does the reverse mapping, from a device and a 367 * sector offset to a virtual address 368 */ 369 370 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 371 { 372 int n,f; 373 sector_t sector; 374 sector_t chunk; 375 sector_t stripe; 376 int dev; 377 378 int slot = 0; 379 380 /* now calculate first sector/dev */ 381 chunk = r10bio->sector >> conf->chunk_shift; 382 sector = r10bio->sector & conf->chunk_mask; 383 384 chunk *= conf->near_copies; 385 stripe = chunk; 386 dev = sector_div(stripe, conf->raid_disks); 387 if (conf->far_offset) 388 stripe *= conf->far_copies; 389 390 sector += stripe << conf->chunk_shift; 391 392 /* and calculate all the others */ 393 for (n=0; n < conf->near_copies; n++) { 394 int d = dev; 395 sector_t s = sector; 396 r10bio->devs[slot].addr = sector; 397 r10bio->devs[slot].devnum = d; 398 slot++; 399 400 for (f = 1; f < conf->far_copies; f++) { 401 d += conf->near_copies; 402 if (d >= conf->raid_disks) 403 d -= conf->raid_disks; 404 s += conf->stride; 405 r10bio->devs[slot].devnum = d; 406 r10bio->devs[slot].addr = s; 407 slot++; 408 } 409 dev++; 410 if (dev >= conf->raid_disks) { 411 dev = 0; 412 sector += (conf->chunk_mask + 1); 413 } 414 } 415 BUG_ON(slot != conf->copies); 416 } 417 418 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 419 { 420 sector_t offset, chunk, vchunk; 421 422 offset = sector & conf->chunk_mask; 423 if (conf->far_offset) { 424 int fc; 425 chunk = sector >> conf->chunk_shift; 426 fc = sector_div(chunk, conf->far_copies); 427 dev -= fc * conf->near_copies; 428 if (dev < 0) 429 dev += conf->raid_disks; 430 } else { 431 while (sector >= conf->stride) { 432 sector -= conf->stride; 433 if (dev < conf->near_copies) 434 dev += conf->raid_disks - conf->near_copies; 435 else 436 dev -= conf->near_copies; 437 } 438 chunk = sector >> conf->chunk_shift; 439 } 440 vchunk = chunk * conf->raid_disks + dev; 441 sector_div(vchunk, conf->near_copies); 442 return (vchunk << conf->chunk_shift) + offset; 443 } 444 445 /** 446 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 447 * @q: request queue 448 * @bvm: properties of new bio 449 * @biovec: the request that could be merged to it. 450 * 451 * Return amount of bytes we can accept at this offset 452 * If near_copies == raid_disk, there are no striping issues, 453 * but in that case, the function isn't called at all. 454 */ 455 static int raid10_mergeable_bvec(struct request_queue *q, 456 struct bvec_merge_data *bvm, 457 struct bio_vec *biovec) 458 { 459 mddev_t *mddev = q->queuedata; 460 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 461 int max; 462 unsigned int chunk_sectors = mddev->chunk_size >> 9; 463 unsigned int bio_sectors = bvm->bi_size >> 9; 464 465 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 466 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 467 if (max <= biovec->bv_len && bio_sectors == 0) 468 return biovec->bv_len; 469 else 470 return max; 471 } 472 473 /* 474 * This routine returns the disk from which the requested read should 475 * be done. There is a per-array 'next expected sequential IO' sector 476 * number - if this matches on the next IO then we use the last disk. 477 * There is also a per-disk 'last know head position' sector that is 478 * maintained from IRQ contexts, both the normal and the resync IO 479 * completion handlers update this position correctly. If there is no 480 * perfect sequential match then we pick the disk whose head is closest. 481 * 482 * If there are 2 mirrors in the same 2 devices, performance degrades 483 * because position is mirror, not device based. 484 * 485 * The rdev for the device selected will have nr_pending incremented. 486 */ 487 488 /* 489 * FIXME: possibly should rethink readbalancing and do it differently 490 * depending on near_copies / far_copies geometry. 491 */ 492 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 493 { 494 const unsigned long this_sector = r10_bio->sector; 495 int disk, slot, nslot; 496 const int sectors = r10_bio->sectors; 497 sector_t new_distance, current_distance; 498 mdk_rdev_t *rdev; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on (recovery is ok), or below 505 * the resync window. We take the first readable disk when 506 * above the resync window. 507 */ 508 if (conf->mddev->recovery_cp < MaxSector 509 && (this_sector + sectors >= conf->next_resync)) { 510 /* make sure that disk is operational */ 511 slot = 0; 512 disk = r10_bio->devs[slot].devnum; 513 514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 515 r10_bio->devs[slot].bio == IO_BLOCKED || 516 !test_bit(In_sync, &rdev->flags)) { 517 slot++; 518 if (slot == conf->copies) { 519 slot = 0; 520 disk = -1; 521 break; 522 } 523 disk = r10_bio->devs[slot].devnum; 524 } 525 goto rb_out; 526 } 527 528 529 /* make sure the disk is operational */ 530 slot = 0; 531 disk = r10_bio->devs[slot].devnum; 532 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 533 r10_bio->devs[slot].bio == IO_BLOCKED || 534 !test_bit(In_sync, &rdev->flags)) { 535 slot ++; 536 if (slot == conf->copies) { 537 disk = -1; 538 goto rb_out; 539 } 540 disk = r10_bio->devs[slot].devnum; 541 } 542 543 544 current_distance = abs(r10_bio->devs[slot].addr - 545 conf->mirrors[disk].head_position); 546 547 /* Find the disk whose head is closest, 548 * or - for far > 1 - find the closest to partition beginning */ 549 550 for (nslot = slot; nslot < conf->copies; nslot++) { 551 int ndisk = r10_bio->devs[nslot].devnum; 552 553 554 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 555 r10_bio->devs[nslot].bio == IO_BLOCKED || 556 !test_bit(In_sync, &rdev->flags)) 557 continue; 558 559 /* This optimisation is debatable, and completely destroys 560 * sequential read speed for 'far copies' arrays. So only 561 * keep it for 'near' arrays, and review those later. 562 */ 563 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 564 disk = ndisk; 565 slot = nslot; 566 break; 567 } 568 569 /* for far > 1 always use the lowest address */ 570 if (conf->far_copies > 1) 571 new_distance = r10_bio->devs[nslot].addr; 572 else 573 new_distance = abs(r10_bio->devs[nslot].addr - 574 conf->mirrors[ndisk].head_position); 575 if (new_distance < current_distance) { 576 current_distance = new_distance; 577 disk = ndisk; 578 slot = nslot; 579 } 580 } 581 582 rb_out: 583 r10_bio->read_slot = slot; 584 /* conf->next_seq_sect = this_sector + sectors;*/ 585 586 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 587 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 588 else 589 disk = -1; 590 rcu_read_unlock(); 591 592 return disk; 593 } 594 595 static void unplug_slaves(mddev_t *mddev) 596 { 597 conf_t *conf = mddev_to_conf(mddev); 598 int i; 599 600 rcu_read_lock(); 601 for (i=0; i<mddev->raid_disks; i++) { 602 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 603 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 604 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 605 606 atomic_inc(&rdev->nr_pending); 607 rcu_read_unlock(); 608 609 blk_unplug(r_queue); 610 611 rdev_dec_pending(rdev, mddev); 612 rcu_read_lock(); 613 } 614 } 615 rcu_read_unlock(); 616 } 617 618 static void raid10_unplug(struct request_queue *q) 619 { 620 mddev_t *mddev = q->queuedata; 621 622 unplug_slaves(q->queuedata); 623 md_wakeup_thread(mddev->thread); 624 } 625 626 static int raid10_congested(void *data, int bits) 627 { 628 mddev_t *mddev = data; 629 conf_t *conf = mddev_to_conf(mddev); 630 int i, ret = 0; 631 632 rcu_read_lock(); 633 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 634 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 635 if (rdev && !test_bit(Faulty, &rdev->flags)) { 636 struct request_queue *q = bdev_get_queue(rdev->bdev); 637 638 ret |= bdi_congested(&q->backing_dev_info, bits); 639 } 640 } 641 rcu_read_unlock(); 642 return ret; 643 } 644 645 static int flush_pending_writes(conf_t *conf) 646 { 647 /* Any writes that have been queued but are awaiting 648 * bitmap updates get flushed here. 649 * We return 1 if any requests were actually submitted. 650 */ 651 int rv = 0; 652 653 spin_lock_irq(&conf->device_lock); 654 655 if (conf->pending_bio_list.head) { 656 struct bio *bio; 657 bio = bio_list_get(&conf->pending_bio_list); 658 blk_remove_plug(conf->mddev->queue); 659 spin_unlock_irq(&conf->device_lock); 660 /* flush any pending bitmap writes to disk 661 * before proceeding w/ I/O */ 662 bitmap_unplug(conf->mddev->bitmap); 663 664 while (bio) { /* submit pending writes */ 665 struct bio *next = bio->bi_next; 666 bio->bi_next = NULL; 667 generic_make_request(bio); 668 bio = next; 669 } 670 rv = 1; 671 } else 672 spin_unlock_irq(&conf->device_lock); 673 return rv; 674 } 675 /* Barriers.... 676 * Sometimes we need to suspend IO while we do something else, 677 * either some resync/recovery, or reconfigure the array. 678 * To do this we raise a 'barrier'. 679 * The 'barrier' is a counter that can be raised multiple times 680 * to count how many activities are happening which preclude 681 * normal IO. 682 * We can only raise the barrier if there is no pending IO. 683 * i.e. if nr_pending == 0. 684 * We choose only to raise the barrier if no-one is waiting for the 685 * barrier to go down. This means that as soon as an IO request 686 * is ready, no other operations which require a barrier will start 687 * until the IO request has had a chance. 688 * 689 * So: regular IO calls 'wait_barrier'. When that returns there 690 * is no backgroup IO happening, It must arrange to call 691 * allow_barrier when it has finished its IO. 692 * backgroup IO calls must call raise_barrier. Once that returns 693 * there is no normal IO happeing. It must arrange to call 694 * lower_barrier when the particular background IO completes. 695 */ 696 697 static void raise_barrier(conf_t *conf, int force) 698 { 699 BUG_ON(force && !conf->barrier); 700 spin_lock_irq(&conf->resync_lock); 701 702 /* Wait until no block IO is waiting (unless 'force') */ 703 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 704 conf->resync_lock, 705 raid10_unplug(conf->mddev->queue)); 706 707 /* block any new IO from starting */ 708 conf->barrier++; 709 710 /* No wait for all pending IO to complete */ 711 wait_event_lock_irq(conf->wait_barrier, 712 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 713 conf->resync_lock, 714 raid10_unplug(conf->mddev->queue)); 715 716 spin_unlock_irq(&conf->resync_lock); 717 } 718 719 static void lower_barrier(conf_t *conf) 720 { 721 unsigned long flags; 722 spin_lock_irqsave(&conf->resync_lock, flags); 723 conf->barrier--; 724 spin_unlock_irqrestore(&conf->resync_lock, flags); 725 wake_up(&conf->wait_barrier); 726 } 727 728 static void wait_barrier(conf_t *conf) 729 { 730 spin_lock_irq(&conf->resync_lock); 731 if (conf->barrier) { 732 conf->nr_waiting++; 733 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 734 conf->resync_lock, 735 raid10_unplug(conf->mddev->queue)); 736 conf->nr_waiting--; 737 } 738 conf->nr_pending++; 739 spin_unlock_irq(&conf->resync_lock); 740 } 741 742 static void allow_barrier(conf_t *conf) 743 { 744 unsigned long flags; 745 spin_lock_irqsave(&conf->resync_lock, flags); 746 conf->nr_pending--; 747 spin_unlock_irqrestore(&conf->resync_lock, flags); 748 wake_up(&conf->wait_barrier); 749 } 750 751 static void freeze_array(conf_t *conf) 752 { 753 /* stop syncio and normal IO and wait for everything to 754 * go quiet. 755 * We increment barrier and nr_waiting, and then 756 * wait until nr_pending match nr_queued+1 757 * This is called in the context of one normal IO request 758 * that has failed. Thus any sync request that might be pending 759 * will be blocked by nr_pending, and we need to wait for 760 * pending IO requests to complete or be queued for re-try. 761 * Thus the number queued (nr_queued) plus this request (1) 762 * must match the number of pending IOs (nr_pending) before 763 * we continue. 764 */ 765 spin_lock_irq(&conf->resync_lock); 766 conf->barrier++; 767 conf->nr_waiting++; 768 wait_event_lock_irq(conf->wait_barrier, 769 conf->nr_pending == conf->nr_queued+1, 770 conf->resync_lock, 771 ({ flush_pending_writes(conf); 772 raid10_unplug(conf->mddev->queue); })); 773 spin_unlock_irq(&conf->resync_lock); 774 } 775 776 static void unfreeze_array(conf_t *conf) 777 { 778 /* reverse the effect of the freeze */ 779 spin_lock_irq(&conf->resync_lock); 780 conf->barrier--; 781 conf->nr_waiting--; 782 wake_up(&conf->wait_barrier); 783 spin_unlock_irq(&conf->resync_lock); 784 } 785 786 static int make_request(struct request_queue *q, struct bio * bio) 787 { 788 mddev_t *mddev = q->queuedata; 789 conf_t *conf = mddev_to_conf(mddev); 790 mirror_info_t *mirror; 791 r10bio_t *r10_bio; 792 struct bio *read_bio; 793 int cpu; 794 int i; 795 int chunk_sects = conf->chunk_mask + 1; 796 const int rw = bio_data_dir(bio); 797 const int do_sync = bio_sync(bio); 798 struct bio_list bl; 799 unsigned long flags; 800 mdk_rdev_t *blocked_rdev; 801 802 if (unlikely(bio_barrier(bio))) { 803 bio_endio(bio, -EOPNOTSUPP); 804 return 0; 805 } 806 807 /* If this request crosses a chunk boundary, we need to 808 * split it. This will only happen for 1 PAGE (or less) requests. 809 */ 810 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 811 > chunk_sects && 812 conf->near_copies < conf->raid_disks)) { 813 struct bio_pair *bp; 814 /* Sanity check -- queue functions should prevent this happening */ 815 if (bio->bi_vcnt != 1 || 816 bio->bi_idx != 0) 817 goto bad_map; 818 /* This is a one page bio that upper layers 819 * refuse to split for us, so we need to split it. 820 */ 821 bp = bio_split(bio, 822 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 823 if (make_request(q, &bp->bio1)) 824 generic_make_request(&bp->bio1); 825 if (make_request(q, &bp->bio2)) 826 generic_make_request(&bp->bio2); 827 828 bio_pair_release(bp); 829 return 0; 830 bad_map: 831 printk("raid10_make_request bug: can't convert block across chunks" 832 " or bigger than %dk %llu %d\n", chunk_sects/2, 833 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 834 835 bio_io_error(bio); 836 return 0; 837 } 838 839 md_write_start(mddev, bio); 840 841 /* 842 * Register the new request and wait if the reconstruction 843 * thread has put up a bar for new requests. 844 * Continue immediately if no resync is active currently. 845 */ 846 wait_barrier(conf); 847 848 cpu = part_stat_lock(); 849 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 850 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 851 bio_sectors(bio)); 852 part_stat_unlock(); 853 854 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 855 856 r10_bio->master_bio = bio; 857 r10_bio->sectors = bio->bi_size >> 9; 858 859 r10_bio->mddev = mddev; 860 r10_bio->sector = bio->bi_sector; 861 r10_bio->state = 0; 862 863 if (rw == READ) { 864 /* 865 * read balancing logic: 866 */ 867 int disk = read_balance(conf, r10_bio); 868 int slot = r10_bio->read_slot; 869 if (disk < 0) { 870 raid_end_bio_io(r10_bio); 871 return 0; 872 } 873 mirror = conf->mirrors + disk; 874 875 read_bio = bio_clone(bio, GFP_NOIO); 876 877 r10_bio->devs[slot].bio = read_bio; 878 879 read_bio->bi_sector = r10_bio->devs[slot].addr + 880 mirror->rdev->data_offset; 881 read_bio->bi_bdev = mirror->rdev->bdev; 882 read_bio->bi_end_io = raid10_end_read_request; 883 read_bio->bi_rw = READ | do_sync; 884 read_bio->bi_private = r10_bio; 885 886 generic_make_request(read_bio); 887 return 0; 888 } 889 890 /* 891 * WRITE: 892 */ 893 /* first select target devices under rcu_lock and 894 * inc refcount on their rdev. Record them by setting 895 * bios[x] to bio 896 */ 897 raid10_find_phys(conf, r10_bio); 898 retry_write: 899 blocked_rdev = NULL; 900 rcu_read_lock(); 901 for (i = 0; i < conf->copies; i++) { 902 int d = r10_bio->devs[i].devnum; 903 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 904 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 905 atomic_inc(&rdev->nr_pending); 906 blocked_rdev = rdev; 907 break; 908 } 909 if (rdev && !test_bit(Faulty, &rdev->flags)) { 910 atomic_inc(&rdev->nr_pending); 911 r10_bio->devs[i].bio = bio; 912 } else { 913 r10_bio->devs[i].bio = NULL; 914 set_bit(R10BIO_Degraded, &r10_bio->state); 915 } 916 } 917 rcu_read_unlock(); 918 919 if (unlikely(blocked_rdev)) { 920 /* Have to wait for this device to get unblocked, then retry */ 921 int j; 922 int d; 923 924 for (j = 0; j < i; j++) 925 if (r10_bio->devs[j].bio) { 926 d = r10_bio->devs[j].devnum; 927 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 928 } 929 allow_barrier(conf); 930 md_wait_for_blocked_rdev(blocked_rdev, mddev); 931 wait_barrier(conf); 932 goto retry_write; 933 } 934 935 atomic_set(&r10_bio->remaining, 0); 936 937 bio_list_init(&bl); 938 for (i = 0; i < conf->copies; i++) { 939 struct bio *mbio; 940 int d = r10_bio->devs[i].devnum; 941 if (!r10_bio->devs[i].bio) 942 continue; 943 944 mbio = bio_clone(bio, GFP_NOIO); 945 r10_bio->devs[i].bio = mbio; 946 947 mbio->bi_sector = r10_bio->devs[i].addr+ 948 conf->mirrors[d].rdev->data_offset; 949 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 950 mbio->bi_end_io = raid10_end_write_request; 951 mbio->bi_rw = WRITE | do_sync; 952 mbio->bi_private = r10_bio; 953 954 atomic_inc(&r10_bio->remaining); 955 bio_list_add(&bl, mbio); 956 } 957 958 if (unlikely(!atomic_read(&r10_bio->remaining))) { 959 /* the array is dead */ 960 md_write_end(mddev); 961 raid_end_bio_io(r10_bio); 962 return 0; 963 } 964 965 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 966 spin_lock_irqsave(&conf->device_lock, flags); 967 bio_list_merge(&conf->pending_bio_list, &bl); 968 blk_plug_device(mddev->queue); 969 spin_unlock_irqrestore(&conf->device_lock, flags); 970 971 /* In case raid10d snuck in to freeze_array */ 972 wake_up(&conf->wait_barrier); 973 974 if (do_sync) 975 md_wakeup_thread(mddev->thread); 976 977 return 0; 978 } 979 980 static void status(struct seq_file *seq, mddev_t *mddev) 981 { 982 conf_t *conf = mddev_to_conf(mddev); 983 int i; 984 985 if (conf->near_copies < conf->raid_disks) 986 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 987 if (conf->near_copies > 1) 988 seq_printf(seq, " %d near-copies", conf->near_copies); 989 if (conf->far_copies > 1) { 990 if (conf->far_offset) 991 seq_printf(seq, " %d offset-copies", conf->far_copies); 992 else 993 seq_printf(seq, " %d far-copies", conf->far_copies); 994 } 995 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 996 conf->raid_disks - mddev->degraded); 997 for (i = 0; i < conf->raid_disks; i++) 998 seq_printf(seq, "%s", 999 conf->mirrors[i].rdev && 1000 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1001 seq_printf(seq, "]"); 1002 } 1003 1004 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1005 { 1006 char b[BDEVNAME_SIZE]; 1007 conf_t *conf = mddev_to_conf(mddev); 1008 1009 /* 1010 * If it is not operational, then we have already marked it as dead 1011 * else if it is the last working disks, ignore the error, let the 1012 * next level up know. 1013 * else mark the drive as failed 1014 */ 1015 if (test_bit(In_sync, &rdev->flags) 1016 && conf->raid_disks-mddev->degraded == 1) 1017 /* 1018 * Don't fail the drive, just return an IO error. 1019 * The test should really be more sophisticated than 1020 * "working_disks == 1", but it isn't critical, and 1021 * can wait until we do more sophisticated "is the drive 1022 * really dead" tests... 1023 */ 1024 return; 1025 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1026 unsigned long flags; 1027 spin_lock_irqsave(&conf->device_lock, flags); 1028 mddev->degraded++; 1029 spin_unlock_irqrestore(&conf->device_lock, flags); 1030 /* 1031 * if recovery is running, make sure it aborts. 1032 */ 1033 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1034 } 1035 set_bit(Faulty, &rdev->flags); 1036 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1037 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1038 "raid10: Operation continuing on %d devices.\n", 1039 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1040 } 1041 1042 static void print_conf(conf_t *conf) 1043 { 1044 int i; 1045 mirror_info_t *tmp; 1046 1047 printk("RAID10 conf printout:\n"); 1048 if (!conf) { 1049 printk("(!conf)\n"); 1050 return; 1051 } 1052 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1053 conf->raid_disks); 1054 1055 for (i = 0; i < conf->raid_disks; i++) { 1056 char b[BDEVNAME_SIZE]; 1057 tmp = conf->mirrors + i; 1058 if (tmp->rdev) 1059 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1060 i, !test_bit(In_sync, &tmp->rdev->flags), 1061 !test_bit(Faulty, &tmp->rdev->flags), 1062 bdevname(tmp->rdev->bdev,b)); 1063 } 1064 } 1065 1066 static void close_sync(conf_t *conf) 1067 { 1068 wait_barrier(conf); 1069 allow_barrier(conf); 1070 1071 mempool_destroy(conf->r10buf_pool); 1072 conf->r10buf_pool = NULL; 1073 } 1074 1075 /* check if there are enough drives for 1076 * every block to appear on atleast one 1077 */ 1078 static int enough(conf_t *conf) 1079 { 1080 int first = 0; 1081 1082 do { 1083 int n = conf->copies; 1084 int cnt = 0; 1085 while (n--) { 1086 if (conf->mirrors[first].rdev) 1087 cnt++; 1088 first = (first+1) % conf->raid_disks; 1089 } 1090 if (cnt == 0) 1091 return 0; 1092 } while (first != 0); 1093 return 1; 1094 } 1095 1096 static int raid10_spare_active(mddev_t *mddev) 1097 { 1098 int i; 1099 conf_t *conf = mddev->private; 1100 mirror_info_t *tmp; 1101 1102 /* 1103 * Find all non-in_sync disks within the RAID10 configuration 1104 * and mark them in_sync 1105 */ 1106 for (i = 0; i < conf->raid_disks; i++) { 1107 tmp = conf->mirrors + i; 1108 if (tmp->rdev 1109 && !test_bit(Faulty, &tmp->rdev->flags) 1110 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1111 unsigned long flags; 1112 spin_lock_irqsave(&conf->device_lock, flags); 1113 mddev->degraded--; 1114 spin_unlock_irqrestore(&conf->device_lock, flags); 1115 } 1116 } 1117 1118 print_conf(conf); 1119 return 0; 1120 } 1121 1122 1123 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1124 { 1125 conf_t *conf = mddev->private; 1126 int err = -EEXIST; 1127 int mirror; 1128 mirror_info_t *p; 1129 int first = 0; 1130 int last = mddev->raid_disks - 1; 1131 1132 if (mddev->recovery_cp < MaxSector) 1133 /* only hot-add to in-sync arrays, as recovery is 1134 * very different from resync 1135 */ 1136 return -EBUSY; 1137 if (!enough(conf)) 1138 return -EINVAL; 1139 1140 if (rdev->raid_disk) 1141 first = last = rdev->raid_disk; 1142 1143 if (rdev->saved_raid_disk >= 0 && 1144 rdev->saved_raid_disk >= first && 1145 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1146 mirror = rdev->saved_raid_disk; 1147 else 1148 mirror = first; 1149 for ( ; mirror <= last ; mirror++) 1150 if ( !(p=conf->mirrors+mirror)->rdev) { 1151 1152 blk_queue_stack_limits(mddev->queue, 1153 rdev->bdev->bd_disk->queue); 1154 /* as we don't honour merge_bvec_fn, we must never risk 1155 * violating it, so limit ->max_sector to one PAGE, as 1156 * a one page request is never in violation. 1157 */ 1158 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1159 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1160 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1161 1162 p->head_position = 0; 1163 rdev->raid_disk = mirror; 1164 err = 0; 1165 if (rdev->saved_raid_disk != mirror) 1166 conf->fullsync = 1; 1167 rcu_assign_pointer(p->rdev, rdev); 1168 break; 1169 } 1170 1171 print_conf(conf); 1172 return err; 1173 } 1174 1175 static int raid10_remove_disk(mddev_t *mddev, int number) 1176 { 1177 conf_t *conf = mddev->private; 1178 int err = 0; 1179 mdk_rdev_t *rdev; 1180 mirror_info_t *p = conf->mirrors+ number; 1181 1182 print_conf(conf); 1183 rdev = p->rdev; 1184 if (rdev) { 1185 if (test_bit(In_sync, &rdev->flags) || 1186 atomic_read(&rdev->nr_pending)) { 1187 err = -EBUSY; 1188 goto abort; 1189 } 1190 /* Only remove faulty devices in recovery 1191 * is not possible. 1192 */ 1193 if (!test_bit(Faulty, &rdev->flags) && 1194 enough(conf)) { 1195 err = -EBUSY; 1196 goto abort; 1197 } 1198 p->rdev = NULL; 1199 synchronize_rcu(); 1200 if (atomic_read(&rdev->nr_pending)) { 1201 /* lost the race, try later */ 1202 err = -EBUSY; 1203 p->rdev = rdev; 1204 } 1205 } 1206 abort: 1207 1208 print_conf(conf); 1209 return err; 1210 } 1211 1212 1213 static void end_sync_read(struct bio *bio, int error) 1214 { 1215 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1216 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1217 int i,d; 1218 1219 for (i=0; i<conf->copies; i++) 1220 if (r10_bio->devs[i].bio == bio) 1221 break; 1222 BUG_ON(i == conf->copies); 1223 update_head_pos(i, r10_bio); 1224 d = r10_bio->devs[i].devnum; 1225 1226 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1227 set_bit(R10BIO_Uptodate, &r10_bio->state); 1228 else { 1229 atomic_add(r10_bio->sectors, 1230 &conf->mirrors[d].rdev->corrected_errors); 1231 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1232 md_error(r10_bio->mddev, 1233 conf->mirrors[d].rdev); 1234 } 1235 1236 /* for reconstruct, we always reschedule after a read. 1237 * for resync, only after all reads 1238 */ 1239 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1240 atomic_dec_and_test(&r10_bio->remaining)) { 1241 /* we have read all the blocks, 1242 * do the comparison in process context in raid10d 1243 */ 1244 reschedule_retry(r10_bio); 1245 } 1246 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1247 } 1248 1249 static void end_sync_write(struct bio *bio, int error) 1250 { 1251 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1252 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1253 mddev_t *mddev = r10_bio->mddev; 1254 conf_t *conf = mddev_to_conf(mddev); 1255 int i,d; 1256 1257 for (i = 0; i < conf->copies; i++) 1258 if (r10_bio->devs[i].bio == bio) 1259 break; 1260 d = r10_bio->devs[i].devnum; 1261 1262 if (!uptodate) 1263 md_error(mddev, conf->mirrors[d].rdev); 1264 1265 update_head_pos(i, r10_bio); 1266 1267 while (atomic_dec_and_test(&r10_bio->remaining)) { 1268 if (r10_bio->master_bio == NULL) { 1269 /* the primary of several recovery bios */ 1270 md_done_sync(mddev, r10_bio->sectors, 1); 1271 put_buf(r10_bio); 1272 break; 1273 } else { 1274 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1275 put_buf(r10_bio); 1276 r10_bio = r10_bio2; 1277 } 1278 } 1279 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1280 } 1281 1282 /* 1283 * Note: sync and recover and handled very differently for raid10 1284 * This code is for resync. 1285 * For resync, we read through virtual addresses and read all blocks. 1286 * If there is any error, we schedule a write. The lowest numbered 1287 * drive is authoritative. 1288 * However requests come for physical address, so we need to map. 1289 * For every physical address there are raid_disks/copies virtual addresses, 1290 * which is always are least one, but is not necessarly an integer. 1291 * This means that a physical address can span multiple chunks, so we may 1292 * have to submit multiple io requests for a single sync request. 1293 */ 1294 /* 1295 * We check if all blocks are in-sync and only write to blocks that 1296 * aren't in sync 1297 */ 1298 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1299 { 1300 conf_t *conf = mddev_to_conf(mddev); 1301 int i, first; 1302 struct bio *tbio, *fbio; 1303 1304 atomic_set(&r10_bio->remaining, 1); 1305 1306 /* find the first device with a block */ 1307 for (i=0; i<conf->copies; i++) 1308 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1309 break; 1310 1311 if (i == conf->copies) 1312 goto done; 1313 1314 first = i; 1315 fbio = r10_bio->devs[i].bio; 1316 1317 /* now find blocks with errors */ 1318 for (i=0 ; i < conf->copies ; i++) { 1319 int j, d; 1320 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1321 1322 tbio = r10_bio->devs[i].bio; 1323 1324 if (tbio->bi_end_io != end_sync_read) 1325 continue; 1326 if (i == first) 1327 continue; 1328 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1329 /* We know that the bi_io_vec layout is the same for 1330 * both 'first' and 'i', so we just compare them. 1331 * All vec entries are PAGE_SIZE; 1332 */ 1333 for (j = 0; j < vcnt; j++) 1334 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1335 page_address(tbio->bi_io_vec[j].bv_page), 1336 PAGE_SIZE)) 1337 break; 1338 if (j == vcnt) 1339 continue; 1340 mddev->resync_mismatches += r10_bio->sectors; 1341 } 1342 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1343 /* Don't fix anything. */ 1344 continue; 1345 /* Ok, we need to write this bio 1346 * First we need to fixup bv_offset, bv_len and 1347 * bi_vecs, as the read request might have corrupted these 1348 */ 1349 tbio->bi_vcnt = vcnt; 1350 tbio->bi_size = r10_bio->sectors << 9; 1351 tbio->bi_idx = 0; 1352 tbio->bi_phys_segments = 0; 1353 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1354 tbio->bi_flags |= 1 << BIO_UPTODATE; 1355 tbio->bi_next = NULL; 1356 tbio->bi_rw = WRITE; 1357 tbio->bi_private = r10_bio; 1358 tbio->bi_sector = r10_bio->devs[i].addr; 1359 1360 for (j=0; j < vcnt ; j++) { 1361 tbio->bi_io_vec[j].bv_offset = 0; 1362 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1363 1364 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1365 page_address(fbio->bi_io_vec[j].bv_page), 1366 PAGE_SIZE); 1367 } 1368 tbio->bi_end_io = end_sync_write; 1369 1370 d = r10_bio->devs[i].devnum; 1371 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1372 atomic_inc(&r10_bio->remaining); 1373 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1374 1375 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1376 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1377 generic_make_request(tbio); 1378 } 1379 1380 done: 1381 if (atomic_dec_and_test(&r10_bio->remaining)) { 1382 md_done_sync(mddev, r10_bio->sectors, 1); 1383 put_buf(r10_bio); 1384 } 1385 } 1386 1387 /* 1388 * Now for the recovery code. 1389 * Recovery happens across physical sectors. 1390 * We recover all non-is_sync drives by finding the virtual address of 1391 * each, and then choose a working drive that also has that virt address. 1392 * There is a separate r10_bio for each non-in_sync drive. 1393 * Only the first two slots are in use. The first for reading, 1394 * The second for writing. 1395 * 1396 */ 1397 1398 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1399 { 1400 conf_t *conf = mddev_to_conf(mddev); 1401 int i, d; 1402 struct bio *bio, *wbio; 1403 1404 1405 /* move the pages across to the second bio 1406 * and submit the write request 1407 */ 1408 bio = r10_bio->devs[0].bio; 1409 wbio = r10_bio->devs[1].bio; 1410 for (i=0; i < wbio->bi_vcnt; i++) { 1411 struct page *p = bio->bi_io_vec[i].bv_page; 1412 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1413 wbio->bi_io_vec[i].bv_page = p; 1414 } 1415 d = r10_bio->devs[1].devnum; 1416 1417 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1418 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1419 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1420 generic_make_request(wbio); 1421 else 1422 bio_endio(wbio, -EIO); 1423 } 1424 1425 1426 /* 1427 * This is a kernel thread which: 1428 * 1429 * 1. Retries failed read operations on working mirrors. 1430 * 2. Updates the raid superblock when problems encounter. 1431 * 3. Performs writes following reads for array synchronising. 1432 */ 1433 1434 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1435 { 1436 int sect = 0; /* Offset from r10_bio->sector */ 1437 int sectors = r10_bio->sectors; 1438 mdk_rdev_t*rdev; 1439 while(sectors) { 1440 int s = sectors; 1441 int sl = r10_bio->read_slot; 1442 int success = 0; 1443 int start; 1444 1445 if (s > (PAGE_SIZE>>9)) 1446 s = PAGE_SIZE >> 9; 1447 1448 rcu_read_lock(); 1449 do { 1450 int d = r10_bio->devs[sl].devnum; 1451 rdev = rcu_dereference(conf->mirrors[d].rdev); 1452 if (rdev && 1453 test_bit(In_sync, &rdev->flags)) { 1454 atomic_inc(&rdev->nr_pending); 1455 rcu_read_unlock(); 1456 success = sync_page_io(rdev->bdev, 1457 r10_bio->devs[sl].addr + 1458 sect + rdev->data_offset, 1459 s<<9, 1460 conf->tmppage, READ); 1461 rdev_dec_pending(rdev, mddev); 1462 rcu_read_lock(); 1463 if (success) 1464 break; 1465 } 1466 sl++; 1467 if (sl == conf->copies) 1468 sl = 0; 1469 } while (!success && sl != r10_bio->read_slot); 1470 rcu_read_unlock(); 1471 1472 if (!success) { 1473 /* Cannot read from anywhere -- bye bye array */ 1474 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1475 md_error(mddev, conf->mirrors[dn].rdev); 1476 break; 1477 } 1478 1479 start = sl; 1480 /* write it back and re-read */ 1481 rcu_read_lock(); 1482 while (sl != r10_bio->read_slot) { 1483 int d; 1484 if (sl==0) 1485 sl = conf->copies; 1486 sl--; 1487 d = r10_bio->devs[sl].devnum; 1488 rdev = rcu_dereference(conf->mirrors[d].rdev); 1489 if (rdev && 1490 test_bit(In_sync, &rdev->flags)) { 1491 atomic_inc(&rdev->nr_pending); 1492 rcu_read_unlock(); 1493 atomic_add(s, &rdev->corrected_errors); 1494 if (sync_page_io(rdev->bdev, 1495 r10_bio->devs[sl].addr + 1496 sect + rdev->data_offset, 1497 s<<9, conf->tmppage, WRITE) 1498 == 0) 1499 /* Well, this device is dead */ 1500 md_error(mddev, rdev); 1501 rdev_dec_pending(rdev, mddev); 1502 rcu_read_lock(); 1503 } 1504 } 1505 sl = start; 1506 while (sl != r10_bio->read_slot) { 1507 int d; 1508 if (sl==0) 1509 sl = conf->copies; 1510 sl--; 1511 d = r10_bio->devs[sl].devnum; 1512 rdev = rcu_dereference(conf->mirrors[d].rdev); 1513 if (rdev && 1514 test_bit(In_sync, &rdev->flags)) { 1515 char b[BDEVNAME_SIZE]; 1516 atomic_inc(&rdev->nr_pending); 1517 rcu_read_unlock(); 1518 if (sync_page_io(rdev->bdev, 1519 r10_bio->devs[sl].addr + 1520 sect + rdev->data_offset, 1521 s<<9, conf->tmppage, READ) == 0) 1522 /* Well, this device is dead */ 1523 md_error(mddev, rdev); 1524 else 1525 printk(KERN_INFO 1526 "raid10:%s: read error corrected" 1527 " (%d sectors at %llu on %s)\n", 1528 mdname(mddev), s, 1529 (unsigned long long)(sect+ 1530 rdev->data_offset), 1531 bdevname(rdev->bdev, b)); 1532 1533 rdev_dec_pending(rdev, mddev); 1534 rcu_read_lock(); 1535 } 1536 } 1537 rcu_read_unlock(); 1538 1539 sectors -= s; 1540 sect += s; 1541 } 1542 } 1543 1544 static void raid10d(mddev_t *mddev) 1545 { 1546 r10bio_t *r10_bio; 1547 struct bio *bio; 1548 unsigned long flags; 1549 conf_t *conf = mddev_to_conf(mddev); 1550 struct list_head *head = &conf->retry_list; 1551 int unplug=0; 1552 mdk_rdev_t *rdev; 1553 1554 md_check_recovery(mddev); 1555 1556 for (;;) { 1557 char b[BDEVNAME_SIZE]; 1558 1559 unplug += flush_pending_writes(conf); 1560 1561 spin_lock_irqsave(&conf->device_lock, flags); 1562 if (list_empty(head)) { 1563 spin_unlock_irqrestore(&conf->device_lock, flags); 1564 break; 1565 } 1566 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1567 list_del(head->prev); 1568 conf->nr_queued--; 1569 spin_unlock_irqrestore(&conf->device_lock, flags); 1570 1571 mddev = r10_bio->mddev; 1572 conf = mddev_to_conf(mddev); 1573 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1574 sync_request_write(mddev, r10_bio); 1575 unplug = 1; 1576 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1577 recovery_request_write(mddev, r10_bio); 1578 unplug = 1; 1579 } else { 1580 int mirror; 1581 /* we got a read error. Maybe the drive is bad. Maybe just 1582 * the block and we can fix it. 1583 * We freeze all other IO, and try reading the block from 1584 * other devices. When we find one, we re-write 1585 * and check it that fixes the read error. 1586 * This is all done synchronously while the array is 1587 * frozen. 1588 */ 1589 if (mddev->ro == 0) { 1590 freeze_array(conf); 1591 fix_read_error(conf, mddev, r10_bio); 1592 unfreeze_array(conf); 1593 } 1594 1595 bio = r10_bio->devs[r10_bio->read_slot].bio; 1596 r10_bio->devs[r10_bio->read_slot].bio = 1597 mddev->ro ? IO_BLOCKED : NULL; 1598 mirror = read_balance(conf, r10_bio); 1599 if (mirror == -1) { 1600 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1601 " read error for block %llu\n", 1602 bdevname(bio->bi_bdev,b), 1603 (unsigned long long)r10_bio->sector); 1604 raid_end_bio_io(r10_bio); 1605 bio_put(bio); 1606 } else { 1607 const int do_sync = bio_sync(r10_bio->master_bio); 1608 bio_put(bio); 1609 rdev = conf->mirrors[mirror].rdev; 1610 if (printk_ratelimit()) 1611 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1612 " another mirror\n", 1613 bdevname(rdev->bdev,b), 1614 (unsigned long long)r10_bio->sector); 1615 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1616 r10_bio->devs[r10_bio->read_slot].bio = bio; 1617 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1618 + rdev->data_offset; 1619 bio->bi_bdev = rdev->bdev; 1620 bio->bi_rw = READ | do_sync; 1621 bio->bi_private = r10_bio; 1622 bio->bi_end_io = raid10_end_read_request; 1623 unplug = 1; 1624 generic_make_request(bio); 1625 } 1626 } 1627 } 1628 if (unplug) 1629 unplug_slaves(mddev); 1630 } 1631 1632 1633 static int init_resync(conf_t *conf) 1634 { 1635 int buffs; 1636 1637 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1638 BUG_ON(conf->r10buf_pool); 1639 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1640 if (!conf->r10buf_pool) 1641 return -ENOMEM; 1642 conf->next_resync = 0; 1643 return 0; 1644 } 1645 1646 /* 1647 * perform a "sync" on one "block" 1648 * 1649 * We need to make sure that no normal I/O request - particularly write 1650 * requests - conflict with active sync requests. 1651 * 1652 * This is achieved by tracking pending requests and a 'barrier' concept 1653 * that can be installed to exclude normal IO requests. 1654 * 1655 * Resync and recovery are handled very differently. 1656 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1657 * 1658 * For resync, we iterate over virtual addresses, read all copies, 1659 * and update if there are differences. If only one copy is live, 1660 * skip it. 1661 * For recovery, we iterate over physical addresses, read a good 1662 * value for each non-in_sync drive, and over-write. 1663 * 1664 * So, for recovery we may have several outstanding complex requests for a 1665 * given address, one for each out-of-sync device. We model this by allocating 1666 * a number of r10_bio structures, one for each out-of-sync device. 1667 * As we setup these structures, we collect all bio's together into a list 1668 * which we then process collectively to add pages, and then process again 1669 * to pass to generic_make_request. 1670 * 1671 * The r10_bio structures are linked using a borrowed master_bio pointer. 1672 * This link is counted in ->remaining. When the r10_bio that points to NULL 1673 * has its remaining count decremented to 0, the whole complex operation 1674 * is complete. 1675 * 1676 */ 1677 1678 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1679 { 1680 conf_t *conf = mddev_to_conf(mddev); 1681 r10bio_t *r10_bio; 1682 struct bio *biolist = NULL, *bio; 1683 sector_t max_sector, nr_sectors; 1684 int disk; 1685 int i; 1686 int max_sync; 1687 int sync_blocks; 1688 1689 sector_t sectors_skipped = 0; 1690 int chunks_skipped = 0; 1691 1692 if (!conf->r10buf_pool) 1693 if (init_resync(conf)) 1694 return 0; 1695 1696 skipped: 1697 max_sector = mddev->size << 1; 1698 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1699 max_sector = mddev->resync_max_sectors; 1700 if (sector_nr >= max_sector) { 1701 /* If we aborted, we need to abort the 1702 * sync on the 'current' bitmap chucks (there can 1703 * be several when recovering multiple devices). 1704 * as we may have started syncing it but not finished. 1705 * We can find the current address in 1706 * mddev->curr_resync, but for recovery, 1707 * we need to convert that to several 1708 * virtual addresses. 1709 */ 1710 if (mddev->curr_resync < max_sector) { /* aborted */ 1711 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1712 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1713 &sync_blocks, 1); 1714 else for (i=0; i<conf->raid_disks; i++) { 1715 sector_t sect = 1716 raid10_find_virt(conf, mddev->curr_resync, i); 1717 bitmap_end_sync(mddev->bitmap, sect, 1718 &sync_blocks, 1); 1719 } 1720 } else /* completed sync */ 1721 conf->fullsync = 0; 1722 1723 bitmap_close_sync(mddev->bitmap); 1724 close_sync(conf); 1725 *skipped = 1; 1726 return sectors_skipped; 1727 } 1728 if (chunks_skipped >= conf->raid_disks) { 1729 /* if there has been nothing to do on any drive, 1730 * then there is nothing to do at all.. 1731 */ 1732 *skipped = 1; 1733 return (max_sector - sector_nr) + sectors_skipped; 1734 } 1735 1736 if (max_sector > mddev->resync_max) 1737 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1738 1739 /* make sure whole request will fit in a chunk - if chunks 1740 * are meaningful 1741 */ 1742 if (conf->near_copies < conf->raid_disks && 1743 max_sector > (sector_nr | conf->chunk_mask)) 1744 max_sector = (sector_nr | conf->chunk_mask) + 1; 1745 /* 1746 * If there is non-resync activity waiting for us then 1747 * put in a delay to throttle resync. 1748 */ 1749 if (!go_faster && conf->nr_waiting) 1750 msleep_interruptible(1000); 1751 1752 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1753 1754 /* Again, very different code for resync and recovery. 1755 * Both must result in an r10bio with a list of bios that 1756 * have bi_end_io, bi_sector, bi_bdev set, 1757 * and bi_private set to the r10bio. 1758 * For recovery, we may actually create several r10bios 1759 * with 2 bios in each, that correspond to the bios in the main one. 1760 * In this case, the subordinate r10bios link back through a 1761 * borrowed master_bio pointer, and the counter in the master 1762 * includes a ref from each subordinate. 1763 */ 1764 /* First, we decide what to do and set ->bi_end_io 1765 * To end_sync_read if we want to read, and 1766 * end_sync_write if we will want to write. 1767 */ 1768 1769 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1770 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1771 /* recovery... the complicated one */ 1772 int i, j, k; 1773 r10_bio = NULL; 1774 1775 for (i=0 ; i<conf->raid_disks; i++) 1776 if (conf->mirrors[i].rdev && 1777 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1778 int still_degraded = 0; 1779 /* want to reconstruct this device */ 1780 r10bio_t *rb2 = r10_bio; 1781 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1782 int must_sync; 1783 /* Unless we are doing a full sync, we only need 1784 * to recover the block if it is set in the bitmap 1785 */ 1786 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1787 &sync_blocks, 1); 1788 if (sync_blocks < max_sync) 1789 max_sync = sync_blocks; 1790 if (!must_sync && 1791 !conf->fullsync) { 1792 /* yep, skip the sync_blocks here, but don't assume 1793 * that there will never be anything to do here 1794 */ 1795 chunks_skipped = -1; 1796 continue; 1797 } 1798 1799 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1800 raise_barrier(conf, rb2 != NULL); 1801 atomic_set(&r10_bio->remaining, 0); 1802 1803 r10_bio->master_bio = (struct bio*)rb2; 1804 if (rb2) 1805 atomic_inc(&rb2->remaining); 1806 r10_bio->mddev = mddev; 1807 set_bit(R10BIO_IsRecover, &r10_bio->state); 1808 r10_bio->sector = sect; 1809 1810 raid10_find_phys(conf, r10_bio); 1811 /* Need to check if this section will still be 1812 * degraded 1813 */ 1814 for (j=0; j<conf->copies;j++) { 1815 int d = r10_bio->devs[j].devnum; 1816 if (conf->mirrors[d].rdev == NULL || 1817 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1818 still_degraded = 1; 1819 break; 1820 } 1821 } 1822 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1823 &sync_blocks, still_degraded); 1824 1825 for (j=0; j<conf->copies;j++) { 1826 int d = r10_bio->devs[j].devnum; 1827 if (conf->mirrors[d].rdev && 1828 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1829 /* This is where we read from */ 1830 bio = r10_bio->devs[0].bio; 1831 bio->bi_next = biolist; 1832 biolist = bio; 1833 bio->bi_private = r10_bio; 1834 bio->bi_end_io = end_sync_read; 1835 bio->bi_rw = READ; 1836 bio->bi_sector = r10_bio->devs[j].addr + 1837 conf->mirrors[d].rdev->data_offset; 1838 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1839 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1840 atomic_inc(&r10_bio->remaining); 1841 /* and we write to 'i' */ 1842 1843 for (k=0; k<conf->copies; k++) 1844 if (r10_bio->devs[k].devnum == i) 1845 break; 1846 BUG_ON(k == conf->copies); 1847 bio = r10_bio->devs[1].bio; 1848 bio->bi_next = biolist; 1849 biolist = bio; 1850 bio->bi_private = r10_bio; 1851 bio->bi_end_io = end_sync_write; 1852 bio->bi_rw = WRITE; 1853 bio->bi_sector = r10_bio->devs[k].addr + 1854 conf->mirrors[i].rdev->data_offset; 1855 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1856 1857 r10_bio->devs[0].devnum = d; 1858 r10_bio->devs[1].devnum = i; 1859 1860 break; 1861 } 1862 } 1863 if (j == conf->copies) { 1864 /* Cannot recover, so abort the recovery */ 1865 put_buf(r10_bio); 1866 if (rb2) 1867 atomic_dec(&rb2->remaining); 1868 r10_bio = rb2; 1869 if (!test_and_set_bit(MD_RECOVERY_INTR, 1870 &mddev->recovery)) 1871 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1872 mdname(mddev)); 1873 break; 1874 } 1875 } 1876 if (biolist == NULL) { 1877 while (r10_bio) { 1878 r10bio_t *rb2 = r10_bio; 1879 r10_bio = (r10bio_t*) rb2->master_bio; 1880 rb2->master_bio = NULL; 1881 put_buf(rb2); 1882 } 1883 goto giveup; 1884 } 1885 } else { 1886 /* resync. Schedule a read for every block at this virt offset */ 1887 int count = 0; 1888 1889 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1890 &sync_blocks, mddev->degraded) && 1891 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1892 /* We can skip this block */ 1893 *skipped = 1; 1894 return sync_blocks + sectors_skipped; 1895 } 1896 if (sync_blocks < max_sync) 1897 max_sync = sync_blocks; 1898 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1899 1900 r10_bio->mddev = mddev; 1901 atomic_set(&r10_bio->remaining, 0); 1902 raise_barrier(conf, 0); 1903 conf->next_resync = sector_nr; 1904 1905 r10_bio->master_bio = NULL; 1906 r10_bio->sector = sector_nr; 1907 set_bit(R10BIO_IsSync, &r10_bio->state); 1908 raid10_find_phys(conf, r10_bio); 1909 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1910 1911 for (i=0; i<conf->copies; i++) { 1912 int d = r10_bio->devs[i].devnum; 1913 bio = r10_bio->devs[i].bio; 1914 bio->bi_end_io = NULL; 1915 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1916 if (conf->mirrors[d].rdev == NULL || 1917 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1918 continue; 1919 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1920 atomic_inc(&r10_bio->remaining); 1921 bio->bi_next = biolist; 1922 biolist = bio; 1923 bio->bi_private = r10_bio; 1924 bio->bi_end_io = end_sync_read; 1925 bio->bi_rw = READ; 1926 bio->bi_sector = r10_bio->devs[i].addr + 1927 conf->mirrors[d].rdev->data_offset; 1928 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1929 count++; 1930 } 1931 1932 if (count < 2) { 1933 for (i=0; i<conf->copies; i++) { 1934 int d = r10_bio->devs[i].devnum; 1935 if (r10_bio->devs[i].bio->bi_end_io) 1936 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1937 } 1938 put_buf(r10_bio); 1939 biolist = NULL; 1940 goto giveup; 1941 } 1942 } 1943 1944 for (bio = biolist; bio ; bio=bio->bi_next) { 1945 1946 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1947 if (bio->bi_end_io) 1948 bio->bi_flags |= 1 << BIO_UPTODATE; 1949 bio->bi_vcnt = 0; 1950 bio->bi_idx = 0; 1951 bio->bi_phys_segments = 0; 1952 bio->bi_size = 0; 1953 } 1954 1955 nr_sectors = 0; 1956 if (sector_nr + max_sync < max_sector) 1957 max_sector = sector_nr + max_sync; 1958 do { 1959 struct page *page; 1960 int len = PAGE_SIZE; 1961 disk = 0; 1962 if (sector_nr + (len>>9) > max_sector) 1963 len = (max_sector - sector_nr) << 9; 1964 if (len == 0) 1965 break; 1966 for (bio= biolist ; bio ; bio=bio->bi_next) { 1967 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1968 if (bio_add_page(bio, page, len, 0) == 0) { 1969 /* stop here */ 1970 struct bio *bio2; 1971 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1972 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1973 /* remove last page from this bio */ 1974 bio2->bi_vcnt--; 1975 bio2->bi_size -= len; 1976 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1977 } 1978 goto bio_full; 1979 } 1980 disk = i; 1981 } 1982 nr_sectors += len>>9; 1983 sector_nr += len>>9; 1984 } while (biolist->bi_vcnt < RESYNC_PAGES); 1985 bio_full: 1986 r10_bio->sectors = nr_sectors; 1987 1988 while (biolist) { 1989 bio = biolist; 1990 biolist = biolist->bi_next; 1991 1992 bio->bi_next = NULL; 1993 r10_bio = bio->bi_private; 1994 r10_bio->sectors = nr_sectors; 1995 1996 if (bio->bi_end_io == end_sync_read) { 1997 md_sync_acct(bio->bi_bdev, nr_sectors); 1998 generic_make_request(bio); 1999 } 2000 } 2001 2002 if (sectors_skipped) 2003 /* pretend they weren't skipped, it makes 2004 * no important difference in this case 2005 */ 2006 md_done_sync(mddev, sectors_skipped, 1); 2007 2008 return sectors_skipped + nr_sectors; 2009 giveup: 2010 /* There is nowhere to write, so all non-sync 2011 * drives must be failed, so try the next chunk... 2012 */ 2013 { 2014 sector_t sec = max_sector - sector_nr; 2015 sectors_skipped += sec; 2016 chunks_skipped ++; 2017 sector_nr = max_sector; 2018 goto skipped; 2019 } 2020 } 2021 2022 static int run(mddev_t *mddev) 2023 { 2024 conf_t *conf; 2025 int i, disk_idx; 2026 mirror_info_t *disk; 2027 mdk_rdev_t *rdev; 2028 struct list_head *tmp; 2029 int nc, fc, fo; 2030 sector_t stride, size; 2031 2032 if (mddev->chunk_size < PAGE_SIZE) { 2033 printk(KERN_ERR "md/raid10: chunk size must be " 2034 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE); 2035 return -EINVAL; 2036 } 2037 2038 nc = mddev->layout & 255; 2039 fc = (mddev->layout >> 8) & 255; 2040 fo = mddev->layout & (1<<16); 2041 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2042 (mddev->layout >> 17)) { 2043 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2044 mdname(mddev), mddev->layout); 2045 goto out; 2046 } 2047 /* 2048 * copy the already verified devices into our private RAID10 2049 * bookkeeping area. [whatever we allocate in run(), 2050 * should be freed in stop()] 2051 */ 2052 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2053 mddev->private = conf; 2054 if (!conf) { 2055 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2056 mdname(mddev)); 2057 goto out; 2058 } 2059 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2060 GFP_KERNEL); 2061 if (!conf->mirrors) { 2062 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2063 mdname(mddev)); 2064 goto out_free_conf; 2065 } 2066 2067 conf->tmppage = alloc_page(GFP_KERNEL); 2068 if (!conf->tmppage) 2069 goto out_free_conf; 2070 2071 conf->mddev = mddev; 2072 conf->raid_disks = mddev->raid_disks; 2073 conf->near_copies = nc; 2074 conf->far_copies = fc; 2075 conf->copies = nc*fc; 2076 conf->far_offset = fo; 2077 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2078 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2079 size = mddev->size >> (conf->chunk_shift-1); 2080 sector_div(size, fc); 2081 size = size * conf->raid_disks; 2082 sector_div(size, nc); 2083 /* 'size' is now the number of chunks in the array */ 2084 /* calculate "used chunks per device" in 'stride' */ 2085 stride = size * conf->copies; 2086 2087 /* We need to round up when dividing by raid_disks to 2088 * get the stride size. 2089 */ 2090 stride += conf->raid_disks - 1; 2091 sector_div(stride, conf->raid_disks); 2092 mddev->size = stride << (conf->chunk_shift-1); 2093 2094 if (fo) 2095 stride = 1; 2096 else 2097 sector_div(stride, fc); 2098 conf->stride = stride << conf->chunk_shift; 2099 2100 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2101 r10bio_pool_free, conf); 2102 if (!conf->r10bio_pool) { 2103 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2104 mdname(mddev)); 2105 goto out_free_conf; 2106 } 2107 2108 spin_lock_init(&conf->device_lock); 2109 mddev->queue->queue_lock = &conf->device_lock; 2110 2111 rdev_for_each(rdev, tmp, mddev) { 2112 disk_idx = rdev->raid_disk; 2113 if (disk_idx >= mddev->raid_disks 2114 || disk_idx < 0) 2115 continue; 2116 disk = conf->mirrors + disk_idx; 2117 2118 disk->rdev = rdev; 2119 2120 blk_queue_stack_limits(mddev->queue, 2121 rdev->bdev->bd_disk->queue); 2122 /* as we don't honour merge_bvec_fn, we must never risk 2123 * violating it, so limit ->max_sector to one PAGE, as 2124 * a one page request is never in violation. 2125 */ 2126 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2127 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2128 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2129 2130 disk->head_position = 0; 2131 } 2132 INIT_LIST_HEAD(&conf->retry_list); 2133 2134 spin_lock_init(&conf->resync_lock); 2135 init_waitqueue_head(&conf->wait_barrier); 2136 2137 /* need to check that every block has at least one working mirror */ 2138 if (!enough(conf)) { 2139 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2140 mdname(mddev)); 2141 goto out_free_conf; 2142 } 2143 2144 mddev->degraded = 0; 2145 for (i = 0; i < conf->raid_disks; i++) { 2146 2147 disk = conf->mirrors + i; 2148 2149 if (!disk->rdev || 2150 !test_bit(In_sync, &disk->rdev->flags)) { 2151 disk->head_position = 0; 2152 mddev->degraded++; 2153 if (disk->rdev) 2154 conf->fullsync = 1; 2155 } 2156 } 2157 2158 2159 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2160 if (!mddev->thread) { 2161 printk(KERN_ERR 2162 "raid10: couldn't allocate thread for %s\n", 2163 mdname(mddev)); 2164 goto out_free_conf; 2165 } 2166 2167 printk(KERN_INFO 2168 "raid10: raid set %s active with %d out of %d devices\n", 2169 mdname(mddev), mddev->raid_disks - mddev->degraded, 2170 mddev->raid_disks); 2171 /* 2172 * Ok, everything is just fine now 2173 */ 2174 mddev->array_sectors = size << conf->chunk_shift; 2175 mddev->resync_max_sectors = size << conf->chunk_shift; 2176 2177 mddev->queue->unplug_fn = raid10_unplug; 2178 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2179 mddev->queue->backing_dev_info.congested_data = mddev; 2180 2181 /* Calculate max read-ahead size. 2182 * We need to readahead at least twice a whole stripe.... 2183 * maybe... 2184 */ 2185 { 2186 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2187 stripe /= conf->near_copies; 2188 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2189 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2190 } 2191 2192 if (conf->near_copies < mddev->raid_disks) 2193 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2194 return 0; 2195 2196 out_free_conf: 2197 if (conf->r10bio_pool) 2198 mempool_destroy(conf->r10bio_pool); 2199 safe_put_page(conf->tmppage); 2200 kfree(conf->mirrors); 2201 kfree(conf); 2202 mddev->private = NULL; 2203 out: 2204 return -EIO; 2205 } 2206 2207 static int stop(mddev_t *mddev) 2208 { 2209 conf_t *conf = mddev_to_conf(mddev); 2210 2211 md_unregister_thread(mddev->thread); 2212 mddev->thread = NULL; 2213 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2214 if (conf->r10bio_pool) 2215 mempool_destroy(conf->r10bio_pool); 2216 kfree(conf->mirrors); 2217 kfree(conf); 2218 mddev->private = NULL; 2219 return 0; 2220 } 2221 2222 static void raid10_quiesce(mddev_t *mddev, int state) 2223 { 2224 conf_t *conf = mddev_to_conf(mddev); 2225 2226 switch(state) { 2227 case 1: 2228 raise_barrier(conf, 0); 2229 break; 2230 case 0: 2231 lower_barrier(conf); 2232 break; 2233 } 2234 if (mddev->thread) { 2235 if (mddev->bitmap) 2236 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2237 else 2238 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2239 md_wakeup_thread(mddev->thread); 2240 } 2241 } 2242 2243 static struct mdk_personality raid10_personality = 2244 { 2245 .name = "raid10", 2246 .level = 10, 2247 .owner = THIS_MODULE, 2248 .make_request = make_request, 2249 .run = run, 2250 .stop = stop, 2251 .status = status, 2252 .error_handler = error, 2253 .hot_add_disk = raid10_add_disk, 2254 .hot_remove_disk= raid10_remove_disk, 2255 .spare_active = raid10_spare_active, 2256 .sync_request = sync_request, 2257 .quiesce = raid10_quiesce, 2258 }; 2259 2260 static int __init raid_init(void) 2261 { 2262 return register_md_personality(&raid10_personality); 2263 } 2264 2265 static void raid_exit(void) 2266 { 2267 unregister_md_personality(&raid10_personality); 2268 } 2269 2270 module_init(raid_init); 2271 module_exit(raid_exit); 2272 MODULE_LICENSE("GPL"); 2273 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2274 MODULE_ALIAS("md-raid10"); 2275 MODULE_ALIAS("md-level-10"); 2276