1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->geo.raid_disks; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 301 bio_end_io_acct(bio, r10_bio->start_time); 302 bio_endio(bio); 303 /* 304 * Wake up any possible resync thread that waits for the device 305 * to go idle. 306 */ 307 allow_barrier(conf); 308 309 free_r10bio(r10_bio); 310 } 311 312 /* 313 * Update disk head position estimator based on IRQ completion info. 314 */ 315 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 316 { 317 struct r10conf *conf = r10_bio->mddev->private; 318 319 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 320 r10_bio->devs[slot].addr + (r10_bio->sectors); 321 } 322 323 /* 324 * Find the disk number which triggered given bio 325 */ 326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 327 struct bio *bio, int *slotp, int *replp) 328 { 329 int slot; 330 int repl = 0; 331 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 333 if (r10_bio->devs[slot].bio == bio) 334 break; 335 if (r10_bio->devs[slot].repl_bio == bio) { 336 repl = 1; 337 break; 338 } 339 } 340 341 update_head_pos(slot, r10_bio); 342 343 if (slotp) 344 *slotp = slot; 345 if (replp) 346 *replp = repl; 347 return r10_bio->devs[slot].devnum; 348 } 349 350 static void raid10_end_read_request(struct bio *bio) 351 { 352 int uptodate = !bio->bi_status; 353 struct r10bio *r10_bio = bio->bi_private; 354 int slot; 355 struct md_rdev *rdev; 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 slot = r10_bio->read_slot; 359 rdev = r10_bio->devs[slot].rdev; 360 /* 361 * this branch is our 'one mirror IO has finished' event handler: 362 */ 363 update_head_pos(slot, r10_bio); 364 365 if (uptodate) { 366 /* 367 * Set R10BIO_Uptodate in our master bio, so that 368 * we will return a good error code to the higher 369 * levels even if IO on some other mirrored buffer fails. 370 * 371 * The 'master' represents the composite IO operation to 372 * user-side. So if something waits for IO, then it will 373 * wait for the 'master' bio. 374 */ 375 set_bit(R10BIO_Uptodate, &r10_bio->state); 376 } else { 377 /* If all other devices that store this block have 378 * failed, we want to return the error upwards rather 379 * than fail the last device. Here we redefine 380 * "uptodate" to mean "Don't want to retry" 381 */ 382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 383 rdev->raid_disk)) 384 uptodate = 1; 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 395 mdname(conf->mddev), 396 bdevname(rdev->bdev, b), 397 (unsigned long long)r10_bio->sector); 398 set_bit(R10BIO_ReadError, &r10_bio->state); 399 reschedule_retry(r10_bio); 400 } 401 } 402 403 static void close_write(struct r10bio *r10_bio) 404 { 405 /* clear the bitmap if all writes complete successfully */ 406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 407 r10_bio->sectors, 408 !test_bit(R10BIO_Degraded, &r10_bio->state), 409 0); 410 md_write_end(r10_bio->mddev); 411 } 412 413 static void one_write_done(struct r10bio *r10_bio) 414 { 415 if (atomic_dec_and_test(&r10_bio->remaining)) { 416 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 417 reschedule_retry(r10_bio); 418 else { 419 close_write(r10_bio); 420 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 421 reschedule_retry(r10_bio); 422 else 423 raid_end_bio_io(r10_bio); 424 } 425 } 426 } 427 428 static void raid10_end_write_request(struct bio *bio) 429 { 430 struct r10bio *r10_bio = bio->bi_private; 431 int dev; 432 int dec_rdev = 1; 433 struct r10conf *conf = r10_bio->mddev->private; 434 int slot, repl; 435 struct md_rdev *rdev = NULL; 436 struct bio *to_put = NULL; 437 bool discard_error; 438 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 440 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 442 443 if (repl) 444 rdev = conf->mirrors[dev].replacement; 445 if (!rdev) { 446 smp_rmb(); 447 repl = 0; 448 rdev = conf->mirrors[dev].rdev; 449 } 450 /* 451 * this branch is our 'one mirror IO has finished' event handler: 452 */ 453 if (bio->bi_status && !discard_error) { 454 if (repl) 455 /* Never record new bad blocks to replacement, 456 * just fail it. 457 */ 458 md_error(rdev->mddev, rdev); 459 else { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, 463 &rdev->mddev->recovery); 464 465 dec_rdev = 0; 466 if (test_bit(FailFast, &rdev->flags) && 467 (bio->bi_opf & MD_FAILFAST)) { 468 md_error(rdev->mddev, rdev); 469 } 470 471 /* 472 * When the device is faulty, it is not necessary to 473 * handle write error. 474 * For failfast, this is the only remaining device, 475 * We need to retry the write without FailFast. 476 */ 477 if (!test_bit(Faulty, &rdev->flags)) 478 set_bit(R10BIO_WriteError, &r10_bio->state); 479 else { 480 r10_bio->devs[slot].bio = NULL; 481 to_put = bio; 482 dec_rdev = 1; 483 } 484 } 485 } else { 486 /* 487 * Set R10BIO_Uptodate in our master bio, so that 488 * we will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer fails. 490 * 491 * The 'master' represents the composite IO operation to 492 * user-side. So if something waits for IO, then it will 493 * wait for the 'master' bio. 494 */ 495 sector_t first_bad; 496 int bad_sectors; 497 498 /* 499 * Do not set R10BIO_Uptodate if the current device is 500 * rebuilding or Faulty. This is because we cannot use 501 * such device for properly reading the data back (we could 502 * potentially use it, if the current write would have felt 503 * before rdev->recovery_offset, but for simplicity we don't 504 * check this here. 505 */ 506 if (test_bit(In_sync, &rdev->flags) && 507 !test_bit(Faulty, &rdev->flags)) 508 set_bit(R10BIO_Uptodate, &r10_bio->state); 509 510 /* Maybe we can clear some bad blocks. */ 511 if (is_badblock(rdev, 512 r10_bio->devs[slot].addr, 513 r10_bio->sectors, 514 &first_bad, &bad_sectors) && !discard_error) { 515 bio_put(bio); 516 if (repl) 517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 518 else 519 r10_bio->devs[slot].bio = IO_MADE_GOOD; 520 dec_rdev = 0; 521 set_bit(R10BIO_MadeGood, &r10_bio->state); 522 } 523 } 524 525 /* 526 * 527 * Let's see if all mirrored write operations have finished 528 * already. 529 */ 530 one_write_done(r10_bio); 531 if (dec_rdev) 532 rdev_dec_pending(rdev, conf->mddev); 533 if (to_put) 534 bio_put(to_put); 535 } 536 537 /* 538 * RAID10 layout manager 539 * As well as the chunksize and raid_disks count, there are two 540 * parameters: near_copies and far_copies. 541 * near_copies * far_copies must be <= raid_disks. 542 * Normally one of these will be 1. 543 * If both are 1, we get raid0. 544 * If near_copies == raid_disks, we get raid1. 545 * 546 * Chunks are laid out in raid0 style with near_copies copies of the 547 * first chunk, followed by near_copies copies of the next chunk and 548 * so on. 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned 550 * as described above, we start again with a device offset of near_copies. 551 * So we effectively have another copy of the whole array further down all 552 * the drives, but with blocks on different drives. 553 * With this layout, and block is never stored twice on the one device. 554 * 555 * raid10_find_phys finds the sector offset of a given virtual sector 556 * on each device that it is on. 557 * 558 * raid10_find_virt does the reverse mapping, from a device and a 559 * sector offset to a virtual address 560 */ 561 562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 563 { 564 int n,f; 565 sector_t sector; 566 sector_t chunk; 567 sector_t stripe; 568 int dev; 569 int slot = 0; 570 int last_far_set_start, last_far_set_size; 571 572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 573 last_far_set_start *= geo->far_set_size; 574 575 last_far_set_size = geo->far_set_size; 576 last_far_set_size += (geo->raid_disks % geo->far_set_size); 577 578 /* now calculate first sector/dev */ 579 chunk = r10bio->sector >> geo->chunk_shift; 580 sector = r10bio->sector & geo->chunk_mask; 581 582 chunk *= geo->near_copies; 583 stripe = chunk; 584 dev = sector_div(stripe, geo->raid_disks); 585 if (geo->far_offset) 586 stripe *= geo->far_copies; 587 588 sector += stripe << geo->chunk_shift; 589 590 /* and calculate all the others */ 591 for (n = 0; n < geo->near_copies; n++) { 592 int d = dev; 593 int set; 594 sector_t s = sector; 595 r10bio->devs[slot].devnum = d; 596 r10bio->devs[slot].addr = s; 597 slot++; 598 599 for (f = 1; f < geo->far_copies; f++) { 600 set = d / geo->far_set_size; 601 d += geo->near_copies; 602 603 if ((geo->raid_disks % geo->far_set_size) && 604 (d > last_far_set_start)) { 605 d -= last_far_set_start; 606 d %= last_far_set_size; 607 d += last_far_set_start; 608 } else { 609 d %= geo->far_set_size; 610 d += geo->far_set_size * set; 611 } 612 s += geo->stride; 613 r10bio->devs[slot].devnum = d; 614 r10bio->devs[slot].addr = s; 615 slot++; 616 } 617 dev++; 618 if (dev >= geo->raid_disks) { 619 dev = 0; 620 sector += (geo->chunk_mask + 1); 621 } 622 } 623 } 624 625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 626 { 627 struct geom *geo = &conf->geo; 628 629 if (conf->reshape_progress != MaxSector && 630 ((r10bio->sector >= conf->reshape_progress) != 631 conf->mddev->reshape_backwards)) { 632 set_bit(R10BIO_Previous, &r10bio->state); 633 geo = &conf->prev; 634 } else 635 clear_bit(R10BIO_Previous, &r10bio->state); 636 637 __raid10_find_phys(geo, r10bio); 638 } 639 640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 641 { 642 sector_t offset, chunk, vchunk; 643 /* Never use conf->prev as this is only called during resync 644 * or recovery, so reshape isn't happening 645 */ 646 struct geom *geo = &conf->geo; 647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 648 int far_set_size = geo->far_set_size; 649 int last_far_set_start; 650 651 if (geo->raid_disks % geo->far_set_size) { 652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 653 last_far_set_start *= geo->far_set_size; 654 655 if (dev >= last_far_set_start) { 656 far_set_size = geo->far_set_size; 657 far_set_size += (geo->raid_disks % geo->far_set_size); 658 far_set_start = last_far_set_start; 659 } 660 } 661 662 offset = sector & geo->chunk_mask; 663 if (geo->far_offset) { 664 int fc; 665 chunk = sector >> geo->chunk_shift; 666 fc = sector_div(chunk, geo->far_copies); 667 dev -= fc * geo->near_copies; 668 if (dev < far_set_start) 669 dev += far_set_size; 670 } else { 671 while (sector >= geo->stride) { 672 sector -= geo->stride; 673 if (dev < (geo->near_copies + far_set_start)) 674 dev += far_set_size - geo->near_copies; 675 else 676 dev -= geo->near_copies; 677 } 678 chunk = sector >> geo->chunk_shift; 679 } 680 vchunk = chunk * geo->raid_disks + dev; 681 sector_div(vchunk, geo->near_copies); 682 return (vchunk << geo->chunk_shift) + offset; 683 } 684 685 /* 686 * This routine returns the disk from which the requested read should 687 * be done. There is a per-array 'next expected sequential IO' sector 688 * number - if this matches on the next IO then we use the last disk. 689 * There is also a per-disk 'last know head position' sector that is 690 * maintained from IRQ contexts, both the normal and the resync IO 691 * completion handlers update this position correctly. If there is no 692 * perfect sequential match then we pick the disk whose head is closest. 693 * 694 * If there are 2 mirrors in the same 2 devices, performance degrades 695 * because position is mirror, not device based. 696 * 697 * The rdev for the device selected will have nr_pending incremented. 698 */ 699 700 /* 701 * FIXME: possibly should rethink readbalancing and do it differently 702 * depending on near_copies / far_copies geometry. 703 */ 704 static struct md_rdev *read_balance(struct r10conf *conf, 705 struct r10bio *r10_bio, 706 int *max_sectors) 707 { 708 const sector_t this_sector = r10_bio->sector; 709 int disk, slot; 710 int sectors = r10_bio->sectors; 711 int best_good_sectors; 712 sector_t new_distance, best_dist; 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 714 int do_balance; 715 int best_dist_slot, best_pending_slot; 716 bool has_nonrot_disk = false; 717 unsigned int min_pending; 718 struct geom *geo = &conf->geo; 719 720 raid10_find_phys(conf, r10_bio); 721 rcu_read_lock(); 722 best_dist_slot = -1; 723 min_pending = UINT_MAX; 724 best_dist_rdev = NULL; 725 best_pending_rdev = NULL; 726 best_dist = MaxSector; 727 best_good_sectors = 0; 728 do_balance = 1; 729 clear_bit(R10BIO_FailFast, &r10_bio->state); 730 /* 731 * Check if we can balance. We can balance on the whole 732 * device if no resync is going on (recovery is ok), or below 733 * the resync window. We take the first readable disk when 734 * above the resync window. 735 */ 736 if ((conf->mddev->recovery_cp < MaxSector 737 && (this_sector + sectors >= conf->next_resync)) || 738 (mddev_is_clustered(conf->mddev) && 739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 740 this_sector + sectors))) 741 do_balance = 0; 742 743 for (slot = 0; slot < conf->copies ; slot++) { 744 sector_t first_bad; 745 int bad_sectors; 746 sector_t dev_sector; 747 unsigned int pending; 748 bool nonrot; 749 750 if (r10_bio->devs[slot].bio == IO_BLOCKED) 751 continue; 752 disk = r10_bio->devs[slot].devnum; 753 rdev = rcu_dereference(conf->mirrors[disk].replacement); 754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags)) 759 continue; 760 if (!test_bit(In_sync, &rdev->flags) && 761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 762 continue; 763 764 dev_sector = r10_bio->devs[slot].addr; 765 if (is_badblock(rdev, dev_sector, sectors, 766 &first_bad, &bad_sectors)) { 767 if (best_dist < MaxSector) 768 /* Already have a better slot */ 769 continue; 770 if (first_bad <= dev_sector) { 771 /* Cannot read here. If this is the 772 * 'primary' device, then we must not read 773 * beyond 'bad_sectors' from another device. 774 */ 775 bad_sectors -= (dev_sector - first_bad); 776 if (!do_balance && sectors > bad_sectors) 777 sectors = bad_sectors; 778 if (best_good_sectors > sectors) 779 best_good_sectors = sectors; 780 } else { 781 sector_t good_sectors = 782 first_bad - dev_sector; 783 if (good_sectors > best_good_sectors) { 784 best_good_sectors = good_sectors; 785 best_dist_slot = slot; 786 best_dist_rdev = rdev; 787 } 788 if (!do_balance) 789 /* Must read from here */ 790 break; 791 } 792 continue; 793 } else 794 best_good_sectors = sectors; 795 796 if (!do_balance) 797 break; 798 799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 800 has_nonrot_disk |= nonrot; 801 pending = atomic_read(&rdev->nr_pending); 802 if (min_pending > pending && nonrot) { 803 min_pending = pending; 804 best_pending_slot = slot; 805 best_pending_rdev = rdev; 806 } 807 808 if (best_dist_slot >= 0) 809 /* At least 2 disks to choose from so failfast is OK */ 810 set_bit(R10BIO_FailFast, &r10_bio->state); 811 /* This optimisation is debatable, and completely destroys 812 * sequential read speed for 'far copies' arrays. So only 813 * keep it for 'near' arrays, and review those later. 814 */ 815 if (geo->near_copies > 1 && !pending) 816 new_distance = 0; 817 818 /* for far > 1 always use the lowest address */ 819 else if (geo->far_copies > 1) 820 new_distance = r10_bio->devs[slot].addr; 821 else 822 new_distance = abs(r10_bio->devs[slot].addr - 823 conf->mirrors[disk].head_position); 824 825 if (new_distance < best_dist) { 826 best_dist = new_distance; 827 best_dist_slot = slot; 828 best_dist_rdev = rdev; 829 } 830 } 831 if (slot >= conf->copies) { 832 if (has_nonrot_disk) { 833 slot = best_pending_slot; 834 rdev = best_pending_rdev; 835 } else { 836 slot = best_dist_slot; 837 rdev = best_dist_rdev; 838 } 839 } 840 841 if (slot >= 0) { 842 atomic_inc(&rdev->nr_pending); 843 r10_bio->read_slot = slot; 844 } else 845 rdev = NULL; 846 rcu_read_unlock(); 847 *max_sectors = best_good_sectors; 848 849 return rdev; 850 } 851 852 static void flush_pending_writes(struct r10conf *conf) 853 { 854 /* Any writes that have been queued but are awaiting 855 * bitmap updates get flushed here. 856 */ 857 spin_lock_irq(&conf->device_lock); 858 859 if (conf->pending_bio_list.head) { 860 struct blk_plug plug; 861 struct bio *bio; 862 863 bio = bio_list_get(&conf->pending_bio_list); 864 conf->pending_count = 0; 865 spin_unlock_irq(&conf->device_lock); 866 867 /* 868 * As this is called in a wait_event() loop (see freeze_array), 869 * current->state might be TASK_UNINTERRUPTIBLE which will 870 * cause a warning when we prepare to wait again. As it is 871 * rare that this path is taken, it is perfectly safe to force 872 * us to go around the wait_event() loop again, so the warning 873 * is a false-positive. Silence the warning by resetting 874 * thread state 875 */ 876 __set_current_state(TASK_RUNNING); 877 878 blk_start_plug(&plug); 879 /* flush any pending bitmap writes to disk 880 * before proceeding w/ I/O */ 881 md_bitmap_unplug(conf->mddev->bitmap); 882 wake_up(&conf->wait_barrier); 883 884 while (bio) { /* submit pending writes */ 885 struct bio *next = bio->bi_next; 886 struct md_rdev *rdev = (void*)bio->bi_bdev; 887 bio->bi_next = NULL; 888 bio_set_dev(bio, rdev->bdev); 889 if (test_bit(Faulty, &rdev->flags)) { 890 bio_io_error(bio); 891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 893 /* Just ignore it */ 894 bio_endio(bio); 895 else 896 submit_bio_noacct(bio); 897 bio = next; 898 } 899 blk_finish_plug(&plug); 900 } else 901 spin_unlock_irq(&conf->device_lock); 902 } 903 904 /* Barriers.... 905 * Sometimes we need to suspend IO while we do something else, 906 * either some resync/recovery, or reconfigure the array. 907 * To do this we raise a 'barrier'. 908 * The 'barrier' is a counter that can be raised multiple times 909 * to count how many activities are happening which preclude 910 * normal IO. 911 * We can only raise the barrier if there is no pending IO. 912 * i.e. if nr_pending == 0. 913 * We choose only to raise the barrier if no-one is waiting for the 914 * barrier to go down. This means that as soon as an IO request 915 * is ready, no other operations which require a barrier will start 916 * until the IO request has had a chance. 917 * 918 * So: regular IO calls 'wait_barrier'. When that returns there 919 * is no backgroup IO happening, It must arrange to call 920 * allow_barrier when it has finished its IO. 921 * backgroup IO calls must call raise_barrier. Once that returns 922 * there is no normal IO happeing. It must arrange to call 923 * lower_barrier when the particular background IO completes. 924 */ 925 926 static void raise_barrier(struct r10conf *conf, int force) 927 { 928 BUG_ON(force && !conf->barrier); 929 spin_lock_irq(&conf->resync_lock); 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 933 conf->resync_lock); 934 935 /* block any new IO from starting */ 936 conf->barrier++; 937 938 /* Now wait for all pending IO to complete */ 939 wait_event_lock_irq(conf->wait_barrier, 940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 941 conf->resync_lock); 942 943 spin_unlock_irq(&conf->resync_lock); 944 } 945 946 static void lower_barrier(struct r10conf *conf) 947 { 948 unsigned long flags; 949 spin_lock_irqsave(&conf->resync_lock, flags); 950 conf->barrier--; 951 spin_unlock_irqrestore(&conf->resync_lock, flags); 952 wake_up(&conf->wait_barrier); 953 } 954 955 static void wait_barrier(struct r10conf *conf) 956 { 957 spin_lock_irq(&conf->resync_lock); 958 if (conf->barrier) { 959 struct bio_list *bio_list = current->bio_list; 960 conf->nr_waiting++; 961 /* Wait for the barrier to drop. 962 * However if there are already pending 963 * requests (preventing the barrier from 964 * rising completely), and the 965 * pre-process bio queue isn't empty, 966 * then don't wait, as we need to empty 967 * that queue to get the nr_pending 968 * count down. 969 */ 970 raid10_log(conf->mddev, "wait barrier"); 971 wait_event_lock_irq(conf->wait_barrier, 972 !conf->barrier || 973 (atomic_read(&conf->nr_pending) && 974 bio_list && 975 (!bio_list_empty(&bio_list[0]) || 976 !bio_list_empty(&bio_list[1]))) || 977 /* move on if recovery thread is 978 * blocked by us 979 */ 980 (conf->mddev->thread->tsk == current && 981 test_bit(MD_RECOVERY_RUNNING, 982 &conf->mddev->recovery) && 983 conf->nr_queued > 0), 984 conf->resync_lock); 985 conf->nr_waiting--; 986 if (!conf->nr_waiting) 987 wake_up(&conf->wait_barrier); 988 } 989 atomic_inc(&conf->nr_pending); 990 spin_unlock_irq(&conf->resync_lock); 991 } 992 993 static void allow_barrier(struct r10conf *conf) 994 { 995 if ((atomic_dec_and_test(&conf->nr_pending)) || 996 (conf->array_freeze_pending)) 997 wake_up(&conf->wait_barrier); 998 } 999 1000 static void freeze_array(struct r10conf *conf, int extra) 1001 { 1002 /* stop syncio and normal IO and wait for everything to 1003 * go quiet. 1004 * We increment barrier and nr_waiting, and then 1005 * wait until nr_pending match nr_queued+extra 1006 * This is called in the context of one normal IO request 1007 * that has failed. Thus any sync request that might be pending 1008 * will be blocked by nr_pending, and we need to wait for 1009 * pending IO requests to complete or be queued for re-try. 1010 * Thus the number queued (nr_queued) plus this request (extra) 1011 * must match the number of pending IOs (nr_pending) before 1012 * we continue. 1013 */ 1014 spin_lock_irq(&conf->resync_lock); 1015 conf->array_freeze_pending++; 1016 conf->barrier++; 1017 conf->nr_waiting++; 1018 wait_event_lock_irq_cmd(conf->wait_barrier, 1019 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1020 conf->resync_lock, 1021 flush_pending_writes(conf)); 1022 1023 conf->array_freeze_pending--; 1024 spin_unlock_irq(&conf->resync_lock); 1025 } 1026 1027 static void unfreeze_array(struct r10conf *conf) 1028 { 1029 /* reverse the effect of the freeze */ 1030 spin_lock_irq(&conf->resync_lock); 1031 conf->barrier--; 1032 conf->nr_waiting--; 1033 wake_up(&conf->wait_barrier); 1034 spin_unlock_irq(&conf->resync_lock); 1035 } 1036 1037 static sector_t choose_data_offset(struct r10bio *r10_bio, 1038 struct md_rdev *rdev) 1039 { 1040 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1041 test_bit(R10BIO_Previous, &r10_bio->state)) 1042 return rdev->data_offset; 1043 else 1044 return rdev->new_data_offset; 1045 } 1046 1047 struct raid10_plug_cb { 1048 struct blk_plug_cb cb; 1049 struct bio_list pending; 1050 int pending_cnt; 1051 }; 1052 1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1054 { 1055 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1056 cb); 1057 struct mddev *mddev = plug->cb.data; 1058 struct r10conf *conf = mddev->private; 1059 struct bio *bio; 1060 1061 if (from_schedule || current->bio_list) { 1062 spin_lock_irq(&conf->device_lock); 1063 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1064 conf->pending_count += plug->pending_cnt; 1065 spin_unlock_irq(&conf->device_lock); 1066 wake_up(&conf->wait_barrier); 1067 md_wakeup_thread(mddev->thread); 1068 kfree(plug); 1069 return; 1070 } 1071 1072 /* we aren't scheduling, so we can do the write-out directly. */ 1073 bio = bio_list_get(&plug->pending); 1074 md_bitmap_unplug(mddev->bitmap); 1075 wake_up(&conf->wait_barrier); 1076 1077 while (bio) { /* submit pending writes */ 1078 struct bio *next = bio->bi_next; 1079 struct md_rdev *rdev = (void*)bio->bi_bdev; 1080 bio->bi_next = NULL; 1081 bio_set_dev(bio, rdev->bdev); 1082 if (test_bit(Faulty, &rdev->flags)) { 1083 bio_io_error(bio); 1084 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1085 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 1086 /* Just ignore it */ 1087 bio_endio(bio); 1088 else 1089 submit_bio_noacct(bio); 1090 bio = next; 1091 } 1092 kfree(plug); 1093 } 1094 1095 /* 1096 * 1. Register the new request and wait if the reconstruction thread has put 1097 * up a bar for new requests. Continue immediately if no resync is active 1098 * currently. 1099 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1100 */ 1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1102 struct bio *bio, sector_t sectors) 1103 { 1104 wait_barrier(conf); 1105 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1106 bio->bi_iter.bi_sector < conf->reshape_progress && 1107 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1108 raid10_log(conf->mddev, "wait reshape"); 1109 allow_barrier(conf); 1110 wait_event(conf->wait_barrier, 1111 conf->reshape_progress <= bio->bi_iter.bi_sector || 1112 conf->reshape_progress >= bio->bi_iter.bi_sector + 1113 sectors); 1114 wait_barrier(conf); 1115 } 1116 } 1117 1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1119 struct r10bio *r10_bio) 1120 { 1121 struct r10conf *conf = mddev->private; 1122 struct bio *read_bio; 1123 const int op = bio_op(bio); 1124 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1125 int max_sectors; 1126 struct md_rdev *rdev; 1127 char b[BDEVNAME_SIZE]; 1128 int slot = r10_bio->read_slot; 1129 struct md_rdev *err_rdev = NULL; 1130 gfp_t gfp = GFP_NOIO; 1131 1132 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1133 /* 1134 * This is an error retry, but we cannot 1135 * safely dereference the rdev in the r10_bio, 1136 * we must use the one in conf. 1137 * If it has already been disconnected (unlikely) 1138 * we lose the device name in error messages. 1139 */ 1140 int disk; 1141 /* 1142 * As we are blocking raid10, it is a little safer to 1143 * use __GFP_HIGH. 1144 */ 1145 gfp = GFP_NOIO | __GFP_HIGH; 1146 1147 rcu_read_lock(); 1148 disk = r10_bio->devs[slot].devnum; 1149 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1150 if (err_rdev) 1151 bdevname(err_rdev->bdev, b); 1152 else { 1153 strcpy(b, "???"); 1154 /* This never gets dereferenced */ 1155 err_rdev = r10_bio->devs[slot].rdev; 1156 } 1157 rcu_read_unlock(); 1158 } 1159 1160 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1161 rdev = read_balance(conf, r10_bio, &max_sectors); 1162 if (!rdev) { 1163 if (err_rdev) { 1164 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1165 mdname(mddev), b, 1166 (unsigned long long)r10_bio->sector); 1167 } 1168 raid_end_bio_io(r10_bio); 1169 return; 1170 } 1171 if (err_rdev) 1172 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1173 mdname(mddev), 1174 bdevname(rdev->bdev, b), 1175 (unsigned long long)r10_bio->sector); 1176 if (max_sectors < bio_sectors(bio)) { 1177 struct bio *split = bio_split(bio, max_sectors, 1178 gfp, &conf->bio_split); 1179 bio_chain(split, bio); 1180 allow_barrier(conf); 1181 submit_bio_noacct(bio); 1182 wait_barrier(conf); 1183 bio = split; 1184 r10_bio->master_bio = bio; 1185 r10_bio->sectors = max_sectors; 1186 } 1187 slot = r10_bio->read_slot; 1188 1189 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1190 r10_bio->start_time = bio_start_io_acct(bio); 1191 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1192 1193 r10_bio->devs[slot].bio = read_bio; 1194 r10_bio->devs[slot].rdev = rdev; 1195 1196 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1197 choose_data_offset(r10_bio, rdev); 1198 bio_set_dev(read_bio, rdev->bdev); 1199 read_bio->bi_end_io = raid10_end_read_request; 1200 bio_set_op_attrs(read_bio, op, do_sync); 1201 if (test_bit(FailFast, &rdev->flags) && 1202 test_bit(R10BIO_FailFast, &r10_bio->state)) 1203 read_bio->bi_opf |= MD_FAILFAST; 1204 read_bio->bi_private = r10_bio; 1205 1206 if (mddev->gendisk) 1207 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1208 r10_bio->sector); 1209 submit_bio_noacct(read_bio); 1210 return; 1211 } 1212 1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1214 struct bio *bio, bool replacement, 1215 int n_copy) 1216 { 1217 const int op = bio_op(bio); 1218 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1219 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1220 unsigned long flags; 1221 struct blk_plug_cb *cb; 1222 struct raid10_plug_cb *plug = NULL; 1223 struct r10conf *conf = mddev->private; 1224 struct md_rdev *rdev; 1225 int devnum = r10_bio->devs[n_copy].devnum; 1226 struct bio *mbio; 1227 1228 if (replacement) { 1229 rdev = conf->mirrors[devnum].replacement; 1230 if (rdev == NULL) { 1231 /* Replacement just got moved to main 'rdev' */ 1232 smp_mb(); 1233 rdev = conf->mirrors[devnum].rdev; 1234 } 1235 } else 1236 rdev = conf->mirrors[devnum].rdev; 1237 1238 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1239 if (replacement) 1240 r10_bio->devs[n_copy].repl_bio = mbio; 1241 else 1242 r10_bio->devs[n_copy].bio = mbio; 1243 1244 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1245 choose_data_offset(r10_bio, rdev)); 1246 bio_set_dev(mbio, rdev->bdev); 1247 mbio->bi_end_io = raid10_end_write_request; 1248 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1249 if (!replacement && test_bit(FailFast, 1250 &conf->mirrors[devnum].rdev->flags) 1251 && enough(conf, devnum)) 1252 mbio->bi_opf |= MD_FAILFAST; 1253 mbio->bi_private = r10_bio; 1254 1255 if (conf->mddev->gendisk) 1256 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1257 r10_bio->sector); 1258 /* flush_pending_writes() needs access to the rdev so...*/ 1259 mbio->bi_bdev = (void *)rdev; 1260 1261 atomic_inc(&r10_bio->remaining); 1262 1263 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1264 if (cb) 1265 plug = container_of(cb, struct raid10_plug_cb, cb); 1266 else 1267 plug = NULL; 1268 if (plug) { 1269 bio_list_add(&plug->pending, mbio); 1270 plug->pending_cnt++; 1271 } else { 1272 spin_lock_irqsave(&conf->device_lock, flags); 1273 bio_list_add(&conf->pending_bio_list, mbio); 1274 conf->pending_count++; 1275 spin_unlock_irqrestore(&conf->device_lock, flags); 1276 md_wakeup_thread(mddev->thread); 1277 } 1278 } 1279 1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1281 { 1282 int i; 1283 struct r10conf *conf = mddev->private; 1284 struct md_rdev *blocked_rdev; 1285 1286 retry_wait: 1287 blocked_rdev = NULL; 1288 rcu_read_lock(); 1289 for (i = 0; i < conf->copies; i++) { 1290 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1291 struct md_rdev *rrdev = rcu_dereference( 1292 conf->mirrors[i].replacement); 1293 if (rdev == rrdev) 1294 rrdev = NULL; 1295 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1296 atomic_inc(&rdev->nr_pending); 1297 blocked_rdev = rdev; 1298 break; 1299 } 1300 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1301 atomic_inc(&rrdev->nr_pending); 1302 blocked_rdev = rrdev; 1303 break; 1304 } 1305 1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1307 sector_t first_bad; 1308 sector_t dev_sector = r10_bio->devs[i].addr; 1309 int bad_sectors; 1310 int is_bad; 1311 1312 /* 1313 * Discard request doesn't care the write result 1314 * so it doesn't need to wait blocked disk here. 1315 */ 1316 if (!r10_bio->sectors) 1317 continue; 1318 1319 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1320 &first_bad, &bad_sectors); 1321 if (is_bad < 0) { 1322 /* 1323 * Mustn't write here until the bad block 1324 * is acknowledged 1325 */ 1326 atomic_inc(&rdev->nr_pending); 1327 set_bit(BlockedBadBlocks, &rdev->flags); 1328 blocked_rdev = rdev; 1329 break; 1330 } 1331 } 1332 } 1333 rcu_read_unlock(); 1334 1335 if (unlikely(blocked_rdev)) { 1336 /* Have to wait for this device to get unblocked, then retry */ 1337 allow_barrier(conf); 1338 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1339 __func__, blocked_rdev->raid_disk); 1340 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1341 wait_barrier(conf); 1342 goto retry_wait; 1343 } 1344 } 1345 1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1347 struct r10bio *r10_bio) 1348 { 1349 struct r10conf *conf = mddev->private; 1350 int i; 1351 sector_t sectors; 1352 int max_sectors; 1353 1354 if ((mddev_is_clustered(mddev) && 1355 md_cluster_ops->area_resyncing(mddev, WRITE, 1356 bio->bi_iter.bi_sector, 1357 bio_end_sector(bio)))) { 1358 DEFINE_WAIT(w); 1359 for (;;) { 1360 prepare_to_wait(&conf->wait_barrier, 1361 &w, TASK_IDLE); 1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1363 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1364 break; 1365 schedule(); 1366 } 1367 finish_wait(&conf->wait_barrier, &w); 1368 } 1369 1370 sectors = r10_bio->sectors; 1371 regular_request_wait(mddev, conf, bio, sectors); 1372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1373 (mddev->reshape_backwards 1374 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1375 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1376 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1377 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1378 /* Need to update reshape_position in metadata */ 1379 mddev->reshape_position = conf->reshape_progress; 1380 set_mask_bits(&mddev->sb_flags, 0, 1381 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1382 md_wakeup_thread(mddev->thread); 1383 raid10_log(conf->mddev, "wait reshape metadata"); 1384 wait_event(mddev->sb_wait, 1385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1386 1387 conf->reshape_safe = mddev->reshape_position; 1388 } 1389 1390 if (conf->pending_count >= max_queued_requests) { 1391 md_wakeup_thread(mddev->thread); 1392 raid10_log(mddev, "wait queued"); 1393 wait_event(conf->wait_barrier, 1394 conf->pending_count < max_queued_requests); 1395 } 1396 /* first select target devices under rcu_lock and 1397 * inc refcount on their rdev. Record them by setting 1398 * bios[x] to bio 1399 * If there are known/acknowledged bad blocks on any device 1400 * on which we have seen a write error, we want to avoid 1401 * writing to those blocks. This potentially requires several 1402 * writes to write around the bad blocks. Each set of writes 1403 * gets its own r10_bio with a set of bios attached. 1404 */ 1405 1406 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1407 raid10_find_phys(conf, r10_bio); 1408 1409 wait_blocked_dev(mddev, r10_bio); 1410 1411 rcu_read_lock(); 1412 max_sectors = r10_bio->sectors; 1413 1414 for (i = 0; i < conf->copies; i++) { 1415 int d = r10_bio->devs[i].devnum; 1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1417 struct md_rdev *rrdev = rcu_dereference( 1418 conf->mirrors[d].replacement); 1419 if (rdev == rrdev) 1420 rrdev = NULL; 1421 if (rdev && (test_bit(Faulty, &rdev->flags))) 1422 rdev = NULL; 1423 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1424 rrdev = NULL; 1425 1426 r10_bio->devs[i].bio = NULL; 1427 r10_bio->devs[i].repl_bio = NULL; 1428 1429 if (!rdev && !rrdev) { 1430 set_bit(R10BIO_Degraded, &r10_bio->state); 1431 continue; 1432 } 1433 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1434 sector_t first_bad; 1435 sector_t dev_sector = r10_bio->devs[i].addr; 1436 int bad_sectors; 1437 int is_bad; 1438 1439 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1440 &first_bad, &bad_sectors); 1441 if (is_bad && first_bad <= dev_sector) { 1442 /* Cannot write here at all */ 1443 bad_sectors -= (dev_sector - first_bad); 1444 if (bad_sectors < max_sectors) 1445 /* Mustn't write more than bad_sectors 1446 * to other devices yet 1447 */ 1448 max_sectors = bad_sectors; 1449 /* We don't set R10BIO_Degraded as that 1450 * only applies if the disk is missing, 1451 * so it might be re-added, and we want to 1452 * know to recover this chunk. 1453 * In this case the device is here, and the 1454 * fact that this chunk is not in-sync is 1455 * recorded in the bad block log. 1456 */ 1457 continue; 1458 } 1459 if (is_bad) { 1460 int good_sectors = first_bad - dev_sector; 1461 if (good_sectors < max_sectors) 1462 max_sectors = good_sectors; 1463 } 1464 } 1465 if (rdev) { 1466 r10_bio->devs[i].bio = bio; 1467 atomic_inc(&rdev->nr_pending); 1468 } 1469 if (rrdev) { 1470 r10_bio->devs[i].repl_bio = bio; 1471 atomic_inc(&rrdev->nr_pending); 1472 } 1473 } 1474 rcu_read_unlock(); 1475 1476 if (max_sectors < r10_bio->sectors) 1477 r10_bio->sectors = max_sectors; 1478 1479 if (r10_bio->sectors < bio_sectors(bio)) { 1480 struct bio *split = bio_split(bio, r10_bio->sectors, 1481 GFP_NOIO, &conf->bio_split); 1482 bio_chain(split, bio); 1483 allow_barrier(conf); 1484 submit_bio_noacct(bio); 1485 wait_barrier(conf); 1486 bio = split; 1487 r10_bio->master_bio = bio; 1488 } 1489 1490 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1491 r10_bio->start_time = bio_start_io_acct(bio); 1492 atomic_set(&r10_bio->remaining, 1); 1493 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1494 1495 for (i = 0; i < conf->copies; i++) { 1496 if (r10_bio->devs[i].bio) 1497 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1498 if (r10_bio->devs[i].repl_bio) 1499 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1500 } 1501 one_write_done(r10_bio); 1502 } 1503 1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1505 { 1506 struct r10conf *conf = mddev->private; 1507 struct r10bio *r10_bio; 1508 1509 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1510 1511 r10_bio->master_bio = bio; 1512 r10_bio->sectors = sectors; 1513 1514 r10_bio->mddev = mddev; 1515 r10_bio->sector = bio->bi_iter.bi_sector; 1516 r10_bio->state = 0; 1517 r10_bio->read_slot = -1; 1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1519 conf->geo.raid_disks); 1520 1521 if (bio_data_dir(bio) == READ) 1522 raid10_read_request(mddev, bio, r10_bio); 1523 else 1524 raid10_write_request(mddev, bio, r10_bio); 1525 } 1526 1527 static void raid_end_discard_bio(struct r10bio *r10bio) 1528 { 1529 struct r10conf *conf = r10bio->mddev->private; 1530 struct r10bio *first_r10bio; 1531 1532 while (atomic_dec_and_test(&r10bio->remaining)) { 1533 1534 allow_barrier(conf); 1535 1536 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1537 first_r10bio = (struct r10bio *)r10bio->master_bio; 1538 free_r10bio(r10bio); 1539 r10bio = first_r10bio; 1540 } else { 1541 md_write_end(r10bio->mddev); 1542 bio_endio(r10bio->master_bio); 1543 free_r10bio(r10bio); 1544 break; 1545 } 1546 } 1547 } 1548 1549 static void raid10_end_discard_request(struct bio *bio) 1550 { 1551 struct r10bio *r10_bio = bio->bi_private; 1552 struct r10conf *conf = r10_bio->mddev->private; 1553 struct md_rdev *rdev = NULL; 1554 int dev; 1555 int slot, repl; 1556 1557 /* 1558 * We don't care the return value of discard bio 1559 */ 1560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1561 set_bit(R10BIO_Uptodate, &r10_bio->state); 1562 1563 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1564 if (repl) 1565 rdev = conf->mirrors[dev].replacement; 1566 if (!rdev) { 1567 /* 1568 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1569 * replacement before setting replacement to NULL. It can read 1570 * rdev first without barrier protect even replacment is NULL 1571 */ 1572 smp_rmb(); 1573 rdev = conf->mirrors[dev].rdev; 1574 } 1575 1576 raid_end_discard_bio(r10_bio); 1577 rdev_dec_pending(rdev, conf->mddev); 1578 } 1579 1580 /* 1581 * There are some limitations to handle discard bio 1582 * 1st, the discard size is bigger than stripe_size*2. 1583 * 2st, if the discard bio spans reshape progress, we use the old way to 1584 * handle discard bio 1585 */ 1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1587 { 1588 struct r10conf *conf = mddev->private; 1589 struct geom *geo = &conf->geo; 1590 int far_copies = geo->far_copies; 1591 bool first_copy = true; 1592 struct r10bio *r10_bio, *first_r10bio; 1593 struct bio *split; 1594 int disk; 1595 sector_t chunk; 1596 unsigned int stripe_size; 1597 unsigned int stripe_data_disks; 1598 sector_t split_size; 1599 sector_t bio_start, bio_end; 1600 sector_t first_stripe_index, last_stripe_index; 1601 sector_t start_disk_offset; 1602 unsigned int start_disk_index; 1603 sector_t end_disk_offset; 1604 unsigned int end_disk_index; 1605 unsigned int remainder; 1606 1607 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1608 return -EAGAIN; 1609 1610 wait_barrier(conf); 1611 1612 /* 1613 * Check reshape again to avoid reshape happens after checking 1614 * MD_RECOVERY_RESHAPE and before wait_barrier 1615 */ 1616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1617 goto out; 1618 1619 if (geo->near_copies) 1620 stripe_data_disks = geo->raid_disks / geo->near_copies + 1621 geo->raid_disks % geo->near_copies; 1622 else 1623 stripe_data_disks = geo->raid_disks; 1624 1625 stripe_size = stripe_data_disks << geo->chunk_shift; 1626 1627 bio_start = bio->bi_iter.bi_sector; 1628 bio_end = bio_end_sector(bio); 1629 1630 /* 1631 * Maybe one discard bio is smaller than strip size or across one 1632 * stripe and discard region is larger than one stripe size. For far 1633 * offset layout, if the discard region is not aligned with stripe 1634 * size, there is hole when we submit discard bio to member disk. 1635 * For simplicity, we only handle discard bio which discard region 1636 * is bigger than stripe_size * 2 1637 */ 1638 if (bio_sectors(bio) < stripe_size*2) 1639 goto out; 1640 1641 /* 1642 * Keep bio aligned with strip size. 1643 */ 1644 div_u64_rem(bio_start, stripe_size, &remainder); 1645 if (remainder) { 1646 split_size = stripe_size - remainder; 1647 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1648 bio_chain(split, bio); 1649 allow_barrier(conf); 1650 /* Resend the fist split part */ 1651 submit_bio_noacct(split); 1652 wait_barrier(conf); 1653 } 1654 div_u64_rem(bio_end, stripe_size, &remainder); 1655 if (remainder) { 1656 split_size = bio_sectors(bio) - remainder; 1657 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1658 bio_chain(split, bio); 1659 allow_barrier(conf); 1660 /* Resend the second split part */ 1661 submit_bio_noacct(bio); 1662 bio = split; 1663 wait_barrier(conf); 1664 } 1665 1666 bio_start = bio->bi_iter.bi_sector; 1667 bio_end = bio_end_sector(bio); 1668 1669 /* 1670 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1671 * One stripe contains the chunks from all member disk (one chunk from 1672 * one disk at the same HBA address). For layout detail, see 'man md 4' 1673 */ 1674 chunk = bio_start >> geo->chunk_shift; 1675 chunk *= geo->near_copies; 1676 first_stripe_index = chunk; 1677 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1678 if (geo->far_offset) 1679 first_stripe_index *= geo->far_copies; 1680 start_disk_offset = (bio_start & geo->chunk_mask) + 1681 (first_stripe_index << geo->chunk_shift); 1682 1683 chunk = bio_end >> geo->chunk_shift; 1684 chunk *= geo->near_copies; 1685 last_stripe_index = chunk; 1686 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1687 if (geo->far_offset) 1688 last_stripe_index *= geo->far_copies; 1689 end_disk_offset = (bio_end & geo->chunk_mask) + 1690 (last_stripe_index << geo->chunk_shift); 1691 1692 retry_discard: 1693 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1694 r10_bio->mddev = mddev; 1695 r10_bio->state = 0; 1696 r10_bio->sectors = 0; 1697 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1698 wait_blocked_dev(mddev, r10_bio); 1699 1700 /* 1701 * For far layout it needs more than one r10bio to cover all regions. 1702 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1703 * to record the discard bio. Other r10bio->master_bio record the first 1704 * r10bio. The first r10bio only release after all other r10bios finish. 1705 * The discard bio returns only first r10bio finishes 1706 */ 1707 if (first_copy) { 1708 r10_bio->master_bio = bio; 1709 set_bit(R10BIO_Discard, &r10_bio->state); 1710 first_copy = false; 1711 first_r10bio = r10_bio; 1712 } else 1713 r10_bio->master_bio = (struct bio *)first_r10bio; 1714 1715 rcu_read_lock(); 1716 for (disk = 0; disk < geo->raid_disks; disk++) { 1717 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1718 struct md_rdev *rrdev = rcu_dereference( 1719 conf->mirrors[disk].replacement); 1720 1721 r10_bio->devs[disk].bio = NULL; 1722 r10_bio->devs[disk].repl_bio = NULL; 1723 1724 if (rdev && (test_bit(Faulty, &rdev->flags))) 1725 rdev = NULL; 1726 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1727 rrdev = NULL; 1728 if (!rdev && !rrdev) 1729 continue; 1730 1731 if (rdev) { 1732 r10_bio->devs[disk].bio = bio; 1733 atomic_inc(&rdev->nr_pending); 1734 } 1735 if (rrdev) { 1736 r10_bio->devs[disk].repl_bio = bio; 1737 atomic_inc(&rrdev->nr_pending); 1738 } 1739 } 1740 rcu_read_unlock(); 1741 1742 atomic_set(&r10_bio->remaining, 1); 1743 for (disk = 0; disk < geo->raid_disks; disk++) { 1744 sector_t dev_start, dev_end; 1745 struct bio *mbio, *rbio = NULL; 1746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1747 struct md_rdev *rrdev = rcu_dereference( 1748 conf->mirrors[disk].replacement); 1749 1750 /* 1751 * Now start to calculate the start and end address for each disk. 1752 * The space between dev_start and dev_end is the discard region. 1753 * 1754 * For dev_start, it needs to consider three conditions: 1755 * 1st, the disk is before start_disk, you can imagine the disk in 1756 * the next stripe. So the dev_start is the start address of next 1757 * stripe. 1758 * 2st, the disk is after start_disk, it means the disk is at the 1759 * same stripe of first disk 1760 * 3st, the first disk itself, we can use start_disk_offset directly 1761 */ 1762 if (disk < start_disk_index) 1763 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1764 else if (disk > start_disk_index) 1765 dev_start = first_stripe_index * mddev->chunk_sectors; 1766 else 1767 dev_start = start_disk_offset; 1768 1769 if (disk < end_disk_index) 1770 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1771 else if (disk > end_disk_index) 1772 dev_end = last_stripe_index * mddev->chunk_sectors; 1773 else 1774 dev_end = end_disk_offset; 1775 1776 /* 1777 * It only handles discard bio which size is >= stripe size, so 1778 * dev_end > dev_start all the time 1779 */ 1780 if (r10_bio->devs[disk].bio) { 1781 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1782 mbio->bi_end_io = raid10_end_discard_request; 1783 mbio->bi_private = r10_bio; 1784 r10_bio->devs[disk].bio = mbio; 1785 r10_bio->devs[disk].devnum = disk; 1786 atomic_inc(&r10_bio->remaining); 1787 md_submit_discard_bio(mddev, rdev, mbio, 1788 dev_start + choose_data_offset(r10_bio, rdev), 1789 dev_end - dev_start); 1790 bio_endio(mbio); 1791 } 1792 if (r10_bio->devs[disk].repl_bio) { 1793 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1794 rbio->bi_end_io = raid10_end_discard_request; 1795 rbio->bi_private = r10_bio; 1796 r10_bio->devs[disk].repl_bio = rbio; 1797 r10_bio->devs[disk].devnum = disk; 1798 atomic_inc(&r10_bio->remaining); 1799 md_submit_discard_bio(mddev, rrdev, rbio, 1800 dev_start + choose_data_offset(r10_bio, rrdev), 1801 dev_end - dev_start); 1802 bio_endio(rbio); 1803 } 1804 } 1805 1806 if (!geo->far_offset && --far_copies) { 1807 first_stripe_index += geo->stride >> geo->chunk_shift; 1808 start_disk_offset += geo->stride; 1809 last_stripe_index += geo->stride >> geo->chunk_shift; 1810 end_disk_offset += geo->stride; 1811 atomic_inc(&first_r10bio->remaining); 1812 raid_end_discard_bio(r10_bio); 1813 wait_barrier(conf); 1814 goto retry_discard; 1815 } 1816 1817 raid_end_discard_bio(r10_bio); 1818 1819 return 0; 1820 out: 1821 allow_barrier(conf); 1822 return -EAGAIN; 1823 } 1824 1825 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1826 { 1827 struct r10conf *conf = mddev->private; 1828 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1829 int chunk_sects = chunk_mask + 1; 1830 int sectors = bio_sectors(bio); 1831 1832 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1833 && md_flush_request(mddev, bio)) 1834 return true; 1835 1836 if (!md_write_start(mddev, bio)) 1837 return false; 1838 1839 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1840 if (!raid10_handle_discard(mddev, bio)) 1841 return true; 1842 1843 /* 1844 * If this request crosses a chunk boundary, we need to split 1845 * it. 1846 */ 1847 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1848 sectors > chunk_sects 1849 && (conf->geo.near_copies < conf->geo.raid_disks 1850 || conf->prev.near_copies < 1851 conf->prev.raid_disks))) 1852 sectors = chunk_sects - 1853 (bio->bi_iter.bi_sector & 1854 (chunk_sects - 1)); 1855 __make_request(mddev, bio, sectors); 1856 1857 /* In case raid10d snuck in to freeze_array */ 1858 wake_up(&conf->wait_barrier); 1859 return true; 1860 } 1861 1862 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1863 { 1864 struct r10conf *conf = mddev->private; 1865 int i; 1866 1867 if (conf->geo.near_copies < conf->geo.raid_disks) 1868 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1869 if (conf->geo.near_copies > 1) 1870 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1871 if (conf->geo.far_copies > 1) { 1872 if (conf->geo.far_offset) 1873 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1874 else 1875 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1876 if (conf->geo.far_set_size != conf->geo.raid_disks) 1877 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1878 } 1879 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1880 conf->geo.raid_disks - mddev->degraded); 1881 rcu_read_lock(); 1882 for (i = 0; i < conf->geo.raid_disks; i++) { 1883 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1884 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1885 } 1886 rcu_read_unlock(); 1887 seq_printf(seq, "]"); 1888 } 1889 1890 /* check if there are enough drives for 1891 * every block to appear on atleast one. 1892 * Don't consider the device numbered 'ignore' 1893 * as we might be about to remove it. 1894 */ 1895 static int _enough(struct r10conf *conf, int previous, int ignore) 1896 { 1897 int first = 0; 1898 int has_enough = 0; 1899 int disks, ncopies; 1900 if (previous) { 1901 disks = conf->prev.raid_disks; 1902 ncopies = conf->prev.near_copies; 1903 } else { 1904 disks = conf->geo.raid_disks; 1905 ncopies = conf->geo.near_copies; 1906 } 1907 1908 rcu_read_lock(); 1909 do { 1910 int n = conf->copies; 1911 int cnt = 0; 1912 int this = first; 1913 while (n--) { 1914 struct md_rdev *rdev; 1915 if (this != ignore && 1916 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1917 test_bit(In_sync, &rdev->flags)) 1918 cnt++; 1919 this = (this+1) % disks; 1920 } 1921 if (cnt == 0) 1922 goto out; 1923 first = (first + ncopies) % disks; 1924 } while (first != 0); 1925 has_enough = 1; 1926 out: 1927 rcu_read_unlock(); 1928 return has_enough; 1929 } 1930 1931 static int enough(struct r10conf *conf, int ignore) 1932 { 1933 /* when calling 'enough', both 'prev' and 'geo' must 1934 * be stable. 1935 * This is ensured if ->reconfig_mutex or ->device_lock 1936 * is held. 1937 */ 1938 return _enough(conf, 0, ignore) && 1939 _enough(conf, 1, ignore); 1940 } 1941 1942 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1943 { 1944 char b[BDEVNAME_SIZE]; 1945 struct r10conf *conf = mddev->private; 1946 unsigned long flags; 1947 1948 /* 1949 * If it is not operational, then we have already marked it as dead 1950 * else if it is the last working disks with "fail_last_dev == false", 1951 * ignore the error, let the next level up know. 1952 * else mark the drive as failed 1953 */ 1954 spin_lock_irqsave(&conf->device_lock, flags); 1955 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1956 && !enough(conf, rdev->raid_disk)) { 1957 /* 1958 * Don't fail the drive, just return an IO error. 1959 */ 1960 spin_unlock_irqrestore(&conf->device_lock, flags); 1961 return; 1962 } 1963 if (test_and_clear_bit(In_sync, &rdev->flags)) 1964 mddev->degraded++; 1965 /* 1966 * If recovery is running, make sure it aborts. 1967 */ 1968 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1969 set_bit(Blocked, &rdev->flags); 1970 set_bit(Faulty, &rdev->flags); 1971 set_mask_bits(&mddev->sb_flags, 0, 1972 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1973 spin_unlock_irqrestore(&conf->device_lock, flags); 1974 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1975 "md/raid10:%s: Operation continuing on %d devices.\n", 1976 mdname(mddev), bdevname(rdev->bdev, b), 1977 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1978 } 1979 1980 static void print_conf(struct r10conf *conf) 1981 { 1982 int i; 1983 struct md_rdev *rdev; 1984 1985 pr_debug("RAID10 conf printout:\n"); 1986 if (!conf) { 1987 pr_debug("(!conf)\n"); 1988 return; 1989 } 1990 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1991 conf->geo.raid_disks); 1992 1993 /* This is only called with ->reconfix_mutex held, so 1994 * rcu protection of rdev is not needed */ 1995 for (i = 0; i < conf->geo.raid_disks; i++) { 1996 char b[BDEVNAME_SIZE]; 1997 rdev = conf->mirrors[i].rdev; 1998 if (rdev) 1999 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 2000 i, !test_bit(In_sync, &rdev->flags), 2001 !test_bit(Faulty, &rdev->flags), 2002 bdevname(rdev->bdev,b)); 2003 } 2004 } 2005 2006 static void close_sync(struct r10conf *conf) 2007 { 2008 wait_barrier(conf); 2009 allow_barrier(conf); 2010 2011 mempool_exit(&conf->r10buf_pool); 2012 } 2013 2014 static int raid10_spare_active(struct mddev *mddev) 2015 { 2016 int i; 2017 struct r10conf *conf = mddev->private; 2018 struct raid10_info *tmp; 2019 int count = 0; 2020 unsigned long flags; 2021 2022 /* 2023 * Find all non-in_sync disks within the RAID10 configuration 2024 * and mark them in_sync 2025 */ 2026 for (i = 0; i < conf->geo.raid_disks; i++) { 2027 tmp = conf->mirrors + i; 2028 if (tmp->replacement 2029 && tmp->replacement->recovery_offset == MaxSector 2030 && !test_bit(Faulty, &tmp->replacement->flags) 2031 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2032 /* Replacement has just become active */ 2033 if (!tmp->rdev 2034 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2035 count++; 2036 if (tmp->rdev) { 2037 /* Replaced device not technically faulty, 2038 * but we need to be sure it gets removed 2039 * and never re-added. 2040 */ 2041 set_bit(Faulty, &tmp->rdev->flags); 2042 sysfs_notify_dirent_safe( 2043 tmp->rdev->sysfs_state); 2044 } 2045 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2046 } else if (tmp->rdev 2047 && tmp->rdev->recovery_offset == MaxSector 2048 && !test_bit(Faulty, &tmp->rdev->flags) 2049 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2050 count++; 2051 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2052 } 2053 } 2054 spin_lock_irqsave(&conf->device_lock, flags); 2055 mddev->degraded -= count; 2056 spin_unlock_irqrestore(&conf->device_lock, flags); 2057 2058 print_conf(conf); 2059 return count; 2060 } 2061 2062 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2063 { 2064 struct r10conf *conf = mddev->private; 2065 int err = -EEXIST; 2066 int mirror; 2067 int first = 0; 2068 int last = conf->geo.raid_disks - 1; 2069 2070 if (mddev->recovery_cp < MaxSector) 2071 /* only hot-add to in-sync arrays, as recovery is 2072 * very different from resync 2073 */ 2074 return -EBUSY; 2075 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2076 return -EINVAL; 2077 2078 if (md_integrity_add_rdev(rdev, mddev)) 2079 return -ENXIO; 2080 2081 if (rdev->raid_disk >= 0) 2082 first = last = rdev->raid_disk; 2083 2084 if (rdev->saved_raid_disk >= first && 2085 rdev->saved_raid_disk < conf->geo.raid_disks && 2086 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2087 mirror = rdev->saved_raid_disk; 2088 else 2089 mirror = first; 2090 for ( ; mirror <= last ; mirror++) { 2091 struct raid10_info *p = &conf->mirrors[mirror]; 2092 if (p->recovery_disabled == mddev->recovery_disabled) 2093 continue; 2094 if (p->rdev) { 2095 if (!test_bit(WantReplacement, &p->rdev->flags) || 2096 p->replacement != NULL) 2097 continue; 2098 clear_bit(In_sync, &rdev->flags); 2099 set_bit(Replacement, &rdev->flags); 2100 rdev->raid_disk = mirror; 2101 err = 0; 2102 if (mddev->gendisk) 2103 disk_stack_limits(mddev->gendisk, rdev->bdev, 2104 rdev->data_offset << 9); 2105 conf->fullsync = 1; 2106 rcu_assign_pointer(p->replacement, rdev); 2107 break; 2108 } 2109 2110 if (mddev->gendisk) 2111 disk_stack_limits(mddev->gendisk, rdev->bdev, 2112 rdev->data_offset << 9); 2113 2114 p->head_position = 0; 2115 p->recovery_disabled = mddev->recovery_disabled - 1; 2116 rdev->raid_disk = mirror; 2117 err = 0; 2118 if (rdev->saved_raid_disk != mirror) 2119 conf->fullsync = 1; 2120 rcu_assign_pointer(p->rdev, rdev); 2121 break; 2122 } 2123 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 2124 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 2125 2126 print_conf(conf); 2127 return err; 2128 } 2129 2130 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2131 { 2132 struct r10conf *conf = mddev->private; 2133 int err = 0; 2134 int number = rdev->raid_disk; 2135 struct md_rdev **rdevp; 2136 struct raid10_info *p = conf->mirrors + number; 2137 2138 print_conf(conf); 2139 if (rdev == p->rdev) 2140 rdevp = &p->rdev; 2141 else if (rdev == p->replacement) 2142 rdevp = &p->replacement; 2143 else 2144 return 0; 2145 2146 if (test_bit(In_sync, &rdev->flags) || 2147 atomic_read(&rdev->nr_pending)) { 2148 err = -EBUSY; 2149 goto abort; 2150 } 2151 /* Only remove non-faulty devices if recovery 2152 * is not possible. 2153 */ 2154 if (!test_bit(Faulty, &rdev->flags) && 2155 mddev->recovery_disabled != p->recovery_disabled && 2156 (!p->replacement || p->replacement == rdev) && 2157 number < conf->geo.raid_disks && 2158 enough(conf, -1)) { 2159 err = -EBUSY; 2160 goto abort; 2161 } 2162 *rdevp = NULL; 2163 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2164 synchronize_rcu(); 2165 if (atomic_read(&rdev->nr_pending)) { 2166 /* lost the race, try later */ 2167 err = -EBUSY; 2168 *rdevp = rdev; 2169 goto abort; 2170 } 2171 } 2172 if (p->replacement) { 2173 /* We must have just cleared 'rdev' */ 2174 p->rdev = p->replacement; 2175 clear_bit(Replacement, &p->replacement->flags); 2176 smp_mb(); /* Make sure other CPUs may see both as identical 2177 * but will never see neither -- if they are careful. 2178 */ 2179 p->replacement = NULL; 2180 } 2181 2182 clear_bit(WantReplacement, &rdev->flags); 2183 err = md_integrity_register(mddev); 2184 2185 abort: 2186 2187 print_conf(conf); 2188 return err; 2189 } 2190 2191 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2192 { 2193 struct r10conf *conf = r10_bio->mddev->private; 2194 2195 if (!bio->bi_status) 2196 set_bit(R10BIO_Uptodate, &r10_bio->state); 2197 else 2198 /* The write handler will notice the lack of 2199 * R10BIO_Uptodate and record any errors etc 2200 */ 2201 atomic_add(r10_bio->sectors, 2202 &conf->mirrors[d].rdev->corrected_errors); 2203 2204 /* for reconstruct, we always reschedule after a read. 2205 * for resync, only after all reads 2206 */ 2207 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2208 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2209 atomic_dec_and_test(&r10_bio->remaining)) { 2210 /* we have read all the blocks, 2211 * do the comparison in process context in raid10d 2212 */ 2213 reschedule_retry(r10_bio); 2214 } 2215 } 2216 2217 static void end_sync_read(struct bio *bio) 2218 { 2219 struct r10bio *r10_bio = get_resync_r10bio(bio); 2220 struct r10conf *conf = r10_bio->mddev->private; 2221 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2222 2223 __end_sync_read(r10_bio, bio, d); 2224 } 2225 2226 static void end_reshape_read(struct bio *bio) 2227 { 2228 /* reshape read bio isn't allocated from r10buf_pool */ 2229 struct r10bio *r10_bio = bio->bi_private; 2230 2231 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2232 } 2233 2234 static void end_sync_request(struct r10bio *r10_bio) 2235 { 2236 struct mddev *mddev = r10_bio->mddev; 2237 2238 while (atomic_dec_and_test(&r10_bio->remaining)) { 2239 if (r10_bio->master_bio == NULL) { 2240 /* the primary of several recovery bios */ 2241 sector_t s = r10_bio->sectors; 2242 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2243 test_bit(R10BIO_WriteError, &r10_bio->state)) 2244 reschedule_retry(r10_bio); 2245 else 2246 put_buf(r10_bio); 2247 md_done_sync(mddev, s, 1); 2248 break; 2249 } else { 2250 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2251 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2252 test_bit(R10BIO_WriteError, &r10_bio->state)) 2253 reschedule_retry(r10_bio); 2254 else 2255 put_buf(r10_bio); 2256 r10_bio = r10_bio2; 2257 } 2258 } 2259 } 2260 2261 static void end_sync_write(struct bio *bio) 2262 { 2263 struct r10bio *r10_bio = get_resync_r10bio(bio); 2264 struct mddev *mddev = r10_bio->mddev; 2265 struct r10conf *conf = mddev->private; 2266 int d; 2267 sector_t first_bad; 2268 int bad_sectors; 2269 int slot; 2270 int repl; 2271 struct md_rdev *rdev = NULL; 2272 2273 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2274 if (repl) 2275 rdev = conf->mirrors[d].replacement; 2276 else 2277 rdev = conf->mirrors[d].rdev; 2278 2279 if (bio->bi_status) { 2280 if (repl) 2281 md_error(mddev, rdev); 2282 else { 2283 set_bit(WriteErrorSeen, &rdev->flags); 2284 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2285 set_bit(MD_RECOVERY_NEEDED, 2286 &rdev->mddev->recovery); 2287 set_bit(R10BIO_WriteError, &r10_bio->state); 2288 } 2289 } else if (is_badblock(rdev, 2290 r10_bio->devs[slot].addr, 2291 r10_bio->sectors, 2292 &first_bad, &bad_sectors)) 2293 set_bit(R10BIO_MadeGood, &r10_bio->state); 2294 2295 rdev_dec_pending(rdev, mddev); 2296 2297 end_sync_request(r10_bio); 2298 } 2299 2300 /* 2301 * Note: sync and recover and handled very differently for raid10 2302 * This code is for resync. 2303 * For resync, we read through virtual addresses and read all blocks. 2304 * If there is any error, we schedule a write. The lowest numbered 2305 * drive is authoritative. 2306 * However requests come for physical address, so we need to map. 2307 * For every physical address there are raid_disks/copies virtual addresses, 2308 * which is always are least one, but is not necessarly an integer. 2309 * This means that a physical address can span multiple chunks, so we may 2310 * have to submit multiple io requests for a single sync request. 2311 */ 2312 /* 2313 * We check if all blocks are in-sync and only write to blocks that 2314 * aren't in sync 2315 */ 2316 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2317 { 2318 struct r10conf *conf = mddev->private; 2319 int i, first; 2320 struct bio *tbio, *fbio; 2321 int vcnt; 2322 struct page **tpages, **fpages; 2323 2324 atomic_set(&r10_bio->remaining, 1); 2325 2326 /* find the first device with a block */ 2327 for (i=0; i<conf->copies; i++) 2328 if (!r10_bio->devs[i].bio->bi_status) 2329 break; 2330 2331 if (i == conf->copies) 2332 goto done; 2333 2334 first = i; 2335 fbio = r10_bio->devs[i].bio; 2336 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2337 fbio->bi_iter.bi_idx = 0; 2338 fpages = get_resync_pages(fbio)->pages; 2339 2340 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2341 /* now find blocks with errors */ 2342 for (i=0 ; i < conf->copies ; i++) { 2343 int j, d; 2344 struct md_rdev *rdev; 2345 struct resync_pages *rp; 2346 2347 tbio = r10_bio->devs[i].bio; 2348 2349 if (tbio->bi_end_io != end_sync_read) 2350 continue; 2351 if (i == first) 2352 continue; 2353 2354 tpages = get_resync_pages(tbio)->pages; 2355 d = r10_bio->devs[i].devnum; 2356 rdev = conf->mirrors[d].rdev; 2357 if (!r10_bio->devs[i].bio->bi_status) { 2358 /* We know that the bi_io_vec layout is the same for 2359 * both 'first' and 'i', so we just compare them. 2360 * All vec entries are PAGE_SIZE; 2361 */ 2362 int sectors = r10_bio->sectors; 2363 for (j = 0; j < vcnt; j++) { 2364 int len = PAGE_SIZE; 2365 if (sectors < (len / 512)) 2366 len = sectors * 512; 2367 if (memcmp(page_address(fpages[j]), 2368 page_address(tpages[j]), 2369 len)) 2370 break; 2371 sectors -= len/512; 2372 } 2373 if (j == vcnt) 2374 continue; 2375 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2376 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2377 /* Don't fix anything. */ 2378 continue; 2379 } else if (test_bit(FailFast, &rdev->flags)) { 2380 /* Just give up on this device */ 2381 md_error(rdev->mddev, rdev); 2382 continue; 2383 } 2384 /* Ok, we need to write this bio, either to correct an 2385 * inconsistency or to correct an unreadable block. 2386 * First we need to fixup bv_offset, bv_len and 2387 * bi_vecs, as the read request might have corrupted these 2388 */ 2389 rp = get_resync_pages(tbio); 2390 bio_reset(tbio); 2391 2392 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2393 2394 rp->raid_bio = r10_bio; 2395 tbio->bi_private = rp; 2396 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2397 tbio->bi_end_io = end_sync_write; 2398 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2399 2400 bio_copy_data(tbio, fbio); 2401 2402 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2403 atomic_inc(&r10_bio->remaining); 2404 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2405 2406 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2407 tbio->bi_opf |= MD_FAILFAST; 2408 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2409 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2410 submit_bio_noacct(tbio); 2411 } 2412 2413 /* Now write out to any replacement devices 2414 * that are active 2415 */ 2416 for (i = 0; i < conf->copies; i++) { 2417 int d; 2418 2419 tbio = r10_bio->devs[i].repl_bio; 2420 if (!tbio || !tbio->bi_end_io) 2421 continue; 2422 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2423 && r10_bio->devs[i].bio != fbio) 2424 bio_copy_data(tbio, fbio); 2425 d = r10_bio->devs[i].devnum; 2426 atomic_inc(&r10_bio->remaining); 2427 md_sync_acct(conf->mirrors[d].replacement->bdev, 2428 bio_sectors(tbio)); 2429 submit_bio_noacct(tbio); 2430 } 2431 2432 done: 2433 if (atomic_dec_and_test(&r10_bio->remaining)) { 2434 md_done_sync(mddev, r10_bio->sectors, 1); 2435 put_buf(r10_bio); 2436 } 2437 } 2438 2439 /* 2440 * Now for the recovery code. 2441 * Recovery happens across physical sectors. 2442 * We recover all non-is_sync drives by finding the virtual address of 2443 * each, and then choose a working drive that also has that virt address. 2444 * There is a separate r10_bio for each non-in_sync drive. 2445 * Only the first two slots are in use. The first for reading, 2446 * The second for writing. 2447 * 2448 */ 2449 static void fix_recovery_read_error(struct r10bio *r10_bio) 2450 { 2451 /* We got a read error during recovery. 2452 * We repeat the read in smaller page-sized sections. 2453 * If a read succeeds, write it to the new device or record 2454 * a bad block if we cannot. 2455 * If a read fails, record a bad block on both old and 2456 * new devices. 2457 */ 2458 struct mddev *mddev = r10_bio->mddev; 2459 struct r10conf *conf = mddev->private; 2460 struct bio *bio = r10_bio->devs[0].bio; 2461 sector_t sect = 0; 2462 int sectors = r10_bio->sectors; 2463 int idx = 0; 2464 int dr = r10_bio->devs[0].devnum; 2465 int dw = r10_bio->devs[1].devnum; 2466 struct page **pages = get_resync_pages(bio)->pages; 2467 2468 while (sectors) { 2469 int s = sectors; 2470 struct md_rdev *rdev; 2471 sector_t addr; 2472 int ok; 2473 2474 if (s > (PAGE_SIZE>>9)) 2475 s = PAGE_SIZE >> 9; 2476 2477 rdev = conf->mirrors[dr].rdev; 2478 addr = r10_bio->devs[0].addr + sect, 2479 ok = sync_page_io(rdev, 2480 addr, 2481 s << 9, 2482 pages[idx], 2483 REQ_OP_READ, 0, false); 2484 if (ok) { 2485 rdev = conf->mirrors[dw].rdev; 2486 addr = r10_bio->devs[1].addr + sect; 2487 ok = sync_page_io(rdev, 2488 addr, 2489 s << 9, 2490 pages[idx], 2491 REQ_OP_WRITE, 0, false); 2492 if (!ok) { 2493 set_bit(WriteErrorSeen, &rdev->flags); 2494 if (!test_and_set_bit(WantReplacement, 2495 &rdev->flags)) 2496 set_bit(MD_RECOVERY_NEEDED, 2497 &rdev->mddev->recovery); 2498 } 2499 } 2500 if (!ok) { 2501 /* We don't worry if we cannot set a bad block - 2502 * it really is bad so there is no loss in not 2503 * recording it yet 2504 */ 2505 rdev_set_badblocks(rdev, addr, s, 0); 2506 2507 if (rdev != conf->mirrors[dw].rdev) { 2508 /* need bad block on destination too */ 2509 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2510 addr = r10_bio->devs[1].addr + sect; 2511 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2512 if (!ok) { 2513 /* just abort the recovery */ 2514 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2515 mdname(mddev)); 2516 2517 conf->mirrors[dw].recovery_disabled 2518 = mddev->recovery_disabled; 2519 set_bit(MD_RECOVERY_INTR, 2520 &mddev->recovery); 2521 break; 2522 } 2523 } 2524 } 2525 2526 sectors -= s; 2527 sect += s; 2528 idx++; 2529 } 2530 } 2531 2532 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2533 { 2534 struct r10conf *conf = mddev->private; 2535 int d; 2536 struct bio *wbio, *wbio2; 2537 2538 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2539 fix_recovery_read_error(r10_bio); 2540 end_sync_request(r10_bio); 2541 return; 2542 } 2543 2544 /* 2545 * share the pages with the first bio 2546 * and submit the write request 2547 */ 2548 d = r10_bio->devs[1].devnum; 2549 wbio = r10_bio->devs[1].bio; 2550 wbio2 = r10_bio->devs[1].repl_bio; 2551 /* Need to test wbio2->bi_end_io before we call 2552 * submit_bio_noacct as if the former is NULL, 2553 * the latter is free to free wbio2. 2554 */ 2555 if (wbio2 && !wbio2->bi_end_io) 2556 wbio2 = NULL; 2557 if (wbio->bi_end_io) { 2558 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2559 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2560 submit_bio_noacct(wbio); 2561 } 2562 if (wbio2) { 2563 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2564 md_sync_acct(conf->mirrors[d].replacement->bdev, 2565 bio_sectors(wbio2)); 2566 submit_bio_noacct(wbio2); 2567 } 2568 } 2569 2570 /* 2571 * Used by fix_read_error() to decay the per rdev read_errors. 2572 * We halve the read error count for every hour that has elapsed 2573 * since the last recorded read error. 2574 * 2575 */ 2576 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2577 { 2578 long cur_time_mon; 2579 unsigned long hours_since_last; 2580 unsigned int read_errors = atomic_read(&rdev->read_errors); 2581 2582 cur_time_mon = ktime_get_seconds(); 2583 2584 if (rdev->last_read_error == 0) { 2585 /* first time we've seen a read error */ 2586 rdev->last_read_error = cur_time_mon; 2587 return; 2588 } 2589 2590 hours_since_last = (long)(cur_time_mon - 2591 rdev->last_read_error) / 3600; 2592 2593 rdev->last_read_error = cur_time_mon; 2594 2595 /* 2596 * if hours_since_last is > the number of bits in read_errors 2597 * just set read errors to 0. We do this to avoid 2598 * overflowing the shift of read_errors by hours_since_last. 2599 */ 2600 if (hours_since_last >= 8 * sizeof(read_errors)) 2601 atomic_set(&rdev->read_errors, 0); 2602 else 2603 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2604 } 2605 2606 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2607 int sectors, struct page *page, int rw) 2608 { 2609 sector_t first_bad; 2610 int bad_sectors; 2611 2612 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2613 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2614 return -1; 2615 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2616 /* success */ 2617 return 1; 2618 if (rw == WRITE) { 2619 set_bit(WriteErrorSeen, &rdev->flags); 2620 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2621 set_bit(MD_RECOVERY_NEEDED, 2622 &rdev->mddev->recovery); 2623 } 2624 /* need to record an error - either for the block or the device */ 2625 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2626 md_error(rdev->mddev, rdev); 2627 return 0; 2628 } 2629 2630 /* 2631 * This is a kernel thread which: 2632 * 2633 * 1. Retries failed read operations on working mirrors. 2634 * 2. Updates the raid superblock when problems encounter. 2635 * 3. Performs writes following reads for array synchronising. 2636 */ 2637 2638 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2639 { 2640 int sect = 0; /* Offset from r10_bio->sector */ 2641 int sectors = r10_bio->sectors; 2642 struct md_rdev *rdev; 2643 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2644 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2645 2646 /* still own a reference to this rdev, so it cannot 2647 * have been cleared recently. 2648 */ 2649 rdev = conf->mirrors[d].rdev; 2650 2651 if (test_bit(Faulty, &rdev->flags)) 2652 /* drive has already been failed, just ignore any 2653 more fix_read_error() attempts */ 2654 return; 2655 2656 check_decay_read_errors(mddev, rdev); 2657 atomic_inc(&rdev->read_errors); 2658 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2659 char b[BDEVNAME_SIZE]; 2660 bdevname(rdev->bdev, b); 2661 2662 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2663 mdname(mddev), b, 2664 atomic_read(&rdev->read_errors), max_read_errors); 2665 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2666 mdname(mddev), b); 2667 md_error(mddev, rdev); 2668 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2669 return; 2670 } 2671 2672 while(sectors) { 2673 int s = sectors; 2674 int sl = r10_bio->read_slot; 2675 int success = 0; 2676 int start; 2677 2678 if (s > (PAGE_SIZE>>9)) 2679 s = PAGE_SIZE >> 9; 2680 2681 rcu_read_lock(); 2682 do { 2683 sector_t first_bad; 2684 int bad_sectors; 2685 2686 d = r10_bio->devs[sl].devnum; 2687 rdev = rcu_dereference(conf->mirrors[d].rdev); 2688 if (rdev && 2689 test_bit(In_sync, &rdev->flags) && 2690 !test_bit(Faulty, &rdev->flags) && 2691 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2692 &first_bad, &bad_sectors) == 0) { 2693 atomic_inc(&rdev->nr_pending); 2694 rcu_read_unlock(); 2695 success = sync_page_io(rdev, 2696 r10_bio->devs[sl].addr + 2697 sect, 2698 s<<9, 2699 conf->tmppage, 2700 REQ_OP_READ, 0, false); 2701 rdev_dec_pending(rdev, mddev); 2702 rcu_read_lock(); 2703 if (success) 2704 break; 2705 } 2706 sl++; 2707 if (sl == conf->copies) 2708 sl = 0; 2709 } while (!success && sl != r10_bio->read_slot); 2710 rcu_read_unlock(); 2711 2712 if (!success) { 2713 /* Cannot read from anywhere, just mark the block 2714 * as bad on the first device to discourage future 2715 * reads. 2716 */ 2717 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2718 rdev = conf->mirrors[dn].rdev; 2719 2720 if (!rdev_set_badblocks( 2721 rdev, 2722 r10_bio->devs[r10_bio->read_slot].addr 2723 + sect, 2724 s, 0)) { 2725 md_error(mddev, rdev); 2726 r10_bio->devs[r10_bio->read_slot].bio 2727 = IO_BLOCKED; 2728 } 2729 break; 2730 } 2731 2732 start = sl; 2733 /* write it back and re-read */ 2734 rcu_read_lock(); 2735 while (sl != r10_bio->read_slot) { 2736 char b[BDEVNAME_SIZE]; 2737 2738 if (sl==0) 2739 sl = conf->copies; 2740 sl--; 2741 d = r10_bio->devs[sl].devnum; 2742 rdev = rcu_dereference(conf->mirrors[d].rdev); 2743 if (!rdev || 2744 test_bit(Faulty, &rdev->flags) || 2745 !test_bit(In_sync, &rdev->flags)) 2746 continue; 2747 2748 atomic_inc(&rdev->nr_pending); 2749 rcu_read_unlock(); 2750 if (r10_sync_page_io(rdev, 2751 r10_bio->devs[sl].addr + 2752 sect, 2753 s, conf->tmppage, WRITE) 2754 == 0) { 2755 /* Well, this device is dead */ 2756 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2757 mdname(mddev), s, 2758 (unsigned long long)( 2759 sect + 2760 choose_data_offset(r10_bio, 2761 rdev)), 2762 bdevname(rdev->bdev, b)); 2763 pr_notice("md/raid10:%s: %s: failing drive\n", 2764 mdname(mddev), 2765 bdevname(rdev->bdev, b)); 2766 } 2767 rdev_dec_pending(rdev, mddev); 2768 rcu_read_lock(); 2769 } 2770 sl = start; 2771 while (sl != r10_bio->read_slot) { 2772 char b[BDEVNAME_SIZE]; 2773 2774 if (sl==0) 2775 sl = conf->copies; 2776 sl--; 2777 d = r10_bio->devs[sl].devnum; 2778 rdev = rcu_dereference(conf->mirrors[d].rdev); 2779 if (!rdev || 2780 test_bit(Faulty, &rdev->flags) || 2781 !test_bit(In_sync, &rdev->flags)) 2782 continue; 2783 2784 atomic_inc(&rdev->nr_pending); 2785 rcu_read_unlock(); 2786 switch (r10_sync_page_io(rdev, 2787 r10_bio->devs[sl].addr + 2788 sect, 2789 s, conf->tmppage, 2790 READ)) { 2791 case 0: 2792 /* Well, this device is dead */ 2793 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2794 mdname(mddev), s, 2795 (unsigned long long)( 2796 sect + 2797 choose_data_offset(r10_bio, rdev)), 2798 bdevname(rdev->bdev, b)); 2799 pr_notice("md/raid10:%s: %s: failing drive\n", 2800 mdname(mddev), 2801 bdevname(rdev->bdev, b)); 2802 break; 2803 case 1: 2804 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2805 mdname(mddev), s, 2806 (unsigned long long)( 2807 sect + 2808 choose_data_offset(r10_bio, rdev)), 2809 bdevname(rdev->bdev, b)); 2810 atomic_add(s, &rdev->corrected_errors); 2811 } 2812 2813 rdev_dec_pending(rdev, mddev); 2814 rcu_read_lock(); 2815 } 2816 rcu_read_unlock(); 2817 2818 sectors -= s; 2819 sect += s; 2820 } 2821 } 2822 2823 static int narrow_write_error(struct r10bio *r10_bio, int i) 2824 { 2825 struct bio *bio = r10_bio->master_bio; 2826 struct mddev *mddev = r10_bio->mddev; 2827 struct r10conf *conf = mddev->private; 2828 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2829 /* bio has the data to be written to slot 'i' where 2830 * we just recently had a write error. 2831 * We repeatedly clone the bio and trim down to one block, 2832 * then try the write. Where the write fails we record 2833 * a bad block. 2834 * It is conceivable that the bio doesn't exactly align with 2835 * blocks. We must handle this. 2836 * 2837 * We currently own a reference to the rdev. 2838 */ 2839 2840 int block_sectors; 2841 sector_t sector; 2842 int sectors; 2843 int sect_to_write = r10_bio->sectors; 2844 int ok = 1; 2845 2846 if (rdev->badblocks.shift < 0) 2847 return 0; 2848 2849 block_sectors = roundup(1 << rdev->badblocks.shift, 2850 bdev_logical_block_size(rdev->bdev) >> 9); 2851 sector = r10_bio->sector; 2852 sectors = ((r10_bio->sector + block_sectors) 2853 & ~(sector_t)(block_sectors - 1)) 2854 - sector; 2855 2856 while (sect_to_write) { 2857 struct bio *wbio; 2858 sector_t wsector; 2859 if (sectors > sect_to_write) 2860 sectors = sect_to_write; 2861 /* Write at 'sector' for 'sectors' */ 2862 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2863 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2864 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2865 wbio->bi_iter.bi_sector = wsector + 2866 choose_data_offset(r10_bio, rdev); 2867 bio_set_dev(wbio, rdev->bdev); 2868 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2869 2870 if (submit_bio_wait(wbio) < 0) 2871 /* Failure! */ 2872 ok = rdev_set_badblocks(rdev, wsector, 2873 sectors, 0) 2874 && ok; 2875 2876 bio_put(wbio); 2877 sect_to_write -= sectors; 2878 sector += sectors; 2879 sectors = block_sectors; 2880 } 2881 return ok; 2882 } 2883 2884 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2885 { 2886 int slot = r10_bio->read_slot; 2887 struct bio *bio; 2888 struct r10conf *conf = mddev->private; 2889 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2890 2891 /* we got a read error. Maybe the drive is bad. Maybe just 2892 * the block and we can fix it. 2893 * We freeze all other IO, and try reading the block from 2894 * other devices. When we find one, we re-write 2895 * and check it that fixes the read error. 2896 * This is all done synchronously while the array is 2897 * frozen. 2898 */ 2899 bio = r10_bio->devs[slot].bio; 2900 bio_put(bio); 2901 r10_bio->devs[slot].bio = NULL; 2902 2903 if (mddev->ro) 2904 r10_bio->devs[slot].bio = IO_BLOCKED; 2905 else if (!test_bit(FailFast, &rdev->flags)) { 2906 freeze_array(conf, 1); 2907 fix_read_error(conf, mddev, r10_bio); 2908 unfreeze_array(conf); 2909 } else 2910 md_error(mddev, rdev); 2911 2912 rdev_dec_pending(rdev, mddev); 2913 allow_barrier(conf); 2914 r10_bio->state = 0; 2915 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2916 } 2917 2918 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2919 { 2920 /* Some sort of write request has finished and it 2921 * succeeded in writing where we thought there was a 2922 * bad block. So forget the bad block. 2923 * Or possibly if failed and we need to record 2924 * a bad block. 2925 */ 2926 int m; 2927 struct md_rdev *rdev; 2928 2929 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2930 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2931 for (m = 0; m < conf->copies; m++) { 2932 int dev = r10_bio->devs[m].devnum; 2933 rdev = conf->mirrors[dev].rdev; 2934 if (r10_bio->devs[m].bio == NULL || 2935 r10_bio->devs[m].bio->bi_end_io == NULL) 2936 continue; 2937 if (!r10_bio->devs[m].bio->bi_status) { 2938 rdev_clear_badblocks( 2939 rdev, 2940 r10_bio->devs[m].addr, 2941 r10_bio->sectors, 0); 2942 } else { 2943 if (!rdev_set_badblocks( 2944 rdev, 2945 r10_bio->devs[m].addr, 2946 r10_bio->sectors, 0)) 2947 md_error(conf->mddev, rdev); 2948 } 2949 rdev = conf->mirrors[dev].replacement; 2950 if (r10_bio->devs[m].repl_bio == NULL || 2951 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2952 continue; 2953 2954 if (!r10_bio->devs[m].repl_bio->bi_status) { 2955 rdev_clear_badblocks( 2956 rdev, 2957 r10_bio->devs[m].addr, 2958 r10_bio->sectors, 0); 2959 } else { 2960 if (!rdev_set_badblocks( 2961 rdev, 2962 r10_bio->devs[m].addr, 2963 r10_bio->sectors, 0)) 2964 md_error(conf->mddev, rdev); 2965 } 2966 } 2967 put_buf(r10_bio); 2968 } else { 2969 bool fail = false; 2970 for (m = 0; m < conf->copies; m++) { 2971 int dev = r10_bio->devs[m].devnum; 2972 struct bio *bio = r10_bio->devs[m].bio; 2973 rdev = conf->mirrors[dev].rdev; 2974 if (bio == IO_MADE_GOOD) { 2975 rdev_clear_badblocks( 2976 rdev, 2977 r10_bio->devs[m].addr, 2978 r10_bio->sectors, 0); 2979 rdev_dec_pending(rdev, conf->mddev); 2980 } else if (bio != NULL && bio->bi_status) { 2981 fail = true; 2982 if (!narrow_write_error(r10_bio, m)) { 2983 md_error(conf->mddev, rdev); 2984 set_bit(R10BIO_Degraded, 2985 &r10_bio->state); 2986 } 2987 rdev_dec_pending(rdev, conf->mddev); 2988 } 2989 bio = r10_bio->devs[m].repl_bio; 2990 rdev = conf->mirrors[dev].replacement; 2991 if (rdev && bio == IO_MADE_GOOD) { 2992 rdev_clear_badblocks( 2993 rdev, 2994 r10_bio->devs[m].addr, 2995 r10_bio->sectors, 0); 2996 rdev_dec_pending(rdev, conf->mddev); 2997 } 2998 } 2999 if (fail) { 3000 spin_lock_irq(&conf->device_lock); 3001 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3002 conf->nr_queued++; 3003 spin_unlock_irq(&conf->device_lock); 3004 /* 3005 * In case freeze_array() is waiting for condition 3006 * nr_pending == nr_queued + extra to be true. 3007 */ 3008 wake_up(&conf->wait_barrier); 3009 md_wakeup_thread(conf->mddev->thread); 3010 } else { 3011 if (test_bit(R10BIO_WriteError, 3012 &r10_bio->state)) 3013 close_write(r10_bio); 3014 raid_end_bio_io(r10_bio); 3015 } 3016 } 3017 } 3018 3019 static void raid10d(struct md_thread *thread) 3020 { 3021 struct mddev *mddev = thread->mddev; 3022 struct r10bio *r10_bio; 3023 unsigned long flags; 3024 struct r10conf *conf = mddev->private; 3025 struct list_head *head = &conf->retry_list; 3026 struct blk_plug plug; 3027 3028 md_check_recovery(mddev); 3029 3030 if (!list_empty_careful(&conf->bio_end_io_list) && 3031 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3032 LIST_HEAD(tmp); 3033 spin_lock_irqsave(&conf->device_lock, flags); 3034 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3035 while (!list_empty(&conf->bio_end_io_list)) { 3036 list_move(conf->bio_end_io_list.prev, &tmp); 3037 conf->nr_queued--; 3038 } 3039 } 3040 spin_unlock_irqrestore(&conf->device_lock, flags); 3041 while (!list_empty(&tmp)) { 3042 r10_bio = list_first_entry(&tmp, struct r10bio, 3043 retry_list); 3044 list_del(&r10_bio->retry_list); 3045 if (mddev->degraded) 3046 set_bit(R10BIO_Degraded, &r10_bio->state); 3047 3048 if (test_bit(R10BIO_WriteError, 3049 &r10_bio->state)) 3050 close_write(r10_bio); 3051 raid_end_bio_io(r10_bio); 3052 } 3053 } 3054 3055 blk_start_plug(&plug); 3056 for (;;) { 3057 3058 flush_pending_writes(conf); 3059 3060 spin_lock_irqsave(&conf->device_lock, flags); 3061 if (list_empty(head)) { 3062 spin_unlock_irqrestore(&conf->device_lock, flags); 3063 break; 3064 } 3065 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3066 list_del(head->prev); 3067 conf->nr_queued--; 3068 spin_unlock_irqrestore(&conf->device_lock, flags); 3069 3070 mddev = r10_bio->mddev; 3071 conf = mddev->private; 3072 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3073 test_bit(R10BIO_WriteError, &r10_bio->state)) 3074 handle_write_completed(conf, r10_bio); 3075 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3076 reshape_request_write(mddev, r10_bio); 3077 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3078 sync_request_write(mddev, r10_bio); 3079 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3080 recovery_request_write(mddev, r10_bio); 3081 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3082 handle_read_error(mddev, r10_bio); 3083 else 3084 WARN_ON_ONCE(1); 3085 3086 cond_resched(); 3087 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3088 md_check_recovery(mddev); 3089 } 3090 blk_finish_plug(&plug); 3091 } 3092 3093 static int init_resync(struct r10conf *conf) 3094 { 3095 int ret, buffs, i; 3096 3097 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3098 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3099 conf->have_replacement = 0; 3100 for (i = 0; i < conf->geo.raid_disks; i++) 3101 if (conf->mirrors[i].replacement) 3102 conf->have_replacement = 1; 3103 ret = mempool_init(&conf->r10buf_pool, buffs, 3104 r10buf_pool_alloc, r10buf_pool_free, conf); 3105 if (ret) 3106 return ret; 3107 conf->next_resync = 0; 3108 return 0; 3109 } 3110 3111 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3112 { 3113 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3114 struct rsync_pages *rp; 3115 struct bio *bio; 3116 int nalloc; 3117 int i; 3118 3119 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3120 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3121 nalloc = conf->copies; /* resync */ 3122 else 3123 nalloc = 2; /* recovery */ 3124 3125 for (i = 0; i < nalloc; i++) { 3126 bio = r10bio->devs[i].bio; 3127 rp = bio->bi_private; 3128 bio_reset(bio); 3129 bio->bi_private = rp; 3130 bio = r10bio->devs[i].repl_bio; 3131 if (bio) { 3132 rp = bio->bi_private; 3133 bio_reset(bio); 3134 bio->bi_private = rp; 3135 } 3136 } 3137 return r10bio; 3138 } 3139 3140 /* 3141 * Set cluster_sync_high since we need other nodes to add the 3142 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3143 */ 3144 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3145 { 3146 sector_t window_size; 3147 int extra_chunk, chunks; 3148 3149 /* 3150 * First, here we define "stripe" as a unit which across 3151 * all member devices one time, so we get chunks by use 3152 * raid_disks / near_copies. Otherwise, if near_copies is 3153 * close to raid_disks, then resync window could increases 3154 * linearly with the increase of raid_disks, which means 3155 * we will suspend a really large IO window while it is not 3156 * necessary. If raid_disks is not divisible by near_copies, 3157 * an extra chunk is needed to ensure the whole "stripe" is 3158 * covered. 3159 */ 3160 3161 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3162 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3163 extra_chunk = 0; 3164 else 3165 extra_chunk = 1; 3166 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3167 3168 /* 3169 * At least use a 32M window to align with raid1's resync window 3170 */ 3171 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3172 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3173 3174 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3175 } 3176 3177 /* 3178 * perform a "sync" on one "block" 3179 * 3180 * We need to make sure that no normal I/O request - particularly write 3181 * requests - conflict with active sync requests. 3182 * 3183 * This is achieved by tracking pending requests and a 'barrier' concept 3184 * that can be installed to exclude normal IO requests. 3185 * 3186 * Resync and recovery are handled very differently. 3187 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3188 * 3189 * For resync, we iterate over virtual addresses, read all copies, 3190 * and update if there are differences. If only one copy is live, 3191 * skip it. 3192 * For recovery, we iterate over physical addresses, read a good 3193 * value for each non-in_sync drive, and over-write. 3194 * 3195 * So, for recovery we may have several outstanding complex requests for a 3196 * given address, one for each out-of-sync device. We model this by allocating 3197 * a number of r10_bio structures, one for each out-of-sync device. 3198 * As we setup these structures, we collect all bio's together into a list 3199 * which we then process collectively to add pages, and then process again 3200 * to pass to submit_bio_noacct. 3201 * 3202 * The r10_bio structures are linked using a borrowed master_bio pointer. 3203 * This link is counted in ->remaining. When the r10_bio that points to NULL 3204 * has its remaining count decremented to 0, the whole complex operation 3205 * is complete. 3206 * 3207 */ 3208 3209 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3210 int *skipped) 3211 { 3212 struct r10conf *conf = mddev->private; 3213 struct r10bio *r10_bio; 3214 struct bio *biolist = NULL, *bio; 3215 sector_t max_sector, nr_sectors; 3216 int i; 3217 int max_sync; 3218 sector_t sync_blocks; 3219 sector_t sectors_skipped = 0; 3220 int chunks_skipped = 0; 3221 sector_t chunk_mask = conf->geo.chunk_mask; 3222 int page_idx = 0; 3223 3224 if (!mempool_initialized(&conf->r10buf_pool)) 3225 if (init_resync(conf)) 3226 return 0; 3227 3228 /* 3229 * Allow skipping a full rebuild for incremental assembly 3230 * of a clean array, like RAID1 does. 3231 */ 3232 if (mddev->bitmap == NULL && 3233 mddev->recovery_cp == MaxSector && 3234 mddev->reshape_position == MaxSector && 3235 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3236 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3237 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3238 conf->fullsync == 0) { 3239 *skipped = 1; 3240 return mddev->dev_sectors - sector_nr; 3241 } 3242 3243 skipped: 3244 max_sector = mddev->dev_sectors; 3245 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3246 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3247 max_sector = mddev->resync_max_sectors; 3248 if (sector_nr >= max_sector) { 3249 conf->cluster_sync_low = 0; 3250 conf->cluster_sync_high = 0; 3251 3252 /* If we aborted, we need to abort the 3253 * sync on the 'current' bitmap chucks (there can 3254 * be several when recovering multiple devices). 3255 * as we may have started syncing it but not finished. 3256 * We can find the current address in 3257 * mddev->curr_resync, but for recovery, 3258 * we need to convert that to several 3259 * virtual addresses. 3260 */ 3261 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3262 end_reshape(conf); 3263 close_sync(conf); 3264 return 0; 3265 } 3266 3267 if (mddev->curr_resync < max_sector) { /* aborted */ 3268 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3269 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3270 &sync_blocks, 1); 3271 else for (i = 0; i < conf->geo.raid_disks; i++) { 3272 sector_t sect = 3273 raid10_find_virt(conf, mddev->curr_resync, i); 3274 md_bitmap_end_sync(mddev->bitmap, sect, 3275 &sync_blocks, 1); 3276 } 3277 } else { 3278 /* completed sync */ 3279 if ((!mddev->bitmap || conf->fullsync) 3280 && conf->have_replacement 3281 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3282 /* Completed a full sync so the replacements 3283 * are now fully recovered. 3284 */ 3285 rcu_read_lock(); 3286 for (i = 0; i < conf->geo.raid_disks; i++) { 3287 struct md_rdev *rdev = 3288 rcu_dereference(conf->mirrors[i].replacement); 3289 if (rdev) 3290 rdev->recovery_offset = MaxSector; 3291 } 3292 rcu_read_unlock(); 3293 } 3294 conf->fullsync = 0; 3295 } 3296 md_bitmap_close_sync(mddev->bitmap); 3297 close_sync(conf); 3298 *skipped = 1; 3299 return sectors_skipped; 3300 } 3301 3302 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3303 return reshape_request(mddev, sector_nr, skipped); 3304 3305 if (chunks_skipped >= conf->geo.raid_disks) { 3306 /* if there has been nothing to do on any drive, 3307 * then there is nothing to do at all.. 3308 */ 3309 *skipped = 1; 3310 return (max_sector - sector_nr) + sectors_skipped; 3311 } 3312 3313 if (max_sector > mddev->resync_max) 3314 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3315 3316 /* make sure whole request will fit in a chunk - if chunks 3317 * are meaningful 3318 */ 3319 if (conf->geo.near_copies < conf->geo.raid_disks && 3320 max_sector > (sector_nr | chunk_mask)) 3321 max_sector = (sector_nr | chunk_mask) + 1; 3322 3323 /* 3324 * If there is non-resync activity waiting for a turn, then let it 3325 * though before starting on this new sync request. 3326 */ 3327 if (conf->nr_waiting) 3328 schedule_timeout_uninterruptible(1); 3329 3330 /* Again, very different code for resync and recovery. 3331 * Both must result in an r10bio with a list of bios that 3332 * have bi_end_io, bi_sector, bi_bdev set, 3333 * and bi_private set to the r10bio. 3334 * For recovery, we may actually create several r10bios 3335 * with 2 bios in each, that correspond to the bios in the main one. 3336 * In this case, the subordinate r10bios link back through a 3337 * borrowed master_bio pointer, and the counter in the master 3338 * includes a ref from each subordinate. 3339 */ 3340 /* First, we decide what to do and set ->bi_end_io 3341 * To end_sync_read if we want to read, and 3342 * end_sync_write if we will want to write. 3343 */ 3344 3345 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3346 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3347 /* recovery... the complicated one */ 3348 int j; 3349 r10_bio = NULL; 3350 3351 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3352 int still_degraded; 3353 struct r10bio *rb2; 3354 sector_t sect; 3355 int must_sync; 3356 int any_working; 3357 int need_recover = 0; 3358 int need_replace = 0; 3359 struct raid10_info *mirror = &conf->mirrors[i]; 3360 struct md_rdev *mrdev, *mreplace; 3361 3362 rcu_read_lock(); 3363 mrdev = rcu_dereference(mirror->rdev); 3364 mreplace = rcu_dereference(mirror->replacement); 3365 3366 if (mrdev != NULL && 3367 !test_bit(Faulty, &mrdev->flags) && 3368 !test_bit(In_sync, &mrdev->flags)) 3369 need_recover = 1; 3370 if (mreplace != NULL && 3371 !test_bit(Faulty, &mreplace->flags)) 3372 need_replace = 1; 3373 3374 if (!need_recover && !need_replace) { 3375 rcu_read_unlock(); 3376 continue; 3377 } 3378 3379 still_degraded = 0; 3380 /* want to reconstruct this device */ 3381 rb2 = r10_bio; 3382 sect = raid10_find_virt(conf, sector_nr, i); 3383 if (sect >= mddev->resync_max_sectors) { 3384 /* last stripe is not complete - don't 3385 * try to recover this sector. 3386 */ 3387 rcu_read_unlock(); 3388 continue; 3389 } 3390 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3391 mreplace = NULL; 3392 /* Unless we are doing a full sync, or a replacement 3393 * we only need to recover the block if it is set in 3394 * the bitmap 3395 */ 3396 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3397 &sync_blocks, 1); 3398 if (sync_blocks < max_sync) 3399 max_sync = sync_blocks; 3400 if (!must_sync && 3401 mreplace == NULL && 3402 !conf->fullsync) { 3403 /* yep, skip the sync_blocks here, but don't assume 3404 * that there will never be anything to do here 3405 */ 3406 chunks_skipped = -1; 3407 rcu_read_unlock(); 3408 continue; 3409 } 3410 atomic_inc(&mrdev->nr_pending); 3411 if (mreplace) 3412 atomic_inc(&mreplace->nr_pending); 3413 rcu_read_unlock(); 3414 3415 r10_bio = raid10_alloc_init_r10buf(conf); 3416 r10_bio->state = 0; 3417 raise_barrier(conf, rb2 != NULL); 3418 atomic_set(&r10_bio->remaining, 0); 3419 3420 r10_bio->master_bio = (struct bio*)rb2; 3421 if (rb2) 3422 atomic_inc(&rb2->remaining); 3423 r10_bio->mddev = mddev; 3424 set_bit(R10BIO_IsRecover, &r10_bio->state); 3425 r10_bio->sector = sect; 3426 3427 raid10_find_phys(conf, r10_bio); 3428 3429 /* Need to check if the array will still be 3430 * degraded 3431 */ 3432 rcu_read_lock(); 3433 for (j = 0; j < conf->geo.raid_disks; j++) { 3434 struct md_rdev *rdev = rcu_dereference( 3435 conf->mirrors[j].rdev); 3436 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3437 still_degraded = 1; 3438 break; 3439 } 3440 } 3441 3442 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3443 &sync_blocks, still_degraded); 3444 3445 any_working = 0; 3446 for (j=0; j<conf->copies;j++) { 3447 int k; 3448 int d = r10_bio->devs[j].devnum; 3449 sector_t from_addr, to_addr; 3450 struct md_rdev *rdev = 3451 rcu_dereference(conf->mirrors[d].rdev); 3452 sector_t sector, first_bad; 3453 int bad_sectors; 3454 if (!rdev || 3455 !test_bit(In_sync, &rdev->flags)) 3456 continue; 3457 /* This is where we read from */ 3458 any_working = 1; 3459 sector = r10_bio->devs[j].addr; 3460 3461 if (is_badblock(rdev, sector, max_sync, 3462 &first_bad, &bad_sectors)) { 3463 if (first_bad > sector) 3464 max_sync = first_bad - sector; 3465 else { 3466 bad_sectors -= (sector 3467 - first_bad); 3468 if (max_sync > bad_sectors) 3469 max_sync = bad_sectors; 3470 continue; 3471 } 3472 } 3473 bio = r10_bio->devs[0].bio; 3474 bio->bi_next = biolist; 3475 biolist = bio; 3476 bio->bi_end_io = end_sync_read; 3477 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3478 if (test_bit(FailFast, &rdev->flags)) 3479 bio->bi_opf |= MD_FAILFAST; 3480 from_addr = r10_bio->devs[j].addr; 3481 bio->bi_iter.bi_sector = from_addr + 3482 rdev->data_offset; 3483 bio_set_dev(bio, rdev->bdev); 3484 atomic_inc(&rdev->nr_pending); 3485 /* and we write to 'i' (if not in_sync) */ 3486 3487 for (k=0; k<conf->copies; k++) 3488 if (r10_bio->devs[k].devnum == i) 3489 break; 3490 BUG_ON(k == conf->copies); 3491 to_addr = r10_bio->devs[k].addr; 3492 r10_bio->devs[0].devnum = d; 3493 r10_bio->devs[0].addr = from_addr; 3494 r10_bio->devs[1].devnum = i; 3495 r10_bio->devs[1].addr = to_addr; 3496 3497 if (need_recover) { 3498 bio = r10_bio->devs[1].bio; 3499 bio->bi_next = biolist; 3500 biolist = bio; 3501 bio->bi_end_io = end_sync_write; 3502 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3503 bio->bi_iter.bi_sector = to_addr 3504 + mrdev->data_offset; 3505 bio_set_dev(bio, mrdev->bdev); 3506 atomic_inc(&r10_bio->remaining); 3507 } else 3508 r10_bio->devs[1].bio->bi_end_io = NULL; 3509 3510 /* and maybe write to replacement */ 3511 bio = r10_bio->devs[1].repl_bio; 3512 if (bio) 3513 bio->bi_end_io = NULL; 3514 /* Note: if need_replace, then bio 3515 * cannot be NULL as r10buf_pool_alloc will 3516 * have allocated it. 3517 */ 3518 if (!need_replace) 3519 break; 3520 bio->bi_next = biolist; 3521 biolist = bio; 3522 bio->bi_end_io = end_sync_write; 3523 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3524 bio->bi_iter.bi_sector = to_addr + 3525 mreplace->data_offset; 3526 bio_set_dev(bio, mreplace->bdev); 3527 atomic_inc(&r10_bio->remaining); 3528 break; 3529 } 3530 rcu_read_unlock(); 3531 if (j == conf->copies) { 3532 /* Cannot recover, so abort the recovery or 3533 * record a bad block */ 3534 if (any_working) { 3535 /* problem is that there are bad blocks 3536 * on other device(s) 3537 */ 3538 int k; 3539 for (k = 0; k < conf->copies; k++) 3540 if (r10_bio->devs[k].devnum == i) 3541 break; 3542 if (!test_bit(In_sync, 3543 &mrdev->flags) 3544 && !rdev_set_badblocks( 3545 mrdev, 3546 r10_bio->devs[k].addr, 3547 max_sync, 0)) 3548 any_working = 0; 3549 if (mreplace && 3550 !rdev_set_badblocks( 3551 mreplace, 3552 r10_bio->devs[k].addr, 3553 max_sync, 0)) 3554 any_working = 0; 3555 } 3556 if (!any_working) { 3557 if (!test_and_set_bit(MD_RECOVERY_INTR, 3558 &mddev->recovery)) 3559 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3560 mdname(mddev)); 3561 mirror->recovery_disabled 3562 = mddev->recovery_disabled; 3563 } 3564 put_buf(r10_bio); 3565 if (rb2) 3566 atomic_dec(&rb2->remaining); 3567 r10_bio = rb2; 3568 rdev_dec_pending(mrdev, mddev); 3569 if (mreplace) 3570 rdev_dec_pending(mreplace, mddev); 3571 break; 3572 } 3573 rdev_dec_pending(mrdev, mddev); 3574 if (mreplace) 3575 rdev_dec_pending(mreplace, mddev); 3576 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3577 /* Only want this if there is elsewhere to 3578 * read from. 'j' is currently the first 3579 * readable copy. 3580 */ 3581 int targets = 1; 3582 for (; j < conf->copies; j++) { 3583 int d = r10_bio->devs[j].devnum; 3584 if (conf->mirrors[d].rdev && 3585 test_bit(In_sync, 3586 &conf->mirrors[d].rdev->flags)) 3587 targets++; 3588 } 3589 if (targets == 1) 3590 r10_bio->devs[0].bio->bi_opf 3591 &= ~MD_FAILFAST; 3592 } 3593 } 3594 if (biolist == NULL) { 3595 while (r10_bio) { 3596 struct r10bio *rb2 = r10_bio; 3597 r10_bio = (struct r10bio*) rb2->master_bio; 3598 rb2->master_bio = NULL; 3599 put_buf(rb2); 3600 } 3601 goto giveup; 3602 } 3603 } else { 3604 /* resync. Schedule a read for every block at this virt offset */ 3605 int count = 0; 3606 3607 /* 3608 * Since curr_resync_completed could probably not update in 3609 * time, and we will set cluster_sync_low based on it. 3610 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3611 * safety reason, which ensures curr_resync_completed is 3612 * updated in bitmap_cond_end_sync. 3613 */ 3614 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3615 mddev_is_clustered(mddev) && 3616 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3617 3618 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3619 &sync_blocks, mddev->degraded) && 3620 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3621 &mddev->recovery)) { 3622 /* We can skip this block */ 3623 *skipped = 1; 3624 return sync_blocks + sectors_skipped; 3625 } 3626 if (sync_blocks < max_sync) 3627 max_sync = sync_blocks; 3628 r10_bio = raid10_alloc_init_r10buf(conf); 3629 r10_bio->state = 0; 3630 3631 r10_bio->mddev = mddev; 3632 atomic_set(&r10_bio->remaining, 0); 3633 raise_barrier(conf, 0); 3634 conf->next_resync = sector_nr; 3635 3636 r10_bio->master_bio = NULL; 3637 r10_bio->sector = sector_nr; 3638 set_bit(R10BIO_IsSync, &r10_bio->state); 3639 raid10_find_phys(conf, r10_bio); 3640 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3641 3642 for (i = 0; i < conf->copies; i++) { 3643 int d = r10_bio->devs[i].devnum; 3644 sector_t first_bad, sector; 3645 int bad_sectors; 3646 struct md_rdev *rdev; 3647 3648 if (r10_bio->devs[i].repl_bio) 3649 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3650 3651 bio = r10_bio->devs[i].bio; 3652 bio->bi_status = BLK_STS_IOERR; 3653 rcu_read_lock(); 3654 rdev = rcu_dereference(conf->mirrors[d].rdev); 3655 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3656 rcu_read_unlock(); 3657 continue; 3658 } 3659 sector = r10_bio->devs[i].addr; 3660 if (is_badblock(rdev, sector, max_sync, 3661 &first_bad, &bad_sectors)) { 3662 if (first_bad > sector) 3663 max_sync = first_bad - sector; 3664 else { 3665 bad_sectors -= (sector - first_bad); 3666 if (max_sync > bad_sectors) 3667 max_sync = bad_sectors; 3668 rcu_read_unlock(); 3669 continue; 3670 } 3671 } 3672 atomic_inc(&rdev->nr_pending); 3673 atomic_inc(&r10_bio->remaining); 3674 bio->bi_next = biolist; 3675 biolist = bio; 3676 bio->bi_end_io = end_sync_read; 3677 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3678 if (test_bit(FailFast, &rdev->flags)) 3679 bio->bi_opf |= MD_FAILFAST; 3680 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3681 bio_set_dev(bio, rdev->bdev); 3682 count++; 3683 3684 rdev = rcu_dereference(conf->mirrors[d].replacement); 3685 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3686 rcu_read_unlock(); 3687 continue; 3688 } 3689 atomic_inc(&rdev->nr_pending); 3690 3691 /* Need to set up for writing to the replacement */ 3692 bio = r10_bio->devs[i].repl_bio; 3693 bio->bi_status = BLK_STS_IOERR; 3694 3695 sector = r10_bio->devs[i].addr; 3696 bio->bi_next = biolist; 3697 biolist = bio; 3698 bio->bi_end_io = end_sync_write; 3699 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3700 if (test_bit(FailFast, &rdev->flags)) 3701 bio->bi_opf |= MD_FAILFAST; 3702 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3703 bio_set_dev(bio, rdev->bdev); 3704 count++; 3705 rcu_read_unlock(); 3706 } 3707 3708 if (count < 2) { 3709 for (i=0; i<conf->copies; i++) { 3710 int d = r10_bio->devs[i].devnum; 3711 if (r10_bio->devs[i].bio->bi_end_io) 3712 rdev_dec_pending(conf->mirrors[d].rdev, 3713 mddev); 3714 if (r10_bio->devs[i].repl_bio && 3715 r10_bio->devs[i].repl_bio->bi_end_io) 3716 rdev_dec_pending( 3717 conf->mirrors[d].replacement, 3718 mddev); 3719 } 3720 put_buf(r10_bio); 3721 biolist = NULL; 3722 goto giveup; 3723 } 3724 } 3725 3726 nr_sectors = 0; 3727 if (sector_nr + max_sync < max_sector) 3728 max_sector = sector_nr + max_sync; 3729 do { 3730 struct page *page; 3731 int len = PAGE_SIZE; 3732 if (sector_nr + (len>>9) > max_sector) 3733 len = (max_sector - sector_nr) << 9; 3734 if (len == 0) 3735 break; 3736 for (bio= biolist ; bio ; bio=bio->bi_next) { 3737 struct resync_pages *rp = get_resync_pages(bio); 3738 page = resync_fetch_page(rp, page_idx); 3739 /* 3740 * won't fail because the vec table is big enough 3741 * to hold all these pages 3742 */ 3743 bio_add_page(bio, page, len, 0); 3744 } 3745 nr_sectors += len>>9; 3746 sector_nr += len>>9; 3747 } while (++page_idx < RESYNC_PAGES); 3748 r10_bio->sectors = nr_sectors; 3749 3750 if (mddev_is_clustered(mddev) && 3751 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3752 /* It is resync not recovery */ 3753 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3754 conf->cluster_sync_low = mddev->curr_resync_completed; 3755 raid10_set_cluster_sync_high(conf); 3756 /* Send resync message */ 3757 md_cluster_ops->resync_info_update(mddev, 3758 conf->cluster_sync_low, 3759 conf->cluster_sync_high); 3760 } 3761 } else if (mddev_is_clustered(mddev)) { 3762 /* This is recovery not resync */ 3763 sector_t sect_va1, sect_va2; 3764 bool broadcast_msg = false; 3765 3766 for (i = 0; i < conf->geo.raid_disks; i++) { 3767 /* 3768 * sector_nr is a device address for recovery, so we 3769 * need translate it to array address before compare 3770 * with cluster_sync_high. 3771 */ 3772 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3773 3774 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3775 broadcast_msg = true; 3776 /* 3777 * curr_resync_completed is similar as 3778 * sector_nr, so make the translation too. 3779 */ 3780 sect_va2 = raid10_find_virt(conf, 3781 mddev->curr_resync_completed, i); 3782 3783 if (conf->cluster_sync_low == 0 || 3784 conf->cluster_sync_low > sect_va2) 3785 conf->cluster_sync_low = sect_va2; 3786 } 3787 } 3788 if (broadcast_msg) { 3789 raid10_set_cluster_sync_high(conf); 3790 md_cluster_ops->resync_info_update(mddev, 3791 conf->cluster_sync_low, 3792 conf->cluster_sync_high); 3793 } 3794 } 3795 3796 while (biolist) { 3797 bio = biolist; 3798 biolist = biolist->bi_next; 3799 3800 bio->bi_next = NULL; 3801 r10_bio = get_resync_r10bio(bio); 3802 r10_bio->sectors = nr_sectors; 3803 3804 if (bio->bi_end_io == end_sync_read) { 3805 md_sync_acct_bio(bio, nr_sectors); 3806 bio->bi_status = 0; 3807 submit_bio_noacct(bio); 3808 } 3809 } 3810 3811 if (sectors_skipped) 3812 /* pretend they weren't skipped, it makes 3813 * no important difference in this case 3814 */ 3815 md_done_sync(mddev, sectors_skipped, 1); 3816 3817 return sectors_skipped + nr_sectors; 3818 giveup: 3819 /* There is nowhere to write, so all non-sync 3820 * drives must be failed or in resync, all drives 3821 * have a bad block, so try the next chunk... 3822 */ 3823 if (sector_nr + max_sync < max_sector) 3824 max_sector = sector_nr + max_sync; 3825 3826 sectors_skipped += (max_sector - sector_nr); 3827 chunks_skipped ++; 3828 sector_nr = max_sector; 3829 goto skipped; 3830 } 3831 3832 static sector_t 3833 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3834 { 3835 sector_t size; 3836 struct r10conf *conf = mddev->private; 3837 3838 if (!raid_disks) 3839 raid_disks = min(conf->geo.raid_disks, 3840 conf->prev.raid_disks); 3841 if (!sectors) 3842 sectors = conf->dev_sectors; 3843 3844 size = sectors >> conf->geo.chunk_shift; 3845 sector_div(size, conf->geo.far_copies); 3846 size = size * raid_disks; 3847 sector_div(size, conf->geo.near_copies); 3848 3849 return size << conf->geo.chunk_shift; 3850 } 3851 3852 static void calc_sectors(struct r10conf *conf, sector_t size) 3853 { 3854 /* Calculate the number of sectors-per-device that will 3855 * actually be used, and set conf->dev_sectors and 3856 * conf->stride 3857 */ 3858 3859 size = size >> conf->geo.chunk_shift; 3860 sector_div(size, conf->geo.far_copies); 3861 size = size * conf->geo.raid_disks; 3862 sector_div(size, conf->geo.near_copies); 3863 /* 'size' is now the number of chunks in the array */ 3864 /* calculate "used chunks per device" */ 3865 size = size * conf->copies; 3866 3867 /* We need to round up when dividing by raid_disks to 3868 * get the stride size. 3869 */ 3870 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3871 3872 conf->dev_sectors = size << conf->geo.chunk_shift; 3873 3874 if (conf->geo.far_offset) 3875 conf->geo.stride = 1 << conf->geo.chunk_shift; 3876 else { 3877 sector_div(size, conf->geo.far_copies); 3878 conf->geo.stride = size << conf->geo.chunk_shift; 3879 } 3880 } 3881 3882 enum geo_type {geo_new, geo_old, geo_start}; 3883 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3884 { 3885 int nc, fc, fo; 3886 int layout, chunk, disks; 3887 switch (new) { 3888 case geo_old: 3889 layout = mddev->layout; 3890 chunk = mddev->chunk_sectors; 3891 disks = mddev->raid_disks - mddev->delta_disks; 3892 break; 3893 case geo_new: 3894 layout = mddev->new_layout; 3895 chunk = mddev->new_chunk_sectors; 3896 disks = mddev->raid_disks; 3897 break; 3898 default: /* avoid 'may be unused' warnings */ 3899 case geo_start: /* new when starting reshape - raid_disks not 3900 * updated yet. */ 3901 layout = mddev->new_layout; 3902 chunk = mddev->new_chunk_sectors; 3903 disks = mddev->raid_disks + mddev->delta_disks; 3904 break; 3905 } 3906 if (layout >> 19) 3907 return -1; 3908 if (chunk < (PAGE_SIZE >> 9) || 3909 !is_power_of_2(chunk)) 3910 return -2; 3911 nc = layout & 255; 3912 fc = (layout >> 8) & 255; 3913 fo = layout & (1<<16); 3914 geo->raid_disks = disks; 3915 geo->near_copies = nc; 3916 geo->far_copies = fc; 3917 geo->far_offset = fo; 3918 switch (layout >> 17) { 3919 case 0: /* original layout. simple but not always optimal */ 3920 geo->far_set_size = disks; 3921 break; 3922 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3923 * actually using this, but leave code here just in case.*/ 3924 geo->far_set_size = disks/fc; 3925 WARN(geo->far_set_size < fc, 3926 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3927 break; 3928 case 2: /* "improved" layout fixed to match documentation */ 3929 geo->far_set_size = fc * nc; 3930 break; 3931 default: /* Not a valid layout */ 3932 return -1; 3933 } 3934 geo->chunk_mask = chunk - 1; 3935 geo->chunk_shift = ffz(~chunk); 3936 return nc*fc; 3937 } 3938 3939 static struct r10conf *setup_conf(struct mddev *mddev) 3940 { 3941 struct r10conf *conf = NULL; 3942 int err = -EINVAL; 3943 struct geom geo; 3944 int copies; 3945 3946 copies = setup_geo(&geo, mddev, geo_new); 3947 3948 if (copies == -2) { 3949 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3950 mdname(mddev), PAGE_SIZE); 3951 goto out; 3952 } 3953 3954 if (copies < 2 || copies > mddev->raid_disks) { 3955 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3956 mdname(mddev), mddev->new_layout); 3957 goto out; 3958 } 3959 3960 err = -ENOMEM; 3961 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3962 if (!conf) 3963 goto out; 3964 3965 /* FIXME calc properly */ 3966 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3967 sizeof(struct raid10_info), 3968 GFP_KERNEL); 3969 if (!conf->mirrors) 3970 goto out; 3971 3972 conf->tmppage = alloc_page(GFP_KERNEL); 3973 if (!conf->tmppage) 3974 goto out; 3975 3976 conf->geo = geo; 3977 conf->copies = copies; 3978 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3979 rbio_pool_free, conf); 3980 if (err) 3981 goto out; 3982 3983 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3984 if (err) 3985 goto out; 3986 3987 calc_sectors(conf, mddev->dev_sectors); 3988 if (mddev->reshape_position == MaxSector) { 3989 conf->prev = conf->geo; 3990 conf->reshape_progress = MaxSector; 3991 } else { 3992 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3993 err = -EINVAL; 3994 goto out; 3995 } 3996 conf->reshape_progress = mddev->reshape_position; 3997 if (conf->prev.far_offset) 3998 conf->prev.stride = 1 << conf->prev.chunk_shift; 3999 else 4000 /* far_copies must be 1 */ 4001 conf->prev.stride = conf->dev_sectors; 4002 } 4003 conf->reshape_safe = conf->reshape_progress; 4004 spin_lock_init(&conf->device_lock); 4005 INIT_LIST_HEAD(&conf->retry_list); 4006 INIT_LIST_HEAD(&conf->bio_end_io_list); 4007 4008 spin_lock_init(&conf->resync_lock); 4009 init_waitqueue_head(&conf->wait_barrier); 4010 atomic_set(&conf->nr_pending, 0); 4011 4012 err = -ENOMEM; 4013 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4014 if (!conf->thread) 4015 goto out; 4016 4017 conf->mddev = mddev; 4018 return conf; 4019 4020 out: 4021 if (conf) { 4022 mempool_exit(&conf->r10bio_pool); 4023 kfree(conf->mirrors); 4024 safe_put_page(conf->tmppage); 4025 bioset_exit(&conf->bio_split); 4026 kfree(conf); 4027 } 4028 return ERR_PTR(err); 4029 } 4030 4031 static void raid10_set_io_opt(struct r10conf *conf) 4032 { 4033 int raid_disks = conf->geo.raid_disks; 4034 4035 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4036 raid_disks /= conf->geo.near_copies; 4037 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4038 raid_disks); 4039 } 4040 4041 static int raid10_run(struct mddev *mddev) 4042 { 4043 struct r10conf *conf; 4044 int i, disk_idx; 4045 struct raid10_info *disk; 4046 struct md_rdev *rdev; 4047 sector_t size; 4048 sector_t min_offset_diff = 0; 4049 int first = 1; 4050 bool discard_supported = false; 4051 4052 if (mddev_init_writes_pending(mddev) < 0) 4053 return -ENOMEM; 4054 4055 if (mddev->private == NULL) { 4056 conf = setup_conf(mddev); 4057 if (IS_ERR(conf)) 4058 return PTR_ERR(conf); 4059 mddev->private = conf; 4060 } 4061 conf = mddev->private; 4062 if (!conf) 4063 goto out; 4064 4065 if (mddev_is_clustered(conf->mddev)) { 4066 int fc, fo; 4067 4068 fc = (mddev->layout >> 8) & 255; 4069 fo = mddev->layout & (1<<16); 4070 if (fc > 1 || fo > 0) { 4071 pr_err("only near layout is supported by clustered" 4072 " raid10\n"); 4073 goto out_free_conf; 4074 } 4075 } 4076 4077 mddev->thread = conf->thread; 4078 conf->thread = NULL; 4079 4080 if (mddev->queue) { 4081 blk_queue_max_discard_sectors(mddev->queue, 4082 UINT_MAX); 4083 blk_queue_max_write_same_sectors(mddev->queue, 0); 4084 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4085 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4086 raid10_set_io_opt(conf); 4087 } 4088 4089 rdev_for_each(rdev, mddev) { 4090 long long diff; 4091 4092 disk_idx = rdev->raid_disk; 4093 if (disk_idx < 0) 4094 continue; 4095 if (disk_idx >= conf->geo.raid_disks && 4096 disk_idx >= conf->prev.raid_disks) 4097 continue; 4098 disk = conf->mirrors + disk_idx; 4099 4100 if (test_bit(Replacement, &rdev->flags)) { 4101 if (disk->replacement) 4102 goto out_free_conf; 4103 disk->replacement = rdev; 4104 } else { 4105 if (disk->rdev) 4106 goto out_free_conf; 4107 disk->rdev = rdev; 4108 } 4109 diff = (rdev->new_data_offset - rdev->data_offset); 4110 if (!mddev->reshape_backwards) 4111 diff = -diff; 4112 if (diff < 0) 4113 diff = 0; 4114 if (first || diff < min_offset_diff) 4115 min_offset_diff = diff; 4116 4117 if (mddev->gendisk) 4118 disk_stack_limits(mddev->gendisk, rdev->bdev, 4119 rdev->data_offset << 9); 4120 4121 disk->head_position = 0; 4122 4123 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 4124 discard_supported = true; 4125 first = 0; 4126 } 4127 4128 if (mddev->queue) { 4129 if (discard_supported) 4130 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 4131 mddev->queue); 4132 else 4133 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 4134 mddev->queue); 4135 } 4136 /* need to check that every block has at least one working mirror */ 4137 if (!enough(conf, -1)) { 4138 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4139 mdname(mddev)); 4140 goto out_free_conf; 4141 } 4142 4143 if (conf->reshape_progress != MaxSector) { 4144 /* must ensure that shape change is supported */ 4145 if (conf->geo.far_copies != 1 && 4146 conf->geo.far_offset == 0) 4147 goto out_free_conf; 4148 if (conf->prev.far_copies != 1 && 4149 conf->prev.far_offset == 0) 4150 goto out_free_conf; 4151 } 4152 4153 mddev->degraded = 0; 4154 for (i = 0; 4155 i < conf->geo.raid_disks 4156 || i < conf->prev.raid_disks; 4157 i++) { 4158 4159 disk = conf->mirrors + i; 4160 4161 if (!disk->rdev && disk->replacement) { 4162 /* The replacement is all we have - use it */ 4163 disk->rdev = disk->replacement; 4164 disk->replacement = NULL; 4165 clear_bit(Replacement, &disk->rdev->flags); 4166 } 4167 4168 if (!disk->rdev || 4169 !test_bit(In_sync, &disk->rdev->flags)) { 4170 disk->head_position = 0; 4171 mddev->degraded++; 4172 if (disk->rdev && 4173 disk->rdev->saved_raid_disk < 0) 4174 conf->fullsync = 1; 4175 } 4176 4177 if (disk->replacement && 4178 !test_bit(In_sync, &disk->replacement->flags) && 4179 disk->replacement->saved_raid_disk < 0) { 4180 conf->fullsync = 1; 4181 } 4182 4183 disk->recovery_disabled = mddev->recovery_disabled - 1; 4184 } 4185 4186 if (mddev->recovery_cp != MaxSector) 4187 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4188 mdname(mddev)); 4189 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4190 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4191 conf->geo.raid_disks); 4192 /* 4193 * Ok, everything is just fine now 4194 */ 4195 mddev->dev_sectors = conf->dev_sectors; 4196 size = raid10_size(mddev, 0, 0); 4197 md_set_array_sectors(mddev, size); 4198 mddev->resync_max_sectors = size; 4199 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4200 4201 if (md_integrity_register(mddev)) 4202 goto out_free_conf; 4203 4204 if (conf->reshape_progress != MaxSector) { 4205 unsigned long before_length, after_length; 4206 4207 before_length = ((1 << conf->prev.chunk_shift) * 4208 conf->prev.far_copies); 4209 after_length = ((1 << conf->geo.chunk_shift) * 4210 conf->geo.far_copies); 4211 4212 if (max(before_length, after_length) > min_offset_diff) { 4213 /* This cannot work */ 4214 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4215 goto out_free_conf; 4216 } 4217 conf->offset_diff = min_offset_diff; 4218 4219 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4220 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4221 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4222 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4223 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4224 "reshape"); 4225 if (!mddev->sync_thread) 4226 goto out_free_conf; 4227 } 4228 4229 return 0; 4230 4231 out_free_conf: 4232 md_unregister_thread(&mddev->thread); 4233 mempool_exit(&conf->r10bio_pool); 4234 safe_put_page(conf->tmppage); 4235 kfree(conf->mirrors); 4236 kfree(conf); 4237 mddev->private = NULL; 4238 out: 4239 return -EIO; 4240 } 4241 4242 static void raid10_free(struct mddev *mddev, void *priv) 4243 { 4244 struct r10conf *conf = priv; 4245 4246 mempool_exit(&conf->r10bio_pool); 4247 safe_put_page(conf->tmppage); 4248 kfree(conf->mirrors); 4249 kfree(conf->mirrors_old); 4250 kfree(conf->mirrors_new); 4251 bioset_exit(&conf->bio_split); 4252 kfree(conf); 4253 } 4254 4255 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4256 { 4257 struct r10conf *conf = mddev->private; 4258 4259 if (quiesce) 4260 raise_barrier(conf, 0); 4261 else 4262 lower_barrier(conf); 4263 } 4264 4265 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4266 { 4267 /* Resize of 'far' arrays is not supported. 4268 * For 'near' and 'offset' arrays we can set the 4269 * number of sectors used to be an appropriate multiple 4270 * of the chunk size. 4271 * For 'offset', this is far_copies*chunksize. 4272 * For 'near' the multiplier is the LCM of 4273 * near_copies and raid_disks. 4274 * So if far_copies > 1 && !far_offset, fail. 4275 * Else find LCM(raid_disks, near_copy)*far_copies and 4276 * multiply by chunk_size. Then round to this number. 4277 * This is mostly done by raid10_size() 4278 */ 4279 struct r10conf *conf = mddev->private; 4280 sector_t oldsize, size; 4281 4282 if (mddev->reshape_position != MaxSector) 4283 return -EBUSY; 4284 4285 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4286 return -EINVAL; 4287 4288 oldsize = raid10_size(mddev, 0, 0); 4289 size = raid10_size(mddev, sectors, 0); 4290 if (mddev->external_size && 4291 mddev->array_sectors > size) 4292 return -EINVAL; 4293 if (mddev->bitmap) { 4294 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4295 if (ret) 4296 return ret; 4297 } 4298 md_set_array_sectors(mddev, size); 4299 if (sectors > mddev->dev_sectors && 4300 mddev->recovery_cp > oldsize) { 4301 mddev->recovery_cp = oldsize; 4302 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4303 } 4304 calc_sectors(conf, sectors); 4305 mddev->dev_sectors = conf->dev_sectors; 4306 mddev->resync_max_sectors = size; 4307 return 0; 4308 } 4309 4310 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4311 { 4312 struct md_rdev *rdev; 4313 struct r10conf *conf; 4314 4315 if (mddev->degraded > 0) { 4316 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4317 mdname(mddev)); 4318 return ERR_PTR(-EINVAL); 4319 } 4320 sector_div(size, devs); 4321 4322 /* Set new parameters */ 4323 mddev->new_level = 10; 4324 /* new layout: far_copies = 1, near_copies = 2 */ 4325 mddev->new_layout = (1<<8) + 2; 4326 mddev->new_chunk_sectors = mddev->chunk_sectors; 4327 mddev->delta_disks = mddev->raid_disks; 4328 mddev->raid_disks *= 2; 4329 /* make sure it will be not marked as dirty */ 4330 mddev->recovery_cp = MaxSector; 4331 mddev->dev_sectors = size; 4332 4333 conf = setup_conf(mddev); 4334 if (!IS_ERR(conf)) { 4335 rdev_for_each(rdev, mddev) 4336 if (rdev->raid_disk >= 0) { 4337 rdev->new_raid_disk = rdev->raid_disk * 2; 4338 rdev->sectors = size; 4339 } 4340 conf->barrier = 1; 4341 } 4342 4343 return conf; 4344 } 4345 4346 static void *raid10_takeover(struct mddev *mddev) 4347 { 4348 struct r0conf *raid0_conf; 4349 4350 /* raid10 can take over: 4351 * raid0 - providing it has only two drives 4352 */ 4353 if (mddev->level == 0) { 4354 /* for raid0 takeover only one zone is supported */ 4355 raid0_conf = mddev->private; 4356 if (raid0_conf->nr_strip_zones > 1) { 4357 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4358 mdname(mddev)); 4359 return ERR_PTR(-EINVAL); 4360 } 4361 return raid10_takeover_raid0(mddev, 4362 raid0_conf->strip_zone->zone_end, 4363 raid0_conf->strip_zone->nb_dev); 4364 } 4365 return ERR_PTR(-EINVAL); 4366 } 4367 4368 static int raid10_check_reshape(struct mddev *mddev) 4369 { 4370 /* Called when there is a request to change 4371 * - layout (to ->new_layout) 4372 * - chunk size (to ->new_chunk_sectors) 4373 * - raid_disks (by delta_disks) 4374 * or when trying to restart a reshape that was ongoing. 4375 * 4376 * We need to validate the request and possibly allocate 4377 * space if that might be an issue later. 4378 * 4379 * Currently we reject any reshape of a 'far' mode array, 4380 * allow chunk size to change if new is generally acceptable, 4381 * allow raid_disks to increase, and allow 4382 * a switch between 'near' mode and 'offset' mode. 4383 */ 4384 struct r10conf *conf = mddev->private; 4385 struct geom geo; 4386 4387 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4388 return -EINVAL; 4389 4390 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4391 /* mustn't change number of copies */ 4392 return -EINVAL; 4393 if (geo.far_copies > 1 && !geo.far_offset) 4394 /* Cannot switch to 'far' mode */ 4395 return -EINVAL; 4396 4397 if (mddev->array_sectors & geo.chunk_mask) 4398 /* not factor of array size */ 4399 return -EINVAL; 4400 4401 if (!enough(conf, -1)) 4402 return -EINVAL; 4403 4404 kfree(conf->mirrors_new); 4405 conf->mirrors_new = NULL; 4406 if (mddev->delta_disks > 0) { 4407 /* allocate new 'mirrors' list */ 4408 conf->mirrors_new = 4409 kcalloc(mddev->raid_disks + mddev->delta_disks, 4410 sizeof(struct raid10_info), 4411 GFP_KERNEL); 4412 if (!conf->mirrors_new) 4413 return -ENOMEM; 4414 } 4415 return 0; 4416 } 4417 4418 /* 4419 * Need to check if array has failed when deciding whether to: 4420 * - start an array 4421 * - remove non-faulty devices 4422 * - add a spare 4423 * - allow a reshape 4424 * This determination is simple when no reshape is happening. 4425 * However if there is a reshape, we need to carefully check 4426 * both the before and after sections. 4427 * This is because some failed devices may only affect one 4428 * of the two sections, and some non-in_sync devices may 4429 * be insync in the section most affected by failed devices. 4430 */ 4431 static int calc_degraded(struct r10conf *conf) 4432 { 4433 int degraded, degraded2; 4434 int i; 4435 4436 rcu_read_lock(); 4437 degraded = 0; 4438 /* 'prev' section first */ 4439 for (i = 0; i < conf->prev.raid_disks; i++) { 4440 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4441 if (!rdev || test_bit(Faulty, &rdev->flags)) 4442 degraded++; 4443 else if (!test_bit(In_sync, &rdev->flags)) 4444 /* When we can reduce the number of devices in 4445 * an array, this might not contribute to 4446 * 'degraded'. It does now. 4447 */ 4448 degraded++; 4449 } 4450 rcu_read_unlock(); 4451 if (conf->geo.raid_disks == conf->prev.raid_disks) 4452 return degraded; 4453 rcu_read_lock(); 4454 degraded2 = 0; 4455 for (i = 0; i < conf->geo.raid_disks; i++) { 4456 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4457 if (!rdev || test_bit(Faulty, &rdev->flags)) 4458 degraded2++; 4459 else if (!test_bit(In_sync, &rdev->flags)) { 4460 /* If reshape is increasing the number of devices, 4461 * this section has already been recovered, so 4462 * it doesn't contribute to degraded. 4463 * else it does. 4464 */ 4465 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4466 degraded2++; 4467 } 4468 } 4469 rcu_read_unlock(); 4470 if (degraded2 > degraded) 4471 return degraded2; 4472 return degraded; 4473 } 4474 4475 static int raid10_start_reshape(struct mddev *mddev) 4476 { 4477 /* A 'reshape' has been requested. This commits 4478 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4479 * This also checks if there are enough spares and adds them 4480 * to the array. 4481 * We currently require enough spares to make the final 4482 * array non-degraded. We also require that the difference 4483 * between old and new data_offset - on each device - is 4484 * enough that we never risk over-writing. 4485 */ 4486 4487 unsigned long before_length, after_length; 4488 sector_t min_offset_diff = 0; 4489 int first = 1; 4490 struct geom new; 4491 struct r10conf *conf = mddev->private; 4492 struct md_rdev *rdev; 4493 int spares = 0; 4494 int ret; 4495 4496 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4497 return -EBUSY; 4498 4499 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4500 return -EINVAL; 4501 4502 before_length = ((1 << conf->prev.chunk_shift) * 4503 conf->prev.far_copies); 4504 after_length = ((1 << conf->geo.chunk_shift) * 4505 conf->geo.far_copies); 4506 4507 rdev_for_each(rdev, mddev) { 4508 if (!test_bit(In_sync, &rdev->flags) 4509 && !test_bit(Faulty, &rdev->flags)) 4510 spares++; 4511 if (rdev->raid_disk >= 0) { 4512 long long diff = (rdev->new_data_offset 4513 - rdev->data_offset); 4514 if (!mddev->reshape_backwards) 4515 diff = -diff; 4516 if (diff < 0) 4517 diff = 0; 4518 if (first || diff < min_offset_diff) 4519 min_offset_diff = diff; 4520 first = 0; 4521 } 4522 } 4523 4524 if (max(before_length, after_length) > min_offset_diff) 4525 return -EINVAL; 4526 4527 if (spares < mddev->delta_disks) 4528 return -EINVAL; 4529 4530 conf->offset_diff = min_offset_diff; 4531 spin_lock_irq(&conf->device_lock); 4532 if (conf->mirrors_new) { 4533 memcpy(conf->mirrors_new, conf->mirrors, 4534 sizeof(struct raid10_info)*conf->prev.raid_disks); 4535 smp_mb(); 4536 kfree(conf->mirrors_old); 4537 conf->mirrors_old = conf->mirrors; 4538 conf->mirrors = conf->mirrors_new; 4539 conf->mirrors_new = NULL; 4540 } 4541 setup_geo(&conf->geo, mddev, geo_start); 4542 smp_mb(); 4543 if (mddev->reshape_backwards) { 4544 sector_t size = raid10_size(mddev, 0, 0); 4545 if (size < mddev->array_sectors) { 4546 spin_unlock_irq(&conf->device_lock); 4547 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4548 mdname(mddev)); 4549 return -EINVAL; 4550 } 4551 mddev->resync_max_sectors = size; 4552 conf->reshape_progress = size; 4553 } else 4554 conf->reshape_progress = 0; 4555 conf->reshape_safe = conf->reshape_progress; 4556 spin_unlock_irq(&conf->device_lock); 4557 4558 if (mddev->delta_disks && mddev->bitmap) { 4559 struct mdp_superblock_1 *sb = NULL; 4560 sector_t oldsize, newsize; 4561 4562 oldsize = raid10_size(mddev, 0, 0); 4563 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4564 4565 if (!mddev_is_clustered(mddev)) { 4566 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4567 if (ret) 4568 goto abort; 4569 else 4570 goto out; 4571 } 4572 4573 rdev_for_each(rdev, mddev) { 4574 if (rdev->raid_disk > -1 && 4575 !test_bit(Faulty, &rdev->flags)) 4576 sb = page_address(rdev->sb_page); 4577 } 4578 4579 /* 4580 * some node is already performing reshape, and no need to 4581 * call md_bitmap_resize again since it should be called when 4582 * receiving BITMAP_RESIZE msg 4583 */ 4584 if ((sb && (le32_to_cpu(sb->feature_map) & 4585 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4586 goto out; 4587 4588 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4589 if (ret) 4590 goto abort; 4591 4592 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4593 if (ret) { 4594 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4595 goto abort; 4596 } 4597 } 4598 out: 4599 if (mddev->delta_disks > 0) { 4600 rdev_for_each(rdev, mddev) 4601 if (rdev->raid_disk < 0 && 4602 !test_bit(Faulty, &rdev->flags)) { 4603 if (raid10_add_disk(mddev, rdev) == 0) { 4604 if (rdev->raid_disk >= 4605 conf->prev.raid_disks) 4606 set_bit(In_sync, &rdev->flags); 4607 else 4608 rdev->recovery_offset = 0; 4609 4610 /* Failure here is OK */ 4611 sysfs_link_rdev(mddev, rdev); 4612 } 4613 } else if (rdev->raid_disk >= conf->prev.raid_disks 4614 && !test_bit(Faulty, &rdev->flags)) { 4615 /* This is a spare that was manually added */ 4616 set_bit(In_sync, &rdev->flags); 4617 } 4618 } 4619 /* When a reshape changes the number of devices, 4620 * ->degraded is measured against the larger of the 4621 * pre and post numbers. 4622 */ 4623 spin_lock_irq(&conf->device_lock); 4624 mddev->degraded = calc_degraded(conf); 4625 spin_unlock_irq(&conf->device_lock); 4626 mddev->raid_disks = conf->geo.raid_disks; 4627 mddev->reshape_position = conf->reshape_progress; 4628 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4629 4630 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4631 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4632 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4633 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4634 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4635 4636 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4637 "reshape"); 4638 if (!mddev->sync_thread) { 4639 ret = -EAGAIN; 4640 goto abort; 4641 } 4642 conf->reshape_checkpoint = jiffies; 4643 md_wakeup_thread(mddev->sync_thread); 4644 md_new_event(mddev); 4645 return 0; 4646 4647 abort: 4648 mddev->recovery = 0; 4649 spin_lock_irq(&conf->device_lock); 4650 conf->geo = conf->prev; 4651 mddev->raid_disks = conf->geo.raid_disks; 4652 rdev_for_each(rdev, mddev) 4653 rdev->new_data_offset = rdev->data_offset; 4654 smp_wmb(); 4655 conf->reshape_progress = MaxSector; 4656 conf->reshape_safe = MaxSector; 4657 mddev->reshape_position = MaxSector; 4658 spin_unlock_irq(&conf->device_lock); 4659 return ret; 4660 } 4661 4662 /* Calculate the last device-address that could contain 4663 * any block from the chunk that includes the array-address 's' 4664 * and report the next address. 4665 * i.e. the address returned will be chunk-aligned and after 4666 * any data that is in the chunk containing 's'. 4667 */ 4668 static sector_t last_dev_address(sector_t s, struct geom *geo) 4669 { 4670 s = (s | geo->chunk_mask) + 1; 4671 s >>= geo->chunk_shift; 4672 s *= geo->near_copies; 4673 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4674 s *= geo->far_copies; 4675 s <<= geo->chunk_shift; 4676 return s; 4677 } 4678 4679 /* Calculate the first device-address that could contain 4680 * any block from the chunk that includes the array-address 's'. 4681 * This too will be the start of a chunk 4682 */ 4683 static sector_t first_dev_address(sector_t s, struct geom *geo) 4684 { 4685 s >>= geo->chunk_shift; 4686 s *= geo->near_copies; 4687 sector_div(s, geo->raid_disks); 4688 s *= geo->far_copies; 4689 s <<= geo->chunk_shift; 4690 return s; 4691 } 4692 4693 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4694 int *skipped) 4695 { 4696 /* We simply copy at most one chunk (smallest of old and new) 4697 * at a time, possibly less if that exceeds RESYNC_PAGES, 4698 * or we hit a bad block or something. 4699 * This might mean we pause for normal IO in the middle of 4700 * a chunk, but that is not a problem as mddev->reshape_position 4701 * can record any location. 4702 * 4703 * If we will want to write to a location that isn't 4704 * yet recorded as 'safe' (i.e. in metadata on disk) then 4705 * we need to flush all reshape requests and update the metadata. 4706 * 4707 * When reshaping forwards (e.g. to more devices), we interpret 4708 * 'safe' as the earliest block which might not have been copied 4709 * down yet. We divide this by previous stripe size and multiply 4710 * by previous stripe length to get lowest device offset that we 4711 * cannot write to yet. 4712 * We interpret 'sector_nr' as an address that we want to write to. 4713 * From this we use last_device_address() to find where we might 4714 * write to, and first_device_address on the 'safe' position. 4715 * If this 'next' write position is after the 'safe' position, 4716 * we must update the metadata to increase the 'safe' position. 4717 * 4718 * When reshaping backwards, we round in the opposite direction 4719 * and perform the reverse test: next write position must not be 4720 * less than current safe position. 4721 * 4722 * In all this the minimum difference in data offsets 4723 * (conf->offset_diff - always positive) allows a bit of slack, 4724 * so next can be after 'safe', but not by more than offset_diff 4725 * 4726 * We need to prepare all the bios here before we start any IO 4727 * to ensure the size we choose is acceptable to all devices. 4728 * The means one for each copy for write-out and an extra one for 4729 * read-in. 4730 * We store the read-in bio in ->master_bio and the others in 4731 * ->devs[x].bio and ->devs[x].repl_bio. 4732 */ 4733 struct r10conf *conf = mddev->private; 4734 struct r10bio *r10_bio; 4735 sector_t next, safe, last; 4736 int max_sectors; 4737 int nr_sectors; 4738 int s; 4739 struct md_rdev *rdev; 4740 int need_flush = 0; 4741 struct bio *blist; 4742 struct bio *bio, *read_bio; 4743 int sectors_done = 0; 4744 struct page **pages; 4745 4746 if (sector_nr == 0) { 4747 /* If restarting in the middle, skip the initial sectors */ 4748 if (mddev->reshape_backwards && 4749 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4750 sector_nr = (raid10_size(mddev, 0, 0) 4751 - conf->reshape_progress); 4752 } else if (!mddev->reshape_backwards && 4753 conf->reshape_progress > 0) 4754 sector_nr = conf->reshape_progress; 4755 if (sector_nr) { 4756 mddev->curr_resync_completed = sector_nr; 4757 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4758 *skipped = 1; 4759 return sector_nr; 4760 } 4761 } 4762 4763 /* We don't use sector_nr to track where we are up to 4764 * as that doesn't work well for ->reshape_backwards. 4765 * So just use ->reshape_progress. 4766 */ 4767 if (mddev->reshape_backwards) { 4768 /* 'next' is the earliest device address that we might 4769 * write to for this chunk in the new layout 4770 */ 4771 next = first_dev_address(conf->reshape_progress - 1, 4772 &conf->geo); 4773 4774 /* 'safe' is the last device address that we might read from 4775 * in the old layout after a restart 4776 */ 4777 safe = last_dev_address(conf->reshape_safe - 1, 4778 &conf->prev); 4779 4780 if (next + conf->offset_diff < safe) 4781 need_flush = 1; 4782 4783 last = conf->reshape_progress - 1; 4784 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4785 & conf->prev.chunk_mask); 4786 if (sector_nr + RESYNC_SECTORS < last) 4787 sector_nr = last + 1 - RESYNC_SECTORS; 4788 } else { 4789 /* 'next' is after the last device address that we 4790 * might write to for this chunk in the new layout 4791 */ 4792 next = last_dev_address(conf->reshape_progress, &conf->geo); 4793 4794 /* 'safe' is the earliest device address that we might 4795 * read from in the old layout after a restart 4796 */ 4797 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4798 4799 /* Need to update metadata if 'next' might be beyond 'safe' 4800 * as that would possibly corrupt data 4801 */ 4802 if (next > safe + conf->offset_diff) 4803 need_flush = 1; 4804 4805 sector_nr = conf->reshape_progress; 4806 last = sector_nr | (conf->geo.chunk_mask 4807 & conf->prev.chunk_mask); 4808 4809 if (sector_nr + RESYNC_SECTORS <= last) 4810 last = sector_nr + RESYNC_SECTORS - 1; 4811 } 4812 4813 if (need_flush || 4814 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4815 /* Need to update reshape_position in metadata */ 4816 wait_barrier(conf); 4817 mddev->reshape_position = conf->reshape_progress; 4818 if (mddev->reshape_backwards) 4819 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4820 - conf->reshape_progress; 4821 else 4822 mddev->curr_resync_completed = conf->reshape_progress; 4823 conf->reshape_checkpoint = jiffies; 4824 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4825 md_wakeup_thread(mddev->thread); 4826 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4827 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4828 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4829 allow_barrier(conf); 4830 return sectors_done; 4831 } 4832 conf->reshape_safe = mddev->reshape_position; 4833 allow_barrier(conf); 4834 } 4835 4836 raise_barrier(conf, 0); 4837 read_more: 4838 /* Now schedule reads for blocks from sector_nr to last */ 4839 r10_bio = raid10_alloc_init_r10buf(conf); 4840 r10_bio->state = 0; 4841 raise_barrier(conf, 1); 4842 atomic_set(&r10_bio->remaining, 0); 4843 r10_bio->mddev = mddev; 4844 r10_bio->sector = sector_nr; 4845 set_bit(R10BIO_IsReshape, &r10_bio->state); 4846 r10_bio->sectors = last - sector_nr + 1; 4847 rdev = read_balance(conf, r10_bio, &max_sectors); 4848 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4849 4850 if (!rdev) { 4851 /* Cannot read from here, so need to record bad blocks 4852 * on all the target devices. 4853 */ 4854 // FIXME 4855 mempool_free(r10_bio, &conf->r10buf_pool); 4856 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4857 return sectors_done; 4858 } 4859 4860 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set); 4861 4862 bio_set_dev(read_bio, rdev->bdev); 4863 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4864 + rdev->data_offset); 4865 read_bio->bi_private = r10_bio; 4866 read_bio->bi_end_io = end_reshape_read; 4867 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4868 r10_bio->master_bio = read_bio; 4869 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4870 4871 /* 4872 * Broadcast RESYNC message to other nodes, so all nodes would not 4873 * write to the region to avoid conflict. 4874 */ 4875 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4876 struct mdp_superblock_1 *sb = NULL; 4877 int sb_reshape_pos = 0; 4878 4879 conf->cluster_sync_low = sector_nr; 4880 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4881 sb = page_address(rdev->sb_page); 4882 if (sb) { 4883 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4884 /* 4885 * Set cluster_sync_low again if next address for array 4886 * reshape is less than cluster_sync_low. Since we can't 4887 * update cluster_sync_low until it has finished reshape. 4888 */ 4889 if (sb_reshape_pos < conf->cluster_sync_low) 4890 conf->cluster_sync_low = sb_reshape_pos; 4891 } 4892 4893 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4894 conf->cluster_sync_high); 4895 } 4896 4897 /* Now find the locations in the new layout */ 4898 __raid10_find_phys(&conf->geo, r10_bio); 4899 4900 blist = read_bio; 4901 read_bio->bi_next = NULL; 4902 4903 rcu_read_lock(); 4904 for (s = 0; s < conf->copies*2; s++) { 4905 struct bio *b; 4906 int d = r10_bio->devs[s/2].devnum; 4907 struct md_rdev *rdev2; 4908 if (s&1) { 4909 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4910 b = r10_bio->devs[s/2].repl_bio; 4911 } else { 4912 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4913 b = r10_bio->devs[s/2].bio; 4914 } 4915 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4916 continue; 4917 4918 bio_set_dev(b, rdev2->bdev); 4919 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4920 rdev2->new_data_offset; 4921 b->bi_end_io = end_reshape_write; 4922 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4923 b->bi_next = blist; 4924 blist = b; 4925 } 4926 4927 /* Now add as many pages as possible to all of these bios. */ 4928 4929 nr_sectors = 0; 4930 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4931 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4932 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4933 int len = (max_sectors - s) << 9; 4934 if (len > PAGE_SIZE) 4935 len = PAGE_SIZE; 4936 for (bio = blist; bio ; bio = bio->bi_next) { 4937 /* 4938 * won't fail because the vec table is big enough 4939 * to hold all these pages 4940 */ 4941 bio_add_page(bio, page, len, 0); 4942 } 4943 sector_nr += len >> 9; 4944 nr_sectors += len >> 9; 4945 } 4946 rcu_read_unlock(); 4947 r10_bio->sectors = nr_sectors; 4948 4949 /* Now submit the read */ 4950 md_sync_acct_bio(read_bio, r10_bio->sectors); 4951 atomic_inc(&r10_bio->remaining); 4952 read_bio->bi_next = NULL; 4953 submit_bio_noacct(read_bio); 4954 sectors_done += nr_sectors; 4955 if (sector_nr <= last) 4956 goto read_more; 4957 4958 lower_barrier(conf); 4959 4960 /* Now that we have done the whole section we can 4961 * update reshape_progress 4962 */ 4963 if (mddev->reshape_backwards) 4964 conf->reshape_progress -= sectors_done; 4965 else 4966 conf->reshape_progress += sectors_done; 4967 4968 return sectors_done; 4969 } 4970 4971 static void end_reshape_request(struct r10bio *r10_bio); 4972 static int handle_reshape_read_error(struct mddev *mddev, 4973 struct r10bio *r10_bio); 4974 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4975 { 4976 /* Reshape read completed. Hopefully we have a block 4977 * to write out. 4978 * If we got a read error then we do sync 1-page reads from 4979 * elsewhere until we find the data - or give up. 4980 */ 4981 struct r10conf *conf = mddev->private; 4982 int s; 4983 4984 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4985 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4986 /* Reshape has been aborted */ 4987 md_done_sync(mddev, r10_bio->sectors, 0); 4988 return; 4989 } 4990 4991 /* We definitely have the data in the pages, schedule the 4992 * writes. 4993 */ 4994 atomic_set(&r10_bio->remaining, 1); 4995 for (s = 0; s < conf->copies*2; s++) { 4996 struct bio *b; 4997 int d = r10_bio->devs[s/2].devnum; 4998 struct md_rdev *rdev; 4999 rcu_read_lock(); 5000 if (s&1) { 5001 rdev = rcu_dereference(conf->mirrors[d].replacement); 5002 b = r10_bio->devs[s/2].repl_bio; 5003 } else { 5004 rdev = rcu_dereference(conf->mirrors[d].rdev); 5005 b = r10_bio->devs[s/2].bio; 5006 } 5007 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5008 rcu_read_unlock(); 5009 continue; 5010 } 5011 atomic_inc(&rdev->nr_pending); 5012 rcu_read_unlock(); 5013 md_sync_acct_bio(b, r10_bio->sectors); 5014 atomic_inc(&r10_bio->remaining); 5015 b->bi_next = NULL; 5016 submit_bio_noacct(b); 5017 } 5018 end_reshape_request(r10_bio); 5019 } 5020 5021 static void end_reshape(struct r10conf *conf) 5022 { 5023 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5024 return; 5025 5026 spin_lock_irq(&conf->device_lock); 5027 conf->prev = conf->geo; 5028 md_finish_reshape(conf->mddev); 5029 smp_wmb(); 5030 conf->reshape_progress = MaxSector; 5031 conf->reshape_safe = MaxSector; 5032 spin_unlock_irq(&conf->device_lock); 5033 5034 if (conf->mddev->queue) 5035 raid10_set_io_opt(conf); 5036 conf->fullsync = 0; 5037 } 5038 5039 static void raid10_update_reshape_pos(struct mddev *mddev) 5040 { 5041 struct r10conf *conf = mddev->private; 5042 sector_t lo, hi; 5043 5044 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5045 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5046 || mddev->reshape_position == MaxSector) 5047 conf->reshape_progress = mddev->reshape_position; 5048 else 5049 WARN_ON_ONCE(1); 5050 } 5051 5052 static int handle_reshape_read_error(struct mddev *mddev, 5053 struct r10bio *r10_bio) 5054 { 5055 /* Use sync reads to get the blocks from somewhere else */ 5056 int sectors = r10_bio->sectors; 5057 struct r10conf *conf = mddev->private; 5058 struct r10bio *r10b; 5059 int slot = 0; 5060 int idx = 0; 5061 struct page **pages; 5062 5063 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5064 if (!r10b) { 5065 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5066 return -ENOMEM; 5067 } 5068 5069 /* reshape IOs share pages from .devs[0].bio */ 5070 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5071 5072 r10b->sector = r10_bio->sector; 5073 __raid10_find_phys(&conf->prev, r10b); 5074 5075 while (sectors) { 5076 int s = sectors; 5077 int success = 0; 5078 int first_slot = slot; 5079 5080 if (s > (PAGE_SIZE >> 9)) 5081 s = PAGE_SIZE >> 9; 5082 5083 rcu_read_lock(); 5084 while (!success) { 5085 int d = r10b->devs[slot].devnum; 5086 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5087 sector_t addr; 5088 if (rdev == NULL || 5089 test_bit(Faulty, &rdev->flags) || 5090 !test_bit(In_sync, &rdev->flags)) 5091 goto failed; 5092 5093 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5094 atomic_inc(&rdev->nr_pending); 5095 rcu_read_unlock(); 5096 success = sync_page_io(rdev, 5097 addr, 5098 s << 9, 5099 pages[idx], 5100 REQ_OP_READ, 0, false); 5101 rdev_dec_pending(rdev, mddev); 5102 rcu_read_lock(); 5103 if (success) 5104 break; 5105 failed: 5106 slot++; 5107 if (slot >= conf->copies) 5108 slot = 0; 5109 if (slot == first_slot) 5110 break; 5111 } 5112 rcu_read_unlock(); 5113 if (!success) { 5114 /* couldn't read this block, must give up */ 5115 set_bit(MD_RECOVERY_INTR, 5116 &mddev->recovery); 5117 kfree(r10b); 5118 return -EIO; 5119 } 5120 sectors -= s; 5121 idx++; 5122 } 5123 kfree(r10b); 5124 return 0; 5125 } 5126 5127 static void end_reshape_write(struct bio *bio) 5128 { 5129 struct r10bio *r10_bio = get_resync_r10bio(bio); 5130 struct mddev *mddev = r10_bio->mddev; 5131 struct r10conf *conf = mddev->private; 5132 int d; 5133 int slot; 5134 int repl; 5135 struct md_rdev *rdev = NULL; 5136 5137 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5138 if (repl) 5139 rdev = conf->mirrors[d].replacement; 5140 if (!rdev) { 5141 smp_mb(); 5142 rdev = conf->mirrors[d].rdev; 5143 } 5144 5145 if (bio->bi_status) { 5146 /* FIXME should record badblock */ 5147 md_error(mddev, rdev); 5148 } 5149 5150 rdev_dec_pending(rdev, mddev); 5151 end_reshape_request(r10_bio); 5152 } 5153 5154 static void end_reshape_request(struct r10bio *r10_bio) 5155 { 5156 if (!atomic_dec_and_test(&r10_bio->remaining)) 5157 return; 5158 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5159 bio_put(r10_bio->master_bio); 5160 put_buf(r10_bio); 5161 } 5162 5163 static void raid10_finish_reshape(struct mddev *mddev) 5164 { 5165 struct r10conf *conf = mddev->private; 5166 5167 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5168 return; 5169 5170 if (mddev->delta_disks > 0) { 5171 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5172 mddev->recovery_cp = mddev->resync_max_sectors; 5173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5174 } 5175 mddev->resync_max_sectors = mddev->array_sectors; 5176 } else { 5177 int d; 5178 rcu_read_lock(); 5179 for (d = conf->geo.raid_disks ; 5180 d < conf->geo.raid_disks - mddev->delta_disks; 5181 d++) { 5182 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5183 if (rdev) 5184 clear_bit(In_sync, &rdev->flags); 5185 rdev = rcu_dereference(conf->mirrors[d].replacement); 5186 if (rdev) 5187 clear_bit(In_sync, &rdev->flags); 5188 } 5189 rcu_read_unlock(); 5190 } 5191 mddev->layout = mddev->new_layout; 5192 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5193 mddev->reshape_position = MaxSector; 5194 mddev->delta_disks = 0; 5195 mddev->reshape_backwards = 0; 5196 } 5197 5198 static struct md_personality raid10_personality = 5199 { 5200 .name = "raid10", 5201 .level = 10, 5202 .owner = THIS_MODULE, 5203 .make_request = raid10_make_request, 5204 .run = raid10_run, 5205 .free = raid10_free, 5206 .status = raid10_status, 5207 .error_handler = raid10_error, 5208 .hot_add_disk = raid10_add_disk, 5209 .hot_remove_disk= raid10_remove_disk, 5210 .spare_active = raid10_spare_active, 5211 .sync_request = raid10_sync_request, 5212 .quiesce = raid10_quiesce, 5213 .size = raid10_size, 5214 .resize = raid10_resize, 5215 .takeover = raid10_takeover, 5216 .check_reshape = raid10_check_reshape, 5217 .start_reshape = raid10_start_reshape, 5218 .finish_reshape = raid10_finish_reshape, 5219 .update_reshape_pos = raid10_update_reshape_pos, 5220 }; 5221 5222 static int __init raid_init(void) 5223 { 5224 return register_md_personality(&raid10_personality); 5225 } 5226 5227 static void raid_exit(void) 5228 { 5229 unregister_md_personality(&raid10_personality); 5230 } 5231 5232 module_init(raid_init); 5233 module_exit(raid_exit); 5234 MODULE_LICENSE("GPL"); 5235 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5236 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5237 MODULE_ALIAS("md-raid10"); 5238 MODULE_ALIAS("md-level-10"); 5239 5240 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 5241