xref: /openbmc/linux/drivers/md/raid10.c (revision 33ac9dba)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct r10bio *r10_bio = bio->bi_private;
446 	int dev;
447 	int dec_rdev = 1;
448 	struct r10conf *conf = r10_bio->mddev->private;
449 	int slot, repl;
450 	struct md_rdev *rdev = NULL;
451 
452 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 
454 	if (repl)
455 		rdev = conf->mirrors[dev].replacement;
456 	if (!rdev) {
457 		smp_rmb();
458 		repl = 0;
459 		rdev = conf->mirrors[dev].rdev;
460 	}
461 	/*
462 	 * this branch is our 'one mirror IO has finished' event handler:
463 	 */
464 	if (!uptodate) {
465 		if (repl)
466 			/* Never record new bad blocks to replacement,
467 			 * just fail it.
468 			 */
469 			md_error(rdev->mddev, rdev);
470 		else {
471 			set_bit(WriteErrorSeen,	&rdev->flags);
472 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 				set_bit(MD_RECOVERY_NEEDED,
474 					&rdev->mddev->recovery);
475 			set_bit(R10BIO_WriteError, &r10_bio->state);
476 			dec_rdev = 0;
477 		}
478 	} else {
479 		/*
480 		 * Set R10BIO_Uptodate in our master bio, so that
481 		 * we will return a good error code for to the higher
482 		 * levels even if IO on some other mirrored buffer fails.
483 		 *
484 		 * The 'master' represents the composite IO operation to
485 		 * user-side. So if something waits for IO, then it will
486 		 * wait for the 'master' bio.
487 		 */
488 		sector_t first_bad;
489 		int bad_sectors;
490 
491 		/*
492 		 * Do not set R10BIO_Uptodate if the current device is
493 		 * rebuilding or Faulty. This is because we cannot use
494 		 * such device for properly reading the data back (we could
495 		 * potentially use it, if the current write would have felt
496 		 * before rdev->recovery_offset, but for simplicity we don't
497 		 * check this here.
498 		 */
499 		if (test_bit(In_sync, &rdev->flags) &&
500 		    !test_bit(Faulty, &rdev->flags))
501 			set_bit(R10BIO_Uptodate, &r10_bio->state);
502 
503 		/* Maybe we can clear some bad blocks. */
504 		if (is_badblock(rdev,
505 				r10_bio->devs[slot].addr,
506 				r10_bio->sectors,
507 				&first_bad, &bad_sectors)) {
508 			bio_put(bio);
509 			if (repl)
510 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 			else
512 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 			dec_rdev = 0;
514 			set_bit(R10BIO_MadeGood, &r10_bio->state);
515 		}
516 	}
517 
518 	/*
519 	 *
520 	 * Let's see if all mirrored write operations have finished
521 	 * already.
522 	 */
523 	one_write_done(r10_bio);
524 	if (dec_rdev)
525 		rdev_dec_pending(rdev, conf->mddev);
526 }
527 
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552 
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 	int n,f;
556 	sector_t sector;
557 	sector_t chunk;
558 	sector_t stripe;
559 	int dev;
560 	int slot = 0;
561 	int last_far_set_start, last_far_set_size;
562 
563 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 	last_far_set_start *= geo->far_set_size;
565 
566 	last_far_set_size = geo->far_set_size;
567 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 
569 	/* now calculate first sector/dev */
570 	chunk = r10bio->sector >> geo->chunk_shift;
571 	sector = r10bio->sector & geo->chunk_mask;
572 
573 	chunk *= geo->near_copies;
574 	stripe = chunk;
575 	dev = sector_div(stripe, geo->raid_disks);
576 	if (geo->far_offset)
577 		stripe *= geo->far_copies;
578 
579 	sector += stripe << geo->chunk_shift;
580 
581 	/* and calculate all the others */
582 	for (n = 0; n < geo->near_copies; n++) {
583 		int d = dev;
584 		int set;
585 		sector_t s = sector;
586 		r10bio->devs[slot].devnum = d;
587 		r10bio->devs[slot].addr = s;
588 		slot++;
589 
590 		for (f = 1; f < geo->far_copies; f++) {
591 			set = d / geo->far_set_size;
592 			d += geo->near_copies;
593 
594 			if ((geo->raid_disks % geo->far_set_size) &&
595 			    (d > last_far_set_start)) {
596 				d -= last_far_set_start;
597 				d %= last_far_set_size;
598 				d += last_far_set_start;
599 			} else {
600 				d %= geo->far_set_size;
601 				d += geo->far_set_size * set;
602 			}
603 			s += geo->stride;
604 			r10bio->devs[slot].devnum = d;
605 			r10bio->devs[slot].addr = s;
606 			slot++;
607 		}
608 		dev++;
609 		if (dev >= geo->raid_disks) {
610 			dev = 0;
611 			sector += (geo->chunk_mask + 1);
612 		}
613 	}
614 }
615 
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 	struct geom *geo = &conf->geo;
619 
620 	if (conf->reshape_progress != MaxSector &&
621 	    ((r10bio->sector >= conf->reshape_progress) !=
622 	     conf->mddev->reshape_backwards)) {
623 		set_bit(R10BIO_Previous, &r10bio->state);
624 		geo = &conf->prev;
625 	} else
626 		clear_bit(R10BIO_Previous, &r10bio->state);
627 
628 	__raid10_find_phys(geo, r10bio);
629 }
630 
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 	sector_t offset, chunk, vchunk;
634 	/* Never use conf->prev as this is only called during resync
635 	 * or recovery, so reshape isn't happening
636 	 */
637 	struct geom *geo = &conf->geo;
638 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 	int far_set_size = geo->far_set_size;
640 	int last_far_set_start;
641 
642 	if (geo->raid_disks % geo->far_set_size) {
643 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 		last_far_set_start *= geo->far_set_size;
645 
646 		if (dev >= last_far_set_start) {
647 			far_set_size = geo->far_set_size;
648 			far_set_size += (geo->raid_disks % geo->far_set_size);
649 			far_set_start = last_far_set_start;
650 		}
651 	}
652 
653 	offset = sector & geo->chunk_mask;
654 	if (geo->far_offset) {
655 		int fc;
656 		chunk = sector >> geo->chunk_shift;
657 		fc = sector_div(chunk, geo->far_copies);
658 		dev -= fc * geo->near_copies;
659 		if (dev < far_set_start)
660 			dev += far_set_size;
661 	} else {
662 		while (sector >= geo->stride) {
663 			sector -= geo->stride;
664 			if (dev < (geo->near_copies + far_set_start))
665 				dev += far_set_size - geo->near_copies;
666 			else
667 				dev -= geo->near_copies;
668 		}
669 		chunk = sector >> geo->chunk_shift;
670 	}
671 	vchunk = chunk * geo->raid_disks + dev;
672 	sector_div(vchunk, geo->near_copies);
673 	return (vchunk << geo->chunk_shift) + offset;
674 }
675 
676 /**
677  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *	@q: request queue
679  *	@bvm: properties of new bio
680  *	@biovec: the request that could be merged to it.
681  *
682  *	Return amount of bytes we can accept at this offset
683  *	This requires checking for end-of-chunk if near_copies != raid_disks,
684  *	and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 				 struct bvec_merge_data *bvm,
688 				 struct bio_vec *biovec)
689 {
690 	struct mddev *mddev = q->queuedata;
691 	struct r10conf *conf = mddev->private;
692 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 	int max;
694 	unsigned int chunk_sectors;
695 	unsigned int bio_sectors = bvm->bi_size >> 9;
696 	struct geom *geo = &conf->geo;
697 
698 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 	if (conf->reshape_progress != MaxSector &&
700 	    ((sector >= conf->reshape_progress) !=
701 	     conf->mddev->reshape_backwards))
702 		geo = &conf->prev;
703 
704 	if (geo->near_copies < geo->raid_disks) {
705 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 					+ bio_sectors)) << 9;
707 		if (max < 0)
708 			/* bio_add cannot handle a negative return */
709 			max = 0;
710 		if (max <= biovec->bv_len && bio_sectors == 0)
711 			return biovec->bv_len;
712 	} else
713 		max = biovec->bv_len;
714 
715 	if (mddev->merge_check_needed) {
716 		struct {
717 			struct r10bio r10_bio;
718 			struct r10dev devs[conf->copies];
719 		} on_stack;
720 		struct r10bio *r10_bio = &on_stack.r10_bio;
721 		int s;
722 		if (conf->reshape_progress != MaxSector) {
723 			/* Cannot give any guidance during reshape */
724 			if (max <= biovec->bv_len && bio_sectors == 0)
725 				return biovec->bv_len;
726 			return 0;
727 		}
728 		r10_bio->sector = sector;
729 		raid10_find_phys(conf, r10_bio);
730 		rcu_read_lock();
731 		for (s = 0; s < conf->copies; s++) {
732 			int disk = r10_bio->devs[s].devnum;
733 			struct md_rdev *rdev = rcu_dereference(
734 				conf->mirrors[disk].rdev);
735 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 				struct request_queue *q =
737 					bdev_get_queue(rdev->bdev);
738 				if (q->merge_bvec_fn) {
739 					bvm->bi_sector = r10_bio->devs[s].addr
740 						+ rdev->data_offset;
741 					bvm->bi_bdev = rdev->bdev;
742 					max = min(max, q->merge_bvec_fn(
743 							  q, bvm, biovec));
744 				}
745 			}
746 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 				struct request_queue *q =
749 					bdev_get_queue(rdev->bdev);
750 				if (q->merge_bvec_fn) {
751 					bvm->bi_sector = r10_bio->devs[s].addr
752 						+ rdev->data_offset;
753 					bvm->bi_bdev = rdev->bdev;
754 					max = min(max, q->merge_bvec_fn(
755 							  q, bvm, biovec));
756 				}
757 			}
758 		}
759 		rcu_read_unlock();
760 	}
761 	return max;
762 }
763 
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778 
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 				    struct r10bio *r10_bio,
785 				    int *max_sectors)
786 {
787 	const sector_t this_sector = r10_bio->sector;
788 	int disk, slot;
789 	int sectors = r10_bio->sectors;
790 	int best_good_sectors;
791 	sector_t new_distance, best_dist;
792 	struct md_rdev *best_rdev, *rdev = NULL;
793 	int do_balance;
794 	int best_slot;
795 	struct geom *geo = &conf->geo;
796 
797 	raid10_find_phys(conf, r10_bio);
798 	rcu_read_lock();
799 retry:
800 	sectors = r10_bio->sectors;
801 	best_slot = -1;
802 	best_rdev = NULL;
803 	best_dist = MaxSector;
804 	best_good_sectors = 0;
805 	do_balance = 1;
806 	/*
807 	 * Check if we can balance. We can balance on the whole
808 	 * device if no resync is going on (recovery is ok), or below
809 	 * the resync window. We take the first readable disk when
810 	 * above the resync window.
811 	 */
812 	if (conf->mddev->recovery_cp < MaxSector
813 	    && (this_sector + sectors >= conf->next_resync))
814 		do_balance = 0;
815 
816 	for (slot = 0; slot < conf->copies ; slot++) {
817 		sector_t first_bad;
818 		int bad_sectors;
819 		sector_t dev_sector;
820 
821 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 			continue;
823 		disk = r10_bio->devs[slot].devnum;
824 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 		    test_bit(Unmerged, &rdev->flags) ||
827 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 		if (rdev == NULL ||
830 		    test_bit(Faulty, &rdev->flags) ||
831 		    test_bit(Unmerged, &rdev->flags))
832 			continue;
833 		if (!test_bit(In_sync, &rdev->flags) &&
834 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 			continue;
836 
837 		dev_sector = r10_bio->devs[slot].addr;
838 		if (is_badblock(rdev, dev_sector, sectors,
839 				&first_bad, &bad_sectors)) {
840 			if (best_dist < MaxSector)
841 				/* Already have a better slot */
842 				continue;
843 			if (first_bad <= dev_sector) {
844 				/* Cannot read here.  If this is the
845 				 * 'primary' device, then we must not read
846 				 * beyond 'bad_sectors' from another device.
847 				 */
848 				bad_sectors -= (dev_sector - first_bad);
849 				if (!do_balance && sectors > bad_sectors)
850 					sectors = bad_sectors;
851 				if (best_good_sectors > sectors)
852 					best_good_sectors = sectors;
853 			} else {
854 				sector_t good_sectors =
855 					first_bad - dev_sector;
856 				if (good_sectors > best_good_sectors) {
857 					best_good_sectors = good_sectors;
858 					best_slot = slot;
859 					best_rdev = rdev;
860 				}
861 				if (!do_balance)
862 					/* Must read from here */
863 					break;
864 			}
865 			continue;
866 		} else
867 			best_good_sectors = sectors;
868 
869 		if (!do_balance)
870 			break;
871 
872 		/* This optimisation is debatable, and completely destroys
873 		 * sequential read speed for 'far copies' arrays.  So only
874 		 * keep it for 'near' arrays, and review those later.
875 		 */
876 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 			break;
878 
879 		/* for far > 1 always use the lowest address */
880 		if (geo->far_copies > 1)
881 			new_distance = r10_bio->devs[slot].addr;
882 		else
883 			new_distance = abs(r10_bio->devs[slot].addr -
884 					   conf->mirrors[disk].head_position);
885 		if (new_distance < best_dist) {
886 			best_dist = new_distance;
887 			best_slot = slot;
888 			best_rdev = rdev;
889 		}
890 	}
891 	if (slot >= conf->copies) {
892 		slot = best_slot;
893 		rdev = best_rdev;
894 	}
895 
896 	if (slot >= 0) {
897 		atomic_inc(&rdev->nr_pending);
898 		if (test_bit(Faulty, &rdev->flags)) {
899 			/* Cannot risk returning a device that failed
900 			 * before we inc'ed nr_pending
901 			 */
902 			rdev_dec_pending(rdev, conf->mddev);
903 			goto retry;
904 		}
905 		r10_bio->read_slot = slot;
906 	} else
907 		rdev = NULL;
908 	rcu_read_unlock();
909 	*max_sectors = best_good_sectors;
910 
911 	return rdev;
912 }
913 
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 	struct r10conf *conf = mddev->private;
917 	int i, ret = 0;
918 
919 	if ((bits & (1 << BDI_async_congested)) &&
920 	    conf->pending_count >= max_queued_requests)
921 		return 1;
922 
923 	rcu_read_lock();
924 	for (i = 0;
925 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 		     && ret == 0;
927 	     i++) {
928 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 			struct request_queue *q = bdev_get_queue(rdev->bdev);
931 
932 			ret |= bdi_congested(&q->backing_dev_info, bits);
933 		}
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939 
940 static int raid10_congested(void *data, int bits)
941 {
942 	struct mddev *mddev = data;
943 
944 	return mddev_congested(mddev, bits) ||
945 		md_raid10_congested(mddev, bits);
946 }
947 
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 	/* Any writes that have been queued but are awaiting
951 	 * bitmap updates get flushed here.
952 	 */
953 	spin_lock_irq(&conf->device_lock);
954 
955 	if (conf->pending_bio_list.head) {
956 		struct bio *bio;
957 		bio = bio_list_get(&conf->pending_bio_list);
958 		conf->pending_count = 0;
959 		spin_unlock_irq(&conf->device_lock);
960 		/* flush any pending bitmap writes to disk
961 		 * before proceeding w/ I/O */
962 		bitmap_unplug(conf->mddev->bitmap);
963 		wake_up(&conf->wait_barrier);
964 
965 		while (bio) { /* submit pending writes */
966 			struct bio *next = bio->bi_next;
967 			bio->bi_next = NULL;
968 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 				/* Just ignore it */
971 				bio_endio(bio, 0);
972 			else
973 				generic_make_request(bio);
974 			bio = next;
975 		}
976 	} else
977 		spin_unlock_irq(&conf->device_lock);
978 }
979 
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001 
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 	BUG_ON(force && !conf->barrier);
1005 	spin_lock_irq(&conf->resync_lock);
1006 
1007 	/* Wait until no block IO is waiting (unless 'force') */
1008 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 			    conf->resync_lock);
1010 
1011 	/* block any new IO from starting */
1012 	conf->barrier++;
1013 
1014 	/* Now wait for all pending IO to complete */
1015 	wait_event_lock_irq(conf->wait_barrier,
1016 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 			    conf->resync_lock);
1018 
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 	unsigned long flags;
1025 	spin_lock_irqsave(&conf->resync_lock, flags);
1026 	conf->barrier--;
1027 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 	spin_lock_irq(&conf->resync_lock);
1034 	if (conf->barrier) {
1035 		conf->nr_waiting++;
1036 		/* Wait for the barrier to drop.
1037 		 * However if there are already pending
1038 		 * requests (preventing the barrier from
1039 		 * rising completely), and the
1040 		 * pre-process bio queue isn't empty,
1041 		 * then don't wait, as we need to empty
1042 		 * that queue to get the nr_pending
1043 		 * count down.
1044 		 */
1045 		wait_event_lock_irq(conf->wait_barrier,
1046 				    !conf->barrier ||
1047 				    (conf->nr_pending &&
1048 				     current->bio_list &&
1049 				     !bio_list_empty(current->bio_list)),
1050 				    conf->resync_lock);
1051 		conf->nr_waiting--;
1052 	}
1053 	conf->nr_pending++;
1054 	spin_unlock_irq(&conf->resync_lock);
1055 }
1056 
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	unsigned long flags;
1060 	spin_lock_irqsave(&conf->resync_lock, flags);
1061 	conf->nr_pending--;
1062 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->barrier++;
1082 	conf->nr_waiting++;
1083 	wait_event_lock_irq_cmd(conf->wait_barrier,
1084 				conf->nr_pending == conf->nr_queued+extra,
1085 				conf->resync_lock,
1086 				flush_pending_writes(conf));
1087 
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 	/* reverse the effect of the freeze */
1094 	spin_lock_irq(&conf->resync_lock);
1095 	conf->barrier--;
1096 	conf->nr_waiting--;
1097 	wake_up(&conf->wait_barrier);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 }
1100 
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 				   struct md_rdev *rdev)
1103 {
1104 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 	    test_bit(R10BIO_Previous, &r10_bio->state))
1106 		return rdev->data_offset;
1107 	else
1108 		return rdev->new_data_offset;
1109 }
1110 
1111 struct raid10_plug_cb {
1112 	struct blk_plug_cb	cb;
1113 	struct bio_list		pending;
1114 	int			pending_cnt;
1115 };
1116 
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 						   cb);
1121 	struct mddev *mddev = plug->cb.data;
1122 	struct r10conf *conf = mddev->private;
1123 	struct bio *bio;
1124 
1125 	if (from_schedule || current->bio_list) {
1126 		spin_lock_irq(&conf->device_lock);
1127 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 		conf->pending_count += plug->pending_cnt;
1129 		spin_unlock_irq(&conf->device_lock);
1130 		wake_up(&conf->wait_barrier);
1131 		md_wakeup_thread(mddev->thread);
1132 		kfree(plug);
1133 		return;
1134 	}
1135 
1136 	/* we aren't scheduling, so we can do the write-out directly. */
1137 	bio = bio_list_get(&plug->pending);
1138 	bitmap_unplug(mddev->bitmap);
1139 	wake_up(&conf->wait_barrier);
1140 
1141 	while (bio) { /* submit pending writes */
1142 		struct bio *next = bio->bi_next;
1143 		bio->bi_next = NULL;
1144 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio, 0);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static void __make_request(struct mddev *mddev, struct bio *bio)
1156 {
1157 	struct r10conf *conf = mddev->private;
1158 	struct r10bio *r10_bio;
1159 	struct bio *read_bio;
1160 	int i;
1161 	const int rw = bio_data_dir(bio);
1162 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164 	const unsigned long do_discard = (bio->bi_rw
1165 					  & (REQ_DISCARD | REQ_SECURE));
1166 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167 	unsigned long flags;
1168 	struct md_rdev *blocked_rdev;
1169 	struct blk_plug_cb *cb;
1170 	struct raid10_plug_cb *plug = NULL;
1171 	int sectors_handled;
1172 	int max_sectors;
1173 	int sectors;
1174 
1175 	/*
1176 	 * Register the new request and wait if the reconstruction
1177 	 * thread has put up a bar for new requests.
1178 	 * Continue immediately if no resync is active currently.
1179 	 */
1180 	wait_barrier(conf);
1181 
1182 	sectors = bio_sectors(bio);
1183 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1185 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186 		/* IO spans the reshape position.  Need to wait for
1187 		 * reshape to pass
1188 		 */
1189 		allow_barrier(conf);
1190 		wait_event(conf->wait_barrier,
1191 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1193 			   sectors);
1194 		wait_barrier(conf);
1195 	}
1196 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197 	    bio_data_dir(bio) == WRITE &&
1198 	    (mddev->reshape_backwards
1199 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203 		/* Need to update reshape_position in metadata */
1204 		mddev->reshape_position = conf->reshape_progress;
1205 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207 		md_wakeup_thread(mddev->thread);
1208 		wait_event(mddev->sb_wait,
1209 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210 
1211 		conf->reshape_safe = mddev->reshape_position;
1212 	}
1213 
1214 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215 
1216 	r10_bio->master_bio = bio;
1217 	r10_bio->sectors = sectors;
1218 
1219 	r10_bio->mddev = mddev;
1220 	r10_bio->sector = bio->bi_iter.bi_sector;
1221 	r10_bio->state = 0;
1222 
1223 	/* We might need to issue multiple reads to different
1224 	 * devices if there are bad blocks around, so we keep
1225 	 * track of the number of reads in bio->bi_phys_segments.
1226 	 * If this is 0, there is only one r10_bio and no locking
1227 	 * will be needed when the request completes.  If it is
1228 	 * non-zero, then it is the number of not-completed requests.
1229 	 */
1230 	bio->bi_phys_segments = 0;
1231 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232 
1233 	if (rw == READ) {
1234 		/*
1235 		 * read balancing logic:
1236 		 */
1237 		struct md_rdev *rdev;
1238 		int slot;
1239 
1240 read_again:
1241 		rdev = read_balance(conf, r10_bio, &max_sectors);
1242 		if (!rdev) {
1243 			raid_end_bio_io(r10_bio);
1244 			return;
1245 		}
1246 		slot = r10_bio->read_slot;
1247 
1248 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250 			 max_sectors);
1251 
1252 		r10_bio->devs[slot].bio = read_bio;
1253 		r10_bio->devs[slot].rdev = rdev;
1254 
1255 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256 			choose_data_offset(r10_bio, rdev);
1257 		read_bio->bi_bdev = rdev->bdev;
1258 		read_bio->bi_end_io = raid10_end_read_request;
1259 		read_bio->bi_rw = READ | do_sync;
1260 		read_bio->bi_private = r10_bio;
1261 
1262 		if (max_sectors < r10_bio->sectors) {
1263 			/* Could not read all from this device, so we will
1264 			 * need another r10_bio.
1265 			 */
1266 			sectors_handled = (r10_bio->sector + max_sectors
1267 					   - bio->bi_iter.bi_sector);
1268 			r10_bio->sectors = max_sectors;
1269 			spin_lock_irq(&conf->device_lock);
1270 			if (bio->bi_phys_segments == 0)
1271 				bio->bi_phys_segments = 2;
1272 			else
1273 				bio->bi_phys_segments++;
1274 			spin_unlock_irq(&conf->device_lock);
1275 			/* Cannot call generic_make_request directly
1276 			 * as that will be queued in __generic_make_request
1277 			 * and subsequent mempool_alloc might block
1278 			 * waiting for it.  so hand bio over to raid10d.
1279 			 */
1280 			reschedule_retry(r10_bio);
1281 
1282 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283 
1284 			r10_bio->master_bio = bio;
1285 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286 			r10_bio->state = 0;
1287 			r10_bio->mddev = mddev;
1288 			r10_bio->sector = bio->bi_iter.bi_sector +
1289 				sectors_handled;
1290 			goto read_again;
1291 		} else
1292 			generic_make_request(read_bio);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * WRITE:
1298 	 */
1299 	if (conf->pending_count >= max_queued_requests) {
1300 		md_wakeup_thread(mddev->thread);
1301 		wait_event(conf->wait_barrier,
1302 			   conf->pending_count < max_queued_requests);
1303 	}
1304 	/* first select target devices under rcu_lock and
1305 	 * inc refcount on their rdev.  Record them by setting
1306 	 * bios[x] to bio
1307 	 * If there are known/acknowledged bad blocks on any device
1308 	 * on which we have seen a write error, we want to avoid
1309 	 * writing to those blocks.  This potentially requires several
1310 	 * writes to write around the bad blocks.  Each set of writes
1311 	 * gets its own r10_bio with a set of bios attached.  The number
1312 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1313 	 * the read case.
1314 	 */
1315 
1316 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317 	raid10_find_phys(conf, r10_bio);
1318 retry_write:
1319 	blocked_rdev = NULL;
1320 	rcu_read_lock();
1321 	max_sectors = r10_bio->sectors;
1322 
1323 	for (i = 0;  i < conf->copies; i++) {
1324 		int d = r10_bio->devs[i].devnum;
1325 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326 		struct md_rdev *rrdev = rcu_dereference(
1327 			conf->mirrors[d].replacement);
1328 		if (rdev == rrdev)
1329 			rrdev = NULL;
1330 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331 			atomic_inc(&rdev->nr_pending);
1332 			blocked_rdev = rdev;
1333 			break;
1334 		}
1335 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336 			atomic_inc(&rrdev->nr_pending);
1337 			blocked_rdev = rrdev;
1338 			break;
1339 		}
1340 		if (rdev && (test_bit(Faulty, &rdev->flags)
1341 			     || test_bit(Unmerged, &rdev->flags)))
1342 			rdev = NULL;
1343 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344 			      || test_bit(Unmerged, &rrdev->flags)))
1345 			rrdev = NULL;
1346 
1347 		r10_bio->devs[i].bio = NULL;
1348 		r10_bio->devs[i].repl_bio = NULL;
1349 
1350 		if (!rdev && !rrdev) {
1351 			set_bit(R10BIO_Degraded, &r10_bio->state);
1352 			continue;
1353 		}
1354 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355 			sector_t first_bad;
1356 			sector_t dev_sector = r10_bio->devs[i].addr;
1357 			int bad_sectors;
1358 			int is_bad;
1359 
1360 			is_bad = is_badblock(rdev, dev_sector,
1361 					     max_sectors,
1362 					     &first_bad, &bad_sectors);
1363 			if (is_bad < 0) {
1364 				/* Mustn't write here until the bad block
1365 				 * is acknowledged
1366 				 */
1367 				atomic_inc(&rdev->nr_pending);
1368 				set_bit(BlockedBadBlocks, &rdev->flags);
1369 				blocked_rdev = rdev;
1370 				break;
1371 			}
1372 			if (is_bad && first_bad <= dev_sector) {
1373 				/* Cannot write here at all */
1374 				bad_sectors -= (dev_sector - first_bad);
1375 				if (bad_sectors < max_sectors)
1376 					/* Mustn't write more than bad_sectors
1377 					 * to other devices yet
1378 					 */
1379 					max_sectors = bad_sectors;
1380 				/* We don't set R10BIO_Degraded as that
1381 				 * only applies if the disk is missing,
1382 				 * so it might be re-added, and we want to
1383 				 * know to recover this chunk.
1384 				 * In this case the device is here, and the
1385 				 * fact that this chunk is not in-sync is
1386 				 * recorded in the bad block log.
1387 				 */
1388 				continue;
1389 			}
1390 			if (is_bad) {
1391 				int good_sectors = first_bad - dev_sector;
1392 				if (good_sectors < max_sectors)
1393 					max_sectors = good_sectors;
1394 			}
1395 		}
1396 		if (rdev) {
1397 			r10_bio->devs[i].bio = bio;
1398 			atomic_inc(&rdev->nr_pending);
1399 		}
1400 		if (rrdev) {
1401 			r10_bio->devs[i].repl_bio = bio;
1402 			atomic_inc(&rrdev->nr_pending);
1403 		}
1404 	}
1405 	rcu_read_unlock();
1406 
1407 	if (unlikely(blocked_rdev)) {
1408 		/* Have to wait for this device to get unblocked, then retry */
1409 		int j;
1410 		int d;
1411 
1412 		for (j = 0; j < i; j++) {
1413 			if (r10_bio->devs[j].bio) {
1414 				d = r10_bio->devs[j].devnum;
1415 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416 			}
1417 			if (r10_bio->devs[j].repl_bio) {
1418 				struct md_rdev *rdev;
1419 				d = r10_bio->devs[j].devnum;
1420 				rdev = conf->mirrors[d].replacement;
1421 				if (!rdev) {
1422 					/* Race with remove_disk */
1423 					smp_mb();
1424 					rdev = conf->mirrors[d].rdev;
1425 				}
1426 				rdev_dec_pending(rdev, mddev);
1427 			}
1428 		}
1429 		allow_barrier(conf);
1430 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 		wait_barrier(conf);
1432 		goto retry_write;
1433 	}
1434 
1435 	if (max_sectors < r10_bio->sectors) {
1436 		/* We are splitting this into multiple parts, so
1437 		 * we need to prepare for allocating another r10_bio.
1438 		 */
1439 		r10_bio->sectors = max_sectors;
1440 		spin_lock_irq(&conf->device_lock);
1441 		if (bio->bi_phys_segments == 0)
1442 			bio->bi_phys_segments = 2;
1443 		else
1444 			bio->bi_phys_segments++;
1445 		spin_unlock_irq(&conf->device_lock);
1446 	}
1447 	sectors_handled = r10_bio->sector + max_sectors -
1448 		bio->bi_iter.bi_sector;
1449 
1450 	atomic_set(&r10_bio->remaining, 1);
1451 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452 
1453 	for (i = 0; i < conf->copies; i++) {
1454 		struct bio *mbio;
1455 		int d = r10_bio->devs[i].devnum;
1456 		if (r10_bio->devs[i].bio) {
1457 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1458 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460 				 max_sectors);
1461 			r10_bio->devs[i].bio = mbio;
1462 
1463 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1464 					   choose_data_offset(r10_bio,
1465 							      rdev));
1466 			mbio->bi_bdev = rdev->bdev;
1467 			mbio->bi_end_io	= raid10_end_write_request;
1468 			mbio->bi_rw =
1469 				WRITE | do_sync | do_fua | do_discard | do_same;
1470 			mbio->bi_private = r10_bio;
1471 
1472 			atomic_inc(&r10_bio->remaining);
1473 
1474 			cb = blk_check_plugged(raid10_unplug, mddev,
1475 					       sizeof(*plug));
1476 			if (cb)
1477 				plug = container_of(cb, struct raid10_plug_cb,
1478 						    cb);
1479 			else
1480 				plug = NULL;
1481 			spin_lock_irqsave(&conf->device_lock, flags);
1482 			if (plug) {
1483 				bio_list_add(&plug->pending, mbio);
1484 				plug->pending_cnt++;
1485 			} else {
1486 				bio_list_add(&conf->pending_bio_list, mbio);
1487 				conf->pending_count++;
1488 			}
1489 			spin_unlock_irqrestore(&conf->device_lock, flags);
1490 			if (!plug)
1491 				md_wakeup_thread(mddev->thread);
1492 		}
1493 
1494 		if (r10_bio->devs[i].repl_bio) {
1495 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1496 			if (rdev == NULL) {
1497 				/* Replacement just got moved to main 'rdev' */
1498 				smp_mb();
1499 				rdev = conf->mirrors[d].rdev;
1500 			}
1501 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503 				 max_sectors);
1504 			r10_bio->devs[i].repl_bio = mbio;
1505 
1506 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1507 					   choose_data_offset(
1508 						   r10_bio, rdev));
1509 			mbio->bi_bdev = rdev->bdev;
1510 			mbio->bi_end_io	= raid10_end_write_request;
1511 			mbio->bi_rw =
1512 				WRITE | do_sync | do_fua | do_discard | do_same;
1513 			mbio->bi_private = r10_bio;
1514 
1515 			atomic_inc(&r10_bio->remaining);
1516 			spin_lock_irqsave(&conf->device_lock, flags);
1517 			bio_list_add(&conf->pending_bio_list, mbio);
1518 			conf->pending_count++;
1519 			spin_unlock_irqrestore(&conf->device_lock, flags);
1520 			if (!mddev_check_plugged(mddev))
1521 				md_wakeup_thread(mddev->thread);
1522 		}
1523 	}
1524 
1525 	/* Don't remove the bias on 'remaining' (one_write_done) until
1526 	 * after checking if we need to go around again.
1527 	 */
1528 
1529 	if (sectors_handled < bio_sectors(bio)) {
1530 		one_write_done(r10_bio);
1531 		/* We need another r10_bio.  It has already been counted
1532 		 * in bio->bi_phys_segments.
1533 		 */
1534 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535 
1536 		r10_bio->master_bio = bio;
1537 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538 
1539 		r10_bio->mddev = mddev;
1540 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541 		r10_bio->state = 0;
1542 		goto retry_write;
1543 	}
1544 	one_write_done(r10_bio);
1545 }
1546 
1547 static void make_request(struct mddev *mddev, struct bio *bio)
1548 {
1549 	struct r10conf *conf = mddev->private;
1550 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551 	int chunk_sects = chunk_mask + 1;
1552 
1553 	struct bio *split;
1554 
1555 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556 		md_flush_request(mddev, bio);
1557 		return;
1558 	}
1559 
1560 	md_write_start(mddev, bio);
1561 
1562 
1563 	do {
1564 
1565 		/*
1566 		 * If this request crosses a chunk boundary, we need to split
1567 		 * it.
1568 		 */
1569 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570 			     bio_sectors(bio) > chunk_sects
1571 			     && (conf->geo.near_copies < conf->geo.raid_disks
1572 				 || conf->prev.near_copies <
1573 				 conf->prev.raid_disks))) {
1574 			split = bio_split(bio, chunk_sects -
1575 					  (bio->bi_iter.bi_sector &
1576 					   (chunk_sects - 1)),
1577 					  GFP_NOIO, fs_bio_set);
1578 			bio_chain(split, bio);
1579 		} else {
1580 			split = bio;
1581 		}
1582 
1583 		__make_request(mddev, split);
1584 	} while (split != bio);
1585 
1586 	/* In case raid10d snuck in to freeze_array */
1587 	wake_up(&conf->wait_barrier);
1588 }
1589 
1590 static void status(struct seq_file *seq, struct mddev *mddev)
1591 {
1592 	struct r10conf *conf = mddev->private;
1593 	int i;
1594 
1595 	if (conf->geo.near_copies < conf->geo.raid_disks)
1596 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597 	if (conf->geo.near_copies > 1)
1598 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599 	if (conf->geo.far_copies > 1) {
1600 		if (conf->geo.far_offset)
1601 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602 		else
1603 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1604 	}
1605 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 					conf->geo.raid_disks - mddev->degraded);
1607 	for (i = 0; i < conf->geo.raid_disks; i++)
1608 		seq_printf(seq, "%s",
1609 			      conf->mirrors[i].rdev &&
1610 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1611 	seq_printf(seq, "]");
1612 }
1613 
1614 /* check if there are enough drives for
1615  * every block to appear on atleast one.
1616  * Don't consider the device numbered 'ignore'
1617  * as we might be about to remove it.
1618  */
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1620 {
1621 	int first = 0;
1622 	int has_enough = 0;
1623 	int disks, ncopies;
1624 	if (previous) {
1625 		disks = conf->prev.raid_disks;
1626 		ncopies = conf->prev.near_copies;
1627 	} else {
1628 		disks = conf->geo.raid_disks;
1629 		ncopies = conf->geo.near_copies;
1630 	}
1631 
1632 	rcu_read_lock();
1633 	do {
1634 		int n = conf->copies;
1635 		int cnt = 0;
1636 		int this = first;
1637 		while (n--) {
1638 			struct md_rdev *rdev;
1639 			if (this != ignore &&
1640 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 			    test_bit(In_sync, &rdev->flags))
1642 				cnt++;
1643 			this = (this+1) % disks;
1644 		}
1645 		if (cnt == 0)
1646 			goto out;
1647 		first = (first + ncopies) % disks;
1648 	} while (first != 0);
1649 	has_enough = 1;
1650 out:
1651 	rcu_read_unlock();
1652 	return has_enough;
1653 }
1654 
1655 static int enough(struct r10conf *conf, int ignore)
1656 {
1657 	/* when calling 'enough', both 'prev' and 'geo' must
1658 	 * be stable.
1659 	 * This is ensured if ->reconfig_mutex or ->device_lock
1660 	 * is held.
1661 	 */
1662 	return _enough(conf, 0, ignore) &&
1663 		_enough(conf, 1, ignore);
1664 }
1665 
1666 static void error(struct mddev *mddev, struct md_rdev *rdev)
1667 {
1668 	char b[BDEVNAME_SIZE];
1669 	struct r10conf *conf = mddev->private;
1670 	unsigned long flags;
1671 
1672 	/*
1673 	 * If it is not operational, then we have already marked it as dead
1674 	 * else if it is the last working disks, ignore the error, let the
1675 	 * next level up know.
1676 	 * else mark the drive as failed
1677 	 */
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 	if (test_bit(In_sync, &rdev->flags)
1680 	    && !enough(conf, rdev->raid_disk)) {
1681 		/*
1682 		 * Don't fail the drive, just return an IO error.
1683 		 */
1684 		spin_unlock_irqrestore(&conf->device_lock, flags);
1685 		return;
1686 	}
1687 	if (test_and_clear_bit(In_sync, &rdev->flags))
1688 		mddev->degraded++;
1689 	/*
1690 	 * If recovery is running, make sure it aborts.
1691 	 */
1692 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693 	set_bit(Blocked, &rdev->flags);
1694 	set_bit(Faulty, &rdev->flags);
1695 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696 	spin_unlock_irqrestore(&conf->device_lock, flags);
1697 	printk(KERN_ALERT
1698 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1700 	       mdname(mddev), bdevname(rdev->bdev, b),
1701 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702 }
1703 
1704 static void print_conf(struct r10conf *conf)
1705 {
1706 	int i;
1707 	struct raid10_info *tmp;
1708 
1709 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1710 	if (!conf) {
1711 		printk(KERN_DEBUG "(!conf)\n");
1712 		return;
1713 	}
1714 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715 		conf->geo.raid_disks);
1716 
1717 	for (i = 0; i < conf->geo.raid_disks; i++) {
1718 		char b[BDEVNAME_SIZE];
1719 		tmp = conf->mirrors + i;
1720 		if (tmp->rdev)
1721 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1722 				i, !test_bit(In_sync, &tmp->rdev->flags),
1723 			        !test_bit(Faulty, &tmp->rdev->flags),
1724 				bdevname(tmp->rdev->bdev,b));
1725 	}
1726 }
1727 
1728 static void close_sync(struct r10conf *conf)
1729 {
1730 	wait_barrier(conf);
1731 	allow_barrier(conf);
1732 
1733 	mempool_destroy(conf->r10buf_pool);
1734 	conf->r10buf_pool = NULL;
1735 }
1736 
1737 static int raid10_spare_active(struct mddev *mddev)
1738 {
1739 	int i;
1740 	struct r10conf *conf = mddev->private;
1741 	struct raid10_info *tmp;
1742 	int count = 0;
1743 	unsigned long flags;
1744 
1745 	/*
1746 	 * Find all non-in_sync disks within the RAID10 configuration
1747 	 * and mark them in_sync
1748 	 */
1749 	for (i = 0; i < conf->geo.raid_disks; i++) {
1750 		tmp = conf->mirrors + i;
1751 		if (tmp->replacement
1752 		    && tmp->replacement->recovery_offset == MaxSector
1753 		    && !test_bit(Faulty, &tmp->replacement->flags)
1754 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1755 			/* Replacement has just become active */
1756 			if (!tmp->rdev
1757 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1758 				count++;
1759 			if (tmp->rdev) {
1760 				/* Replaced device not technically faulty,
1761 				 * but we need to be sure it gets removed
1762 				 * and never re-added.
1763 				 */
1764 				set_bit(Faulty, &tmp->rdev->flags);
1765 				sysfs_notify_dirent_safe(
1766 					tmp->rdev->sysfs_state);
1767 			}
1768 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1769 		} else if (tmp->rdev
1770 			   && tmp->rdev->recovery_offset == MaxSector
1771 			   && !test_bit(Faulty, &tmp->rdev->flags)
1772 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1773 			count++;
1774 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1775 		}
1776 	}
1777 	spin_lock_irqsave(&conf->device_lock, flags);
1778 	mddev->degraded -= count;
1779 	spin_unlock_irqrestore(&conf->device_lock, flags);
1780 
1781 	print_conf(conf);
1782 	return count;
1783 }
1784 
1785 
1786 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1787 {
1788 	struct r10conf *conf = mddev->private;
1789 	int err = -EEXIST;
1790 	int mirror;
1791 	int first = 0;
1792 	int last = conf->geo.raid_disks - 1;
1793 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1794 
1795 	if (mddev->recovery_cp < MaxSector)
1796 		/* only hot-add to in-sync arrays, as recovery is
1797 		 * very different from resync
1798 		 */
1799 		return -EBUSY;
1800 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801 		return -EINVAL;
1802 
1803 	if (rdev->raid_disk >= 0)
1804 		first = last = rdev->raid_disk;
1805 
1806 	if (q->merge_bvec_fn) {
1807 		set_bit(Unmerged, &rdev->flags);
1808 		mddev->merge_check_needed = 1;
1809 	}
1810 
1811 	if (rdev->saved_raid_disk >= first &&
1812 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1813 		mirror = rdev->saved_raid_disk;
1814 	else
1815 		mirror = first;
1816 	for ( ; mirror <= last ; mirror++) {
1817 		struct raid10_info *p = &conf->mirrors[mirror];
1818 		if (p->recovery_disabled == mddev->recovery_disabled)
1819 			continue;
1820 		if (p->rdev) {
1821 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1822 			    p->replacement != NULL)
1823 				continue;
1824 			clear_bit(In_sync, &rdev->flags);
1825 			set_bit(Replacement, &rdev->flags);
1826 			rdev->raid_disk = mirror;
1827 			err = 0;
1828 			if (mddev->gendisk)
1829 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 						  rdev->data_offset << 9);
1831 			conf->fullsync = 1;
1832 			rcu_assign_pointer(p->replacement, rdev);
1833 			break;
1834 		}
1835 
1836 		if (mddev->gendisk)
1837 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1838 					  rdev->data_offset << 9);
1839 
1840 		p->head_position = 0;
1841 		p->recovery_disabled = mddev->recovery_disabled - 1;
1842 		rdev->raid_disk = mirror;
1843 		err = 0;
1844 		if (rdev->saved_raid_disk != mirror)
1845 			conf->fullsync = 1;
1846 		rcu_assign_pointer(p->rdev, rdev);
1847 		break;
1848 	}
1849 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1850 		/* Some requests might not have seen this new
1851 		 * merge_bvec_fn.  We must wait for them to complete
1852 		 * before merging the device fully.
1853 		 * First we make sure any code which has tested
1854 		 * our function has submitted the request, then
1855 		 * we wait for all outstanding requests to complete.
1856 		 */
1857 		synchronize_sched();
1858 		freeze_array(conf, 0);
1859 		unfreeze_array(conf);
1860 		clear_bit(Unmerged, &rdev->flags);
1861 	}
1862 	md_integrity_add_rdev(rdev, mddev);
1863 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1864 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1865 
1866 	print_conf(conf);
1867 	return err;
1868 }
1869 
1870 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1871 {
1872 	struct r10conf *conf = mddev->private;
1873 	int err = 0;
1874 	int number = rdev->raid_disk;
1875 	struct md_rdev **rdevp;
1876 	struct raid10_info *p = conf->mirrors + number;
1877 
1878 	print_conf(conf);
1879 	if (rdev == p->rdev)
1880 		rdevp = &p->rdev;
1881 	else if (rdev == p->replacement)
1882 		rdevp = &p->replacement;
1883 	else
1884 		return 0;
1885 
1886 	if (test_bit(In_sync, &rdev->flags) ||
1887 	    atomic_read(&rdev->nr_pending)) {
1888 		err = -EBUSY;
1889 		goto abort;
1890 	}
1891 	/* Only remove faulty devices if recovery
1892 	 * is not possible.
1893 	 */
1894 	if (!test_bit(Faulty, &rdev->flags) &&
1895 	    mddev->recovery_disabled != p->recovery_disabled &&
1896 	    (!p->replacement || p->replacement == rdev) &&
1897 	    number < conf->geo.raid_disks &&
1898 	    enough(conf, -1)) {
1899 		err = -EBUSY;
1900 		goto abort;
1901 	}
1902 	*rdevp = NULL;
1903 	synchronize_rcu();
1904 	if (atomic_read(&rdev->nr_pending)) {
1905 		/* lost the race, try later */
1906 		err = -EBUSY;
1907 		*rdevp = rdev;
1908 		goto abort;
1909 	} else if (p->replacement) {
1910 		/* We must have just cleared 'rdev' */
1911 		p->rdev = p->replacement;
1912 		clear_bit(Replacement, &p->replacement->flags);
1913 		smp_mb(); /* Make sure other CPUs may see both as identical
1914 			   * but will never see neither -- if they are careful.
1915 			   */
1916 		p->replacement = NULL;
1917 		clear_bit(WantReplacement, &rdev->flags);
1918 	} else
1919 		/* We might have just remove the Replacement as faulty
1920 		 * Clear the flag just in case
1921 		 */
1922 		clear_bit(WantReplacement, &rdev->flags);
1923 
1924 	err = md_integrity_register(mddev);
1925 
1926 abort:
1927 
1928 	print_conf(conf);
1929 	return err;
1930 }
1931 
1932 
1933 static void end_sync_read(struct bio *bio, int error)
1934 {
1935 	struct r10bio *r10_bio = bio->bi_private;
1936 	struct r10conf *conf = r10_bio->mddev->private;
1937 	int d;
1938 
1939 	if (bio == r10_bio->master_bio) {
1940 		/* this is a reshape read */
1941 		d = r10_bio->read_slot; /* really the read dev */
1942 	} else
1943 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1944 
1945 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1946 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1947 	else
1948 		/* The write handler will notice the lack of
1949 		 * R10BIO_Uptodate and record any errors etc
1950 		 */
1951 		atomic_add(r10_bio->sectors,
1952 			   &conf->mirrors[d].rdev->corrected_errors);
1953 
1954 	/* for reconstruct, we always reschedule after a read.
1955 	 * for resync, only after all reads
1956 	 */
1957 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1958 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1959 	    atomic_dec_and_test(&r10_bio->remaining)) {
1960 		/* we have read all the blocks,
1961 		 * do the comparison in process context in raid10d
1962 		 */
1963 		reschedule_retry(r10_bio);
1964 	}
1965 }
1966 
1967 static void end_sync_request(struct r10bio *r10_bio)
1968 {
1969 	struct mddev *mddev = r10_bio->mddev;
1970 
1971 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1972 		if (r10_bio->master_bio == NULL) {
1973 			/* the primary of several recovery bios */
1974 			sector_t s = r10_bio->sectors;
1975 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1977 				reschedule_retry(r10_bio);
1978 			else
1979 				put_buf(r10_bio);
1980 			md_done_sync(mddev, s, 1);
1981 			break;
1982 		} else {
1983 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1984 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1986 				reschedule_retry(r10_bio);
1987 			else
1988 				put_buf(r10_bio);
1989 			r10_bio = r10_bio2;
1990 		}
1991 	}
1992 }
1993 
1994 static void end_sync_write(struct bio *bio, int error)
1995 {
1996 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1997 	struct r10bio *r10_bio = bio->bi_private;
1998 	struct mddev *mddev = r10_bio->mddev;
1999 	struct r10conf *conf = mddev->private;
2000 	int d;
2001 	sector_t first_bad;
2002 	int bad_sectors;
2003 	int slot;
2004 	int repl;
2005 	struct md_rdev *rdev = NULL;
2006 
2007 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2008 	if (repl)
2009 		rdev = conf->mirrors[d].replacement;
2010 	else
2011 		rdev = conf->mirrors[d].rdev;
2012 
2013 	if (!uptodate) {
2014 		if (repl)
2015 			md_error(mddev, rdev);
2016 		else {
2017 			set_bit(WriteErrorSeen, &rdev->flags);
2018 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019 				set_bit(MD_RECOVERY_NEEDED,
2020 					&rdev->mddev->recovery);
2021 			set_bit(R10BIO_WriteError, &r10_bio->state);
2022 		}
2023 	} else if (is_badblock(rdev,
2024 			     r10_bio->devs[slot].addr,
2025 			     r10_bio->sectors,
2026 			     &first_bad, &bad_sectors))
2027 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2028 
2029 	rdev_dec_pending(rdev, mddev);
2030 
2031 	end_sync_request(r10_bio);
2032 }
2033 
2034 /*
2035  * Note: sync and recover and handled very differently for raid10
2036  * This code is for resync.
2037  * For resync, we read through virtual addresses and read all blocks.
2038  * If there is any error, we schedule a write.  The lowest numbered
2039  * drive is authoritative.
2040  * However requests come for physical address, so we need to map.
2041  * For every physical address there are raid_disks/copies virtual addresses,
2042  * which is always are least one, but is not necessarly an integer.
2043  * This means that a physical address can span multiple chunks, so we may
2044  * have to submit multiple io requests for a single sync request.
2045  */
2046 /*
2047  * We check if all blocks are in-sync and only write to blocks that
2048  * aren't in sync
2049  */
2050 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2051 {
2052 	struct r10conf *conf = mddev->private;
2053 	int i, first;
2054 	struct bio *tbio, *fbio;
2055 	int vcnt;
2056 
2057 	atomic_set(&r10_bio->remaining, 1);
2058 
2059 	/* find the first device with a block */
2060 	for (i=0; i<conf->copies; i++)
2061 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2062 			break;
2063 
2064 	if (i == conf->copies)
2065 		goto done;
2066 
2067 	first = i;
2068 	fbio = r10_bio->devs[i].bio;
2069 
2070 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2071 	/* now find blocks with errors */
2072 	for (i=0 ; i < conf->copies ; i++) {
2073 		int  j, d;
2074 
2075 		tbio = r10_bio->devs[i].bio;
2076 
2077 		if (tbio->bi_end_io != end_sync_read)
2078 			continue;
2079 		if (i == first)
2080 			continue;
2081 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2082 			/* We know that the bi_io_vec layout is the same for
2083 			 * both 'first' and 'i', so we just compare them.
2084 			 * All vec entries are PAGE_SIZE;
2085 			 */
2086 			int sectors = r10_bio->sectors;
2087 			for (j = 0; j < vcnt; j++) {
2088 				int len = PAGE_SIZE;
2089 				if (sectors < (len / 512))
2090 					len = sectors * 512;
2091 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2092 					   page_address(tbio->bi_io_vec[j].bv_page),
2093 					   len))
2094 					break;
2095 				sectors -= len/512;
2096 			}
2097 			if (j == vcnt)
2098 				continue;
2099 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101 				/* Don't fix anything. */
2102 				continue;
2103 		}
2104 		/* Ok, we need to write this bio, either to correct an
2105 		 * inconsistency or to correct an unreadable block.
2106 		 * First we need to fixup bv_offset, bv_len and
2107 		 * bi_vecs, as the read request might have corrupted these
2108 		 */
2109 		bio_reset(tbio);
2110 
2111 		tbio->bi_vcnt = vcnt;
2112 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2113 		tbio->bi_rw = WRITE;
2114 		tbio->bi_private = r10_bio;
2115 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2116 
2117 		for (j=0; j < vcnt ; j++) {
2118 			tbio->bi_io_vec[j].bv_offset = 0;
2119 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2120 
2121 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2122 			       page_address(fbio->bi_io_vec[j].bv_page),
2123 			       PAGE_SIZE);
2124 		}
2125 		tbio->bi_end_io = end_sync_write;
2126 
2127 		d = r10_bio->devs[i].devnum;
2128 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2129 		atomic_inc(&r10_bio->remaining);
2130 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2131 
2132 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2134 		generic_make_request(tbio);
2135 	}
2136 
2137 	/* Now write out to any replacement devices
2138 	 * that are active
2139 	 */
2140 	for (i = 0; i < conf->copies; i++) {
2141 		int j, d;
2142 
2143 		tbio = r10_bio->devs[i].repl_bio;
2144 		if (!tbio || !tbio->bi_end_io)
2145 			continue;
2146 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147 		    && r10_bio->devs[i].bio != fbio)
2148 			for (j = 0; j < vcnt; j++)
2149 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2150 				       page_address(fbio->bi_io_vec[j].bv_page),
2151 				       PAGE_SIZE);
2152 		d = r10_bio->devs[i].devnum;
2153 		atomic_inc(&r10_bio->remaining);
2154 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2155 			     bio_sectors(tbio));
2156 		generic_make_request(tbio);
2157 	}
2158 
2159 done:
2160 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2161 		md_done_sync(mddev, r10_bio->sectors, 1);
2162 		put_buf(r10_bio);
2163 	}
2164 }
2165 
2166 /*
2167  * Now for the recovery code.
2168  * Recovery happens across physical sectors.
2169  * We recover all non-is_sync drives by finding the virtual address of
2170  * each, and then choose a working drive that also has that virt address.
2171  * There is a separate r10_bio for each non-in_sync drive.
2172  * Only the first two slots are in use. The first for reading,
2173  * The second for writing.
2174  *
2175  */
2176 static void fix_recovery_read_error(struct r10bio *r10_bio)
2177 {
2178 	/* We got a read error during recovery.
2179 	 * We repeat the read in smaller page-sized sections.
2180 	 * If a read succeeds, write it to the new device or record
2181 	 * a bad block if we cannot.
2182 	 * If a read fails, record a bad block on both old and
2183 	 * new devices.
2184 	 */
2185 	struct mddev *mddev = r10_bio->mddev;
2186 	struct r10conf *conf = mddev->private;
2187 	struct bio *bio = r10_bio->devs[0].bio;
2188 	sector_t sect = 0;
2189 	int sectors = r10_bio->sectors;
2190 	int idx = 0;
2191 	int dr = r10_bio->devs[0].devnum;
2192 	int dw = r10_bio->devs[1].devnum;
2193 
2194 	while (sectors) {
2195 		int s = sectors;
2196 		struct md_rdev *rdev;
2197 		sector_t addr;
2198 		int ok;
2199 
2200 		if (s > (PAGE_SIZE>>9))
2201 			s = PAGE_SIZE >> 9;
2202 
2203 		rdev = conf->mirrors[dr].rdev;
2204 		addr = r10_bio->devs[0].addr + sect,
2205 		ok = sync_page_io(rdev,
2206 				  addr,
2207 				  s << 9,
2208 				  bio->bi_io_vec[idx].bv_page,
2209 				  READ, false);
2210 		if (ok) {
2211 			rdev = conf->mirrors[dw].rdev;
2212 			addr = r10_bio->devs[1].addr + sect;
2213 			ok = sync_page_io(rdev,
2214 					  addr,
2215 					  s << 9,
2216 					  bio->bi_io_vec[idx].bv_page,
2217 					  WRITE, false);
2218 			if (!ok) {
2219 				set_bit(WriteErrorSeen, &rdev->flags);
2220 				if (!test_and_set_bit(WantReplacement,
2221 						      &rdev->flags))
2222 					set_bit(MD_RECOVERY_NEEDED,
2223 						&rdev->mddev->recovery);
2224 			}
2225 		}
2226 		if (!ok) {
2227 			/* We don't worry if we cannot set a bad block -
2228 			 * it really is bad so there is no loss in not
2229 			 * recording it yet
2230 			 */
2231 			rdev_set_badblocks(rdev, addr, s, 0);
2232 
2233 			if (rdev != conf->mirrors[dw].rdev) {
2234 				/* need bad block on destination too */
2235 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2236 				addr = r10_bio->devs[1].addr + sect;
2237 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2238 				if (!ok) {
2239 					/* just abort the recovery */
2240 					printk(KERN_NOTICE
2241 					       "md/raid10:%s: recovery aborted"
2242 					       " due to read error\n",
2243 					       mdname(mddev));
2244 
2245 					conf->mirrors[dw].recovery_disabled
2246 						= mddev->recovery_disabled;
2247 					set_bit(MD_RECOVERY_INTR,
2248 						&mddev->recovery);
2249 					break;
2250 				}
2251 			}
2252 		}
2253 
2254 		sectors -= s;
2255 		sect += s;
2256 		idx++;
2257 	}
2258 }
2259 
2260 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2261 {
2262 	struct r10conf *conf = mddev->private;
2263 	int d;
2264 	struct bio *wbio, *wbio2;
2265 
2266 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2267 		fix_recovery_read_error(r10_bio);
2268 		end_sync_request(r10_bio);
2269 		return;
2270 	}
2271 
2272 	/*
2273 	 * share the pages with the first bio
2274 	 * and submit the write request
2275 	 */
2276 	d = r10_bio->devs[1].devnum;
2277 	wbio = r10_bio->devs[1].bio;
2278 	wbio2 = r10_bio->devs[1].repl_bio;
2279 	/* Need to test wbio2->bi_end_io before we call
2280 	 * generic_make_request as if the former is NULL,
2281 	 * the latter is free to free wbio2.
2282 	 */
2283 	if (wbio2 && !wbio2->bi_end_io)
2284 		wbio2 = NULL;
2285 	if (wbio->bi_end_io) {
2286 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2287 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2288 		generic_make_request(wbio);
2289 	}
2290 	if (wbio2) {
2291 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2292 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2293 			     bio_sectors(wbio2));
2294 		generic_make_request(wbio2);
2295 	}
2296 }
2297 
2298 
2299 /*
2300  * Used by fix_read_error() to decay the per rdev read_errors.
2301  * We halve the read error count for every hour that has elapsed
2302  * since the last recorded read error.
2303  *
2304  */
2305 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2306 {
2307 	struct timespec cur_time_mon;
2308 	unsigned long hours_since_last;
2309 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2310 
2311 	ktime_get_ts(&cur_time_mon);
2312 
2313 	if (rdev->last_read_error.tv_sec == 0 &&
2314 	    rdev->last_read_error.tv_nsec == 0) {
2315 		/* first time we've seen a read error */
2316 		rdev->last_read_error = cur_time_mon;
2317 		return;
2318 	}
2319 
2320 	hours_since_last = (cur_time_mon.tv_sec -
2321 			    rdev->last_read_error.tv_sec) / 3600;
2322 
2323 	rdev->last_read_error = cur_time_mon;
2324 
2325 	/*
2326 	 * if hours_since_last is > the number of bits in read_errors
2327 	 * just set read errors to 0. We do this to avoid
2328 	 * overflowing the shift of read_errors by hours_since_last.
2329 	 */
2330 	if (hours_since_last >= 8 * sizeof(read_errors))
2331 		atomic_set(&rdev->read_errors, 0);
2332 	else
2333 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2334 }
2335 
2336 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2337 			    int sectors, struct page *page, int rw)
2338 {
2339 	sector_t first_bad;
2340 	int bad_sectors;
2341 
2342 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2343 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2344 		return -1;
2345 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2346 		/* success */
2347 		return 1;
2348 	if (rw == WRITE) {
2349 		set_bit(WriteErrorSeen, &rdev->flags);
2350 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2351 			set_bit(MD_RECOVERY_NEEDED,
2352 				&rdev->mddev->recovery);
2353 	}
2354 	/* need to record an error - either for the block or the device */
2355 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2356 		md_error(rdev->mddev, rdev);
2357 	return 0;
2358 }
2359 
2360 /*
2361  * This is a kernel thread which:
2362  *
2363  *	1.	Retries failed read operations on working mirrors.
2364  *	2.	Updates the raid superblock when problems encounter.
2365  *	3.	Performs writes following reads for array synchronising.
2366  */
2367 
2368 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2369 {
2370 	int sect = 0; /* Offset from r10_bio->sector */
2371 	int sectors = r10_bio->sectors;
2372 	struct md_rdev*rdev;
2373 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2374 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2375 
2376 	/* still own a reference to this rdev, so it cannot
2377 	 * have been cleared recently.
2378 	 */
2379 	rdev = conf->mirrors[d].rdev;
2380 
2381 	if (test_bit(Faulty, &rdev->flags))
2382 		/* drive has already been failed, just ignore any
2383 		   more fix_read_error() attempts */
2384 		return;
2385 
2386 	check_decay_read_errors(mddev, rdev);
2387 	atomic_inc(&rdev->read_errors);
2388 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2389 		char b[BDEVNAME_SIZE];
2390 		bdevname(rdev->bdev, b);
2391 
2392 		printk(KERN_NOTICE
2393 		       "md/raid10:%s: %s: Raid device exceeded "
2394 		       "read_error threshold [cur %d:max %d]\n",
2395 		       mdname(mddev), b,
2396 		       atomic_read(&rdev->read_errors), max_read_errors);
2397 		printk(KERN_NOTICE
2398 		       "md/raid10:%s: %s: Failing raid device\n",
2399 		       mdname(mddev), b);
2400 		md_error(mddev, conf->mirrors[d].rdev);
2401 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2402 		return;
2403 	}
2404 
2405 	while(sectors) {
2406 		int s = sectors;
2407 		int sl = r10_bio->read_slot;
2408 		int success = 0;
2409 		int start;
2410 
2411 		if (s > (PAGE_SIZE>>9))
2412 			s = PAGE_SIZE >> 9;
2413 
2414 		rcu_read_lock();
2415 		do {
2416 			sector_t first_bad;
2417 			int bad_sectors;
2418 
2419 			d = r10_bio->devs[sl].devnum;
2420 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2421 			if (rdev &&
2422 			    !test_bit(Unmerged, &rdev->flags) &&
2423 			    test_bit(In_sync, &rdev->flags) &&
2424 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2425 					&first_bad, &bad_sectors) == 0) {
2426 				atomic_inc(&rdev->nr_pending);
2427 				rcu_read_unlock();
2428 				success = sync_page_io(rdev,
2429 						       r10_bio->devs[sl].addr +
2430 						       sect,
2431 						       s<<9,
2432 						       conf->tmppage, READ, false);
2433 				rdev_dec_pending(rdev, mddev);
2434 				rcu_read_lock();
2435 				if (success)
2436 					break;
2437 			}
2438 			sl++;
2439 			if (sl == conf->copies)
2440 				sl = 0;
2441 		} while (!success && sl != r10_bio->read_slot);
2442 		rcu_read_unlock();
2443 
2444 		if (!success) {
2445 			/* Cannot read from anywhere, just mark the block
2446 			 * as bad on the first device to discourage future
2447 			 * reads.
2448 			 */
2449 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2450 			rdev = conf->mirrors[dn].rdev;
2451 
2452 			if (!rdev_set_badblocks(
2453 				    rdev,
2454 				    r10_bio->devs[r10_bio->read_slot].addr
2455 				    + sect,
2456 				    s, 0)) {
2457 				md_error(mddev, rdev);
2458 				r10_bio->devs[r10_bio->read_slot].bio
2459 					= IO_BLOCKED;
2460 			}
2461 			break;
2462 		}
2463 
2464 		start = sl;
2465 		/* write it back and re-read */
2466 		rcu_read_lock();
2467 		while (sl != r10_bio->read_slot) {
2468 			char b[BDEVNAME_SIZE];
2469 
2470 			if (sl==0)
2471 				sl = conf->copies;
2472 			sl--;
2473 			d = r10_bio->devs[sl].devnum;
2474 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2475 			if (!rdev ||
2476 			    test_bit(Unmerged, &rdev->flags) ||
2477 			    !test_bit(In_sync, &rdev->flags))
2478 				continue;
2479 
2480 			atomic_inc(&rdev->nr_pending);
2481 			rcu_read_unlock();
2482 			if (r10_sync_page_io(rdev,
2483 					     r10_bio->devs[sl].addr +
2484 					     sect,
2485 					     s, conf->tmppage, WRITE)
2486 			    == 0) {
2487 				/* Well, this device is dead */
2488 				printk(KERN_NOTICE
2489 				       "md/raid10:%s: read correction "
2490 				       "write failed"
2491 				       " (%d sectors at %llu on %s)\n",
2492 				       mdname(mddev), s,
2493 				       (unsigned long long)(
2494 					       sect +
2495 					       choose_data_offset(r10_bio,
2496 								  rdev)),
2497 				       bdevname(rdev->bdev, b));
2498 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2499 				       "drive\n",
2500 				       mdname(mddev),
2501 				       bdevname(rdev->bdev, b));
2502 			}
2503 			rdev_dec_pending(rdev, mddev);
2504 			rcu_read_lock();
2505 		}
2506 		sl = start;
2507 		while (sl != r10_bio->read_slot) {
2508 			char b[BDEVNAME_SIZE];
2509 
2510 			if (sl==0)
2511 				sl = conf->copies;
2512 			sl--;
2513 			d = r10_bio->devs[sl].devnum;
2514 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2515 			if (!rdev ||
2516 			    !test_bit(In_sync, &rdev->flags))
2517 				continue;
2518 
2519 			atomic_inc(&rdev->nr_pending);
2520 			rcu_read_unlock();
2521 			switch (r10_sync_page_io(rdev,
2522 					     r10_bio->devs[sl].addr +
2523 					     sect,
2524 					     s, conf->tmppage,
2525 						 READ)) {
2526 			case 0:
2527 				/* Well, this device is dead */
2528 				printk(KERN_NOTICE
2529 				       "md/raid10:%s: unable to read back "
2530 				       "corrected sectors"
2531 				       " (%d sectors at %llu on %s)\n",
2532 				       mdname(mddev), s,
2533 				       (unsigned long long)(
2534 					       sect +
2535 					       choose_data_offset(r10_bio, rdev)),
2536 				       bdevname(rdev->bdev, b));
2537 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2538 				       "drive\n",
2539 				       mdname(mddev),
2540 				       bdevname(rdev->bdev, b));
2541 				break;
2542 			case 1:
2543 				printk(KERN_INFO
2544 				       "md/raid10:%s: read error corrected"
2545 				       " (%d sectors at %llu on %s)\n",
2546 				       mdname(mddev), s,
2547 				       (unsigned long long)(
2548 					       sect +
2549 					       choose_data_offset(r10_bio, rdev)),
2550 				       bdevname(rdev->bdev, b));
2551 				atomic_add(s, &rdev->corrected_errors);
2552 			}
2553 
2554 			rdev_dec_pending(rdev, mddev);
2555 			rcu_read_lock();
2556 		}
2557 		rcu_read_unlock();
2558 
2559 		sectors -= s;
2560 		sect += s;
2561 	}
2562 }
2563 
2564 static int narrow_write_error(struct r10bio *r10_bio, int i)
2565 {
2566 	struct bio *bio = r10_bio->master_bio;
2567 	struct mddev *mddev = r10_bio->mddev;
2568 	struct r10conf *conf = mddev->private;
2569 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2570 	/* bio has the data to be written to slot 'i' where
2571 	 * we just recently had a write error.
2572 	 * We repeatedly clone the bio and trim down to one block,
2573 	 * then try the write.  Where the write fails we record
2574 	 * a bad block.
2575 	 * It is conceivable that the bio doesn't exactly align with
2576 	 * blocks.  We must handle this.
2577 	 *
2578 	 * We currently own a reference to the rdev.
2579 	 */
2580 
2581 	int block_sectors;
2582 	sector_t sector;
2583 	int sectors;
2584 	int sect_to_write = r10_bio->sectors;
2585 	int ok = 1;
2586 
2587 	if (rdev->badblocks.shift < 0)
2588 		return 0;
2589 
2590 	block_sectors = 1 << rdev->badblocks.shift;
2591 	sector = r10_bio->sector;
2592 	sectors = ((r10_bio->sector + block_sectors)
2593 		   & ~(sector_t)(block_sectors - 1))
2594 		- sector;
2595 
2596 	while (sect_to_write) {
2597 		struct bio *wbio;
2598 		if (sectors > sect_to_write)
2599 			sectors = sect_to_write;
2600 		/* Write at 'sector' for 'sectors' */
2601 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2602 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2603 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2604 				   choose_data_offset(r10_bio, rdev) +
2605 				   (sector - r10_bio->sector));
2606 		wbio->bi_bdev = rdev->bdev;
2607 		if (submit_bio_wait(WRITE, wbio) == 0)
2608 			/* Failure! */
2609 			ok = rdev_set_badblocks(rdev, sector,
2610 						sectors, 0)
2611 				&& ok;
2612 
2613 		bio_put(wbio);
2614 		sect_to_write -= sectors;
2615 		sector += sectors;
2616 		sectors = block_sectors;
2617 	}
2618 	return ok;
2619 }
2620 
2621 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2622 {
2623 	int slot = r10_bio->read_slot;
2624 	struct bio *bio;
2625 	struct r10conf *conf = mddev->private;
2626 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2627 	char b[BDEVNAME_SIZE];
2628 	unsigned long do_sync;
2629 	int max_sectors;
2630 
2631 	/* we got a read error. Maybe the drive is bad.  Maybe just
2632 	 * the block and we can fix it.
2633 	 * We freeze all other IO, and try reading the block from
2634 	 * other devices.  When we find one, we re-write
2635 	 * and check it that fixes the read error.
2636 	 * This is all done synchronously while the array is
2637 	 * frozen.
2638 	 */
2639 	bio = r10_bio->devs[slot].bio;
2640 	bdevname(bio->bi_bdev, b);
2641 	bio_put(bio);
2642 	r10_bio->devs[slot].bio = NULL;
2643 
2644 	if (mddev->ro == 0) {
2645 		freeze_array(conf, 1);
2646 		fix_read_error(conf, mddev, r10_bio);
2647 		unfreeze_array(conf);
2648 	} else
2649 		r10_bio->devs[slot].bio = IO_BLOCKED;
2650 
2651 	rdev_dec_pending(rdev, mddev);
2652 
2653 read_more:
2654 	rdev = read_balance(conf, r10_bio, &max_sectors);
2655 	if (rdev == NULL) {
2656 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2657 		       " read error for block %llu\n",
2658 		       mdname(mddev), b,
2659 		       (unsigned long long)r10_bio->sector);
2660 		raid_end_bio_io(r10_bio);
2661 		return;
2662 	}
2663 
2664 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2665 	slot = r10_bio->read_slot;
2666 	printk_ratelimited(
2667 		KERN_ERR
2668 		"md/raid10:%s: %s: redirecting "
2669 		"sector %llu to another mirror\n",
2670 		mdname(mddev),
2671 		bdevname(rdev->bdev, b),
2672 		(unsigned long long)r10_bio->sector);
2673 	bio = bio_clone_mddev(r10_bio->master_bio,
2674 			      GFP_NOIO, mddev);
2675 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2676 	r10_bio->devs[slot].bio = bio;
2677 	r10_bio->devs[slot].rdev = rdev;
2678 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2679 		+ choose_data_offset(r10_bio, rdev);
2680 	bio->bi_bdev = rdev->bdev;
2681 	bio->bi_rw = READ | do_sync;
2682 	bio->bi_private = r10_bio;
2683 	bio->bi_end_io = raid10_end_read_request;
2684 	if (max_sectors < r10_bio->sectors) {
2685 		/* Drat - have to split this up more */
2686 		struct bio *mbio = r10_bio->master_bio;
2687 		int sectors_handled =
2688 			r10_bio->sector + max_sectors
2689 			- mbio->bi_iter.bi_sector;
2690 		r10_bio->sectors = max_sectors;
2691 		spin_lock_irq(&conf->device_lock);
2692 		if (mbio->bi_phys_segments == 0)
2693 			mbio->bi_phys_segments = 2;
2694 		else
2695 			mbio->bi_phys_segments++;
2696 		spin_unlock_irq(&conf->device_lock);
2697 		generic_make_request(bio);
2698 
2699 		r10_bio = mempool_alloc(conf->r10bio_pool,
2700 					GFP_NOIO);
2701 		r10_bio->master_bio = mbio;
2702 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2703 		r10_bio->state = 0;
2704 		set_bit(R10BIO_ReadError,
2705 			&r10_bio->state);
2706 		r10_bio->mddev = mddev;
2707 		r10_bio->sector = mbio->bi_iter.bi_sector
2708 			+ sectors_handled;
2709 
2710 		goto read_more;
2711 	} else
2712 		generic_make_request(bio);
2713 }
2714 
2715 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2716 {
2717 	/* Some sort of write request has finished and it
2718 	 * succeeded in writing where we thought there was a
2719 	 * bad block.  So forget the bad block.
2720 	 * Or possibly if failed and we need to record
2721 	 * a bad block.
2722 	 */
2723 	int m;
2724 	struct md_rdev *rdev;
2725 
2726 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2727 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2728 		for (m = 0; m < conf->copies; m++) {
2729 			int dev = r10_bio->devs[m].devnum;
2730 			rdev = conf->mirrors[dev].rdev;
2731 			if (r10_bio->devs[m].bio == NULL)
2732 				continue;
2733 			if (test_bit(BIO_UPTODATE,
2734 				     &r10_bio->devs[m].bio->bi_flags)) {
2735 				rdev_clear_badblocks(
2736 					rdev,
2737 					r10_bio->devs[m].addr,
2738 					r10_bio->sectors, 0);
2739 			} else {
2740 				if (!rdev_set_badblocks(
2741 					    rdev,
2742 					    r10_bio->devs[m].addr,
2743 					    r10_bio->sectors, 0))
2744 					md_error(conf->mddev, rdev);
2745 			}
2746 			rdev = conf->mirrors[dev].replacement;
2747 			if (r10_bio->devs[m].repl_bio == NULL)
2748 				continue;
2749 			if (test_bit(BIO_UPTODATE,
2750 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2751 				rdev_clear_badblocks(
2752 					rdev,
2753 					r10_bio->devs[m].addr,
2754 					r10_bio->sectors, 0);
2755 			} else {
2756 				if (!rdev_set_badblocks(
2757 					    rdev,
2758 					    r10_bio->devs[m].addr,
2759 					    r10_bio->sectors, 0))
2760 					md_error(conf->mddev, rdev);
2761 			}
2762 		}
2763 		put_buf(r10_bio);
2764 	} else {
2765 		for (m = 0; m < conf->copies; m++) {
2766 			int dev = r10_bio->devs[m].devnum;
2767 			struct bio *bio = r10_bio->devs[m].bio;
2768 			rdev = conf->mirrors[dev].rdev;
2769 			if (bio == IO_MADE_GOOD) {
2770 				rdev_clear_badblocks(
2771 					rdev,
2772 					r10_bio->devs[m].addr,
2773 					r10_bio->sectors, 0);
2774 				rdev_dec_pending(rdev, conf->mddev);
2775 			} else if (bio != NULL &&
2776 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2777 				if (!narrow_write_error(r10_bio, m)) {
2778 					md_error(conf->mddev, rdev);
2779 					set_bit(R10BIO_Degraded,
2780 						&r10_bio->state);
2781 				}
2782 				rdev_dec_pending(rdev, conf->mddev);
2783 			}
2784 			bio = r10_bio->devs[m].repl_bio;
2785 			rdev = conf->mirrors[dev].replacement;
2786 			if (rdev && bio == IO_MADE_GOOD) {
2787 				rdev_clear_badblocks(
2788 					rdev,
2789 					r10_bio->devs[m].addr,
2790 					r10_bio->sectors, 0);
2791 				rdev_dec_pending(rdev, conf->mddev);
2792 			}
2793 		}
2794 		if (test_bit(R10BIO_WriteError,
2795 			     &r10_bio->state))
2796 			close_write(r10_bio);
2797 		raid_end_bio_io(r10_bio);
2798 	}
2799 }
2800 
2801 static void raid10d(struct md_thread *thread)
2802 {
2803 	struct mddev *mddev = thread->mddev;
2804 	struct r10bio *r10_bio;
2805 	unsigned long flags;
2806 	struct r10conf *conf = mddev->private;
2807 	struct list_head *head = &conf->retry_list;
2808 	struct blk_plug plug;
2809 
2810 	md_check_recovery(mddev);
2811 
2812 	blk_start_plug(&plug);
2813 	for (;;) {
2814 
2815 		flush_pending_writes(conf);
2816 
2817 		spin_lock_irqsave(&conf->device_lock, flags);
2818 		if (list_empty(head)) {
2819 			spin_unlock_irqrestore(&conf->device_lock, flags);
2820 			break;
2821 		}
2822 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2823 		list_del(head->prev);
2824 		conf->nr_queued--;
2825 		spin_unlock_irqrestore(&conf->device_lock, flags);
2826 
2827 		mddev = r10_bio->mddev;
2828 		conf = mddev->private;
2829 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2830 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2831 			handle_write_completed(conf, r10_bio);
2832 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2833 			reshape_request_write(mddev, r10_bio);
2834 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2835 			sync_request_write(mddev, r10_bio);
2836 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2837 			recovery_request_write(mddev, r10_bio);
2838 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2839 			handle_read_error(mddev, r10_bio);
2840 		else {
2841 			/* just a partial read to be scheduled from a
2842 			 * separate context
2843 			 */
2844 			int slot = r10_bio->read_slot;
2845 			generic_make_request(r10_bio->devs[slot].bio);
2846 		}
2847 
2848 		cond_resched();
2849 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2850 			md_check_recovery(mddev);
2851 	}
2852 	blk_finish_plug(&plug);
2853 }
2854 
2855 
2856 static int init_resync(struct r10conf *conf)
2857 {
2858 	int buffs;
2859 	int i;
2860 
2861 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2862 	BUG_ON(conf->r10buf_pool);
2863 	conf->have_replacement = 0;
2864 	for (i = 0; i < conf->geo.raid_disks; i++)
2865 		if (conf->mirrors[i].replacement)
2866 			conf->have_replacement = 1;
2867 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2868 	if (!conf->r10buf_pool)
2869 		return -ENOMEM;
2870 	conf->next_resync = 0;
2871 	return 0;
2872 }
2873 
2874 /*
2875  * perform a "sync" on one "block"
2876  *
2877  * We need to make sure that no normal I/O request - particularly write
2878  * requests - conflict with active sync requests.
2879  *
2880  * This is achieved by tracking pending requests and a 'barrier' concept
2881  * that can be installed to exclude normal IO requests.
2882  *
2883  * Resync and recovery are handled very differently.
2884  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2885  *
2886  * For resync, we iterate over virtual addresses, read all copies,
2887  * and update if there are differences.  If only one copy is live,
2888  * skip it.
2889  * For recovery, we iterate over physical addresses, read a good
2890  * value for each non-in_sync drive, and over-write.
2891  *
2892  * So, for recovery we may have several outstanding complex requests for a
2893  * given address, one for each out-of-sync device.  We model this by allocating
2894  * a number of r10_bio structures, one for each out-of-sync device.
2895  * As we setup these structures, we collect all bio's together into a list
2896  * which we then process collectively to add pages, and then process again
2897  * to pass to generic_make_request.
2898  *
2899  * The r10_bio structures are linked using a borrowed master_bio pointer.
2900  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2901  * has its remaining count decremented to 0, the whole complex operation
2902  * is complete.
2903  *
2904  */
2905 
2906 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2907 			     int *skipped, int go_faster)
2908 {
2909 	struct r10conf *conf = mddev->private;
2910 	struct r10bio *r10_bio;
2911 	struct bio *biolist = NULL, *bio;
2912 	sector_t max_sector, nr_sectors;
2913 	int i;
2914 	int max_sync;
2915 	sector_t sync_blocks;
2916 	sector_t sectors_skipped = 0;
2917 	int chunks_skipped = 0;
2918 	sector_t chunk_mask = conf->geo.chunk_mask;
2919 
2920 	if (!conf->r10buf_pool)
2921 		if (init_resync(conf))
2922 			return 0;
2923 
2924 	/*
2925 	 * Allow skipping a full rebuild for incremental assembly
2926 	 * of a clean array, like RAID1 does.
2927 	 */
2928 	if (mddev->bitmap == NULL &&
2929 	    mddev->recovery_cp == MaxSector &&
2930 	    mddev->reshape_position == MaxSector &&
2931 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2932 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2933 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2934 	    conf->fullsync == 0) {
2935 		*skipped = 1;
2936 		return mddev->dev_sectors - sector_nr;
2937 	}
2938 
2939  skipped:
2940 	max_sector = mddev->dev_sectors;
2941 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2943 		max_sector = mddev->resync_max_sectors;
2944 	if (sector_nr >= max_sector) {
2945 		/* If we aborted, we need to abort the
2946 		 * sync on the 'current' bitmap chucks (there can
2947 		 * be several when recovering multiple devices).
2948 		 * as we may have started syncing it but not finished.
2949 		 * We can find the current address in
2950 		 * mddev->curr_resync, but for recovery,
2951 		 * we need to convert that to several
2952 		 * virtual addresses.
2953 		 */
2954 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955 			end_reshape(conf);
2956 			close_sync(conf);
2957 			return 0;
2958 		}
2959 
2960 		if (mddev->curr_resync < max_sector) { /* aborted */
2961 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963 						&sync_blocks, 1);
2964 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965 				sector_t sect =
2966 					raid10_find_virt(conf, mddev->curr_resync, i);
2967 				bitmap_end_sync(mddev->bitmap, sect,
2968 						&sync_blocks, 1);
2969 			}
2970 		} else {
2971 			/* completed sync */
2972 			if ((!mddev->bitmap || conf->fullsync)
2973 			    && conf->have_replacement
2974 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 				/* Completed a full sync so the replacements
2976 				 * are now fully recovered.
2977 				 */
2978 				for (i = 0; i < conf->geo.raid_disks; i++)
2979 					if (conf->mirrors[i].replacement)
2980 						conf->mirrors[i].replacement
2981 							->recovery_offset
2982 							= MaxSector;
2983 			}
2984 			conf->fullsync = 0;
2985 		}
2986 		bitmap_close_sync(mddev->bitmap);
2987 		close_sync(conf);
2988 		*skipped = 1;
2989 		return sectors_skipped;
2990 	}
2991 
2992 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993 		return reshape_request(mddev, sector_nr, skipped);
2994 
2995 	if (chunks_skipped >= conf->geo.raid_disks) {
2996 		/* if there has been nothing to do on any drive,
2997 		 * then there is nothing to do at all..
2998 		 */
2999 		*skipped = 1;
3000 		return (max_sector - sector_nr) + sectors_skipped;
3001 	}
3002 
3003 	if (max_sector > mddev->resync_max)
3004 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005 
3006 	/* make sure whole request will fit in a chunk - if chunks
3007 	 * are meaningful
3008 	 */
3009 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3010 	    max_sector > (sector_nr | chunk_mask))
3011 		max_sector = (sector_nr | chunk_mask) + 1;
3012 	/*
3013 	 * If there is non-resync activity waiting for us then
3014 	 * put in a delay to throttle resync.
3015 	 */
3016 	if (!go_faster && conf->nr_waiting)
3017 		msleep_interruptible(1000);
3018 
3019 	/* Again, very different code for resync and recovery.
3020 	 * Both must result in an r10bio with a list of bios that
3021 	 * have bi_end_io, bi_sector, bi_bdev set,
3022 	 * and bi_private set to the r10bio.
3023 	 * For recovery, we may actually create several r10bios
3024 	 * with 2 bios in each, that correspond to the bios in the main one.
3025 	 * In this case, the subordinate r10bios link back through a
3026 	 * borrowed master_bio pointer, and the counter in the master
3027 	 * includes a ref from each subordinate.
3028 	 */
3029 	/* First, we decide what to do and set ->bi_end_io
3030 	 * To end_sync_read if we want to read, and
3031 	 * end_sync_write if we will want to write.
3032 	 */
3033 
3034 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036 		/* recovery... the complicated one */
3037 		int j;
3038 		r10_bio = NULL;
3039 
3040 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041 			int still_degraded;
3042 			struct r10bio *rb2;
3043 			sector_t sect;
3044 			int must_sync;
3045 			int any_working;
3046 			struct raid10_info *mirror = &conf->mirrors[i];
3047 
3048 			if ((mirror->rdev == NULL ||
3049 			     test_bit(In_sync, &mirror->rdev->flags))
3050 			    &&
3051 			    (mirror->replacement == NULL ||
3052 			     test_bit(Faulty,
3053 				      &mirror->replacement->flags)))
3054 				continue;
3055 
3056 			still_degraded = 0;
3057 			/* want to reconstruct this device */
3058 			rb2 = r10_bio;
3059 			sect = raid10_find_virt(conf, sector_nr, i);
3060 			if (sect >= mddev->resync_max_sectors) {
3061 				/* last stripe is not complete - don't
3062 				 * try to recover this sector.
3063 				 */
3064 				continue;
3065 			}
3066 			/* Unless we are doing a full sync, or a replacement
3067 			 * we only need to recover the block if it is set in
3068 			 * the bitmap
3069 			 */
3070 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071 						      &sync_blocks, 1);
3072 			if (sync_blocks < max_sync)
3073 				max_sync = sync_blocks;
3074 			if (!must_sync &&
3075 			    mirror->replacement == NULL &&
3076 			    !conf->fullsync) {
3077 				/* yep, skip the sync_blocks here, but don't assume
3078 				 * that there will never be anything to do here
3079 				 */
3080 				chunks_skipped = -1;
3081 				continue;
3082 			}
3083 
3084 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3085 			r10_bio->state = 0;
3086 			raise_barrier(conf, rb2 != NULL);
3087 			atomic_set(&r10_bio->remaining, 0);
3088 
3089 			r10_bio->master_bio = (struct bio*)rb2;
3090 			if (rb2)
3091 				atomic_inc(&rb2->remaining);
3092 			r10_bio->mddev = mddev;
3093 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3094 			r10_bio->sector = sect;
3095 
3096 			raid10_find_phys(conf, r10_bio);
3097 
3098 			/* Need to check if the array will still be
3099 			 * degraded
3100 			 */
3101 			for (j = 0; j < conf->geo.raid_disks; j++)
3102 				if (conf->mirrors[j].rdev == NULL ||
3103 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3104 					still_degraded = 1;
3105 					break;
3106 				}
3107 
3108 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3109 						      &sync_blocks, still_degraded);
3110 
3111 			any_working = 0;
3112 			for (j=0; j<conf->copies;j++) {
3113 				int k;
3114 				int d = r10_bio->devs[j].devnum;
3115 				sector_t from_addr, to_addr;
3116 				struct md_rdev *rdev;
3117 				sector_t sector, first_bad;
3118 				int bad_sectors;
3119 				if (!conf->mirrors[d].rdev ||
3120 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3121 					continue;
3122 				/* This is where we read from */
3123 				any_working = 1;
3124 				rdev = conf->mirrors[d].rdev;
3125 				sector = r10_bio->devs[j].addr;
3126 
3127 				if (is_badblock(rdev, sector, max_sync,
3128 						&first_bad, &bad_sectors)) {
3129 					if (first_bad > sector)
3130 						max_sync = first_bad - sector;
3131 					else {
3132 						bad_sectors -= (sector
3133 								- first_bad);
3134 						if (max_sync > bad_sectors)
3135 							max_sync = bad_sectors;
3136 						continue;
3137 					}
3138 				}
3139 				bio = r10_bio->devs[0].bio;
3140 				bio_reset(bio);
3141 				bio->bi_next = biolist;
3142 				biolist = bio;
3143 				bio->bi_private = r10_bio;
3144 				bio->bi_end_io = end_sync_read;
3145 				bio->bi_rw = READ;
3146 				from_addr = r10_bio->devs[j].addr;
3147 				bio->bi_iter.bi_sector = from_addr +
3148 					rdev->data_offset;
3149 				bio->bi_bdev = rdev->bdev;
3150 				atomic_inc(&rdev->nr_pending);
3151 				/* and we write to 'i' (if not in_sync) */
3152 
3153 				for (k=0; k<conf->copies; k++)
3154 					if (r10_bio->devs[k].devnum == i)
3155 						break;
3156 				BUG_ON(k == conf->copies);
3157 				to_addr = r10_bio->devs[k].addr;
3158 				r10_bio->devs[0].devnum = d;
3159 				r10_bio->devs[0].addr = from_addr;
3160 				r10_bio->devs[1].devnum = i;
3161 				r10_bio->devs[1].addr = to_addr;
3162 
3163 				rdev = mirror->rdev;
3164 				if (!test_bit(In_sync, &rdev->flags)) {
3165 					bio = r10_bio->devs[1].bio;
3166 					bio_reset(bio);
3167 					bio->bi_next = biolist;
3168 					biolist = bio;
3169 					bio->bi_private = r10_bio;
3170 					bio->bi_end_io = end_sync_write;
3171 					bio->bi_rw = WRITE;
3172 					bio->bi_iter.bi_sector = to_addr
3173 						+ rdev->data_offset;
3174 					bio->bi_bdev = rdev->bdev;
3175 					atomic_inc(&r10_bio->remaining);
3176 				} else
3177 					r10_bio->devs[1].bio->bi_end_io = NULL;
3178 
3179 				/* and maybe write to replacement */
3180 				bio = r10_bio->devs[1].repl_bio;
3181 				if (bio)
3182 					bio->bi_end_io = NULL;
3183 				rdev = mirror->replacement;
3184 				/* Note: if rdev != NULL, then bio
3185 				 * cannot be NULL as r10buf_pool_alloc will
3186 				 * have allocated it.
3187 				 * So the second test here is pointless.
3188 				 * But it keeps semantic-checkers happy, and
3189 				 * this comment keeps human reviewers
3190 				 * happy.
3191 				 */
3192 				if (rdev == NULL || bio == NULL ||
3193 				    test_bit(Faulty, &rdev->flags))
3194 					break;
3195 				bio_reset(bio);
3196 				bio->bi_next = biolist;
3197 				biolist = bio;
3198 				bio->bi_private = r10_bio;
3199 				bio->bi_end_io = end_sync_write;
3200 				bio->bi_rw = WRITE;
3201 				bio->bi_iter.bi_sector = to_addr +
3202 					rdev->data_offset;
3203 				bio->bi_bdev = rdev->bdev;
3204 				atomic_inc(&r10_bio->remaining);
3205 				break;
3206 			}
3207 			if (j == conf->copies) {
3208 				/* Cannot recover, so abort the recovery or
3209 				 * record a bad block */
3210 				if (any_working) {
3211 					/* problem is that there are bad blocks
3212 					 * on other device(s)
3213 					 */
3214 					int k;
3215 					for (k = 0; k < conf->copies; k++)
3216 						if (r10_bio->devs[k].devnum == i)
3217 							break;
3218 					if (!test_bit(In_sync,
3219 						      &mirror->rdev->flags)
3220 					    && !rdev_set_badblocks(
3221 						    mirror->rdev,
3222 						    r10_bio->devs[k].addr,
3223 						    max_sync, 0))
3224 						any_working = 0;
3225 					if (mirror->replacement &&
3226 					    !rdev_set_badblocks(
3227 						    mirror->replacement,
3228 						    r10_bio->devs[k].addr,
3229 						    max_sync, 0))
3230 						any_working = 0;
3231 				}
3232 				if (!any_working)  {
3233 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3234 							      &mddev->recovery))
3235 						printk(KERN_INFO "md/raid10:%s: insufficient "
3236 						       "working devices for recovery.\n",
3237 						       mdname(mddev));
3238 					mirror->recovery_disabled
3239 						= mddev->recovery_disabled;
3240 				}
3241 				put_buf(r10_bio);
3242 				if (rb2)
3243 					atomic_dec(&rb2->remaining);
3244 				r10_bio = rb2;
3245 				break;
3246 			}
3247 		}
3248 		if (biolist == NULL) {
3249 			while (r10_bio) {
3250 				struct r10bio *rb2 = r10_bio;
3251 				r10_bio = (struct r10bio*) rb2->master_bio;
3252 				rb2->master_bio = NULL;
3253 				put_buf(rb2);
3254 			}
3255 			goto giveup;
3256 		}
3257 	} else {
3258 		/* resync. Schedule a read for every block at this virt offset */
3259 		int count = 0;
3260 
3261 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3262 
3263 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3264 				       &sync_blocks, mddev->degraded) &&
3265 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3266 						 &mddev->recovery)) {
3267 			/* We can skip this block */
3268 			*skipped = 1;
3269 			return sync_blocks + sectors_skipped;
3270 		}
3271 		if (sync_blocks < max_sync)
3272 			max_sync = sync_blocks;
3273 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3274 		r10_bio->state = 0;
3275 
3276 		r10_bio->mddev = mddev;
3277 		atomic_set(&r10_bio->remaining, 0);
3278 		raise_barrier(conf, 0);
3279 		conf->next_resync = sector_nr;
3280 
3281 		r10_bio->master_bio = NULL;
3282 		r10_bio->sector = sector_nr;
3283 		set_bit(R10BIO_IsSync, &r10_bio->state);
3284 		raid10_find_phys(conf, r10_bio);
3285 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3286 
3287 		for (i = 0; i < conf->copies; i++) {
3288 			int d = r10_bio->devs[i].devnum;
3289 			sector_t first_bad, sector;
3290 			int bad_sectors;
3291 
3292 			if (r10_bio->devs[i].repl_bio)
3293 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3294 
3295 			bio = r10_bio->devs[i].bio;
3296 			bio_reset(bio);
3297 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3298 			if (conf->mirrors[d].rdev == NULL ||
3299 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3300 				continue;
3301 			sector = r10_bio->devs[i].addr;
3302 			if (is_badblock(conf->mirrors[d].rdev,
3303 					sector, max_sync,
3304 					&first_bad, &bad_sectors)) {
3305 				if (first_bad > sector)
3306 					max_sync = first_bad - sector;
3307 				else {
3308 					bad_sectors -= (sector - first_bad);
3309 					if (max_sync > bad_sectors)
3310 						max_sync = bad_sectors;
3311 					continue;
3312 				}
3313 			}
3314 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315 			atomic_inc(&r10_bio->remaining);
3316 			bio->bi_next = biolist;
3317 			biolist = bio;
3318 			bio->bi_private = r10_bio;
3319 			bio->bi_end_io = end_sync_read;
3320 			bio->bi_rw = READ;
3321 			bio->bi_iter.bi_sector = sector +
3322 				conf->mirrors[d].rdev->data_offset;
3323 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3324 			count++;
3325 
3326 			if (conf->mirrors[d].replacement == NULL ||
3327 			    test_bit(Faulty,
3328 				     &conf->mirrors[d].replacement->flags))
3329 				continue;
3330 
3331 			/* Need to set up for writing to the replacement */
3332 			bio = r10_bio->devs[i].repl_bio;
3333 			bio_reset(bio);
3334 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3335 
3336 			sector = r10_bio->devs[i].addr;
3337 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3338 			bio->bi_next = biolist;
3339 			biolist = bio;
3340 			bio->bi_private = r10_bio;
3341 			bio->bi_end_io = end_sync_write;
3342 			bio->bi_rw = WRITE;
3343 			bio->bi_iter.bi_sector = sector +
3344 				conf->mirrors[d].replacement->data_offset;
3345 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3346 			count++;
3347 		}
3348 
3349 		if (count < 2) {
3350 			for (i=0; i<conf->copies; i++) {
3351 				int d = r10_bio->devs[i].devnum;
3352 				if (r10_bio->devs[i].bio->bi_end_io)
3353 					rdev_dec_pending(conf->mirrors[d].rdev,
3354 							 mddev);
3355 				if (r10_bio->devs[i].repl_bio &&
3356 				    r10_bio->devs[i].repl_bio->bi_end_io)
3357 					rdev_dec_pending(
3358 						conf->mirrors[d].replacement,
3359 						mddev);
3360 			}
3361 			put_buf(r10_bio);
3362 			biolist = NULL;
3363 			goto giveup;
3364 		}
3365 	}
3366 
3367 	nr_sectors = 0;
3368 	if (sector_nr + max_sync < max_sector)
3369 		max_sector = sector_nr + max_sync;
3370 	do {
3371 		struct page *page;
3372 		int len = PAGE_SIZE;
3373 		if (sector_nr + (len>>9) > max_sector)
3374 			len = (max_sector - sector_nr) << 9;
3375 		if (len == 0)
3376 			break;
3377 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3378 			struct bio *bio2;
3379 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3380 			if (bio_add_page(bio, page, len, 0))
3381 				continue;
3382 
3383 			/* stop here */
3384 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385 			for (bio2 = biolist;
3386 			     bio2 && bio2 != bio;
3387 			     bio2 = bio2->bi_next) {
3388 				/* remove last page from this bio */
3389 				bio2->bi_vcnt--;
3390 				bio2->bi_iter.bi_size -= len;
3391 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3392 			}
3393 			goto bio_full;
3394 		}
3395 		nr_sectors += len>>9;
3396 		sector_nr += len>>9;
3397 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3398  bio_full:
3399 	r10_bio->sectors = nr_sectors;
3400 
3401 	while (biolist) {
3402 		bio = biolist;
3403 		biolist = biolist->bi_next;
3404 
3405 		bio->bi_next = NULL;
3406 		r10_bio = bio->bi_private;
3407 		r10_bio->sectors = nr_sectors;
3408 
3409 		if (bio->bi_end_io == end_sync_read) {
3410 			md_sync_acct(bio->bi_bdev, nr_sectors);
3411 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3412 			generic_make_request(bio);
3413 		}
3414 	}
3415 
3416 	if (sectors_skipped)
3417 		/* pretend they weren't skipped, it makes
3418 		 * no important difference in this case
3419 		 */
3420 		md_done_sync(mddev, sectors_skipped, 1);
3421 
3422 	return sectors_skipped + nr_sectors;
3423  giveup:
3424 	/* There is nowhere to write, so all non-sync
3425 	 * drives must be failed or in resync, all drives
3426 	 * have a bad block, so try the next chunk...
3427 	 */
3428 	if (sector_nr + max_sync < max_sector)
3429 		max_sector = sector_nr + max_sync;
3430 
3431 	sectors_skipped += (max_sector - sector_nr);
3432 	chunks_skipped ++;
3433 	sector_nr = max_sector;
3434 	goto skipped;
3435 }
3436 
3437 static sector_t
3438 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3439 {
3440 	sector_t size;
3441 	struct r10conf *conf = mddev->private;
3442 
3443 	if (!raid_disks)
3444 		raid_disks = min(conf->geo.raid_disks,
3445 				 conf->prev.raid_disks);
3446 	if (!sectors)
3447 		sectors = conf->dev_sectors;
3448 
3449 	size = sectors >> conf->geo.chunk_shift;
3450 	sector_div(size, conf->geo.far_copies);
3451 	size = size * raid_disks;
3452 	sector_div(size, conf->geo.near_copies);
3453 
3454 	return size << conf->geo.chunk_shift;
3455 }
3456 
3457 static void calc_sectors(struct r10conf *conf, sector_t size)
3458 {
3459 	/* Calculate the number of sectors-per-device that will
3460 	 * actually be used, and set conf->dev_sectors and
3461 	 * conf->stride
3462 	 */
3463 
3464 	size = size >> conf->geo.chunk_shift;
3465 	sector_div(size, conf->geo.far_copies);
3466 	size = size * conf->geo.raid_disks;
3467 	sector_div(size, conf->geo.near_copies);
3468 	/* 'size' is now the number of chunks in the array */
3469 	/* calculate "used chunks per device" */
3470 	size = size * conf->copies;
3471 
3472 	/* We need to round up when dividing by raid_disks to
3473 	 * get the stride size.
3474 	 */
3475 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3476 
3477 	conf->dev_sectors = size << conf->geo.chunk_shift;
3478 
3479 	if (conf->geo.far_offset)
3480 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3481 	else {
3482 		sector_div(size, conf->geo.far_copies);
3483 		conf->geo.stride = size << conf->geo.chunk_shift;
3484 	}
3485 }
3486 
3487 enum geo_type {geo_new, geo_old, geo_start};
3488 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3489 {
3490 	int nc, fc, fo;
3491 	int layout, chunk, disks;
3492 	switch (new) {
3493 	case geo_old:
3494 		layout = mddev->layout;
3495 		chunk = mddev->chunk_sectors;
3496 		disks = mddev->raid_disks - mddev->delta_disks;
3497 		break;
3498 	case geo_new:
3499 		layout = mddev->new_layout;
3500 		chunk = mddev->new_chunk_sectors;
3501 		disks = mddev->raid_disks;
3502 		break;
3503 	default: /* avoid 'may be unused' warnings */
3504 	case geo_start: /* new when starting reshape - raid_disks not
3505 			 * updated yet. */
3506 		layout = mddev->new_layout;
3507 		chunk = mddev->new_chunk_sectors;
3508 		disks = mddev->raid_disks + mddev->delta_disks;
3509 		break;
3510 	}
3511 	if (layout >> 18)
3512 		return -1;
3513 	if (chunk < (PAGE_SIZE >> 9) ||
3514 	    !is_power_of_2(chunk))
3515 		return -2;
3516 	nc = layout & 255;
3517 	fc = (layout >> 8) & 255;
3518 	fo = layout & (1<<16);
3519 	geo->raid_disks = disks;
3520 	geo->near_copies = nc;
3521 	geo->far_copies = fc;
3522 	geo->far_offset = fo;
3523 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3524 	geo->chunk_mask = chunk - 1;
3525 	geo->chunk_shift = ffz(~chunk);
3526 	return nc*fc;
3527 }
3528 
3529 static struct r10conf *setup_conf(struct mddev *mddev)
3530 {
3531 	struct r10conf *conf = NULL;
3532 	int err = -EINVAL;
3533 	struct geom geo;
3534 	int copies;
3535 
3536 	copies = setup_geo(&geo, mddev, geo_new);
3537 
3538 	if (copies == -2) {
3539 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3540 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3541 		       mdname(mddev), PAGE_SIZE);
3542 		goto out;
3543 	}
3544 
3545 	if (copies < 2 || copies > mddev->raid_disks) {
3546 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3547 		       mdname(mddev), mddev->new_layout);
3548 		goto out;
3549 	}
3550 
3551 	err = -ENOMEM;
3552 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3553 	if (!conf)
3554 		goto out;
3555 
3556 	/* FIXME calc properly */
3557 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3558 							    max(0,-mddev->delta_disks)),
3559 				GFP_KERNEL);
3560 	if (!conf->mirrors)
3561 		goto out;
3562 
3563 	conf->tmppage = alloc_page(GFP_KERNEL);
3564 	if (!conf->tmppage)
3565 		goto out;
3566 
3567 	conf->geo = geo;
3568 	conf->copies = copies;
3569 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3570 					   r10bio_pool_free, conf);
3571 	if (!conf->r10bio_pool)
3572 		goto out;
3573 
3574 	calc_sectors(conf, mddev->dev_sectors);
3575 	if (mddev->reshape_position == MaxSector) {
3576 		conf->prev = conf->geo;
3577 		conf->reshape_progress = MaxSector;
3578 	} else {
3579 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3580 			err = -EINVAL;
3581 			goto out;
3582 		}
3583 		conf->reshape_progress = mddev->reshape_position;
3584 		if (conf->prev.far_offset)
3585 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3586 		else
3587 			/* far_copies must be 1 */
3588 			conf->prev.stride = conf->dev_sectors;
3589 	}
3590 	spin_lock_init(&conf->device_lock);
3591 	INIT_LIST_HEAD(&conf->retry_list);
3592 
3593 	spin_lock_init(&conf->resync_lock);
3594 	init_waitqueue_head(&conf->wait_barrier);
3595 
3596 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3597 	if (!conf->thread)
3598 		goto out;
3599 
3600 	conf->mddev = mddev;
3601 	return conf;
3602 
3603  out:
3604 	if (err == -ENOMEM)
3605 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3606 		       mdname(mddev));
3607 	if (conf) {
3608 		if (conf->r10bio_pool)
3609 			mempool_destroy(conf->r10bio_pool);
3610 		kfree(conf->mirrors);
3611 		safe_put_page(conf->tmppage);
3612 		kfree(conf);
3613 	}
3614 	return ERR_PTR(err);
3615 }
3616 
3617 static int run(struct mddev *mddev)
3618 {
3619 	struct r10conf *conf;
3620 	int i, disk_idx, chunk_size;
3621 	struct raid10_info *disk;
3622 	struct md_rdev *rdev;
3623 	sector_t size;
3624 	sector_t min_offset_diff = 0;
3625 	int first = 1;
3626 	bool discard_supported = false;
3627 
3628 	if (mddev->private == NULL) {
3629 		conf = setup_conf(mddev);
3630 		if (IS_ERR(conf))
3631 			return PTR_ERR(conf);
3632 		mddev->private = conf;
3633 	}
3634 	conf = mddev->private;
3635 	if (!conf)
3636 		goto out;
3637 
3638 	mddev->thread = conf->thread;
3639 	conf->thread = NULL;
3640 
3641 	chunk_size = mddev->chunk_sectors << 9;
3642 	if (mddev->queue) {
3643 		blk_queue_max_discard_sectors(mddev->queue,
3644 					      mddev->chunk_sectors);
3645 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3646 		blk_queue_io_min(mddev->queue, chunk_size);
3647 		if (conf->geo.raid_disks % conf->geo.near_copies)
3648 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3649 		else
3650 			blk_queue_io_opt(mddev->queue, chunk_size *
3651 					 (conf->geo.raid_disks / conf->geo.near_copies));
3652 	}
3653 
3654 	rdev_for_each(rdev, mddev) {
3655 		long long diff;
3656 		struct request_queue *q;
3657 
3658 		disk_idx = rdev->raid_disk;
3659 		if (disk_idx < 0)
3660 			continue;
3661 		if (disk_idx >= conf->geo.raid_disks &&
3662 		    disk_idx >= conf->prev.raid_disks)
3663 			continue;
3664 		disk = conf->mirrors + disk_idx;
3665 
3666 		if (test_bit(Replacement, &rdev->flags)) {
3667 			if (disk->replacement)
3668 				goto out_free_conf;
3669 			disk->replacement = rdev;
3670 		} else {
3671 			if (disk->rdev)
3672 				goto out_free_conf;
3673 			disk->rdev = rdev;
3674 		}
3675 		q = bdev_get_queue(rdev->bdev);
3676 		if (q->merge_bvec_fn)
3677 			mddev->merge_check_needed = 1;
3678 		diff = (rdev->new_data_offset - rdev->data_offset);
3679 		if (!mddev->reshape_backwards)
3680 			diff = -diff;
3681 		if (diff < 0)
3682 			diff = 0;
3683 		if (first || diff < min_offset_diff)
3684 			min_offset_diff = diff;
3685 
3686 		if (mddev->gendisk)
3687 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3688 					  rdev->data_offset << 9);
3689 
3690 		disk->head_position = 0;
3691 
3692 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3693 			discard_supported = true;
3694 	}
3695 
3696 	if (mddev->queue) {
3697 		if (discard_supported)
3698 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3699 						mddev->queue);
3700 		else
3701 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3702 						  mddev->queue);
3703 	}
3704 	/* need to check that every block has at least one working mirror */
3705 	if (!enough(conf, -1)) {
3706 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3707 		       mdname(mddev));
3708 		goto out_free_conf;
3709 	}
3710 
3711 	if (conf->reshape_progress != MaxSector) {
3712 		/* must ensure that shape change is supported */
3713 		if (conf->geo.far_copies != 1 &&
3714 		    conf->geo.far_offset == 0)
3715 			goto out_free_conf;
3716 		if (conf->prev.far_copies != 1 &&
3717 		    conf->prev.far_offset == 0)
3718 			goto out_free_conf;
3719 	}
3720 
3721 	mddev->degraded = 0;
3722 	for (i = 0;
3723 	     i < conf->geo.raid_disks
3724 		     || i < conf->prev.raid_disks;
3725 	     i++) {
3726 
3727 		disk = conf->mirrors + i;
3728 
3729 		if (!disk->rdev && disk->replacement) {
3730 			/* The replacement is all we have - use it */
3731 			disk->rdev = disk->replacement;
3732 			disk->replacement = NULL;
3733 			clear_bit(Replacement, &disk->rdev->flags);
3734 		}
3735 
3736 		if (!disk->rdev ||
3737 		    !test_bit(In_sync, &disk->rdev->flags)) {
3738 			disk->head_position = 0;
3739 			mddev->degraded++;
3740 			if (disk->rdev &&
3741 			    disk->rdev->saved_raid_disk < 0)
3742 				conf->fullsync = 1;
3743 		}
3744 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3745 	}
3746 
3747 	if (mddev->recovery_cp != MaxSector)
3748 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3749 		       " -- starting background reconstruction\n",
3750 		       mdname(mddev));
3751 	printk(KERN_INFO
3752 		"md/raid10:%s: active with %d out of %d devices\n",
3753 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3754 		conf->geo.raid_disks);
3755 	/*
3756 	 * Ok, everything is just fine now
3757 	 */
3758 	mddev->dev_sectors = conf->dev_sectors;
3759 	size = raid10_size(mddev, 0, 0);
3760 	md_set_array_sectors(mddev, size);
3761 	mddev->resync_max_sectors = size;
3762 
3763 	if (mddev->queue) {
3764 		int stripe = conf->geo.raid_disks *
3765 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3766 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3767 		mddev->queue->backing_dev_info.congested_data = mddev;
3768 
3769 		/* Calculate max read-ahead size.
3770 		 * We need to readahead at least twice a whole stripe....
3771 		 * maybe...
3772 		 */
3773 		stripe /= conf->geo.near_copies;
3774 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3775 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3776 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3777 	}
3778 
3779 
3780 	if (md_integrity_register(mddev))
3781 		goto out_free_conf;
3782 
3783 	if (conf->reshape_progress != MaxSector) {
3784 		unsigned long before_length, after_length;
3785 
3786 		before_length = ((1 << conf->prev.chunk_shift) *
3787 				 conf->prev.far_copies);
3788 		after_length = ((1 << conf->geo.chunk_shift) *
3789 				conf->geo.far_copies);
3790 
3791 		if (max(before_length, after_length) > min_offset_diff) {
3792 			/* This cannot work */
3793 			printk("md/raid10: offset difference not enough to continue reshape\n");
3794 			goto out_free_conf;
3795 		}
3796 		conf->offset_diff = min_offset_diff;
3797 
3798 		conf->reshape_safe = conf->reshape_progress;
3799 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3800 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3801 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3802 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3803 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3804 							"reshape");
3805 	}
3806 
3807 	return 0;
3808 
3809 out_free_conf:
3810 	md_unregister_thread(&mddev->thread);
3811 	if (conf->r10bio_pool)
3812 		mempool_destroy(conf->r10bio_pool);
3813 	safe_put_page(conf->tmppage);
3814 	kfree(conf->mirrors);
3815 	kfree(conf);
3816 	mddev->private = NULL;
3817 out:
3818 	return -EIO;
3819 }
3820 
3821 static int stop(struct mddev *mddev)
3822 {
3823 	struct r10conf *conf = mddev->private;
3824 
3825 	raise_barrier(conf, 0);
3826 	lower_barrier(conf);
3827 
3828 	md_unregister_thread(&mddev->thread);
3829 	if (mddev->queue)
3830 		/* the unplug fn references 'conf'*/
3831 		blk_sync_queue(mddev->queue);
3832 
3833 	if (conf->r10bio_pool)
3834 		mempool_destroy(conf->r10bio_pool);
3835 	safe_put_page(conf->tmppage);
3836 	kfree(conf->mirrors);
3837 	kfree(conf);
3838 	mddev->private = NULL;
3839 	return 0;
3840 }
3841 
3842 static void raid10_quiesce(struct mddev *mddev, int state)
3843 {
3844 	struct r10conf *conf = mddev->private;
3845 
3846 	switch(state) {
3847 	case 1:
3848 		raise_barrier(conf, 0);
3849 		break;
3850 	case 0:
3851 		lower_barrier(conf);
3852 		break;
3853 	}
3854 }
3855 
3856 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3857 {
3858 	/* Resize of 'far' arrays is not supported.
3859 	 * For 'near' and 'offset' arrays we can set the
3860 	 * number of sectors used to be an appropriate multiple
3861 	 * of the chunk size.
3862 	 * For 'offset', this is far_copies*chunksize.
3863 	 * For 'near' the multiplier is the LCM of
3864 	 * near_copies and raid_disks.
3865 	 * So if far_copies > 1 && !far_offset, fail.
3866 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3867 	 * multiply by chunk_size.  Then round to this number.
3868 	 * This is mostly done by raid10_size()
3869 	 */
3870 	struct r10conf *conf = mddev->private;
3871 	sector_t oldsize, size;
3872 
3873 	if (mddev->reshape_position != MaxSector)
3874 		return -EBUSY;
3875 
3876 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3877 		return -EINVAL;
3878 
3879 	oldsize = raid10_size(mddev, 0, 0);
3880 	size = raid10_size(mddev, sectors, 0);
3881 	if (mddev->external_size &&
3882 	    mddev->array_sectors > size)
3883 		return -EINVAL;
3884 	if (mddev->bitmap) {
3885 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3886 		if (ret)
3887 			return ret;
3888 	}
3889 	md_set_array_sectors(mddev, size);
3890 	set_capacity(mddev->gendisk, mddev->array_sectors);
3891 	revalidate_disk(mddev->gendisk);
3892 	if (sectors > mddev->dev_sectors &&
3893 	    mddev->recovery_cp > oldsize) {
3894 		mddev->recovery_cp = oldsize;
3895 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3896 	}
3897 	calc_sectors(conf, sectors);
3898 	mddev->dev_sectors = conf->dev_sectors;
3899 	mddev->resync_max_sectors = size;
3900 	return 0;
3901 }
3902 
3903 static void *raid10_takeover_raid0(struct mddev *mddev)
3904 {
3905 	struct md_rdev *rdev;
3906 	struct r10conf *conf;
3907 
3908 	if (mddev->degraded > 0) {
3909 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3910 		       mdname(mddev));
3911 		return ERR_PTR(-EINVAL);
3912 	}
3913 
3914 	/* Set new parameters */
3915 	mddev->new_level = 10;
3916 	/* new layout: far_copies = 1, near_copies = 2 */
3917 	mddev->new_layout = (1<<8) + 2;
3918 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3919 	mddev->delta_disks = mddev->raid_disks;
3920 	mddev->raid_disks *= 2;
3921 	/* make sure it will be not marked as dirty */
3922 	mddev->recovery_cp = MaxSector;
3923 
3924 	conf = setup_conf(mddev);
3925 	if (!IS_ERR(conf)) {
3926 		rdev_for_each(rdev, mddev)
3927 			if (rdev->raid_disk >= 0)
3928 				rdev->new_raid_disk = rdev->raid_disk * 2;
3929 		conf->barrier = 1;
3930 	}
3931 
3932 	return conf;
3933 }
3934 
3935 static void *raid10_takeover(struct mddev *mddev)
3936 {
3937 	struct r0conf *raid0_conf;
3938 
3939 	/* raid10 can take over:
3940 	 *  raid0 - providing it has only two drives
3941 	 */
3942 	if (mddev->level == 0) {
3943 		/* for raid0 takeover only one zone is supported */
3944 		raid0_conf = mddev->private;
3945 		if (raid0_conf->nr_strip_zones > 1) {
3946 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3947 			       " with more than one zone.\n",
3948 			       mdname(mddev));
3949 			return ERR_PTR(-EINVAL);
3950 		}
3951 		return raid10_takeover_raid0(mddev);
3952 	}
3953 	return ERR_PTR(-EINVAL);
3954 }
3955 
3956 static int raid10_check_reshape(struct mddev *mddev)
3957 {
3958 	/* Called when there is a request to change
3959 	 * - layout (to ->new_layout)
3960 	 * - chunk size (to ->new_chunk_sectors)
3961 	 * - raid_disks (by delta_disks)
3962 	 * or when trying to restart a reshape that was ongoing.
3963 	 *
3964 	 * We need to validate the request and possibly allocate
3965 	 * space if that might be an issue later.
3966 	 *
3967 	 * Currently we reject any reshape of a 'far' mode array,
3968 	 * allow chunk size to change if new is generally acceptable,
3969 	 * allow raid_disks to increase, and allow
3970 	 * a switch between 'near' mode and 'offset' mode.
3971 	 */
3972 	struct r10conf *conf = mddev->private;
3973 	struct geom geo;
3974 
3975 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3976 		return -EINVAL;
3977 
3978 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3979 		/* mustn't change number of copies */
3980 		return -EINVAL;
3981 	if (geo.far_copies > 1 && !geo.far_offset)
3982 		/* Cannot switch to 'far' mode */
3983 		return -EINVAL;
3984 
3985 	if (mddev->array_sectors & geo.chunk_mask)
3986 			/* not factor of array size */
3987 			return -EINVAL;
3988 
3989 	if (!enough(conf, -1))
3990 		return -EINVAL;
3991 
3992 	kfree(conf->mirrors_new);
3993 	conf->mirrors_new = NULL;
3994 	if (mddev->delta_disks > 0) {
3995 		/* allocate new 'mirrors' list */
3996 		conf->mirrors_new = kzalloc(
3997 			sizeof(struct raid10_info)
3998 			*(mddev->raid_disks +
3999 			  mddev->delta_disks),
4000 			GFP_KERNEL);
4001 		if (!conf->mirrors_new)
4002 			return -ENOMEM;
4003 	}
4004 	return 0;
4005 }
4006 
4007 /*
4008  * Need to check if array has failed when deciding whether to:
4009  *  - start an array
4010  *  - remove non-faulty devices
4011  *  - add a spare
4012  *  - allow a reshape
4013  * This determination is simple when no reshape is happening.
4014  * However if there is a reshape, we need to carefully check
4015  * both the before and after sections.
4016  * This is because some failed devices may only affect one
4017  * of the two sections, and some non-in_sync devices may
4018  * be insync in the section most affected by failed devices.
4019  */
4020 static int calc_degraded(struct r10conf *conf)
4021 {
4022 	int degraded, degraded2;
4023 	int i;
4024 
4025 	rcu_read_lock();
4026 	degraded = 0;
4027 	/* 'prev' section first */
4028 	for (i = 0; i < conf->prev.raid_disks; i++) {
4029 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4030 		if (!rdev || test_bit(Faulty, &rdev->flags))
4031 			degraded++;
4032 		else if (!test_bit(In_sync, &rdev->flags))
4033 			/* When we can reduce the number of devices in
4034 			 * an array, this might not contribute to
4035 			 * 'degraded'.  It does now.
4036 			 */
4037 			degraded++;
4038 	}
4039 	rcu_read_unlock();
4040 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4041 		return degraded;
4042 	rcu_read_lock();
4043 	degraded2 = 0;
4044 	for (i = 0; i < conf->geo.raid_disks; i++) {
4045 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4046 		if (!rdev || test_bit(Faulty, &rdev->flags))
4047 			degraded2++;
4048 		else if (!test_bit(In_sync, &rdev->flags)) {
4049 			/* If reshape is increasing the number of devices,
4050 			 * this section has already been recovered, so
4051 			 * it doesn't contribute to degraded.
4052 			 * else it does.
4053 			 */
4054 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4055 				degraded2++;
4056 		}
4057 	}
4058 	rcu_read_unlock();
4059 	if (degraded2 > degraded)
4060 		return degraded2;
4061 	return degraded;
4062 }
4063 
4064 static int raid10_start_reshape(struct mddev *mddev)
4065 {
4066 	/* A 'reshape' has been requested. This commits
4067 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4068 	 * This also checks if there are enough spares and adds them
4069 	 * to the array.
4070 	 * We currently require enough spares to make the final
4071 	 * array non-degraded.  We also require that the difference
4072 	 * between old and new data_offset - on each device - is
4073 	 * enough that we never risk over-writing.
4074 	 */
4075 
4076 	unsigned long before_length, after_length;
4077 	sector_t min_offset_diff = 0;
4078 	int first = 1;
4079 	struct geom new;
4080 	struct r10conf *conf = mddev->private;
4081 	struct md_rdev *rdev;
4082 	int spares = 0;
4083 	int ret;
4084 
4085 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4086 		return -EBUSY;
4087 
4088 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4089 		return -EINVAL;
4090 
4091 	before_length = ((1 << conf->prev.chunk_shift) *
4092 			 conf->prev.far_copies);
4093 	after_length = ((1 << conf->geo.chunk_shift) *
4094 			conf->geo.far_copies);
4095 
4096 	rdev_for_each(rdev, mddev) {
4097 		if (!test_bit(In_sync, &rdev->flags)
4098 		    && !test_bit(Faulty, &rdev->flags))
4099 			spares++;
4100 		if (rdev->raid_disk >= 0) {
4101 			long long diff = (rdev->new_data_offset
4102 					  - rdev->data_offset);
4103 			if (!mddev->reshape_backwards)
4104 				diff = -diff;
4105 			if (diff < 0)
4106 				diff = 0;
4107 			if (first || diff < min_offset_diff)
4108 				min_offset_diff = diff;
4109 		}
4110 	}
4111 
4112 	if (max(before_length, after_length) > min_offset_diff)
4113 		return -EINVAL;
4114 
4115 	if (spares < mddev->delta_disks)
4116 		return -EINVAL;
4117 
4118 	conf->offset_diff = min_offset_diff;
4119 	spin_lock_irq(&conf->device_lock);
4120 	if (conf->mirrors_new) {
4121 		memcpy(conf->mirrors_new, conf->mirrors,
4122 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4123 		smp_mb();
4124 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4125 		conf->mirrors_old = conf->mirrors;
4126 		conf->mirrors = conf->mirrors_new;
4127 		conf->mirrors_new = NULL;
4128 	}
4129 	setup_geo(&conf->geo, mddev, geo_start);
4130 	smp_mb();
4131 	if (mddev->reshape_backwards) {
4132 		sector_t size = raid10_size(mddev, 0, 0);
4133 		if (size < mddev->array_sectors) {
4134 			spin_unlock_irq(&conf->device_lock);
4135 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4136 			       mdname(mddev));
4137 			return -EINVAL;
4138 		}
4139 		mddev->resync_max_sectors = size;
4140 		conf->reshape_progress = size;
4141 	} else
4142 		conf->reshape_progress = 0;
4143 	spin_unlock_irq(&conf->device_lock);
4144 
4145 	if (mddev->delta_disks && mddev->bitmap) {
4146 		ret = bitmap_resize(mddev->bitmap,
4147 				    raid10_size(mddev, 0,
4148 						conf->geo.raid_disks),
4149 				    0, 0);
4150 		if (ret)
4151 			goto abort;
4152 	}
4153 	if (mddev->delta_disks > 0) {
4154 		rdev_for_each(rdev, mddev)
4155 			if (rdev->raid_disk < 0 &&
4156 			    !test_bit(Faulty, &rdev->flags)) {
4157 				if (raid10_add_disk(mddev, rdev) == 0) {
4158 					if (rdev->raid_disk >=
4159 					    conf->prev.raid_disks)
4160 						set_bit(In_sync, &rdev->flags);
4161 					else
4162 						rdev->recovery_offset = 0;
4163 
4164 					if (sysfs_link_rdev(mddev, rdev))
4165 						/* Failure here  is OK */;
4166 				}
4167 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4168 				   && !test_bit(Faulty, &rdev->flags)) {
4169 				/* This is a spare that was manually added */
4170 				set_bit(In_sync, &rdev->flags);
4171 			}
4172 	}
4173 	/* When a reshape changes the number of devices,
4174 	 * ->degraded is measured against the larger of the
4175 	 * pre and  post numbers.
4176 	 */
4177 	spin_lock_irq(&conf->device_lock);
4178 	mddev->degraded = calc_degraded(conf);
4179 	spin_unlock_irq(&conf->device_lock);
4180 	mddev->raid_disks = conf->geo.raid_disks;
4181 	mddev->reshape_position = conf->reshape_progress;
4182 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4183 
4184 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4185 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4186 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4187 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4188 
4189 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4190 						"reshape");
4191 	if (!mddev->sync_thread) {
4192 		ret = -EAGAIN;
4193 		goto abort;
4194 	}
4195 	conf->reshape_checkpoint = jiffies;
4196 	md_wakeup_thread(mddev->sync_thread);
4197 	md_new_event(mddev);
4198 	return 0;
4199 
4200 abort:
4201 	mddev->recovery = 0;
4202 	spin_lock_irq(&conf->device_lock);
4203 	conf->geo = conf->prev;
4204 	mddev->raid_disks = conf->geo.raid_disks;
4205 	rdev_for_each(rdev, mddev)
4206 		rdev->new_data_offset = rdev->data_offset;
4207 	smp_wmb();
4208 	conf->reshape_progress = MaxSector;
4209 	mddev->reshape_position = MaxSector;
4210 	spin_unlock_irq(&conf->device_lock);
4211 	return ret;
4212 }
4213 
4214 /* Calculate the last device-address that could contain
4215  * any block from the chunk that includes the array-address 's'
4216  * and report the next address.
4217  * i.e. the address returned will be chunk-aligned and after
4218  * any data that is in the chunk containing 's'.
4219  */
4220 static sector_t last_dev_address(sector_t s, struct geom *geo)
4221 {
4222 	s = (s | geo->chunk_mask) + 1;
4223 	s >>= geo->chunk_shift;
4224 	s *= geo->near_copies;
4225 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4226 	s *= geo->far_copies;
4227 	s <<= geo->chunk_shift;
4228 	return s;
4229 }
4230 
4231 /* Calculate the first device-address that could contain
4232  * any block from the chunk that includes the array-address 's'.
4233  * This too will be the start of a chunk
4234  */
4235 static sector_t first_dev_address(sector_t s, struct geom *geo)
4236 {
4237 	s >>= geo->chunk_shift;
4238 	s *= geo->near_copies;
4239 	sector_div(s, geo->raid_disks);
4240 	s *= geo->far_copies;
4241 	s <<= geo->chunk_shift;
4242 	return s;
4243 }
4244 
4245 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4246 				int *skipped)
4247 {
4248 	/* We simply copy at most one chunk (smallest of old and new)
4249 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4250 	 * or we hit a bad block or something.
4251 	 * This might mean we pause for normal IO in the middle of
4252 	 * a chunk, but that is not a problem was mddev->reshape_position
4253 	 * can record any location.
4254 	 *
4255 	 * If we will want to write to a location that isn't
4256 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4257 	 * we need to flush all reshape requests and update the metadata.
4258 	 *
4259 	 * When reshaping forwards (e.g. to more devices), we interpret
4260 	 * 'safe' as the earliest block which might not have been copied
4261 	 * down yet.  We divide this by previous stripe size and multiply
4262 	 * by previous stripe length to get lowest device offset that we
4263 	 * cannot write to yet.
4264 	 * We interpret 'sector_nr' as an address that we want to write to.
4265 	 * From this we use last_device_address() to find where we might
4266 	 * write to, and first_device_address on the  'safe' position.
4267 	 * If this 'next' write position is after the 'safe' position,
4268 	 * we must update the metadata to increase the 'safe' position.
4269 	 *
4270 	 * When reshaping backwards, we round in the opposite direction
4271 	 * and perform the reverse test:  next write position must not be
4272 	 * less than current safe position.
4273 	 *
4274 	 * In all this the minimum difference in data offsets
4275 	 * (conf->offset_diff - always positive) allows a bit of slack,
4276 	 * so next can be after 'safe', but not by more than offset_disk
4277 	 *
4278 	 * We need to prepare all the bios here before we start any IO
4279 	 * to ensure the size we choose is acceptable to all devices.
4280 	 * The means one for each copy for write-out and an extra one for
4281 	 * read-in.
4282 	 * We store the read-in bio in ->master_bio and the others in
4283 	 * ->devs[x].bio and ->devs[x].repl_bio.
4284 	 */
4285 	struct r10conf *conf = mddev->private;
4286 	struct r10bio *r10_bio;
4287 	sector_t next, safe, last;
4288 	int max_sectors;
4289 	int nr_sectors;
4290 	int s;
4291 	struct md_rdev *rdev;
4292 	int need_flush = 0;
4293 	struct bio *blist;
4294 	struct bio *bio, *read_bio;
4295 	int sectors_done = 0;
4296 
4297 	if (sector_nr == 0) {
4298 		/* If restarting in the middle, skip the initial sectors */
4299 		if (mddev->reshape_backwards &&
4300 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4301 			sector_nr = (raid10_size(mddev, 0, 0)
4302 				     - conf->reshape_progress);
4303 		} else if (!mddev->reshape_backwards &&
4304 			   conf->reshape_progress > 0)
4305 			sector_nr = conf->reshape_progress;
4306 		if (sector_nr) {
4307 			mddev->curr_resync_completed = sector_nr;
4308 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4309 			*skipped = 1;
4310 			return sector_nr;
4311 		}
4312 	}
4313 
4314 	/* We don't use sector_nr to track where we are up to
4315 	 * as that doesn't work well for ->reshape_backwards.
4316 	 * So just use ->reshape_progress.
4317 	 */
4318 	if (mddev->reshape_backwards) {
4319 		/* 'next' is the earliest device address that we might
4320 		 * write to for this chunk in the new layout
4321 		 */
4322 		next = first_dev_address(conf->reshape_progress - 1,
4323 					 &conf->geo);
4324 
4325 		/* 'safe' is the last device address that we might read from
4326 		 * in the old layout after a restart
4327 		 */
4328 		safe = last_dev_address(conf->reshape_safe - 1,
4329 					&conf->prev);
4330 
4331 		if (next + conf->offset_diff < safe)
4332 			need_flush = 1;
4333 
4334 		last = conf->reshape_progress - 1;
4335 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4336 					       & conf->prev.chunk_mask);
4337 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4338 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4339 	} else {
4340 		/* 'next' is after the last device address that we
4341 		 * might write to for this chunk in the new layout
4342 		 */
4343 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4344 
4345 		/* 'safe' is the earliest device address that we might
4346 		 * read from in the old layout after a restart
4347 		 */
4348 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4349 
4350 		/* Need to update metadata if 'next' might be beyond 'safe'
4351 		 * as that would possibly corrupt data
4352 		 */
4353 		if (next > safe + conf->offset_diff)
4354 			need_flush = 1;
4355 
4356 		sector_nr = conf->reshape_progress;
4357 		last  = sector_nr | (conf->geo.chunk_mask
4358 				     & conf->prev.chunk_mask);
4359 
4360 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4361 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4362 	}
4363 
4364 	if (need_flush ||
4365 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4366 		/* Need to update reshape_position in metadata */
4367 		wait_barrier(conf);
4368 		mddev->reshape_position = conf->reshape_progress;
4369 		if (mddev->reshape_backwards)
4370 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4371 				- conf->reshape_progress;
4372 		else
4373 			mddev->curr_resync_completed = conf->reshape_progress;
4374 		conf->reshape_checkpoint = jiffies;
4375 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4376 		md_wakeup_thread(mddev->thread);
4377 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4378 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4379 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4380 			allow_barrier(conf);
4381 			return sectors_done;
4382 		}
4383 		conf->reshape_safe = mddev->reshape_position;
4384 		allow_barrier(conf);
4385 	}
4386 
4387 read_more:
4388 	/* Now schedule reads for blocks from sector_nr to last */
4389 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4390 	r10_bio->state = 0;
4391 	raise_barrier(conf, sectors_done != 0);
4392 	atomic_set(&r10_bio->remaining, 0);
4393 	r10_bio->mddev = mddev;
4394 	r10_bio->sector = sector_nr;
4395 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4396 	r10_bio->sectors = last - sector_nr + 1;
4397 	rdev = read_balance(conf, r10_bio, &max_sectors);
4398 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4399 
4400 	if (!rdev) {
4401 		/* Cannot read from here, so need to record bad blocks
4402 		 * on all the target devices.
4403 		 */
4404 		// FIXME
4405 		mempool_free(r10_bio, conf->r10buf_pool);
4406 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4407 		return sectors_done;
4408 	}
4409 
4410 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4411 
4412 	read_bio->bi_bdev = rdev->bdev;
4413 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4414 			       + rdev->data_offset);
4415 	read_bio->bi_private = r10_bio;
4416 	read_bio->bi_end_io = end_sync_read;
4417 	read_bio->bi_rw = READ;
4418 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4419 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4420 	read_bio->bi_vcnt = 0;
4421 	read_bio->bi_iter.bi_size = 0;
4422 	r10_bio->master_bio = read_bio;
4423 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4424 
4425 	/* Now find the locations in the new layout */
4426 	__raid10_find_phys(&conf->geo, r10_bio);
4427 
4428 	blist = read_bio;
4429 	read_bio->bi_next = NULL;
4430 
4431 	for (s = 0; s < conf->copies*2; s++) {
4432 		struct bio *b;
4433 		int d = r10_bio->devs[s/2].devnum;
4434 		struct md_rdev *rdev2;
4435 		if (s&1) {
4436 			rdev2 = conf->mirrors[d].replacement;
4437 			b = r10_bio->devs[s/2].repl_bio;
4438 		} else {
4439 			rdev2 = conf->mirrors[d].rdev;
4440 			b = r10_bio->devs[s/2].bio;
4441 		}
4442 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4443 			continue;
4444 
4445 		bio_reset(b);
4446 		b->bi_bdev = rdev2->bdev;
4447 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4448 			rdev2->new_data_offset;
4449 		b->bi_private = r10_bio;
4450 		b->bi_end_io = end_reshape_write;
4451 		b->bi_rw = WRITE;
4452 		b->bi_next = blist;
4453 		blist = b;
4454 	}
4455 
4456 	/* Now add as many pages as possible to all of these bios. */
4457 
4458 	nr_sectors = 0;
4459 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4460 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4461 		int len = (max_sectors - s) << 9;
4462 		if (len > PAGE_SIZE)
4463 			len = PAGE_SIZE;
4464 		for (bio = blist; bio ; bio = bio->bi_next) {
4465 			struct bio *bio2;
4466 			if (bio_add_page(bio, page, len, 0))
4467 				continue;
4468 
4469 			/* Didn't fit, must stop */
4470 			for (bio2 = blist;
4471 			     bio2 && bio2 != bio;
4472 			     bio2 = bio2->bi_next) {
4473 				/* Remove last page from this bio */
4474 				bio2->bi_vcnt--;
4475 				bio2->bi_iter.bi_size -= len;
4476 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4477 			}
4478 			goto bio_full;
4479 		}
4480 		sector_nr += len >> 9;
4481 		nr_sectors += len >> 9;
4482 	}
4483 bio_full:
4484 	r10_bio->sectors = nr_sectors;
4485 
4486 	/* Now submit the read */
4487 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4488 	atomic_inc(&r10_bio->remaining);
4489 	read_bio->bi_next = NULL;
4490 	generic_make_request(read_bio);
4491 	sector_nr += nr_sectors;
4492 	sectors_done += nr_sectors;
4493 	if (sector_nr <= last)
4494 		goto read_more;
4495 
4496 	/* Now that we have done the whole section we can
4497 	 * update reshape_progress
4498 	 */
4499 	if (mddev->reshape_backwards)
4500 		conf->reshape_progress -= sectors_done;
4501 	else
4502 		conf->reshape_progress += sectors_done;
4503 
4504 	return sectors_done;
4505 }
4506 
4507 static void end_reshape_request(struct r10bio *r10_bio);
4508 static int handle_reshape_read_error(struct mddev *mddev,
4509 				     struct r10bio *r10_bio);
4510 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4511 {
4512 	/* Reshape read completed.  Hopefully we have a block
4513 	 * to write out.
4514 	 * If we got a read error then we do sync 1-page reads from
4515 	 * elsewhere until we find the data - or give up.
4516 	 */
4517 	struct r10conf *conf = mddev->private;
4518 	int s;
4519 
4520 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4521 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4522 			/* Reshape has been aborted */
4523 			md_done_sync(mddev, r10_bio->sectors, 0);
4524 			return;
4525 		}
4526 
4527 	/* We definitely have the data in the pages, schedule the
4528 	 * writes.
4529 	 */
4530 	atomic_set(&r10_bio->remaining, 1);
4531 	for (s = 0; s < conf->copies*2; s++) {
4532 		struct bio *b;
4533 		int d = r10_bio->devs[s/2].devnum;
4534 		struct md_rdev *rdev;
4535 		if (s&1) {
4536 			rdev = conf->mirrors[d].replacement;
4537 			b = r10_bio->devs[s/2].repl_bio;
4538 		} else {
4539 			rdev = conf->mirrors[d].rdev;
4540 			b = r10_bio->devs[s/2].bio;
4541 		}
4542 		if (!rdev || test_bit(Faulty, &rdev->flags))
4543 			continue;
4544 		atomic_inc(&rdev->nr_pending);
4545 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4546 		atomic_inc(&r10_bio->remaining);
4547 		b->bi_next = NULL;
4548 		generic_make_request(b);
4549 	}
4550 	end_reshape_request(r10_bio);
4551 }
4552 
4553 static void end_reshape(struct r10conf *conf)
4554 {
4555 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4556 		return;
4557 
4558 	spin_lock_irq(&conf->device_lock);
4559 	conf->prev = conf->geo;
4560 	md_finish_reshape(conf->mddev);
4561 	smp_wmb();
4562 	conf->reshape_progress = MaxSector;
4563 	spin_unlock_irq(&conf->device_lock);
4564 
4565 	/* read-ahead size must cover two whole stripes, which is
4566 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4567 	 */
4568 	if (conf->mddev->queue) {
4569 		int stripe = conf->geo.raid_disks *
4570 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4571 		stripe /= conf->geo.near_copies;
4572 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4573 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4574 	}
4575 	conf->fullsync = 0;
4576 }
4577 
4578 
4579 static int handle_reshape_read_error(struct mddev *mddev,
4580 				     struct r10bio *r10_bio)
4581 {
4582 	/* Use sync reads to get the blocks from somewhere else */
4583 	int sectors = r10_bio->sectors;
4584 	struct r10conf *conf = mddev->private;
4585 	struct {
4586 		struct r10bio r10_bio;
4587 		struct r10dev devs[conf->copies];
4588 	} on_stack;
4589 	struct r10bio *r10b = &on_stack.r10_bio;
4590 	int slot = 0;
4591 	int idx = 0;
4592 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4593 
4594 	r10b->sector = r10_bio->sector;
4595 	__raid10_find_phys(&conf->prev, r10b);
4596 
4597 	while (sectors) {
4598 		int s = sectors;
4599 		int success = 0;
4600 		int first_slot = slot;
4601 
4602 		if (s > (PAGE_SIZE >> 9))
4603 			s = PAGE_SIZE >> 9;
4604 
4605 		while (!success) {
4606 			int d = r10b->devs[slot].devnum;
4607 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4608 			sector_t addr;
4609 			if (rdev == NULL ||
4610 			    test_bit(Faulty, &rdev->flags) ||
4611 			    !test_bit(In_sync, &rdev->flags))
4612 				goto failed;
4613 
4614 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4615 			success = sync_page_io(rdev,
4616 					       addr,
4617 					       s << 9,
4618 					       bvec[idx].bv_page,
4619 					       READ, false);
4620 			if (success)
4621 				break;
4622 		failed:
4623 			slot++;
4624 			if (slot >= conf->copies)
4625 				slot = 0;
4626 			if (slot == first_slot)
4627 				break;
4628 		}
4629 		if (!success) {
4630 			/* couldn't read this block, must give up */
4631 			set_bit(MD_RECOVERY_INTR,
4632 				&mddev->recovery);
4633 			return -EIO;
4634 		}
4635 		sectors -= s;
4636 		idx++;
4637 	}
4638 	return 0;
4639 }
4640 
4641 static void end_reshape_write(struct bio *bio, int error)
4642 {
4643 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4644 	struct r10bio *r10_bio = bio->bi_private;
4645 	struct mddev *mddev = r10_bio->mddev;
4646 	struct r10conf *conf = mddev->private;
4647 	int d;
4648 	int slot;
4649 	int repl;
4650 	struct md_rdev *rdev = NULL;
4651 
4652 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4653 	if (repl)
4654 		rdev = conf->mirrors[d].replacement;
4655 	if (!rdev) {
4656 		smp_mb();
4657 		rdev = conf->mirrors[d].rdev;
4658 	}
4659 
4660 	if (!uptodate) {
4661 		/* FIXME should record badblock */
4662 		md_error(mddev, rdev);
4663 	}
4664 
4665 	rdev_dec_pending(rdev, mddev);
4666 	end_reshape_request(r10_bio);
4667 }
4668 
4669 static void end_reshape_request(struct r10bio *r10_bio)
4670 {
4671 	if (!atomic_dec_and_test(&r10_bio->remaining))
4672 		return;
4673 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4674 	bio_put(r10_bio->master_bio);
4675 	put_buf(r10_bio);
4676 }
4677 
4678 static void raid10_finish_reshape(struct mddev *mddev)
4679 {
4680 	struct r10conf *conf = mddev->private;
4681 
4682 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4683 		return;
4684 
4685 	if (mddev->delta_disks > 0) {
4686 		sector_t size = raid10_size(mddev, 0, 0);
4687 		md_set_array_sectors(mddev, size);
4688 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4689 			mddev->recovery_cp = mddev->resync_max_sectors;
4690 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4691 		}
4692 		mddev->resync_max_sectors = size;
4693 		set_capacity(mddev->gendisk, mddev->array_sectors);
4694 		revalidate_disk(mddev->gendisk);
4695 	} else {
4696 		int d;
4697 		for (d = conf->geo.raid_disks ;
4698 		     d < conf->geo.raid_disks - mddev->delta_disks;
4699 		     d++) {
4700 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4701 			if (rdev)
4702 				clear_bit(In_sync, &rdev->flags);
4703 			rdev = conf->mirrors[d].replacement;
4704 			if (rdev)
4705 				clear_bit(In_sync, &rdev->flags);
4706 		}
4707 	}
4708 	mddev->layout = mddev->new_layout;
4709 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4710 	mddev->reshape_position = MaxSector;
4711 	mddev->delta_disks = 0;
4712 	mddev->reshape_backwards = 0;
4713 }
4714 
4715 static struct md_personality raid10_personality =
4716 {
4717 	.name		= "raid10",
4718 	.level		= 10,
4719 	.owner		= THIS_MODULE,
4720 	.make_request	= make_request,
4721 	.run		= run,
4722 	.stop		= stop,
4723 	.status		= status,
4724 	.error_handler	= error,
4725 	.hot_add_disk	= raid10_add_disk,
4726 	.hot_remove_disk= raid10_remove_disk,
4727 	.spare_active	= raid10_spare_active,
4728 	.sync_request	= sync_request,
4729 	.quiesce	= raid10_quiesce,
4730 	.size		= raid10_size,
4731 	.resize		= raid10_resize,
4732 	.takeover	= raid10_takeover,
4733 	.check_reshape	= raid10_check_reshape,
4734 	.start_reshape	= raid10_start_reshape,
4735 	.finish_reshape	= raid10_finish_reshape,
4736 };
4737 
4738 static int __init raid_init(void)
4739 {
4740 	return register_md_personality(&raid10_personality);
4741 }
4742 
4743 static void raid_exit(void)
4744 {
4745 	unregister_md_personality(&raid10_personality);
4746 }
4747 
4748 module_init(raid_init);
4749 module_exit(raid_exit);
4750 MODULE_LICENSE("GPL");
4751 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4752 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4753 MODULE_ALIAS("md-raid10");
4754 MODULE_ALIAS("md-level-10");
4755 
4756 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4757