xref: /openbmc/linux/drivers/md/raid10.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 			}
469 
470 			/*
471 			 * When the device is faulty, it is not necessary to
472 			 * handle write error.
473 			 * For failfast, this is the only remaining device,
474 			 * We need to retry the write without FailFast.
475 			 */
476 			if (!test_bit(Faulty, &rdev->flags))
477 				set_bit(R10BIO_WriteError, &r10_bio->state);
478 			else {
479 				r10_bio->devs[slot].bio = NULL;
480 				to_put = bio;
481 				dec_rdev = 1;
482 			}
483 		}
484 	} else {
485 		/*
486 		 * Set R10BIO_Uptodate in our master bio, so that
487 		 * we will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer fails.
489 		 *
490 		 * The 'master' represents the composite IO operation to
491 		 * user-side. So if something waits for IO, then it will
492 		 * wait for the 'master' bio.
493 		 */
494 		sector_t first_bad;
495 		int bad_sectors;
496 
497 		/*
498 		 * Do not set R10BIO_Uptodate if the current device is
499 		 * rebuilding or Faulty. This is because we cannot use
500 		 * such device for properly reading the data back (we could
501 		 * potentially use it, if the current write would have felt
502 		 * before rdev->recovery_offset, but for simplicity we don't
503 		 * check this here.
504 		 */
505 		if (test_bit(In_sync, &rdev->flags) &&
506 		    !test_bit(Faulty, &rdev->flags))
507 			set_bit(R10BIO_Uptodate, &r10_bio->state);
508 
509 		/* Maybe we can clear some bad blocks. */
510 		if (is_badblock(rdev,
511 				r10_bio->devs[slot].addr,
512 				r10_bio->sectors,
513 				&first_bad, &bad_sectors) && !discard_error) {
514 			bio_put(bio);
515 			if (repl)
516 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 			else
518 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 			dec_rdev = 0;
520 			set_bit(R10BIO_MadeGood, &r10_bio->state);
521 		}
522 	}
523 
524 	/*
525 	 *
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	one_write_done(r10_bio);
530 	if (dec_rdev)
531 		rdev_dec_pending(rdev, conf->mddev);
532 	if (to_put)
533 		bio_put(to_put);
534 }
535 
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560 
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 	int n,f;
564 	sector_t sector;
565 	sector_t chunk;
566 	sector_t stripe;
567 	int dev;
568 	int slot = 0;
569 	int last_far_set_start, last_far_set_size;
570 
571 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 	last_far_set_start *= geo->far_set_size;
573 
574 	last_far_set_size = geo->far_set_size;
575 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576 
577 	/* now calculate first sector/dev */
578 	chunk = r10bio->sector >> geo->chunk_shift;
579 	sector = r10bio->sector & geo->chunk_mask;
580 
581 	chunk *= geo->near_copies;
582 	stripe = chunk;
583 	dev = sector_div(stripe, geo->raid_disks);
584 	if (geo->far_offset)
585 		stripe *= geo->far_copies;
586 
587 	sector += stripe << geo->chunk_shift;
588 
589 	/* and calculate all the others */
590 	for (n = 0; n < geo->near_copies; n++) {
591 		int d = dev;
592 		int set;
593 		sector_t s = sector;
594 		r10bio->devs[slot].devnum = d;
595 		r10bio->devs[slot].addr = s;
596 		slot++;
597 
598 		for (f = 1; f < geo->far_copies; f++) {
599 			set = d / geo->far_set_size;
600 			d += geo->near_copies;
601 
602 			if ((geo->raid_disks % geo->far_set_size) &&
603 			    (d > last_far_set_start)) {
604 				d -= last_far_set_start;
605 				d %= last_far_set_size;
606 				d += last_far_set_start;
607 			} else {
608 				d %= geo->far_set_size;
609 				d += geo->far_set_size * set;
610 			}
611 			s += geo->stride;
612 			r10bio->devs[slot].devnum = d;
613 			r10bio->devs[slot].addr = s;
614 			slot++;
615 		}
616 		dev++;
617 		if (dev >= geo->raid_disks) {
618 			dev = 0;
619 			sector += (geo->chunk_mask + 1);
620 		}
621 	}
622 }
623 
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 	struct geom *geo = &conf->geo;
627 
628 	if (conf->reshape_progress != MaxSector &&
629 	    ((r10bio->sector >= conf->reshape_progress) !=
630 	     conf->mddev->reshape_backwards)) {
631 		set_bit(R10BIO_Previous, &r10bio->state);
632 		geo = &conf->prev;
633 	} else
634 		clear_bit(R10BIO_Previous, &r10bio->state);
635 
636 	__raid10_find_phys(geo, r10bio);
637 }
638 
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 	sector_t offset, chunk, vchunk;
642 	/* Never use conf->prev as this is only called during resync
643 	 * or recovery, so reshape isn't happening
644 	 */
645 	struct geom *geo = &conf->geo;
646 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 	int far_set_size = geo->far_set_size;
648 	int last_far_set_start;
649 
650 	if (geo->raid_disks % geo->far_set_size) {
651 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 		last_far_set_start *= geo->far_set_size;
653 
654 		if (dev >= last_far_set_start) {
655 			far_set_size = geo->far_set_size;
656 			far_set_size += (geo->raid_disks % geo->far_set_size);
657 			far_set_start = last_far_set_start;
658 		}
659 	}
660 
661 	offset = sector & geo->chunk_mask;
662 	if (geo->far_offset) {
663 		int fc;
664 		chunk = sector >> geo->chunk_shift;
665 		fc = sector_div(chunk, geo->far_copies);
666 		dev -= fc * geo->near_copies;
667 		if (dev < far_set_start)
668 			dev += far_set_size;
669 	} else {
670 		while (sector >= geo->stride) {
671 			sector -= geo->stride;
672 			if (dev < (geo->near_copies + far_set_start))
673 				dev += far_set_size - geo->near_copies;
674 			else
675 				dev -= geo->near_copies;
676 		}
677 		chunk = sector >> geo->chunk_shift;
678 	}
679 	vchunk = chunk * geo->raid_disks + dev;
680 	sector_div(vchunk, geo->near_copies);
681 	return (vchunk << geo->chunk_shift) + offset;
682 }
683 
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698 
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 				    struct r10bio *r10_bio,
705 				    int *max_sectors)
706 {
707 	const sector_t this_sector = r10_bio->sector;
708 	int disk, slot;
709 	int sectors = r10_bio->sectors;
710 	int best_good_sectors;
711 	sector_t new_distance, best_dist;
712 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 	int do_balance;
714 	int best_dist_slot, best_pending_slot;
715 	bool has_nonrot_disk = false;
716 	unsigned int min_pending;
717 	struct geom *geo = &conf->geo;
718 
719 	raid10_find_phys(conf, r10_bio);
720 	rcu_read_lock();
721 	best_dist_slot = -1;
722 	min_pending = UINT_MAX;
723 	best_dist_rdev = NULL;
724 	best_pending_rdev = NULL;
725 	best_dist = MaxSector;
726 	best_good_sectors = 0;
727 	do_balance = 1;
728 	clear_bit(R10BIO_FailFast, &r10_bio->state);
729 	/*
730 	 * Check if we can balance. We can balance on the whole
731 	 * device if no resync is going on (recovery is ok), or below
732 	 * the resync window. We take the first readable disk when
733 	 * above the resync window.
734 	 */
735 	if ((conf->mddev->recovery_cp < MaxSector
736 	     && (this_sector + sectors >= conf->next_resync)) ||
737 	    (mddev_is_clustered(conf->mddev) &&
738 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 					    this_sector + sectors)))
740 		do_balance = 0;
741 
742 	for (slot = 0; slot < conf->copies ; slot++) {
743 		sector_t first_bad;
744 		int bad_sectors;
745 		sector_t dev_sector;
746 		unsigned int pending;
747 		bool nonrot;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 		if (rdev == NULL ||
757 		    test_bit(Faulty, &rdev->flags))
758 			continue;
759 		if (!test_bit(In_sync, &rdev->flags) &&
760 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 			continue;
762 
763 		dev_sector = r10_bio->devs[slot].addr;
764 		if (is_badblock(rdev, dev_sector, sectors,
765 				&first_bad, &bad_sectors)) {
766 			if (best_dist < MaxSector)
767 				/* Already have a better slot */
768 				continue;
769 			if (first_bad <= dev_sector) {
770 				/* Cannot read here.  If this is the
771 				 * 'primary' device, then we must not read
772 				 * beyond 'bad_sectors' from another device.
773 				 */
774 				bad_sectors -= (dev_sector - first_bad);
775 				if (!do_balance && sectors > bad_sectors)
776 					sectors = bad_sectors;
777 				if (best_good_sectors > sectors)
778 					best_good_sectors = sectors;
779 			} else {
780 				sector_t good_sectors =
781 					first_bad - dev_sector;
782 				if (good_sectors > best_good_sectors) {
783 					best_good_sectors = good_sectors;
784 					best_dist_slot = slot;
785 					best_dist_rdev = rdev;
786 				}
787 				if (!do_balance)
788 					/* Must read from here */
789 					break;
790 			}
791 			continue;
792 		} else
793 			best_good_sectors = sectors;
794 
795 		if (!do_balance)
796 			break;
797 
798 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 		has_nonrot_disk |= nonrot;
800 		pending = atomic_read(&rdev->nr_pending);
801 		if (min_pending > pending && nonrot) {
802 			min_pending = pending;
803 			best_pending_slot = slot;
804 			best_pending_rdev = rdev;
805 		}
806 
807 		if (best_dist_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !pending)
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 
824 		if (new_distance < best_dist) {
825 			best_dist = new_distance;
826 			best_dist_slot = slot;
827 			best_dist_rdev = rdev;
828 		}
829 	}
830 	if (slot >= conf->copies) {
831 		if (has_nonrot_disk) {
832 			slot = best_pending_slot;
833 			rdev = best_pending_rdev;
834 		} else {
835 			slot = best_dist_slot;
836 			rdev = best_dist_rdev;
837 		}
838 	}
839 
840 	if (slot >= 0) {
841 		atomic_inc(&rdev->nr_pending);
842 		r10_bio->read_slot = slot;
843 	} else
844 		rdev = NULL;
845 	rcu_read_unlock();
846 	*max_sectors = best_good_sectors;
847 
848 	return rdev;
849 }
850 
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 	/* Any writes that have been queued but are awaiting
854 	 * bitmap updates get flushed here.
855 	 */
856 	spin_lock_irq(&conf->device_lock);
857 
858 	if (conf->pending_bio_list.head) {
859 		struct blk_plug plug;
860 		struct bio *bio;
861 
862 		bio = bio_list_get(&conf->pending_bio_list);
863 		conf->pending_count = 0;
864 		spin_unlock_irq(&conf->device_lock);
865 
866 		/*
867 		 * As this is called in a wait_event() loop (see freeze_array),
868 		 * current->state might be TASK_UNINTERRUPTIBLE which will
869 		 * cause a warning when we prepare to wait again.  As it is
870 		 * rare that this path is taken, it is perfectly safe to force
871 		 * us to go around the wait_event() loop again, so the warning
872 		 * is a false-positive. Silence the warning by resetting
873 		 * thread state
874 		 */
875 		__set_current_state(TASK_RUNNING);
876 
877 		blk_start_plug(&plug);
878 		/* flush any pending bitmap writes to disk
879 		 * before proceeding w/ I/O */
880 		md_bitmap_unplug(conf->mddev->bitmap);
881 		wake_up(&conf->wait_barrier);
882 
883 		while (bio) { /* submit pending writes */
884 			struct bio *next = bio->bi_next;
885 			struct md_rdev *rdev = (void*)bio->bi_disk;
886 			bio->bi_next = NULL;
887 			bio_set_dev(bio, rdev->bdev);
888 			if (test_bit(Faulty, &rdev->flags)) {
889 				bio_io_error(bio);
890 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891 					    !blk_queue_discard(bio->bi_disk->queue)))
892 				/* Just ignore it */
893 				bio_endio(bio);
894 			else
895 				submit_bio_noacct(bio);
896 			bio = next;
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	BUG_ON(force && !conf->barrier);
928 	spin_lock_irq(&conf->resync_lock);
929 
930 	/* Wait until no block IO is waiting (unless 'force') */
931 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 			    conf->resync_lock);
933 
934 	/* block any new IO from starting */
935 	conf->barrier++;
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_lock_irq(conf->wait_barrier,
939 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 			    conf->resync_lock);
941 
942 	spin_unlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->barrier--;
950 	spin_unlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static void wait_barrier(struct r10conf *conf)
955 {
956 	spin_lock_irq(&conf->resync_lock);
957 	if (conf->barrier) {
958 		struct bio_list *bio_list = current->bio_list;
959 		conf->nr_waiting++;
960 		/* Wait for the barrier to drop.
961 		 * However if there are already pending
962 		 * requests (preventing the barrier from
963 		 * rising completely), and the
964 		 * pre-process bio queue isn't empty,
965 		 * then don't wait, as we need to empty
966 		 * that queue to get the nr_pending
967 		 * count down.
968 		 */
969 		raid10_log(conf->mddev, "wait barrier");
970 		wait_event_lock_irq(conf->wait_barrier,
971 				    !conf->barrier ||
972 				    (atomic_read(&conf->nr_pending) &&
973 				     bio_list &&
974 				     (!bio_list_empty(&bio_list[0]) ||
975 				      !bio_list_empty(&bio_list[1]))) ||
976 				     /* move on if recovery thread is
977 				      * blocked by us
978 				      */
979 				     (conf->mddev->thread->tsk == current &&
980 				      test_bit(MD_RECOVERY_RUNNING,
981 					       &conf->mddev->recovery) &&
982 				      conf->nr_queued > 0),
983 				    conf->resync_lock);
984 		conf->nr_waiting--;
985 		if (!conf->nr_waiting)
986 			wake_up(&conf->wait_barrier);
987 	}
988 	atomic_inc(&conf->nr_pending);
989 	spin_unlock_irq(&conf->resync_lock);
990 }
991 
992 static void allow_barrier(struct r10conf *conf)
993 {
994 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
995 			(conf->array_freeze_pending))
996 		wake_up(&conf->wait_barrier);
997 }
998 
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001 	/* stop syncio and normal IO and wait for everything to
1002 	 * go quiet.
1003 	 * We increment barrier and nr_waiting, and then
1004 	 * wait until nr_pending match nr_queued+extra
1005 	 * This is called in the context of one normal IO request
1006 	 * that has failed. Thus any sync request that might be pending
1007 	 * will be blocked by nr_pending, and we need to wait for
1008 	 * pending IO requests to complete or be queued for re-try.
1009 	 * Thus the number queued (nr_queued) plus this request (extra)
1010 	 * must match the number of pending IOs (nr_pending) before
1011 	 * we continue.
1012 	 */
1013 	spin_lock_irq(&conf->resync_lock);
1014 	conf->array_freeze_pending++;
1015 	conf->barrier++;
1016 	conf->nr_waiting++;
1017 	wait_event_lock_irq_cmd(conf->wait_barrier,
1018 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019 				conf->resync_lock,
1020 				flush_pending_writes(conf));
1021 
1022 	conf->array_freeze_pending--;
1023 	spin_unlock_irq(&conf->resync_lock);
1024 }
1025 
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028 	/* reverse the effect of the freeze */
1029 	spin_lock_irq(&conf->resync_lock);
1030 	conf->barrier--;
1031 	conf->nr_waiting--;
1032 	wake_up(&conf->wait_barrier);
1033 	spin_unlock_irq(&conf->resync_lock);
1034 }
1035 
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037 				   struct md_rdev *rdev)
1038 {
1039 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040 	    test_bit(R10BIO_Previous, &r10_bio->state))
1041 		return rdev->data_offset;
1042 	else
1043 		return rdev->new_data_offset;
1044 }
1045 
1046 struct raid10_plug_cb {
1047 	struct blk_plug_cb	cb;
1048 	struct bio_list		pending;
1049 	int			pending_cnt;
1050 };
1051 
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055 						   cb);
1056 	struct mddev *mddev = plug->cb.data;
1057 	struct r10conf *conf = mddev->private;
1058 	struct bio *bio;
1059 
1060 	if (from_schedule || current->bio_list) {
1061 		spin_lock_irq(&conf->device_lock);
1062 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063 		conf->pending_count += plug->pending_cnt;
1064 		spin_unlock_irq(&conf->device_lock);
1065 		wake_up(&conf->wait_barrier);
1066 		md_wakeup_thread(mddev->thread);
1067 		kfree(plug);
1068 		return;
1069 	}
1070 
1071 	/* we aren't scheduling, so we can do the write-out directly. */
1072 	bio = bio_list_get(&plug->pending);
1073 	md_bitmap_unplug(mddev->bitmap);
1074 	wake_up(&conf->wait_barrier);
1075 
1076 	while (bio) { /* submit pending writes */
1077 		struct bio *next = bio->bi_next;
1078 		struct md_rdev *rdev = (void*)bio->bi_disk;
1079 		bio->bi_next = NULL;
1080 		bio_set_dev(bio, rdev->bdev);
1081 		if (test_bit(Faulty, &rdev->flags)) {
1082 			bio_io_error(bio);
1083 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084 				    !blk_queue_discard(bio->bi_disk->queue)))
1085 			/* Just ignore it */
1086 			bio_endio(bio);
1087 		else
1088 			submit_bio_noacct(bio);
1089 		bio = next;
1090 	}
1091 	kfree(plug);
1092 }
1093 
1094 /*
1095  * 1. Register the new request and wait if the reconstruction thread has put
1096  * up a bar for new requests. Continue immediately if no resync is active
1097  * currently.
1098  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099  */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101 				 struct bio *bio, sector_t sectors)
1102 {
1103 	wait_barrier(conf);
1104 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1106 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107 		raid10_log(conf->mddev, "wait reshape");
1108 		allow_barrier(conf);
1109 		wait_event(conf->wait_barrier,
1110 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1112 			   sectors);
1113 		wait_barrier(conf);
1114 	}
1115 }
1116 
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118 				struct r10bio *r10_bio)
1119 {
1120 	struct r10conf *conf = mddev->private;
1121 	struct bio *read_bio;
1122 	const int op = bio_op(bio);
1123 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124 	int max_sectors;
1125 	struct md_rdev *rdev;
1126 	char b[BDEVNAME_SIZE];
1127 	int slot = r10_bio->read_slot;
1128 	struct md_rdev *err_rdev = NULL;
1129 	gfp_t gfp = GFP_NOIO;
1130 
1131 	if (r10_bio->devs[slot].rdev) {
1132 		/*
1133 		 * This is an error retry, but we cannot
1134 		 * safely dereference the rdev in the r10_bio,
1135 		 * we must use the one in conf.
1136 		 * If it has already been disconnected (unlikely)
1137 		 * we lose the device name in error messages.
1138 		 */
1139 		int disk;
1140 		/*
1141 		 * As we are blocking raid10, it is a little safer to
1142 		 * use __GFP_HIGH.
1143 		 */
1144 		gfp = GFP_NOIO | __GFP_HIGH;
1145 
1146 		rcu_read_lock();
1147 		disk = r10_bio->devs[slot].devnum;
1148 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149 		if (err_rdev)
1150 			bdevname(err_rdev->bdev, b);
1151 		else {
1152 			strcpy(b, "???");
1153 			/* This never gets dereferenced */
1154 			err_rdev = r10_bio->devs[slot].rdev;
1155 		}
1156 		rcu_read_unlock();
1157 	}
1158 
1159 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160 	rdev = read_balance(conf, r10_bio, &max_sectors);
1161 	if (!rdev) {
1162 		if (err_rdev) {
1163 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164 					    mdname(mddev), b,
1165 					    (unsigned long long)r10_bio->sector);
1166 		}
1167 		raid_end_bio_io(r10_bio);
1168 		return;
1169 	}
1170 	if (err_rdev)
1171 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172 				   mdname(mddev),
1173 				   bdevname(rdev->bdev, b),
1174 				   (unsigned long long)r10_bio->sector);
1175 	if (max_sectors < bio_sectors(bio)) {
1176 		struct bio *split = bio_split(bio, max_sectors,
1177 					      gfp, &conf->bio_split);
1178 		bio_chain(split, bio);
1179 		allow_barrier(conf);
1180 		submit_bio_noacct(bio);
1181 		wait_barrier(conf);
1182 		bio = split;
1183 		r10_bio->master_bio = bio;
1184 		r10_bio->sectors = max_sectors;
1185 	}
1186 	slot = r10_bio->read_slot;
1187 
1188 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189 
1190 	r10_bio->devs[slot].bio = read_bio;
1191 	r10_bio->devs[slot].rdev = rdev;
1192 
1193 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194 		choose_data_offset(r10_bio, rdev);
1195 	bio_set_dev(read_bio, rdev->bdev);
1196 	read_bio->bi_end_io = raid10_end_read_request;
1197 	bio_set_op_attrs(read_bio, op, do_sync);
1198 	if (test_bit(FailFast, &rdev->flags) &&
1199 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1200 	        read_bio->bi_opf |= MD_FAILFAST;
1201 	read_bio->bi_private = r10_bio;
1202 
1203 	if (mddev->gendisk)
1204 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1205 	                              read_bio, disk_devt(mddev->gendisk),
1206 	                              r10_bio->sector);
1207 	submit_bio_noacct(read_bio);
1208 	return;
1209 }
1210 
1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212 				  struct bio *bio, bool replacement,
1213 				  int n_copy)
1214 {
1215 	const int op = bio_op(bio);
1216 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218 	unsigned long flags;
1219 	struct blk_plug_cb *cb;
1220 	struct raid10_plug_cb *plug = NULL;
1221 	struct r10conf *conf = mddev->private;
1222 	struct md_rdev *rdev;
1223 	int devnum = r10_bio->devs[n_copy].devnum;
1224 	struct bio *mbio;
1225 
1226 	if (replacement) {
1227 		rdev = conf->mirrors[devnum].replacement;
1228 		if (rdev == NULL) {
1229 			/* Replacement just got moved to main 'rdev' */
1230 			smp_mb();
1231 			rdev = conf->mirrors[devnum].rdev;
1232 		}
1233 	} else
1234 		rdev = conf->mirrors[devnum].rdev;
1235 
1236 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237 	if (replacement)
1238 		r10_bio->devs[n_copy].repl_bio = mbio;
1239 	else
1240 		r10_bio->devs[n_copy].bio = mbio;
1241 
1242 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1243 				   choose_data_offset(r10_bio, rdev));
1244 	bio_set_dev(mbio, rdev->bdev);
1245 	mbio->bi_end_io	= raid10_end_write_request;
1246 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247 	if (!replacement && test_bit(FailFast,
1248 				     &conf->mirrors[devnum].rdev->flags)
1249 			 && enough(conf, devnum))
1250 		mbio->bi_opf |= MD_FAILFAST;
1251 	mbio->bi_private = r10_bio;
1252 
1253 	if (conf->mddev->gendisk)
1254 		trace_block_bio_remap(mbio->bi_disk->queue,
1255 				      mbio, disk_devt(conf->mddev->gendisk),
1256 				      r10_bio->sector);
1257 	/* flush_pending_writes() needs access to the rdev so...*/
1258 	mbio->bi_disk = (void *)rdev;
1259 
1260 	atomic_inc(&r10_bio->remaining);
1261 
1262 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263 	if (cb)
1264 		plug = container_of(cb, struct raid10_plug_cb, cb);
1265 	else
1266 		plug = NULL;
1267 	if (plug) {
1268 		bio_list_add(&plug->pending, mbio);
1269 		plug->pending_cnt++;
1270 	} else {
1271 		spin_lock_irqsave(&conf->device_lock, flags);
1272 		bio_list_add(&conf->pending_bio_list, mbio);
1273 		conf->pending_count++;
1274 		spin_unlock_irqrestore(&conf->device_lock, flags);
1275 		md_wakeup_thread(mddev->thread);
1276 	}
1277 }
1278 
1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280 				 struct r10bio *r10_bio)
1281 {
1282 	struct r10conf *conf = mddev->private;
1283 	int i;
1284 	struct md_rdev *blocked_rdev;
1285 	sector_t sectors;
1286 	int max_sectors;
1287 
1288 	if ((mddev_is_clustered(mddev) &&
1289 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1290 					    bio->bi_iter.bi_sector,
1291 					    bio_end_sector(bio)))) {
1292 		DEFINE_WAIT(w);
1293 		for (;;) {
1294 			prepare_to_wait(&conf->wait_barrier,
1295 					&w, TASK_IDLE);
1296 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298 				break;
1299 			schedule();
1300 		}
1301 		finish_wait(&conf->wait_barrier, &w);
1302 	}
1303 
1304 	sectors = r10_bio->sectors;
1305 	regular_request_wait(mddev, conf, bio, sectors);
1306 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307 	    (mddev->reshape_backwards
1308 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312 		/* Need to update reshape_position in metadata */
1313 		mddev->reshape_position = conf->reshape_progress;
1314 		set_mask_bits(&mddev->sb_flags, 0,
1315 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316 		md_wakeup_thread(mddev->thread);
1317 		raid10_log(conf->mddev, "wait reshape metadata");
1318 		wait_event(mddev->sb_wait,
1319 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320 
1321 		conf->reshape_safe = mddev->reshape_position;
1322 	}
1323 
1324 	if (conf->pending_count >= max_queued_requests) {
1325 		md_wakeup_thread(mddev->thread);
1326 		raid10_log(mddev, "wait queued");
1327 		wait_event(conf->wait_barrier,
1328 			   conf->pending_count < max_queued_requests);
1329 	}
1330 	/* first select target devices under rcu_lock and
1331 	 * inc refcount on their rdev.  Record them by setting
1332 	 * bios[x] to bio
1333 	 * If there are known/acknowledged bad blocks on any device
1334 	 * on which we have seen a write error, we want to avoid
1335 	 * writing to those blocks.  This potentially requires several
1336 	 * writes to write around the bad blocks.  Each set of writes
1337 	 * gets its own r10_bio with a set of bios attached.
1338 	 */
1339 
1340 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341 	raid10_find_phys(conf, r10_bio);
1342 retry_write:
1343 	blocked_rdev = NULL;
1344 	rcu_read_lock();
1345 	max_sectors = r10_bio->sectors;
1346 
1347 	for (i = 0;  i < conf->copies; i++) {
1348 		int d = r10_bio->devs[i].devnum;
1349 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350 		struct md_rdev *rrdev = rcu_dereference(
1351 			conf->mirrors[d].replacement);
1352 		if (rdev == rrdev)
1353 			rrdev = NULL;
1354 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355 			atomic_inc(&rdev->nr_pending);
1356 			blocked_rdev = rdev;
1357 			break;
1358 		}
1359 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360 			atomic_inc(&rrdev->nr_pending);
1361 			blocked_rdev = rrdev;
1362 			break;
1363 		}
1364 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1365 			rdev = NULL;
1366 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367 			rrdev = NULL;
1368 
1369 		r10_bio->devs[i].bio = NULL;
1370 		r10_bio->devs[i].repl_bio = NULL;
1371 
1372 		if (!rdev && !rrdev) {
1373 			set_bit(R10BIO_Degraded, &r10_bio->state);
1374 			continue;
1375 		}
1376 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377 			sector_t first_bad;
1378 			sector_t dev_sector = r10_bio->devs[i].addr;
1379 			int bad_sectors;
1380 			int is_bad;
1381 
1382 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383 					     &first_bad, &bad_sectors);
1384 			if (is_bad < 0) {
1385 				/* Mustn't write here until the bad block
1386 				 * is acknowledged
1387 				 */
1388 				atomic_inc(&rdev->nr_pending);
1389 				set_bit(BlockedBadBlocks, &rdev->flags);
1390 				blocked_rdev = rdev;
1391 				break;
1392 			}
1393 			if (is_bad && first_bad <= dev_sector) {
1394 				/* Cannot write here at all */
1395 				bad_sectors -= (dev_sector - first_bad);
1396 				if (bad_sectors < max_sectors)
1397 					/* Mustn't write more than bad_sectors
1398 					 * to other devices yet
1399 					 */
1400 					max_sectors = bad_sectors;
1401 				/* We don't set R10BIO_Degraded as that
1402 				 * only applies if the disk is missing,
1403 				 * so it might be re-added, and we want to
1404 				 * know to recover this chunk.
1405 				 * In this case the device is here, and the
1406 				 * fact that this chunk is not in-sync is
1407 				 * recorded in the bad block log.
1408 				 */
1409 				continue;
1410 			}
1411 			if (is_bad) {
1412 				int good_sectors = first_bad - dev_sector;
1413 				if (good_sectors < max_sectors)
1414 					max_sectors = good_sectors;
1415 			}
1416 		}
1417 		if (rdev) {
1418 			r10_bio->devs[i].bio = bio;
1419 			atomic_inc(&rdev->nr_pending);
1420 		}
1421 		if (rrdev) {
1422 			r10_bio->devs[i].repl_bio = bio;
1423 			atomic_inc(&rrdev->nr_pending);
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 
1428 	if (unlikely(blocked_rdev)) {
1429 		/* Have to wait for this device to get unblocked, then retry */
1430 		int j;
1431 		int d;
1432 
1433 		for (j = 0; j < i; j++) {
1434 			if (r10_bio->devs[j].bio) {
1435 				d = r10_bio->devs[j].devnum;
1436 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437 			}
1438 			if (r10_bio->devs[j].repl_bio) {
1439 				struct md_rdev *rdev;
1440 				d = r10_bio->devs[j].devnum;
1441 				rdev = conf->mirrors[d].replacement;
1442 				if (!rdev) {
1443 					/* Race with remove_disk */
1444 					smp_mb();
1445 					rdev = conf->mirrors[d].rdev;
1446 				}
1447 				rdev_dec_pending(rdev, mddev);
1448 			}
1449 		}
1450 		allow_barrier(conf);
1451 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453 		wait_barrier(conf);
1454 		goto retry_write;
1455 	}
1456 
1457 	if (max_sectors < r10_bio->sectors)
1458 		r10_bio->sectors = max_sectors;
1459 
1460 	if (r10_bio->sectors < bio_sectors(bio)) {
1461 		struct bio *split = bio_split(bio, r10_bio->sectors,
1462 					      GFP_NOIO, &conf->bio_split);
1463 		bio_chain(split, bio);
1464 		allow_barrier(conf);
1465 		submit_bio_noacct(bio);
1466 		wait_barrier(conf);
1467 		bio = split;
1468 		r10_bio->master_bio = bio;
1469 	}
1470 
1471 	atomic_set(&r10_bio->remaining, 1);
1472 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473 
1474 	for (i = 0; i < conf->copies; i++) {
1475 		if (r10_bio->devs[i].bio)
1476 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477 		if (r10_bio->devs[i].repl_bio)
1478 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479 	}
1480 	one_write_done(r10_bio);
1481 }
1482 
1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484 {
1485 	struct r10conf *conf = mddev->private;
1486 	struct r10bio *r10_bio;
1487 
1488 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489 
1490 	r10_bio->master_bio = bio;
1491 	r10_bio->sectors = sectors;
1492 
1493 	r10_bio->mddev = mddev;
1494 	r10_bio->sector = bio->bi_iter.bi_sector;
1495 	r10_bio->state = 0;
1496 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1497 
1498 	if (bio_data_dir(bio) == READ)
1499 		raid10_read_request(mddev, bio, r10_bio);
1500 	else
1501 		raid10_write_request(mddev, bio, r10_bio);
1502 }
1503 
1504 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505 {
1506 	struct r10conf *conf = mddev->private;
1507 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508 	int chunk_sects = chunk_mask + 1;
1509 	int sectors = bio_sectors(bio);
1510 
1511 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512 	    && md_flush_request(mddev, bio))
1513 		return true;
1514 
1515 	if (!md_write_start(mddev, bio))
1516 		return false;
1517 
1518 	/*
1519 	 * If this request crosses a chunk boundary, we need to split
1520 	 * it.
1521 	 */
1522 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523 		     sectors > chunk_sects
1524 		     && (conf->geo.near_copies < conf->geo.raid_disks
1525 			 || conf->prev.near_copies <
1526 			 conf->prev.raid_disks)))
1527 		sectors = chunk_sects -
1528 			(bio->bi_iter.bi_sector &
1529 			 (chunk_sects - 1));
1530 	__make_request(mddev, bio, sectors);
1531 
1532 	/* In case raid10d snuck in to freeze_array */
1533 	wake_up(&conf->wait_barrier);
1534 	return true;
1535 }
1536 
1537 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538 {
1539 	struct r10conf *conf = mddev->private;
1540 	int i;
1541 
1542 	if (conf->geo.near_copies < conf->geo.raid_disks)
1543 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544 	if (conf->geo.near_copies > 1)
1545 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546 	if (conf->geo.far_copies > 1) {
1547 		if (conf->geo.far_offset)
1548 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549 		else
1550 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1552 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553 	}
1554 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555 					conf->geo.raid_disks - mddev->degraded);
1556 	rcu_read_lock();
1557 	for (i = 0; i < conf->geo.raid_disks; i++) {
1558 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560 	}
1561 	rcu_read_unlock();
1562 	seq_printf(seq, "]");
1563 }
1564 
1565 /* check if there are enough drives for
1566  * every block to appear on atleast one.
1567  * Don't consider the device numbered 'ignore'
1568  * as we might be about to remove it.
1569  */
1570 static int _enough(struct r10conf *conf, int previous, int ignore)
1571 {
1572 	int first = 0;
1573 	int has_enough = 0;
1574 	int disks, ncopies;
1575 	if (previous) {
1576 		disks = conf->prev.raid_disks;
1577 		ncopies = conf->prev.near_copies;
1578 	} else {
1579 		disks = conf->geo.raid_disks;
1580 		ncopies = conf->geo.near_copies;
1581 	}
1582 
1583 	rcu_read_lock();
1584 	do {
1585 		int n = conf->copies;
1586 		int cnt = 0;
1587 		int this = first;
1588 		while (n--) {
1589 			struct md_rdev *rdev;
1590 			if (this != ignore &&
1591 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592 			    test_bit(In_sync, &rdev->flags))
1593 				cnt++;
1594 			this = (this+1) % disks;
1595 		}
1596 		if (cnt == 0)
1597 			goto out;
1598 		first = (first + ncopies) % disks;
1599 	} while (first != 0);
1600 	has_enough = 1;
1601 out:
1602 	rcu_read_unlock();
1603 	return has_enough;
1604 }
1605 
1606 static int enough(struct r10conf *conf, int ignore)
1607 {
1608 	/* when calling 'enough', both 'prev' and 'geo' must
1609 	 * be stable.
1610 	 * This is ensured if ->reconfig_mutex or ->device_lock
1611 	 * is held.
1612 	 */
1613 	return _enough(conf, 0, ignore) &&
1614 		_enough(conf, 1, ignore);
1615 }
1616 
1617 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618 {
1619 	char b[BDEVNAME_SIZE];
1620 	struct r10conf *conf = mddev->private;
1621 	unsigned long flags;
1622 
1623 	/*
1624 	 * If it is not operational, then we have already marked it as dead
1625 	 * else if it is the last working disks with "fail_last_dev == false",
1626 	 * ignore the error, let the next level up know.
1627 	 * else mark the drive as failed
1628 	 */
1629 	spin_lock_irqsave(&conf->device_lock, flags);
1630 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631 	    && !enough(conf, rdev->raid_disk)) {
1632 		/*
1633 		 * Don't fail the drive, just return an IO error.
1634 		 */
1635 		spin_unlock_irqrestore(&conf->device_lock, flags);
1636 		return;
1637 	}
1638 	if (test_and_clear_bit(In_sync, &rdev->flags))
1639 		mddev->degraded++;
1640 	/*
1641 	 * If recovery is running, make sure it aborts.
1642 	 */
1643 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644 	set_bit(Blocked, &rdev->flags);
1645 	set_bit(Faulty, &rdev->flags);
1646 	set_mask_bits(&mddev->sb_flags, 0,
1647 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648 	spin_unlock_irqrestore(&conf->device_lock, flags);
1649 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650 		"md/raid10:%s: Operation continuing on %d devices.\n",
1651 		mdname(mddev), bdevname(rdev->bdev, b),
1652 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653 }
1654 
1655 static void print_conf(struct r10conf *conf)
1656 {
1657 	int i;
1658 	struct md_rdev *rdev;
1659 
1660 	pr_debug("RAID10 conf printout:\n");
1661 	if (!conf) {
1662 		pr_debug("(!conf)\n");
1663 		return;
1664 	}
1665 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666 		 conf->geo.raid_disks);
1667 
1668 	/* This is only called with ->reconfix_mutex held, so
1669 	 * rcu protection of rdev is not needed */
1670 	for (i = 0; i < conf->geo.raid_disks; i++) {
1671 		char b[BDEVNAME_SIZE];
1672 		rdev = conf->mirrors[i].rdev;
1673 		if (rdev)
1674 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675 				 i, !test_bit(In_sync, &rdev->flags),
1676 				 !test_bit(Faulty, &rdev->flags),
1677 				 bdevname(rdev->bdev,b));
1678 	}
1679 }
1680 
1681 static void close_sync(struct r10conf *conf)
1682 {
1683 	wait_barrier(conf);
1684 	allow_barrier(conf);
1685 
1686 	mempool_exit(&conf->r10buf_pool);
1687 }
1688 
1689 static int raid10_spare_active(struct mddev *mddev)
1690 {
1691 	int i;
1692 	struct r10conf *conf = mddev->private;
1693 	struct raid10_info *tmp;
1694 	int count = 0;
1695 	unsigned long flags;
1696 
1697 	/*
1698 	 * Find all non-in_sync disks within the RAID10 configuration
1699 	 * and mark them in_sync
1700 	 */
1701 	for (i = 0; i < conf->geo.raid_disks; i++) {
1702 		tmp = conf->mirrors + i;
1703 		if (tmp->replacement
1704 		    && tmp->replacement->recovery_offset == MaxSector
1705 		    && !test_bit(Faulty, &tmp->replacement->flags)
1706 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707 			/* Replacement has just become active */
1708 			if (!tmp->rdev
1709 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710 				count++;
1711 			if (tmp->rdev) {
1712 				/* Replaced device not technically faulty,
1713 				 * but we need to be sure it gets removed
1714 				 * and never re-added.
1715 				 */
1716 				set_bit(Faulty, &tmp->rdev->flags);
1717 				sysfs_notify_dirent_safe(
1718 					tmp->rdev->sysfs_state);
1719 			}
1720 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721 		} else if (tmp->rdev
1722 			   && tmp->rdev->recovery_offset == MaxSector
1723 			   && !test_bit(Faulty, &tmp->rdev->flags)
1724 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725 			count++;
1726 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727 		}
1728 	}
1729 	spin_lock_irqsave(&conf->device_lock, flags);
1730 	mddev->degraded -= count;
1731 	spin_unlock_irqrestore(&conf->device_lock, flags);
1732 
1733 	print_conf(conf);
1734 	return count;
1735 }
1736 
1737 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738 {
1739 	struct r10conf *conf = mddev->private;
1740 	int err = -EEXIST;
1741 	int mirror;
1742 	int first = 0;
1743 	int last = conf->geo.raid_disks - 1;
1744 
1745 	if (mddev->recovery_cp < MaxSector)
1746 		/* only hot-add to in-sync arrays, as recovery is
1747 		 * very different from resync
1748 		 */
1749 		return -EBUSY;
1750 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751 		return -EINVAL;
1752 
1753 	if (md_integrity_add_rdev(rdev, mddev))
1754 		return -ENXIO;
1755 
1756 	if (rdev->raid_disk >= 0)
1757 		first = last = rdev->raid_disk;
1758 
1759 	if (rdev->saved_raid_disk >= first &&
1760 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1761 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762 		mirror = rdev->saved_raid_disk;
1763 	else
1764 		mirror = first;
1765 	for ( ; mirror <= last ; mirror++) {
1766 		struct raid10_info *p = &conf->mirrors[mirror];
1767 		if (p->recovery_disabled == mddev->recovery_disabled)
1768 			continue;
1769 		if (p->rdev) {
1770 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771 			    p->replacement != NULL)
1772 				continue;
1773 			clear_bit(In_sync, &rdev->flags);
1774 			set_bit(Replacement, &rdev->flags);
1775 			rdev->raid_disk = mirror;
1776 			err = 0;
1777 			if (mddev->gendisk)
1778 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1779 						  rdev->data_offset << 9);
1780 			conf->fullsync = 1;
1781 			rcu_assign_pointer(p->replacement, rdev);
1782 			break;
1783 		}
1784 
1785 		if (mddev->gendisk)
1786 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1787 					  rdev->data_offset << 9);
1788 
1789 		p->head_position = 0;
1790 		p->recovery_disabled = mddev->recovery_disabled - 1;
1791 		rdev->raid_disk = mirror;
1792 		err = 0;
1793 		if (rdev->saved_raid_disk != mirror)
1794 			conf->fullsync = 1;
1795 		rcu_assign_pointer(p->rdev, rdev);
1796 		break;
1797 	}
1798 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800 
1801 	print_conf(conf);
1802 	return err;
1803 }
1804 
1805 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807 	struct r10conf *conf = mddev->private;
1808 	int err = 0;
1809 	int number = rdev->raid_disk;
1810 	struct md_rdev **rdevp;
1811 	struct raid10_info *p = conf->mirrors + number;
1812 
1813 	print_conf(conf);
1814 	if (rdev == p->rdev)
1815 		rdevp = &p->rdev;
1816 	else if (rdev == p->replacement)
1817 		rdevp = &p->replacement;
1818 	else
1819 		return 0;
1820 
1821 	if (test_bit(In_sync, &rdev->flags) ||
1822 	    atomic_read(&rdev->nr_pending)) {
1823 		err = -EBUSY;
1824 		goto abort;
1825 	}
1826 	/* Only remove non-faulty devices if recovery
1827 	 * is not possible.
1828 	 */
1829 	if (!test_bit(Faulty, &rdev->flags) &&
1830 	    mddev->recovery_disabled != p->recovery_disabled &&
1831 	    (!p->replacement || p->replacement == rdev) &&
1832 	    number < conf->geo.raid_disks &&
1833 	    enough(conf, -1)) {
1834 		err = -EBUSY;
1835 		goto abort;
1836 	}
1837 	*rdevp = NULL;
1838 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839 		synchronize_rcu();
1840 		if (atomic_read(&rdev->nr_pending)) {
1841 			/* lost the race, try later */
1842 			err = -EBUSY;
1843 			*rdevp = rdev;
1844 			goto abort;
1845 		}
1846 	}
1847 	if (p->replacement) {
1848 		/* We must have just cleared 'rdev' */
1849 		p->rdev = p->replacement;
1850 		clear_bit(Replacement, &p->replacement->flags);
1851 		smp_mb(); /* Make sure other CPUs may see both as identical
1852 			   * but will never see neither -- if they are careful.
1853 			   */
1854 		p->replacement = NULL;
1855 	}
1856 
1857 	clear_bit(WantReplacement, &rdev->flags);
1858 	err = md_integrity_register(mddev);
1859 
1860 abort:
1861 
1862 	print_conf(conf);
1863 	return err;
1864 }
1865 
1866 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1867 {
1868 	struct r10conf *conf = r10_bio->mddev->private;
1869 
1870 	if (!bio->bi_status)
1871 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1872 	else
1873 		/* The write handler will notice the lack of
1874 		 * R10BIO_Uptodate and record any errors etc
1875 		 */
1876 		atomic_add(r10_bio->sectors,
1877 			   &conf->mirrors[d].rdev->corrected_errors);
1878 
1879 	/* for reconstruct, we always reschedule after a read.
1880 	 * for resync, only after all reads
1881 	 */
1882 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884 	    atomic_dec_and_test(&r10_bio->remaining)) {
1885 		/* we have read all the blocks,
1886 		 * do the comparison in process context in raid10d
1887 		 */
1888 		reschedule_retry(r10_bio);
1889 	}
1890 }
1891 
1892 static void end_sync_read(struct bio *bio)
1893 {
1894 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1895 	struct r10conf *conf = r10_bio->mddev->private;
1896 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897 
1898 	__end_sync_read(r10_bio, bio, d);
1899 }
1900 
1901 static void end_reshape_read(struct bio *bio)
1902 {
1903 	/* reshape read bio isn't allocated from r10buf_pool */
1904 	struct r10bio *r10_bio = bio->bi_private;
1905 
1906 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907 }
1908 
1909 static void end_sync_request(struct r10bio *r10_bio)
1910 {
1911 	struct mddev *mddev = r10_bio->mddev;
1912 
1913 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1914 		if (r10_bio->master_bio == NULL) {
1915 			/* the primary of several recovery bios */
1916 			sector_t s = r10_bio->sectors;
1917 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1919 				reschedule_retry(r10_bio);
1920 			else
1921 				put_buf(r10_bio);
1922 			md_done_sync(mddev, s, 1);
1923 			break;
1924 		} else {
1925 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1928 				reschedule_retry(r10_bio);
1929 			else
1930 				put_buf(r10_bio);
1931 			r10_bio = r10_bio2;
1932 		}
1933 	}
1934 }
1935 
1936 static void end_sync_write(struct bio *bio)
1937 {
1938 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1939 	struct mddev *mddev = r10_bio->mddev;
1940 	struct r10conf *conf = mddev->private;
1941 	int d;
1942 	sector_t first_bad;
1943 	int bad_sectors;
1944 	int slot;
1945 	int repl;
1946 	struct md_rdev *rdev = NULL;
1947 
1948 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949 	if (repl)
1950 		rdev = conf->mirrors[d].replacement;
1951 	else
1952 		rdev = conf->mirrors[d].rdev;
1953 
1954 	if (bio->bi_status) {
1955 		if (repl)
1956 			md_error(mddev, rdev);
1957 		else {
1958 			set_bit(WriteErrorSeen, &rdev->flags);
1959 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960 				set_bit(MD_RECOVERY_NEEDED,
1961 					&rdev->mddev->recovery);
1962 			set_bit(R10BIO_WriteError, &r10_bio->state);
1963 		}
1964 	} else if (is_badblock(rdev,
1965 			     r10_bio->devs[slot].addr,
1966 			     r10_bio->sectors,
1967 			     &first_bad, &bad_sectors))
1968 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1969 
1970 	rdev_dec_pending(rdev, mddev);
1971 
1972 	end_sync_request(r10_bio);
1973 }
1974 
1975 /*
1976  * Note: sync and recover and handled very differently for raid10
1977  * This code is for resync.
1978  * For resync, we read through virtual addresses and read all blocks.
1979  * If there is any error, we schedule a write.  The lowest numbered
1980  * drive is authoritative.
1981  * However requests come for physical address, so we need to map.
1982  * For every physical address there are raid_disks/copies virtual addresses,
1983  * which is always are least one, but is not necessarly an integer.
1984  * This means that a physical address can span multiple chunks, so we may
1985  * have to submit multiple io requests for a single sync request.
1986  */
1987 /*
1988  * We check if all blocks are in-sync and only write to blocks that
1989  * aren't in sync
1990  */
1991 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992 {
1993 	struct r10conf *conf = mddev->private;
1994 	int i, first;
1995 	struct bio *tbio, *fbio;
1996 	int vcnt;
1997 	struct page **tpages, **fpages;
1998 
1999 	atomic_set(&r10_bio->remaining, 1);
2000 
2001 	/* find the first device with a block */
2002 	for (i=0; i<conf->copies; i++)
2003 		if (!r10_bio->devs[i].bio->bi_status)
2004 			break;
2005 
2006 	if (i == conf->copies)
2007 		goto done;
2008 
2009 	first = i;
2010 	fbio = r10_bio->devs[i].bio;
2011 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012 	fbio->bi_iter.bi_idx = 0;
2013 	fpages = get_resync_pages(fbio)->pages;
2014 
2015 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016 	/* now find blocks with errors */
2017 	for (i=0 ; i < conf->copies ; i++) {
2018 		int  j, d;
2019 		struct md_rdev *rdev;
2020 		struct resync_pages *rp;
2021 
2022 		tbio = r10_bio->devs[i].bio;
2023 
2024 		if (tbio->bi_end_io != end_sync_read)
2025 			continue;
2026 		if (i == first)
2027 			continue;
2028 
2029 		tpages = get_resync_pages(tbio)->pages;
2030 		d = r10_bio->devs[i].devnum;
2031 		rdev = conf->mirrors[d].rdev;
2032 		if (!r10_bio->devs[i].bio->bi_status) {
2033 			/* We know that the bi_io_vec layout is the same for
2034 			 * both 'first' and 'i', so we just compare them.
2035 			 * All vec entries are PAGE_SIZE;
2036 			 */
2037 			int sectors = r10_bio->sectors;
2038 			for (j = 0; j < vcnt; j++) {
2039 				int len = PAGE_SIZE;
2040 				if (sectors < (len / 512))
2041 					len = sectors * 512;
2042 				if (memcmp(page_address(fpages[j]),
2043 					   page_address(tpages[j]),
2044 					   len))
2045 					break;
2046 				sectors -= len/512;
2047 			}
2048 			if (j == vcnt)
2049 				continue;
2050 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052 				/* Don't fix anything. */
2053 				continue;
2054 		} else if (test_bit(FailFast, &rdev->flags)) {
2055 			/* Just give up on this device */
2056 			md_error(rdev->mddev, rdev);
2057 			continue;
2058 		}
2059 		/* Ok, we need to write this bio, either to correct an
2060 		 * inconsistency or to correct an unreadable block.
2061 		 * First we need to fixup bv_offset, bv_len and
2062 		 * bi_vecs, as the read request might have corrupted these
2063 		 */
2064 		rp = get_resync_pages(tbio);
2065 		bio_reset(tbio);
2066 
2067 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068 
2069 		rp->raid_bio = r10_bio;
2070 		tbio->bi_private = rp;
2071 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2072 		tbio->bi_end_io = end_sync_write;
2073 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074 
2075 		bio_copy_data(tbio, fbio);
2076 
2077 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078 		atomic_inc(&r10_bio->remaining);
2079 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080 
2081 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082 			tbio->bi_opf |= MD_FAILFAST;
2083 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085 		submit_bio_noacct(tbio);
2086 	}
2087 
2088 	/* Now write out to any replacement devices
2089 	 * that are active
2090 	 */
2091 	for (i = 0; i < conf->copies; i++) {
2092 		int d;
2093 
2094 		tbio = r10_bio->devs[i].repl_bio;
2095 		if (!tbio || !tbio->bi_end_io)
2096 			continue;
2097 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098 		    && r10_bio->devs[i].bio != fbio)
2099 			bio_copy_data(tbio, fbio);
2100 		d = r10_bio->devs[i].devnum;
2101 		atomic_inc(&r10_bio->remaining);
2102 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2103 			     bio_sectors(tbio));
2104 		submit_bio_noacct(tbio);
2105 	}
2106 
2107 done:
2108 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2109 		md_done_sync(mddev, r10_bio->sectors, 1);
2110 		put_buf(r10_bio);
2111 	}
2112 }
2113 
2114 /*
2115  * Now for the recovery code.
2116  * Recovery happens across physical sectors.
2117  * We recover all non-is_sync drives by finding the virtual address of
2118  * each, and then choose a working drive that also has that virt address.
2119  * There is a separate r10_bio for each non-in_sync drive.
2120  * Only the first two slots are in use. The first for reading,
2121  * The second for writing.
2122  *
2123  */
2124 static void fix_recovery_read_error(struct r10bio *r10_bio)
2125 {
2126 	/* We got a read error during recovery.
2127 	 * We repeat the read in smaller page-sized sections.
2128 	 * If a read succeeds, write it to the new device or record
2129 	 * a bad block if we cannot.
2130 	 * If a read fails, record a bad block on both old and
2131 	 * new devices.
2132 	 */
2133 	struct mddev *mddev = r10_bio->mddev;
2134 	struct r10conf *conf = mddev->private;
2135 	struct bio *bio = r10_bio->devs[0].bio;
2136 	sector_t sect = 0;
2137 	int sectors = r10_bio->sectors;
2138 	int idx = 0;
2139 	int dr = r10_bio->devs[0].devnum;
2140 	int dw = r10_bio->devs[1].devnum;
2141 	struct page **pages = get_resync_pages(bio)->pages;
2142 
2143 	while (sectors) {
2144 		int s = sectors;
2145 		struct md_rdev *rdev;
2146 		sector_t addr;
2147 		int ok;
2148 
2149 		if (s > (PAGE_SIZE>>9))
2150 			s = PAGE_SIZE >> 9;
2151 
2152 		rdev = conf->mirrors[dr].rdev;
2153 		addr = r10_bio->devs[0].addr + sect,
2154 		ok = sync_page_io(rdev,
2155 				  addr,
2156 				  s << 9,
2157 				  pages[idx],
2158 				  REQ_OP_READ, 0, false);
2159 		if (ok) {
2160 			rdev = conf->mirrors[dw].rdev;
2161 			addr = r10_bio->devs[1].addr + sect;
2162 			ok = sync_page_io(rdev,
2163 					  addr,
2164 					  s << 9,
2165 					  pages[idx],
2166 					  REQ_OP_WRITE, 0, false);
2167 			if (!ok) {
2168 				set_bit(WriteErrorSeen, &rdev->flags);
2169 				if (!test_and_set_bit(WantReplacement,
2170 						      &rdev->flags))
2171 					set_bit(MD_RECOVERY_NEEDED,
2172 						&rdev->mddev->recovery);
2173 			}
2174 		}
2175 		if (!ok) {
2176 			/* We don't worry if we cannot set a bad block -
2177 			 * it really is bad so there is no loss in not
2178 			 * recording it yet
2179 			 */
2180 			rdev_set_badblocks(rdev, addr, s, 0);
2181 
2182 			if (rdev != conf->mirrors[dw].rdev) {
2183 				/* need bad block on destination too */
2184 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185 				addr = r10_bio->devs[1].addr + sect;
2186 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187 				if (!ok) {
2188 					/* just abort the recovery */
2189 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190 						  mdname(mddev));
2191 
2192 					conf->mirrors[dw].recovery_disabled
2193 						= mddev->recovery_disabled;
2194 					set_bit(MD_RECOVERY_INTR,
2195 						&mddev->recovery);
2196 					break;
2197 				}
2198 			}
2199 		}
2200 
2201 		sectors -= s;
2202 		sect += s;
2203 		idx++;
2204 	}
2205 }
2206 
2207 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208 {
2209 	struct r10conf *conf = mddev->private;
2210 	int d;
2211 	struct bio *wbio, *wbio2;
2212 
2213 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214 		fix_recovery_read_error(r10_bio);
2215 		end_sync_request(r10_bio);
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * share the pages with the first bio
2221 	 * and submit the write request
2222 	 */
2223 	d = r10_bio->devs[1].devnum;
2224 	wbio = r10_bio->devs[1].bio;
2225 	wbio2 = r10_bio->devs[1].repl_bio;
2226 	/* Need to test wbio2->bi_end_io before we call
2227 	 * submit_bio_noacct as if the former is NULL,
2228 	 * the latter is free to free wbio2.
2229 	 */
2230 	if (wbio2 && !wbio2->bi_end_io)
2231 		wbio2 = NULL;
2232 	if (wbio->bi_end_io) {
2233 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235 		submit_bio_noacct(wbio);
2236 	}
2237 	if (wbio2) {
2238 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2240 			     bio_sectors(wbio2));
2241 		submit_bio_noacct(wbio2);
2242 	}
2243 }
2244 
2245 /*
2246  * Used by fix_read_error() to decay the per rdev read_errors.
2247  * We halve the read error count for every hour that has elapsed
2248  * since the last recorded read error.
2249  *
2250  */
2251 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252 {
2253 	long cur_time_mon;
2254 	unsigned long hours_since_last;
2255 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2256 
2257 	cur_time_mon = ktime_get_seconds();
2258 
2259 	if (rdev->last_read_error == 0) {
2260 		/* first time we've seen a read error */
2261 		rdev->last_read_error = cur_time_mon;
2262 		return;
2263 	}
2264 
2265 	hours_since_last = (long)(cur_time_mon -
2266 			    rdev->last_read_error) / 3600;
2267 
2268 	rdev->last_read_error = cur_time_mon;
2269 
2270 	/*
2271 	 * if hours_since_last is > the number of bits in read_errors
2272 	 * just set read errors to 0. We do this to avoid
2273 	 * overflowing the shift of read_errors by hours_since_last.
2274 	 */
2275 	if (hours_since_last >= 8 * sizeof(read_errors))
2276 		atomic_set(&rdev->read_errors, 0);
2277 	else
2278 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279 }
2280 
2281 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282 			    int sectors, struct page *page, int rw)
2283 {
2284 	sector_t first_bad;
2285 	int bad_sectors;
2286 
2287 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289 		return -1;
2290 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291 		/* success */
2292 		return 1;
2293 	if (rw == WRITE) {
2294 		set_bit(WriteErrorSeen, &rdev->flags);
2295 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296 			set_bit(MD_RECOVERY_NEEDED,
2297 				&rdev->mddev->recovery);
2298 	}
2299 	/* need to record an error - either for the block or the device */
2300 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301 		md_error(rdev->mddev, rdev);
2302 	return 0;
2303 }
2304 
2305 /*
2306  * This is a kernel thread which:
2307  *
2308  *	1.	Retries failed read operations on working mirrors.
2309  *	2.	Updates the raid superblock when problems encounter.
2310  *	3.	Performs writes following reads for array synchronising.
2311  */
2312 
2313 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314 {
2315 	int sect = 0; /* Offset from r10_bio->sector */
2316 	int sectors = r10_bio->sectors;
2317 	struct md_rdev *rdev;
2318 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320 
2321 	/* still own a reference to this rdev, so it cannot
2322 	 * have been cleared recently.
2323 	 */
2324 	rdev = conf->mirrors[d].rdev;
2325 
2326 	if (test_bit(Faulty, &rdev->flags))
2327 		/* drive has already been failed, just ignore any
2328 		   more fix_read_error() attempts */
2329 		return;
2330 
2331 	check_decay_read_errors(mddev, rdev);
2332 	atomic_inc(&rdev->read_errors);
2333 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334 		char b[BDEVNAME_SIZE];
2335 		bdevname(rdev->bdev, b);
2336 
2337 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338 			  mdname(mddev), b,
2339 			  atomic_read(&rdev->read_errors), max_read_errors);
2340 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341 			  mdname(mddev), b);
2342 		md_error(mddev, rdev);
2343 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2344 		return;
2345 	}
2346 
2347 	while(sectors) {
2348 		int s = sectors;
2349 		int sl = r10_bio->read_slot;
2350 		int success = 0;
2351 		int start;
2352 
2353 		if (s > (PAGE_SIZE>>9))
2354 			s = PAGE_SIZE >> 9;
2355 
2356 		rcu_read_lock();
2357 		do {
2358 			sector_t first_bad;
2359 			int bad_sectors;
2360 
2361 			d = r10_bio->devs[sl].devnum;
2362 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2363 			if (rdev &&
2364 			    test_bit(In_sync, &rdev->flags) &&
2365 			    !test_bit(Faulty, &rdev->flags) &&
2366 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367 					&first_bad, &bad_sectors) == 0) {
2368 				atomic_inc(&rdev->nr_pending);
2369 				rcu_read_unlock();
2370 				success = sync_page_io(rdev,
2371 						       r10_bio->devs[sl].addr +
2372 						       sect,
2373 						       s<<9,
2374 						       conf->tmppage,
2375 						       REQ_OP_READ, 0, false);
2376 				rdev_dec_pending(rdev, mddev);
2377 				rcu_read_lock();
2378 				if (success)
2379 					break;
2380 			}
2381 			sl++;
2382 			if (sl == conf->copies)
2383 				sl = 0;
2384 		} while (!success && sl != r10_bio->read_slot);
2385 		rcu_read_unlock();
2386 
2387 		if (!success) {
2388 			/* Cannot read from anywhere, just mark the block
2389 			 * as bad on the first device to discourage future
2390 			 * reads.
2391 			 */
2392 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393 			rdev = conf->mirrors[dn].rdev;
2394 
2395 			if (!rdev_set_badblocks(
2396 				    rdev,
2397 				    r10_bio->devs[r10_bio->read_slot].addr
2398 				    + sect,
2399 				    s, 0)) {
2400 				md_error(mddev, rdev);
2401 				r10_bio->devs[r10_bio->read_slot].bio
2402 					= IO_BLOCKED;
2403 			}
2404 			break;
2405 		}
2406 
2407 		start = sl;
2408 		/* write it back and re-read */
2409 		rcu_read_lock();
2410 		while (sl != r10_bio->read_slot) {
2411 			char b[BDEVNAME_SIZE];
2412 
2413 			if (sl==0)
2414 				sl = conf->copies;
2415 			sl--;
2416 			d = r10_bio->devs[sl].devnum;
2417 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2418 			if (!rdev ||
2419 			    test_bit(Faulty, &rdev->flags) ||
2420 			    !test_bit(In_sync, &rdev->flags))
2421 				continue;
2422 
2423 			atomic_inc(&rdev->nr_pending);
2424 			rcu_read_unlock();
2425 			if (r10_sync_page_io(rdev,
2426 					     r10_bio->devs[sl].addr +
2427 					     sect,
2428 					     s, conf->tmppage, WRITE)
2429 			    == 0) {
2430 				/* Well, this device is dead */
2431 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432 					  mdname(mddev), s,
2433 					  (unsigned long long)(
2434 						  sect +
2435 						  choose_data_offset(r10_bio,
2436 								     rdev)),
2437 					  bdevname(rdev->bdev, b));
2438 				pr_notice("md/raid10:%s: %s: failing drive\n",
2439 					  mdname(mddev),
2440 					  bdevname(rdev->bdev, b));
2441 			}
2442 			rdev_dec_pending(rdev, mddev);
2443 			rcu_read_lock();
2444 		}
2445 		sl = start;
2446 		while (sl != r10_bio->read_slot) {
2447 			char b[BDEVNAME_SIZE];
2448 
2449 			if (sl==0)
2450 				sl = conf->copies;
2451 			sl--;
2452 			d = r10_bio->devs[sl].devnum;
2453 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2454 			if (!rdev ||
2455 			    test_bit(Faulty, &rdev->flags) ||
2456 			    !test_bit(In_sync, &rdev->flags))
2457 				continue;
2458 
2459 			atomic_inc(&rdev->nr_pending);
2460 			rcu_read_unlock();
2461 			switch (r10_sync_page_io(rdev,
2462 					     r10_bio->devs[sl].addr +
2463 					     sect,
2464 					     s, conf->tmppage,
2465 						 READ)) {
2466 			case 0:
2467 				/* Well, this device is dead */
2468 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2469 				       mdname(mddev), s,
2470 				       (unsigned long long)(
2471 					       sect +
2472 					       choose_data_offset(r10_bio, rdev)),
2473 				       bdevname(rdev->bdev, b));
2474 				pr_notice("md/raid10:%s: %s: failing drive\n",
2475 				       mdname(mddev),
2476 				       bdevname(rdev->bdev, b));
2477 				break;
2478 			case 1:
2479 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2480 				       mdname(mddev), s,
2481 				       (unsigned long long)(
2482 					       sect +
2483 					       choose_data_offset(r10_bio, rdev)),
2484 				       bdevname(rdev->bdev, b));
2485 				atomic_add(s, &rdev->corrected_errors);
2486 			}
2487 
2488 			rdev_dec_pending(rdev, mddev);
2489 			rcu_read_lock();
2490 		}
2491 		rcu_read_unlock();
2492 
2493 		sectors -= s;
2494 		sect += s;
2495 	}
2496 }
2497 
2498 static int narrow_write_error(struct r10bio *r10_bio, int i)
2499 {
2500 	struct bio *bio = r10_bio->master_bio;
2501 	struct mddev *mddev = r10_bio->mddev;
2502 	struct r10conf *conf = mddev->private;
2503 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504 	/* bio has the data to be written to slot 'i' where
2505 	 * we just recently had a write error.
2506 	 * We repeatedly clone the bio and trim down to one block,
2507 	 * then try the write.  Where the write fails we record
2508 	 * a bad block.
2509 	 * It is conceivable that the bio doesn't exactly align with
2510 	 * blocks.  We must handle this.
2511 	 *
2512 	 * We currently own a reference to the rdev.
2513 	 */
2514 
2515 	int block_sectors;
2516 	sector_t sector;
2517 	int sectors;
2518 	int sect_to_write = r10_bio->sectors;
2519 	int ok = 1;
2520 
2521 	if (rdev->badblocks.shift < 0)
2522 		return 0;
2523 
2524 	block_sectors = roundup(1 << rdev->badblocks.shift,
2525 				bdev_logical_block_size(rdev->bdev) >> 9);
2526 	sector = r10_bio->sector;
2527 	sectors = ((r10_bio->sector + block_sectors)
2528 		   & ~(sector_t)(block_sectors - 1))
2529 		- sector;
2530 
2531 	while (sect_to_write) {
2532 		struct bio *wbio;
2533 		sector_t wsector;
2534 		if (sectors > sect_to_write)
2535 			sectors = sect_to_write;
2536 		/* Write at 'sector' for 'sectors' */
2537 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540 		wbio->bi_iter.bi_sector = wsector +
2541 				   choose_data_offset(r10_bio, rdev);
2542 		bio_set_dev(wbio, rdev->bdev);
2543 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544 
2545 		if (submit_bio_wait(wbio) < 0)
2546 			/* Failure! */
2547 			ok = rdev_set_badblocks(rdev, wsector,
2548 						sectors, 0)
2549 				&& ok;
2550 
2551 		bio_put(wbio);
2552 		sect_to_write -= sectors;
2553 		sector += sectors;
2554 		sectors = block_sectors;
2555 	}
2556 	return ok;
2557 }
2558 
2559 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560 {
2561 	int slot = r10_bio->read_slot;
2562 	struct bio *bio;
2563 	struct r10conf *conf = mddev->private;
2564 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2565 
2566 	/* we got a read error. Maybe the drive is bad.  Maybe just
2567 	 * the block and we can fix it.
2568 	 * We freeze all other IO, and try reading the block from
2569 	 * other devices.  When we find one, we re-write
2570 	 * and check it that fixes the read error.
2571 	 * This is all done synchronously while the array is
2572 	 * frozen.
2573 	 */
2574 	bio = r10_bio->devs[slot].bio;
2575 	bio_put(bio);
2576 	r10_bio->devs[slot].bio = NULL;
2577 
2578 	if (mddev->ro)
2579 		r10_bio->devs[slot].bio = IO_BLOCKED;
2580 	else if (!test_bit(FailFast, &rdev->flags)) {
2581 		freeze_array(conf, 1);
2582 		fix_read_error(conf, mddev, r10_bio);
2583 		unfreeze_array(conf);
2584 	} else
2585 		md_error(mddev, rdev);
2586 
2587 	rdev_dec_pending(rdev, mddev);
2588 	allow_barrier(conf);
2589 	r10_bio->state = 0;
2590 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2591 }
2592 
2593 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594 {
2595 	/* Some sort of write request has finished and it
2596 	 * succeeded in writing where we thought there was a
2597 	 * bad block.  So forget the bad block.
2598 	 * Or possibly if failed and we need to record
2599 	 * a bad block.
2600 	 */
2601 	int m;
2602 	struct md_rdev *rdev;
2603 
2604 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606 		for (m = 0; m < conf->copies; m++) {
2607 			int dev = r10_bio->devs[m].devnum;
2608 			rdev = conf->mirrors[dev].rdev;
2609 			if (r10_bio->devs[m].bio == NULL ||
2610 				r10_bio->devs[m].bio->bi_end_io == NULL)
2611 				continue;
2612 			if (!r10_bio->devs[m].bio->bi_status) {
2613 				rdev_clear_badblocks(
2614 					rdev,
2615 					r10_bio->devs[m].addr,
2616 					r10_bio->sectors, 0);
2617 			} else {
2618 				if (!rdev_set_badblocks(
2619 					    rdev,
2620 					    r10_bio->devs[m].addr,
2621 					    r10_bio->sectors, 0))
2622 					md_error(conf->mddev, rdev);
2623 			}
2624 			rdev = conf->mirrors[dev].replacement;
2625 			if (r10_bio->devs[m].repl_bio == NULL ||
2626 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627 				continue;
2628 
2629 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2630 				rdev_clear_badblocks(
2631 					rdev,
2632 					r10_bio->devs[m].addr,
2633 					r10_bio->sectors, 0);
2634 			} else {
2635 				if (!rdev_set_badblocks(
2636 					    rdev,
2637 					    r10_bio->devs[m].addr,
2638 					    r10_bio->sectors, 0))
2639 					md_error(conf->mddev, rdev);
2640 			}
2641 		}
2642 		put_buf(r10_bio);
2643 	} else {
2644 		bool fail = false;
2645 		for (m = 0; m < conf->copies; m++) {
2646 			int dev = r10_bio->devs[m].devnum;
2647 			struct bio *bio = r10_bio->devs[m].bio;
2648 			rdev = conf->mirrors[dev].rdev;
2649 			if (bio == IO_MADE_GOOD) {
2650 				rdev_clear_badblocks(
2651 					rdev,
2652 					r10_bio->devs[m].addr,
2653 					r10_bio->sectors, 0);
2654 				rdev_dec_pending(rdev, conf->mddev);
2655 			} else if (bio != NULL && bio->bi_status) {
2656 				fail = true;
2657 				if (!narrow_write_error(r10_bio, m)) {
2658 					md_error(conf->mddev, rdev);
2659 					set_bit(R10BIO_Degraded,
2660 						&r10_bio->state);
2661 				}
2662 				rdev_dec_pending(rdev, conf->mddev);
2663 			}
2664 			bio = r10_bio->devs[m].repl_bio;
2665 			rdev = conf->mirrors[dev].replacement;
2666 			if (rdev && bio == IO_MADE_GOOD) {
2667 				rdev_clear_badblocks(
2668 					rdev,
2669 					r10_bio->devs[m].addr,
2670 					r10_bio->sectors, 0);
2671 				rdev_dec_pending(rdev, conf->mddev);
2672 			}
2673 		}
2674 		if (fail) {
2675 			spin_lock_irq(&conf->device_lock);
2676 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677 			conf->nr_queued++;
2678 			spin_unlock_irq(&conf->device_lock);
2679 			/*
2680 			 * In case freeze_array() is waiting for condition
2681 			 * nr_pending == nr_queued + extra to be true.
2682 			 */
2683 			wake_up(&conf->wait_barrier);
2684 			md_wakeup_thread(conf->mddev->thread);
2685 		} else {
2686 			if (test_bit(R10BIO_WriteError,
2687 				     &r10_bio->state))
2688 				close_write(r10_bio);
2689 			raid_end_bio_io(r10_bio);
2690 		}
2691 	}
2692 }
2693 
2694 static void raid10d(struct md_thread *thread)
2695 {
2696 	struct mddev *mddev = thread->mddev;
2697 	struct r10bio *r10_bio;
2698 	unsigned long flags;
2699 	struct r10conf *conf = mddev->private;
2700 	struct list_head *head = &conf->retry_list;
2701 	struct blk_plug plug;
2702 
2703 	md_check_recovery(mddev);
2704 
2705 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2706 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707 		LIST_HEAD(tmp);
2708 		spin_lock_irqsave(&conf->device_lock, flags);
2709 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710 			while (!list_empty(&conf->bio_end_io_list)) {
2711 				list_move(conf->bio_end_io_list.prev, &tmp);
2712 				conf->nr_queued--;
2713 			}
2714 		}
2715 		spin_unlock_irqrestore(&conf->device_lock, flags);
2716 		while (!list_empty(&tmp)) {
2717 			r10_bio = list_first_entry(&tmp, struct r10bio,
2718 						   retry_list);
2719 			list_del(&r10_bio->retry_list);
2720 			if (mddev->degraded)
2721 				set_bit(R10BIO_Degraded, &r10_bio->state);
2722 
2723 			if (test_bit(R10BIO_WriteError,
2724 				     &r10_bio->state))
2725 				close_write(r10_bio);
2726 			raid_end_bio_io(r10_bio);
2727 		}
2728 	}
2729 
2730 	blk_start_plug(&plug);
2731 	for (;;) {
2732 
2733 		flush_pending_writes(conf);
2734 
2735 		spin_lock_irqsave(&conf->device_lock, flags);
2736 		if (list_empty(head)) {
2737 			spin_unlock_irqrestore(&conf->device_lock, flags);
2738 			break;
2739 		}
2740 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741 		list_del(head->prev);
2742 		conf->nr_queued--;
2743 		spin_unlock_irqrestore(&conf->device_lock, flags);
2744 
2745 		mddev = r10_bio->mddev;
2746 		conf = mddev->private;
2747 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2749 			handle_write_completed(conf, r10_bio);
2750 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751 			reshape_request_write(mddev, r10_bio);
2752 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753 			sync_request_write(mddev, r10_bio);
2754 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755 			recovery_request_write(mddev, r10_bio);
2756 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757 			handle_read_error(mddev, r10_bio);
2758 		else
2759 			WARN_ON_ONCE(1);
2760 
2761 		cond_resched();
2762 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763 			md_check_recovery(mddev);
2764 	}
2765 	blk_finish_plug(&plug);
2766 }
2767 
2768 static int init_resync(struct r10conf *conf)
2769 {
2770 	int ret, buffs, i;
2771 
2772 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774 	conf->have_replacement = 0;
2775 	for (i = 0; i < conf->geo.raid_disks; i++)
2776 		if (conf->mirrors[i].replacement)
2777 			conf->have_replacement = 1;
2778 	ret = mempool_init(&conf->r10buf_pool, buffs,
2779 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2780 	if (ret)
2781 		return ret;
2782 	conf->next_resync = 0;
2783 	return 0;
2784 }
2785 
2786 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787 {
2788 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789 	struct rsync_pages *rp;
2790 	struct bio *bio;
2791 	int nalloc;
2792 	int i;
2793 
2794 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796 		nalloc = conf->copies; /* resync */
2797 	else
2798 		nalloc = 2; /* recovery */
2799 
2800 	for (i = 0; i < nalloc; i++) {
2801 		bio = r10bio->devs[i].bio;
2802 		rp = bio->bi_private;
2803 		bio_reset(bio);
2804 		bio->bi_private = rp;
2805 		bio = r10bio->devs[i].repl_bio;
2806 		if (bio) {
2807 			rp = bio->bi_private;
2808 			bio_reset(bio);
2809 			bio->bi_private = rp;
2810 		}
2811 	}
2812 	return r10bio;
2813 }
2814 
2815 /*
2816  * Set cluster_sync_high since we need other nodes to add the
2817  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818  */
2819 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820 {
2821 	sector_t window_size;
2822 	int extra_chunk, chunks;
2823 
2824 	/*
2825 	 * First, here we define "stripe" as a unit which across
2826 	 * all member devices one time, so we get chunks by use
2827 	 * raid_disks / near_copies. Otherwise, if near_copies is
2828 	 * close to raid_disks, then resync window could increases
2829 	 * linearly with the increase of raid_disks, which means
2830 	 * we will suspend a really large IO window while it is not
2831 	 * necessary. If raid_disks is not divisible by near_copies,
2832 	 * an extra chunk is needed to ensure the whole "stripe" is
2833 	 * covered.
2834 	 */
2835 
2836 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838 		extra_chunk = 0;
2839 	else
2840 		extra_chunk = 1;
2841 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842 
2843 	/*
2844 	 * At least use a 32M window to align with raid1's resync window
2845 	 */
2846 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848 
2849 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850 }
2851 
2852 /*
2853  * perform a "sync" on one "block"
2854  *
2855  * We need to make sure that no normal I/O request - particularly write
2856  * requests - conflict with active sync requests.
2857  *
2858  * This is achieved by tracking pending requests and a 'barrier' concept
2859  * that can be installed to exclude normal IO requests.
2860  *
2861  * Resync and recovery are handled very differently.
2862  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863  *
2864  * For resync, we iterate over virtual addresses, read all copies,
2865  * and update if there are differences.  If only one copy is live,
2866  * skip it.
2867  * For recovery, we iterate over physical addresses, read a good
2868  * value for each non-in_sync drive, and over-write.
2869  *
2870  * So, for recovery we may have several outstanding complex requests for a
2871  * given address, one for each out-of-sync device.  We model this by allocating
2872  * a number of r10_bio structures, one for each out-of-sync device.
2873  * As we setup these structures, we collect all bio's together into a list
2874  * which we then process collectively to add pages, and then process again
2875  * to pass to submit_bio_noacct.
2876  *
2877  * The r10_bio structures are linked using a borrowed master_bio pointer.
2878  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2879  * has its remaining count decremented to 0, the whole complex operation
2880  * is complete.
2881  *
2882  */
2883 
2884 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885 			     int *skipped)
2886 {
2887 	struct r10conf *conf = mddev->private;
2888 	struct r10bio *r10_bio;
2889 	struct bio *biolist = NULL, *bio;
2890 	sector_t max_sector, nr_sectors;
2891 	int i;
2892 	int max_sync;
2893 	sector_t sync_blocks;
2894 	sector_t sectors_skipped = 0;
2895 	int chunks_skipped = 0;
2896 	sector_t chunk_mask = conf->geo.chunk_mask;
2897 	int page_idx = 0;
2898 
2899 	if (!mempool_initialized(&conf->r10buf_pool))
2900 		if (init_resync(conf))
2901 			return 0;
2902 
2903 	/*
2904 	 * Allow skipping a full rebuild for incremental assembly
2905 	 * of a clean array, like RAID1 does.
2906 	 */
2907 	if (mddev->bitmap == NULL &&
2908 	    mddev->recovery_cp == MaxSector &&
2909 	    mddev->reshape_position == MaxSector &&
2910 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913 	    conf->fullsync == 0) {
2914 		*skipped = 1;
2915 		return mddev->dev_sectors - sector_nr;
2916 	}
2917 
2918  skipped:
2919 	max_sector = mddev->dev_sectors;
2920 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922 		max_sector = mddev->resync_max_sectors;
2923 	if (sector_nr >= max_sector) {
2924 		conf->cluster_sync_low = 0;
2925 		conf->cluster_sync_high = 0;
2926 
2927 		/* If we aborted, we need to abort the
2928 		 * sync on the 'current' bitmap chucks (there can
2929 		 * be several when recovering multiple devices).
2930 		 * as we may have started syncing it but not finished.
2931 		 * We can find the current address in
2932 		 * mddev->curr_resync, but for recovery,
2933 		 * we need to convert that to several
2934 		 * virtual addresses.
2935 		 */
2936 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937 			end_reshape(conf);
2938 			close_sync(conf);
2939 			return 0;
2940 		}
2941 
2942 		if (mddev->curr_resync < max_sector) { /* aborted */
2943 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945 						   &sync_blocks, 1);
2946 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2947 				sector_t sect =
2948 					raid10_find_virt(conf, mddev->curr_resync, i);
2949 				md_bitmap_end_sync(mddev->bitmap, sect,
2950 						   &sync_blocks, 1);
2951 			}
2952 		} else {
2953 			/* completed sync */
2954 			if ((!mddev->bitmap || conf->fullsync)
2955 			    && conf->have_replacement
2956 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957 				/* Completed a full sync so the replacements
2958 				 * are now fully recovered.
2959 				 */
2960 				rcu_read_lock();
2961 				for (i = 0; i < conf->geo.raid_disks; i++) {
2962 					struct md_rdev *rdev =
2963 						rcu_dereference(conf->mirrors[i].replacement);
2964 					if (rdev)
2965 						rdev->recovery_offset = MaxSector;
2966 				}
2967 				rcu_read_unlock();
2968 			}
2969 			conf->fullsync = 0;
2970 		}
2971 		md_bitmap_close_sync(mddev->bitmap);
2972 		close_sync(conf);
2973 		*skipped = 1;
2974 		return sectors_skipped;
2975 	}
2976 
2977 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978 		return reshape_request(mddev, sector_nr, skipped);
2979 
2980 	if (chunks_skipped >= conf->geo.raid_disks) {
2981 		/* if there has been nothing to do on any drive,
2982 		 * then there is nothing to do at all..
2983 		 */
2984 		*skipped = 1;
2985 		return (max_sector - sector_nr) + sectors_skipped;
2986 	}
2987 
2988 	if (max_sector > mddev->resync_max)
2989 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990 
2991 	/* make sure whole request will fit in a chunk - if chunks
2992 	 * are meaningful
2993 	 */
2994 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2995 	    max_sector > (sector_nr | chunk_mask))
2996 		max_sector = (sector_nr | chunk_mask) + 1;
2997 
2998 	/*
2999 	 * If there is non-resync activity waiting for a turn, then let it
3000 	 * though before starting on this new sync request.
3001 	 */
3002 	if (conf->nr_waiting)
3003 		schedule_timeout_uninterruptible(1);
3004 
3005 	/* Again, very different code for resync and recovery.
3006 	 * Both must result in an r10bio with a list of bios that
3007 	 * have bi_end_io, bi_sector, bi_disk set,
3008 	 * and bi_private set to the r10bio.
3009 	 * For recovery, we may actually create several r10bios
3010 	 * with 2 bios in each, that correspond to the bios in the main one.
3011 	 * In this case, the subordinate r10bios link back through a
3012 	 * borrowed master_bio pointer, and the counter in the master
3013 	 * includes a ref from each subordinate.
3014 	 */
3015 	/* First, we decide what to do and set ->bi_end_io
3016 	 * To end_sync_read if we want to read, and
3017 	 * end_sync_write if we will want to write.
3018 	 */
3019 
3020 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022 		/* recovery... the complicated one */
3023 		int j;
3024 		r10_bio = NULL;
3025 
3026 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027 			int still_degraded;
3028 			struct r10bio *rb2;
3029 			sector_t sect;
3030 			int must_sync;
3031 			int any_working;
3032 			int need_recover = 0;
3033 			int need_replace = 0;
3034 			struct raid10_info *mirror = &conf->mirrors[i];
3035 			struct md_rdev *mrdev, *mreplace;
3036 
3037 			rcu_read_lock();
3038 			mrdev = rcu_dereference(mirror->rdev);
3039 			mreplace = rcu_dereference(mirror->replacement);
3040 
3041 			if (mrdev != NULL &&
3042 			    !test_bit(Faulty, &mrdev->flags) &&
3043 			    !test_bit(In_sync, &mrdev->flags))
3044 				need_recover = 1;
3045 			if (mreplace != NULL &&
3046 			    !test_bit(Faulty, &mreplace->flags))
3047 				need_replace = 1;
3048 
3049 			if (!need_recover && !need_replace) {
3050 				rcu_read_unlock();
3051 				continue;
3052 			}
3053 
3054 			still_degraded = 0;
3055 			/* want to reconstruct this device */
3056 			rb2 = r10_bio;
3057 			sect = raid10_find_virt(conf, sector_nr, i);
3058 			if (sect >= mddev->resync_max_sectors) {
3059 				/* last stripe is not complete - don't
3060 				 * try to recover this sector.
3061 				 */
3062 				rcu_read_unlock();
3063 				continue;
3064 			}
3065 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3066 				mreplace = NULL;
3067 			/* Unless we are doing a full sync, or a replacement
3068 			 * we only need to recover the block if it is set in
3069 			 * the bitmap
3070 			 */
3071 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072 							 &sync_blocks, 1);
3073 			if (sync_blocks < max_sync)
3074 				max_sync = sync_blocks;
3075 			if (!must_sync &&
3076 			    mreplace == NULL &&
3077 			    !conf->fullsync) {
3078 				/* yep, skip the sync_blocks here, but don't assume
3079 				 * that there will never be anything to do here
3080 				 */
3081 				chunks_skipped = -1;
3082 				rcu_read_unlock();
3083 				continue;
3084 			}
3085 			atomic_inc(&mrdev->nr_pending);
3086 			if (mreplace)
3087 				atomic_inc(&mreplace->nr_pending);
3088 			rcu_read_unlock();
3089 
3090 			r10_bio = raid10_alloc_init_r10buf(conf);
3091 			r10_bio->state = 0;
3092 			raise_barrier(conf, rb2 != NULL);
3093 			atomic_set(&r10_bio->remaining, 0);
3094 
3095 			r10_bio->master_bio = (struct bio*)rb2;
3096 			if (rb2)
3097 				atomic_inc(&rb2->remaining);
3098 			r10_bio->mddev = mddev;
3099 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3100 			r10_bio->sector = sect;
3101 
3102 			raid10_find_phys(conf, r10_bio);
3103 
3104 			/* Need to check if the array will still be
3105 			 * degraded
3106 			 */
3107 			rcu_read_lock();
3108 			for (j = 0; j < conf->geo.raid_disks; j++) {
3109 				struct md_rdev *rdev = rcu_dereference(
3110 					conf->mirrors[j].rdev);
3111 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112 					still_degraded = 1;
3113 					break;
3114 				}
3115 			}
3116 
3117 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118 							 &sync_blocks, still_degraded);
3119 
3120 			any_working = 0;
3121 			for (j=0; j<conf->copies;j++) {
3122 				int k;
3123 				int d = r10_bio->devs[j].devnum;
3124 				sector_t from_addr, to_addr;
3125 				struct md_rdev *rdev =
3126 					rcu_dereference(conf->mirrors[d].rdev);
3127 				sector_t sector, first_bad;
3128 				int bad_sectors;
3129 				if (!rdev ||
3130 				    !test_bit(In_sync, &rdev->flags))
3131 					continue;
3132 				/* This is where we read from */
3133 				any_working = 1;
3134 				sector = r10_bio->devs[j].addr;
3135 
3136 				if (is_badblock(rdev, sector, max_sync,
3137 						&first_bad, &bad_sectors)) {
3138 					if (first_bad > sector)
3139 						max_sync = first_bad - sector;
3140 					else {
3141 						bad_sectors -= (sector
3142 								- first_bad);
3143 						if (max_sync > bad_sectors)
3144 							max_sync = bad_sectors;
3145 						continue;
3146 					}
3147 				}
3148 				bio = r10_bio->devs[0].bio;
3149 				bio->bi_next = biolist;
3150 				biolist = bio;
3151 				bio->bi_end_io = end_sync_read;
3152 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153 				if (test_bit(FailFast, &rdev->flags))
3154 					bio->bi_opf |= MD_FAILFAST;
3155 				from_addr = r10_bio->devs[j].addr;
3156 				bio->bi_iter.bi_sector = from_addr +
3157 					rdev->data_offset;
3158 				bio_set_dev(bio, rdev->bdev);
3159 				atomic_inc(&rdev->nr_pending);
3160 				/* and we write to 'i' (if not in_sync) */
3161 
3162 				for (k=0; k<conf->copies; k++)
3163 					if (r10_bio->devs[k].devnum == i)
3164 						break;
3165 				BUG_ON(k == conf->copies);
3166 				to_addr = r10_bio->devs[k].addr;
3167 				r10_bio->devs[0].devnum = d;
3168 				r10_bio->devs[0].addr = from_addr;
3169 				r10_bio->devs[1].devnum = i;
3170 				r10_bio->devs[1].addr = to_addr;
3171 
3172 				if (need_recover) {
3173 					bio = r10_bio->devs[1].bio;
3174 					bio->bi_next = biolist;
3175 					biolist = bio;
3176 					bio->bi_end_io = end_sync_write;
3177 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178 					bio->bi_iter.bi_sector = to_addr
3179 						+ mrdev->data_offset;
3180 					bio_set_dev(bio, mrdev->bdev);
3181 					atomic_inc(&r10_bio->remaining);
3182 				} else
3183 					r10_bio->devs[1].bio->bi_end_io = NULL;
3184 
3185 				/* and maybe write to replacement */
3186 				bio = r10_bio->devs[1].repl_bio;
3187 				if (bio)
3188 					bio->bi_end_io = NULL;
3189 				/* Note: if need_replace, then bio
3190 				 * cannot be NULL as r10buf_pool_alloc will
3191 				 * have allocated it.
3192 				 */
3193 				if (!need_replace)
3194 					break;
3195 				bio->bi_next = biolist;
3196 				biolist = bio;
3197 				bio->bi_end_io = end_sync_write;
3198 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199 				bio->bi_iter.bi_sector = to_addr +
3200 					mreplace->data_offset;
3201 				bio_set_dev(bio, mreplace->bdev);
3202 				atomic_inc(&r10_bio->remaining);
3203 				break;
3204 			}
3205 			rcu_read_unlock();
3206 			if (j == conf->copies) {
3207 				/* Cannot recover, so abort the recovery or
3208 				 * record a bad block */
3209 				if (any_working) {
3210 					/* problem is that there are bad blocks
3211 					 * on other device(s)
3212 					 */
3213 					int k;
3214 					for (k = 0; k < conf->copies; k++)
3215 						if (r10_bio->devs[k].devnum == i)
3216 							break;
3217 					if (!test_bit(In_sync,
3218 						      &mrdev->flags)
3219 					    && !rdev_set_badblocks(
3220 						    mrdev,
3221 						    r10_bio->devs[k].addr,
3222 						    max_sync, 0))
3223 						any_working = 0;
3224 					if (mreplace &&
3225 					    !rdev_set_badblocks(
3226 						    mreplace,
3227 						    r10_bio->devs[k].addr,
3228 						    max_sync, 0))
3229 						any_working = 0;
3230 				}
3231 				if (!any_working)  {
3232 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3233 							      &mddev->recovery))
3234 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3235 						       mdname(mddev));
3236 					mirror->recovery_disabled
3237 						= mddev->recovery_disabled;
3238 				}
3239 				put_buf(r10_bio);
3240 				if (rb2)
3241 					atomic_dec(&rb2->remaining);
3242 				r10_bio = rb2;
3243 				rdev_dec_pending(mrdev, mddev);
3244 				if (mreplace)
3245 					rdev_dec_pending(mreplace, mddev);
3246 				break;
3247 			}
3248 			rdev_dec_pending(mrdev, mddev);
3249 			if (mreplace)
3250 				rdev_dec_pending(mreplace, mddev);
3251 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252 				/* Only want this if there is elsewhere to
3253 				 * read from. 'j' is currently the first
3254 				 * readable copy.
3255 				 */
3256 				int targets = 1;
3257 				for (; j < conf->copies; j++) {
3258 					int d = r10_bio->devs[j].devnum;
3259 					if (conf->mirrors[d].rdev &&
3260 					    test_bit(In_sync,
3261 						      &conf->mirrors[d].rdev->flags))
3262 						targets++;
3263 				}
3264 				if (targets == 1)
3265 					r10_bio->devs[0].bio->bi_opf
3266 						&= ~MD_FAILFAST;
3267 			}
3268 		}
3269 		if (biolist == NULL) {
3270 			while (r10_bio) {
3271 				struct r10bio *rb2 = r10_bio;
3272 				r10_bio = (struct r10bio*) rb2->master_bio;
3273 				rb2->master_bio = NULL;
3274 				put_buf(rb2);
3275 			}
3276 			goto giveup;
3277 		}
3278 	} else {
3279 		/* resync. Schedule a read for every block at this virt offset */
3280 		int count = 0;
3281 
3282 		/*
3283 		 * Since curr_resync_completed could probably not update in
3284 		 * time, and we will set cluster_sync_low based on it.
3285 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286 		 * safety reason, which ensures curr_resync_completed is
3287 		 * updated in bitmap_cond_end_sync.
3288 		 */
3289 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290 					mddev_is_clustered(mddev) &&
3291 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292 
3293 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294 					  &sync_blocks, mddev->degraded) &&
3295 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296 						 &mddev->recovery)) {
3297 			/* We can skip this block */
3298 			*skipped = 1;
3299 			return sync_blocks + sectors_skipped;
3300 		}
3301 		if (sync_blocks < max_sync)
3302 			max_sync = sync_blocks;
3303 		r10_bio = raid10_alloc_init_r10buf(conf);
3304 		r10_bio->state = 0;
3305 
3306 		r10_bio->mddev = mddev;
3307 		atomic_set(&r10_bio->remaining, 0);
3308 		raise_barrier(conf, 0);
3309 		conf->next_resync = sector_nr;
3310 
3311 		r10_bio->master_bio = NULL;
3312 		r10_bio->sector = sector_nr;
3313 		set_bit(R10BIO_IsSync, &r10_bio->state);
3314 		raid10_find_phys(conf, r10_bio);
3315 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316 
3317 		for (i = 0; i < conf->copies; i++) {
3318 			int d = r10_bio->devs[i].devnum;
3319 			sector_t first_bad, sector;
3320 			int bad_sectors;
3321 			struct md_rdev *rdev;
3322 
3323 			if (r10_bio->devs[i].repl_bio)
3324 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325 
3326 			bio = r10_bio->devs[i].bio;
3327 			bio->bi_status = BLK_STS_IOERR;
3328 			rcu_read_lock();
3329 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3330 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331 				rcu_read_unlock();
3332 				continue;
3333 			}
3334 			sector = r10_bio->devs[i].addr;
3335 			if (is_badblock(rdev, sector, max_sync,
3336 					&first_bad, &bad_sectors)) {
3337 				if (first_bad > sector)
3338 					max_sync = first_bad - sector;
3339 				else {
3340 					bad_sectors -= (sector - first_bad);
3341 					if (max_sync > bad_sectors)
3342 						max_sync = bad_sectors;
3343 					rcu_read_unlock();
3344 					continue;
3345 				}
3346 			}
3347 			atomic_inc(&rdev->nr_pending);
3348 			atomic_inc(&r10_bio->remaining);
3349 			bio->bi_next = biolist;
3350 			biolist = bio;
3351 			bio->bi_end_io = end_sync_read;
3352 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353 			if (test_bit(FailFast, &rdev->flags))
3354 				bio->bi_opf |= MD_FAILFAST;
3355 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356 			bio_set_dev(bio, rdev->bdev);
3357 			count++;
3358 
3359 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3360 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361 				rcu_read_unlock();
3362 				continue;
3363 			}
3364 			atomic_inc(&rdev->nr_pending);
3365 
3366 			/* Need to set up for writing to the replacement */
3367 			bio = r10_bio->devs[i].repl_bio;
3368 			bio->bi_status = BLK_STS_IOERR;
3369 
3370 			sector = r10_bio->devs[i].addr;
3371 			bio->bi_next = biolist;
3372 			biolist = bio;
3373 			bio->bi_end_io = end_sync_write;
3374 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375 			if (test_bit(FailFast, &rdev->flags))
3376 				bio->bi_opf |= MD_FAILFAST;
3377 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378 			bio_set_dev(bio, rdev->bdev);
3379 			count++;
3380 			rcu_read_unlock();
3381 		}
3382 
3383 		if (count < 2) {
3384 			for (i=0; i<conf->copies; i++) {
3385 				int d = r10_bio->devs[i].devnum;
3386 				if (r10_bio->devs[i].bio->bi_end_io)
3387 					rdev_dec_pending(conf->mirrors[d].rdev,
3388 							 mddev);
3389 				if (r10_bio->devs[i].repl_bio &&
3390 				    r10_bio->devs[i].repl_bio->bi_end_io)
3391 					rdev_dec_pending(
3392 						conf->mirrors[d].replacement,
3393 						mddev);
3394 			}
3395 			put_buf(r10_bio);
3396 			biolist = NULL;
3397 			goto giveup;
3398 		}
3399 	}
3400 
3401 	nr_sectors = 0;
3402 	if (sector_nr + max_sync < max_sector)
3403 		max_sector = sector_nr + max_sync;
3404 	do {
3405 		struct page *page;
3406 		int len = PAGE_SIZE;
3407 		if (sector_nr + (len>>9) > max_sector)
3408 			len = (max_sector - sector_nr) << 9;
3409 		if (len == 0)
3410 			break;
3411 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3412 			struct resync_pages *rp = get_resync_pages(bio);
3413 			page = resync_fetch_page(rp, page_idx);
3414 			/*
3415 			 * won't fail because the vec table is big enough
3416 			 * to hold all these pages
3417 			 */
3418 			bio_add_page(bio, page, len, 0);
3419 		}
3420 		nr_sectors += len>>9;
3421 		sector_nr += len>>9;
3422 	} while (++page_idx < RESYNC_PAGES);
3423 	r10_bio->sectors = nr_sectors;
3424 
3425 	if (mddev_is_clustered(mddev) &&
3426 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427 		/* It is resync not recovery */
3428 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429 			conf->cluster_sync_low = mddev->curr_resync_completed;
3430 			raid10_set_cluster_sync_high(conf);
3431 			/* Send resync message */
3432 			md_cluster_ops->resync_info_update(mddev,
3433 						conf->cluster_sync_low,
3434 						conf->cluster_sync_high);
3435 		}
3436 	} else if (mddev_is_clustered(mddev)) {
3437 		/* This is recovery not resync */
3438 		sector_t sect_va1, sect_va2;
3439 		bool broadcast_msg = false;
3440 
3441 		for (i = 0; i < conf->geo.raid_disks; i++) {
3442 			/*
3443 			 * sector_nr is a device address for recovery, so we
3444 			 * need translate it to array address before compare
3445 			 * with cluster_sync_high.
3446 			 */
3447 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448 
3449 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450 				broadcast_msg = true;
3451 				/*
3452 				 * curr_resync_completed is similar as
3453 				 * sector_nr, so make the translation too.
3454 				 */
3455 				sect_va2 = raid10_find_virt(conf,
3456 					mddev->curr_resync_completed, i);
3457 
3458 				if (conf->cluster_sync_low == 0 ||
3459 				    conf->cluster_sync_low > sect_va2)
3460 					conf->cluster_sync_low = sect_va2;
3461 			}
3462 		}
3463 		if (broadcast_msg) {
3464 			raid10_set_cluster_sync_high(conf);
3465 			md_cluster_ops->resync_info_update(mddev,
3466 						conf->cluster_sync_low,
3467 						conf->cluster_sync_high);
3468 		}
3469 	}
3470 
3471 	while (biolist) {
3472 		bio = biolist;
3473 		biolist = biolist->bi_next;
3474 
3475 		bio->bi_next = NULL;
3476 		r10_bio = get_resync_r10bio(bio);
3477 		r10_bio->sectors = nr_sectors;
3478 
3479 		if (bio->bi_end_io == end_sync_read) {
3480 			md_sync_acct_bio(bio, nr_sectors);
3481 			bio->bi_status = 0;
3482 			submit_bio_noacct(bio);
3483 		}
3484 	}
3485 
3486 	if (sectors_skipped)
3487 		/* pretend they weren't skipped, it makes
3488 		 * no important difference in this case
3489 		 */
3490 		md_done_sync(mddev, sectors_skipped, 1);
3491 
3492 	return sectors_skipped + nr_sectors;
3493  giveup:
3494 	/* There is nowhere to write, so all non-sync
3495 	 * drives must be failed or in resync, all drives
3496 	 * have a bad block, so try the next chunk...
3497 	 */
3498 	if (sector_nr + max_sync < max_sector)
3499 		max_sector = sector_nr + max_sync;
3500 
3501 	sectors_skipped += (max_sector - sector_nr);
3502 	chunks_skipped ++;
3503 	sector_nr = max_sector;
3504 	goto skipped;
3505 }
3506 
3507 static sector_t
3508 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509 {
3510 	sector_t size;
3511 	struct r10conf *conf = mddev->private;
3512 
3513 	if (!raid_disks)
3514 		raid_disks = min(conf->geo.raid_disks,
3515 				 conf->prev.raid_disks);
3516 	if (!sectors)
3517 		sectors = conf->dev_sectors;
3518 
3519 	size = sectors >> conf->geo.chunk_shift;
3520 	sector_div(size, conf->geo.far_copies);
3521 	size = size * raid_disks;
3522 	sector_div(size, conf->geo.near_copies);
3523 
3524 	return size << conf->geo.chunk_shift;
3525 }
3526 
3527 static void calc_sectors(struct r10conf *conf, sector_t size)
3528 {
3529 	/* Calculate the number of sectors-per-device that will
3530 	 * actually be used, and set conf->dev_sectors and
3531 	 * conf->stride
3532 	 */
3533 
3534 	size = size >> conf->geo.chunk_shift;
3535 	sector_div(size, conf->geo.far_copies);
3536 	size = size * conf->geo.raid_disks;
3537 	sector_div(size, conf->geo.near_copies);
3538 	/* 'size' is now the number of chunks in the array */
3539 	/* calculate "used chunks per device" */
3540 	size = size * conf->copies;
3541 
3542 	/* We need to round up when dividing by raid_disks to
3543 	 * get the stride size.
3544 	 */
3545 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546 
3547 	conf->dev_sectors = size << conf->geo.chunk_shift;
3548 
3549 	if (conf->geo.far_offset)
3550 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3551 	else {
3552 		sector_div(size, conf->geo.far_copies);
3553 		conf->geo.stride = size << conf->geo.chunk_shift;
3554 	}
3555 }
3556 
3557 enum geo_type {geo_new, geo_old, geo_start};
3558 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559 {
3560 	int nc, fc, fo;
3561 	int layout, chunk, disks;
3562 	switch (new) {
3563 	case geo_old:
3564 		layout = mddev->layout;
3565 		chunk = mddev->chunk_sectors;
3566 		disks = mddev->raid_disks - mddev->delta_disks;
3567 		break;
3568 	case geo_new:
3569 		layout = mddev->new_layout;
3570 		chunk = mddev->new_chunk_sectors;
3571 		disks = mddev->raid_disks;
3572 		break;
3573 	default: /* avoid 'may be unused' warnings */
3574 	case geo_start: /* new when starting reshape - raid_disks not
3575 			 * updated yet. */
3576 		layout = mddev->new_layout;
3577 		chunk = mddev->new_chunk_sectors;
3578 		disks = mddev->raid_disks + mddev->delta_disks;
3579 		break;
3580 	}
3581 	if (layout >> 19)
3582 		return -1;
3583 	if (chunk < (PAGE_SIZE >> 9) ||
3584 	    !is_power_of_2(chunk))
3585 		return -2;
3586 	nc = layout & 255;
3587 	fc = (layout >> 8) & 255;
3588 	fo = layout & (1<<16);
3589 	geo->raid_disks = disks;
3590 	geo->near_copies = nc;
3591 	geo->far_copies = fc;
3592 	geo->far_offset = fo;
3593 	switch (layout >> 17) {
3594 	case 0:	/* original layout.  simple but not always optimal */
3595 		geo->far_set_size = disks;
3596 		break;
3597 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3598 		 * actually using this, but leave code here just in case.*/
3599 		geo->far_set_size = disks/fc;
3600 		WARN(geo->far_set_size < fc,
3601 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602 		break;
3603 	case 2: /* "improved" layout fixed to match documentation */
3604 		geo->far_set_size = fc * nc;
3605 		break;
3606 	default: /* Not a valid layout */
3607 		return -1;
3608 	}
3609 	geo->chunk_mask = chunk - 1;
3610 	geo->chunk_shift = ffz(~chunk);
3611 	return nc*fc;
3612 }
3613 
3614 static struct r10conf *setup_conf(struct mddev *mddev)
3615 {
3616 	struct r10conf *conf = NULL;
3617 	int err = -EINVAL;
3618 	struct geom geo;
3619 	int copies;
3620 
3621 	copies = setup_geo(&geo, mddev, geo_new);
3622 
3623 	if (copies == -2) {
3624 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625 			mdname(mddev), PAGE_SIZE);
3626 		goto out;
3627 	}
3628 
3629 	if (copies < 2 || copies > mddev->raid_disks) {
3630 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631 			mdname(mddev), mddev->new_layout);
3632 		goto out;
3633 	}
3634 
3635 	err = -ENOMEM;
3636 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637 	if (!conf)
3638 		goto out;
3639 
3640 	/* FIXME calc properly */
3641 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642 				sizeof(struct raid10_info),
3643 				GFP_KERNEL);
3644 	if (!conf->mirrors)
3645 		goto out;
3646 
3647 	conf->tmppage = alloc_page(GFP_KERNEL);
3648 	if (!conf->tmppage)
3649 		goto out;
3650 
3651 	conf->geo = geo;
3652 	conf->copies = copies;
3653 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654 			   rbio_pool_free, conf);
3655 	if (err)
3656 		goto out;
3657 
3658 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659 	if (err)
3660 		goto out;
3661 
3662 	calc_sectors(conf, mddev->dev_sectors);
3663 	if (mddev->reshape_position == MaxSector) {
3664 		conf->prev = conf->geo;
3665 		conf->reshape_progress = MaxSector;
3666 	} else {
3667 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668 			err = -EINVAL;
3669 			goto out;
3670 		}
3671 		conf->reshape_progress = mddev->reshape_position;
3672 		if (conf->prev.far_offset)
3673 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3674 		else
3675 			/* far_copies must be 1 */
3676 			conf->prev.stride = conf->dev_sectors;
3677 	}
3678 	conf->reshape_safe = conf->reshape_progress;
3679 	spin_lock_init(&conf->device_lock);
3680 	INIT_LIST_HEAD(&conf->retry_list);
3681 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3682 
3683 	spin_lock_init(&conf->resync_lock);
3684 	init_waitqueue_head(&conf->wait_barrier);
3685 	atomic_set(&conf->nr_pending, 0);
3686 
3687 	err = -ENOMEM;
3688 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689 	if (!conf->thread)
3690 		goto out;
3691 
3692 	conf->mddev = mddev;
3693 	return conf;
3694 
3695  out:
3696 	if (conf) {
3697 		mempool_exit(&conf->r10bio_pool);
3698 		kfree(conf->mirrors);
3699 		safe_put_page(conf->tmppage);
3700 		bioset_exit(&conf->bio_split);
3701 		kfree(conf);
3702 	}
3703 	return ERR_PTR(err);
3704 }
3705 
3706 static int raid10_run(struct mddev *mddev)
3707 {
3708 	struct r10conf *conf;
3709 	int i, disk_idx, chunk_size;
3710 	struct raid10_info *disk;
3711 	struct md_rdev *rdev;
3712 	sector_t size;
3713 	sector_t min_offset_diff = 0;
3714 	int first = 1;
3715 	bool discard_supported = false;
3716 
3717 	if (mddev_init_writes_pending(mddev) < 0)
3718 		return -ENOMEM;
3719 
3720 	if (mddev->private == NULL) {
3721 		conf = setup_conf(mddev);
3722 		if (IS_ERR(conf))
3723 			return PTR_ERR(conf);
3724 		mddev->private = conf;
3725 	}
3726 	conf = mddev->private;
3727 	if (!conf)
3728 		goto out;
3729 
3730 	if (mddev_is_clustered(conf->mddev)) {
3731 		int fc, fo;
3732 
3733 		fc = (mddev->layout >> 8) & 255;
3734 		fo = mddev->layout & (1<<16);
3735 		if (fc > 1 || fo > 0) {
3736 			pr_err("only near layout is supported by clustered"
3737 				" raid10\n");
3738 			goto out_free_conf;
3739 		}
3740 	}
3741 
3742 	mddev->thread = conf->thread;
3743 	conf->thread = NULL;
3744 
3745 	chunk_size = mddev->chunk_sectors << 9;
3746 	if (mddev->queue) {
3747 		blk_queue_max_discard_sectors(mddev->queue,
3748 					      mddev->chunk_sectors);
3749 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3750 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3751 		blk_queue_io_min(mddev->queue, chunk_size);
3752 		if (conf->geo.raid_disks % conf->geo.near_copies)
3753 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3754 		else
3755 			blk_queue_io_opt(mddev->queue, chunk_size *
3756 					 (conf->geo.raid_disks / conf->geo.near_copies));
3757 	}
3758 
3759 	rdev_for_each(rdev, mddev) {
3760 		long long diff;
3761 
3762 		disk_idx = rdev->raid_disk;
3763 		if (disk_idx < 0)
3764 			continue;
3765 		if (disk_idx >= conf->geo.raid_disks &&
3766 		    disk_idx >= conf->prev.raid_disks)
3767 			continue;
3768 		disk = conf->mirrors + disk_idx;
3769 
3770 		if (test_bit(Replacement, &rdev->flags)) {
3771 			if (disk->replacement)
3772 				goto out_free_conf;
3773 			disk->replacement = rdev;
3774 		} else {
3775 			if (disk->rdev)
3776 				goto out_free_conf;
3777 			disk->rdev = rdev;
3778 		}
3779 		diff = (rdev->new_data_offset - rdev->data_offset);
3780 		if (!mddev->reshape_backwards)
3781 			diff = -diff;
3782 		if (diff < 0)
3783 			diff = 0;
3784 		if (first || diff < min_offset_diff)
3785 			min_offset_diff = diff;
3786 
3787 		if (mddev->gendisk)
3788 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3789 					  rdev->data_offset << 9);
3790 
3791 		disk->head_position = 0;
3792 
3793 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3794 			discard_supported = true;
3795 		first = 0;
3796 	}
3797 
3798 	if (mddev->queue) {
3799 		if (discard_supported)
3800 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3801 						mddev->queue);
3802 		else
3803 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3804 						  mddev->queue);
3805 	}
3806 	/* need to check that every block has at least one working mirror */
3807 	if (!enough(conf, -1)) {
3808 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3809 		       mdname(mddev));
3810 		goto out_free_conf;
3811 	}
3812 
3813 	if (conf->reshape_progress != MaxSector) {
3814 		/* must ensure that shape change is supported */
3815 		if (conf->geo.far_copies != 1 &&
3816 		    conf->geo.far_offset == 0)
3817 			goto out_free_conf;
3818 		if (conf->prev.far_copies != 1 &&
3819 		    conf->prev.far_offset == 0)
3820 			goto out_free_conf;
3821 	}
3822 
3823 	mddev->degraded = 0;
3824 	for (i = 0;
3825 	     i < conf->geo.raid_disks
3826 		     || i < conf->prev.raid_disks;
3827 	     i++) {
3828 
3829 		disk = conf->mirrors + i;
3830 
3831 		if (!disk->rdev && disk->replacement) {
3832 			/* The replacement is all we have - use it */
3833 			disk->rdev = disk->replacement;
3834 			disk->replacement = NULL;
3835 			clear_bit(Replacement, &disk->rdev->flags);
3836 		}
3837 
3838 		if (!disk->rdev ||
3839 		    !test_bit(In_sync, &disk->rdev->flags)) {
3840 			disk->head_position = 0;
3841 			mddev->degraded++;
3842 			if (disk->rdev &&
3843 			    disk->rdev->saved_raid_disk < 0)
3844 				conf->fullsync = 1;
3845 		}
3846 
3847 		if (disk->replacement &&
3848 		    !test_bit(In_sync, &disk->replacement->flags) &&
3849 		    disk->replacement->saved_raid_disk < 0) {
3850 			conf->fullsync = 1;
3851 		}
3852 
3853 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3854 	}
3855 
3856 	if (mddev->recovery_cp != MaxSector)
3857 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3858 			  mdname(mddev));
3859 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3860 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3861 		conf->geo.raid_disks);
3862 	/*
3863 	 * Ok, everything is just fine now
3864 	 */
3865 	mddev->dev_sectors = conf->dev_sectors;
3866 	size = raid10_size(mddev, 0, 0);
3867 	md_set_array_sectors(mddev, size);
3868 	mddev->resync_max_sectors = size;
3869 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3870 
3871 	if (mddev->queue) {
3872 		int stripe = conf->geo.raid_disks *
3873 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3874 
3875 		/* Calculate max read-ahead size.
3876 		 * We need to readahead at least twice a whole stripe....
3877 		 * maybe...
3878 		 */
3879 		stripe /= conf->geo.near_copies;
3880 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3881 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3882 	}
3883 
3884 	if (md_integrity_register(mddev))
3885 		goto out_free_conf;
3886 
3887 	if (conf->reshape_progress != MaxSector) {
3888 		unsigned long before_length, after_length;
3889 
3890 		before_length = ((1 << conf->prev.chunk_shift) *
3891 				 conf->prev.far_copies);
3892 		after_length = ((1 << conf->geo.chunk_shift) *
3893 				conf->geo.far_copies);
3894 
3895 		if (max(before_length, after_length) > min_offset_diff) {
3896 			/* This cannot work */
3897 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3898 			goto out_free_conf;
3899 		}
3900 		conf->offset_diff = min_offset_diff;
3901 
3902 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3903 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3904 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3905 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3906 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3907 							"reshape");
3908 		if (!mddev->sync_thread)
3909 			goto out_free_conf;
3910 	}
3911 
3912 	return 0;
3913 
3914 out_free_conf:
3915 	md_unregister_thread(&mddev->thread);
3916 	mempool_exit(&conf->r10bio_pool);
3917 	safe_put_page(conf->tmppage);
3918 	kfree(conf->mirrors);
3919 	kfree(conf);
3920 	mddev->private = NULL;
3921 out:
3922 	return -EIO;
3923 }
3924 
3925 static void raid10_free(struct mddev *mddev, void *priv)
3926 {
3927 	struct r10conf *conf = priv;
3928 
3929 	mempool_exit(&conf->r10bio_pool);
3930 	safe_put_page(conf->tmppage);
3931 	kfree(conf->mirrors);
3932 	kfree(conf->mirrors_old);
3933 	kfree(conf->mirrors_new);
3934 	bioset_exit(&conf->bio_split);
3935 	kfree(conf);
3936 }
3937 
3938 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3939 {
3940 	struct r10conf *conf = mddev->private;
3941 
3942 	if (quiesce)
3943 		raise_barrier(conf, 0);
3944 	else
3945 		lower_barrier(conf);
3946 }
3947 
3948 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3949 {
3950 	/* Resize of 'far' arrays is not supported.
3951 	 * For 'near' and 'offset' arrays we can set the
3952 	 * number of sectors used to be an appropriate multiple
3953 	 * of the chunk size.
3954 	 * For 'offset', this is far_copies*chunksize.
3955 	 * For 'near' the multiplier is the LCM of
3956 	 * near_copies and raid_disks.
3957 	 * So if far_copies > 1 && !far_offset, fail.
3958 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3959 	 * multiply by chunk_size.  Then round to this number.
3960 	 * This is mostly done by raid10_size()
3961 	 */
3962 	struct r10conf *conf = mddev->private;
3963 	sector_t oldsize, size;
3964 
3965 	if (mddev->reshape_position != MaxSector)
3966 		return -EBUSY;
3967 
3968 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3969 		return -EINVAL;
3970 
3971 	oldsize = raid10_size(mddev, 0, 0);
3972 	size = raid10_size(mddev, sectors, 0);
3973 	if (mddev->external_size &&
3974 	    mddev->array_sectors > size)
3975 		return -EINVAL;
3976 	if (mddev->bitmap) {
3977 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3978 		if (ret)
3979 			return ret;
3980 	}
3981 	md_set_array_sectors(mddev, size);
3982 	if (sectors > mddev->dev_sectors &&
3983 	    mddev->recovery_cp > oldsize) {
3984 		mddev->recovery_cp = oldsize;
3985 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3986 	}
3987 	calc_sectors(conf, sectors);
3988 	mddev->dev_sectors = conf->dev_sectors;
3989 	mddev->resync_max_sectors = size;
3990 	return 0;
3991 }
3992 
3993 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3994 {
3995 	struct md_rdev *rdev;
3996 	struct r10conf *conf;
3997 
3998 	if (mddev->degraded > 0) {
3999 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4000 			mdname(mddev));
4001 		return ERR_PTR(-EINVAL);
4002 	}
4003 	sector_div(size, devs);
4004 
4005 	/* Set new parameters */
4006 	mddev->new_level = 10;
4007 	/* new layout: far_copies = 1, near_copies = 2 */
4008 	mddev->new_layout = (1<<8) + 2;
4009 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4010 	mddev->delta_disks = mddev->raid_disks;
4011 	mddev->raid_disks *= 2;
4012 	/* make sure it will be not marked as dirty */
4013 	mddev->recovery_cp = MaxSector;
4014 	mddev->dev_sectors = size;
4015 
4016 	conf = setup_conf(mddev);
4017 	if (!IS_ERR(conf)) {
4018 		rdev_for_each(rdev, mddev)
4019 			if (rdev->raid_disk >= 0) {
4020 				rdev->new_raid_disk = rdev->raid_disk * 2;
4021 				rdev->sectors = size;
4022 			}
4023 		conf->barrier = 1;
4024 	}
4025 
4026 	return conf;
4027 }
4028 
4029 static void *raid10_takeover(struct mddev *mddev)
4030 {
4031 	struct r0conf *raid0_conf;
4032 
4033 	/* raid10 can take over:
4034 	 *  raid0 - providing it has only two drives
4035 	 */
4036 	if (mddev->level == 0) {
4037 		/* for raid0 takeover only one zone is supported */
4038 		raid0_conf = mddev->private;
4039 		if (raid0_conf->nr_strip_zones > 1) {
4040 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4041 				mdname(mddev));
4042 			return ERR_PTR(-EINVAL);
4043 		}
4044 		return raid10_takeover_raid0(mddev,
4045 			raid0_conf->strip_zone->zone_end,
4046 			raid0_conf->strip_zone->nb_dev);
4047 	}
4048 	return ERR_PTR(-EINVAL);
4049 }
4050 
4051 static int raid10_check_reshape(struct mddev *mddev)
4052 {
4053 	/* Called when there is a request to change
4054 	 * - layout (to ->new_layout)
4055 	 * - chunk size (to ->new_chunk_sectors)
4056 	 * - raid_disks (by delta_disks)
4057 	 * or when trying to restart a reshape that was ongoing.
4058 	 *
4059 	 * We need to validate the request and possibly allocate
4060 	 * space if that might be an issue later.
4061 	 *
4062 	 * Currently we reject any reshape of a 'far' mode array,
4063 	 * allow chunk size to change if new is generally acceptable,
4064 	 * allow raid_disks to increase, and allow
4065 	 * a switch between 'near' mode and 'offset' mode.
4066 	 */
4067 	struct r10conf *conf = mddev->private;
4068 	struct geom geo;
4069 
4070 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4071 		return -EINVAL;
4072 
4073 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4074 		/* mustn't change number of copies */
4075 		return -EINVAL;
4076 	if (geo.far_copies > 1 && !geo.far_offset)
4077 		/* Cannot switch to 'far' mode */
4078 		return -EINVAL;
4079 
4080 	if (mddev->array_sectors & geo.chunk_mask)
4081 			/* not factor of array size */
4082 			return -EINVAL;
4083 
4084 	if (!enough(conf, -1))
4085 		return -EINVAL;
4086 
4087 	kfree(conf->mirrors_new);
4088 	conf->mirrors_new = NULL;
4089 	if (mddev->delta_disks > 0) {
4090 		/* allocate new 'mirrors' list */
4091 		conf->mirrors_new =
4092 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4093 				sizeof(struct raid10_info),
4094 				GFP_KERNEL);
4095 		if (!conf->mirrors_new)
4096 			return -ENOMEM;
4097 	}
4098 	return 0;
4099 }
4100 
4101 /*
4102  * Need to check if array has failed when deciding whether to:
4103  *  - start an array
4104  *  - remove non-faulty devices
4105  *  - add a spare
4106  *  - allow a reshape
4107  * This determination is simple when no reshape is happening.
4108  * However if there is a reshape, we need to carefully check
4109  * both the before and after sections.
4110  * This is because some failed devices may only affect one
4111  * of the two sections, and some non-in_sync devices may
4112  * be insync in the section most affected by failed devices.
4113  */
4114 static int calc_degraded(struct r10conf *conf)
4115 {
4116 	int degraded, degraded2;
4117 	int i;
4118 
4119 	rcu_read_lock();
4120 	degraded = 0;
4121 	/* 'prev' section first */
4122 	for (i = 0; i < conf->prev.raid_disks; i++) {
4123 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4124 		if (!rdev || test_bit(Faulty, &rdev->flags))
4125 			degraded++;
4126 		else if (!test_bit(In_sync, &rdev->flags))
4127 			/* When we can reduce the number of devices in
4128 			 * an array, this might not contribute to
4129 			 * 'degraded'.  It does now.
4130 			 */
4131 			degraded++;
4132 	}
4133 	rcu_read_unlock();
4134 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4135 		return degraded;
4136 	rcu_read_lock();
4137 	degraded2 = 0;
4138 	for (i = 0; i < conf->geo.raid_disks; i++) {
4139 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140 		if (!rdev || test_bit(Faulty, &rdev->flags))
4141 			degraded2++;
4142 		else if (!test_bit(In_sync, &rdev->flags)) {
4143 			/* If reshape is increasing the number of devices,
4144 			 * this section has already been recovered, so
4145 			 * it doesn't contribute to degraded.
4146 			 * else it does.
4147 			 */
4148 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4149 				degraded2++;
4150 		}
4151 	}
4152 	rcu_read_unlock();
4153 	if (degraded2 > degraded)
4154 		return degraded2;
4155 	return degraded;
4156 }
4157 
4158 static int raid10_start_reshape(struct mddev *mddev)
4159 {
4160 	/* A 'reshape' has been requested. This commits
4161 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4162 	 * This also checks if there are enough spares and adds them
4163 	 * to the array.
4164 	 * We currently require enough spares to make the final
4165 	 * array non-degraded.  We also require that the difference
4166 	 * between old and new data_offset - on each device - is
4167 	 * enough that we never risk over-writing.
4168 	 */
4169 
4170 	unsigned long before_length, after_length;
4171 	sector_t min_offset_diff = 0;
4172 	int first = 1;
4173 	struct geom new;
4174 	struct r10conf *conf = mddev->private;
4175 	struct md_rdev *rdev;
4176 	int spares = 0;
4177 	int ret;
4178 
4179 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4180 		return -EBUSY;
4181 
4182 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4183 		return -EINVAL;
4184 
4185 	before_length = ((1 << conf->prev.chunk_shift) *
4186 			 conf->prev.far_copies);
4187 	after_length = ((1 << conf->geo.chunk_shift) *
4188 			conf->geo.far_copies);
4189 
4190 	rdev_for_each(rdev, mddev) {
4191 		if (!test_bit(In_sync, &rdev->flags)
4192 		    && !test_bit(Faulty, &rdev->flags))
4193 			spares++;
4194 		if (rdev->raid_disk >= 0) {
4195 			long long diff = (rdev->new_data_offset
4196 					  - rdev->data_offset);
4197 			if (!mddev->reshape_backwards)
4198 				diff = -diff;
4199 			if (diff < 0)
4200 				diff = 0;
4201 			if (first || diff < min_offset_diff)
4202 				min_offset_diff = diff;
4203 			first = 0;
4204 		}
4205 	}
4206 
4207 	if (max(before_length, after_length) > min_offset_diff)
4208 		return -EINVAL;
4209 
4210 	if (spares < mddev->delta_disks)
4211 		return -EINVAL;
4212 
4213 	conf->offset_diff = min_offset_diff;
4214 	spin_lock_irq(&conf->device_lock);
4215 	if (conf->mirrors_new) {
4216 		memcpy(conf->mirrors_new, conf->mirrors,
4217 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4218 		smp_mb();
4219 		kfree(conf->mirrors_old);
4220 		conf->mirrors_old = conf->mirrors;
4221 		conf->mirrors = conf->mirrors_new;
4222 		conf->mirrors_new = NULL;
4223 	}
4224 	setup_geo(&conf->geo, mddev, geo_start);
4225 	smp_mb();
4226 	if (mddev->reshape_backwards) {
4227 		sector_t size = raid10_size(mddev, 0, 0);
4228 		if (size < mddev->array_sectors) {
4229 			spin_unlock_irq(&conf->device_lock);
4230 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4231 				mdname(mddev));
4232 			return -EINVAL;
4233 		}
4234 		mddev->resync_max_sectors = size;
4235 		conf->reshape_progress = size;
4236 	} else
4237 		conf->reshape_progress = 0;
4238 	conf->reshape_safe = conf->reshape_progress;
4239 	spin_unlock_irq(&conf->device_lock);
4240 
4241 	if (mddev->delta_disks && mddev->bitmap) {
4242 		struct mdp_superblock_1 *sb = NULL;
4243 		sector_t oldsize, newsize;
4244 
4245 		oldsize = raid10_size(mddev, 0, 0);
4246 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4247 
4248 		if (!mddev_is_clustered(mddev)) {
4249 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4250 			if (ret)
4251 				goto abort;
4252 			else
4253 				goto out;
4254 		}
4255 
4256 		rdev_for_each(rdev, mddev) {
4257 			if (rdev->raid_disk > -1 &&
4258 			    !test_bit(Faulty, &rdev->flags))
4259 				sb = page_address(rdev->sb_page);
4260 		}
4261 
4262 		/*
4263 		 * some node is already performing reshape, and no need to
4264 		 * call md_bitmap_resize again since it should be called when
4265 		 * receiving BITMAP_RESIZE msg
4266 		 */
4267 		if ((sb && (le32_to_cpu(sb->feature_map) &
4268 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4269 			goto out;
4270 
4271 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4272 		if (ret)
4273 			goto abort;
4274 
4275 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4276 		if (ret) {
4277 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4278 			goto abort;
4279 		}
4280 	}
4281 out:
4282 	if (mddev->delta_disks > 0) {
4283 		rdev_for_each(rdev, mddev)
4284 			if (rdev->raid_disk < 0 &&
4285 			    !test_bit(Faulty, &rdev->flags)) {
4286 				if (raid10_add_disk(mddev, rdev) == 0) {
4287 					if (rdev->raid_disk >=
4288 					    conf->prev.raid_disks)
4289 						set_bit(In_sync, &rdev->flags);
4290 					else
4291 						rdev->recovery_offset = 0;
4292 
4293 					/* Failure here is OK */
4294 					sysfs_link_rdev(mddev, rdev);
4295 				}
4296 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4297 				   && !test_bit(Faulty, &rdev->flags)) {
4298 				/* This is a spare that was manually added */
4299 				set_bit(In_sync, &rdev->flags);
4300 			}
4301 	}
4302 	/* When a reshape changes the number of devices,
4303 	 * ->degraded is measured against the larger of the
4304 	 * pre and  post numbers.
4305 	 */
4306 	spin_lock_irq(&conf->device_lock);
4307 	mddev->degraded = calc_degraded(conf);
4308 	spin_unlock_irq(&conf->device_lock);
4309 	mddev->raid_disks = conf->geo.raid_disks;
4310 	mddev->reshape_position = conf->reshape_progress;
4311 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4312 
4313 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4314 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4315 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4316 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4317 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4318 
4319 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4320 						"reshape");
4321 	if (!mddev->sync_thread) {
4322 		ret = -EAGAIN;
4323 		goto abort;
4324 	}
4325 	conf->reshape_checkpoint = jiffies;
4326 	md_wakeup_thread(mddev->sync_thread);
4327 	md_new_event(mddev);
4328 	return 0;
4329 
4330 abort:
4331 	mddev->recovery = 0;
4332 	spin_lock_irq(&conf->device_lock);
4333 	conf->geo = conf->prev;
4334 	mddev->raid_disks = conf->geo.raid_disks;
4335 	rdev_for_each(rdev, mddev)
4336 		rdev->new_data_offset = rdev->data_offset;
4337 	smp_wmb();
4338 	conf->reshape_progress = MaxSector;
4339 	conf->reshape_safe = MaxSector;
4340 	mddev->reshape_position = MaxSector;
4341 	spin_unlock_irq(&conf->device_lock);
4342 	return ret;
4343 }
4344 
4345 /* Calculate the last device-address that could contain
4346  * any block from the chunk that includes the array-address 's'
4347  * and report the next address.
4348  * i.e. the address returned will be chunk-aligned and after
4349  * any data that is in the chunk containing 's'.
4350  */
4351 static sector_t last_dev_address(sector_t s, struct geom *geo)
4352 {
4353 	s = (s | geo->chunk_mask) + 1;
4354 	s >>= geo->chunk_shift;
4355 	s *= geo->near_copies;
4356 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4357 	s *= geo->far_copies;
4358 	s <<= geo->chunk_shift;
4359 	return s;
4360 }
4361 
4362 /* Calculate the first device-address that could contain
4363  * any block from the chunk that includes the array-address 's'.
4364  * This too will be the start of a chunk
4365  */
4366 static sector_t first_dev_address(sector_t s, struct geom *geo)
4367 {
4368 	s >>= geo->chunk_shift;
4369 	s *= geo->near_copies;
4370 	sector_div(s, geo->raid_disks);
4371 	s *= geo->far_copies;
4372 	s <<= geo->chunk_shift;
4373 	return s;
4374 }
4375 
4376 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4377 				int *skipped)
4378 {
4379 	/* We simply copy at most one chunk (smallest of old and new)
4380 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4381 	 * or we hit a bad block or something.
4382 	 * This might mean we pause for normal IO in the middle of
4383 	 * a chunk, but that is not a problem as mddev->reshape_position
4384 	 * can record any location.
4385 	 *
4386 	 * If we will want to write to a location that isn't
4387 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4388 	 * we need to flush all reshape requests and update the metadata.
4389 	 *
4390 	 * When reshaping forwards (e.g. to more devices), we interpret
4391 	 * 'safe' as the earliest block which might not have been copied
4392 	 * down yet.  We divide this by previous stripe size and multiply
4393 	 * by previous stripe length to get lowest device offset that we
4394 	 * cannot write to yet.
4395 	 * We interpret 'sector_nr' as an address that we want to write to.
4396 	 * From this we use last_device_address() to find where we might
4397 	 * write to, and first_device_address on the  'safe' position.
4398 	 * If this 'next' write position is after the 'safe' position,
4399 	 * we must update the metadata to increase the 'safe' position.
4400 	 *
4401 	 * When reshaping backwards, we round in the opposite direction
4402 	 * and perform the reverse test:  next write position must not be
4403 	 * less than current safe position.
4404 	 *
4405 	 * In all this the minimum difference in data offsets
4406 	 * (conf->offset_diff - always positive) allows a bit of slack,
4407 	 * so next can be after 'safe', but not by more than offset_diff
4408 	 *
4409 	 * We need to prepare all the bios here before we start any IO
4410 	 * to ensure the size we choose is acceptable to all devices.
4411 	 * The means one for each copy for write-out and an extra one for
4412 	 * read-in.
4413 	 * We store the read-in bio in ->master_bio and the others in
4414 	 * ->devs[x].bio and ->devs[x].repl_bio.
4415 	 */
4416 	struct r10conf *conf = mddev->private;
4417 	struct r10bio *r10_bio;
4418 	sector_t next, safe, last;
4419 	int max_sectors;
4420 	int nr_sectors;
4421 	int s;
4422 	struct md_rdev *rdev;
4423 	int need_flush = 0;
4424 	struct bio *blist;
4425 	struct bio *bio, *read_bio;
4426 	int sectors_done = 0;
4427 	struct page **pages;
4428 
4429 	if (sector_nr == 0) {
4430 		/* If restarting in the middle, skip the initial sectors */
4431 		if (mddev->reshape_backwards &&
4432 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4433 			sector_nr = (raid10_size(mddev, 0, 0)
4434 				     - conf->reshape_progress);
4435 		} else if (!mddev->reshape_backwards &&
4436 			   conf->reshape_progress > 0)
4437 			sector_nr = conf->reshape_progress;
4438 		if (sector_nr) {
4439 			mddev->curr_resync_completed = sector_nr;
4440 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4441 			*skipped = 1;
4442 			return sector_nr;
4443 		}
4444 	}
4445 
4446 	/* We don't use sector_nr to track where we are up to
4447 	 * as that doesn't work well for ->reshape_backwards.
4448 	 * So just use ->reshape_progress.
4449 	 */
4450 	if (mddev->reshape_backwards) {
4451 		/* 'next' is the earliest device address that we might
4452 		 * write to for this chunk in the new layout
4453 		 */
4454 		next = first_dev_address(conf->reshape_progress - 1,
4455 					 &conf->geo);
4456 
4457 		/* 'safe' is the last device address that we might read from
4458 		 * in the old layout after a restart
4459 		 */
4460 		safe = last_dev_address(conf->reshape_safe - 1,
4461 					&conf->prev);
4462 
4463 		if (next + conf->offset_diff < safe)
4464 			need_flush = 1;
4465 
4466 		last = conf->reshape_progress - 1;
4467 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4468 					       & conf->prev.chunk_mask);
4469 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4470 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4471 	} else {
4472 		/* 'next' is after the last device address that we
4473 		 * might write to for this chunk in the new layout
4474 		 */
4475 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4476 
4477 		/* 'safe' is the earliest device address that we might
4478 		 * read from in the old layout after a restart
4479 		 */
4480 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4481 
4482 		/* Need to update metadata if 'next' might be beyond 'safe'
4483 		 * as that would possibly corrupt data
4484 		 */
4485 		if (next > safe + conf->offset_diff)
4486 			need_flush = 1;
4487 
4488 		sector_nr = conf->reshape_progress;
4489 		last  = sector_nr | (conf->geo.chunk_mask
4490 				     & conf->prev.chunk_mask);
4491 
4492 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4493 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4494 	}
4495 
4496 	if (need_flush ||
4497 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4498 		/* Need to update reshape_position in metadata */
4499 		wait_barrier(conf);
4500 		mddev->reshape_position = conf->reshape_progress;
4501 		if (mddev->reshape_backwards)
4502 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4503 				- conf->reshape_progress;
4504 		else
4505 			mddev->curr_resync_completed = conf->reshape_progress;
4506 		conf->reshape_checkpoint = jiffies;
4507 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4508 		md_wakeup_thread(mddev->thread);
4509 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4510 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4511 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4512 			allow_barrier(conf);
4513 			return sectors_done;
4514 		}
4515 		conf->reshape_safe = mddev->reshape_position;
4516 		allow_barrier(conf);
4517 	}
4518 
4519 	raise_barrier(conf, 0);
4520 read_more:
4521 	/* Now schedule reads for blocks from sector_nr to last */
4522 	r10_bio = raid10_alloc_init_r10buf(conf);
4523 	r10_bio->state = 0;
4524 	raise_barrier(conf, 1);
4525 	atomic_set(&r10_bio->remaining, 0);
4526 	r10_bio->mddev = mddev;
4527 	r10_bio->sector = sector_nr;
4528 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4529 	r10_bio->sectors = last - sector_nr + 1;
4530 	rdev = read_balance(conf, r10_bio, &max_sectors);
4531 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4532 
4533 	if (!rdev) {
4534 		/* Cannot read from here, so need to record bad blocks
4535 		 * on all the target devices.
4536 		 */
4537 		// FIXME
4538 		mempool_free(r10_bio, &conf->r10buf_pool);
4539 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4540 		return sectors_done;
4541 	}
4542 
4543 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4544 
4545 	bio_set_dev(read_bio, rdev->bdev);
4546 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4547 			       + rdev->data_offset);
4548 	read_bio->bi_private = r10_bio;
4549 	read_bio->bi_end_io = end_reshape_read;
4550 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4551 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4552 	read_bio->bi_status = 0;
4553 	read_bio->bi_vcnt = 0;
4554 	read_bio->bi_iter.bi_size = 0;
4555 	r10_bio->master_bio = read_bio;
4556 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4557 
4558 	/*
4559 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4560 	 * write to the region to avoid conflict.
4561 	*/
4562 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4563 		struct mdp_superblock_1 *sb = NULL;
4564 		int sb_reshape_pos = 0;
4565 
4566 		conf->cluster_sync_low = sector_nr;
4567 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4568 		sb = page_address(rdev->sb_page);
4569 		if (sb) {
4570 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4571 			/*
4572 			 * Set cluster_sync_low again if next address for array
4573 			 * reshape is less than cluster_sync_low. Since we can't
4574 			 * update cluster_sync_low until it has finished reshape.
4575 			 */
4576 			if (sb_reshape_pos < conf->cluster_sync_low)
4577 				conf->cluster_sync_low = sb_reshape_pos;
4578 		}
4579 
4580 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4581 							  conf->cluster_sync_high);
4582 	}
4583 
4584 	/* Now find the locations in the new layout */
4585 	__raid10_find_phys(&conf->geo, r10_bio);
4586 
4587 	blist = read_bio;
4588 	read_bio->bi_next = NULL;
4589 
4590 	rcu_read_lock();
4591 	for (s = 0; s < conf->copies*2; s++) {
4592 		struct bio *b;
4593 		int d = r10_bio->devs[s/2].devnum;
4594 		struct md_rdev *rdev2;
4595 		if (s&1) {
4596 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4597 			b = r10_bio->devs[s/2].repl_bio;
4598 		} else {
4599 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4600 			b = r10_bio->devs[s/2].bio;
4601 		}
4602 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4603 			continue;
4604 
4605 		bio_set_dev(b, rdev2->bdev);
4606 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4607 			rdev2->new_data_offset;
4608 		b->bi_end_io = end_reshape_write;
4609 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4610 		b->bi_next = blist;
4611 		blist = b;
4612 	}
4613 
4614 	/* Now add as many pages as possible to all of these bios. */
4615 
4616 	nr_sectors = 0;
4617 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4618 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4619 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4620 		int len = (max_sectors - s) << 9;
4621 		if (len > PAGE_SIZE)
4622 			len = PAGE_SIZE;
4623 		for (bio = blist; bio ; bio = bio->bi_next) {
4624 			/*
4625 			 * won't fail because the vec table is big enough
4626 			 * to hold all these pages
4627 			 */
4628 			bio_add_page(bio, page, len, 0);
4629 		}
4630 		sector_nr += len >> 9;
4631 		nr_sectors += len >> 9;
4632 	}
4633 	rcu_read_unlock();
4634 	r10_bio->sectors = nr_sectors;
4635 
4636 	/* Now submit the read */
4637 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4638 	atomic_inc(&r10_bio->remaining);
4639 	read_bio->bi_next = NULL;
4640 	submit_bio_noacct(read_bio);
4641 	sectors_done += nr_sectors;
4642 	if (sector_nr <= last)
4643 		goto read_more;
4644 
4645 	lower_barrier(conf);
4646 
4647 	/* Now that we have done the whole section we can
4648 	 * update reshape_progress
4649 	 */
4650 	if (mddev->reshape_backwards)
4651 		conf->reshape_progress -= sectors_done;
4652 	else
4653 		conf->reshape_progress += sectors_done;
4654 
4655 	return sectors_done;
4656 }
4657 
4658 static void end_reshape_request(struct r10bio *r10_bio);
4659 static int handle_reshape_read_error(struct mddev *mddev,
4660 				     struct r10bio *r10_bio);
4661 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4662 {
4663 	/* Reshape read completed.  Hopefully we have a block
4664 	 * to write out.
4665 	 * If we got a read error then we do sync 1-page reads from
4666 	 * elsewhere until we find the data - or give up.
4667 	 */
4668 	struct r10conf *conf = mddev->private;
4669 	int s;
4670 
4671 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4672 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4673 			/* Reshape has been aborted */
4674 			md_done_sync(mddev, r10_bio->sectors, 0);
4675 			return;
4676 		}
4677 
4678 	/* We definitely have the data in the pages, schedule the
4679 	 * writes.
4680 	 */
4681 	atomic_set(&r10_bio->remaining, 1);
4682 	for (s = 0; s < conf->copies*2; s++) {
4683 		struct bio *b;
4684 		int d = r10_bio->devs[s/2].devnum;
4685 		struct md_rdev *rdev;
4686 		rcu_read_lock();
4687 		if (s&1) {
4688 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4689 			b = r10_bio->devs[s/2].repl_bio;
4690 		} else {
4691 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4692 			b = r10_bio->devs[s/2].bio;
4693 		}
4694 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4695 			rcu_read_unlock();
4696 			continue;
4697 		}
4698 		atomic_inc(&rdev->nr_pending);
4699 		rcu_read_unlock();
4700 		md_sync_acct_bio(b, r10_bio->sectors);
4701 		atomic_inc(&r10_bio->remaining);
4702 		b->bi_next = NULL;
4703 		submit_bio_noacct(b);
4704 	}
4705 	end_reshape_request(r10_bio);
4706 }
4707 
4708 static void end_reshape(struct r10conf *conf)
4709 {
4710 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4711 		return;
4712 
4713 	spin_lock_irq(&conf->device_lock);
4714 	conf->prev = conf->geo;
4715 	md_finish_reshape(conf->mddev);
4716 	smp_wmb();
4717 	conf->reshape_progress = MaxSector;
4718 	conf->reshape_safe = MaxSector;
4719 	spin_unlock_irq(&conf->device_lock);
4720 
4721 	/* read-ahead size must cover two whole stripes, which is
4722 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4723 	 */
4724 	if (conf->mddev->queue) {
4725 		int stripe = conf->geo.raid_disks *
4726 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4727 		stripe /= conf->geo.near_copies;
4728 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4729 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4730 	}
4731 	conf->fullsync = 0;
4732 }
4733 
4734 static void raid10_update_reshape_pos(struct mddev *mddev)
4735 {
4736 	struct r10conf *conf = mddev->private;
4737 	sector_t lo, hi;
4738 
4739 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741 	    || mddev->reshape_position == MaxSector)
4742 		conf->reshape_progress = mddev->reshape_position;
4743 	else
4744 		WARN_ON_ONCE(1);
4745 }
4746 
4747 static int handle_reshape_read_error(struct mddev *mddev,
4748 				     struct r10bio *r10_bio)
4749 {
4750 	/* Use sync reads to get the blocks from somewhere else */
4751 	int sectors = r10_bio->sectors;
4752 	struct r10conf *conf = mddev->private;
4753 	struct r10bio *r10b;
4754 	int slot = 0;
4755 	int idx = 0;
4756 	struct page **pages;
4757 
4758 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759 	if (!r10b) {
4760 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761 		return -ENOMEM;
4762 	}
4763 
4764 	/* reshape IOs share pages from .devs[0].bio */
4765 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766 
4767 	r10b->sector = r10_bio->sector;
4768 	__raid10_find_phys(&conf->prev, r10b);
4769 
4770 	while (sectors) {
4771 		int s = sectors;
4772 		int success = 0;
4773 		int first_slot = slot;
4774 
4775 		if (s > (PAGE_SIZE >> 9))
4776 			s = PAGE_SIZE >> 9;
4777 
4778 		rcu_read_lock();
4779 		while (!success) {
4780 			int d = r10b->devs[slot].devnum;
4781 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782 			sector_t addr;
4783 			if (rdev == NULL ||
4784 			    test_bit(Faulty, &rdev->flags) ||
4785 			    !test_bit(In_sync, &rdev->flags))
4786 				goto failed;
4787 
4788 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789 			atomic_inc(&rdev->nr_pending);
4790 			rcu_read_unlock();
4791 			success = sync_page_io(rdev,
4792 					       addr,
4793 					       s << 9,
4794 					       pages[idx],
4795 					       REQ_OP_READ, 0, false);
4796 			rdev_dec_pending(rdev, mddev);
4797 			rcu_read_lock();
4798 			if (success)
4799 				break;
4800 		failed:
4801 			slot++;
4802 			if (slot >= conf->copies)
4803 				slot = 0;
4804 			if (slot == first_slot)
4805 				break;
4806 		}
4807 		rcu_read_unlock();
4808 		if (!success) {
4809 			/* couldn't read this block, must give up */
4810 			set_bit(MD_RECOVERY_INTR,
4811 				&mddev->recovery);
4812 			kfree(r10b);
4813 			return -EIO;
4814 		}
4815 		sectors -= s;
4816 		idx++;
4817 	}
4818 	kfree(r10b);
4819 	return 0;
4820 }
4821 
4822 static void end_reshape_write(struct bio *bio)
4823 {
4824 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4825 	struct mddev *mddev = r10_bio->mddev;
4826 	struct r10conf *conf = mddev->private;
4827 	int d;
4828 	int slot;
4829 	int repl;
4830 	struct md_rdev *rdev = NULL;
4831 
4832 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833 	if (repl)
4834 		rdev = conf->mirrors[d].replacement;
4835 	if (!rdev) {
4836 		smp_mb();
4837 		rdev = conf->mirrors[d].rdev;
4838 	}
4839 
4840 	if (bio->bi_status) {
4841 		/* FIXME should record badblock */
4842 		md_error(mddev, rdev);
4843 	}
4844 
4845 	rdev_dec_pending(rdev, mddev);
4846 	end_reshape_request(r10_bio);
4847 }
4848 
4849 static void end_reshape_request(struct r10bio *r10_bio)
4850 {
4851 	if (!atomic_dec_and_test(&r10_bio->remaining))
4852 		return;
4853 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854 	bio_put(r10_bio->master_bio);
4855 	put_buf(r10_bio);
4856 }
4857 
4858 static void raid10_finish_reshape(struct mddev *mddev)
4859 {
4860 	struct r10conf *conf = mddev->private;
4861 
4862 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863 		return;
4864 
4865 	if (mddev->delta_disks > 0) {
4866 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867 			mddev->recovery_cp = mddev->resync_max_sectors;
4868 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869 		}
4870 		mddev->resync_max_sectors = mddev->array_sectors;
4871 	} else {
4872 		int d;
4873 		rcu_read_lock();
4874 		for (d = conf->geo.raid_disks ;
4875 		     d < conf->geo.raid_disks - mddev->delta_disks;
4876 		     d++) {
4877 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878 			if (rdev)
4879 				clear_bit(In_sync, &rdev->flags);
4880 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4881 			if (rdev)
4882 				clear_bit(In_sync, &rdev->flags);
4883 		}
4884 		rcu_read_unlock();
4885 	}
4886 	mddev->layout = mddev->new_layout;
4887 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888 	mddev->reshape_position = MaxSector;
4889 	mddev->delta_disks = 0;
4890 	mddev->reshape_backwards = 0;
4891 }
4892 
4893 static struct md_personality raid10_personality =
4894 {
4895 	.name		= "raid10",
4896 	.level		= 10,
4897 	.owner		= THIS_MODULE,
4898 	.make_request	= raid10_make_request,
4899 	.run		= raid10_run,
4900 	.free		= raid10_free,
4901 	.status		= raid10_status,
4902 	.error_handler	= raid10_error,
4903 	.hot_add_disk	= raid10_add_disk,
4904 	.hot_remove_disk= raid10_remove_disk,
4905 	.spare_active	= raid10_spare_active,
4906 	.sync_request	= raid10_sync_request,
4907 	.quiesce	= raid10_quiesce,
4908 	.size		= raid10_size,
4909 	.resize		= raid10_resize,
4910 	.takeover	= raid10_takeover,
4911 	.check_reshape	= raid10_check_reshape,
4912 	.start_reshape	= raid10_start_reshape,
4913 	.finish_reshape	= raid10_finish_reshape,
4914 	.update_reshape_pos = raid10_update_reshape_pos,
4915 };
4916 
4917 static int __init raid_init(void)
4918 {
4919 	return register_md_personality(&raid10_personality);
4920 }
4921 
4922 static void raid_exit(void)
4923 {
4924 	unregister_md_personality(&raid10_personality);
4925 }
4926 
4927 module_init(raid_init);
4928 module_exit(raid_exit);
4929 MODULE_LICENSE("GPL");
4930 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932 MODULE_ALIAS("md-raid10");
4933 MODULE_ALIAS("md-level-10");
4934 
4935 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4936