xref: /openbmc/linux/drivers/md/raid10.c (revision 28f65c11)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29 
30 /*
31  * RAID10 provides a combination of RAID0 and RAID1 functionality.
32  * The layout of data is defined by
33  *    chunk_size
34  *    raid_disks
35  *    near_copies (stored in low byte of layout)
36  *    far_copies (stored in second byte of layout)
37  *    far_offset (stored in bit 16 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.
40  * Each device is divided into far_copies sections.
41  * In each section, chunks are laid out in a style similar to raid0, but
42  * near_copies copies of each chunk is stored (each on a different drive).
43  * The starting device for each section is offset near_copies from the starting
44  * device of the previous section.
45  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46  * drive.
47  * near_copies and far_copies must be at least one, and their product is at most
48  * raid_disks.
49  *
50  * If far_offset is true, then the far_copies are handled a bit differently.
51  * The copies are still in different stripes, but instead of be very far apart
52  * on disk, there are adjacent stripes.
53  */
54 
55 /*
56  * Number of guaranteed r10bios in case of extreme VM load:
57  */
58 #define	NR_RAID10_BIOS 256
59 
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62 
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 	conf_t *conf = data;
66 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
67 
68 	/* allocate a r10bio with room for raid_disks entries in the bios array */
69 	return kzalloc(size, gfp_flags);
70 }
71 
72 static void r10bio_pool_free(void *r10_bio, void *data)
73 {
74 	kfree(r10_bio);
75 }
76 
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio)
103 		return NULL;
104 
105 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 		nalloc = conf->copies; /* resync */
107 	else
108 		nalloc = 2; /* recovery */
109 
110 	/*
111 	 * Allocate bios.
112 	 */
113 	for (j = nalloc ; j-- ; ) {
114 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
115 		if (!bio)
116 			goto out_free_bio;
117 		r10_bio->devs[j].bio = bio;
118 	}
119 	/*
120 	 * Allocate RESYNC_PAGES data pages and attach them
121 	 * where needed.
122 	 */
123 	for (j = 0 ; j < nalloc; j++) {
124 		bio = r10_bio->devs[j].bio;
125 		for (i = 0; i < RESYNC_PAGES; i++) {
126 			page = alloc_page(gfp_flags);
127 			if (unlikely(!page))
128 				goto out_free_pages;
129 
130 			bio->bi_io_vec[i].bv_page = page;
131 		}
132 	}
133 
134 	return r10_bio;
135 
136 out_free_pages:
137 	for ( ; i > 0 ; i--)
138 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
139 	while (j--)
140 		for (i = 0; i < RESYNC_PAGES ; i++)
141 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
142 	j = -1;
143 out_free_bio:
144 	while ( ++j < nalloc )
145 		bio_put(r10_bio->devs[j].bio);
146 	r10bio_pool_free(r10_bio, conf);
147 	return NULL;
148 }
149 
150 static void r10buf_pool_free(void *__r10_bio, void *data)
151 {
152 	int i;
153 	conf_t *conf = data;
154 	r10bio_t *r10bio = __r10_bio;
155 	int j;
156 
157 	for (j=0; j < conf->copies; j++) {
158 		struct bio *bio = r10bio->devs[j].bio;
159 		if (bio) {
160 			for (i = 0; i < RESYNC_PAGES; i++) {
161 				safe_put_page(bio->bi_io_vec[i].bv_page);
162 				bio->bi_io_vec[i].bv_page = NULL;
163 			}
164 			bio_put(bio);
165 		}
166 	}
167 	r10bio_pool_free(r10bio, conf);
168 }
169 
170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
171 {
172 	int i;
173 
174 	for (i = 0; i < conf->copies; i++) {
175 		struct bio **bio = & r10_bio->devs[i].bio;
176 		if (*bio && *bio != IO_BLOCKED)
177 			bio_put(*bio);
178 		*bio = NULL;
179 	}
180 }
181 
182 static void free_r10bio(r10bio_t *r10_bio)
183 {
184 	conf_t *conf = r10_bio->mddev->private;
185 
186 	/*
187 	 * Wake up any possible resync thread that waits for the device
188 	 * to go idle.
189 	 */
190 	allow_barrier(conf);
191 
192 	put_all_bios(conf, r10_bio);
193 	mempool_free(r10_bio, conf->r10bio_pool);
194 }
195 
196 static void put_buf(r10bio_t *r10_bio)
197 {
198 	conf_t *conf = r10_bio->mddev->private;
199 
200 	mempool_free(r10_bio, conf->r10buf_pool);
201 
202 	lower_barrier(conf);
203 }
204 
205 static void reschedule_retry(r10bio_t *r10_bio)
206 {
207 	unsigned long flags;
208 	mddev_t *mddev = r10_bio->mddev;
209 	conf_t *conf = mddev->private;
210 
211 	spin_lock_irqsave(&conf->device_lock, flags);
212 	list_add(&r10_bio->retry_list, &conf->retry_list);
213 	conf->nr_queued ++;
214 	spin_unlock_irqrestore(&conf->device_lock, flags);
215 
216 	/* wake up frozen array... */
217 	wake_up(&conf->wait_barrier);
218 
219 	md_wakeup_thread(mddev->thread);
220 }
221 
222 /*
223  * raid_end_bio_io() is called when we have finished servicing a mirrored
224  * operation and are ready to return a success/failure code to the buffer
225  * cache layer.
226  */
227 static void raid_end_bio_io(r10bio_t *r10_bio)
228 {
229 	struct bio *bio = r10_bio->master_bio;
230 
231 	bio_endio(bio,
232 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 	free_r10bio(r10_bio);
234 }
235 
236 /*
237  * Update disk head position estimator based on IRQ completion info.
238  */
239 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 {
241 	conf_t *conf = r10_bio->mddev->private;
242 
243 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 		r10_bio->devs[slot].addr + (r10_bio->sectors);
245 }
246 
247 static void raid10_end_read_request(struct bio *bio, int error)
248 {
249 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
250 	r10bio_t *r10_bio = bio->bi_private;
251 	int slot, dev;
252 	conf_t *conf = r10_bio->mddev->private;
253 
254 
255 	slot = r10_bio->read_slot;
256 	dev = r10_bio->devs[slot].devnum;
257 	/*
258 	 * this branch is our 'one mirror IO has finished' event handler:
259 	 */
260 	update_head_pos(slot, r10_bio);
261 
262 	if (uptodate) {
263 		/*
264 		 * Set R10BIO_Uptodate in our master bio, so that
265 		 * we will return a good error code to the higher
266 		 * levels even if IO on some other mirrored buffer fails.
267 		 *
268 		 * The 'master' represents the composite IO operation to
269 		 * user-side. So if something waits for IO, then it will
270 		 * wait for the 'master' bio.
271 		 */
272 		set_bit(R10BIO_Uptodate, &r10_bio->state);
273 		raid_end_bio_io(r10_bio);
274 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
275 	} else {
276 		/*
277 		 * oops, read error - keep the refcount on the rdev
278 		 */
279 		char b[BDEVNAME_SIZE];
280 		if (printk_ratelimit())
281 			printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
282 			       mdname(conf->mddev),
283 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
284 		reschedule_retry(r10_bio);
285 	}
286 }
287 
288 static void raid10_end_write_request(struct bio *bio, int error)
289 {
290 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
291 	r10bio_t *r10_bio = bio->bi_private;
292 	int slot, dev;
293 	conf_t *conf = r10_bio->mddev->private;
294 
295 	for (slot = 0; slot < conf->copies; slot++)
296 		if (r10_bio->devs[slot].bio == bio)
297 			break;
298 	dev = r10_bio->devs[slot].devnum;
299 
300 	/*
301 	 * this branch is our 'one mirror IO has finished' event handler:
302 	 */
303 	if (!uptodate) {
304 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
305 		/* an I/O failed, we can't clear the bitmap */
306 		set_bit(R10BIO_Degraded, &r10_bio->state);
307 	} else
308 		/*
309 		 * Set R10BIO_Uptodate in our master bio, so that
310 		 * we will return a good error code for to the higher
311 		 * levels even if IO on some other mirrored buffer fails.
312 		 *
313 		 * The 'master' represents the composite IO operation to
314 		 * user-side. So if something waits for IO, then it will
315 		 * wait for the 'master' bio.
316 		 */
317 		set_bit(R10BIO_Uptodate, &r10_bio->state);
318 
319 	update_head_pos(slot, r10_bio);
320 
321 	/*
322 	 *
323 	 * Let's see if all mirrored write operations have finished
324 	 * already.
325 	 */
326 	if (atomic_dec_and_test(&r10_bio->remaining)) {
327 		/* clear the bitmap if all writes complete successfully */
328 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 				r10_bio->sectors,
330 				!test_bit(R10BIO_Degraded, &r10_bio->state),
331 				0);
332 		md_write_end(r10_bio->mddev);
333 		raid_end_bio_io(r10_bio);
334 	}
335 
336 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
337 }
338 
339 
340 /*
341  * RAID10 layout manager
342  * As well as the chunksize and raid_disks count, there are two
343  * parameters: near_copies and far_copies.
344  * near_copies * far_copies must be <= raid_disks.
345  * Normally one of these will be 1.
346  * If both are 1, we get raid0.
347  * If near_copies == raid_disks, we get raid1.
348  *
349  * Chunks are laid out in raid0 style with near_copies copies of the
350  * first chunk, followed by near_copies copies of the next chunk and
351  * so on.
352  * If far_copies > 1, then after 1/far_copies of the array has been assigned
353  * as described above, we start again with a device offset of near_copies.
354  * So we effectively have another copy of the whole array further down all
355  * the drives, but with blocks on different drives.
356  * With this layout, and block is never stored twice on the one device.
357  *
358  * raid10_find_phys finds the sector offset of a given virtual sector
359  * on each device that it is on.
360  *
361  * raid10_find_virt does the reverse mapping, from a device and a
362  * sector offset to a virtual address
363  */
364 
365 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
366 {
367 	int n,f;
368 	sector_t sector;
369 	sector_t chunk;
370 	sector_t stripe;
371 	int dev;
372 
373 	int slot = 0;
374 
375 	/* now calculate first sector/dev */
376 	chunk = r10bio->sector >> conf->chunk_shift;
377 	sector = r10bio->sector & conf->chunk_mask;
378 
379 	chunk *= conf->near_copies;
380 	stripe = chunk;
381 	dev = sector_div(stripe, conf->raid_disks);
382 	if (conf->far_offset)
383 		stripe *= conf->far_copies;
384 
385 	sector += stripe << conf->chunk_shift;
386 
387 	/* and calculate all the others */
388 	for (n=0; n < conf->near_copies; n++) {
389 		int d = dev;
390 		sector_t s = sector;
391 		r10bio->devs[slot].addr = sector;
392 		r10bio->devs[slot].devnum = d;
393 		slot++;
394 
395 		for (f = 1; f < conf->far_copies; f++) {
396 			d += conf->near_copies;
397 			if (d >= conf->raid_disks)
398 				d -= conf->raid_disks;
399 			s += conf->stride;
400 			r10bio->devs[slot].devnum = d;
401 			r10bio->devs[slot].addr = s;
402 			slot++;
403 		}
404 		dev++;
405 		if (dev >= conf->raid_disks) {
406 			dev = 0;
407 			sector += (conf->chunk_mask + 1);
408 		}
409 	}
410 	BUG_ON(slot != conf->copies);
411 }
412 
413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
414 {
415 	sector_t offset, chunk, vchunk;
416 
417 	offset = sector & conf->chunk_mask;
418 	if (conf->far_offset) {
419 		int fc;
420 		chunk = sector >> conf->chunk_shift;
421 		fc = sector_div(chunk, conf->far_copies);
422 		dev -= fc * conf->near_copies;
423 		if (dev < 0)
424 			dev += conf->raid_disks;
425 	} else {
426 		while (sector >= conf->stride) {
427 			sector -= conf->stride;
428 			if (dev < conf->near_copies)
429 				dev += conf->raid_disks - conf->near_copies;
430 			else
431 				dev -= conf->near_copies;
432 		}
433 		chunk = sector >> conf->chunk_shift;
434 	}
435 	vchunk = chunk * conf->raid_disks + dev;
436 	sector_div(vchunk, conf->near_copies);
437 	return (vchunk << conf->chunk_shift) + offset;
438 }
439 
440 /**
441  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442  *	@q: request queue
443  *	@bvm: properties of new bio
444  *	@biovec: the request that could be merged to it.
445  *
446  *	Return amount of bytes we can accept at this offset
447  *      If near_copies == raid_disk, there are no striping issues,
448  *      but in that case, the function isn't called at all.
449  */
450 static int raid10_mergeable_bvec(struct request_queue *q,
451 				 struct bvec_merge_data *bvm,
452 				 struct bio_vec *biovec)
453 {
454 	mddev_t *mddev = q->queuedata;
455 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
456 	int max;
457 	unsigned int chunk_sectors = mddev->chunk_sectors;
458 	unsigned int bio_sectors = bvm->bi_size >> 9;
459 
460 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
461 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
462 	if (max <= biovec->bv_len && bio_sectors == 0)
463 		return biovec->bv_len;
464 	else
465 		return max;
466 }
467 
468 /*
469  * This routine returns the disk from which the requested read should
470  * be done. There is a per-array 'next expected sequential IO' sector
471  * number - if this matches on the next IO then we use the last disk.
472  * There is also a per-disk 'last know head position' sector that is
473  * maintained from IRQ contexts, both the normal and the resync IO
474  * completion handlers update this position correctly. If there is no
475  * perfect sequential match then we pick the disk whose head is closest.
476  *
477  * If there are 2 mirrors in the same 2 devices, performance degrades
478  * because position is mirror, not device based.
479  *
480  * The rdev for the device selected will have nr_pending incremented.
481  */
482 
483 /*
484  * FIXME: possibly should rethink readbalancing and do it differently
485  * depending on near_copies / far_copies geometry.
486  */
487 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
488 {
489 	const sector_t this_sector = r10_bio->sector;
490 	int disk, slot;
491 	const int sectors = r10_bio->sectors;
492 	sector_t new_distance, best_dist;
493 	mdk_rdev_t *rdev;
494 	int do_balance;
495 	int best_slot;
496 
497 	raid10_find_phys(conf, r10_bio);
498 	rcu_read_lock();
499 retry:
500 	best_slot = -1;
501 	best_dist = MaxSector;
502 	do_balance = 1;
503 	/*
504 	 * Check if we can balance. We can balance on the whole
505 	 * device if no resync is going on (recovery is ok), or below
506 	 * the resync window. We take the first readable disk when
507 	 * above the resync window.
508 	 */
509 	if (conf->mddev->recovery_cp < MaxSector
510 	    && (this_sector + sectors >= conf->next_resync))
511 		do_balance = 0;
512 
513 	for (slot = 0; slot < conf->copies ; slot++) {
514 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
515 			continue;
516 		disk = r10_bio->devs[slot].devnum;
517 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 		if (rdev == NULL)
519 			continue;
520 		if (!test_bit(In_sync, &rdev->flags))
521 			continue;
522 
523 		if (!do_balance)
524 			break;
525 
526 		/* This optimisation is debatable, and completely destroys
527 		 * sequential read speed for 'far copies' arrays.  So only
528 		 * keep it for 'near' arrays, and review those later.
529 		 */
530 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
531 			break;
532 
533 		/* for far > 1 always use the lowest address */
534 		if (conf->far_copies > 1)
535 			new_distance = r10_bio->devs[slot].addr;
536 		else
537 			new_distance = abs(r10_bio->devs[slot].addr -
538 					   conf->mirrors[disk].head_position);
539 		if (new_distance < best_dist) {
540 			best_dist = new_distance;
541 			best_slot = slot;
542 		}
543 	}
544 	if (slot == conf->copies)
545 		slot = best_slot;
546 
547 	if (slot >= 0) {
548 		disk = r10_bio->devs[slot].devnum;
549 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 		if (!rdev)
551 			goto retry;
552 		atomic_inc(&rdev->nr_pending);
553 		if (test_bit(Faulty, &rdev->flags)) {
554 			/* Cannot risk returning a device that failed
555 			 * before we inc'ed nr_pending
556 			 */
557 			rdev_dec_pending(rdev, conf->mddev);
558 			goto retry;
559 		}
560 		r10_bio->read_slot = slot;
561 	} else
562 		disk = -1;
563 	rcu_read_unlock();
564 
565 	return disk;
566 }
567 
568 static int raid10_congested(void *data, int bits)
569 {
570 	mddev_t *mddev = data;
571 	conf_t *conf = mddev->private;
572 	int i, ret = 0;
573 
574 	if (mddev_congested(mddev, bits))
575 		return 1;
576 	rcu_read_lock();
577 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
578 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 			struct request_queue *q = bdev_get_queue(rdev->bdev);
581 
582 			ret |= bdi_congested(&q->backing_dev_info, bits);
583 		}
584 	}
585 	rcu_read_unlock();
586 	return ret;
587 }
588 
589 static void flush_pending_writes(conf_t *conf)
590 {
591 	/* Any writes that have been queued but are awaiting
592 	 * bitmap updates get flushed here.
593 	 */
594 	spin_lock_irq(&conf->device_lock);
595 
596 	if (conf->pending_bio_list.head) {
597 		struct bio *bio;
598 		bio = bio_list_get(&conf->pending_bio_list);
599 		spin_unlock_irq(&conf->device_lock);
600 		/* flush any pending bitmap writes to disk
601 		 * before proceeding w/ I/O */
602 		bitmap_unplug(conf->mddev->bitmap);
603 
604 		while (bio) { /* submit pending writes */
605 			struct bio *next = bio->bi_next;
606 			bio->bi_next = NULL;
607 			generic_make_request(bio);
608 			bio = next;
609 		}
610 	} else
611 		spin_unlock_irq(&conf->device_lock);
612 }
613 
614 /* Barriers....
615  * Sometimes we need to suspend IO while we do something else,
616  * either some resync/recovery, or reconfigure the array.
617  * To do this we raise a 'barrier'.
618  * The 'barrier' is a counter that can be raised multiple times
619  * to count how many activities are happening which preclude
620  * normal IO.
621  * We can only raise the barrier if there is no pending IO.
622  * i.e. if nr_pending == 0.
623  * We choose only to raise the barrier if no-one is waiting for the
624  * barrier to go down.  This means that as soon as an IO request
625  * is ready, no other operations which require a barrier will start
626  * until the IO request has had a chance.
627  *
628  * So: regular IO calls 'wait_barrier'.  When that returns there
629  *    is no backgroup IO happening,  It must arrange to call
630  *    allow_barrier when it has finished its IO.
631  * backgroup IO calls must call raise_barrier.  Once that returns
632  *    there is no normal IO happeing.  It must arrange to call
633  *    lower_barrier when the particular background IO completes.
634  */
635 
636 static void raise_barrier(conf_t *conf, int force)
637 {
638 	BUG_ON(force && !conf->barrier);
639 	spin_lock_irq(&conf->resync_lock);
640 
641 	/* Wait until no block IO is waiting (unless 'force') */
642 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
643 			    conf->resync_lock, );
644 
645 	/* block any new IO from starting */
646 	conf->barrier++;
647 
648 	/* Now wait for all pending IO to complete */
649 	wait_event_lock_irq(conf->wait_barrier,
650 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
651 			    conf->resync_lock, );
652 
653 	spin_unlock_irq(&conf->resync_lock);
654 }
655 
656 static void lower_barrier(conf_t *conf)
657 {
658 	unsigned long flags;
659 	spin_lock_irqsave(&conf->resync_lock, flags);
660 	conf->barrier--;
661 	spin_unlock_irqrestore(&conf->resync_lock, flags);
662 	wake_up(&conf->wait_barrier);
663 }
664 
665 static void wait_barrier(conf_t *conf)
666 {
667 	spin_lock_irq(&conf->resync_lock);
668 	if (conf->barrier) {
669 		conf->nr_waiting++;
670 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
671 				    conf->resync_lock,
672 				    );
673 		conf->nr_waiting--;
674 	}
675 	conf->nr_pending++;
676 	spin_unlock_irq(&conf->resync_lock);
677 }
678 
679 static void allow_barrier(conf_t *conf)
680 {
681 	unsigned long flags;
682 	spin_lock_irqsave(&conf->resync_lock, flags);
683 	conf->nr_pending--;
684 	spin_unlock_irqrestore(&conf->resync_lock, flags);
685 	wake_up(&conf->wait_barrier);
686 }
687 
688 static void freeze_array(conf_t *conf)
689 {
690 	/* stop syncio and normal IO and wait for everything to
691 	 * go quiet.
692 	 * We increment barrier and nr_waiting, and then
693 	 * wait until nr_pending match nr_queued+1
694 	 * This is called in the context of one normal IO request
695 	 * that has failed. Thus any sync request that might be pending
696 	 * will be blocked by nr_pending, and we need to wait for
697 	 * pending IO requests to complete or be queued for re-try.
698 	 * Thus the number queued (nr_queued) plus this request (1)
699 	 * must match the number of pending IOs (nr_pending) before
700 	 * we continue.
701 	 */
702 	spin_lock_irq(&conf->resync_lock);
703 	conf->barrier++;
704 	conf->nr_waiting++;
705 	wait_event_lock_irq(conf->wait_barrier,
706 			    conf->nr_pending == conf->nr_queued+1,
707 			    conf->resync_lock,
708 			    flush_pending_writes(conf));
709 
710 	spin_unlock_irq(&conf->resync_lock);
711 }
712 
713 static void unfreeze_array(conf_t *conf)
714 {
715 	/* reverse the effect of the freeze */
716 	spin_lock_irq(&conf->resync_lock);
717 	conf->barrier--;
718 	conf->nr_waiting--;
719 	wake_up(&conf->wait_barrier);
720 	spin_unlock_irq(&conf->resync_lock);
721 }
722 
723 static int make_request(mddev_t *mddev, struct bio * bio)
724 {
725 	conf_t *conf = mddev->private;
726 	mirror_info_t *mirror;
727 	r10bio_t *r10_bio;
728 	struct bio *read_bio;
729 	int i;
730 	int chunk_sects = conf->chunk_mask + 1;
731 	const int rw = bio_data_dir(bio);
732 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
733 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
734 	unsigned long flags;
735 	mdk_rdev_t *blocked_rdev;
736 	int plugged;
737 
738 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
739 		md_flush_request(mddev, bio);
740 		return 0;
741 	}
742 
743 	/* If this request crosses a chunk boundary, we need to
744 	 * split it.  This will only happen for 1 PAGE (or less) requests.
745 	 */
746 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
747 		      > chunk_sects &&
748 		    conf->near_copies < conf->raid_disks)) {
749 		struct bio_pair *bp;
750 		/* Sanity check -- queue functions should prevent this happening */
751 		if (bio->bi_vcnt != 1 ||
752 		    bio->bi_idx != 0)
753 			goto bad_map;
754 		/* This is a one page bio that upper layers
755 		 * refuse to split for us, so we need to split it.
756 		 */
757 		bp = bio_split(bio,
758 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
759 
760 		/* Each of these 'make_request' calls will call 'wait_barrier'.
761 		 * If the first succeeds but the second blocks due to the resync
762 		 * thread raising the barrier, we will deadlock because the
763 		 * IO to the underlying device will be queued in generic_make_request
764 		 * and will never complete, so will never reduce nr_pending.
765 		 * So increment nr_waiting here so no new raise_barriers will
766 		 * succeed, and so the second wait_barrier cannot block.
767 		 */
768 		spin_lock_irq(&conf->resync_lock);
769 		conf->nr_waiting++;
770 		spin_unlock_irq(&conf->resync_lock);
771 
772 		if (make_request(mddev, &bp->bio1))
773 			generic_make_request(&bp->bio1);
774 		if (make_request(mddev, &bp->bio2))
775 			generic_make_request(&bp->bio2);
776 
777 		spin_lock_irq(&conf->resync_lock);
778 		conf->nr_waiting--;
779 		wake_up(&conf->wait_barrier);
780 		spin_unlock_irq(&conf->resync_lock);
781 
782 		bio_pair_release(bp);
783 		return 0;
784 	bad_map:
785 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
786 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
787 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
788 
789 		bio_io_error(bio);
790 		return 0;
791 	}
792 
793 	md_write_start(mddev, bio);
794 
795 	/*
796 	 * Register the new request and wait if the reconstruction
797 	 * thread has put up a bar for new requests.
798 	 * Continue immediately if no resync is active currently.
799 	 */
800 	wait_barrier(conf);
801 
802 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
803 
804 	r10_bio->master_bio = bio;
805 	r10_bio->sectors = bio->bi_size >> 9;
806 
807 	r10_bio->mddev = mddev;
808 	r10_bio->sector = bio->bi_sector;
809 	r10_bio->state = 0;
810 
811 	if (rw == READ) {
812 		/*
813 		 * read balancing logic:
814 		 */
815 		int disk = read_balance(conf, r10_bio);
816 		int slot = r10_bio->read_slot;
817 		if (disk < 0) {
818 			raid_end_bio_io(r10_bio);
819 			return 0;
820 		}
821 		mirror = conf->mirrors + disk;
822 
823 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
824 
825 		r10_bio->devs[slot].bio = read_bio;
826 
827 		read_bio->bi_sector = r10_bio->devs[slot].addr +
828 			mirror->rdev->data_offset;
829 		read_bio->bi_bdev = mirror->rdev->bdev;
830 		read_bio->bi_end_io = raid10_end_read_request;
831 		read_bio->bi_rw = READ | do_sync;
832 		read_bio->bi_private = r10_bio;
833 
834 		generic_make_request(read_bio);
835 		return 0;
836 	}
837 
838 	/*
839 	 * WRITE:
840 	 */
841 	/* first select target devices under rcu_lock and
842 	 * inc refcount on their rdev.  Record them by setting
843 	 * bios[x] to bio
844 	 */
845 	plugged = mddev_check_plugged(mddev);
846 
847 	raid10_find_phys(conf, r10_bio);
848  retry_write:
849 	blocked_rdev = NULL;
850 	rcu_read_lock();
851 	for (i = 0;  i < conf->copies; i++) {
852 		int d = r10_bio->devs[i].devnum;
853 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
854 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
855 			atomic_inc(&rdev->nr_pending);
856 			blocked_rdev = rdev;
857 			break;
858 		}
859 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
860 			atomic_inc(&rdev->nr_pending);
861 			r10_bio->devs[i].bio = bio;
862 		} else {
863 			r10_bio->devs[i].bio = NULL;
864 			set_bit(R10BIO_Degraded, &r10_bio->state);
865 		}
866 	}
867 	rcu_read_unlock();
868 
869 	if (unlikely(blocked_rdev)) {
870 		/* Have to wait for this device to get unblocked, then retry */
871 		int j;
872 		int d;
873 
874 		for (j = 0; j < i; j++)
875 			if (r10_bio->devs[j].bio) {
876 				d = r10_bio->devs[j].devnum;
877 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
878 			}
879 		allow_barrier(conf);
880 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
881 		wait_barrier(conf);
882 		goto retry_write;
883 	}
884 
885 	atomic_set(&r10_bio->remaining, 1);
886 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
887 
888 	for (i = 0; i < conf->copies; i++) {
889 		struct bio *mbio;
890 		int d = r10_bio->devs[i].devnum;
891 		if (!r10_bio->devs[i].bio)
892 			continue;
893 
894 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
895 		r10_bio->devs[i].bio = mbio;
896 
897 		mbio->bi_sector	= r10_bio->devs[i].addr+
898 			conf->mirrors[d].rdev->data_offset;
899 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
900 		mbio->bi_end_io	= raid10_end_write_request;
901 		mbio->bi_rw = WRITE | do_sync | do_fua;
902 		mbio->bi_private = r10_bio;
903 
904 		atomic_inc(&r10_bio->remaining);
905 		spin_lock_irqsave(&conf->device_lock, flags);
906 		bio_list_add(&conf->pending_bio_list, mbio);
907 		spin_unlock_irqrestore(&conf->device_lock, flags);
908 	}
909 
910 	if (atomic_dec_and_test(&r10_bio->remaining)) {
911 		/* This matches the end of raid10_end_write_request() */
912 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
913 				r10_bio->sectors,
914 				!test_bit(R10BIO_Degraded, &r10_bio->state),
915 				0);
916 		md_write_end(mddev);
917 		raid_end_bio_io(r10_bio);
918 	}
919 
920 	/* In case raid10d snuck in to freeze_array */
921 	wake_up(&conf->wait_barrier);
922 
923 	if (do_sync || !mddev->bitmap || !plugged)
924 		md_wakeup_thread(mddev->thread);
925 	return 0;
926 }
927 
928 static void status(struct seq_file *seq, mddev_t *mddev)
929 {
930 	conf_t *conf = mddev->private;
931 	int i;
932 
933 	if (conf->near_copies < conf->raid_disks)
934 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
935 	if (conf->near_copies > 1)
936 		seq_printf(seq, " %d near-copies", conf->near_copies);
937 	if (conf->far_copies > 1) {
938 		if (conf->far_offset)
939 			seq_printf(seq, " %d offset-copies", conf->far_copies);
940 		else
941 			seq_printf(seq, " %d far-copies", conf->far_copies);
942 	}
943 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
944 					conf->raid_disks - mddev->degraded);
945 	for (i = 0; i < conf->raid_disks; i++)
946 		seq_printf(seq, "%s",
947 			      conf->mirrors[i].rdev &&
948 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
949 	seq_printf(seq, "]");
950 }
951 
952 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
953 {
954 	char b[BDEVNAME_SIZE];
955 	conf_t *conf = mddev->private;
956 
957 	/*
958 	 * If it is not operational, then we have already marked it as dead
959 	 * else if it is the last working disks, ignore the error, let the
960 	 * next level up know.
961 	 * else mark the drive as failed
962 	 */
963 	if (test_bit(In_sync, &rdev->flags)
964 	    && conf->raid_disks-mddev->degraded == 1)
965 		/*
966 		 * Don't fail the drive, just return an IO error.
967 		 * The test should really be more sophisticated than
968 		 * "working_disks == 1", but it isn't critical, and
969 		 * can wait until we do more sophisticated "is the drive
970 		 * really dead" tests...
971 		 */
972 		return;
973 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
974 		unsigned long flags;
975 		spin_lock_irqsave(&conf->device_lock, flags);
976 		mddev->degraded++;
977 		spin_unlock_irqrestore(&conf->device_lock, flags);
978 		/*
979 		 * if recovery is running, make sure it aborts.
980 		 */
981 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
982 	}
983 	set_bit(Faulty, &rdev->flags);
984 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
985 	printk(KERN_ALERT
986 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
987 	       "md/raid10:%s: Operation continuing on %d devices.\n",
988 	       mdname(mddev), bdevname(rdev->bdev, b),
989 	       mdname(mddev), conf->raid_disks - mddev->degraded);
990 }
991 
992 static void print_conf(conf_t *conf)
993 {
994 	int i;
995 	mirror_info_t *tmp;
996 
997 	printk(KERN_DEBUG "RAID10 conf printout:\n");
998 	if (!conf) {
999 		printk(KERN_DEBUG "(!conf)\n");
1000 		return;
1001 	}
1002 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1003 		conf->raid_disks);
1004 
1005 	for (i = 0; i < conf->raid_disks; i++) {
1006 		char b[BDEVNAME_SIZE];
1007 		tmp = conf->mirrors + i;
1008 		if (tmp->rdev)
1009 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1010 				i, !test_bit(In_sync, &tmp->rdev->flags),
1011 			        !test_bit(Faulty, &tmp->rdev->flags),
1012 				bdevname(tmp->rdev->bdev,b));
1013 	}
1014 }
1015 
1016 static void close_sync(conf_t *conf)
1017 {
1018 	wait_barrier(conf);
1019 	allow_barrier(conf);
1020 
1021 	mempool_destroy(conf->r10buf_pool);
1022 	conf->r10buf_pool = NULL;
1023 }
1024 
1025 /* check if there are enough drives for
1026  * every block to appear on atleast one
1027  */
1028 static int enough(conf_t *conf)
1029 {
1030 	int first = 0;
1031 
1032 	do {
1033 		int n = conf->copies;
1034 		int cnt = 0;
1035 		while (n--) {
1036 			if (conf->mirrors[first].rdev)
1037 				cnt++;
1038 			first = (first+1) % conf->raid_disks;
1039 		}
1040 		if (cnt == 0)
1041 			return 0;
1042 	} while (first != 0);
1043 	return 1;
1044 }
1045 
1046 static int raid10_spare_active(mddev_t *mddev)
1047 {
1048 	int i;
1049 	conf_t *conf = mddev->private;
1050 	mirror_info_t *tmp;
1051 	int count = 0;
1052 	unsigned long flags;
1053 
1054 	/*
1055 	 * Find all non-in_sync disks within the RAID10 configuration
1056 	 * and mark them in_sync
1057 	 */
1058 	for (i = 0; i < conf->raid_disks; i++) {
1059 		tmp = conf->mirrors + i;
1060 		if (tmp->rdev
1061 		    && !test_bit(Faulty, &tmp->rdev->flags)
1062 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1063 			count++;
1064 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1065 		}
1066 	}
1067 	spin_lock_irqsave(&conf->device_lock, flags);
1068 	mddev->degraded -= count;
1069 	spin_unlock_irqrestore(&conf->device_lock, flags);
1070 
1071 	print_conf(conf);
1072 	return count;
1073 }
1074 
1075 
1076 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1077 {
1078 	conf_t *conf = mddev->private;
1079 	int err = -EEXIST;
1080 	int mirror;
1081 	mirror_info_t *p;
1082 	int first = 0;
1083 	int last = conf->raid_disks - 1;
1084 
1085 	if (mddev->recovery_cp < MaxSector)
1086 		/* only hot-add to in-sync arrays, as recovery is
1087 		 * very different from resync
1088 		 */
1089 		return -EBUSY;
1090 	if (!enough(conf))
1091 		return -EINVAL;
1092 
1093 	if (rdev->raid_disk >= 0)
1094 		first = last = rdev->raid_disk;
1095 
1096 	if (rdev->saved_raid_disk >= 0 &&
1097 	    rdev->saved_raid_disk >= first &&
1098 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1099 		mirror = rdev->saved_raid_disk;
1100 	else
1101 		mirror = first;
1102 	for ( ; mirror <= last ; mirror++)
1103 		if ( !(p=conf->mirrors+mirror)->rdev) {
1104 
1105 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1106 					  rdev->data_offset << 9);
1107 			/* as we don't honour merge_bvec_fn, we must
1108 			 * never risk violating it, so limit
1109 			 * ->max_segments to one lying with a single
1110 			 * page, as a one page request is never in
1111 			 * violation.
1112 			 */
1113 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1114 				blk_queue_max_segments(mddev->queue, 1);
1115 				blk_queue_segment_boundary(mddev->queue,
1116 							   PAGE_CACHE_SIZE - 1);
1117 			}
1118 
1119 			p->head_position = 0;
1120 			rdev->raid_disk = mirror;
1121 			err = 0;
1122 			if (rdev->saved_raid_disk != mirror)
1123 				conf->fullsync = 1;
1124 			rcu_assign_pointer(p->rdev, rdev);
1125 			break;
1126 		}
1127 
1128 	md_integrity_add_rdev(rdev, mddev);
1129 	print_conf(conf);
1130 	return err;
1131 }
1132 
1133 static int raid10_remove_disk(mddev_t *mddev, int number)
1134 {
1135 	conf_t *conf = mddev->private;
1136 	int err = 0;
1137 	mdk_rdev_t *rdev;
1138 	mirror_info_t *p = conf->mirrors+ number;
1139 
1140 	print_conf(conf);
1141 	rdev = p->rdev;
1142 	if (rdev) {
1143 		if (test_bit(In_sync, &rdev->flags) ||
1144 		    atomic_read(&rdev->nr_pending)) {
1145 			err = -EBUSY;
1146 			goto abort;
1147 		}
1148 		/* Only remove faulty devices in recovery
1149 		 * is not possible.
1150 		 */
1151 		if (!test_bit(Faulty, &rdev->flags) &&
1152 		    enough(conf)) {
1153 			err = -EBUSY;
1154 			goto abort;
1155 		}
1156 		p->rdev = NULL;
1157 		synchronize_rcu();
1158 		if (atomic_read(&rdev->nr_pending)) {
1159 			/* lost the race, try later */
1160 			err = -EBUSY;
1161 			p->rdev = rdev;
1162 			goto abort;
1163 		}
1164 		err = md_integrity_register(mddev);
1165 	}
1166 abort:
1167 
1168 	print_conf(conf);
1169 	return err;
1170 }
1171 
1172 
1173 static void end_sync_read(struct bio *bio, int error)
1174 {
1175 	r10bio_t *r10_bio = bio->bi_private;
1176 	conf_t *conf = r10_bio->mddev->private;
1177 	int i,d;
1178 
1179 	for (i=0; i<conf->copies; i++)
1180 		if (r10_bio->devs[i].bio == bio)
1181 			break;
1182 	BUG_ON(i == conf->copies);
1183 	update_head_pos(i, r10_bio);
1184 	d = r10_bio->devs[i].devnum;
1185 
1186 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1187 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1188 	else {
1189 		atomic_add(r10_bio->sectors,
1190 			   &conf->mirrors[d].rdev->corrected_errors);
1191 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1192 			md_error(r10_bio->mddev,
1193 				 conf->mirrors[d].rdev);
1194 	}
1195 
1196 	/* for reconstruct, we always reschedule after a read.
1197 	 * for resync, only after all reads
1198 	 */
1199 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1200 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1201 	    atomic_dec_and_test(&r10_bio->remaining)) {
1202 		/* we have read all the blocks,
1203 		 * do the comparison in process context in raid10d
1204 		 */
1205 		reschedule_retry(r10_bio);
1206 	}
1207 }
1208 
1209 static void end_sync_write(struct bio *bio, int error)
1210 {
1211 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1212 	r10bio_t *r10_bio = bio->bi_private;
1213 	mddev_t *mddev = r10_bio->mddev;
1214 	conf_t *conf = mddev->private;
1215 	int i,d;
1216 
1217 	for (i = 0; i < conf->copies; i++)
1218 		if (r10_bio->devs[i].bio == bio)
1219 			break;
1220 	d = r10_bio->devs[i].devnum;
1221 
1222 	if (!uptodate)
1223 		md_error(mddev, conf->mirrors[d].rdev);
1224 
1225 	update_head_pos(i, r10_bio);
1226 
1227 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1228 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1229 		if (r10_bio->master_bio == NULL) {
1230 			/* the primary of several recovery bios */
1231 			sector_t s = r10_bio->sectors;
1232 			put_buf(r10_bio);
1233 			md_done_sync(mddev, s, 1);
1234 			break;
1235 		} else {
1236 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1237 			put_buf(r10_bio);
1238 			r10_bio = r10_bio2;
1239 		}
1240 	}
1241 }
1242 
1243 /*
1244  * Note: sync and recover and handled very differently for raid10
1245  * This code is for resync.
1246  * For resync, we read through virtual addresses and read all blocks.
1247  * If there is any error, we schedule a write.  The lowest numbered
1248  * drive is authoritative.
1249  * However requests come for physical address, so we need to map.
1250  * For every physical address there are raid_disks/copies virtual addresses,
1251  * which is always are least one, but is not necessarly an integer.
1252  * This means that a physical address can span multiple chunks, so we may
1253  * have to submit multiple io requests for a single sync request.
1254  */
1255 /*
1256  * We check if all blocks are in-sync and only write to blocks that
1257  * aren't in sync
1258  */
1259 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1260 {
1261 	conf_t *conf = mddev->private;
1262 	int i, first;
1263 	struct bio *tbio, *fbio;
1264 
1265 	atomic_set(&r10_bio->remaining, 1);
1266 
1267 	/* find the first device with a block */
1268 	for (i=0; i<conf->copies; i++)
1269 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1270 			break;
1271 
1272 	if (i == conf->copies)
1273 		goto done;
1274 
1275 	first = i;
1276 	fbio = r10_bio->devs[i].bio;
1277 
1278 	/* now find blocks with errors */
1279 	for (i=0 ; i < conf->copies ; i++) {
1280 		int  j, d;
1281 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1282 
1283 		tbio = r10_bio->devs[i].bio;
1284 
1285 		if (tbio->bi_end_io != end_sync_read)
1286 			continue;
1287 		if (i == first)
1288 			continue;
1289 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1290 			/* We know that the bi_io_vec layout is the same for
1291 			 * both 'first' and 'i', so we just compare them.
1292 			 * All vec entries are PAGE_SIZE;
1293 			 */
1294 			for (j = 0; j < vcnt; j++)
1295 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1296 					   page_address(tbio->bi_io_vec[j].bv_page),
1297 					   PAGE_SIZE))
1298 					break;
1299 			if (j == vcnt)
1300 				continue;
1301 			mddev->resync_mismatches += r10_bio->sectors;
1302 		}
1303 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1304 			/* Don't fix anything. */
1305 			continue;
1306 		/* Ok, we need to write this bio
1307 		 * First we need to fixup bv_offset, bv_len and
1308 		 * bi_vecs, as the read request might have corrupted these
1309 		 */
1310 		tbio->bi_vcnt = vcnt;
1311 		tbio->bi_size = r10_bio->sectors << 9;
1312 		tbio->bi_idx = 0;
1313 		tbio->bi_phys_segments = 0;
1314 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1316 		tbio->bi_next = NULL;
1317 		tbio->bi_rw = WRITE;
1318 		tbio->bi_private = r10_bio;
1319 		tbio->bi_sector = r10_bio->devs[i].addr;
1320 
1321 		for (j=0; j < vcnt ; j++) {
1322 			tbio->bi_io_vec[j].bv_offset = 0;
1323 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1324 
1325 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1326 			       page_address(fbio->bi_io_vec[j].bv_page),
1327 			       PAGE_SIZE);
1328 		}
1329 		tbio->bi_end_io = end_sync_write;
1330 
1331 		d = r10_bio->devs[i].devnum;
1332 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1333 		atomic_inc(&r10_bio->remaining);
1334 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1335 
1336 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1337 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1338 		generic_make_request(tbio);
1339 	}
1340 
1341 done:
1342 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1343 		md_done_sync(mddev, r10_bio->sectors, 1);
1344 		put_buf(r10_bio);
1345 	}
1346 }
1347 
1348 /*
1349  * Now for the recovery code.
1350  * Recovery happens across physical sectors.
1351  * We recover all non-is_sync drives by finding the virtual address of
1352  * each, and then choose a working drive that also has that virt address.
1353  * There is a separate r10_bio for each non-in_sync drive.
1354  * Only the first two slots are in use. The first for reading,
1355  * The second for writing.
1356  *
1357  */
1358 
1359 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1360 {
1361 	conf_t *conf = mddev->private;
1362 	int i, d;
1363 	struct bio *bio, *wbio;
1364 
1365 
1366 	/* move the pages across to the second bio
1367 	 * and submit the write request
1368 	 */
1369 	bio = r10_bio->devs[0].bio;
1370 	wbio = r10_bio->devs[1].bio;
1371 	for (i=0; i < wbio->bi_vcnt; i++) {
1372 		struct page *p = bio->bi_io_vec[i].bv_page;
1373 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1374 		wbio->bi_io_vec[i].bv_page = p;
1375 	}
1376 	d = r10_bio->devs[1].devnum;
1377 
1378 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1379 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1380 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1381 		generic_make_request(wbio);
1382 	else
1383 		bio_endio(wbio, -EIO);
1384 }
1385 
1386 
1387 /*
1388  * Used by fix_read_error() to decay the per rdev read_errors.
1389  * We halve the read error count for every hour that has elapsed
1390  * since the last recorded read error.
1391  *
1392  */
1393 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1394 {
1395 	struct timespec cur_time_mon;
1396 	unsigned long hours_since_last;
1397 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1398 
1399 	ktime_get_ts(&cur_time_mon);
1400 
1401 	if (rdev->last_read_error.tv_sec == 0 &&
1402 	    rdev->last_read_error.tv_nsec == 0) {
1403 		/* first time we've seen a read error */
1404 		rdev->last_read_error = cur_time_mon;
1405 		return;
1406 	}
1407 
1408 	hours_since_last = (cur_time_mon.tv_sec -
1409 			    rdev->last_read_error.tv_sec) / 3600;
1410 
1411 	rdev->last_read_error = cur_time_mon;
1412 
1413 	/*
1414 	 * if hours_since_last is > the number of bits in read_errors
1415 	 * just set read errors to 0. We do this to avoid
1416 	 * overflowing the shift of read_errors by hours_since_last.
1417 	 */
1418 	if (hours_since_last >= 8 * sizeof(read_errors))
1419 		atomic_set(&rdev->read_errors, 0);
1420 	else
1421 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1422 }
1423 
1424 /*
1425  * This is a kernel thread which:
1426  *
1427  *	1.	Retries failed read operations on working mirrors.
1428  *	2.	Updates the raid superblock when problems encounter.
1429  *	3.	Performs writes following reads for array synchronising.
1430  */
1431 
1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1433 {
1434 	int sect = 0; /* Offset from r10_bio->sector */
1435 	int sectors = r10_bio->sectors;
1436 	mdk_rdev_t*rdev;
1437 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1438 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1439 
1440 	/* still own a reference to this rdev, so it cannot
1441 	 * have been cleared recently.
1442 	 */
1443 	rdev = conf->mirrors[d].rdev;
1444 
1445 	if (test_bit(Faulty, &rdev->flags))
1446 		/* drive has already been failed, just ignore any
1447 		   more fix_read_error() attempts */
1448 		return;
1449 
1450 	check_decay_read_errors(mddev, rdev);
1451 	atomic_inc(&rdev->read_errors);
1452 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1453 		char b[BDEVNAME_SIZE];
1454 		bdevname(rdev->bdev, b);
1455 
1456 		printk(KERN_NOTICE
1457 		       "md/raid10:%s: %s: Raid device exceeded "
1458 		       "read_error threshold [cur %d:max %d]\n",
1459 		       mdname(mddev), b,
1460 		       atomic_read(&rdev->read_errors), max_read_errors);
1461 		printk(KERN_NOTICE
1462 		       "md/raid10:%s: %s: Failing raid device\n",
1463 		       mdname(mddev), b);
1464 		md_error(mddev, conf->mirrors[d].rdev);
1465 		return;
1466 	}
1467 
1468 	while(sectors) {
1469 		int s = sectors;
1470 		int sl = r10_bio->read_slot;
1471 		int success = 0;
1472 		int start;
1473 
1474 		if (s > (PAGE_SIZE>>9))
1475 			s = PAGE_SIZE >> 9;
1476 
1477 		rcu_read_lock();
1478 		do {
1479 			d = r10_bio->devs[sl].devnum;
1480 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1481 			if (rdev &&
1482 			    test_bit(In_sync, &rdev->flags)) {
1483 				atomic_inc(&rdev->nr_pending);
1484 				rcu_read_unlock();
1485 				success = sync_page_io(rdev,
1486 						       r10_bio->devs[sl].addr +
1487 						       sect,
1488 						       s<<9,
1489 						       conf->tmppage, READ, false);
1490 				rdev_dec_pending(rdev, mddev);
1491 				rcu_read_lock();
1492 				if (success)
1493 					break;
1494 			}
1495 			sl++;
1496 			if (sl == conf->copies)
1497 				sl = 0;
1498 		} while (!success && sl != r10_bio->read_slot);
1499 		rcu_read_unlock();
1500 
1501 		if (!success) {
1502 			/* Cannot read from anywhere -- bye bye array */
1503 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1504 			md_error(mddev, conf->mirrors[dn].rdev);
1505 			break;
1506 		}
1507 
1508 		start = sl;
1509 		/* write it back and re-read */
1510 		rcu_read_lock();
1511 		while (sl != r10_bio->read_slot) {
1512 			char b[BDEVNAME_SIZE];
1513 
1514 			if (sl==0)
1515 				sl = conf->copies;
1516 			sl--;
1517 			d = r10_bio->devs[sl].devnum;
1518 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1519 			if (rdev &&
1520 			    test_bit(In_sync, &rdev->flags)) {
1521 				atomic_inc(&rdev->nr_pending);
1522 				rcu_read_unlock();
1523 				atomic_add(s, &rdev->corrected_errors);
1524 				if (sync_page_io(rdev,
1525 						 r10_bio->devs[sl].addr +
1526 						 sect,
1527 						 s<<9, conf->tmppage, WRITE, false)
1528 				    == 0) {
1529 					/* Well, this device is dead */
1530 					printk(KERN_NOTICE
1531 					       "md/raid10:%s: read correction "
1532 					       "write failed"
1533 					       " (%d sectors at %llu on %s)\n",
1534 					       mdname(mddev), s,
1535 					       (unsigned long long)(
1536 						       sect + rdev->data_offset),
1537 					       bdevname(rdev->bdev, b));
1538 					printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1539 					       "drive\n",
1540 					       mdname(mddev),
1541 					       bdevname(rdev->bdev, b));
1542 					md_error(mddev, rdev);
1543 				}
1544 				rdev_dec_pending(rdev, mddev);
1545 				rcu_read_lock();
1546 			}
1547 		}
1548 		sl = start;
1549 		while (sl != r10_bio->read_slot) {
1550 
1551 			if (sl==0)
1552 				sl = conf->copies;
1553 			sl--;
1554 			d = r10_bio->devs[sl].devnum;
1555 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1556 			if (rdev &&
1557 			    test_bit(In_sync, &rdev->flags)) {
1558 				char b[BDEVNAME_SIZE];
1559 				atomic_inc(&rdev->nr_pending);
1560 				rcu_read_unlock();
1561 				if (sync_page_io(rdev,
1562 						 r10_bio->devs[sl].addr +
1563 						 sect,
1564 						 s<<9, conf->tmppage,
1565 						 READ, false) == 0) {
1566 					/* Well, this device is dead */
1567 					printk(KERN_NOTICE
1568 					       "md/raid10:%s: unable to read back "
1569 					       "corrected sectors"
1570 					       " (%d sectors at %llu on %s)\n",
1571 					       mdname(mddev), s,
1572 					       (unsigned long long)(
1573 						       sect + rdev->data_offset),
1574 					       bdevname(rdev->bdev, b));
1575 					printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1576 					       mdname(mddev),
1577 					       bdevname(rdev->bdev, b));
1578 
1579 					md_error(mddev, rdev);
1580 				} else {
1581 					printk(KERN_INFO
1582 					       "md/raid10:%s: read error corrected"
1583 					       " (%d sectors at %llu on %s)\n",
1584 					       mdname(mddev), s,
1585 					       (unsigned long long)(
1586 						       sect + rdev->data_offset),
1587 					       bdevname(rdev->bdev, b));
1588 				}
1589 
1590 				rdev_dec_pending(rdev, mddev);
1591 				rcu_read_lock();
1592 			}
1593 		}
1594 		rcu_read_unlock();
1595 
1596 		sectors -= s;
1597 		sect += s;
1598 	}
1599 }
1600 
1601 static void raid10d(mddev_t *mddev)
1602 {
1603 	r10bio_t *r10_bio;
1604 	struct bio *bio;
1605 	unsigned long flags;
1606 	conf_t *conf = mddev->private;
1607 	struct list_head *head = &conf->retry_list;
1608 	mdk_rdev_t *rdev;
1609 	struct blk_plug plug;
1610 
1611 	md_check_recovery(mddev);
1612 
1613 	blk_start_plug(&plug);
1614 	for (;;) {
1615 		char b[BDEVNAME_SIZE];
1616 
1617 		flush_pending_writes(conf);
1618 
1619 		spin_lock_irqsave(&conf->device_lock, flags);
1620 		if (list_empty(head)) {
1621 			spin_unlock_irqrestore(&conf->device_lock, flags);
1622 			break;
1623 		}
1624 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1625 		list_del(head->prev);
1626 		conf->nr_queued--;
1627 		spin_unlock_irqrestore(&conf->device_lock, flags);
1628 
1629 		mddev = r10_bio->mddev;
1630 		conf = mddev->private;
1631 		if (test_bit(R10BIO_IsSync, &r10_bio->state))
1632 			sync_request_write(mddev, r10_bio);
1633 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1634 			recovery_request_write(mddev, r10_bio);
1635 		else {
1636 			int slot = r10_bio->read_slot;
1637 			int mirror = r10_bio->devs[slot].devnum;
1638 			/* we got a read error. Maybe the drive is bad.  Maybe just
1639 			 * the block and we can fix it.
1640 			 * We freeze all other IO, and try reading the block from
1641 			 * other devices.  When we find one, we re-write
1642 			 * and check it that fixes the read error.
1643 			 * This is all done synchronously while the array is
1644 			 * frozen.
1645 			 */
1646 			if (mddev->ro == 0) {
1647 				freeze_array(conf);
1648 				fix_read_error(conf, mddev, r10_bio);
1649 				unfreeze_array(conf);
1650 			}
1651 			rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1652 
1653 			bio = r10_bio->devs[slot].bio;
1654 			r10_bio->devs[slot].bio =
1655 				mddev->ro ? IO_BLOCKED : NULL;
1656 			mirror = read_balance(conf, r10_bio);
1657 			if (mirror == -1) {
1658 				printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1659 				       " read error for block %llu\n",
1660 				       mdname(mddev),
1661 				       bdevname(bio->bi_bdev,b),
1662 				       (unsigned long long)r10_bio->sector);
1663 				raid_end_bio_io(r10_bio);
1664 				bio_put(bio);
1665 			} else {
1666 				const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1667 				bio_put(bio);
1668 				slot = r10_bio->read_slot;
1669 				rdev = conf->mirrors[mirror].rdev;
1670 				if (printk_ratelimit())
1671 					printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1672 					       " another mirror\n",
1673 					       mdname(mddev),
1674 					       bdevname(rdev->bdev,b),
1675 					       (unsigned long long)r10_bio->sector);
1676 				bio = bio_clone_mddev(r10_bio->master_bio,
1677 						      GFP_NOIO, mddev);
1678 				r10_bio->devs[slot].bio = bio;
1679 				bio->bi_sector = r10_bio->devs[slot].addr
1680 					+ rdev->data_offset;
1681 				bio->bi_bdev = rdev->bdev;
1682 				bio->bi_rw = READ | do_sync;
1683 				bio->bi_private = r10_bio;
1684 				bio->bi_end_io = raid10_end_read_request;
1685 				generic_make_request(bio);
1686 			}
1687 		}
1688 		cond_resched();
1689 	}
1690 	blk_finish_plug(&plug);
1691 }
1692 
1693 
1694 static int init_resync(conf_t *conf)
1695 {
1696 	int buffs;
1697 
1698 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1699 	BUG_ON(conf->r10buf_pool);
1700 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1701 	if (!conf->r10buf_pool)
1702 		return -ENOMEM;
1703 	conf->next_resync = 0;
1704 	return 0;
1705 }
1706 
1707 /*
1708  * perform a "sync" on one "block"
1709  *
1710  * We need to make sure that no normal I/O request - particularly write
1711  * requests - conflict with active sync requests.
1712  *
1713  * This is achieved by tracking pending requests and a 'barrier' concept
1714  * that can be installed to exclude normal IO requests.
1715  *
1716  * Resync and recovery are handled very differently.
1717  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1718  *
1719  * For resync, we iterate over virtual addresses, read all copies,
1720  * and update if there are differences.  If only one copy is live,
1721  * skip it.
1722  * For recovery, we iterate over physical addresses, read a good
1723  * value for each non-in_sync drive, and over-write.
1724  *
1725  * So, for recovery we may have several outstanding complex requests for a
1726  * given address, one for each out-of-sync device.  We model this by allocating
1727  * a number of r10_bio structures, one for each out-of-sync device.
1728  * As we setup these structures, we collect all bio's together into a list
1729  * which we then process collectively to add pages, and then process again
1730  * to pass to generic_make_request.
1731  *
1732  * The r10_bio structures are linked using a borrowed master_bio pointer.
1733  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1734  * has its remaining count decremented to 0, the whole complex operation
1735  * is complete.
1736  *
1737  */
1738 
1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1740 			     int *skipped, int go_faster)
1741 {
1742 	conf_t *conf = mddev->private;
1743 	r10bio_t *r10_bio;
1744 	struct bio *biolist = NULL, *bio;
1745 	sector_t max_sector, nr_sectors;
1746 	int i;
1747 	int max_sync;
1748 	sector_t sync_blocks;
1749 
1750 	sector_t sectors_skipped = 0;
1751 	int chunks_skipped = 0;
1752 
1753 	if (!conf->r10buf_pool)
1754 		if (init_resync(conf))
1755 			return 0;
1756 
1757  skipped:
1758 	max_sector = mddev->dev_sectors;
1759 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1760 		max_sector = mddev->resync_max_sectors;
1761 	if (sector_nr >= max_sector) {
1762 		/* If we aborted, we need to abort the
1763 		 * sync on the 'current' bitmap chucks (there can
1764 		 * be several when recovering multiple devices).
1765 		 * as we may have started syncing it but not finished.
1766 		 * We can find the current address in
1767 		 * mddev->curr_resync, but for recovery,
1768 		 * we need to convert that to several
1769 		 * virtual addresses.
1770 		 */
1771 		if (mddev->curr_resync < max_sector) { /* aborted */
1772 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1773 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1774 						&sync_blocks, 1);
1775 			else for (i=0; i<conf->raid_disks; i++) {
1776 				sector_t sect =
1777 					raid10_find_virt(conf, mddev->curr_resync, i);
1778 				bitmap_end_sync(mddev->bitmap, sect,
1779 						&sync_blocks, 1);
1780 			}
1781 		} else /* completed sync */
1782 			conf->fullsync = 0;
1783 
1784 		bitmap_close_sync(mddev->bitmap);
1785 		close_sync(conf);
1786 		*skipped = 1;
1787 		return sectors_skipped;
1788 	}
1789 	if (chunks_skipped >= conf->raid_disks) {
1790 		/* if there has been nothing to do on any drive,
1791 		 * then there is nothing to do at all..
1792 		 */
1793 		*skipped = 1;
1794 		return (max_sector - sector_nr) + sectors_skipped;
1795 	}
1796 
1797 	if (max_sector > mddev->resync_max)
1798 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1799 
1800 	/* make sure whole request will fit in a chunk - if chunks
1801 	 * are meaningful
1802 	 */
1803 	if (conf->near_copies < conf->raid_disks &&
1804 	    max_sector > (sector_nr | conf->chunk_mask))
1805 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1806 	/*
1807 	 * If there is non-resync activity waiting for us then
1808 	 * put in a delay to throttle resync.
1809 	 */
1810 	if (!go_faster && conf->nr_waiting)
1811 		msleep_interruptible(1000);
1812 
1813 	/* Again, very different code for resync and recovery.
1814 	 * Both must result in an r10bio with a list of bios that
1815 	 * have bi_end_io, bi_sector, bi_bdev set,
1816 	 * and bi_private set to the r10bio.
1817 	 * For recovery, we may actually create several r10bios
1818 	 * with 2 bios in each, that correspond to the bios in the main one.
1819 	 * In this case, the subordinate r10bios link back through a
1820 	 * borrowed master_bio pointer, and the counter in the master
1821 	 * includes a ref from each subordinate.
1822 	 */
1823 	/* First, we decide what to do and set ->bi_end_io
1824 	 * To end_sync_read if we want to read, and
1825 	 * end_sync_write if we will want to write.
1826 	 */
1827 
1828 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1829 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1830 		/* recovery... the complicated one */
1831 		int j, k;
1832 		r10_bio = NULL;
1833 
1834 		for (i=0 ; i<conf->raid_disks; i++) {
1835 			int still_degraded;
1836 			r10bio_t *rb2;
1837 			sector_t sect;
1838 			int must_sync;
1839 
1840 			if (conf->mirrors[i].rdev == NULL ||
1841 			    test_bit(In_sync, &conf->mirrors[i].rdev->flags))
1842 				continue;
1843 
1844 			still_degraded = 0;
1845 			/* want to reconstruct this device */
1846 			rb2 = r10_bio;
1847 			sect = raid10_find_virt(conf, sector_nr, i);
1848 			/* Unless we are doing a full sync, we only need
1849 			 * to recover the block if it is set in the bitmap
1850 			 */
1851 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
1852 						      &sync_blocks, 1);
1853 			if (sync_blocks < max_sync)
1854 				max_sync = sync_blocks;
1855 			if (!must_sync &&
1856 			    !conf->fullsync) {
1857 				/* yep, skip the sync_blocks here, but don't assume
1858 				 * that there will never be anything to do here
1859 				 */
1860 				chunks_skipped = -1;
1861 				continue;
1862 			}
1863 
1864 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1865 			raise_barrier(conf, rb2 != NULL);
1866 			atomic_set(&r10_bio->remaining, 0);
1867 
1868 			r10_bio->master_bio = (struct bio*)rb2;
1869 			if (rb2)
1870 				atomic_inc(&rb2->remaining);
1871 			r10_bio->mddev = mddev;
1872 			set_bit(R10BIO_IsRecover, &r10_bio->state);
1873 			r10_bio->sector = sect;
1874 
1875 			raid10_find_phys(conf, r10_bio);
1876 
1877 			/* Need to check if the array will still be
1878 			 * degraded
1879 			 */
1880 			for (j=0; j<conf->raid_disks; j++)
1881 				if (conf->mirrors[j].rdev == NULL ||
1882 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1883 					still_degraded = 1;
1884 					break;
1885 				}
1886 
1887 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
1888 						      &sync_blocks, still_degraded);
1889 
1890 			for (j=0; j<conf->copies;j++) {
1891 				int d = r10_bio->devs[j].devnum;
1892 				if (!conf->mirrors[d].rdev ||
1893 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
1894 					continue;
1895 				/* This is where we read from */
1896 				bio = r10_bio->devs[0].bio;
1897 				bio->bi_next = biolist;
1898 				biolist = bio;
1899 				bio->bi_private = r10_bio;
1900 				bio->bi_end_io = end_sync_read;
1901 				bio->bi_rw = READ;
1902 				bio->bi_sector = r10_bio->devs[j].addr +
1903 					conf->mirrors[d].rdev->data_offset;
1904 				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1905 				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1906 				atomic_inc(&r10_bio->remaining);
1907 				/* and we write to 'i' */
1908 
1909 				for (k=0; k<conf->copies; k++)
1910 					if (r10_bio->devs[k].devnum == i)
1911 						break;
1912 				BUG_ON(k == conf->copies);
1913 				bio = r10_bio->devs[1].bio;
1914 				bio->bi_next = biolist;
1915 				biolist = bio;
1916 				bio->bi_private = r10_bio;
1917 				bio->bi_end_io = end_sync_write;
1918 				bio->bi_rw = WRITE;
1919 				bio->bi_sector = r10_bio->devs[k].addr +
1920 					conf->mirrors[i].rdev->data_offset;
1921 				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1922 
1923 				r10_bio->devs[0].devnum = d;
1924 				r10_bio->devs[1].devnum = i;
1925 
1926 				break;
1927 			}
1928 			if (j == conf->copies) {
1929 				/* Cannot recover, so abort the recovery */
1930 				put_buf(r10_bio);
1931 				if (rb2)
1932 					atomic_dec(&rb2->remaining);
1933 				r10_bio = rb2;
1934 				if (!test_and_set_bit(MD_RECOVERY_INTR,
1935 						      &mddev->recovery))
1936 					printk(KERN_INFO "md/raid10:%s: insufficient "
1937 					       "working devices for recovery.\n",
1938 					       mdname(mddev));
1939 				break;
1940 			}
1941 		}
1942 		if (biolist == NULL) {
1943 			while (r10_bio) {
1944 				r10bio_t *rb2 = r10_bio;
1945 				r10_bio = (r10bio_t*) rb2->master_bio;
1946 				rb2->master_bio = NULL;
1947 				put_buf(rb2);
1948 			}
1949 			goto giveup;
1950 		}
1951 	} else {
1952 		/* resync. Schedule a read for every block at this virt offset */
1953 		int count = 0;
1954 
1955 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1956 
1957 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1958 				       &sync_blocks, mddev->degraded) &&
1959 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
1960 						 &mddev->recovery)) {
1961 			/* We can skip this block */
1962 			*skipped = 1;
1963 			return sync_blocks + sectors_skipped;
1964 		}
1965 		if (sync_blocks < max_sync)
1966 			max_sync = sync_blocks;
1967 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1968 
1969 		r10_bio->mddev = mddev;
1970 		atomic_set(&r10_bio->remaining, 0);
1971 		raise_barrier(conf, 0);
1972 		conf->next_resync = sector_nr;
1973 
1974 		r10_bio->master_bio = NULL;
1975 		r10_bio->sector = sector_nr;
1976 		set_bit(R10BIO_IsSync, &r10_bio->state);
1977 		raid10_find_phys(conf, r10_bio);
1978 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1979 
1980 		for (i=0; i<conf->copies; i++) {
1981 			int d = r10_bio->devs[i].devnum;
1982 			bio = r10_bio->devs[i].bio;
1983 			bio->bi_end_io = NULL;
1984 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1985 			if (conf->mirrors[d].rdev == NULL ||
1986 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1987 				continue;
1988 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1989 			atomic_inc(&r10_bio->remaining);
1990 			bio->bi_next = biolist;
1991 			biolist = bio;
1992 			bio->bi_private = r10_bio;
1993 			bio->bi_end_io = end_sync_read;
1994 			bio->bi_rw = READ;
1995 			bio->bi_sector = r10_bio->devs[i].addr +
1996 				conf->mirrors[d].rdev->data_offset;
1997 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1998 			count++;
1999 		}
2000 
2001 		if (count < 2) {
2002 			for (i=0; i<conf->copies; i++) {
2003 				int d = r10_bio->devs[i].devnum;
2004 				if (r10_bio->devs[i].bio->bi_end_io)
2005 					rdev_dec_pending(conf->mirrors[d].rdev,
2006 							 mddev);
2007 			}
2008 			put_buf(r10_bio);
2009 			biolist = NULL;
2010 			goto giveup;
2011 		}
2012 	}
2013 
2014 	for (bio = biolist; bio ; bio=bio->bi_next) {
2015 
2016 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2017 		if (bio->bi_end_io)
2018 			bio->bi_flags |= 1 << BIO_UPTODATE;
2019 		bio->bi_vcnt = 0;
2020 		bio->bi_idx = 0;
2021 		bio->bi_phys_segments = 0;
2022 		bio->bi_size = 0;
2023 	}
2024 
2025 	nr_sectors = 0;
2026 	if (sector_nr + max_sync < max_sector)
2027 		max_sector = sector_nr + max_sync;
2028 	do {
2029 		struct page *page;
2030 		int len = PAGE_SIZE;
2031 		if (sector_nr + (len>>9) > max_sector)
2032 			len = (max_sector - sector_nr) << 9;
2033 		if (len == 0)
2034 			break;
2035 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2036 			struct bio *bio2;
2037 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2038 			if (bio_add_page(bio, page, len, 0))
2039 				continue;
2040 
2041 			/* stop here */
2042 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2043 			for (bio2 = biolist;
2044 			     bio2 && bio2 != bio;
2045 			     bio2 = bio2->bi_next) {
2046 				/* remove last page from this bio */
2047 				bio2->bi_vcnt--;
2048 				bio2->bi_size -= len;
2049 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2050 			}
2051 			goto bio_full;
2052 		}
2053 		nr_sectors += len>>9;
2054 		sector_nr += len>>9;
2055 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2056  bio_full:
2057 	r10_bio->sectors = nr_sectors;
2058 
2059 	while (biolist) {
2060 		bio = biolist;
2061 		biolist = biolist->bi_next;
2062 
2063 		bio->bi_next = NULL;
2064 		r10_bio = bio->bi_private;
2065 		r10_bio->sectors = nr_sectors;
2066 
2067 		if (bio->bi_end_io == end_sync_read) {
2068 			md_sync_acct(bio->bi_bdev, nr_sectors);
2069 			generic_make_request(bio);
2070 		}
2071 	}
2072 
2073 	if (sectors_skipped)
2074 		/* pretend they weren't skipped, it makes
2075 		 * no important difference in this case
2076 		 */
2077 		md_done_sync(mddev, sectors_skipped, 1);
2078 
2079 	return sectors_skipped + nr_sectors;
2080  giveup:
2081 	/* There is nowhere to write, so all non-sync
2082 	 * drives must be failed, so try the next chunk...
2083 	 */
2084 	if (sector_nr + max_sync < max_sector)
2085 		max_sector = sector_nr + max_sync;
2086 
2087 	sectors_skipped += (max_sector - sector_nr);
2088 	chunks_skipped ++;
2089 	sector_nr = max_sector;
2090 	goto skipped;
2091 }
2092 
2093 static sector_t
2094 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2095 {
2096 	sector_t size;
2097 	conf_t *conf = mddev->private;
2098 
2099 	if (!raid_disks)
2100 		raid_disks = conf->raid_disks;
2101 	if (!sectors)
2102 		sectors = conf->dev_sectors;
2103 
2104 	size = sectors >> conf->chunk_shift;
2105 	sector_div(size, conf->far_copies);
2106 	size = size * raid_disks;
2107 	sector_div(size, conf->near_copies);
2108 
2109 	return size << conf->chunk_shift;
2110 }
2111 
2112 
2113 static conf_t *setup_conf(mddev_t *mddev)
2114 {
2115 	conf_t *conf = NULL;
2116 	int nc, fc, fo;
2117 	sector_t stride, size;
2118 	int err = -EINVAL;
2119 
2120 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2121 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2122 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2123 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2124 		       mdname(mddev), PAGE_SIZE);
2125 		goto out;
2126 	}
2127 
2128 	nc = mddev->new_layout & 255;
2129 	fc = (mddev->new_layout >> 8) & 255;
2130 	fo = mddev->new_layout & (1<<16);
2131 
2132 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2133 	    (mddev->new_layout >> 17)) {
2134 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2135 		       mdname(mddev), mddev->new_layout);
2136 		goto out;
2137 	}
2138 
2139 	err = -ENOMEM;
2140 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2141 	if (!conf)
2142 		goto out;
2143 
2144 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2145 				GFP_KERNEL);
2146 	if (!conf->mirrors)
2147 		goto out;
2148 
2149 	conf->tmppage = alloc_page(GFP_KERNEL);
2150 	if (!conf->tmppage)
2151 		goto out;
2152 
2153 
2154 	conf->raid_disks = mddev->raid_disks;
2155 	conf->near_copies = nc;
2156 	conf->far_copies = fc;
2157 	conf->copies = nc*fc;
2158 	conf->far_offset = fo;
2159 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2160 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2161 
2162 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2163 					   r10bio_pool_free, conf);
2164 	if (!conf->r10bio_pool)
2165 		goto out;
2166 
2167 	size = mddev->dev_sectors >> conf->chunk_shift;
2168 	sector_div(size, fc);
2169 	size = size * conf->raid_disks;
2170 	sector_div(size, nc);
2171 	/* 'size' is now the number of chunks in the array */
2172 	/* calculate "used chunks per device" in 'stride' */
2173 	stride = size * conf->copies;
2174 
2175 	/* We need to round up when dividing by raid_disks to
2176 	 * get the stride size.
2177 	 */
2178 	stride += conf->raid_disks - 1;
2179 	sector_div(stride, conf->raid_disks);
2180 
2181 	conf->dev_sectors = stride << conf->chunk_shift;
2182 
2183 	if (fo)
2184 		stride = 1;
2185 	else
2186 		sector_div(stride, fc);
2187 	conf->stride = stride << conf->chunk_shift;
2188 
2189 
2190 	spin_lock_init(&conf->device_lock);
2191 	INIT_LIST_HEAD(&conf->retry_list);
2192 
2193 	spin_lock_init(&conf->resync_lock);
2194 	init_waitqueue_head(&conf->wait_barrier);
2195 
2196 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2197 	if (!conf->thread)
2198 		goto out;
2199 
2200 	conf->mddev = mddev;
2201 	return conf;
2202 
2203  out:
2204 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2205 	       mdname(mddev));
2206 	if (conf) {
2207 		if (conf->r10bio_pool)
2208 			mempool_destroy(conf->r10bio_pool);
2209 		kfree(conf->mirrors);
2210 		safe_put_page(conf->tmppage);
2211 		kfree(conf);
2212 	}
2213 	return ERR_PTR(err);
2214 }
2215 
2216 static int run(mddev_t *mddev)
2217 {
2218 	conf_t *conf;
2219 	int i, disk_idx, chunk_size;
2220 	mirror_info_t *disk;
2221 	mdk_rdev_t *rdev;
2222 	sector_t size;
2223 
2224 	/*
2225 	 * copy the already verified devices into our private RAID10
2226 	 * bookkeeping area. [whatever we allocate in run(),
2227 	 * should be freed in stop()]
2228 	 */
2229 
2230 	if (mddev->private == NULL) {
2231 		conf = setup_conf(mddev);
2232 		if (IS_ERR(conf))
2233 			return PTR_ERR(conf);
2234 		mddev->private = conf;
2235 	}
2236 	conf = mddev->private;
2237 	if (!conf)
2238 		goto out;
2239 
2240 	mddev->thread = conf->thread;
2241 	conf->thread = NULL;
2242 
2243 	chunk_size = mddev->chunk_sectors << 9;
2244 	blk_queue_io_min(mddev->queue, chunk_size);
2245 	if (conf->raid_disks % conf->near_copies)
2246 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2247 	else
2248 		blk_queue_io_opt(mddev->queue, chunk_size *
2249 				 (conf->raid_disks / conf->near_copies));
2250 
2251 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2252 		disk_idx = rdev->raid_disk;
2253 		if (disk_idx >= conf->raid_disks
2254 		    || disk_idx < 0)
2255 			continue;
2256 		disk = conf->mirrors + disk_idx;
2257 
2258 		disk->rdev = rdev;
2259 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2260 				  rdev->data_offset << 9);
2261 		/* as we don't honour merge_bvec_fn, we must never risk
2262 		 * violating it, so limit max_segments to 1 lying
2263 		 * within a single page.
2264 		 */
2265 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2266 			blk_queue_max_segments(mddev->queue, 1);
2267 			blk_queue_segment_boundary(mddev->queue,
2268 						   PAGE_CACHE_SIZE - 1);
2269 		}
2270 
2271 		disk->head_position = 0;
2272 	}
2273 	/* need to check that every block has at least one working mirror */
2274 	if (!enough(conf)) {
2275 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2276 		       mdname(mddev));
2277 		goto out_free_conf;
2278 	}
2279 
2280 	mddev->degraded = 0;
2281 	for (i = 0; i < conf->raid_disks; i++) {
2282 
2283 		disk = conf->mirrors + i;
2284 
2285 		if (!disk->rdev ||
2286 		    !test_bit(In_sync, &disk->rdev->flags)) {
2287 			disk->head_position = 0;
2288 			mddev->degraded++;
2289 			if (disk->rdev)
2290 				conf->fullsync = 1;
2291 		}
2292 	}
2293 
2294 	if (mddev->recovery_cp != MaxSector)
2295 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2296 		       " -- starting background reconstruction\n",
2297 		       mdname(mddev));
2298 	printk(KERN_INFO
2299 		"md/raid10:%s: active with %d out of %d devices\n",
2300 		mdname(mddev), conf->raid_disks - mddev->degraded,
2301 		conf->raid_disks);
2302 	/*
2303 	 * Ok, everything is just fine now
2304 	 */
2305 	mddev->dev_sectors = conf->dev_sectors;
2306 	size = raid10_size(mddev, 0, 0);
2307 	md_set_array_sectors(mddev, size);
2308 	mddev->resync_max_sectors = size;
2309 
2310 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2311 	mddev->queue->backing_dev_info.congested_data = mddev;
2312 
2313 	/* Calculate max read-ahead size.
2314 	 * We need to readahead at least twice a whole stripe....
2315 	 * maybe...
2316 	 */
2317 	{
2318 		int stripe = conf->raid_disks *
2319 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2320 		stripe /= conf->near_copies;
2321 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2322 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2323 	}
2324 
2325 	if (conf->near_copies < conf->raid_disks)
2326 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2327 
2328 	if (md_integrity_register(mddev))
2329 		goto out_free_conf;
2330 
2331 	return 0;
2332 
2333 out_free_conf:
2334 	md_unregister_thread(mddev->thread);
2335 	if (conf->r10bio_pool)
2336 		mempool_destroy(conf->r10bio_pool);
2337 	safe_put_page(conf->tmppage);
2338 	kfree(conf->mirrors);
2339 	kfree(conf);
2340 	mddev->private = NULL;
2341 out:
2342 	return -EIO;
2343 }
2344 
2345 static int stop(mddev_t *mddev)
2346 {
2347 	conf_t *conf = mddev->private;
2348 
2349 	raise_barrier(conf, 0);
2350 	lower_barrier(conf);
2351 
2352 	md_unregister_thread(mddev->thread);
2353 	mddev->thread = NULL;
2354 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2355 	if (conf->r10bio_pool)
2356 		mempool_destroy(conf->r10bio_pool);
2357 	kfree(conf->mirrors);
2358 	kfree(conf);
2359 	mddev->private = NULL;
2360 	return 0;
2361 }
2362 
2363 static void raid10_quiesce(mddev_t *mddev, int state)
2364 {
2365 	conf_t *conf = mddev->private;
2366 
2367 	switch(state) {
2368 	case 1:
2369 		raise_barrier(conf, 0);
2370 		break;
2371 	case 0:
2372 		lower_barrier(conf);
2373 		break;
2374 	}
2375 }
2376 
2377 static void *raid10_takeover_raid0(mddev_t *mddev)
2378 {
2379 	mdk_rdev_t *rdev;
2380 	conf_t *conf;
2381 
2382 	if (mddev->degraded > 0) {
2383 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2384 		       mdname(mddev));
2385 		return ERR_PTR(-EINVAL);
2386 	}
2387 
2388 	/* Set new parameters */
2389 	mddev->new_level = 10;
2390 	/* new layout: far_copies = 1, near_copies = 2 */
2391 	mddev->new_layout = (1<<8) + 2;
2392 	mddev->new_chunk_sectors = mddev->chunk_sectors;
2393 	mddev->delta_disks = mddev->raid_disks;
2394 	mddev->raid_disks *= 2;
2395 	/* make sure it will be not marked as dirty */
2396 	mddev->recovery_cp = MaxSector;
2397 
2398 	conf = setup_conf(mddev);
2399 	if (!IS_ERR(conf)) {
2400 		list_for_each_entry(rdev, &mddev->disks, same_set)
2401 			if (rdev->raid_disk >= 0)
2402 				rdev->new_raid_disk = rdev->raid_disk * 2;
2403 		conf->barrier = 1;
2404 	}
2405 
2406 	return conf;
2407 }
2408 
2409 static void *raid10_takeover(mddev_t *mddev)
2410 {
2411 	struct raid0_private_data *raid0_priv;
2412 
2413 	/* raid10 can take over:
2414 	 *  raid0 - providing it has only two drives
2415 	 */
2416 	if (mddev->level == 0) {
2417 		/* for raid0 takeover only one zone is supported */
2418 		raid0_priv = mddev->private;
2419 		if (raid0_priv->nr_strip_zones > 1) {
2420 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2421 			       " with more than one zone.\n",
2422 			       mdname(mddev));
2423 			return ERR_PTR(-EINVAL);
2424 		}
2425 		return raid10_takeover_raid0(mddev);
2426 	}
2427 	return ERR_PTR(-EINVAL);
2428 }
2429 
2430 static struct mdk_personality raid10_personality =
2431 {
2432 	.name		= "raid10",
2433 	.level		= 10,
2434 	.owner		= THIS_MODULE,
2435 	.make_request	= make_request,
2436 	.run		= run,
2437 	.stop		= stop,
2438 	.status		= status,
2439 	.error_handler	= error,
2440 	.hot_add_disk	= raid10_add_disk,
2441 	.hot_remove_disk= raid10_remove_disk,
2442 	.spare_active	= raid10_spare_active,
2443 	.sync_request	= sync_request,
2444 	.quiesce	= raid10_quiesce,
2445 	.size		= raid10_size,
2446 	.takeover	= raid10_takeover,
2447 };
2448 
2449 static int __init raid_init(void)
2450 {
2451 	return register_md_personality(&raid10_personality);
2452 }
2453 
2454 static void raid_exit(void)
2455 {
2456 	unregister_md_personality(&raid10_personality);
2457 }
2458 
2459 module_init(raid_init);
2460 module_exit(raid_exit);
2461 MODULE_LICENSE("GPL");
2462 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2463 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2464 MODULE_ALIAS("md-raid10");
2465 MODULE_ALIAS("md-level-10");
2466