1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "raid0.h" 28 #include "bitmap.h" 29 30 /* 31 * RAID10 provides a combination of RAID0 and RAID1 functionality. 32 * The layout of data is defined by 33 * chunk_size 34 * raid_disks 35 * near_copies (stored in low byte of layout) 36 * far_copies (stored in second byte of layout) 37 * far_offset (stored in bit 16 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. 40 * Each device is divided into far_copies sections. 41 * In each section, chunks are laid out in a style similar to raid0, but 42 * near_copies copies of each chunk is stored (each on a different drive). 43 * The starting device for each section is offset near_copies from the starting 44 * device of the previous section. 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 46 * drive. 47 * near_copies and far_copies must be at least one, and their product is at most 48 * raid_disks. 49 * 50 * If far_offset is true, then the far_copies are handled a bit differently. 51 * The copies are still in different stripes, but instead of be very far apart 52 * on disk, there are adjacent stripes. 53 */ 54 55 /* 56 * Number of guaranteed r10bios in case of extreme VM load: 57 */ 58 #define NR_RAID10_BIOS 256 59 60 static void allow_barrier(conf_t *conf); 61 static void lower_barrier(conf_t *conf); 62 63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 64 { 65 conf_t *conf = data; 66 int size = offsetof(struct r10bio_s, devs[conf->copies]); 67 68 /* allocate a r10bio with room for raid_disks entries in the bios array */ 69 return kzalloc(size, gfp_flags); 70 } 71 72 static void r10bio_pool_free(void *r10_bio, void *data) 73 { 74 kfree(r10_bio); 75 } 76 77 /* Maximum size of each resync request */ 78 #define RESYNC_BLOCK_SIZE (64*1024) 79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 80 /* amount of memory to reserve for resync requests */ 81 #define RESYNC_WINDOW (1024*1024) 82 /* maximum number of concurrent requests, memory permitting */ 83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) 103 return NULL; 104 105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 106 nalloc = conf->copies; /* resync */ 107 else 108 nalloc = 2; /* recovery */ 109 110 /* 111 * Allocate bios. 112 */ 113 for (j = nalloc ; j-- ; ) { 114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 115 if (!bio) 116 goto out_free_bio; 117 r10_bio->devs[j].bio = bio; 118 } 119 /* 120 * Allocate RESYNC_PAGES data pages and attach them 121 * where needed. 122 */ 123 for (j = 0 ; j < nalloc; j++) { 124 bio = r10_bio->devs[j].bio; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 } 132 } 133 134 return r10_bio; 135 136 out_free_pages: 137 for ( ; i > 0 ; i--) 138 safe_put_page(bio->bi_io_vec[i-1].bv_page); 139 while (j--) 140 for (i = 0; i < RESYNC_PAGES ; i++) 141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 142 j = -1; 143 out_free_bio: 144 while ( ++j < nalloc ) 145 bio_put(r10_bio->devs[j].bio); 146 r10bio_pool_free(r10_bio, conf); 147 return NULL; 148 } 149 150 static void r10buf_pool_free(void *__r10_bio, void *data) 151 { 152 int i; 153 conf_t *conf = data; 154 r10bio_t *r10bio = __r10_bio; 155 int j; 156 157 for (j=0; j < conf->copies; j++) { 158 struct bio *bio = r10bio->devs[j].bio; 159 if (bio) { 160 for (i = 0; i < RESYNC_PAGES; i++) { 161 safe_put_page(bio->bi_io_vec[i].bv_page); 162 bio->bi_io_vec[i].bv_page = NULL; 163 } 164 bio_put(bio); 165 } 166 } 167 r10bio_pool_free(r10bio, conf); 168 } 169 170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 171 { 172 int i; 173 174 for (i = 0; i < conf->copies; i++) { 175 struct bio **bio = & r10_bio->devs[i].bio; 176 if (*bio && *bio != IO_BLOCKED) 177 bio_put(*bio); 178 *bio = NULL; 179 } 180 } 181 182 static void free_r10bio(r10bio_t *r10_bio) 183 { 184 conf_t *conf = r10_bio->mddev->private; 185 186 /* 187 * Wake up any possible resync thread that waits for the device 188 * to go idle. 189 */ 190 allow_barrier(conf); 191 192 put_all_bios(conf, r10_bio); 193 mempool_free(r10_bio, conf->r10bio_pool); 194 } 195 196 static void put_buf(r10bio_t *r10_bio) 197 { 198 conf_t *conf = r10_bio->mddev->private; 199 200 mempool_free(r10_bio, conf->r10buf_pool); 201 202 lower_barrier(conf); 203 } 204 205 static void reschedule_retry(r10bio_t *r10_bio) 206 { 207 unsigned long flags; 208 mddev_t *mddev = r10_bio->mddev; 209 conf_t *conf = mddev->private; 210 211 spin_lock_irqsave(&conf->device_lock, flags); 212 list_add(&r10_bio->retry_list, &conf->retry_list); 213 conf->nr_queued ++; 214 spin_unlock_irqrestore(&conf->device_lock, flags); 215 216 /* wake up frozen array... */ 217 wake_up(&conf->wait_barrier); 218 219 md_wakeup_thread(mddev->thread); 220 } 221 222 /* 223 * raid_end_bio_io() is called when we have finished servicing a mirrored 224 * operation and are ready to return a success/failure code to the buffer 225 * cache layer. 226 */ 227 static void raid_end_bio_io(r10bio_t *r10_bio) 228 { 229 struct bio *bio = r10_bio->master_bio; 230 231 bio_endio(bio, 232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 233 free_r10bio(r10_bio); 234 } 235 236 /* 237 * Update disk head position estimator based on IRQ completion info. 238 */ 239 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 240 { 241 conf_t *conf = r10_bio->mddev->private; 242 243 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 244 r10_bio->devs[slot].addr + (r10_bio->sectors); 245 } 246 247 static void raid10_end_read_request(struct bio *bio, int error) 248 { 249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 250 r10bio_t *r10_bio = bio->bi_private; 251 int slot, dev; 252 conf_t *conf = r10_bio->mddev->private; 253 254 255 slot = r10_bio->read_slot; 256 dev = r10_bio->devs[slot].devnum; 257 /* 258 * this branch is our 'one mirror IO has finished' event handler: 259 */ 260 update_head_pos(slot, r10_bio); 261 262 if (uptodate) { 263 /* 264 * Set R10BIO_Uptodate in our master bio, so that 265 * we will return a good error code to the higher 266 * levels even if IO on some other mirrored buffer fails. 267 * 268 * The 'master' represents the composite IO operation to 269 * user-side. So if something waits for IO, then it will 270 * wait for the 'master' bio. 271 */ 272 set_bit(R10BIO_Uptodate, &r10_bio->state); 273 raid_end_bio_io(r10_bio); 274 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 275 } else { 276 /* 277 * oops, read error - keep the refcount on the rdev 278 */ 279 char b[BDEVNAME_SIZE]; 280 if (printk_ratelimit()) 281 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", 282 mdname(conf->mddev), 283 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 284 reschedule_retry(r10_bio); 285 } 286 } 287 288 static void raid10_end_write_request(struct bio *bio, int error) 289 { 290 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 291 r10bio_t *r10_bio = bio->bi_private; 292 int slot, dev; 293 conf_t *conf = r10_bio->mddev->private; 294 295 for (slot = 0; slot < conf->copies; slot++) 296 if (r10_bio->devs[slot].bio == bio) 297 break; 298 dev = r10_bio->devs[slot].devnum; 299 300 /* 301 * this branch is our 'one mirror IO has finished' event handler: 302 */ 303 if (!uptodate) { 304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 305 /* an I/O failed, we can't clear the bitmap */ 306 set_bit(R10BIO_Degraded, &r10_bio->state); 307 } else 308 /* 309 * Set R10BIO_Uptodate in our master bio, so that 310 * we will return a good error code for to the higher 311 * levels even if IO on some other mirrored buffer fails. 312 * 313 * The 'master' represents the composite IO operation to 314 * user-side. So if something waits for IO, then it will 315 * wait for the 'master' bio. 316 */ 317 set_bit(R10BIO_Uptodate, &r10_bio->state); 318 319 update_head_pos(slot, r10_bio); 320 321 /* 322 * 323 * Let's see if all mirrored write operations have finished 324 * already. 325 */ 326 if (atomic_dec_and_test(&r10_bio->remaining)) { 327 /* clear the bitmap if all writes complete successfully */ 328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 329 r10_bio->sectors, 330 !test_bit(R10BIO_Degraded, &r10_bio->state), 331 0); 332 md_write_end(r10_bio->mddev); 333 raid_end_bio_io(r10_bio); 334 } 335 336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 337 } 338 339 340 /* 341 * RAID10 layout manager 342 * As well as the chunksize and raid_disks count, there are two 343 * parameters: near_copies and far_copies. 344 * near_copies * far_copies must be <= raid_disks. 345 * Normally one of these will be 1. 346 * If both are 1, we get raid0. 347 * If near_copies == raid_disks, we get raid1. 348 * 349 * Chunks are laid out in raid0 style with near_copies copies of the 350 * first chunk, followed by near_copies copies of the next chunk and 351 * so on. 352 * If far_copies > 1, then after 1/far_copies of the array has been assigned 353 * as described above, we start again with a device offset of near_copies. 354 * So we effectively have another copy of the whole array further down all 355 * the drives, but with blocks on different drives. 356 * With this layout, and block is never stored twice on the one device. 357 * 358 * raid10_find_phys finds the sector offset of a given virtual sector 359 * on each device that it is on. 360 * 361 * raid10_find_virt does the reverse mapping, from a device and a 362 * sector offset to a virtual address 363 */ 364 365 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 366 { 367 int n,f; 368 sector_t sector; 369 sector_t chunk; 370 sector_t stripe; 371 int dev; 372 373 int slot = 0; 374 375 /* now calculate first sector/dev */ 376 chunk = r10bio->sector >> conf->chunk_shift; 377 sector = r10bio->sector & conf->chunk_mask; 378 379 chunk *= conf->near_copies; 380 stripe = chunk; 381 dev = sector_div(stripe, conf->raid_disks); 382 if (conf->far_offset) 383 stripe *= conf->far_copies; 384 385 sector += stripe << conf->chunk_shift; 386 387 /* and calculate all the others */ 388 for (n=0; n < conf->near_copies; n++) { 389 int d = dev; 390 sector_t s = sector; 391 r10bio->devs[slot].addr = sector; 392 r10bio->devs[slot].devnum = d; 393 slot++; 394 395 for (f = 1; f < conf->far_copies; f++) { 396 d += conf->near_copies; 397 if (d >= conf->raid_disks) 398 d -= conf->raid_disks; 399 s += conf->stride; 400 r10bio->devs[slot].devnum = d; 401 r10bio->devs[slot].addr = s; 402 slot++; 403 } 404 dev++; 405 if (dev >= conf->raid_disks) { 406 dev = 0; 407 sector += (conf->chunk_mask + 1); 408 } 409 } 410 BUG_ON(slot != conf->copies); 411 } 412 413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 414 { 415 sector_t offset, chunk, vchunk; 416 417 offset = sector & conf->chunk_mask; 418 if (conf->far_offset) { 419 int fc; 420 chunk = sector >> conf->chunk_shift; 421 fc = sector_div(chunk, conf->far_copies); 422 dev -= fc * conf->near_copies; 423 if (dev < 0) 424 dev += conf->raid_disks; 425 } else { 426 while (sector >= conf->stride) { 427 sector -= conf->stride; 428 if (dev < conf->near_copies) 429 dev += conf->raid_disks - conf->near_copies; 430 else 431 dev -= conf->near_copies; 432 } 433 chunk = sector >> conf->chunk_shift; 434 } 435 vchunk = chunk * conf->raid_disks + dev; 436 sector_div(vchunk, conf->near_copies); 437 return (vchunk << conf->chunk_shift) + offset; 438 } 439 440 /** 441 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 442 * @q: request queue 443 * @bvm: properties of new bio 444 * @biovec: the request that could be merged to it. 445 * 446 * Return amount of bytes we can accept at this offset 447 * If near_copies == raid_disk, there are no striping issues, 448 * but in that case, the function isn't called at all. 449 */ 450 static int raid10_mergeable_bvec(struct request_queue *q, 451 struct bvec_merge_data *bvm, 452 struct bio_vec *biovec) 453 { 454 mddev_t *mddev = q->queuedata; 455 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 456 int max; 457 unsigned int chunk_sectors = mddev->chunk_sectors; 458 unsigned int bio_sectors = bvm->bi_size >> 9; 459 460 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 461 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 462 if (max <= biovec->bv_len && bio_sectors == 0) 463 return biovec->bv_len; 464 else 465 return max; 466 } 467 468 /* 469 * This routine returns the disk from which the requested read should 470 * be done. There is a per-array 'next expected sequential IO' sector 471 * number - if this matches on the next IO then we use the last disk. 472 * There is also a per-disk 'last know head position' sector that is 473 * maintained from IRQ contexts, both the normal and the resync IO 474 * completion handlers update this position correctly. If there is no 475 * perfect sequential match then we pick the disk whose head is closest. 476 * 477 * If there are 2 mirrors in the same 2 devices, performance degrades 478 * because position is mirror, not device based. 479 * 480 * The rdev for the device selected will have nr_pending incremented. 481 */ 482 483 /* 484 * FIXME: possibly should rethink readbalancing and do it differently 485 * depending on near_copies / far_copies geometry. 486 */ 487 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 488 { 489 const sector_t this_sector = r10_bio->sector; 490 int disk, slot; 491 const int sectors = r10_bio->sectors; 492 sector_t new_distance, best_dist; 493 mdk_rdev_t *rdev; 494 int do_balance; 495 int best_slot; 496 497 raid10_find_phys(conf, r10_bio); 498 rcu_read_lock(); 499 retry: 500 best_slot = -1; 501 best_dist = MaxSector; 502 do_balance = 1; 503 /* 504 * Check if we can balance. We can balance on the whole 505 * device if no resync is going on (recovery is ok), or below 506 * the resync window. We take the first readable disk when 507 * above the resync window. 508 */ 509 if (conf->mddev->recovery_cp < MaxSector 510 && (this_sector + sectors >= conf->next_resync)) 511 do_balance = 0; 512 513 for (slot = 0; slot < conf->copies ; slot++) { 514 if (r10_bio->devs[slot].bio == IO_BLOCKED) 515 continue; 516 disk = r10_bio->devs[slot].devnum; 517 rdev = rcu_dereference(conf->mirrors[disk].rdev); 518 if (rdev == NULL) 519 continue; 520 if (!test_bit(In_sync, &rdev->flags)) 521 continue; 522 523 if (!do_balance) 524 break; 525 526 /* This optimisation is debatable, and completely destroys 527 * sequential read speed for 'far copies' arrays. So only 528 * keep it for 'near' arrays, and review those later. 529 */ 530 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 531 break; 532 533 /* for far > 1 always use the lowest address */ 534 if (conf->far_copies > 1) 535 new_distance = r10_bio->devs[slot].addr; 536 else 537 new_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 if (new_distance < best_dist) { 540 best_dist = new_distance; 541 best_slot = slot; 542 } 543 } 544 if (slot == conf->copies) 545 slot = best_slot; 546 547 if (slot >= 0) { 548 disk = r10_bio->devs[slot].devnum; 549 rdev = rcu_dereference(conf->mirrors[disk].rdev); 550 if (!rdev) 551 goto retry; 552 atomic_inc(&rdev->nr_pending); 553 if (test_bit(Faulty, &rdev->flags)) { 554 /* Cannot risk returning a device that failed 555 * before we inc'ed nr_pending 556 */ 557 rdev_dec_pending(rdev, conf->mddev); 558 goto retry; 559 } 560 r10_bio->read_slot = slot; 561 } else 562 disk = -1; 563 rcu_read_unlock(); 564 565 return disk; 566 } 567 568 static int raid10_congested(void *data, int bits) 569 { 570 mddev_t *mddev = data; 571 conf_t *conf = mddev->private; 572 int i, ret = 0; 573 574 if (mddev_congested(mddev, bits)) 575 return 1; 576 rcu_read_lock(); 577 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 579 if (rdev && !test_bit(Faulty, &rdev->flags)) { 580 struct request_queue *q = bdev_get_queue(rdev->bdev); 581 582 ret |= bdi_congested(&q->backing_dev_info, bits); 583 } 584 } 585 rcu_read_unlock(); 586 return ret; 587 } 588 589 static void flush_pending_writes(conf_t *conf) 590 { 591 /* Any writes that have been queued but are awaiting 592 * bitmap updates get flushed here. 593 */ 594 spin_lock_irq(&conf->device_lock); 595 596 if (conf->pending_bio_list.head) { 597 struct bio *bio; 598 bio = bio_list_get(&conf->pending_bio_list); 599 spin_unlock_irq(&conf->device_lock); 600 /* flush any pending bitmap writes to disk 601 * before proceeding w/ I/O */ 602 bitmap_unplug(conf->mddev->bitmap); 603 604 while (bio) { /* submit pending writes */ 605 struct bio *next = bio->bi_next; 606 bio->bi_next = NULL; 607 generic_make_request(bio); 608 bio = next; 609 } 610 } else 611 spin_unlock_irq(&conf->device_lock); 612 } 613 614 /* Barriers.... 615 * Sometimes we need to suspend IO while we do something else, 616 * either some resync/recovery, or reconfigure the array. 617 * To do this we raise a 'barrier'. 618 * The 'barrier' is a counter that can be raised multiple times 619 * to count how many activities are happening which preclude 620 * normal IO. 621 * We can only raise the barrier if there is no pending IO. 622 * i.e. if nr_pending == 0. 623 * We choose only to raise the barrier if no-one is waiting for the 624 * barrier to go down. This means that as soon as an IO request 625 * is ready, no other operations which require a barrier will start 626 * until the IO request has had a chance. 627 * 628 * So: regular IO calls 'wait_barrier'. When that returns there 629 * is no backgroup IO happening, It must arrange to call 630 * allow_barrier when it has finished its IO. 631 * backgroup IO calls must call raise_barrier. Once that returns 632 * there is no normal IO happeing. It must arrange to call 633 * lower_barrier when the particular background IO completes. 634 */ 635 636 static void raise_barrier(conf_t *conf, int force) 637 { 638 BUG_ON(force && !conf->barrier); 639 spin_lock_irq(&conf->resync_lock); 640 641 /* Wait until no block IO is waiting (unless 'force') */ 642 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 643 conf->resync_lock, ); 644 645 /* block any new IO from starting */ 646 conf->barrier++; 647 648 /* Now wait for all pending IO to complete */ 649 wait_event_lock_irq(conf->wait_barrier, 650 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 651 conf->resync_lock, ); 652 653 spin_unlock_irq(&conf->resync_lock); 654 } 655 656 static void lower_barrier(conf_t *conf) 657 { 658 unsigned long flags; 659 spin_lock_irqsave(&conf->resync_lock, flags); 660 conf->barrier--; 661 spin_unlock_irqrestore(&conf->resync_lock, flags); 662 wake_up(&conf->wait_barrier); 663 } 664 665 static void wait_barrier(conf_t *conf) 666 { 667 spin_lock_irq(&conf->resync_lock); 668 if (conf->barrier) { 669 conf->nr_waiting++; 670 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 671 conf->resync_lock, 672 ); 673 conf->nr_waiting--; 674 } 675 conf->nr_pending++; 676 spin_unlock_irq(&conf->resync_lock); 677 } 678 679 static void allow_barrier(conf_t *conf) 680 { 681 unsigned long flags; 682 spin_lock_irqsave(&conf->resync_lock, flags); 683 conf->nr_pending--; 684 spin_unlock_irqrestore(&conf->resync_lock, flags); 685 wake_up(&conf->wait_barrier); 686 } 687 688 static void freeze_array(conf_t *conf) 689 { 690 /* stop syncio and normal IO and wait for everything to 691 * go quiet. 692 * We increment barrier and nr_waiting, and then 693 * wait until nr_pending match nr_queued+1 694 * This is called in the context of one normal IO request 695 * that has failed. Thus any sync request that might be pending 696 * will be blocked by nr_pending, and we need to wait for 697 * pending IO requests to complete or be queued for re-try. 698 * Thus the number queued (nr_queued) plus this request (1) 699 * must match the number of pending IOs (nr_pending) before 700 * we continue. 701 */ 702 spin_lock_irq(&conf->resync_lock); 703 conf->barrier++; 704 conf->nr_waiting++; 705 wait_event_lock_irq(conf->wait_barrier, 706 conf->nr_pending == conf->nr_queued+1, 707 conf->resync_lock, 708 flush_pending_writes(conf)); 709 710 spin_unlock_irq(&conf->resync_lock); 711 } 712 713 static void unfreeze_array(conf_t *conf) 714 { 715 /* reverse the effect of the freeze */ 716 spin_lock_irq(&conf->resync_lock); 717 conf->barrier--; 718 conf->nr_waiting--; 719 wake_up(&conf->wait_barrier); 720 spin_unlock_irq(&conf->resync_lock); 721 } 722 723 static int make_request(mddev_t *mddev, struct bio * bio) 724 { 725 conf_t *conf = mddev->private; 726 mirror_info_t *mirror; 727 r10bio_t *r10_bio; 728 struct bio *read_bio; 729 int i; 730 int chunk_sects = conf->chunk_mask + 1; 731 const int rw = bio_data_dir(bio); 732 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 733 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 734 unsigned long flags; 735 mdk_rdev_t *blocked_rdev; 736 int plugged; 737 738 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 739 md_flush_request(mddev, bio); 740 return 0; 741 } 742 743 /* If this request crosses a chunk boundary, we need to 744 * split it. This will only happen for 1 PAGE (or less) requests. 745 */ 746 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 747 > chunk_sects && 748 conf->near_copies < conf->raid_disks)) { 749 struct bio_pair *bp; 750 /* Sanity check -- queue functions should prevent this happening */ 751 if (bio->bi_vcnt != 1 || 752 bio->bi_idx != 0) 753 goto bad_map; 754 /* This is a one page bio that upper layers 755 * refuse to split for us, so we need to split it. 756 */ 757 bp = bio_split(bio, 758 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 759 760 /* Each of these 'make_request' calls will call 'wait_barrier'. 761 * If the first succeeds but the second blocks due to the resync 762 * thread raising the barrier, we will deadlock because the 763 * IO to the underlying device will be queued in generic_make_request 764 * and will never complete, so will never reduce nr_pending. 765 * So increment nr_waiting here so no new raise_barriers will 766 * succeed, and so the second wait_barrier cannot block. 767 */ 768 spin_lock_irq(&conf->resync_lock); 769 conf->nr_waiting++; 770 spin_unlock_irq(&conf->resync_lock); 771 772 if (make_request(mddev, &bp->bio1)) 773 generic_make_request(&bp->bio1); 774 if (make_request(mddev, &bp->bio2)) 775 generic_make_request(&bp->bio2); 776 777 spin_lock_irq(&conf->resync_lock); 778 conf->nr_waiting--; 779 wake_up(&conf->wait_barrier); 780 spin_unlock_irq(&conf->resync_lock); 781 782 bio_pair_release(bp); 783 return 0; 784 bad_map: 785 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 786 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 787 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 788 789 bio_io_error(bio); 790 return 0; 791 } 792 793 md_write_start(mddev, bio); 794 795 /* 796 * Register the new request and wait if the reconstruction 797 * thread has put up a bar for new requests. 798 * Continue immediately if no resync is active currently. 799 */ 800 wait_barrier(conf); 801 802 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 803 804 r10_bio->master_bio = bio; 805 r10_bio->sectors = bio->bi_size >> 9; 806 807 r10_bio->mddev = mddev; 808 r10_bio->sector = bio->bi_sector; 809 r10_bio->state = 0; 810 811 if (rw == READ) { 812 /* 813 * read balancing logic: 814 */ 815 int disk = read_balance(conf, r10_bio); 816 int slot = r10_bio->read_slot; 817 if (disk < 0) { 818 raid_end_bio_io(r10_bio); 819 return 0; 820 } 821 mirror = conf->mirrors + disk; 822 823 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 824 825 r10_bio->devs[slot].bio = read_bio; 826 827 read_bio->bi_sector = r10_bio->devs[slot].addr + 828 mirror->rdev->data_offset; 829 read_bio->bi_bdev = mirror->rdev->bdev; 830 read_bio->bi_end_io = raid10_end_read_request; 831 read_bio->bi_rw = READ | do_sync; 832 read_bio->bi_private = r10_bio; 833 834 generic_make_request(read_bio); 835 return 0; 836 } 837 838 /* 839 * WRITE: 840 */ 841 /* first select target devices under rcu_lock and 842 * inc refcount on their rdev. Record them by setting 843 * bios[x] to bio 844 */ 845 plugged = mddev_check_plugged(mddev); 846 847 raid10_find_phys(conf, r10_bio); 848 retry_write: 849 blocked_rdev = NULL; 850 rcu_read_lock(); 851 for (i = 0; i < conf->copies; i++) { 852 int d = r10_bio->devs[i].devnum; 853 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 854 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 855 atomic_inc(&rdev->nr_pending); 856 blocked_rdev = rdev; 857 break; 858 } 859 if (rdev && !test_bit(Faulty, &rdev->flags)) { 860 atomic_inc(&rdev->nr_pending); 861 r10_bio->devs[i].bio = bio; 862 } else { 863 r10_bio->devs[i].bio = NULL; 864 set_bit(R10BIO_Degraded, &r10_bio->state); 865 } 866 } 867 rcu_read_unlock(); 868 869 if (unlikely(blocked_rdev)) { 870 /* Have to wait for this device to get unblocked, then retry */ 871 int j; 872 int d; 873 874 for (j = 0; j < i; j++) 875 if (r10_bio->devs[j].bio) { 876 d = r10_bio->devs[j].devnum; 877 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 878 } 879 allow_barrier(conf); 880 md_wait_for_blocked_rdev(blocked_rdev, mddev); 881 wait_barrier(conf); 882 goto retry_write; 883 } 884 885 atomic_set(&r10_bio->remaining, 1); 886 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 887 888 for (i = 0; i < conf->copies; i++) { 889 struct bio *mbio; 890 int d = r10_bio->devs[i].devnum; 891 if (!r10_bio->devs[i].bio) 892 continue; 893 894 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 895 r10_bio->devs[i].bio = mbio; 896 897 mbio->bi_sector = r10_bio->devs[i].addr+ 898 conf->mirrors[d].rdev->data_offset; 899 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 900 mbio->bi_end_io = raid10_end_write_request; 901 mbio->bi_rw = WRITE | do_sync | do_fua; 902 mbio->bi_private = r10_bio; 903 904 atomic_inc(&r10_bio->remaining); 905 spin_lock_irqsave(&conf->device_lock, flags); 906 bio_list_add(&conf->pending_bio_list, mbio); 907 spin_unlock_irqrestore(&conf->device_lock, flags); 908 } 909 910 if (atomic_dec_and_test(&r10_bio->remaining)) { 911 /* This matches the end of raid10_end_write_request() */ 912 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 913 r10_bio->sectors, 914 !test_bit(R10BIO_Degraded, &r10_bio->state), 915 0); 916 md_write_end(mddev); 917 raid_end_bio_io(r10_bio); 918 } 919 920 /* In case raid10d snuck in to freeze_array */ 921 wake_up(&conf->wait_barrier); 922 923 if (do_sync || !mddev->bitmap || !plugged) 924 md_wakeup_thread(mddev->thread); 925 return 0; 926 } 927 928 static void status(struct seq_file *seq, mddev_t *mddev) 929 { 930 conf_t *conf = mddev->private; 931 int i; 932 933 if (conf->near_copies < conf->raid_disks) 934 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 935 if (conf->near_copies > 1) 936 seq_printf(seq, " %d near-copies", conf->near_copies); 937 if (conf->far_copies > 1) { 938 if (conf->far_offset) 939 seq_printf(seq, " %d offset-copies", conf->far_copies); 940 else 941 seq_printf(seq, " %d far-copies", conf->far_copies); 942 } 943 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 944 conf->raid_disks - mddev->degraded); 945 for (i = 0; i < conf->raid_disks; i++) 946 seq_printf(seq, "%s", 947 conf->mirrors[i].rdev && 948 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 949 seq_printf(seq, "]"); 950 } 951 952 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 953 { 954 char b[BDEVNAME_SIZE]; 955 conf_t *conf = mddev->private; 956 957 /* 958 * If it is not operational, then we have already marked it as dead 959 * else if it is the last working disks, ignore the error, let the 960 * next level up know. 961 * else mark the drive as failed 962 */ 963 if (test_bit(In_sync, &rdev->flags) 964 && conf->raid_disks-mddev->degraded == 1) 965 /* 966 * Don't fail the drive, just return an IO error. 967 * The test should really be more sophisticated than 968 * "working_disks == 1", but it isn't critical, and 969 * can wait until we do more sophisticated "is the drive 970 * really dead" tests... 971 */ 972 return; 973 if (test_and_clear_bit(In_sync, &rdev->flags)) { 974 unsigned long flags; 975 spin_lock_irqsave(&conf->device_lock, flags); 976 mddev->degraded++; 977 spin_unlock_irqrestore(&conf->device_lock, flags); 978 /* 979 * if recovery is running, make sure it aborts. 980 */ 981 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 982 } 983 set_bit(Faulty, &rdev->flags); 984 set_bit(MD_CHANGE_DEVS, &mddev->flags); 985 printk(KERN_ALERT 986 "md/raid10:%s: Disk failure on %s, disabling device.\n" 987 "md/raid10:%s: Operation continuing on %d devices.\n", 988 mdname(mddev), bdevname(rdev->bdev, b), 989 mdname(mddev), conf->raid_disks - mddev->degraded); 990 } 991 992 static void print_conf(conf_t *conf) 993 { 994 int i; 995 mirror_info_t *tmp; 996 997 printk(KERN_DEBUG "RAID10 conf printout:\n"); 998 if (!conf) { 999 printk(KERN_DEBUG "(!conf)\n"); 1000 return; 1001 } 1002 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1003 conf->raid_disks); 1004 1005 for (i = 0; i < conf->raid_disks; i++) { 1006 char b[BDEVNAME_SIZE]; 1007 tmp = conf->mirrors + i; 1008 if (tmp->rdev) 1009 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1010 i, !test_bit(In_sync, &tmp->rdev->flags), 1011 !test_bit(Faulty, &tmp->rdev->flags), 1012 bdevname(tmp->rdev->bdev,b)); 1013 } 1014 } 1015 1016 static void close_sync(conf_t *conf) 1017 { 1018 wait_barrier(conf); 1019 allow_barrier(conf); 1020 1021 mempool_destroy(conf->r10buf_pool); 1022 conf->r10buf_pool = NULL; 1023 } 1024 1025 /* check if there are enough drives for 1026 * every block to appear on atleast one 1027 */ 1028 static int enough(conf_t *conf) 1029 { 1030 int first = 0; 1031 1032 do { 1033 int n = conf->copies; 1034 int cnt = 0; 1035 while (n--) { 1036 if (conf->mirrors[first].rdev) 1037 cnt++; 1038 first = (first+1) % conf->raid_disks; 1039 } 1040 if (cnt == 0) 1041 return 0; 1042 } while (first != 0); 1043 return 1; 1044 } 1045 1046 static int raid10_spare_active(mddev_t *mddev) 1047 { 1048 int i; 1049 conf_t *conf = mddev->private; 1050 mirror_info_t *tmp; 1051 int count = 0; 1052 unsigned long flags; 1053 1054 /* 1055 * Find all non-in_sync disks within the RAID10 configuration 1056 * and mark them in_sync 1057 */ 1058 for (i = 0; i < conf->raid_disks; i++) { 1059 tmp = conf->mirrors + i; 1060 if (tmp->rdev 1061 && !test_bit(Faulty, &tmp->rdev->flags) 1062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1063 count++; 1064 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1065 } 1066 } 1067 spin_lock_irqsave(&conf->device_lock, flags); 1068 mddev->degraded -= count; 1069 spin_unlock_irqrestore(&conf->device_lock, flags); 1070 1071 print_conf(conf); 1072 return count; 1073 } 1074 1075 1076 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1077 { 1078 conf_t *conf = mddev->private; 1079 int err = -EEXIST; 1080 int mirror; 1081 mirror_info_t *p; 1082 int first = 0; 1083 int last = conf->raid_disks - 1; 1084 1085 if (mddev->recovery_cp < MaxSector) 1086 /* only hot-add to in-sync arrays, as recovery is 1087 * very different from resync 1088 */ 1089 return -EBUSY; 1090 if (!enough(conf)) 1091 return -EINVAL; 1092 1093 if (rdev->raid_disk >= 0) 1094 first = last = rdev->raid_disk; 1095 1096 if (rdev->saved_raid_disk >= 0 && 1097 rdev->saved_raid_disk >= first && 1098 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1099 mirror = rdev->saved_raid_disk; 1100 else 1101 mirror = first; 1102 for ( ; mirror <= last ; mirror++) 1103 if ( !(p=conf->mirrors+mirror)->rdev) { 1104 1105 disk_stack_limits(mddev->gendisk, rdev->bdev, 1106 rdev->data_offset << 9); 1107 /* as we don't honour merge_bvec_fn, we must 1108 * never risk violating it, so limit 1109 * ->max_segments to one lying with a single 1110 * page, as a one page request is never in 1111 * violation. 1112 */ 1113 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1114 blk_queue_max_segments(mddev->queue, 1); 1115 blk_queue_segment_boundary(mddev->queue, 1116 PAGE_CACHE_SIZE - 1); 1117 } 1118 1119 p->head_position = 0; 1120 rdev->raid_disk = mirror; 1121 err = 0; 1122 if (rdev->saved_raid_disk != mirror) 1123 conf->fullsync = 1; 1124 rcu_assign_pointer(p->rdev, rdev); 1125 break; 1126 } 1127 1128 md_integrity_add_rdev(rdev, mddev); 1129 print_conf(conf); 1130 return err; 1131 } 1132 1133 static int raid10_remove_disk(mddev_t *mddev, int number) 1134 { 1135 conf_t *conf = mddev->private; 1136 int err = 0; 1137 mdk_rdev_t *rdev; 1138 mirror_info_t *p = conf->mirrors+ number; 1139 1140 print_conf(conf); 1141 rdev = p->rdev; 1142 if (rdev) { 1143 if (test_bit(In_sync, &rdev->flags) || 1144 atomic_read(&rdev->nr_pending)) { 1145 err = -EBUSY; 1146 goto abort; 1147 } 1148 /* Only remove faulty devices in recovery 1149 * is not possible. 1150 */ 1151 if (!test_bit(Faulty, &rdev->flags) && 1152 enough(conf)) { 1153 err = -EBUSY; 1154 goto abort; 1155 } 1156 p->rdev = NULL; 1157 synchronize_rcu(); 1158 if (atomic_read(&rdev->nr_pending)) { 1159 /* lost the race, try later */ 1160 err = -EBUSY; 1161 p->rdev = rdev; 1162 goto abort; 1163 } 1164 err = md_integrity_register(mddev); 1165 } 1166 abort: 1167 1168 print_conf(conf); 1169 return err; 1170 } 1171 1172 1173 static void end_sync_read(struct bio *bio, int error) 1174 { 1175 r10bio_t *r10_bio = bio->bi_private; 1176 conf_t *conf = r10_bio->mddev->private; 1177 int i,d; 1178 1179 for (i=0; i<conf->copies; i++) 1180 if (r10_bio->devs[i].bio == bio) 1181 break; 1182 BUG_ON(i == conf->copies); 1183 update_head_pos(i, r10_bio); 1184 d = r10_bio->devs[i].devnum; 1185 1186 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1187 set_bit(R10BIO_Uptodate, &r10_bio->state); 1188 else { 1189 atomic_add(r10_bio->sectors, 1190 &conf->mirrors[d].rdev->corrected_errors); 1191 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1192 md_error(r10_bio->mddev, 1193 conf->mirrors[d].rdev); 1194 } 1195 1196 /* for reconstruct, we always reschedule after a read. 1197 * for resync, only after all reads 1198 */ 1199 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1200 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1201 atomic_dec_and_test(&r10_bio->remaining)) { 1202 /* we have read all the blocks, 1203 * do the comparison in process context in raid10d 1204 */ 1205 reschedule_retry(r10_bio); 1206 } 1207 } 1208 1209 static void end_sync_write(struct bio *bio, int error) 1210 { 1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1212 r10bio_t *r10_bio = bio->bi_private; 1213 mddev_t *mddev = r10_bio->mddev; 1214 conf_t *conf = mddev->private; 1215 int i,d; 1216 1217 for (i = 0; i < conf->copies; i++) 1218 if (r10_bio->devs[i].bio == bio) 1219 break; 1220 d = r10_bio->devs[i].devnum; 1221 1222 if (!uptodate) 1223 md_error(mddev, conf->mirrors[d].rdev); 1224 1225 update_head_pos(i, r10_bio); 1226 1227 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1228 while (atomic_dec_and_test(&r10_bio->remaining)) { 1229 if (r10_bio->master_bio == NULL) { 1230 /* the primary of several recovery bios */ 1231 sector_t s = r10_bio->sectors; 1232 put_buf(r10_bio); 1233 md_done_sync(mddev, s, 1); 1234 break; 1235 } else { 1236 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1237 put_buf(r10_bio); 1238 r10_bio = r10_bio2; 1239 } 1240 } 1241 } 1242 1243 /* 1244 * Note: sync and recover and handled very differently for raid10 1245 * This code is for resync. 1246 * For resync, we read through virtual addresses and read all blocks. 1247 * If there is any error, we schedule a write. The lowest numbered 1248 * drive is authoritative. 1249 * However requests come for physical address, so we need to map. 1250 * For every physical address there are raid_disks/copies virtual addresses, 1251 * which is always are least one, but is not necessarly an integer. 1252 * This means that a physical address can span multiple chunks, so we may 1253 * have to submit multiple io requests for a single sync request. 1254 */ 1255 /* 1256 * We check if all blocks are in-sync and only write to blocks that 1257 * aren't in sync 1258 */ 1259 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1260 { 1261 conf_t *conf = mddev->private; 1262 int i, first; 1263 struct bio *tbio, *fbio; 1264 1265 atomic_set(&r10_bio->remaining, 1); 1266 1267 /* find the first device with a block */ 1268 for (i=0; i<conf->copies; i++) 1269 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1270 break; 1271 1272 if (i == conf->copies) 1273 goto done; 1274 1275 first = i; 1276 fbio = r10_bio->devs[i].bio; 1277 1278 /* now find blocks with errors */ 1279 for (i=0 ; i < conf->copies ; i++) { 1280 int j, d; 1281 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1282 1283 tbio = r10_bio->devs[i].bio; 1284 1285 if (tbio->bi_end_io != end_sync_read) 1286 continue; 1287 if (i == first) 1288 continue; 1289 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1290 /* We know that the bi_io_vec layout is the same for 1291 * both 'first' and 'i', so we just compare them. 1292 * All vec entries are PAGE_SIZE; 1293 */ 1294 for (j = 0; j < vcnt; j++) 1295 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1296 page_address(tbio->bi_io_vec[j].bv_page), 1297 PAGE_SIZE)) 1298 break; 1299 if (j == vcnt) 1300 continue; 1301 mddev->resync_mismatches += r10_bio->sectors; 1302 } 1303 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1304 /* Don't fix anything. */ 1305 continue; 1306 /* Ok, we need to write this bio 1307 * First we need to fixup bv_offset, bv_len and 1308 * bi_vecs, as the read request might have corrupted these 1309 */ 1310 tbio->bi_vcnt = vcnt; 1311 tbio->bi_size = r10_bio->sectors << 9; 1312 tbio->bi_idx = 0; 1313 tbio->bi_phys_segments = 0; 1314 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1315 tbio->bi_flags |= 1 << BIO_UPTODATE; 1316 tbio->bi_next = NULL; 1317 tbio->bi_rw = WRITE; 1318 tbio->bi_private = r10_bio; 1319 tbio->bi_sector = r10_bio->devs[i].addr; 1320 1321 for (j=0; j < vcnt ; j++) { 1322 tbio->bi_io_vec[j].bv_offset = 0; 1323 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1324 1325 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1326 page_address(fbio->bi_io_vec[j].bv_page), 1327 PAGE_SIZE); 1328 } 1329 tbio->bi_end_io = end_sync_write; 1330 1331 d = r10_bio->devs[i].devnum; 1332 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1333 atomic_inc(&r10_bio->remaining); 1334 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1335 1336 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1337 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1338 generic_make_request(tbio); 1339 } 1340 1341 done: 1342 if (atomic_dec_and_test(&r10_bio->remaining)) { 1343 md_done_sync(mddev, r10_bio->sectors, 1); 1344 put_buf(r10_bio); 1345 } 1346 } 1347 1348 /* 1349 * Now for the recovery code. 1350 * Recovery happens across physical sectors. 1351 * We recover all non-is_sync drives by finding the virtual address of 1352 * each, and then choose a working drive that also has that virt address. 1353 * There is a separate r10_bio for each non-in_sync drive. 1354 * Only the first two slots are in use. The first for reading, 1355 * The second for writing. 1356 * 1357 */ 1358 1359 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1360 { 1361 conf_t *conf = mddev->private; 1362 int i, d; 1363 struct bio *bio, *wbio; 1364 1365 1366 /* move the pages across to the second bio 1367 * and submit the write request 1368 */ 1369 bio = r10_bio->devs[0].bio; 1370 wbio = r10_bio->devs[1].bio; 1371 for (i=0; i < wbio->bi_vcnt; i++) { 1372 struct page *p = bio->bi_io_vec[i].bv_page; 1373 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1374 wbio->bi_io_vec[i].bv_page = p; 1375 } 1376 d = r10_bio->devs[1].devnum; 1377 1378 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1379 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1380 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1381 generic_make_request(wbio); 1382 else 1383 bio_endio(wbio, -EIO); 1384 } 1385 1386 1387 /* 1388 * Used by fix_read_error() to decay the per rdev read_errors. 1389 * We halve the read error count for every hour that has elapsed 1390 * since the last recorded read error. 1391 * 1392 */ 1393 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1394 { 1395 struct timespec cur_time_mon; 1396 unsigned long hours_since_last; 1397 unsigned int read_errors = atomic_read(&rdev->read_errors); 1398 1399 ktime_get_ts(&cur_time_mon); 1400 1401 if (rdev->last_read_error.tv_sec == 0 && 1402 rdev->last_read_error.tv_nsec == 0) { 1403 /* first time we've seen a read error */ 1404 rdev->last_read_error = cur_time_mon; 1405 return; 1406 } 1407 1408 hours_since_last = (cur_time_mon.tv_sec - 1409 rdev->last_read_error.tv_sec) / 3600; 1410 1411 rdev->last_read_error = cur_time_mon; 1412 1413 /* 1414 * if hours_since_last is > the number of bits in read_errors 1415 * just set read errors to 0. We do this to avoid 1416 * overflowing the shift of read_errors by hours_since_last. 1417 */ 1418 if (hours_since_last >= 8 * sizeof(read_errors)) 1419 atomic_set(&rdev->read_errors, 0); 1420 else 1421 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1422 } 1423 1424 /* 1425 * This is a kernel thread which: 1426 * 1427 * 1. Retries failed read operations on working mirrors. 1428 * 2. Updates the raid superblock when problems encounter. 1429 * 3. Performs writes following reads for array synchronising. 1430 */ 1431 1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1433 { 1434 int sect = 0; /* Offset from r10_bio->sector */ 1435 int sectors = r10_bio->sectors; 1436 mdk_rdev_t*rdev; 1437 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1438 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1439 1440 /* still own a reference to this rdev, so it cannot 1441 * have been cleared recently. 1442 */ 1443 rdev = conf->mirrors[d].rdev; 1444 1445 if (test_bit(Faulty, &rdev->flags)) 1446 /* drive has already been failed, just ignore any 1447 more fix_read_error() attempts */ 1448 return; 1449 1450 check_decay_read_errors(mddev, rdev); 1451 atomic_inc(&rdev->read_errors); 1452 if (atomic_read(&rdev->read_errors) > max_read_errors) { 1453 char b[BDEVNAME_SIZE]; 1454 bdevname(rdev->bdev, b); 1455 1456 printk(KERN_NOTICE 1457 "md/raid10:%s: %s: Raid device exceeded " 1458 "read_error threshold [cur %d:max %d]\n", 1459 mdname(mddev), b, 1460 atomic_read(&rdev->read_errors), max_read_errors); 1461 printk(KERN_NOTICE 1462 "md/raid10:%s: %s: Failing raid device\n", 1463 mdname(mddev), b); 1464 md_error(mddev, conf->mirrors[d].rdev); 1465 return; 1466 } 1467 1468 while(sectors) { 1469 int s = sectors; 1470 int sl = r10_bio->read_slot; 1471 int success = 0; 1472 int start; 1473 1474 if (s > (PAGE_SIZE>>9)) 1475 s = PAGE_SIZE >> 9; 1476 1477 rcu_read_lock(); 1478 do { 1479 d = r10_bio->devs[sl].devnum; 1480 rdev = rcu_dereference(conf->mirrors[d].rdev); 1481 if (rdev && 1482 test_bit(In_sync, &rdev->flags)) { 1483 atomic_inc(&rdev->nr_pending); 1484 rcu_read_unlock(); 1485 success = sync_page_io(rdev, 1486 r10_bio->devs[sl].addr + 1487 sect, 1488 s<<9, 1489 conf->tmppage, READ, false); 1490 rdev_dec_pending(rdev, mddev); 1491 rcu_read_lock(); 1492 if (success) 1493 break; 1494 } 1495 sl++; 1496 if (sl == conf->copies) 1497 sl = 0; 1498 } while (!success && sl != r10_bio->read_slot); 1499 rcu_read_unlock(); 1500 1501 if (!success) { 1502 /* Cannot read from anywhere -- bye bye array */ 1503 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1504 md_error(mddev, conf->mirrors[dn].rdev); 1505 break; 1506 } 1507 1508 start = sl; 1509 /* write it back and re-read */ 1510 rcu_read_lock(); 1511 while (sl != r10_bio->read_slot) { 1512 char b[BDEVNAME_SIZE]; 1513 1514 if (sl==0) 1515 sl = conf->copies; 1516 sl--; 1517 d = r10_bio->devs[sl].devnum; 1518 rdev = rcu_dereference(conf->mirrors[d].rdev); 1519 if (rdev && 1520 test_bit(In_sync, &rdev->flags)) { 1521 atomic_inc(&rdev->nr_pending); 1522 rcu_read_unlock(); 1523 atomic_add(s, &rdev->corrected_errors); 1524 if (sync_page_io(rdev, 1525 r10_bio->devs[sl].addr + 1526 sect, 1527 s<<9, conf->tmppage, WRITE, false) 1528 == 0) { 1529 /* Well, this device is dead */ 1530 printk(KERN_NOTICE 1531 "md/raid10:%s: read correction " 1532 "write failed" 1533 " (%d sectors at %llu on %s)\n", 1534 mdname(mddev), s, 1535 (unsigned long long)( 1536 sect + rdev->data_offset), 1537 bdevname(rdev->bdev, b)); 1538 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1539 "drive\n", 1540 mdname(mddev), 1541 bdevname(rdev->bdev, b)); 1542 md_error(mddev, rdev); 1543 } 1544 rdev_dec_pending(rdev, mddev); 1545 rcu_read_lock(); 1546 } 1547 } 1548 sl = start; 1549 while (sl != r10_bio->read_slot) { 1550 1551 if (sl==0) 1552 sl = conf->copies; 1553 sl--; 1554 d = r10_bio->devs[sl].devnum; 1555 rdev = rcu_dereference(conf->mirrors[d].rdev); 1556 if (rdev && 1557 test_bit(In_sync, &rdev->flags)) { 1558 char b[BDEVNAME_SIZE]; 1559 atomic_inc(&rdev->nr_pending); 1560 rcu_read_unlock(); 1561 if (sync_page_io(rdev, 1562 r10_bio->devs[sl].addr + 1563 sect, 1564 s<<9, conf->tmppage, 1565 READ, false) == 0) { 1566 /* Well, this device is dead */ 1567 printk(KERN_NOTICE 1568 "md/raid10:%s: unable to read back " 1569 "corrected sectors" 1570 " (%d sectors at %llu on %s)\n", 1571 mdname(mddev), s, 1572 (unsigned long long)( 1573 sect + rdev->data_offset), 1574 bdevname(rdev->bdev, b)); 1575 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n", 1576 mdname(mddev), 1577 bdevname(rdev->bdev, b)); 1578 1579 md_error(mddev, rdev); 1580 } else { 1581 printk(KERN_INFO 1582 "md/raid10:%s: read error corrected" 1583 " (%d sectors at %llu on %s)\n", 1584 mdname(mddev), s, 1585 (unsigned long long)( 1586 sect + rdev->data_offset), 1587 bdevname(rdev->bdev, b)); 1588 } 1589 1590 rdev_dec_pending(rdev, mddev); 1591 rcu_read_lock(); 1592 } 1593 } 1594 rcu_read_unlock(); 1595 1596 sectors -= s; 1597 sect += s; 1598 } 1599 } 1600 1601 static void raid10d(mddev_t *mddev) 1602 { 1603 r10bio_t *r10_bio; 1604 struct bio *bio; 1605 unsigned long flags; 1606 conf_t *conf = mddev->private; 1607 struct list_head *head = &conf->retry_list; 1608 mdk_rdev_t *rdev; 1609 struct blk_plug plug; 1610 1611 md_check_recovery(mddev); 1612 1613 blk_start_plug(&plug); 1614 for (;;) { 1615 char b[BDEVNAME_SIZE]; 1616 1617 flush_pending_writes(conf); 1618 1619 spin_lock_irqsave(&conf->device_lock, flags); 1620 if (list_empty(head)) { 1621 spin_unlock_irqrestore(&conf->device_lock, flags); 1622 break; 1623 } 1624 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1625 list_del(head->prev); 1626 conf->nr_queued--; 1627 spin_unlock_irqrestore(&conf->device_lock, flags); 1628 1629 mddev = r10_bio->mddev; 1630 conf = mddev->private; 1631 if (test_bit(R10BIO_IsSync, &r10_bio->state)) 1632 sync_request_write(mddev, r10_bio); 1633 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 1634 recovery_request_write(mddev, r10_bio); 1635 else { 1636 int slot = r10_bio->read_slot; 1637 int mirror = r10_bio->devs[slot].devnum; 1638 /* we got a read error. Maybe the drive is bad. Maybe just 1639 * the block and we can fix it. 1640 * We freeze all other IO, and try reading the block from 1641 * other devices. When we find one, we re-write 1642 * and check it that fixes the read error. 1643 * This is all done synchronously while the array is 1644 * frozen. 1645 */ 1646 if (mddev->ro == 0) { 1647 freeze_array(conf); 1648 fix_read_error(conf, mddev, r10_bio); 1649 unfreeze_array(conf); 1650 } 1651 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 1652 1653 bio = r10_bio->devs[slot].bio; 1654 r10_bio->devs[slot].bio = 1655 mddev->ro ? IO_BLOCKED : NULL; 1656 mirror = read_balance(conf, r10_bio); 1657 if (mirror == -1) { 1658 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 1659 " read error for block %llu\n", 1660 mdname(mddev), 1661 bdevname(bio->bi_bdev,b), 1662 (unsigned long long)r10_bio->sector); 1663 raid_end_bio_io(r10_bio); 1664 bio_put(bio); 1665 } else { 1666 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 1667 bio_put(bio); 1668 slot = r10_bio->read_slot; 1669 rdev = conf->mirrors[mirror].rdev; 1670 if (printk_ratelimit()) 1671 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to" 1672 " another mirror\n", 1673 mdname(mddev), 1674 bdevname(rdev->bdev,b), 1675 (unsigned long long)r10_bio->sector); 1676 bio = bio_clone_mddev(r10_bio->master_bio, 1677 GFP_NOIO, mddev); 1678 r10_bio->devs[slot].bio = bio; 1679 bio->bi_sector = r10_bio->devs[slot].addr 1680 + rdev->data_offset; 1681 bio->bi_bdev = rdev->bdev; 1682 bio->bi_rw = READ | do_sync; 1683 bio->bi_private = r10_bio; 1684 bio->bi_end_io = raid10_end_read_request; 1685 generic_make_request(bio); 1686 } 1687 } 1688 cond_resched(); 1689 } 1690 blk_finish_plug(&plug); 1691 } 1692 1693 1694 static int init_resync(conf_t *conf) 1695 { 1696 int buffs; 1697 1698 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1699 BUG_ON(conf->r10buf_pool); 1700 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1701 if (!conf->r10buf_pool) 1702 return -ENOMEM; 1703 conf->next_resync = 0; 1704 return 0; 1705 } 1706 1707 /* 1708 * perform a "sync" on one "block" 1709 * 1710 * We need to make sure that no normal I/O request - particularly write 1711 * requests - conflict with active sync requests. 1712 * 1713 * This is achieved by tracking pending requests and a 'barrier' concept 1714 * that can be installed to exclude normal IO requests. 1715 * 1716 * Resync and recovery are handled very differently. 1717 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1718 * 1719 * For resync, we iterate over virtual addresses, read all copies, 1720 * and update if there are differences. If only one copy is live, 1721 * skip it. 1722 * For recovery, we iterate over physical addresses, read a good 1723 * value for each non-in_sync drive, and over-write. 1724 * 1725 * So, for recovery we may have several outstanding complex requests for a 1726 * given address, one for each out-of-sync device. We model this by allocating 1727 * a number of r10_bio structures, one for each out-of-sync device. 1728 * As we setup these structures, we collect all bio's together into a list 1729 * which we then process collectively to add pages, and then process again 1730 * to pass to generic_make_request. 1731 * 1732 * The r10_bio structures are linked using a borrowed master_bio pointer. 1733 * This link is counted in ->remaining. When the r10_bio that points to NULL 1734 * has its remaining count decremented to 0, the whole complex operation 1735 * is complete. 1736 * 1737 */ 1738 1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, 1740 int *skipped, int go_faster) 1741 { 1742 conf_t *conf = mddev->private; 1743 r10bio_t *r10_bio; 1744 struct bio *biolist = NULL, *bio; 1745 sector_t max_sector, nr_sectors; 1746 int i; 1747 int max_sync; 1748 sector_t sync_blocks; 1749 1750 sector_t sectors_skipped = 0; 1751 int chunks_skipped = 0; 1752 1753 if (!conf->r10buf_pool) 1754 if (init_resync(conf)) 1755 return 0; 1756 1757 skipped: 1758 max_sector = mddev->dev_sectors; 1759 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1760 max_sector = mddev->resync_max_sectors; 1761 if (sector_nr >= max_sector) { 1762 /* If we aborted, we need to abort the 1763 * sync on the 'current' bitmap chucks (there can 1764 * be several when recovering multiple devices). 1765 * as we may have started syncing it but not finished. 1766 * We can find the current address in 1767 * mddev->curr_resync, but for recovery, 1768 * we need to convert that to several 1769 * virtual addresses. 1770 */ 1771 if (mddev->curr_resync < max_sector) { /* aborted */ 1772 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1773 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1774 &sync_blocks, 1); 1775 else for (i=0; i<conf->raid_disks; i++) { 1776 sector_t sect = 1777 raid10_find_virt(conf, mddev->curr_resync, i); 1778 bitmap_end_sync(mddev->bitmap, sect, 1779 &sync_blocks, 1); 1780 } 1781 } else /* completed sync */ 1782 conf->fullsync = 0; 1783 1784 bitmap_close_sync(mddev->bitmap); 1785 close_sync(conf); 1786 *skipped = 1; 1787 return sectors_skipped; 1788 } 1789 if (chunks_skipped >= conf->raid_disks) { 1790 /* if there has been nothing to do on any drive, 1791 * then there is nothing to do at all.. 1792 */ 1793 *skipped = 1; 1794 return (max_sector - sector_nr) + sectors_skipped; 1795 } 1796 1797 if (max_sector > mddev->resync_max) 1798 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1799 1800 /* make sure whole request will fit in a chunk - if chunks 1801 * are meaningful 1802 */ 1803 if (conf->near_copies < conf->raid_disks && 1804 max_sector > (sector_nr | conf->chunk_mask)) 1805 max_sector = (sector_nr | conf->chunk_mask) + 1; 1806 /* 1807 * If there is non-resync activity waiting for us then 1808 * put in a delay to throttle resync. 1809 */ 1810 if (!go_faster && conf->nr_waiting) 1811 msleep_interruptible(1000); 1812 1813 /* Again, very different code for resync and recovery. 1814 * Both must result in an r10bio with a list of bios that 1815 * have bi_end_io, bi_sector, bi_bdev set, 1816 * and bi_private set to the r10bio. 1817 * For recovery, we may actually create several r10bios 1818 * with 2 bios in each, that correspond to the bios in the main one. 1819 * In this case, the subordinate r10bios link back through a 1820 * borrowed master_bio pointer, and the counter in the master 1821 * includes a ref from each subordinate. 1822 */ 1823 /* First, we decide what to do and set ->bi_end_io 1824 * To end_sync_read if we want to read, and 1825 * end_sync_write if we will want to write. 1826 */ 1827 1828 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1829 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1830 /* recovery... the complicated one */ 1831 int j, k; 1832 r10_bio = NULL; 1833 1834 for (i=0 ; i<conf->raid_disks; i++) { 1835 int still_degraded; 1836 r10bio_t *rb2; 1837 sector_t sect; 1838 int must_sync; 1839 1840 if (conf->mirrors[i].rdev == NULL || 1841 test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 1842 continue; 1843 1844 still_degraded = 0; 1845 /* want to reconstruct this device */ 1846 rb2 = r10_bio; 1847 sect = raid10_find_virt(conf, sector_nr, i); 1848 /* Unless we are doing a full sync, we only need 1849 * to recover the block if it is set in the bitmap 1850 */ 1851 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1852 &sync_blocks, 1); 1853 if (sync_blocks < max_sync) 1854 max_sync = sync_blocks; 1855 if (!must_sync && 1856 !conf->fullsync) { 1857 /* yep, skip the sync_blocks here, but don't assume 1858 * that there will never be anything to do here 1859 */ 1860 chunks_skipped = -1; 1861 continue; 1862 } 1863 1864 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1865 raise_barrier(conf, rb2 != NULL); 1866 atomic_set(&r10_bio->remaining, 0); 1867 1868 r10_bio->master_bio = (struct bio*)rb2; 1869 if (rb2) 1870 atomic_inc(&rb2->remaining); 1871 r10_bio->mddev = mddev; 1872 set_bit(R10BIO_IsRecover, &r10_bio->state); 1873 r10_bio->sector = sect; 1874 1875 raid10_find_phys(conf, r10_bio); 1876 1877 /* Need to check if the array will still be 1878 * degraded 1879 */ 1880 for (j=0; j<conf->raid_disks; j++) 1881 if (conf->mirrors[j].rdev == NULL || 1882 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1883 still_degraded = 1; 1884 break; 1885 } 1886 1887 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1888 &sync_blocks, still_degraded); 1889 1890 for (j=0; j<conf->copies;j++) { 1891 int d = r10_bio->devs[j].devnum; 1892 if (!conf->mirrors[d].rdev || 1893 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 1894 continue; 1895 /* This is where we read from */ 1896 bio = r10_bio->devs[0].bio; 1897 bio->bi_next = biolist; 1898 biolist = bio; 1899 bio->bi_private = r10_bio; 1900 bio->bi_end_io = end_sync_read; 1901 bio->bi_rw = READ; 1902 bio->bi_sector = r10_bio->devs[j].addr + 1903 conf->mirrors[d].rdev->data_offset; 1904 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1905 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1906 atomic_inc(&r10_bio->remaining); 1907 /* and we write to 'i' */ 1908 1909 for (k=0; k<conf->copies; k++) 1910 if (r10_bio->devs[k].devnum == i) 1911 break; 1912 BUG_ON(k == conf->copies); 1913 bio = r10_bio->devs[1].bio; 1914 bio->bi_next = biolist; 1915 biolist = bio; 1916 bio->bi_private = r10_bio; 1917 bio->bi_end_io = end_sync_write; 1918 bio->bi_rw = WRITE; 1919 bio->bi_sector = r10_bio->devs[k].addr + 1920 conf->mirrors[i].rdev->data_offset; 1921 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1922 1923 r10_bio->devs[0].devnum = d; 1924 r10_bio->devs[1].devnum = i; 1925 1926 break; 1927 } 1928 if (j == conf->copies) { 1929 /* Cannot recover, so abort the recovery */ 1930 put_buf(r10_bio); 1931 if (rb2) 1932 atomic_dec(&rb2->remaining); 1933 r10_bio = rb2; 1934 if (!test_and_set_bit(MD_RECOVERY_INTR, 1935 &mddev->recovery)) 1936 printk(KERN_INFO "md/raid10:%s: insufficient " 1937 "working devices for recovery.\n", 1938 mdname(mddev)); 1939 break; 1940 } 1941 } 1942 if (biolist == NULL) { 1943 while (r10_bio) { 1944 r10bio_t *rb2 = r10_bio; 1945 r10_bio = (r10bio_t*) rb2->master_bio; 1946 rb2->master_bio = NULL; 1947 put_buf(rb2); 1948 } 1949 goto giveup; 1950 } 1951 } else { 1952 /* resync. Schedule a read for every block at this virt offset */ 1953 int count = 0; 1954 1955 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1956 1957 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1958 &sync_blocks, mddev->degraded) && 1959 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 1960 &mddev->recovery)) { 1961 /* We can skip this block */ 1962 *skipped = 1; 1963 return sync_blocks + sectors_skipped; 1964 } 1965 if (sync_blocks < max_sync) 1966 max_sync = sync_blocks; 1967 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1968 1969 r10_bio->mddev = mddev; 1970 atomic_set(&r10_bio->remaining, 0); 1971 raise_barrier(conf, 0); 1972 conf->next_resync = sector_nr; 1973 1974 r10_bio->master_bio = NULL; 1975 r10_bio->sector = sector_nr; 1976 set_bit(R10BIO_IsSync, &r10_bio->state); 1977 raid10_find_phys(conf, r10_bio); 1978 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1979 1980 for (i=0; i<conf->copies; i++) { 1981 int d = r10_bio->devs[i].devnum; 1982 bio = r10_bio->devs[i].bio; 1983 bio->bi_end_io = NULL; 1984 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1985 if (conf->mirrors[d].rdev == NULL || 1986 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1987 continue; 1988 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1989 atomic_inc(&r10_bio->remaining); 1990 bio->bi_next = biolist; 1991 biolist = bio; 1992 bio->bi_private = r10_bio; 1993 bio->bi_end_io = end_sync_read; 1994 bio->bi_rw = READ; 1995 bio->bi_sector = r10_bio->devs[i].addr + 1996 conf->mirrors[d].rdev->data_offset; 1997 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1998 count++; 1999 } 2000 2001 if (count < 2) { 2002 for (i=0; i<conf->copies; i++) { 2003 int d = r10_bio->devs[i].devnum; 2004 if (r10_bio->devs[i].bio->bi_end_io) 2005 rdev_dec_pending(conf->mirrors[d].rdev, 2006 mddev); 2007 } 2008 put_buf(r10_bio); 2009 biolist = NULL; 2010 goto giveup; 2011 } 2012 } 2013 2014 for (bio = biolist; bio ; bio=bio->bi_next) { 2015 2016 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2017 if (bio->bi_end_io) 2018 bio->bi_flags |= 1 << BIO_UPTODATE; 2019 bio->bi_vcnt = 0; 2020 bio->bi_idx = 0; 2021 bio->bi_phys_segments = 0; 2022 bio->bi_size = 0; 2023 } 2024 2025 nr_sectors = 0; 2026 if (sector_nr + max_sync < max_sector) 2027 max_sector = sector_nr + max_sync; 2028 do { 2029 struct page *page; 2030 int len = PAGE_SIZE; 2031 if (sector_nr + (len>>9) > max_sector) 2032 len = (max_sector - sector_nr) << 9; 2033 if (len == 0) 2034 break; 2035 for (bio= biolist ; bio ; bio=bio->bi_next) { 2036 struct bio *bio2; 2037 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2038 if (bio_add_page(bio, page, len, 0)) 2039 continue; 2040 2041 /* stop here */ 2042 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2043 for (bio2 = biolist; 2044 bio2 && bio2 != bio; 2045 bio2 = bio2->bi_next) { 2046 /* remove last page from this bio */ 2047 bio2->bi_vcnt--; 2048 bio2->bi_size -= len; 2049 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2050 } 2051 goto bio_full; 2052 } 2053 nr_sectors += len>>9; 2054 sector_nr += len>>9; 2055 } while (biolist->bi_vcnt < RESYNC_PAGES); 2056 bio_full: 2057 r10_bio->sectors = nr_sectors; 2058 2059 while (biolist) { 2060 bio = biolist; 2061 biolist = biolist->bi_next; 2062 2063 bio->bi_next = NULL; 2064 r10_bio = bio->bi_private; 2065 r10_bio->sectors = nr_sectors; 2066 2067 if (bio->bi_end_io == end_sync_read) { 2068 md_sync_acct(bio->bi_bdev, nr_sectors); 2069 generic_make_request(bio); 2070 } 2071 } 2072 2073 if (sectors_skipped) 2074 /* pretend they weren't skipped, it makes 2075 * no important difference in this case 2076 */ 2077 md_done_sync(mddev, sectors_skipped, 1); 2078 2079 return sectors_skipped + nr_sectors; 2080 giveup: 2081 /* There is nowhere to write, so all non-sync 2082 * drives must be failed, so try the next chunk... 2083 */ 2084 if (sector_nr + max_sync < max_sector) 2085 max_sector = sector_nr + max_sync; 2086 2087 sectors_skipped += (max_sector - sector_nr); 2088 chunks_skipped ++; 2089 sector_nr = max_sector; 2090 goto skipped; 2091 } 2092 2093 static sector_t 2094 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2095 { 2096 sector_t size; 2097 conf_t *conf = mddev->private; 2098 2099 if (!raid_disks) 2100 raid_disks = conf->raid_disks; 2101 if (!sectors) 2102 sectors = conf->dev_sectors; 2103 2104 size = sectors >> conf->chunk_shift; 2105 sector_div(size, conf->far_copies); 2106 size = size * raid_disks; 2107 sector_div(size, conf->near_copies); 2108 2109 return size << conf->chunk_shift; 2110 } 2111 2112 2113 static conf_t *setup_conf(mddev_t *mddev) 2114 { 2115 conf_t *conf = NULL; 2116 int nc, fc, fo; 2117 sector_t stride, size; 2118 int err = -EINVAL; 2119 2120 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2121 !is_power_of_2(mddev->new_chunk_sectors)) { 2122 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2123 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2124 mdname(mddev), PAGE_SIZE); 2125 goto out; 2126 } 2127 2128 nc = mddev->new_layout & 255; 2129 fc = (mddev->new_layout >> 8) & 255; 2130 fo = mddev->new_layout & (1<<16); 2131 2132 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2133 (mddev->new_layout >> 17)) { 2134 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2135 mdname(mddev), mddev->new_layout); 2136 goto out; 2137 } 2138 2139 err = -ENOMEM; 2140 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2141 if (!conf) 2142 goto out; 2143 2144 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2145 GFP_KERNEL); 2146 if (!conf->mirrors) 2147 goto out; 2148 2149 conf->tmppage = alloc_page(GFP_KERNEL); 2150 if (!conf->tmppage) 2151 goto out; 2152 2153 2154 conf->raid_disks = mddev->raid_disks; 2155 conf->near_copies = nc; 2156 conf->far_copies = fc; 2157 conf->copies = nc*fc; 2158 conf->far_offset = fo; 2159 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2160 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2161 2162 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2163 r10bio_pool_free, conf); 2164 if (!conf->r10bio_pool) 2165 goto out; 2166 2167 size = mddev->dev_sectors >> conf->chunk_shift; 2168 sector_div(size, fc); 2169 size = size * conf->raid_disks; 2170 sector_div(size, nc); 2171 /* 'size' is now the number of chunks in the array */ 2172 /* calculate "used chunks per device" in 'stride' */ 2173 stride = size * conf->copies; 2174 2175 /* We need to round up when dividing by raid_disks to 2176 * get the stride size. 2177 */ 2178 stride += conf->raid_disks - 1; 2179 sector_div(stride, conf->raid_disks); 2180 2181 conf->dev_sectors = stride << conf->chunk_shift; 2182 2183 if (fo) 2184 stride = 1; 2185 else 2186 sector_div(stride, fc); 2187 conf->stride = stride << conf->chunk_shift; 2188 2189 2190 spin_lock_init(&conf->device_lock); 2191 INIT_LIST_HEAD(&conf->retry_list); 2192 2193 spin_lock_init(&conf->resync_lock); 2194 init_waitqueue_head(&conf->wait_barrier); 2195 2196 conf->thread = md_register_thread(raid10d, mddev, NULL); 2197 if (!conf->thread) 2198 goto out; 2199 2200 conf->mddev = mddev; 2201 return conf; 2202 2203 out: 2204 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2205 mdname(mddev)); 2206 if (conf) { 2207 if (conf->r10bio_pool) 2208 mempool_destroy(conf->r10bio_pool); 2209 kfree(conf->mirrors); 2210 safe_put_page(conf->tmppage); 2211 kfree(conf); 2212 } 2213 return ERR_PTR(err); 2214 } 2215 2216 static int run(mddev_t *mddev) 2217 { 2218 conf_t *conf; 2219 int i, disk_idx, chunk_size; 2220 mirror_info_t *disk; 2221 mdk_rdev_t *rdev; 2222 sector_t size; 2223 2224 /* 2225 * copy the already verified devices into our private RAID10 2226 * bookkeeping area. [whatever we allocate in run(), 2227 * should be freed in stop()] 2228 */ 2229 2230 if (mddev->private == NULL) { 2231 conf = setup_conf(mddev); 2232 if (IS_ERR(conf)) 2233 return PTR_ERR(conf); 2234 mddev->private = conf; 2235 } 2236 conf = mddev->private; 2237 if (!conf) 2238 goto out; 2239 2240 mddev->thread = conf->thread; 2241 conf->thread = NULL; 2242 2243 chunk_size = mddev->chunk_sectors << 9; 2244 blk_queue_io_min(mddev->queue, chunk_size); 2245 if (conf->raid_disks % conf->near_copies) 2246 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2247 else 2248 blk_queue_io_opt(mddev->queue, chunk_size * 2249 (conf->raid_disks / conf->near_copies)); 2250 2251 list_for_each_entry(rdev, &mddev->disks, same_set) { 2252 disk_idx = rdev->raid_disk; 2253 if (disk_idx >= conf->raid_disks 2254 || disk_idx < 0) 2255 continue; 2256 disk = conf->mirrors + disk_idx; 2257 2258 disk->rdev = rdev; 2259 disk_stack_limits(mddev->gendisk, rdev->bdev, 2260 rdev->data_offset << 9); 2261 /* as we don't honour merge_bvec_fn, we must never risk 2262 * violating it, so limit max_segments to 1 lying 2263 * within a single page. 2264 */ 2265 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2266 blk_queue_max_segments(mddev->queue, 1); 2267 blk_queue_segment_boundary(mddev->queue, 2268 PAGE_CACHE_SIZE - 1); 2269 } 2270 2271 disk->head_position = 0; 2272 } 2273 /* need to check that every block has at least one working mirror */ 2274 if (!enough(conf)) { 2275 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2276 mdname(mddev)); 2277 goto out_free_conf; 2278 } 2279 2280 mddev->degraded = 0; 2281 for (i = 0; i < conf->raid_disks; i++) { 2282 2283 disk = conf->mirrors + i; 2284 2285 if (!disk->rdev || 2286 !test_bit(In_sync, &disk->rdev->flags)) { 2287 disk->head_position = 0; 2288 mddev->degraded++; 2289 if (disk->rdev) 2290 conf->fullsync = 1; 2291 } 2292 } 2293 2294 if (mddev->recovery_cp != MaxSector) 2295 printk(KERN_NOTICE "md/raid10:%s: not clean" 2296 " -- starting background reconstruction\n", 2297 mdname(mddev)); 2298 printk(KERN_INFO 2299 "md/raid10:%s: active with %d out of %d devices\n", 2300 mdname(mddev), conf->raid_disks - mddev->degraded, 2301 conf->raid_disks); 2302 /* 2303 * Ok, everything is just fine now 2304 */ 2305 mddev->dev_sectors = conf->dev_sectors; 2306 size = raid10_size(mddev, 0, 0); 2307 md_set_array_sectors(mddev, size); 2308 mddev->resync_max_sectors = size; 2309 2310 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2311 mddev->queue->backing_dev_info.congested_data = mddev; 2312 2313 /* Calculate max read-ahead size. 2314 * We need to readahead at least twice a whole stripe.... 2315 * maybe... 2316 */ 2317 { 2318 int stripe = conf->raid_disks * 2319 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2320 stripe /= conf->near_copies; 2321 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2322 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2323 } 2324 2325 if (conf->near_copies < conf->raid_disks) 2326 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2327 2328 if (md_integrity_register(mddev)) 2329 goto out_free_conf; 2330 2331 return 0; 2332 2333 out_free_conf: 2334 md_unregister_thread(mddev->thread); 2335 if (conf->r10bio_pool) 2336 mempool_destroy(conf->r10bio_pool); 2337 safe_put_page(conf->tmppage); 2338 kfree(conf->mirrors); 2339 kfree(conf); 2340 mddev->private = NULL; 2341 out: 2342 return -EIO; 2343 } 2344 2345 static int stop(mddev_t *mddev) 2346 { 2347 conf_t *conf = mddev->private; 2348 2349 raise_barrier(conf, 0); 2350 lower_barrier(conf); 2351 2352 md_unregister_thread(mddev->thread); 2353 mddev->thread = NULL; 2354 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2355 if (conf->r10bio_pool) 2356 mempool_destroy(conf->r10bio_pool); 2357 kfree(conf->mirrors); 2358 kfree(conf); 2359 mddev->private = NULL; 2360 return 0; 2361 } 2362 2363 static void raid10_quiesce(mddev_t *mddev, int state) 2364 { 2365 conf_t *conf = mddev->private; 2366 2367 switch(state) { 2368 case 1: 2369 raise_barrier(conf, 0); 2370 break; 2371 case 0: 2372 lower_barrier(conf); 2373 break; 2374 } 2375 } 2376 2377 static void *raid10_takeover_raid0(mddev_t *mddev) 2378 { 2379 mdk_rdev_t *rdev; 2380 conf_t *conf; 2381 2382 if (mddev->degraded > 0) { 2383 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 2384 mdname(mddev)); 2385 return ERR_PTR(-EINVAL); 2386 } 2387 2388 /* Set new parameters */ 2389 mddev->new_level = 10; 2390 /* new layout: far_copies = 1, near_copies = 2 */ 2391 mddev->new_layout = (1<<8) + 2; 2392 mddev->new_chunk_sectors = mddev->chunk_sectors; 2393 mddev->delta_disks = mddev->raid_disks; 2394 mddev->raid_disks *= 2; 2395 /* make sure it will be not marked as dirty */ 2396 mddev->recovery_cp = MaxSector; 2397 2398 conf = setup_conf(mddev); 2399 if (!IS_ERR(conf)) { 2400 list_for_each_entry(rdev, &mddev->disks, same_set) 2401 if (rdev->raid_disk >= 0) 2402 rdev->new_raid_disk = rdev->raid_disk * 2; 2403 conf->barrier = 1; 2404 } 2405 2406 return conf; 2407 } 2408 2409 static void *raid10_takeover(mddev_t *mddev) 2410 { 2411 struct raid0_private_data *raid0_priv; 2412 2413 /* raid10 can take over: 2414 * raid0 - providing it has only two drives 2415 */ 2416 if (mddev->level == 0) { 2417 /* for raid0 takeover only one zone is supported */ 2418 raid0_priv = mddev->private; 2419 if (raid0_priv->nr_strip_zones > 1) { 2420 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 2421 " with more than one zone.\n", 2422 mdname(mddev)); 2423 return ERR_PTR(-EINVAL); 2424 } 2425 return raid10_takeover_raid0(mddev); 2426 } 2427 return ERR_PTR(-EINVAL); 2428 } 2429 2430 static struct mdk_personality raid10_personality = 2431 { 2432 .name = "raid10", 2433 .level = 10, 2434 .owner = THIS_MODULE, 2435 .make_request = make_request, 2436 .run = run, 2437 .stop = stop, 2438 .status = status, 2439 .error_handler = error, 2440 .hot_add_disk = raid10_add_disk, 2441 .hot_remove_disk= raid10_remove_disk, 2442 .spare_active = raid10_spare_active, 2443 .sync_request = sync_request, 2444 .quiesce = raid10_quiesce, 2445 .size = raid10_size, 2446 .takeover = raid10_takeover, 2447 }; 2448 2449 static int __init raid_init(void) 2450 { 2451 return register_md_personality(&raid10_personality); 2452 } 2453 2454 static void raid_exit(void) 2455 { 2456 unregister_md_personality(&raid10_personality); 2457 } 2458 2459 module_init(raid_init); 2460 module_exit(raid_exit); 2461 MODULE_LICENSE("GPL"); 2462 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2463 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2464 MODULE_ALIAS("md-raid10"); 2465 MODULE_ALIAS("md-level-10"); 2466