xref: /openbmc/linux/drivers/md/raid10.c (revision 24069d81)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 	do { \
85 		write_sequnlock_irq(&(conf)->resync_lock); \
86 		cmd; \
87 	} while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 		       cmd_after(conf))
93 
94 #define wait_event_barrier(conf, cond) \
95 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
96 
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 	return get_resync_pages(bio)->raid_bio;
104 }
105 
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 	struct r10conf *conf = data;
109 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 
111 	/* allocate a r10bio with room for raid_disks entries in the
112 	 * bios array */
113 	return kzalloc(size, gfp_flags);
114 }
115 
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123 
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	struct r10bio *r10_bio;
135 	struct bio *bio;
136 	int j;
137 	int nalloc, nalloc_rp;
138 	struct resync_pages *rps;
139 
140 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 	if (!r10_bio)
142 		return NULL;
143 
144 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 		nalloc = conf->copies; /* resync */
147 	else
148 		nalloc = 2; /* recovery */
149 
150 	/* allocate once for all bios */
151 	if (!conf->have_replacement)
152 		nalloc_rp = nalloc;
153 	else
154 		nalloc_rp = nalloc * 2;
155 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 	if (!rps)
157 		goto out_free_r10bio;
158 
159 	/*
160 	 * Allocate bios.
161 	 */
162 	for (j = nalloc ; j-- ; ) {
163 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 		if (!bio)
165 			goto out_free_bio;
166 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 		r10_bio->devs[j].bio = bio;
168 		if (!conf->have_replacement)
169 			continue;
170 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 		if (!bio)
172 			goto out_free_bio;
173 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 		r10_bio->devs[j].repl_bio = bio;
175 	}
176 	/*
177 	 * Allocate RESYNC_PAGES data pages and attach them
178 	 * where needed.
179 	 */
180 	for (j = 0; j < nalloc; j++) {
181 		struct bio *rbio = r10_bio->devs[j].repl_bio;
182 		struct resync_pages *rp, *rp_repl;
183 
184 		rp = &rps[j];
185 		if (rbio)
186 			rp_repl = &rps[nalloc + j];
187 
188 		bio = r10_bio->devs[j].bio;
189 
190 		if (!j || test_bit(MD_RECOVERY_SYNC,
191 				   &conf->mddev->recovery)) {
192 			if (resync_alloc_pages(rp, gfp_flags))
193 				goto out_free_pages;
194 		} else {
195 			memcpy(rp, &rps[0], sizeof(*rp));
196 			resync_get_all_pages(rp);
197 		}
198 
199 		rp->raid_bio = r10_bio;
200 		bio->bi_private = rp;
201 		if (rbio) {
202 			memcpy(rp_repl, rp, sizeof(*rp));
203 			rbio->bi_private = rp_repl;
204 		}
205 	}
206 
207 	return r10_bio;
208 
209 out_free_pages:
210 	while (--j >= 0)
211 		resync_free_pages(&rps[j]);
212 
213 	j = 0;
214 out_free_bio:
215 	for ( ; j < nalloc; j++) {
216 		if (r10_bio->devs[j].bio)
217 			bio_uninit(r10_bio->devs[j].bio);
218 		kfree(r10_bio->devs[j].bio);
219 		if (r10_bio->devs[j].repl_bio)
220 			bio_uninit(r10_bio->devs[j].repl_bio);
221 		kfree(r10_bio->devs[j].repl_bio);
222 	}
223 	kfree(rps);
224 out_free_r10bio:
225 	rbio_pool_free(r10_bio, conf);
226 	return NULL;
227 }
228 
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 	struct r10conf *conf = data;
232 	struct r10bio *r10bio = __r10_bio;
233 	int j;
234 	struct resync_pages *rp = NULL;
235 
236 	for (j = conf->copies; j--; ) {
237 		struct bio *bio = r10bio->devs[j].bio;
238 
239 		if (bio) {
240 			rp = get_resync_pages(bio);
241 			resync_free_pages(rp);
242 			bio_uninit(bio);
243 			kfree(bio);
244 		}
245 
246 		bio = r10bio->devs[j].repl_bio;
247 		if (bio) {
248 			bio_uninit(bio);
249 			kfree(bio);
250 		}
251 	}
252 
253 	/* resync pages array stored in the 1st bio's .bi_private */
254 	kfree(rp);
255 
256 	rbio_pool_free(r10bio, conf);
257 }
258 
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 	int i;
262 
263 	for (i = 0; i < conf->geo.raid_disks; i++) {
264 		struct bio **bio = & r10_bio->devs[i].bio;
265 		if (!BIO_SPECIAL(*bio))
266 			bio_put(*bio);
267 		*bio = NULL;
268 		bio = &r10_bio->devs[i].repl_bio;
269 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 			bio_put(*bio);
271 		*bio = NULL;
272 	}
273 }
274 
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 	struct r10conf *conf = r10_bio->mddev->private;
278 
279 	put_all_bios(conf, r10_bio);
280 	mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282 
283 static void put_buf(struct r10bio *r10_bio)
284 {
285 	struct r10conf *conf = r10_bio->mddev->private;
286 
287 	mempool_free(r10_bio, &conf->r10buf_pool);
288 
289 	lower_barrier(conf);
290 }
291 
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 	if (wq_has_sleeper(&conf->wait_barrier))
295 		wake_up(&conf->wait_barrier);
296 }
297 
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 	unsigned long flags;
301 	struct mddev *mddev = r10_bio->mddev;
302 	struct r10conf *conf = mddev->private;
303 
304 	spin_lock_irqsave(&conf->device_lock, flags);
305 	list_add(&r10_bio->retry_list, &conf->retry_list);
306 	conf->nr_queued ++;
307 	spin_unlock_irqrestore(&conf->device_lock, flags);
308 
309 	/* wake up frozen array... */
310 	wake_up(&conf->wait_barrier);
311 
312 	md_wakeup_thread(mddev->thread);
313 }
314 
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 	struct bio *bio = r10_bio->master_bio;
323 	struct r10conf *conf = r10_bio->mddev->private;
324 
325 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 		bio->bi_status = BLK_STS_IOERR;
327 
328 	if (r10_bio->start_time)
329 		bio_end_io_acct(bio, r10_bio->start_time);
330 	bio_endio(bio);
331 	/*
332 	 * Wake up any possible resync thread that waits for the device
333 	 * to go idle.
334 	 */
335 	allow_barrier(conf);
336 
337 	free_r10bio(r10_bio);
338 }
339 
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345 	struct r10conf *conf = r10_bio->mddev->private;
346 
347 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 		r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350 
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355 			 struct bio *bio, int *slotp, int *replp)
356 {
357 	int slot;
358 	int repl = 0;
359 
360 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361 		if (r10_bio->devs[slot].bio == bio)
362 			break;
363 		if (r10_bio->devs[slot].repl_bio == bio) {
364 			repl = 1;
365 			break;
366 		}
367 	}
368 
369 	update_head_pos(slot, r10_bio);
370 
371 	if (slotp)
372 		*slotp = slot;
373 	if (replp)
374 		*replp = repl;
375 	return r10_bio->devs[slot].devnum;
376 }
377 
378 static void raid10_end_read_request(struct bio *bio)
379 {
380 	int uptodate = !bio->bi_status;
381 	struct r10bio *r10_bio = bio->bi_private;
382 	int slot;
383 	struct md_rdev *rdev;
384 	struct r10conf *conf = r10_bio->mddev->private;
385 
386 	slot = r10_bio->read_slot;
387 	rdev = r10_bio->devs[slot].rdev;
388 	/*
389 	 * this branch is our 'one mirror IO has finished' event handler:
390 	 */
391 	update_head_pos(slot, r10_bio);
392 
393 	if (uptodate) {
394 		/*
395 		 * Set R10BIO_Uptodate in our master bio, so that
396 		 * we will return a good error code to the higher
397 		 * levels even if IO on some other mirrored buffer fails.
398 		 *
399 		 * The 'master' represents the composite IO operation to
400 		 * user-side. So if something waits for IO, then it will
401 		 * wait for the 'master' bio.
402 		 */
403 		set_bit(R10BIO_Uptodate, &r10_bio->state);
404 	} else {
405 		/* If all other devices that store this block have
406 		 * failed, we want to return the error upwards rather
407 		 * than fail the last device.  Here we redefine
408 		 * "uptodate" to mean "Don't want to retry"
409 		 */
410 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411 			     rdev->raid_disk))
412 			uptodate = 1;
413 	}
414 	if (uptodate) {
415 		raid_end_bio_io(r10_bio);
416 		rdev_dec_pending(rdev, conf->mddev);
417 	} else {
418 		/*
419 		 * oops, read error - keep the refcount on the rdev
420 		 */
421 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422 				   mdname(conf->mddev),
423 				   rdev->bdev,
424 				   (unsigned long long)r10_bio->sector);
425 		set_bit(R10BIO_ReadError, &r10_bio->state);
426 		reschedule_retry(r10_bio);
427 	}
428 }
429 
430 static void close_write(struct r10bio *r10_bio)
431 {
432 	/* clear the bitmap if all writes complete successfully */
433 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434 			   r10_bio->sectors,
435 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
436 			   0);
437 	md_write_end(r10_bio->mddev);
438 }
439 
440 static void one_write_done(struct r10bio *r10_bio)
441 {
442 	if (atomic_dec_and_test(&r10_bio->remaining)) {
443 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
444 			reschedule_retry(r10_bio);
445 		else {
446 			close_write(r10_bio);
447 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448 				reschedule_retry(r10_bio);
449 			else
450 				raid_end_bio_io(r10_bio);
451 		}
452 	}
453 }
454 
455 static void raid10_end_write_request(struct bio *bio)
456 {
457 	struct r10bio *r10_bio = bio->bi_private;
458 	int dev;
459 	int dec_rdev = 1;
460 	struct r10conf *conf = r10_bio->mddev->private;
461 	int slot, repl;
462 	struct md_rdev *rdev = NULL;
463 	struct bio *to_put = NULL;
464 	bool discard_error;
465 
466 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
467 
468 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469 
470 	if (repl)
471 		rdev = conf->mirrors[dev].replacement;
472 	if (!rdev) {
473 		smp_rmb();
474 		repl = 0;
475 		rdev = conf->mirrors[dev].rdev;
476 	}
477 	/*
478 	 * this branch is our 'one mirror IO has finished' event handler:
479 	 */
480 	if (bio->bi_status && !discard_error) {
481 		if (repl)
482 			/* Never record new bad blocks to replacement,
483 			 * just fail it.
484 			 */
485 			md_error(rdev->mddev, rdev);
486 		else {
487 			set_bit(WriteErrorSeen,	&rdev->flags);
488 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
489 				set_bit(MD_RECOVERY_NEEDED,
490 					&rdev->mddev->recovery);
491 
492 			dec_rdev = 0;
493 			if (test_bit(FailFast, &rdev->flags) &&
494 			    (bio->bi_opf & MD_FAILFAST)) {
495 				md_error(rdev->mddev, rdev);
496 			}
497 
498 			/*
499 			 * When the device is faulty, it is not necessary to
500 			 * handle write error.
501 			 */
502 			if (!test_bit(Faulty, &rdev->flags))
503 				set_bit(R10BIO_WriteError, &r10_bio->state);
504 			else {
505 				/* Fail the request */
506 				set_bit(R10BIO_Degraded, &r10_bio->state);
507 				r10_bio->devs[slot].bio = NULL;
508 				to_put = bio;
509 				dec_rdev = 1;
510 			}
511 		}
512 	} else {
513 		/*
514 		 * Set R10BIO_Uptodate in our master bio, so that
515 		 * we will return a good error code for to the higher
516 		 * levels even if IO on some other mirrored buffer fails.
517 		 *
518 		 * The 'master' represents the composite IO operation to
519 		 * user-side. So if something waits for IO, then it will
520 		 * wait for the 'master' bio.
521 		 */
522 		sector_t first_bad;
523 		int bad_sectors;
524 
525 		/*
526 		 * Do not set R10BIO_Uptodate if the current device is
527 		 * rebuilding or Faulty. This is because we cannot use
528 		 * such device for properly reading the data back (we could
529 		 * potentially use it, if the current write would have felt
530 		 * before rdev->recovery_offset, but for simplicity we don't
531 		 * check this here.
532 		 */
533 		if (test_bit(In_sync, &rdev->flags) &&
534 		    !test_bit(Faulty, &rdev->flags))
535 			set_bit(R10BIO_Uptodate, &r10_bio->state);
536 
537 		/* Maybe we can clear some bad blocks. */
538 		if (is_badblock(rdev,
539 				r10_bio->devs[slot].addr,
540 				r10_bio->sectors,
541 				&first_bad, &bad_sectors) && !discard_error) {
542 			bio_put(bio);
543 			if (repl)
544 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545 			else
546 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
547 			dec_rdev = 0;
548 			set_bit(R10BIO_MadeGood, &r10_bio->state);
549 		}
550 	}
551 
552 	/*
553 	 *
554 	 * Let's see if all mirrored write operations have finished
555 	 * already.
556 	 */
557 	one_write_done(r10_bio);
558 	if (dec_rdev)
559 		rdev_dec_pending(rdev, conf->mddev);
560 	if (to_put)
561 		bio_put(to_put);
562 }
563 
564 /*
565  * RAID10 layout manager
566  * As well as the chunksize and raid_disks count, there are two
567  * parameters: near_copies and far_copies.
568  * near_copies * far_copies must be <= raid_disks.
569  * Normally one of these will be 1.
570  * If both are 1, we get raid0.
571  * If near_copies == raid_disks, we get raid1.
572  *
573  * Chunks are laid out in raid0 style with near_copies copies of the
574  * first chunk, followed by near_copies copies of the next chunk and
575  * so on.
576  * If far_copies > 1, then after 1/far_copies of the array has been assigned
577  * as described above, we start again with a device offset of near_copies.
578  * So we effectively have another copy of the whole array further down all
579  * the drives, but with blocks on different drives.
580  * With this layout, and block is never stored twice on the one device.
581  *
582  * raid10_find_phys finds the sector offset of a given virtual sector
583  * on each device that it is on.
584  *
585  * raid10_find_virt does the reverse mapping, from a device and a
586  * sector offset to a virtual address
587  */
588 
589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
590 {
591 	int n,f;
592 	sector_t sector;
593 	sector_t chunk;
594 	sector_t stripe;
595 	int dev;
596 	int slot = 0;
597 	int last_far_set_start, last_far_set_size;
598 
599 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600 	last_far_set_start *= geo->far_set_size;
601 
602 	last_far_set_size = geo->far_set_size;
603 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
604 
605 	/* now calculate first sector/dev */
606 	chunk = r10bio->sector >> geo->chunk_shift;
607 	sector = r10bio->sector & geo->chunk_mask;
608 
609 	chunk *= geo->near_copies;
610 	stripe = chunk;
611 	dev = sector_div(stripe, geo->raid_disks);
612 	if (geo->far_offset)
613 		stripe *= geo->far_copies;
614 
615 	sector += stripe << geo->chunk_shift;
616 
617 	/* and calculate all the others */
618 	for (n = 0; n < geo->near_copies; n++) {
619 		int d = dev;
620 		int set;
621 		sector_t s = sector;
622 		r10bio->devs[slot].devnum = d;
623 		r10bio->devs[slot].addr = s;
624 		slot++;
625 
626 		for (f = 1; f < geo->far_copies; f++) {
627 			set = d / geo->far_set_size;
628 			d += geo->near_copies;
629 
630 			if ((geo->raid_disks % geo->far_set_size) &&
631 			    (d > last_far_set_start)) {
632 				d -= last_far_set_start;
633 				d %= last_far_set_size;
634 				d += last_far_set_start;
635 			} else {
636 				d %= geo->far_set_size;
637 				d += geo->far_set_size * set;
638 			}
639 			s += geo->stride;
640 			r10bio->devs[slot].devnum = d;
641 			r10bio->devs[slot].addr = s;
642 			slot++;
643 		}
644 		dev++;
645 		if (dev >= geo->raid_disks) {
646 			dev = 0;
647 			sector += (geo->chunk_mask + 1);
648 		}
649 	}
650 }
651 
652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653 {
654 	struct geom *geo = &conf->geo;
655 
656 	if (conf->reshape_progress != MaxSector &&
657 	    ((r10bio->sector >= conf->reshape_progress) !=
658 	     conf->mddev->reshape_backwards)) {
659 		set_bit(R10BIO_Previous, &r10bio->state);
660 		geo = &conf->prev;
661 	} else
662 		clear_bit(R10BIO_Previous, &r10bio->state);
663 
664 	__raid10_find_phys(geo, r10bio);
665 }
666 
667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
668 {
669 	sector_t offset, chunk, vchunk;
670 	/* Never use conf->prev as this is only called during resync
671 	 * or recovery, so reshape isn't happening
672 	 */
673 	struct geom *geo = &conf->geo;
674 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675 	int far_set_size = geo->far_set_size;
676 	int last_far_set_start;
677 
678 	if (geo->raid_disks % geo->far_set_size) {
679 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680 		last_far_set_start *= geo->far_set_size;
681 
682 		if (dev >= last_far_set_start) {
683 			far_set_size = geo->far_set_size;
684 			far_set_size += (geo->raid_disks % geo->far_set_size);
685 			far_set_start = last_far_set_start;
686 		}
687 	}
688 
689 	offset = sector & geo->chunk_mask;
690 	if (geo->far_offset) {
691 		int fc;
692 		chunk = sector >> geo->chunk_shift;
693 		fc = sector_div(chunk, geo->far_copies);
694 		dev -= fc * geo->near_copies;
695 		if (dev < far_set_start)
696 			dev += far_set_size;
697 	} else {
698 		while (sector >= geo->stride) {
699 			sector -= geo->stride;
700 			if (dev < (geo->near_copies + far_set_start))
701 				dev += far_set_size - geo->near_copies;
702 			else
703 				dev -= geo->near_copies;
704 		}
705 		chunk = sector >> geo->chunk_shift;
706 	}
707 	vchunk = chunk * geo->raid_disks + dev;
708 	sector_div(vchunk, geo->near_copies);
709 	return (vchunk << geo->chunk_shift) + offset;
710 }
711 
712 /*
713  * This routine returns the disk from which the requested read should
714  * be done. There is a per-array 'next expected sequential IO' sector
715  * number - if this matches on the next IO then we use the last disk.
716  * There is also a per-disk 'last know head position' sector that is
717  * maintained from IRQ contexts, both the normal and the resync IO
718  * completion handlers update this position correctly. If there is no
719  * perfect sequential match then we pick the disk whose head is closest.
720  *
721  * If there are 2 mirrors in the same 2 devices, performance degrades
722  * because position is mirror, not device based.
723  *
724  * The rdev for the device selected will have nr_pending incremented.
725  */
726 
727 /*
728  * FIXME: possibly should rethink readbalancing and do it differently
729  * depending on near_copies / far_copies geometry.
730  */
731 static struct md_rdev *read_balance(struct r10conf *conf,
732 				    struct r10bio *r10_bio,
733 				    int *max_sectors)
734 {
735 	const sector_t this_sector = r10_bio->sector;
736 	int disk, slot;
737 	int sectors = r10_bio->sectors;
738 	int best_good_sectors;
739 	sector_t new_distance, best_dist;
740 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
741 	int do_balance;
742 	int best_dist_slot, best_pending_slot;
743 	bool has_nonrot_disk = false;
744 	unsigned int min_pending;
745 	struct geom *geo = &conf->geo;
746 
747 	raid10_find_phys(conf, r10_bio);
748 	rcu_read_lock();
749 	best_dist_slot = -1;
750 	min_pending = UINT_MAX;
751 	best_dist_rdev = NULL;
752 	best_pending_rdev = NULL;
753 	best_dist = MaxSector;
754 	best_good_sectors = 0;
755 	do_balance = 1;
756 	clear_bit(R10BIO_FailFast, &r10_bio->state);
757 	/*
758 	 * Check if we can balance. We can balance on the whole
759 	 * device if no resync is going on (recovery is ok), or below
760 	 * the resync window. We take the first readable disk when
761 	 * above the resync window.
762 	 */
763 	if ((conf->mddev->recovery_cp < MaxSector
764 	     && (this_sector + sectors >= conf->next_resync)) ||
765 	    (mddev_is_clustered(conf->mddev) &&
766 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
767 					    this_sector + sectors)))
768 		do_balance = 0;
769 
770 	for (slot = 0; slot < conf->copies ; slot++) {
771 		sector_t first_bad;
772 		int bad_sectors;
773 		sector_t dev_sector;
774 		unsigned int pending;
775 		bool nonrot;
776 
777 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 			continue;
779 		disk = r10_bio->devs[slot].devnum;
780 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 		    r10_bio->devs[slot].addr + sectors >
783 		    rdev->recovery_offset) {
784 			/*
785 			 * Read replacement first to prevent reading both rdev
786 			 * and replacement as NULL during replacement replace
787 			 * rdev.
788 			 */
789 			smp_mb();
790 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
791 		}
792 		if (rdev == NULL ||
793 		    test_bit(Faulty, &rdev->flags))
794 			continue;
795 		if (!test_bit(In_sync, &rdev->flags) &&
796 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
797 			continue;
798 
799 		dev_sector = r10_bio->devs[slot].addr;
800 		if (is_badblock(rdev, dev_sector, sectors,
801 				&first_bad, &bad_sectors)) {
802 			if (best_dist < MaxSector)
803 				/* Already have a better slot */
804 				continue;
805 			if (first_bad <= dev_sector) {
806 				/* Cannot read here.  If this is the
807 				 * 'primary' device, then we must not read
808 				 * beyond 'bad_sectors' from another device.
809 				 */
810 				bad_sectors -= (dev_sector - first_bad);
811 				if (!do_balance && sectors > bad_sectors)
812 					sectors = bad_sectors;
813 				if (best_good_sectors > sectors)
814 					best_good_sectors = sectors;
815 			} else {
816 				sector_t good_sectors =
817 					first_bad - dev_sector;
818 				if (good_sectors > best_good_sectors) {
819 					best_good_sectors = good_sectors;
820 					best_dist_slot = slot;
821 					best_dist_rdev = rdev;
822 				}
823 				if (!do_balance)
824 					/* Must read from here */
825 					break;
826 			}
827 			continue;
828 		} else
829 			best_good_sectors = sectors;
830 
831 		if (!do_balance)
832 			break;
833 
834 		nonrot = bdev_nonrot(rdev->bdev);
835 		has_nonrot_disk |= nonrot;
836 		pending = atomic_read(&rdev->nr_pending);
837 		if (min_pending > pending && nonrot) {
838 			min_pending = pending;
839 			best_pending_slot = slot;
840 			best_pending_rdev = rdev;
841 		}
842 
843 		if (best_dist_slot >= 0)
844 			/* At least 2 disks to choose from so failfast is OK */
845 			set_bit(R10BIO_FailFast, &r10_bio->state);
846 		/* This optimisation is debatable, and completely destroys
847 		 * sequential read speed for 'far copies' arrays.  So only
848 		 * keep it for 'near' arrays, and review those later.
849 		 */
850 		if (geo->near_copies > 1 && !pending)
851 			new_distance = 0;
852 
853 		/* for far > 1 always use the lowest address */
854 		else if (geo->far_copies > 1)
855 			new_distance = r10_bio->devs[slot].addr;
856 		else
857 			new_distance = abs(r10_bio->devs[slot].addr -
858 					   conf->mirrors[disk].head_position);
859 
860 		if (new_distance < best_dist) {
861 			best_dist = new_distance;
862 			best_dist_slot = slot;
863 			best_dist_rdev = rdev;
864 		}
865 	}
866 	if (slot >= conf->copies) {
867 		if (has_nonrot_disk) {
868 			slot = best_pending_slot;
869 			rdev = best_pending_rdev;
870 		} else {
871 			slot = best_dist_slot;
872 			rdev = best_dist_rdev;
873 		}
874 	}
875 
876 	if (slot >= 0) {
877 		atomic_inc(&rdev->nr_pending);
878 		r10_bio->read_slot = slot;
879 	} else
880 		rdev = NULL;
881 	rcu_read_unlock();
882 	*max_sectors = best_good_sectors;
883 
884 	return rdev;
885 }
886 
887 static void flush_pending_writes(struct r10conf *conf)
888 {
889 	/* Any writes that have been queued but are awaiting
890 	 * bitmap updates get flushed here.
891 	 */
892 	spin_lock_irq(&conf->device_lock);
893 
894 	if (conf->pending_bio_list.head) {
895 		struct blk_plug plug;
896 		struct bio *bio;
897 
898 		bio = bio_list_get(&conf->pending_bio_list);
899 		spin_unlock_irq(&conf->device_lock);
900 
901 		/*
902 		 * As this is called in a wait_event() loop (see freeze_array),
903 		 * current->state might be TASK_UNINTERRUPTIBLE which will
904 		 * cause a warning when we prepare to wait again.  As it is
905 		 * rare that this path is taken, it is perfectly safe to force
906 		 * us to go around the wait_event() loop again, so the warning
907 		 * is a false-positive. Silence the warning by resetting
908 		 * thread state
909 		 */
910 		__set_current_state(TASK_RUNNING);
911 
912 		blk_start_plug(&plug);
913 		raid1_prepare_flush_writes(conf->mddev->bitmap);
914 		wake_up(&conf->wait_barrier);
915 
916 		while (bio) { /* submit pending writes */
917 			struct bio *next = bio->bi_next;
918 
919 			raid1_submit_write(bio);
920 			bio = next;
921 			cond_resched();
922 		}
923 		blk_finish_plug(&plug);
924 	} else
925 		spin_unlock_irq(&conf->device_lock);
926 }
927 
928 /* Barriers....
929  * Sometimes we need to suspend IO while we do something else,
930  * either some resync/recovery, or reconfigure the array.
931  * To do this we raise a 'barrier'.
932  * The 'barrier' is a counter that can be raised multiple times
933  * to count how many activities are happening which preclude
934  * normal IO.
935  * We can only raise the barrier if there is no pending IO.
936  * i.e. if nr_pending == 0.
937  * We choose only to raise the barrier if no-one is waiting for the
938  * barrier to go down.  This means that as soon as an IO request
939  * is ready, no other operations which require a barrier will start
940  * until the IO request has had a chance.
941  *
942  * So: regular IO calls 'wait_barrier'.  When that returns there
943  *    is no backgroup IO happening,  It must arrange to call
944  *    allow_barrier when it has finished its IO.
945  * backgroup IO calls must call raise_barrier.  Once that returns
946  *    there is no normal IO happeing.  It must arrange to call
947  *    lower_barrier when the particular background IO completes.
948  */
949 
950 static void raise_barrier(struct r10conf *conf, int force)
951 {
952 	write_seqlock_irq(&conf->resync_lock);
953 
954 	if (WARN_ON_ONCE(force && !conf->barrier))
955 		force = false;
956 
957 	/* Wait until no block IO is waiting (unless 'force') */
958 	wait_event_barrier(conf, force || !conf->nr_waiting);
959 
960 	/* block any new IO from starting */
961 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
962 
963 	/* Now wait for all pending IO to complete */
964 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
965 				 conf->barrier < RESYNC_DEPTH);
966 
967 	write_sequnlock_irq(&conf->resync_lock);
968 }
969 
970 static void lower_barrier(struct r10conf *conf)
971 {
972 	unsigned long flags;
973 
974 	write_seqlock_irqsave(&conf->resync_lock, flags);
975 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
976 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
977 	wake_up(&conf->wait_barrier);
978 }
979 
980 static bool stop_waiting_barrier(struct r10conf *conf)
981 {
982 	struct bio_list *bio_list = current->bio_list;
983 	struct md_thread *thread;
984 
985 	/* barrier is dropped */
986 	if (!conf->barrier)
987 		return true;
988 
989 	/*
990 	 * If there are already pending requests (preventing the barrier from
991 	 * rising completely), and the pre-process bio queue isn't empty, then
992 	 * don't wait, as we need to empty that queue to get the nr_pending
993 	 * count down.
994 	 */
995 	if (atomic_read(&conf->nr_pending) && bio_list &&
996 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
997 		return true;
998 
999 	/* daemon thread must exist while handling io */
1000 	thread = rcu_dereference_protected(conf->mddev->thread, true);
1001 	/*
1002 	 * move on if io is issued from raid10d(), nr_pending is not released
1003 	 * from original io(see handle_read_error()). All raise barrier is
1004 	 * blocked until this io is done.
1005 	 */
1006 	if (thread->tsk == current) {
1007 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1008 		return true;
1009 	}
1010 
1011 	return false;
1012 }
1013 
1014 static bool wait_barrier_nolock(struct r10conf *conf)
1015 {
1016 	unsigned int seq = read_seqbegin(&conf->resync_lock);
1017 
1018 	if (READ_ONCE(conf->barrier))
1019 		return false;
1020 
1021 	atomic_inc(&conf->nr_pending);
1022 	if (!read_seqretry(&conf->resync_lock, seq))
1023 		return true;
1024 
1025 	if (atomic_dec_and_test(&conf->nr_pending))
1026 		wake_up_barrier(conf);
1027 
1028 	return false;
1029 }
1030 
1031 static bool wait_barrier(struct r10conf *conf, bool nowait)
1032 {
1033 	bool ret = true;
1034 
1035 	if (wait_barrier_nolock(conf))
1036 		return true;
1037 
1038 	write_seqlock_irq(&conf->resync_lock);
1039 	if (conf->barrier) {
1040 		/* Return false when nowait flag is set */
1041 		if (nowait) {
1042 			ret = false;
1043 		} else {
1044 			conf->nr_waiting++;
1045 			raid10_log(conf->mddev, "wait barrier");
1046 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1047 			conf->nr_waiting--;
1048 		}
1049 		if (!conf->nr_waiting)
1050 			wake_up(&conf->wait_barrier);
1051 	}
1052 	/* Only increment nr_pending when we wait */
1053 	if (ret)
1054 		atomic_inc(&conf->nr_pending);
1055 	write_sequnlock_irq(&conf->resync_lock);
1056 	return ret;
1057 }
1058 
1059 static void allow_barrier(struct r10conf *conf)
1060 {
1061 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1062 			(conf->array_freeze_pending))
1063 		wake_up_barrier(conf);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	write_seqlock_irq(&conf->resync_lock);
1081 	conf->array_freeze_pending++;
1082 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1083 	conf->nr_waiting++;
1084 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1085 			conf->nr_queued + extra, flush_pending_writes(conf));
1086 	conf->array_freeze_pending--;
1087 	write_sequnlock_irq(&conf->resync_lock);
1088 }
1089 
1090 static void unfreeze_array(struct r10conf *conf)
1091 {
1092 	/* reverse the effect of the freeze */
1093 	write_seqlock_irq(&conf->resync_lock);
1094 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1095 	conf->nr_waiting--;
1096 	wake_up(&conf->wait_barrier);
1097 	write_sequnlock_irq(&conf->resync_lock);
1098 }
1099 
1100 static sector_t choose_data_offset(struct r10bio *r10_bio,
1101 				   struct md_rdev *rdev)
1102 {
1103 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104 	    test_bit(R10BIO_Previous, &r10_bio->state))
1105 		return rdev->data_offset;
1106 	else
1107 		return rdev->new_data_offset;
1108 }
1109 
1110 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1111 {
1112 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1113 	struct mddev *mddev = plug->cb.data;
1114 	struct r10conf *conf = mddev->private;
1115 	struct bio *bio;
1116 
1117 	if (from_schedule) {
1118 		spin_lock_irq(&conf->device_lock);
1119 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 		spin_unlock_irq(&conf->device_lock);
1121 		wake_up_barrier(conf);
1122 		md_wakeup_thread(mddev->thread);
1123 		kfree(plug);
1124 		return;
1125 	}
1126 
1127 	/* we aren't scheduling, so we can do the write-out directly. */
1128 	bio = bio_list_get(&plug->pending);
1129 	raid1_prepare_flush_writes(mddev->bitmap);
1130 	wake_up_barrier(conf);
1131 
1132 	while (bio) { /* submit pending writes */
1133 		struct bio *next = bio->bi_next;
1134 
1135 		raid1_submit_write(bio);
1136 		bio = next;
1137 		cond_resched();
1138 	}
1139 	kfree(plug);
1140 }
1141 
1142 /*
1143  * 1. Register the new request and wait if the reconstruction thread has put
1144  * up a bar for new requests. Continue immediately if no resync is active
1145  * currently.
1146  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1147  */
1148 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1149 				 struct bio *bio, sector_t sectors)
1150 {
1151 	/* Bail out if REQ_NOWAIT is set for the bio */
1152 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1153 		bio_wouldblock_error(bio);
1154 		return false;
1155 	}
1156 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1157 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1158 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1159 		allow_barrier(conf);
1160 		if (bio->bi_opf & REQ_NOWAIT) {
1161 			bio_wouldblock_error(bio);
1162 			return false;
1163 		}
1164 		raid10_log(conf->mddev, "wait reshape");
1165 		wait_event(conf->wait_barrier,
1166 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1167 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1168 			   sectors);
1169 		wait_barrier(conf, false);
1170 	}
1171 	return true;
1172 }
1173 
1174 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1175 				struct r10bio *r10_bio)
1176 {
1177 	struct r10conf *conf = mddev->private;
1178 	struct bio *read_bio;
1179 	const enum req_op op = bio_op(bio);
1180 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1181 	int max_sectors;
1182 	struct md_rdev *rdev;
1183 	char b[BDEVNAME_SIZE];
1184 	int slot = r10_bio->read_slot;
1185 	struct md_rdev *err_rdev = NULL;
1186 	gfp_t gfp = GFP_NOIO;
1187 
1188 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1189 		/*
1190 		 * This is an error retry, but we cannot
1191 		 * safely dereference the rdev in the r10_bio,
1192 		 * we must use the one in conf.
1193 		 * If it has already been disconnected (unlikely)
1194 		 * we lose the device name in error messages.
1195 		 */
1196 		int disk;
1197 		/*
1198 		 * As we are blocking raid10, it is a little safer to
1199 		 * use __GFP_HIGH.
1200 		 */
1201 		gfp = GFP_NOIO | __GFP_HIGH;
1202 
1203 		rcu_read_lock();
1204 		disk = r10_bio->devs[slot].devnum;
1205 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1206 		if (err_rdev)
1207 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1208 		else {
1209 			strcpy(b, "???");
1210 			/* This never gets dereferenced */
1211 			err_rdev = r10_bio->devs[slot].rdev;
1212 		}
1213 		rcu_read_unlock();
1214 	}
1215 
1216 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1217 		return;
1218 	rdev = read_balance(conf, r10_bio, &max_sectors);
1219 	if (!rdev) {
1220 		if (err_rdev) {
1221 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1222 					    mdname(mddev), b,
1223 					    (unsigned long long)r10_bio->sector);
1224 		}
1225 		raid_end_bio_io(r10_bio);
1226 		return;
1227 	}
1228 	if (err_rdev)
1229 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1230 				   mdname(mddev),
1231 				   rdev->bdev,
1232 				   (unsigned long long)r10_bio->sector);
1233 	if (max_sectors < bio_sectors(bio)) {
1234 		struct bio *split = bio_split(bio, max_sectors,
1235 					      gfp, &conf->bio_split);
1236 		bio_chain(split, bio);
1237 		allow_barrier(conf);
1238 		submit_bio_noacct(bio);
1239 		wait_barrier(conf, false);
1240 		bio = split;
1241 		r10_bio->master_bio = bio;
1242 		r10_bio->sectors = max_sectors;
1243 	}
1244 	slot = r10_bio->read_slot;
1245 
1246 	if (!r10_bio->start_time &&
1247 	    blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1248 		r10_bio->start_time = bio_start_io_acct(bio);
1249 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1250 
1251 	r10_bio->devs[slot].bio = read_bio;
1252 	r10_bio->devs[slot].rdev = rdev;
1253 
1254 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255 		choose_data_offset(r10_bio, rdev);
1256 	read_bio->bi_end_io = raid10_end_read_request;
1257 	read_bio->bi_opf = op | do_sync;
1258 	if (test_bit(FailFast, &rdev->flags) &&
1259 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1260 	        read_bio->bi_opf |= MD_FAILFAST;
1261 	read_bio->bi_private = r10_bio;
1262 
1263 	if (mddev->gendisk)
1264 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1265 	                              r10_bio->sector);
1266 	submit_bio_noacct(read_bio);
1267 	return;
1268 }
1269 
1270 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1271 				  struct bio *bio, bool replacement,
1272 				  int n_copy)
1273 {
1274 	const enum req_op op = bio_op(bio);
1275 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1276 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1277 	unsigned long flags;
1278 	struct r10conf *conf = mddev->private;
1279 	struct md_rdev *rdev;
1280 	int devnum = r10_bio->devs[n_copy].devnum;
1281 	struct bio *mbio;
1282 
1283 	if (replacement) {
1284 		rdev = conf->mirrors[devnum].replacement;
1285 		if (rdev == NULL) {
1286 			/* Replacement just got moved to main 'rdev' */
1287 			smp_mb();
1288 			rdev = conf->mirrors[devnum].rdev;
1289 		}
1290 	} else
1291 		rdev = conf->mirrors[devnum].rdev;
1292 
1293 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1294 	if (replacement)
1295 		r10_bio->devs[n_copy].repl_bio = mbio;
1296 	else
1297 		r10_bio->devs[n_copy].bio = mbio;
1298 
1299 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1300 				   choose_data_offset(r10_bio, rdev));
1301 	mbio->bi_end_io	= raid10_end_write_request;
1302 	mbio->bi_opf = op | do_sync | do_fua;
1303 	if (!replacement && test_bit(FailFast,
1304 				     &conf->mirrors[devnum].rdev->flags)
1305 			 && enough(conf, devnum))
1306 		mbio->bi_opf |= MD_FAILFAST;
1307 	mbio->bi_private = r10_bio;
1308 
1309 	if (conf->mddev->gendisk)
1310 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1311 				      r10_bio->sector);
1312 	/* flush_pending_writes() needs access to the rdev so...*/
1313 	mbio->bi_bdev = (void *)rdev;
1314 
1315 	atomic_inc(&r10_bio->remaining);
1316 
1317 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1318 		spin_lock_irqsave(&conf->device_lock, flags);
1319 		bio_list_add(&conf->pending_bio_list, mbio);
1320 		spin_unlock_irqrestore(&conf->device_lock, flags);
1321 		md_wakeup_thread(mddev->thread);
1322 	}
1323 }
1324 
1325 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1326 {
1327 	int i;
1328 	struct r10conf *conf = mddev->private;
1329 	struct md_rdev *blocked_rdev;
1330 
1331 retry_wait:
1332 	blocked_rdev = NULL;
1333 	rcu_read_lock();
1334 	for (i = 0; i < conf->copies; i++) {
1335 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1336 		struct md_rdev *rrdev = rcu_dereference(
1337 			conf->mirrors[i].replacement);
1338 		if (rdev == rrdev)
1339 			rrdev = NULL;
1340 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1341 			atomic_inc(&rdev->nr_pending);
1342 			blocked_rdev = rdev;
1343 			break;
1344 		}
1345 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1346 			atomic_inc(&rrdev->nr_pending);
1347 			blocked_rdev = rrdev;
1348 			break;
1349 		}
1350 
1351 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1352 			sector_t first_bad;
1353 			sector_t dev_sector = r10_bio->devs[i].addr;
1354 			int bad_sectors;
1355 			int is_bad;
1356 
1357 			/*
1358 			 * Discard request doesn't care the write result
1359 			 * so it doesn't need to wait blocked disk here.
1360 			 */
1361 			if (!r10_bio->sectors)
1362 				continue;
1363 
1364 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1365 					     &first_bad, &bad_sectors);
1366 			if (is_bad < 0) {
1367 				/*
1368 				 * Mustn't write here until the bad block
1369 				 * is acknowledged
1370 				 */
1371 				atomic_inc(&rdev->nr_pending);
1372 				set_bit(BlockedBadBlocks, &rdev->flags);
1373 				blocked_rdev = rdev;
1374 				break;
1375 			}
1376 		}
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	if (unlikely(blocked_rdev)) {
1381 		/* Have to wait for this device to get unblocked, then retry */
1382 		allow_barrier(conf);
1383 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1384 				__func__, blocked_rdev->raid_disk);
1385 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1386 		wait_barrier(conf, false);
1387 		goto retry_wait;
1388 	}
1389 }
1390 
1391 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1392 				 struct r10bio *r10_bio)
1393 {
1394 	struct r10conf *conf = mddev->private;
1395 	int i;
1396 	sector_t sectors;
1397 	int max_sectors;
1398 
1399 	if ((mddev_is_clustered(mddev) &&
1400 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1401 					    bio->bi_iter.bi_sector,
1402 					    bio_end_sector(bio)))) {
1403 		DEFINE_WAIT(w);
1404 		/* Bail out if REQ_NOWAIT is set for the bio */
1405 		if (bio->bi_opf & REQ_NOWAIT) {
1406 			bio_wouldblock_error(bio);
1407 			return;
1408 		}
1409 		for (;;) {
1410 			prepare_to_wait(&conf->wait_barrier,
1411 					&w, TASK_IDLE);
1412 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1413 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1414 				break;
1415 			schedule();
1416 		}
1417 		finish_wait(&conf->wait_barrier, &w);
1418 	}
1419 
1420 	sectors = r10_bio->sectors;
1421 	if (!regular_request_wait(mddev, conf, bio, sectors))
1422 		return;
1423 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1424 	    (mddev->reshape_backwards
1425 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1426 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1427 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1428 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1429 		/* Need to update reshape_position in metadata */
1430 		mddev->reshape_position = conf->reshape_progress;
1431 		set_mask_bits(&mddev->sb_flags, 0,
1432 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1433 		md_wakeup_thread(mddev->thread);
1434 		if (bio->bi_opf & REQ_NOWAIT) {
1435 			allow_barrier(conf);
1436 			bio_wouldblock_error(bio);
1437 			return;
1438 		}
1439 		raid10_log(conf->mddev, "wait reshape metadata");
1440 		wait_event(mddev->sb_wait,
1441 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1442 
1443 		conf->reshape_safe = mddev->reshape_position;
1444 	}
1445 
1446 	/* first select target devices under rcu_lock and
1447 	 * inc refcount on their rdev.  Record them by setting
1448 	 * bios[x] to bio
1449 	 * If there are known/acknowledged bad blocks on any device
1450 	 * on which we have seen a write error, we want to avoid
1451 	 * writing to those blocks.  This potentially requires several
1452 	 * writes to write around the bad blocks.  Each set of writes
1453 	 * gets its own r10_bio with a set of bios attached.
1454 	 */
1455 
1456 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1457 	raid10_find_phys(conf, r10_bio);
1458 
1459 	wait_blocked_dev(mddev, r10_bio);
1460 
1461 	rcu_read_lock();
1462 	max_sectors = r10_bio->sectors;
1463 
1464 	for (i = 0;  i < conf->copies; i++) {
1465 		int d = r10_bio->devs[i].devnum;
1466 		struct md_rdev *rdev, *rrdev;
1467 
1468 		rrdev = rcu_dereference(conf->mirrors[d].replacement);
1469 		/*
1470 		 * Read replacement first to prevent reading both rdev and
1471 		 * replacement as NULL during replacement replace rdev.
1472 		 */
1473 		smp_mb();
1474 		rdev = rcu_dereference(conf->mirrors[d].rdev);
1475 		if (rdev == rrdev)
1476 			rrdev = NULL;
1477 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1478 			rdev = NULL;
1479 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1480 			rrdev = NULL;
1481 
1482 		r10_bio->devs[i].bio = NULL;
1483 		r10_bio->devs[i].repl_bio = NULL;
1484 
1485 		if (!rdev && !rrdev) {
1486 			set_bit(R10BIO_Degraded, &r10_bio->state);
1487 			continue;
1488 		}
1489 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1490 			sector_t first_bad;
1491 			sector_t dev_sector = r10_bio->devs[i].addr;
1492 			int bad_sectors;
1493 			int is_bad;
1494 
1495 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1496 					     &first_bad, &bad_sectors);
1497 			if (is_bad && first_bad <= dev_sector) {
1498 				/* Cannot write here at all */
1499 				bad_sectors -= (dev_sector - first_bad);
1500 				if (bad_sectors < max_sectors)
1501 					/* Mustn't write more than bad_sectors
1502 					 * to other devices yet
1503 					 */
1504 					max_sectors = bad_sectors;
1505 				/* We don't set R10BIO_Degraded as that
1506 				 * only applies if the disk is missing,
1507 				 * so it might be re-added, and we want to
1508 				 * know to recover this chunk.
1509 				 * In this case the device is here, and the
1510 				 * fact that this chunk is not in-sync is
1511 				 * recorded in the bad block log.
1512 				 */
1513 				continue;
1514 			}
1515 			if (is_bad) {
1516 				int good_sectors = first_bad - dev_sector;
1517 				if (good_sectors < max_sectors)
1518 					max_sectors = good_sectors;
1519 			}
1520 		}
1521 		if (rdev) {
1522 			r10_bio->devs[i].bio = bio;
1523 			atomic_inc(&rdev->nr_pending);
1524 		}
1525 		if (rrdev) {
1526 			r10_bio->devs[i].repl_bio = bio;
1527 			atomic_inc(&rrdev->nr_pending);
1528 		}
1529 	}
1530 	rcu_read_unlock();
1531 
1532 	if (max_sectors < r10_bio->sectors)
1533 		r10_bio->sectors = max_sectors;
1534 
1535 	if (r10_bio->sectors < bio_sectors(bio)) {
1536 		struct bio *split = bio_split(bio, r10_bio->sectors,
1537 					      GFP_NOIO, &conf->bio_split);
1538 		bio_chain(split, bio);
1539 		allow_barrier(conf);
1540 		submit_bio_noacct(bio);
1541 		wait_barrier(conf, false);
1542 		bio = split;
1543 		r10_bio->master_bio = bio;
1544 	}
1545 
1546 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1547 		r10_bio->start_time = bio_start_io_acct(bio);
1548 	atomic_set(&r10_bio->remaining, 1);
1549 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1550 
1551 	for (i = 0; i < conf->copies; i++) {
1552 		if (r10_bio->devs[i].bio)
1553 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1554 		if (r10_bio->devs[i].repl_bio)
1555 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1556 	}
1557 	one_write_done(r10_bio);
1558 }
1559 
1560 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1561 {
1562 	struct r10conf *conf = mddev->private;
1563 	struct r10bio *r10_bio;
1564 
1565 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1566 
1567 	r10_bio->master_bio = bio;
1568 	r10_bio->sectors = sectors;
1569 
1570 	r10_bio->mddev = mddev;
1571 	r10_bio->sector = bio->bi_iter.bi_sector;
1572 	r10_bio->state = 0;
1573 	r10_bio->read_slot = -1;
1574 	r10_bio->start_time = 0;
1575 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1576 			conf->geo.raid_disks);
1577 
1578 	if (bio_data_dir(bio) == READ)
1579 		raid10_read_request(mddev, bio, r10_bio);
1580 	else
1581 		raid10_write_request(mddev, bio, r10_bio);
1582 }
1583 
1584 static void raid_end_discard_bio(struct r10bio *r10bio)
1585 {
1586 	struct r10conf *conf = r10bio->mddev->private;
1587 	struct r10bio *first_r10bio;
1588 
1589 	while (atomic_dec_and_test(&r10bio->remaining)) {
1590 
1591 		allow_barrier(conf);
1592 
1593 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1594 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1595 			free_r10bio(r10bio);
1596 			r10bio = first_r10bio;
1597 		} else {
1598 			md_write_end(r10bio->mddev);
1599 			bio_endio(r10bio->master_bio);
1600 			free_r10bio(r10bio);
1601 			break;
1602 		}
1603 	}
1604 }
1605 
1606 static void raid10_end_discard_request(struct bio *bio)
1607 {
1608 	struct r10bio *r10_bio = bio->bi_private;
1609 	struct r10conf *conf = r10_bio->mddev->private;
1610 	struct md_rdev *rdev = NULL;
1611 	int dev;
1612 	int slot, repl;
1613 
1614 	/*
1615 	 * We don't care the return value of discard bio
1616 	 */
1617 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1618 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1619 
1620 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1621 	if (repl)
1622 		rdev = conf->mirrors[dev].replacement;
1623 	if (!rdev) {
1624 		/*
1625 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1626 		 * replacement before setting replacement to NULL. It can read
1627 		 * rdev first without barrier protect even replacement is NULL
1628 		 */
1629 		smp_rmb();
1630 		rdev = conf->mirrors[dev].rdev;
1631 	}
1632 
1633 	raid_end_discard_bio(r10_bio);
1634 	rdev_dec_pending(rdev, conf->mddev);
1635 }
1636 
1637 /*
1638  * There are some limitations to handle discard bio
1639  * 1st, the discard size is bigger than stripe_size*2.
1640  * 2st, if the discard bio spans reshape progress, we use the old way to
1641  * handle discard bio
1642  */
1643 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1644 {
1645 	struct r10conf *conf = mddev->private;
1646 	struct geom *geo = &conf->geo;
1647 	int far_copies = geo->far_copies;
1648 	bool first_copy = true;
1649 	struct r10bio *r10_bio, *first_r10bio;
1650 	struct bio *split;
1651 	int disk;
1652 	sector_t chunk;
1653 	unsigned int stripe_size;
1654 	unsigned int stripe_data_disks;
1655 	sector_t split_size;
1656 	sector_t bio_start, bio_end;
1657 	sector_t first_stripe_index, last_stripe_index;
1658 	sector_t start_disk_offset;
1659 	unsigned int start_disk_index;
1660 	sector_t end_disk_offset;
1661 	unsigned int end_disk_index;
1662 	unsigned int remainder;
1663 
1664 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1665 		return -EAGAIN;
1666 
1667 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1668 		bio_wouldblock_error(bio);
1669 		return 0;
1670 	}
1671 	wait_barrier(conf, false);
1672 
1673 	/*
1674 	 * Check reshape again to avoid reshape happens after checking
1675 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1676 	 */
1677 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1678 		goto out;
1679 
1680 	if (geo->near_copies)
1681 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1682 					geo->raid_disks % geo->near_copies;
1683 	else
1684 		stripe_data_disks = geo->raid_disks;
1685 
1686 	stripe_size = stripe_data_disks << geo->chunk_shift;
1687 
1688 	bio_start = bio->bi_iter.bi_sector;
1689 	bio_end = bio_end_sector(bio);
1690 
1691 	/*
1692 	 * Maybe one discard bio is smaller than strip size or across one
1693 	 * stripe and discard region is larger than one stripe size. For far
1694 	 * offset layout, if the discard region is not aligned with stripe
1695 	 * size, there is hole when we submit discard bio to member disk.
1696 	 * For simplicity, we only handle discard bio which discard region
1697 	 * is bigger than stripe_size * 2
1698 	 */
1699 	if (bio_sectors(bio) < stripe_size*2)
1700 		goto out;
1701 
1702 	/*
1703 	 * Keep bio aligned with strip size.
1704 	 */
1705 	div_u64_rem(bio_start, stripe_size, &remainder);
1706 	if (remainder) {
1707 		split_size = stripe_size - remainder;
1708 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1709 		bio_chain(split, bio);
1710 		allow_barrier(conf);
1711 		/* Resend the fist split part */
1712 		submit_bio_noacct(split);
1713 		wait_barrier(conf, false);
1714 	}
1715 	div_u64_rem(bio_end, stripe_size, &remainder);
1716 	if (remainder) {
1717 		split_size = bio_sectors(bio) - remainder;
1718 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1719 		bio_chain(split, bio);
1720 		allow_barrier(conf);
1721 		/* Resend the second split part */
1722 		submit_bio_noacct(bio);
1723 		bio = split;
1724 		wait_barrier(conf, false);
1725 	}
1726 
1727 	bio_start = bio->bi_iter.bi_sector;
1728 	bio_end = bio_end_sector(bio);
1729 
1730 	/*
1731 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1732 	 * One stripe contains the chunks from all member disk (one chunk from
1733 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1734 	 */
1735 	chunk = bio_start >> geo->chunk_shift;
1736 	chunk *= geo->near_copies;
1737 	first_stripe_index = chunk;
1738 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1739 	if (geo->far_offset)
1740 		first_stripe_index *= geo->far_copies;
1741 	start_disk_offset = (bio_start & geo->chunk_mask) +
1742 				(first_stripe_index << geo->chunk_shift);
1743 
1744 	chunk = bio_end >> geo->chunk_shift;
1745 	chunk *= geo->near_copies;
1746 	last_stripe_index = chunk;
1747 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1748 	if (geo->far_offset)
1749 		last_stripe_index *= geo->far_copies;
1750 	end_disk_offset = (bio_end & geo->chunk_mask) +
1751 				(last_stripe_index << geo->chunk_shift);
1752 
1753 retry_discard:
1754 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1755 	r10_bio->mddev = mddev;
1756 	r10_bio->state = 0;
1757 	r10_bio->sectors = 0;
1758 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1759 	wait_blocked_dev(mddev, r10_bio);
1760 
1761 	/*
1762 	 * For far layout it needs more than one r10bio to cover all regions.
1763 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1764 	 * to record the discard bio. Other r10bio->master_bio record the first
1765 	 * r10bio. The first r10bio only release after all other r10bios finish.
1766 	 * The discard bio returns only first r10bio finishes
1767 	 */
1768 	if (first_copy) {
1769 		r10_bio->master_bio = bio;
1770 		set_bit(R10BIO_Discard, &r10_bio->state);
1771 		first_copy = false;
1772 		first_r10bio = r10_bio;
1773 	} else
1774 		r10_bio->master_bio = (struct bio *)first_r10bio;
1775 
1776 	/*
1777 	 * first select target devices under rcu_lock and
1778 	 * inc refcount on their rdev.  Record them by setting
1779 	 * bios[x] to bio
1780 	 */
1781 	rcu_read_lock();
1782 	for (disk = 0; disk < geo->raid_disks; disk++) {
1783 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1784 		struct md_rdev *rrdev = rcu_dereference(
1785 			conf->mirrors[disk].replacement);
1786 
1787 		r10_bio->devs[disk].bio = NULL;
1788 		r10_bio->devs[disk].repl_bio = NULL;
1789 
1790 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1791 			rdev = NULL;
1792 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1793 			rrdev = NULL;
1794 		if (!rdev && !rrdev)
1795 			continue;
1796 
1797 		if (rdev) {
1798 			r10_bio->devs[disk].bio = bio;
1799 			atomic_inc(&rdev->nr_pending);
1800 		}
1801 		if (rrdev) {
1802 			r10_bio->devs[disk].repl_bio = bio;
1803 			atomic_inc(&rrdev->nr_pending);
1804 		}
1805 	}
1806 	rcu_read_unlock();
1807 
1808 	atomic_set(&r10_bio->remaining, 1);
1809 	for (disk = 0; disk < geo->raid_disks; disk++) {
1810 		sector_t dev_start, dev_end;
1811 		struct bio *mbio, *rbio = NULL;
1812 
1813 		/*
1814 		 * Now start to calculate the start and end address for each disk.
1815 		 * The space between dev_start and dev_end is the discard region.
1816 		 *
1817 		 * For dev_start, it needs to consider three conditions:
1818 		 * 1st, the disk is before start_disk, you can imagine the disk in
1819 		 * the next stripe. So the dev_start is the start address of next
1820 		 * stripe.
1821 		 * 2st, the disk is after start_disk, it means the disk is at the
1822 		 * same stripe of first disk
1823 		 * 3st, the first disk itself, we can use start_disk_offset directly
1824 		 */
1825 		if (disk < start_disk_index)
1826 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1827 		else if (disk > start_disk_index)
1828 			dev_start = first_stripe_index * mddev->chunk_sectors;
1829 		else
1830 			dev_start = start_disk_offset;
1831 
1832 		if (disk < end_disk_index)
1833 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1834 		else if (disk > end_disk_index)
1835 			dev_end = last_stripe_index * mddev->chunk_sectors;
1836 		else
1837 			dev_end = end_disk_offset;
1838 
1839 		/*
1840 		 * It only handles discard bio which size is >= stripe size, so
1841 		 * dev_end > dev_start all the time.
1842 		 * It doesn't need to use rcu lock to get rdev here. We already
1843 		 * add rdev->nr_pending in the first loop.
1844 		 */
1845 		if (r10_bio->devs[disk].bio) {
1846 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1847 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1848 					       &mddev->bio_set);
1849 			mbio->bi_end_io = raid10_end_discard_request;
1850 			mbio->bi_private = r10_bio;
1851 			r10_bio->devs[disk].bio = mbio;
1852 			r10_bio->devs[disk].devnum = disk;
1853 			atomic_inc(&r10_bio->remaining);
1854 			md_submit_discard_bio(mddev, rdev, mbio,
1855 					dev_start + choose_data_offset(r10_bio, rdev),
1856 					dev_end - dev_start);
1857 			bio_endio(mbio);
1858 		}
1859 		if (r10_bio->devs[disk].repl_bio) {
1860 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1861 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1862 					       &mddev->bio_set);
1863 			rbio->bi_end_io = raid10_end_discard_request;
1864 			rbio->bi_private = r10_bio;
1865 			r10_bio->devs[disk].repl_bio = rbio;
1866 			r10_bio->devs[disk].devnum = disk;
1867 			atomic_inc(&r10_bio->remaining);
1868 			md_submit_discard_bio(mddev, rrdev, rbio,
1869 					dev_start + choose_data_offset(r10_bio, rrdev),
1870 					dev_end - dev_start);
1871 			bio_endio(rbio);
1872 		}
1873 	}
1874 
1875 	if (!geo->far_offset && --far_copies) {
1876 		first_stripe_index += geo->stride >> geo->chunk_shift;
1877 		start_disk_offset += geo->stride;
1878 		last_stripe_index += geo->stride >> geo->chunk_shift;
1879 		end_disk_offset += geo->stride;
1880 		atomic_inc(&first_r10bio->remaining);
1881 		raid_end_discard_bio(r10_bio);
1882 		wait_barrier(conf, false);
1883 		goto retry_discard;
1884 	}
1885 
1886 	raid_end_discard_bio(r10_bio);
1887 
1888 	return 0;
1889 out:
1890 	allow_barrier(conf);
1891 	return -EAGAIN;
1892 }
1893 
1894 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1895 {
1896 	struct r10conf *conf = mddev->private;
1897 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1898 	int chunk_sects = chunk_mask + 1;
1899 	int sectors = bio_sectors(bio);
1900 
1901 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1902 	    && md_flush_request(mddev, bio))
1903 		return true;
1904 
1905 	if (!md_write_start(mddev, bio))
1906 		return false;
1907 
1908 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1909 		if (!raid10_handle_discard(mddev, bio))
1910 			return true;
1911 
1912 	/*
1913 	 * If this request crosses a chunk boundary, we need to split
1914 	 * it.
1915 	 */
1916 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1917 		     sectors > chunk_sects
1918 		     && (conf->geo.near_copies < conf->geo.raid_disks
1919 			 || conf->prev.near_copies <
1920 			 conf->prev.raid_disks)))
1921 		sectors = chunk_sects -
1922 			(bio->bi_iter.bi_sector &
1923 			 (chunk_sects - 1));
1924 	__make_request(mddev, bio, sectors);
1925 
1926 	/* In case raid10d snuck in to freeze_array */
1927 	wake_up_barrier(conf);
1928 	return true;
1929 }
1930 
1931 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1932 {
1933 	struct r10conf *conf = mddev->private;
1934 	int i;
1935 
1936 	if (conf->geo.near_copies < conf->geo.raid_disks)
1937 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1938 	if (conf->geo.near_copies > 1)
1939 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1940 	if (conf->geo.far_copies > 1) {
1941 		if (conf->geo.far_offset)
1942 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1943 		else
1944 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1945 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1946 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1947 	}
1948 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1949 					conf->geo.raid_disks - mddev->degraded);
1950 	rcu_read_lock();
1951 	for (i = 0; i < conf->geo.raid_disks; i++) {
1952 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1953 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1954 	}
1955 	rcu_read_unlock();
1956 	seq_printf(seq, "]");
1957 }
1958 
1959 /* check if there are enough drives for
1960  * every block to appear on atleast one.
1961  * Don't consider the device numbered 'ignore'
1962  * as we might be about to remove it.
1963  */
1964 static int _enough(struct r10conf *conf, int previous, int ignore)
1965 {
1966 	int first = 0;
1967 	int has_enough = 0;
1968 	int disks, ncopies;
1969 	if (previous) {
1970 		disks = conf->prev.raid_disks;
1971 		ncopies = conf->prev.near_copies;
1972 	} else {
1973 		disks = conf->geo.raid_disks;
1974 		ncopies = conf->geo.near_copies;
1975 	}
1976 
1977 	rcu_read_lock();
1978 	do {
1979 		int n = conf->copies;
1980 		int cnt = 0;
1981 		int this = first;
1982 		while (n--) {
1983 			struct md_rdev *rdev;
1984 			if (this != ignore &&
1985 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1986 			    test_bit(In_sync, &rdev->flags))
1987 				cnt++;
1988 			this = (this+1) % disks;
1989 		}
1990 		if (cnt == 0)
1991 			goto out;
1992 		first = (first + ncopies) % disks;
1993 	} while (first != 0);
1994 	has_enough = 1;
1995 out:
1996 	rcu_read_unlock();
1997 	return has_enough;
1998 }
1999 
2000 static int enough(struct r10conf *conf, int ignore)
2001 {
2002 	/* when calling 'enough', both 'prev' and 'geo' must
2003 	 * be stable.
2004 	 * This is ensured if ->reconfig_mutex or ->device_lock
2005 	 * is held.
2006 	 */
2007 	return _enough(conf, 0, ignore) &&
2008 		_enough(conf, 1, ignore);
2009 }
2010 
2011 /**
2012  * raid10_error() - RAID10 error handler.
2013  * @mddev: affected md device.
2014  * @rdev: member device to fail.
2015  *
2016  * The routine acknowledges &rdev failure and determines new @mddev state.
2017  * If it failed, then:
2018  *	- &MD_BROKEN flag is set in &mddev->flags.
2019  * Otherwise, it must be degraded:
2020  *	- recovery is interrupted.
2021  *	- &mddev->degraded is bumped.
2022  *
2023  * @rdev is marked as &Faulty excluding case when array is failed and
2024  * &mddev->fail_last_dev is off.
2025  */
2026 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2027 {
2028 	struct r10conf *conf = mddev->private;
2029 	unsigned long flags;
2030 
2031 	spin_lock_irqsave(&conf->device_lock, flags);
2032 
2033 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2034 		set_bit(MD_BROKEN, &mddev->flags);
2035 
2036 		if (!mddev->fail_last_dev) {
2037 			spin_unlock_irqrestore(&conf->device_lock, flags);
2038 			return;
2039 		}
2040 	}
2041 	if (test_and_clear_bit(In_sync, &rdev->flags))
2042 		mddev->degraded++;
2043 
2044 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2045 	set_bit(Blocked, &rdev->flags);
2046 	set_bit(Faulty, &rdev->flags);
2047 	set_mask_bits(&mddev->sb_flags, 0,
2048 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2049 	spin_unlock_irqrestore(&conf->device_lock, flags);
2050 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2051 		"md/raid10:%s: Operation continuing on %d devices.\n",
2052 		mdname(mddev), rdev->bdev,
2053 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2054 }
2055 
2056 static void print_conf(struct r10conf *conf)
2057 {
2058 	int i;
2059 	struct md_rdev *rdev;
2060 
2061 	pr_debug("RAID10 conf printout:\n");
2062 	if (!conf) {
2063 		pr_debug("(!conf)\n");
2064 		return;
2065 	}
2066 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2067 		 conf->geo.raid_disks);
2068 
2069 	/* This is only called with ->reconfix_mutex held, so
2070 	 * rcu protection of rdev is not needed */
2071 	for (i = 0; i < conf->geo.raid_disks; i++) {
2072 		rdev = conf->mirrors[i].rdev;
2073 		if (rdev)
2074 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2075 				 i, !test_bit(In_sync, &rdev->flags),
2076 				 !test_bit(Faulty, &rdev->flags),
2077 				 rdev->bdev);
2078 	}
2079 }
2080 
2081 static void close_sync(struct r10conf *conf)
2082 {
2083 	wait_barrier(conf, false);
2084 	allow_barrier(conf);
2085 
2086 	mempool_exit(&conf->r10buf_pool);
2087 }
2088 
2089 static int raid10_spare_active(struct mddev *mddev)
2090 {
2091 	int i;
2092 	struct r10conf *conf = mddev->private;
2093 	struct raid10_info *tmp;
2094 	int count = 0;
2095 	unsigned long flags;
2096 
2097 	/*
2098 	 * Find all non-in_sync disks within the RAID10 configuration
2099 	 * and mark them in_sync
2100 	 */
2101 	for (i = 0; i < conf->geo.raid_disks; i++) {
2102 		tmp = conf->mirrors + i;
2103 		if (tmp->replacement
2104 		    && tmp->replacement->recovery_offset == MaxSector
2105 		    && !test_bit(Faulty, &tmp->replacement->flags)
2106 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2107 			/* Replacement has just become active */
2108 			if (!tmp->rdev
2109 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2110 				count++;
2111 			if (tmp->rdev) {
2112 				/* Replaced device not technically faulty,
2113 				 * but we need to be sure it gets removed
2114 				 * and never re-added.
2115 				 */
2116 				set_bit(Faulty, &tmp->rdev->flags);
2117 				sysfs_notify_dirent_safe(
2118 					tmp->rdev->sysfs_state);
2119 			}
2120 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2121 		} else if (tmp->rdev
2122 			   && tmp->rdev->recovery_offset == MaxSector
2123 			   && !test_bit(Faulty, &tmp->rdev->flags)
2124 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2125 			count++;
2126 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2127 		}
2128 	}
2129 	spin_lock_irqsave(&conf->device_lock, flags);
2130 	mddev->degraded -= count;
2131 	spin_unlock_irqrestore(&conf->device_lock, flags);
2132 
2133 	print_conf(conf);
2134 	return count;
2135 }
2136 
2137 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2138 {
2139 	struct r10conf *conf = mddev->private;
2140 	int err = -EEXIST;
2141 	int mirror, repl_slot = -1;
2142 	int first = 0;
2143 	int last = conf->geo.raid_disks - 1;
2144 	struct raid10_info *p;
2145 
2146 	if (mddev->recovery_cp < MaxSector)
2147 		/* only hot-add to in-sync arrays, as recovery is
2148 		 * very different from resync
2149 		 */
2150 		return -EBUSY;
2151 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2152 		return -EINVAL;
2153 
2154 	if (md_integrity_add_rdev(rdev, mddev))
2155 		return -ENXIO;
2156 
2157 	if (rdev->raid_disk >= 0)
2158 		first = last = rdev->raid_disk;
2159 
2160 	if (rdev->saved_raid_disk >= first &&
2161 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2162 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2163 		mirror = rdev->saved_raid_disk;
2164 	else
2165 		mirror = first;
2166 	for ( ; mirror <= last ; mirror++) {
2167 		p = &conf->mirrors[mirror];
2168 		if (p->recovery_disabled == mddev->recovery_disabled)
2169 			continue;
2170 		if (p->rdev) {
2171 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2172 			    p->replacement == NULL && repl_slot < 0)
2173 				repl_slot = mirror;
2174 			continue;
2175 		}
2176 
2177 		if (mddev->gendisk)
2178 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2179 					  rdev->data_offset << 9);
2180 
2181 		p->head_position = 0;
2182 		p->recovery_disabled = mddev->recovery_disabled - 1;
2183 		rdev->raid_disk = mirror;
2184 		err = 0;
2185 		if (rdev->saved_raid_disk != mirror)
2186 			conf->fullsync = 1;
2187 		rcu_assign_pointer(p->rdev, rdev);
2188 		break;
2189 	}
2190 
2191 	if (err && repl_slot >= 0) {
2192 		p = &conf->mirrors[repl_slot];
2193 		clear_bit(In_sync, &rdev->flags);
2194 		set_bit(Replacement, &rdev->flags);
2195 		rdev->raid_disk = repl_slot;
2196 		err = 0;
2197 		if (mddev->gendisk)
2198 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2199 					  rdev->data_offset << 9);
2200 		conf->fullsync = 1;
2201 		rcu_assign_pointer(p->replacement, rdev);
2202 	}
2203 
2204 	print_conf(conf);
2205 	return err;
2206 }
2207 
2208 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2209 {
2210 	struct r10conf *conf = mddev->private;
2211 	int err = 0;
2212 	int number = rdev->raid_disk;
2213 	struct md_rdev **rdevp;
2214 	struct raid10_info *p;
2215 
2216 	print_conf(conf);
2217 	if (unlikely(number >= mddev->raid_disks))
2218 		return 0;
2219 	p = conf->mirrors + number;
2220 	if (rdev == p->rdev)
2221 		rdevp = &p->rdev;
2222 	else if (rdev == p->replacement)
2223 		rdevp = &p->replacement;
2224 	else
2225 		return 0;
2226 
2227 	if (test_bit(In_sync, &rdev->flags) ||
2228 	    atomic_read(&rdev->nr_pending)) {
2229 		err = -EBUSY;
2230 		goto abort;
2231 	}
2232 	/* Only remove non-faulty devices if recovery
2233 	 * is not possible.
2234 	 */
2235 	if (!test_bit(Faulty, &rdev->flags) &&
2236 	    mddev->recovery_disabled != p->recovery_disabled &&
2237 	    (!p->replacement || p->replacement == rdev) &&
2238 	    number < conf->geo.raid_disks &&
2239 	    enough(conf, -1)) {
2240 		err = -EBUSY;
2241 		goto abort;
2242 	}
2243 	*rdevp = NULL;
2244 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2245 		synchronize_rcu();
2246 		if (atomic_read(&rdev->nr_pending)) {
2247 			/* lost the race, try later */
2248 			err = -EBUSY;
2249 			*rdevp = rdev;
2250 			goto abort;
2251 		}
2252 	}
2253 	if (p->replacement) {
2254 		/* We must have just cleared 'rdev' */
2255 		p->rdev = p->replacement;
2256 		clear_bit(Replacement, &p->replacement->flags);
2257 		smp_mb(); /* Make sure other CPUs may see both as identical
2258 			   * but will never see neither -- if they are careful.
2259 			   */
2260 		p->replacement = NULL;
2261 	}
2262 
2263 	clear_bit(WantReplacement, &rdev->flags);
2264 	err = md_integrity_register(mddev);
2265 
2266 abort:
2267 
2268 	print_conf(conf);
2269 	return err;
2270 }
2271 
2272 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2273 {
2274 	struct r10conf *conf = r10_bio->mddev->private;
2275 
2276 	if (!bio->bi_status)
2277 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2278 	else
2279 		/* The write handler will notice the lack of
2280 		 * R10BIO_Uptodate and record any errors etc
2281 		 */
2282 		atomic_add(r10_bio->sectors,
2283 			   &conf->mirrors[d].rdev->corrected_errors);
2284 
2285 	/* for reconstruct, we always reschedule after a read.
2286 	 * for resync, only after all reads
2287 	 */
2288 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2289 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2290 	    atomic_dec_and_test(&r10_bio->remaining)) {
2291 		/* we have read all the blocks,
2292 		 * do the comparison in process context in raid10d
2293 		 */
2294 		reschedule_retry(r10_bio);
2295 	}
2296 }
2297 
2298 static void end_sync_read(struct bio *bio)
2299 {
2300 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2301 	struct r10conf *conf = r10_bio->mddev->private;
2302 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2303 
2304 	__end_sync_read(r10_bio, bio, d);
2305 }
2306 
2307 static void end_reshape_read(struct bio *bio)
2308 {
2309 	/* reshape read bio isn't allocated from r10buf_pool */
2310 	struct r10bio *r10_bio = bio->bi_private;
2311 
2312 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2313 }
2314 
2315 static void end_sync_request(struct r10bio *r10_bio)
2316 {
2317 	struct mddev *mddev = r10_bio->mddev;
2318 
2319 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2320 		if (r10_bio->master_bio == NULL) {
2321 			/* the primary of several recovery bios */
2322 			sector_t s = r10_bio->sectors;
2323 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2324 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2325 				reschedule_retry(r10_bio);
2326 			else
2327 				put_buf(r10_bio);
2328 			md_done_sync(mddev, s, 1);
2329 			break;
2330 		} else {
2331 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2332 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2333 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2334 				reschedule_retry(r10_bio);
2335 			else
2336 				put_buf(r10_bio);
2337 			r10_bio = r10_bio2;
2338 		}
2339 	}
2340 }
2341 
2342 static void end_sync_write(struct bio *bio)
2343 {
2344 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2345 	struct mddev *mddev = r10_bio->mddev;
2346 	struct r10conf *conf = mddev->private;
2347 	int d;
2348 	sector_t first_bad;
2349 	int bad_sectors;
2350 	int slot;
2351 	int repl;
2352 	struct md_rdev *rdev = NULL;
2353 
2354 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2355 	if (repl)
2356 		rdev = conf->mirrors[d].replacement;
2357 	else
2358 		rdev = conf->mirrors[d].rdev;
2359 
2360 	if (bio->bi_status) {
2361 		if (repl)
2362 			md_error(mddev, rdev);
2363 		else {
2364 			set_bit(WriteErrorSeen, &rdev->flags);
2365 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2366 				set_bit(MD_RECOVERY_NEEDED,
2367 					&rdev->mddev->recovery);
2368 			set_bit(R10BIO_WriteError, &r10_bio->state);
2369 		}
2370 	} else if (is_badblock(rdev,
2371 			     r10_bio->devs[slot].addr,
2372 			     r10_bio->sectors,
2373 			     &first_bad, &bad_sectors))
2374 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2375 
2376 	rdev_dec_pending(rdev, mddev);
2377 
2378 	end_sync_request(r10_bio);
2379 }
2380 
2381 /*
2382  * Note: sync and recover and handled very differently for raid10
2383  * This code is for resync.
2384  * For resync, we read through virtual addresses and read all blocks.
2385  * If there is any error, we schedule a write.  The lowest numbered
2386  * drive is authoritative.
2387  * However requests come for physical address, so we need to map.
2388  * For every physical address there are raid_disks/copies virtual addresses,
2389  * which is always are least one, but is not necessarly an integer.
2390  * This means that a physical address can span multiple chunks, so we may
2391  * have to submit multiple io requests for a single sync request.
2392  */
2393 /*
2394  * We check if all blocks are in-sync and only write to blocks that
2395  * aren't in sync
2396  */
2397 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2398 {
2399 	struct r10conf *conf = mddev->private;
2400 	int i, first;
2401 	struct bio *tbio, *fbio;
2402 	int vcnt;
2403 	struct page **tpages, **fpages;
2404 
2405 	atomic_set(&r10_bio->remaining, 1);
2406 
2407 	/* find the first device with a block */
2408 	for (i=0; i<conf->copies; i++)
2409 		if (!r10_bio->devs[i].bio->bi_status)
2410 			break;
2411 
2412 	if (i == conf->copies)
2413 		goto done;
2414 
2415 	first = i;
2416 	fbio = r10_bio->devs[i].bio;
2417 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2418 	fbio->bi_iter.bi_idx = 0;
2419 	fpages = get_resync_pages(fbio)->pages;
2420 
2421 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2422 	/* now find blocks with errors */
2423 	for (i=0 ; i < conf->copies ; i++) {
2424 		int  j, d;
2425 		struct md_rdev *rdev;
2426 		struct resync_pages *rp;
2427 
2428 		tbio = r10_bio->devs[i].bio;
2429 
2430 		if (tbio->bi_end_io != end_sync_read)
2431 			continue;
2432 		if (i == first)
2433 			continue;
2434 
2435 		tpages = get_resync_pages(tbio)->pages;
2436 		d = r10_bio->devs[i].devnum;
2437 		rdev = conf->mirrors[d].rdev;
2438 		if (!r10_bio->devs[i].bio->bi_status) {
2439 			/* We know that the bi_io_vec layout is the same for
2440 			 * both 'first' and 'i', so we just compare them.
2441 			 * All vec entries are PAGE_SIZE;
2442 			 */
2443 			int sectors = r10_bio->sectors;
2444 			for (j = 0; j < vcnt; j++) {
2445 				int len = PAGE_SIZE;
2446 				if (sectors < (len / 512))
2447 					len = sectors * 512;
2448 				if (memcmp(page_address(fpages[j]),
2449 					   page_address(tpages[j]),
2450 					   len))
2451 					break;
2452 				sectors -= len/512;
2453 			}
2454 			if (j == vcnt)
2455 				continue;
2456 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2457 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2458 				/* Don't fix anything. */
2459 				continue;
2460 		} else if (test_bit(FailFast, &rdev->flags)) {
2461 			/* Just give up on this device */
2462 			md_error(rdev->mddev, rdev);
2463 			continue;
2464 		}
2465 		/* Ok, we need to write this bio, either to correct an
2466 		 * inconsistency or to correct an unreadable block.
2467 		 * First we need to fixup bv_offset, bv_len and
2468 		 * bi_vecs, as the read request might have corrupted these
2469 		 */
2470 		rp = get_resync_pages(tbio);
2471 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2472 
2473 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2474 
2475 		rp->raid_bio = r10_bio;
2476 		tbio->bi_private = rp;
2477 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2478 		tbio->bi_end_io = end_sync_write;
2479 
2480 		bio_copy_data(tbio, fbio);
2481 
2482 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2483 		atomic_inc(&r10_bio->remaining);
2484 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2485 
2486 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2487 			tbio->bi_opf |= MD_FAILFAST;
2488 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2489 		submit_bio_noacct(tbio);
2490 	}
2491 
2492 	/* Now write out to any replacement devices
2493 	 * that are active
2494 	 */
2495 	for (i = 0; i < conf->copies; i++) {
2496 		int d;
2497 
2498 		tbio = r10_bio->devs[i].repl_bio;
2499 		if (!tbio || !tbio->bi_end_io)
2500 			continue;
2501 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2502 		    && r10_bio->devs[i].bio != fbio)
2503 			bio_copy_data(tbio, fbio);
2504 		d = r10_bio->devs[i].devnum;
2505 		atomic_inc(&r10_bio->remaining);
2506 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2507 			     bio_sectors(tbio));
2508 		submit_bio_noacct(tbio);
2509 	}
2510 
2511 done:
2512 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2513 		md_done_sync(mddev, r10_bio->sectors, 1);
2514 		put_buf(r10_bio);
2515 	}
2516 }
2517 
2518 /*
2519  * Now for the recovery code.
2520  * Recovery happens across physical sectors.
2521  * We recover all non-is_sync drives by finding the virtual address of
2522  * each, and then choose a working drive that also has that virt address.
2523  * There is a separate r10_bio for each non-in_sync drive.
2524  * Only the first two slots are in use. The first for reading,
2525  * The second for writing.
2526  *
2527  */
2528 static void fix_recovery_read_error(struct r10bio *r10_bio)
2529 {
2530 	/* We got a read error during recovery.
2531 	 * We repeat the read in smaller page-sized sections.
2532 	 * If a read succeeds, write it to the new device or record
2533 	 * a bad block if we cannot.
2534 	 * If a read fails, record a bad block on both old and
2535 	 * new devices.
2536 	 */
2537 	struct mddev *mddev = r10_bio->mddev;
2538 	struct r10conf *conf = mddev->private;
2539 	struct bio *bio = r10_bio->devs[0].bio;
2540 	sector_t sect = 0;
2541 	int sectors = r10_bio->sectors;
2542 	int idx = 0;
2543 	int dr = r10_bio->devs[0].devnum;
2544 	int dw = r10_bio->devs[1].devnum;
2545 	struct page **pages = get_resync_pages(bio)->pages;
2546 
2547 	while (sectors) {
2548 		int s = sectors;
2549 		struct md_rdev *rdev;
2550 		sector_t addr;
2551 		int ok;
2552 
2553 		if (s > (PAGE_SIZE>>9))
2554 			s = PAGE_SIZE >> 9;
2555 
2556 		rdev = conf->mirrors[dr].rdev;
2557 		addr = r10_bio->devs[0].addr + sect,
2558 		ok = sync_page_io(rdev,
2559 				  addr,
2560 				  s << 9,
2561 				  pages[idx],
2562 				  REQ_OP_READ, false);
2563 		if (ok) {
2564 			rdev = conf->mirrors[dw].rdev;
2565 			addr = r10_bio->devs[1].addr + sect;
2566 			ok = sync_page_io(rdev,
2567 					  addr,
2568 					  s << 9,
2569 					  pages[idx],
2570 					  REQ_OP_WRITE, false);
2571 			if (!ok) {
2572 				set_bit(WriteErrorSeen, &rdev->flags);
2573 				if (!test_and_set_bit(WantReplacement,
2574 						      &rdev->flags))
2575 					set_bit(MD_RECOVERY_NEEDED,
2576 						&rdev->mddev->recovery);
2577 			}
2578 		}
2579 		if (!ok) {
2580 			/* We don't worry if we cannot set a bad block -
2581 			 * it really is bad so there is no loss in not
2582 			 * recording it yet
2583 			 */
2584 			rdev_set_badblocks(rdev, addr, s, 0);
2585 
2586 			if (rdev != conf->mirrors[dw].rdev) {
2587 				/* need bad block on destination too */
2588 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2589 				addr = r10_bio->devs[1].addr + sect;
2590 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2591 				if (!ok) {
2592 					/* just abort the recovery */
2593 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2594 						  mdname(mddev));
2595 
2596 					conf->mirrors[dw].recovery_disabled
2597 						= mddev->recovery_disabled;
2598 					set_bit(MD_RECOVERY_INTR,
2599 						&mddev->recovery);
2600 					break;
2601 				}
2602 			}
2603 		}
2604 
2605 		sectors -= s;
2606 		sect += s;
2607 		idx++;
2608 	}
2609 }
2610 
2611 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2612 {
2613 	struct r10conf *conf = mddev->private;
2614 	int d;
2615 	struct bio *wbio = r10_bio->devs[1].bio;
2616 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2617 
2618 	/* Need to test wbio2->bi_end_io before we call
2619 	 * submit_bio_noacct as if the former is NULL,
2620 	 * the latter is free to free wbio2.
2621 	 */
2622 	if (wbio2 && !wbio2->bi_end_io)
2623 		wbio2 = NULL;
2624 
2625 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2626 		fix_recovery_read_error(r10_bio);
2627 		if (wbio->bi_end_io)
2628 			end_sync_request(r10_bio);
2629 		if (wbio2)
2630 			end_sync_request(r10_bio);
2631 		return;
2632 	}
2633 
2634 	/*
2635 	 * share the pages with the first bio
2636 	 * and submit the write request
2637 	 */
2638 	d = r10_bio->devs[1].devnum;
2639 	if (wbio->bi_end_io) {
2640 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2641 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2642 		submit_bio_noacct(wbio);
2643 	}
2644 	if (wbio2) {
2645 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2646 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2647 			     bio_sectors(wbio2));
2648 		submit_bio_noacct(wbio2);
2649 	}
2650 }
2651 
2652 /*
2653  * Used by fix_read_error() to decay the per rdev read_errors.
2654  * We halve the read error count for every hour that has elapsed
2655  * since the last recorded read error.
2656  *
2657  */
2658 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2659 {
2660 	long cur_time_mon;
2661 	unsigned long hours_since_last;
2662 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2663 
2664 	cur_time_mon = ktime_get_seconds();
2665 
2666 	if (rdev->last_read_error == 0) {
2667 		/* first time we've seen a read error */
2668 		rdev->last_read_error = cur_time_mon;
2669 		return;
2670 	}
2671 
2672 	hours_since_last = (long)(cur_time_mon -
2673 			    rdev->last_read_error) / 3600;
2674 
2675 	rdev->last_read_error = cur_time_mon;
2676 
2677 	/*
2678 	 * if hours_since_last is > the number of bits in read_errors
2679 	 * just set read errors to 0. We do this to avoid
2680 	 * overflowing the shift of read_errors by hours_since_last.
2681 	 */
2682 	if (hours_since_last >= 8 * sizeof(read_errors))
2683 		atomic_set(&rdev->read_errors, 0);
2684 	else
2685 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2686 }
2687 
2688 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2689 			    int sectors, struct page *page, enum req_op op)
2690 {
2691 	sector_t first_bad;
2692 	int bad_sectors;
2693 
2694 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2695 	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2696 		return -1;
2697 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2698 		/* success */
2699 		return 1;
2700 	if (op == REQ_OP_WRITE) {
2701 		set_bit(WriteErrorSeen, &rdev->flags);
2702 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2703 			set_bit(MD_RECOVERY_NEEDED,
2704 				&rdev->mddev->recovery);
2705 	}
2706 	/* need to record an error - either for the block or the device */
2707 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2708 		md_error(rdev->mddev, rdev);
2709 	return 0;
2710 }
2711 
2712 /*
2713  * This is a kernel thread which:
2714  *
2715  *	1.	Retries failed read operations on working mirrors.
2716  *	2.	Updates the raid superblock when problems encounter.
2717  *	3.	Performs writes following reads for array synchronising.
2718  */
2719 
2720 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2721 {
2722 	int sect = 0; /* Offset from r10_bio->sector */
2723 	int sectors = r10_bio->sectors;
2724 	struct md_rdev *rdev;
2725 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2726 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2727 
2728 	/* still own a reference to this rdev, so it cannot
2729 	 * have been cleared recently.
2730 	 */
2731 	rdev = conf->mirrors[d].rdev;
2732 
2733 	if (test_bit(Faulty, &rdev->flags))
2734 		/* drive has already been failed, just ignore any
2735 		   more fix_read_error() attempts */
2736 		return;
2737 
2738 	check_decay_read_errors(mddev, rdev);
2739 	atomic_inc(&rdev->read_errors);
2740 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2741 		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2742 			  mdname(mddev), rdev->bdev,
2743 			  atomic_read(&rdev->read_errors), max_read_errors);
2744 		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2745 			  mdname(mddev), rdev->bdev);
2746 		md_error(mddev, rdev);
2747 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2748 		return;
2749 	}
2750 
2751 	while(sectors) {
2752 		int s = sectors;
2753 		int sl = r10_bio->read_slot;
2754 		int success = 0;
2755 		int start;
2756 
2757 		if (s > (PAGE_SIZE>>9))
2758 			s = PAGE_SIZE >> 9;
2759 
2760 		rcu_read_lock();
2761 		do {
2762 			sector_t first_bad;
2763 			int bad_sectors;
2764 
2765 			d = r10_bio->devs[sl].devnum;
2766 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2767 			if (rdev &&
2768 			    test_bit(In_sync, &rdev->flags) &&
2769 			    !test_bit(Faulty, &rdev->flags) &&
2770 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2771 					&first_bad, &bad_sectors) == 0) {
2772 				atomic_inc(&rdev->nr_pending);
2773 				rcu_read_unlock();
2774 				success = sync_page_io(rdev,
2775 						       r10_bio->devs[sl].addr +
2776 						       sect,
2777 						       s<<9,
2778 						       conf->tmppage,
2779 						       REQ_OP_READ, false);
2780 				rdev_dec_pending(rdev, mddev);
2781 				rcu_read_lock();
2782 				if (success)
2783 					break;
2784 			}
2785 			sl++;
2786 			if (sl == conf->copies)
2787 				sl = 0;
2788 		} while (!success && sl != r10_bio->read_slot);
2789 		rcu_read_unlock();
2790 
2791 		if (!success) {
2792 			/* Cannot read from anywhere, just mark the block
2793 			 * as bad on the first device to discourage future
2794 			 * reads.
2795 			 */
2796 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2797 			rdev = conf->mirrors[dn].rdev;
2798 
2799 			if (!rdev_set_badblocks(
2800 				    rdev,
2801 				    r10_bio->devs[r10_bio->read_slot].addr
2802 				    + sect,
2803 				    s, 0)) {
2804 				md_error(mddev, rdev);
2805 				r10_bio->devs[r10_bio->read_slot].bio
2806 					= IO_BLOCKED;
2807 			}
2808 			break;
2809 		}
2810 
2811 		start = sl;
2812 		/* write it back and re-read */
2813 		rcu_read_lock();
2814 		while (sl != r10_bio->read_slot) {
2815 			if (sl==0)
2816 				sl = conf->copies;
2817 			sl--;
2818 			d = r10_bio->devs[sl].devnum;
2819 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2820 			if (!rdev ||
2821 			    test_bit(Faulty, &rdev->flags) ||
2822 			    !test_bit(In_sync, &rdev->flags))
2823 				continue;
2824 
2825 			atomic_inc(&rdev->nr_pending);
2826 			rcu_read_unlock();
2827 			if (r10_sync_page_io(rdev,
2828 					     r10_bio->devs[sl].addr +
2829 					     sect,
2830 					     s, conf->tmppage, REQ_OP_WRITE)
2831 			    == 0) {
2832 				/* Well, this device is dead */
2833 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2834 					  mdname(mddev), s,
2835 					  (unsigned long long)(
2836 						  sect +
2837 						  choose_data_offset(r10_bio,
2838 								     rdev)),
2839 					  rdev->bdev);
2840 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2841 					  mdname(mddev),
2842 					  rdev->bdev);
2843 			}
2844 			rdev_dec_pending(rdev, mddev);
2845 			rcu_read_lock();
2846 		}
2847 		sl = start;
2848 		while (sl != r10_bio->read_slot) {
2849 			if (sl==0)
2850 				sl = conf->copies;
2851 			sl--;
2852 			d = r10_bio->devs[sl].devnum;
2853 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2854 			if (!rdev ||
2855 			    test_bit(Faulty, &rdev->flags) ||
2856 			    !test_bit(In_sync, &rdev->flags))
2857 				continue;
2858 
2859 			atomic_inc(&rdev->nr_pending);
2860 			rcu_read_unlock();
2861 			switch (r10_sync_page_io(rdev,
2862 					     r10_bio->devs[sl].addr +
2863 					     sect,
2864 					     s, conf->tmppage, REQ_OP_READ)) {
2865 			case 0:
2866 				/* Well, this device is dead */
2867 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2868 				       mdname(mddev), s,
2869 				       (unsigned long long)(
2870 					       sect +
2871 					       choose_data_offset(r10_bio, rdev)),
2872 				       rdev->bdev);
2873 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2874 				       mdname(mddev),
2875 				       rdev->bdev);
2876 				break;
2877 			case 1:
2878 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2879 				       mdname(mddev), s,
2880 				       (unsigned long long)(
2881 					       sect +
2882 					       choose_data_offset(r10_bio, rdev)),
2883 				       rdev->bdev);
2884 				atomic_add(s, &rdev->corrected_errors);
2885 			}
2886 
2887 			rdev_dec_pending(rdev, mddev);
2888 			rcu_read_lock();
2889 		}
2890 		rcu_read_unlock();
2891 
2892 		sectors -= s;
2893 		sect += s;
2894 	}
2895 }
2896 
2897 static int narrow_write_error(struct r10bio *r10_bio, int i)
2898 {
2899 	struct bio *bio = r10_bio->master_bio;
2900 	struct mddev *mddev = r10_bio->mddev;
2901 	struct r10conf *conf = mddev->private;
2902 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2903 	/* bio has the data to be written to slot 'i' where
2904 	 * we just recently had a write error.
2905 	 * We repeatedly clone the bio and trim down to one block,
2906 	 * then try the write.  Where the write fails we record
2907 	 * a bad block.
2908 	 * It is conceivable that the bio doesn't exactly align with
2909 	 * blocks.  We must handle this.
2910 	 *
2911 	 * We currently own a reference to the rdev.
2912 	 */
2913 
2914 	int block_sectors;
2915 	sector_t sector;
2916 	int sectors;
2917 	int sect_to_write = r10_bio->sectors;
2918 	int ok = 1;
2919 
2920 	if (rdev->badblocks.shift < 0)
2921 		return 0;
2922 
2923 	block_sectors = roundup(1 << rdev->badblocks.shift,
2924 				bdev_logical_block_size(rdev->bdev) >> 9);
2925 	sector = r10_bio->sector;
2926 	sectors = ((r10_bio->sector + block_sectors)
2927 		   & ~(sector_t)(block_sectors - 1))
2928 		- sector;
2929 
2930 	while (sect_to_write) {
2931 		struct bio *wbio;
2932 		sector_t wsector;
2933 		if (sectors > sect_to_write)
2934 			sectors = sect_to_write;
2935 		/* Write at 'sector' for 'sectors' */
2936 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2937 				       &mddev->bio_set);
2938 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2939 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2940 		wbio->bi_iter.bi_sector = wsector +
2941 				   choose_data_offset(r10_bio, rdev);
2942 		wbio->bi_opf = REQ_OP_WRITE;
2943 
2944 		if (submit_bio_wait(wbio) < 0)
2945 			/* Failure! */
2946 			ok = rdev_set_badblocks(rdev, wsector,
2947 						sectors, 0)
2948 				&& ok;
2949 
2950 		bio_put(wbio);
2951 		sect_to_write -= sectors;
2952 		sector += sectors;
2953 		sectors = block_sectors;
2954 	}
2955 	return ok;
2956 }
2957 
2958 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2959 {
2960 	int slot = r10_bio->read_slot;
2961 	struct bio *bio;
2962 	struct r10conf *conf = mddev->private;
2963 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2964 
2965 	/* we got a read error. Maybe the drive is bad.  Maybe just
2966 	 * the block and we can fix it.
2967 	 * We freeze all other IO, and try reading the block from
2968 	 * other devices.  When we find one, we re-write
2969 	 * and check it that fixes the read error.
2970 	 * This is all done synchronously while the array is
2971 	 * frozen.
2972 	 */
2973 	bio = r10_bio->devs[slot].bio;
2974 	bio_put(bio);
2975 	r10_bio->devs[slot].bio = NULL;
2976 
2977 	if (mddev->ro)
2978 		r10_bio->devs[slot].bio = IO_BLOCKED;
2979 	else if (!test_bit(FailFast, &rdev->flags)) {
2980 		freeze_array(conf, 1);
2981 		fix_read_error(conf, mddev, r10_bio);
2982 		unfreeze_array(conf);
2983 	} else
2984 		md_error(mddev, rdev);
2985 
2986 	rdev_dec_pending(rdev, mddev);
2987 	r10_bio->state = 0;
2988 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2989 	/*
2990 	 * allow_barrier after re-submit to ensure no sync io
2991 	 * can be issued while regular io pending.
2992 	 */
2993 	allow_barrier(conf);
2994 }
2995 
2996 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2997 {
2998 	/* Some sort of write request has finished and it
2999 	 * succeeded in writing where we thought there was a
3000 	 * bad block.  So forget the bad block.
3001 	 * Or possibly if failed and we need to record
3002 	 * a bad block.
3003 	 */
3004 	int m;
3005 	struct md_rdev *rdev;
3006 
3007 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3008 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3009 		for (m = 0; m < conf->copies; m++) {
3010 			int dev = r10_bio->devs[m].devnum;
3011 			rdev = conf->mirrors[dev].rdev;
3012 			if (r10_bio->devs[m].bio == NULL ||
3013 				r10_bio->devs[m].bio->bi_end_io == NULL)
3014 				continue;
3015 			if (!r10_bio->devs[m].bio->bi_status) {
3016 				rdev_clear_badblocks(
3017 					rdev,
3018 					r10_bio->devs[m].addr,
3019 					r10_bio->sectors, 0);
3020 			} else {
3021 				if (!rdev_set_badblocks(
3022 					    rdev,
3023 					    r10_bio->devs[m].addr,
3024 					    r10_bio->sectors, 0))
3025 					md_error(conf->mddev, rdev);
3026 			}
3027 			rdev = conf->mirrors[dev].replacement;
3028 			if (r10_bio->devs[m].repl_bio == NULL ||
3029 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3030 				continue;
3031 
3032 			if (!r10_bio->devs[m].repl_bio->bi_status) {
3033 				rdev_clear_badblocks(
3034 					rdev,
3035 					r10_bio->devs[m].addr,
3036 					r10_bio->sectors, 0);
3037 			} else {
3038 				if (!rdev_set_badblocks(
3039 					    rdev,
3040 					    r10_bio->devs[m].addr,
3041 					    r10_bio->sectors, 0))
3042 					md_error(conf->mddev, rdev);
3043 			}
3044 		}
3045 		put_buf(r10_bio);
3046 	} else {
3047 		bool fail = false;
3048 		for (m = 0; m < conf->copies; m++) {
3049 			int dev = r10_bio->devs[m].devnum;
3050 			struct bio *bio = r10_bio->devs[m].bio;
3051 			rdev = conf->mirrors[dev].rdev;
3052 			if (bio == IO_MADE_GOOD) {
3053 				rdev_clear_badblocks(
3054 					rdev,
3055 					r10_bio->devs[m].addr,
3056 					r10_bio->sectors, 0);
3057 				rdev_dec_pending(rdev, conf->mddev);
3058 			} else if (bio != NULL && bio->bi_status) {
3059 				fail = true;
3060 				if (!narrow_write_error(r10_bio, m)) {
3061 					md_error(conf->mddev, rdev);
3062 					set_bit(R10BIO_Degraded,
3063 						&r10_bio->state);
3064 				}
3065 				rdev_dec_pending(rdev, conf->mddev);
3066 			}
3067 			bio = r10_bio->devs[m].repl_bio;
3068 			rdev = conf->mirrors[dev].replacement;
3069 			if (rdev && bio == IO_MADE_GOOD) {
3070 				rdev_clear_badblocks(
3071 					rdev,
3072 					r10_bio->devs[m].addr,
3073 					r10_bio->sectors, 0);
3074 				rdev_dec_pending(rdev, conf->mddev);
3075 			}
3076 		}
3077 		if (fail) {
3078 			spin_lock_irq(&conf->device_lock);
3079 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3080 			conf->nr_queued++;
3081 			spin_unlock_irq(&conf->device_lock);
3082 			/*
3083 			 * In case freeze_array() is waiting for condition
3084 			 * nr_pending == nr_queued + extra to be true.
3085 			 */
3086 			wake_up(&conf->wait_barrier);
3087 			md_wakeup_thread(conf->mddev->thread);
3088 		} else {
3089 			if (test_bit(R10BIO_WriteError,
3090 				     &r10_bio->state))
3091 				close_write(r10_bio);
3092 			raid_end_bio_io(r10_bio);
3093 		}
3094 	}
3095 }
3096 
3097 static void raid10d(struct md_thread *thread)
3098 {
3099 	struct mddev *mddev = thread->mddev;
3100 	struct r10bio *r10_bio;
3101 	unsigned long flags;
3102 	struct r10conf *conf = mddev->private;
3103 	struct list_head *head = &conf->retry_list;
3104 	struct blk_plug plug;
3105 
3106 	md_check_recovery(mddev);
3107 
3108 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3109 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3110 		LIST_HEAD(tmp);
3111 		spin_lock_irqsave(&conf->device_lock, flags);
3112 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3113 			while (!list_empty(&conf->bio_end_io_list)) {
3114 				list_move(conf->bio_end_io_list.prev, &tmp);
3115 				conf->nr_queued--;
3116 			}
3117 		}
3118 		spin_unlock_irqrestore(&conf->device_lock, flags);
3119 		while (!list_empty(&tmp)) {
3120 			r10_bio = list_first_entry(&tmp, struct r10bio,
3121 						   retry_list);
3122 			list_del(&r10_bio->retry_list);
3123 			if (mddev->degraded)
3124 				set_bit(R10BIO_Degraded, &r10_bio->state);
3125 
3126 			if (test_bit(R10BIO_WriteError,
3127 				     &r10_bio->state))
3128 				close_write(r10_bio);
3129 			raid_end_bio_io(r10_bio);
3130 		}
3131 	}
3132 
3133 	blk_start_plug(&plug);
3134 	for (;;) {
3135 
3136 		flush_pending_writes(conf);
3137 
3138 		spin_lock_irqsave(&conf->device_lock, flags);
3139 		if (list_empty(head)) {
3140 			spin_unlock_irqrestore(&conf->device_lock, flags);
3141 			break;
3142 		}
3143 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3144 		list_del(head->prev);
3145 		conf->nr_queued--;
3146 		spin_unlock_irqrestore(&conf->device_lock, flags);
3147 
3148 		mddev = r10_bio->mddev;
3149 		conf = mddev->private;
3150 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3151 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3152 			handle_write_completed(conf, r10_bio);
3153 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3154 			reshape_request_write(mddev, r10_bio);
3155 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3156 			sync_request_write(mddev, r10_bio);
3157 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3158 			recovery_request_write(mddev, r10_bio);
3159 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3160 			handle_read_error(mddev, r10_bio);
3161 		else
3162 			WARN_ON_ONCE(1);
3163 
3164 		cond_resched();
3165 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3166 			md_check_recovery(mddev);
3167 	}
3168 	blk_finish_plug(&plug);
3169 }
3170 
3171 static int init_resync(struct r10conf *conf)
3172 {
3173 	int ret, buffs, i;
3174 
3175 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3176 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3177 	conf->have_replacement = 0;
3178 	for (i = 0; i < conf->geo.raid_disks; i++)
3179 		if (conf->mirrors[i].replacement)
3180 			conf->have_replacement = 1;
3181 	ret = mempool_init(&conf->r10buf_pool, buffs,
3182 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3183 	if (ret)
3184 		return ret;
3185 	conf->next_resync = 0;
3186 	return 0;
3187 }
3188 
3189 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3190 {
3191 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3192 	struct rsync_pages *rp;
3193 	struct bio *bio;
3194 	int nalloc;
3195 	int i;
3196 
3197 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3198 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3199 		nalloc = conf->copies; /* resync */
3200 	else
3201 		nalloc = 2; /* recovery */
3202 
3203 	for (i = 0; i < nalloc; i++) {
3204 		bio = r10bio->devs[i].bio;
3205 		rp = bio->bi_private;
3206 		bio_reset(bio, NULL, 0);
3207 		bio->bi_private = rp;
3208 		bio = r10bio->devs[i].repl_bio;
3209 		if (bio) {
3210 			rp = bio->bi_private;
3211 			bio_reset(bio, NULL, 0);
3212 			bio->bi_private = rp;
3213 		}
3214 	}
3215 	return r10bio;
3216 }
3217 
3218 /*
3219  * Set cluster_sync_high since we need other nodes to add the
3220  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3221  */
3222 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3223 {
3224 	sector_t window_size;
3225 	int extra_chunk, chunks;
3226 
3227 	/*
3228 	 * First, here we define "stripe" as a unit which across
3229 	 * all member devices one time, so we get chunks by use
3230 	 * raid_disks / near_copies. Otherwise, if near_copies is
3231 	 * close to raid_disks, then resync window could increases
3232 	 * linearly with the increase of raid_disks, which means
3233 	 * we will suspend a really large IO window while it is not
3234 	 * necessary. If raid_disks is not divisible by near_copies,
3235 	 * an extra chunk is needed to ensure the whole "stripe" is
3236 	 * covered.
3237 	 */
3238 
3239 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3240 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3241 		extra_chunk = 0;
3242 	else
3243 		extra_chunk = 1;
3244 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3245 
3246 	/*
3247 	 * At least use a 32M window to align with raid1's resync window
3248 	 */
3249 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3250 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3251 
3252 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3253 }
3254 
3255 /*
3256  * perform a "sync" on one "block"
3257  *
3258  * We need to make sure that no normal I/O request - particularly write
3259  * requests - conflict with active sync requests.
3260  *
3261  * This is achieved by tracking pending requests and a 'barrier' concept
3262  * that can be installed to exclude normal IO requests.
3263  *
3264  * Resync and recovery are handled very differently.
3265  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3266  *
3267  * For resync, we iterate over virtual addresses, read all copies,
3268  * and update if there are differences.  If only one copy is live,
3269  * skip it.
3270  * For recovery, we iterate over physical addresses, read a good
3271  * value for each non-in_sync drive, and over-write.
3272  *
3273  * So, for recovery we may have several outstanding complex requests for a
3274  * given address, one for each out-of-sync device.  We model this by allocating
3275  * a number of r10_bio structures, one for each out-of-sync device.
3276  * As we setup these structures, we collect all bio's together into a list
3277  * which we then process collectively to add pages, and then process again
3278  * to pass to submit_bio_noacct.
3279  *
3280  * The r10_bio structures are linked using a borrowed master_bio pointer.
3281  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3282  * has its remaining count decremented to 0, the whole complex operation
3283  * is complete.
3284  *
3285  */
3286 
3287 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3288 			     int *skipped)
3289 {
3290 	struct r10conf *conf = mddev->private;
3291 	struct r10bio *r10_bio;
3292 	struct bio *biolist = NULL, *bio;
3293 	sector_t max_sector, nr_sectors;
3294 	int i;
3295 	int max_sync;
3296 	sector_t sync_blocks;
3297 	sector_t sectors_skipped = 0;
3298 	int chunks_skipped = 0;
3299 	sector_t chunk_mask = conf->geo.chunk_mask;
3300 	int page_idx = 0;
3301 	int error_disk = -1;
3302 
3303 	/*
3304 	 * Allow skipping a full rebuild for incremental assembly
3305 	 * of a clean array, like RAID1 does.
3306 	 */
3307 	if (mddev->bitmap == NULL &&
3308 	    mddev->recovery_cp == MaxSector &&
3309 	    mddev->reshape_position == MaxSector &&
3310 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3311 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3312 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3313 	    conf->fullsync == 0) {
3314 		*skipped = 1;
3315 		return mddev->dev_sectors - sector_nr;
3316 	}
3317 
3318 	if (!mempool_initialized(&conf->r10buf_pool))
3319 		if (init_resync(conf))
3320 			return 0;
3321 
3322  skipped:
3323 	max_sector = mddev->dev_sectors;
3324 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3325 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3326 		max_sector = mddev->resync_max_sectors;
3327 	if (sector_nr >= max_sector) {
3328 		conf->cluster_sync_low = 0;
3329 		conf->cluster_sync_high = 0;
3330 
3331 		/* If we aborted, we need to abort the
3332 		 * sync on the 'current' bitmap chucks (there can
3333 		 * be several when recovering multiple devices).
3334 		 * as we may have started syncing it but not finished.
3335 		 * We can find the current address in
3336 		 * mddev->curr_resync, but for recovery,
3337 		 * we need to convert that to several
3338 		 * virtual addresses.
3339 		 */
3340 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3341 			end_reshape(conf);
3342 			close_sync(conf);
3343 			return 0;
3344 		}
3345 
3346 		if (mddev->curr_resync < max_sector) { /* aborted */
3347 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3348 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3349 						   &sync_blocks, 1);
3350 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3351 				sector_t sect =
3352 					raid10_find_virt(conf, mddev->curr_resync, i);
3353 				md_bitmap_end_sync(mddev->bitmap, sect,
3354 						   &sync_blocks, 1);
3355 			}
3356 		} else {
3357 			/* completed sync */
3358 			if ((!mddev->bitmap || conf->fullsync)
3359 			    && conf->have_replacement
3360 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3361 				/* Completed a full sync so the replacements
3362 				 * are now fully recovered.
3363 				 */
3364 				rcu_read_lock();
3365 				for (i = 0; i < conf->geo.raid_disks; i++) {
3366 					struct md_rdev *rdev =
3367 						rcu_dereference(conf->mirrors[i].replacement);
3368 					if (rdev)
3369 						rdev->recovery_offset = MaxSector;
3370 				}
3371 				rcu_read_unlock();
3372 			}
3373 			conf->fullsync = 0;
3374 		}
3375 		md_bitmap_close_sync(mddev->bitmap);
3376 		close_sync(conf);
3377 		*skipped = 1;
3378 		return sectors_skipped;
3379 	}
3380 
3381 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3382 		return reshape_request(mddev, sector_nr, skipped);
3383 
3384 	if (chunks_skipped >= conf->geo.raid_disks) {
3385 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3386 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3387 		if (error_disk >= 0 &&
3388 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3389 			/*
3390 			 * recovery fails, set mirrors.recovery_disabled,
3391 			 * device shouldn't be added to there.
3392 			 */
3393 			conf->mirrors[error_disk].recovery_disabled =
3394 						mddev->recovery_disabled;
3395 			return 0;
3396 		}
3397 		/*
3398 		 * if there has been nothing to do on any drive,
3399 		 * then there is nothing to do at all.
3400 		 */
3401 		*skipped = 1;
3402 		return (max_sector - sector_nr) + sectors_skipped;
3403 	}
3404 
3405 	if (max_sector > mddev->resync_max)
3406 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3407 
3408 	/* make sure whole request will fit in a chunk - if chunks
3409 	 * are meaningful
3410 	 */
3411 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3412 	    max_sector > (sector_nr | chunk_mask))
3413 		max_sector = (sector_nr | chunk_mask) + 1;
3414 
3415 	/*
3416 	 * If there is non-resync activity waiting for a turn, then let it
3417 	 * though before starting on this new sync request.
3418 	 */
3419 	if (conf->nr_waiting)
3420 		schedule_timeout_uninterruptible(1);
3421 
3422 	/* Again, very different code for resync and recovery.
3423 	 * Both must result in an r10bio with a list of bios that
3424 	 * have bi_end_io, bi_sector, bi_bdev set,
3425 	 * and bi_private set to the r10bio.
3426 	 * For recovery, we may actually create several r10bios
3427 	 * with 2 bios in each, that correspond to the bios in the main one.
3428 	 * In this case, the subordinate r10bios link back through a
3429 	 * borrowed master_bio pointer, and the counter in the master
3430 	 * includes a ref from each subordinate.
3431 	 */
3432 	/* First, we decide what to do and set ->bi_end_io
3433 	 * To end_sync_read if we want to read, and
3434 	 * end_sync_write if we will want to write.
3435 	 */
3436 
3437 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3438 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3439 		/* recovery... the complicated one */
3440 		int j;
3441 		r10_bio = NULL;
3442 
3443 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3444 			int still_degraded;
3445 			struct r10bio *rb2;
3446 			sector_t sect;
3447 			int must_sync;
3448 			int any_working;
3449 			struct raid10_info *mirror = &conf->mirrors[i];
3450 			struct md_rdev *mrdev, *mreplace;
3451 
3452 			rcu_read_lock();
3453 			mrdev = rcu_dereference(mirror->rdev);
3454 			mreplace = rcu_dereference(mirror->replacement);
3455 
3456 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3457 			    test_bit(In_sync, &mrdev->flags)))
3458 				mrdev = NULL;
3459 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3460 				mreplace = NULL;
3461 
3462 			if (!mrdev && !mreplace) {
3463 				rcu_read_unlock();
3464 				continue;
3465 			}
3466 
3467 			still_degraded = 0;
3468 			/* want to reconstruct this device */
3469 			rb2 = r10_bio;
3470 			sect = raid10_find_virt(conf, sector_nr, i);
3471 			if (sect >= mddev->resync_max_sectors) {
3472 				/* last stripe is not complete - don't
3473 				 * try to recover this sector.
3474 				 */
3475 				rcu_read_unlock();
3476 				continue;
3477 			}
3478 			/* Unless we are doing a full sync, or a replacement
3479 			 * we only need to recover the block if it is set in
3480 			 * the bitmap
3481 			 */
3482 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3483 							 &sync_blocks, 1);
3484 			if (sync_blocks < max_sync)
3485 				max_sync = sync_blocks;
3486 			if (!must_sync &&
3487 			    mreplace == NULL &&
3488 			    !conf->fullsync) {
3489 				/* yep, skip the sync_blocks here, but don't assume
3490 				 * that there will never be anything to do here
3491 				 */
3492 				chunks_skipped = -1;
3493 				rcu_read_unlock();
3494 				continue;
3495 			}
3496 			if (mrdev)
3497 				atomic_inc(&mrdev->nr_pending);
3498 			if (mreplace)
3499 				atomic_inc(&mreplace->nr_pending);
3500 			rcu_read_unlock();
3501 
3502 			r10_bio = raid10_alloc_init_r10buf(conf);
3503 			r10_bio->state = 0;
3504 			raise_barrier(conf, rb2 != NULL);
3505 			atomic_set(&r10_bio->remaining, 0);
3506 
3507 			r10_bio->master_bio = (struct bio*)rb2;
3508 			if (rb2)
3509 				atomic_inc(&rb2->remaining);
3510 			r10_bio->mddev = mddev;
3511 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3512 			r10_bio->sector = sect;
3513 
3514 			raid10_find_phys(conf, r10_bio);
3515 
3516 			/* Need to check if the array will still be
3517 			 * degraded
3518 			 */
3519 			rcu_read_lock();
3520 			for (j = 0; j < conf->geo.raid_disks; j++) {
3521 				struct md_rdev *rdev = rcu_dereference(
3522 					conf->mirrors[j].rdev);
3523 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3524 					still_degraded = 1;
3525 					break;
3526 				}
3527 			}
3528 
3529 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3530 							 &sync_blocks, still_degraded);
3531 
3532 			any_working = 0;
3533 			for (j=0; j<conf->copies;j++) {
3534 				int k;
3535 				int d = r10_bio->devs[j].devnum;
3536 				sector_t from_addr, to_addr;
3537 				struct md_rdev *rdev =
3538 					rcu_dereference(conf->mirrors[d].rdev);
3539 				sector_t sector, first_bad;
3540 				int bad_sectors;
3541 				if (!rdev ||
3542 				    !test_bit(In_sync, &rdev->flags))
3543 					continue;
3544 				/* This is where we read from */
3545 				any_working = 1;
3546 				sector = r10_bio->devs[j].addr;
3547 
3548 				if (is_badblock(rdev, sector, max_sync,
3549 						&first_bad, &bad_sectors)) {
3550 					if (first_bad > sector)
3551 						max_sync = first_bad - sector;
3552 					else {
3553 						bad_sectors -= (sector
3554 								- first_bad);
3555 						if (max_sync > bad_sectors)
3556 							max_sync = bad_sectors;
3557 						continue;
3558 					}
3559 				}
3560 				bio = r10_bio->devs[0].bio;
3561 				bio->bi_next = biolist;
3562 				biolist = bio;
3563 				bio->bi_end_io = end_sync_read;
3564 				bio->bi_opf = REQ_OP_READ;
3565 				if (test_bit(FailFast, &rdev->flags))
3566 					bio->bi_opf |= MD_FAILFAST;
3567 				from_addr = r10_bio->devs[j].addr;
3568 				bio->bi_iter.bi_sector = from_addr +
3569 					rdev->data_offset;
3570 				bio_set_dev(bio, rdev->bdev);
3571 				atomic_inc(&rdev->nr_pending);
3572 				/* and we write to 'i' (if not in_sync) */
3573 
3574 				for (k=0; k<conf->copies; k++)
3575 					if (r10_bio->devs[k].devnum == i)
3576 						break;
3577 				BUG_ON(k == conf->copies);
3578 				to_addr = r10_bio->devs[k].addr;
3579 				r10_bio->devs[0].devnum = d;
3580 				r10_bio->devs[0].addr = from_addr;
3581 				r10_bio->devs[1].devnum = i;
3582 				r10_bio->devs[1].addr = to_addr;
3583 
3584 				if (mrdev) {
3585 					bio = r10_bio->devs[1].bio;
3586 					bio->bi_next = biolist;
3587 					biolist = bio;
3588 					bio->bi_end_io = end_sync_write;
3589 					bio->bi_opf = REQ_OP_WRITE;
3590 					bio->bi_iter.bi_sector = to_addr
3591 						+ mrdev->data_offset;
3592 					bio_set_dev(bio, mrdev->bdev);
3593 					atomic_inc(&r10_bio->remaining);
3594 				} else
3595 					r10_bio->devs[1].bio->bi_end_io = NULL;
3596 
3597 				/* and maybe write to replacement */
3598 				bio = r10_bio->devs[1].repl_bio;
3599 				if (bio)
3600 					bio->bi_end_io = NULL;
3601 				/* Note: if replace is not NULL, then bio
3602 				 * cannot be NULL as r10buf_pool_alloc will
3603 				 * have allocated it.
3604 				 */
3605 				if (!mreplace)
3606 					break;
3607 				bio->bi_next = biolist;
3608 				biolist = bio;
3609 				bio->bi_end_io = end_sync_write;
3610 				bio->bi_opf = REQ_OP_WRITE;
3611 				bio->bi_iter.bi_sector = to_addr +
3612 					mreplace->data_offset;
3613 				bio_set_dev(bio, mreplace->bdev);
3614 				atomic_inc(&r10_bio->remaining);
3615 				break;
3616 			}
3617 			rcu_read_unlock();
3618 			if (j == conf->copies) {
3619 				/* Cannot recover, so abort the recovery or
3620 				 * record a bad block */
3621 				if (any_working) {
3622 					/* problem is that there are bad blocks
3623 					 * on other device(s)
3624 					 */
3625 					int k;
3626 					for (k = 0; k < conf->copies; k++)
3627 						if (r10_bio->devs[k].devnum == i)
3628 							break;
3629 					if (mrdev && !test_bit(In_sync,
3630 						      &mrdev->flags)
3631 					    && !rdev_set_badblocks(
3632 						    mrdev,
3633 						    r10_bio->devs[k].addr,
3634 						    max_sync, 0))
3635 						any_working = 0;
3636 					if (mreplace &&
3637 					    !rdev_set_badblocks(
3638 						    mreplace,
3639 						    r10_bio->devs[k].addr,
3640 						    max_sync, 0))
3641 						any_working = 0;
3642 				}
3643 				if (!any_working)  {
3644 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3645 							      &mddev->recovery))
3646 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3647 						       mdname(mddev));
3648 					mirror->recovery_disabled
3649 						= mddev->recovery_disabled;
3650 				} else {
3651 					error_disk = i;
3652 				}
3653 				put_buf(r10_bio);
3654 				if (rb2)
3655 					atomic_dec(&rb2->remaining);
3656 				r10_bio = rb2;
3657 				if (mrdev)
3658 					rdev_dec_pending(mrdev, mddev);
3659 				if (mreplace)
3660 					rdev_dec_pending(mreplace, mddev);
3661 				break;
3662 			}
3663 			if (mrdev)
3664 				rdev_dec_pending(mrdev, mddev);
3665 			if (mreplace)
3666 				rdev_dec_pending(mreplace, mddev);
3667 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3668 				/* Only want this if there is elsewhere to
3669 				 * read from. 'j' is currently the first
3670 				 * readable copy.
3671 				 */
3672 				int targets = 1;
3673 				for (; j < conf->copies; j++) {
3674 					int d = r10_bio->devs[j].devnum;
3675 					if (conf->mirrors[d].rdev &&
3676 					    test_bit(In_sync,
3677 						      &conf->mirrors[d].rdev->flags))
3678 						targets++;
3679 				}
3680 				if (targets == 1)
3681 					r10_bio->devs[0].bio->bi_opf
3682 						&= ~MD_FAILFAST;
3683 			}
3684 		}
3685 		if (biolist == NULL) {
3686 			while (r10_bio) {
3687 				struct r10bio *rb2 = r10_bio;
3688 				r10_bio = (struct r10bio*) rb2->master_bio;
3689 				rb2->master_bio = NULL;
3690 				put_buf(rb2);
3691 			}
3692 			goto giveup;
3693 		}
3694 	} else {
3695 		/* resync. Schedule a read for every block at this virt offset */
3696 		int count = 0;
3697 
3698 		/*
3699 		 * Since curr_resync_completed could probably not update in
3700 		 * time, and we will set cluster_sync_low based on it.
3701 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3702 		 * safety reason, which ensures curr_resync_completed is
3703 		 * updated in bitmap_cond_end_sync.
3704 		 */
3705 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3706 					mddev_is_clustered(mddev) &&
3707 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3708 
3709 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3710 					  &sync_blocks, mddev->degraded) &&
3711 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3712 						 &mddev->recovery)) {
3713 			/* We can skip this block */
3714 			*skipped = 1;
3715 			return sync_blocks + sectors_skipped;
3716 		}
3717 		if (sync_blocks < max_sync)
3718 			max_sync = sync_blocks;
3719 		r10_bio = raid10_alloc_init_r10buf(conf);
3720 		r10_bio->state = 0;
3721 
3722 		r10_bio->mddev = mddev;
3723 		atomic_set(&r10_bio->remaining, 0);
3724 		raise_barrier(conf, 0);
3725 		conf->next_resync = sector_nr;
3726 
3727 		r10_bio->master_bio = NULL;
3728 		r10_bio->sector = sector_nr;
3729 		set_bit(R10BIO_IsSync, &r10_bio->state);
3730 		raid10_find_phys(conf, r10_bio);
3731 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3732 
3733 		for (i = 0; i < conf->copies; i++) {
3734 			int d = r10_bio->devs[i].devnum;
3735 			sector_t first_bad, sector;
3736 			int bad_sectors;
3737 			struct md_rdev *rdev;
3738 
3739 			if (r10_bio->devs[i].repl_bio)
3740 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3741 
3742 			bio = r10_bio->devs[i].bio;
3743 			bio->bi_status = BLK_STS_IOERR;
3744 			rcu_read_lock();
3745 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3746 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3747 				rcu_read_unlock();
3748 				continue;
3749 			}
3750 			sector = r10_bio->devs[i].addr;
3751 			if (is_badblock(rdev, sector, max_sync,
3752 					&first_bad, &bad_sectors)) {
3753 				if (first_bad > sector)
3754 					max_sync = first_bad - sector;
3755 				else {
3756 					bad_sectors -= (sector - first_bad);
3757 					if (max_sync > bad_sectors)
3758 						max_sync = bad_sectors;
3759 					rcu_read_unlock();
3760 					continue;
3761 				}
3762 			}
3763 			atomic_inc(&rdev->nr_pending);
3764 			atomic_inc(&r10_bio->remaining);
3765 			bio->bi_next = biolist;
3766 			biolist = bio;
3767 			bio->bi_end_io = end_sync_read;
3768 			bio->bi_opf = REQ_OP_READ;
3769 			if (test_bit(FailFast, &rdev->flags))
3770 				bio->bi_opf |= MD_FAILFAST;
3771 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3772 			bio_set_dev(bio, rdev->bdev);
3773 			count++;
3774 
3775 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3776 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3777 				rcu_read_unlock();
3778 				continue;
3779 			}
3780 			atomic_inc(&rdev->nr_pending);
3781 
3782 			/* Need to set up for writing to the replacement */
3783 			bio = r10_bio->devs[i].repl_bio;
3784 			bio->bi_status = BLK_STS_IOERR;
3785 
3786 			sector = r10_bio->devs[i].addr;
3787 			bio->bi_next = biolist;
3788 			biolist = bio;
3789 			bio->bi_end_io = end_sync_write;
3790 			bio->bi_opf = REQ_OP_WRITE;
3791 			if (test_bit(FailFast, &rdev->flags))
3792 				bio->bi_opf |= MD_FAILFAST;
3793 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3794 			bio_set_dev(bio, rdev->bdev);
3795 			count++;
3796 			rcu_read_unlock();
3797 		}
3798 
3799 		if (count < 2) {
3800 			for (i=0; i<conf->copies; i++) {
3801 				int d = r10_bio->devs[i].devnum;
3802 				if (r10_bio->devs[i].bio->bi_end_io)
3803 					rdev_dec_pending(conf->mirrors[d].rdev,
3804 							 mddev);
3805 				if (r10_bio->devs[i].repl_bio &&
3806 				    r10_bio->devs[i].repl_bio->bi_end_io)
3807 					rdev_dec_pending(
3808 						conf->mirrors[d].replacement,
3809 						mddev);
3810 			}
3811 			put_buf(r10_bio);
3812 			biolist = NULL;
3813 			goto giveup;
3814 		}
3815 	}
3816 
3817 	nr_sectors = 0;
3818 	if (sector_nr + max_sync < max_sector)
3819 		max_sector = sector_nr + max_sync;
3820 	do {
3821 		struct page *page;
3822 		int len = PAGE_SIZE;
3823 		if (sector_nr + (len>>9) > max_sector)
3824 			len = (max_sector - sector_nr) << 9;
3825 		if (len == 0)
3826 			break;
3827 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3828 			struct resync_pages *rp = get_resync_pages(bio);
3829 			page = resync_fetch_page(rp, page_idx);
3830 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3831 				bio->bi_status = BLK_STS_RESOURCE;
3832 				bio_endio(bio);
3833 				goto giveup;
3834 			}
3835 		}
3836 		nr_sectors += len>>9;
3837 		sector_nr += len>>9;
3838 	} while (++page_idx < RESYNC_PAGES);
3839 	r10_bio->sectors = nr_sectors;
3840 
3841 	if (mddev_is_clustered(mddev) &&
3842 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3843 		/* It is resync not recovery */
3844 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3845 			conf->cluster_sync_low = mddev->curr_resync_completed;
3846 			raid10_set_cluster_sync_high(conf);
3847 			/* Send resync message */
3848 			md_cluster_ops->resync_info_update(mddev,
3849 						conf->cluster_sync_low,
3850 						conf->cluster_sync_high);
3851 		}
3852 	} else if (mddev_is_clustered(mddev)) {
3853 		/* This is recovery not resync */
3854 		sector_t sect_va1, sect_va2;
3855 		bool broadcast_msg = false;
3856 
3857 		for (i = 0; i < conf->geo.raid_disks; i++) {
3858 			/*
3859 			 * sector_nr is a device address for recovery, so we
3860 			 * need translate it to array address before compare
3861 			 * with cluster_sync_high.
3862 			 */
3863 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3864 
3865 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3866 				broadcast_msg = true;
3867 				/*
3868 				 * curr_resync_completed is similar as
3869 				 * sector_nr, so make the translation too.
3870 				 */
3871 				sect_va2 = raid10_find_virt(conf,
3872 					mddev->curr_resync_completed, i);
3873 
3874 				if (conf->cluster_sync_low == 0 ||
3875 				    conf->cluster_sync_low > sect_va2)
3876 					conf->cluster_sync_low = sect_va2;
3877 			}
3878 		}
3879 		if (broadcast_msg) {
3880 			raid10_set_cluster_sync_high(conf);
3881 			md_cluster_ops->resync_info_update(mddev,
3882 						conf->cluster_sync_low,
3883 						conf->cluster_sync_high);
3884 		}
3885 	}
3886 
3887 	while (biolist) {
3888 		bio = biolist;
3889 		biolist = biolist->bi_next;
3890 
3891 		bio->bi_next = NULL;
3892 		r10_bio = get_resync_r10bio(bio);
3893 		r10_bio->sectors = nr_sectors;
3894 
3895 		if (bio->bi_end_io == end_sync_read) {
3896 			md_sync_acct_bio(bio, nr_sectors);
3897 			bio->bi_status = 0;
3898 			submit_bio_noacct(bio);
3899 		}
3900 	}
3901 
3902 	if (sectors_skipped)
3903 		/* pretend they weren't skipped, it makes
3904 		 * no important difference in this case
3905 		 */
3906 		md_done_sync(mddev, sectors_skipped, 1);
3907 
3908 	return sectors_skipped + nr_sectors;
3909  giveup:
3910 	/* There is nowhere to write, so all non-sync
3911 	 * drives must be failed or in resync, all drives
3912 	 * have a bad block, so try the next chunk...
3913 	 */
3914 	if (sector_nr + max_sync < max_sector)
3915 		max_sector = sector_nr + max_sync;
3916 
3917 	sectors_skipped += (max_sector - sector_nr);
3918 	chunks_skipped ++;
3919 	sector_nr = max_sector;
3920 	goto skipped;
3921 }
3922 
3923 static sector_t
3924 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3925 {
3926 	sector_t size;
3927 	struct r10conf *conf = mddev->private;
3928 
3929 	if (!raid_disks)
3930 		raid_disks = min(conf->geo.raid_disks,
3931 				 conf->prev.raid_disks);
3932 	if (!sectors)
3933 		sectors = conf->dev_sectors;
3934 
3935 	size = sectors >> conf->geo.chunk_shift;
3936 	sector_div(size, conf->geo.far_copies);
3937 	size = size * raid_disks;
3938 	sector_div(size, conf->geo.near_copies);
3939 
3940 	return size << conf->geo.chunk_shift;
3941 }
3942 
3943 static void calc_sectors(struct r10conf *conf, sector_t size)
3944 {
3945 	/* Calculate the number of sectors-per-device that will
3946 	 * actually be used, and set conf->dev_sectors and
3947 	 * conf->stride
3948 	 */
3949 
3950 	size = size >> conf->geo.chunk_shift;
3951 	sector_div(size, conf->geo.far_copies);
3952 	size = size * conf->geo.raid_disks;
3953 	sector_div(size, conf->geo.near_copies);
3954 	/* 'size' is now the number of chunks in the array */
3955 	/* calculate "used chunks per device" */
3956 	size = size * conf->copies;
3957 
3958 	/* We need to round up when dividing by raid_disks to
3959 	 * get the stride size.
3960 	 */
3961 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3962 
3963 	conf->dev_sectors = size << conf->geo.chunk_shift;
3964 
3965 	if (conf->geo.far_offset)
3966 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3967 	else {
3968 		sector_div(size, conf->geo.far_copies);
3969 		conf->geo.stride = size << conf->geo.chunk_shift;
3970 	}
3971 }
3972 
3973 enum geo_type {geo_new, geo_old, geo_start};
3974 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3975 {
3976 	int nc, fc, fo;
3977 	int layout, chunk, disks;
3978 	switch (new) {
3979 	case geo_old:
3980 		layout = mddev->layout;
3981 		chunk = mddev->chunk_sectors;
3982 		disks = mddev->raid_disks - mddev->delta_disks;
3983 		break;
3984 	case geo_new:
3985 		layout = mddev->new_layout;
3986 		chunk = mddev->new_chunk_sectors;
3987 		disks = mddev->raid_disks;
3988 		break;
3989 	default: /* avoid 'may be unused' warnings */
3990 	case geo_start: /* new when starting reshape - raid_disks not
3991 			 * updated yet. */
3992 		layout = mddev->new_layout;
3993 		chunk = mddev->new_chunk_sectors;
3994 		disks = mddev->raid_disks + mddev->delta_disks;
3995 		break;
3996 	}
3997 	if (layout >> 19)
3998 		return -1;
3999 	if (chunk < (PAGE_SIZE >> 9) ||
4000 	    !is_power_of_2(chunk))
4001 		return -2;
4002 	nc = layout & 255;
4003 	fc = (layout >> 8) & 255;
4004 	fo = layout & (1<<16);
4005 	geo->raid_disks = disks;
4006 	geo->near_copies = nc;
4007 	geo->far_copies = fc;
4008 	geo->far_offset = fo;
4009 	switch (layout >> 17) {
4010 	case 0:	/* original layout.  simple but not always optimal */
4011 		geo->far_set_size = disks;
4012 		break;
4013 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
4014 		 * actually using this, but leave code here just in case.*/
4015 		geo->far_set_size = disks/fc;
4016 		WARN(geo->far_set_size < fc,
4017 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
4018 		break;
4019 	case 2: /* "improved" layout fixed to match documentation */
4020 		geo->far_set_size = fc * nc;
4021 		break;
4022 	default: /* Not a valid layout */
4023 		return -1;
4024 	}
4025 	geo->chunk_mask = chunk - 1;
4026 	geo->chunk_shift = ffz(~chunk);
4027 	return nc*fc;
4028 }
4029 
4030 static void raid10_free_conf(struct r10conf *conf)
4031 {
4032 	if (!conf)
4033 		return;
4034 
4035 	mempool_exit(&conf->r10bio_pool);
4036 	kfree(conf->mirrors);
4037 	kfree(conf->mirrors_old);
4038 	kfree(conf->mirrors_new);
4039 	safe_put_page(conf->tmppage);
4040 	bioset_exit(&conf->bio_split);
4041 	kfree(conf);
4042 }
4043 
4044 static struct r10conf *setup_conf(struct mddev *mddev)
4045 {
4046 	struct r10conf *conf = NULL;
4047 	int err = -EINVAL;
4048 	struct geom geo;
4049 	int copies;
4050 
4051 	copies = setup_geo(&geo, mddev, geo_new);
4052 
4053 	if (copies == -2) {
4054 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4055 			mdname(mddev), PAGE_SIZE);
4056 		goto out;
4057 	}
4058 
4059 	if (copies < 2 || copies > mddev->raid_disks) {
4060 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4061 			mdname(mddev), mddev->new_layout);
4062 		goto out;
4063 	}
4064 
4065 	err = -ENOMEM;
4066 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4067 	if (!conf)
4068 		goto out;
4069 
4070 	/* FIXME calc properly */
4071 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4072 				sizeof(struct raid10_info),
4073 				GFP_KERNEL);
4074 	if (!conf->mirrors)
4075 		goto out;
4076 
4077 	conf->tmppage = alloc_page(GFP_KERNEL);
4078 	if (!conf->tmppage)
4079 		goto out;
4080 
4081 	conf->geo = geo;
4082 	conf->copies = copies;
4083 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4084 			   rbio_pool_free, conf);
4085 	if (err)
4086 		goto out;
4087 
4088 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4089 	if (err)
4090 		goto out;
4091 
4092 	calc_sectors(conf, mddev->dev_sectors);
4093 	if (mddev->reshape_position == MaxSector) {
4094 		conf->prev = conf->geo;
4095 		conf->reshape_progress = MaxSector;
4096 	} else {
4097 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4098 			err = -EINVAL;
4099 			goto out;
4100 		}
4101 		conf->reshape_progress = mddev->reshape_position;
4102 		if (conf->prev.far_offset)
4103 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4104 		else
4105 			/* far_copies must be 1 */
4106 			conf->prev.stride = conf->dev_sectors;
4107 	}
4108 	conf->reshape_safe = conf->reshape_progress;
4109 	spin_lock_init(&conf->device_lock);
4110 	INIT_LIST_HEAD(&conf->retry_list);
4111 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4112 
4113 	seqlock_init(&conf->resync_lock);
4114 	init_waitqueue_head(&conf->wait_barrier);
4115 	atomic_set(&conf->nr_pending, 0);
4116 
4117 	err = -ENOMEM;
4118 	rcu_assign_pointer(conf->thread,
4119 			   md_register_thread(raid10d, mddev, "raid10"));
4120 	if (!conf->thread)
4121 		goto out;
4122 
4123 	conf->mddev = mddev;
4124 	return conf;
4125 
4126  out:
4127 	raid10_free_conf(conf);
4128 	return ERR_PTR(err);
4129 }
4130 
4131 static void raid10_set_io_opt(struct r10conf *conf)
4132 {
4133 	int raid_disks = conf->geo.raid_disks;
4134 
4135 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4136 		raid_disks /= conf->geo.near_copies;
4137 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4138 			 raid_disks);
4139 }
4140 
4141 static int raid10_run(struct mddev *mddev)
4142 {
4143 	struct r10conf *conf;
4144 	int i, disk_idx;
4145 	struct raid10_info *disk;
4146 	struct md_rdev *rdev;
4147 	sector_t size;
4148 	sector_t min_offset_diff = 0;
4149 	int first = 1;
4150 
4151 	if (mddev_init_writes_pending(mddev) < 0)
4152 		return -ENOMEM;
4153 
4154 	if (mddev->private == NULL) {
4155 		conf = setup_conf(mddev);
4156 		if (IS_ERR(conf))
4157 			return PTR_ERR(conf);
4158 		mddev->private = conf;
4159 	}
4160 	conf = mddev->private;
4161 	if (!conf)
4162 		goto out;
4163 
4164 	rcu_assign_pointer(mddev->thread, conf->thread);
4165 	rcu_assign_pointer(conf->thread, NULL);
4166 
4167 	if (mddev_is_clustered(conf->mddev)) {
4168 		int fc, fo;
4169 
4170 		fc = (mddev->layout >> 8) & 255;
4171 		fo = mddev->layout & (1<<16);
4172 		if (fc > 1 || fo > 0) {
4173 			pr_err("only near layout is supported by clustered"
4174 				" raid10\n");
4175 			goto out_free_conf;
4176 		}
4177 	}
4178 
4179 	if (mddev->queue) {
4180 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4181 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4182 		raid10_set_io_opt(conf);
4183 	}
4184 
4185 	rdev_for_each(rdev, mddev) {
4186 		long long diff;
4187 
4188 		disk_idx = rdev->raid_disk;
4189 		if (disk_idx < 0)
4190 			continue;
4191 		if (disk_idx >= conf->geo.raid_disks &&
4192 		    disk_idx >= conf->prev.raid_disks)
4193 			continue;
4194 		disk = conf->mirrors + disk_idx;
4195 
4196 		if (test_bit(Replacement, &rdev->flags)) {
4197 			if (disk->replacement)
4198 				goto out_free_conf;
4199 			disk->replacement = rdev;
4200 		} else {
4201 			if (disk->rdev)
4202 				goto out_free_conf;
4203 			disk->rdev = rdev;
4204 		}
4205 		diff = (rdev->new_data_offset - rdev->data_offset);
4206 		if (!mddev->reshape_backwards)
4207 			diff = -diff;
4208 		if (diff < 0)
4209 			diff = 0;
4210 		if (first || diff < min_offset_diff)
4211 			min_offset_diff = diff;
4212 
4213 		if (mddev->gendisk)
4214 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4215 					  rdev->data_offset << 9);
4216 
4217 		disk->head_position = 0;
4218 		first = 0;
4219 	}
4220 
4221 	/* need to check that every block has at least one working mirror */
4222 	if (!enough(conf, -1)) {
4223 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4224 		       mdname(mddev));
4225 		goto out_free_conf;
4226 	}
4227 
4228 	if (conf->reshape_progress != MaxSector) {
4229 		/* must ensure that shape change is supported */
4230 		if (conf->geo.far_copies != 1 &&
4231 		    conf->geo.far_offset == 0)
4232 			goto out_free_conf;
4233 		if (conf->prev.far_copies != 1 &&
4234 		    conf->prev.far_offset == 0)
4235 			goto out_free_conf;
4236 	}
4237 
4238 	mddev->degraded = 0;
4239 	for (i = 0;
4240 	     i < conf->geo.raid_disks
4241 		     || i < conf->prev.raid_disks;
4242 	     i++) {
4243 
4244 		disk = conf->mirrors + i;
4245 
4246 		if (!disk->rdev && disk->replacement) {
4247 			/* The replacement is all we have - use it */
4248 			disk->rdev = disk->replacement;
4249 			disk->replacement = NULL;
4250 			clear_bit(Replacement, &disk->rdev->flags);
4251 		}
4252 
4253 		if (!disk->rdev ||
4254 		    !test_bit(In_sync, &disk->rdev->flags)) {
4255 			disk->head_position = 0;
4256 			mddev->degraded++;
4257 			if (disk->rdev &&
4258 			    disk->rdev->saved_raid_disk < 0)
4259 				conf->fullsync = 1;
4260 		}
4261 
4262 		if (disk->replacement &&
4263 		    !test_bit(In_sync, &disk->replacement->flags) &&
4264 		    disk->replacement->saved_raid_disk < 0) {
4265 			conf->fullsync = 1;
4266 		}
4267 
4268 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4269 	}
4270 
4271 	if (mddev->recovery_cp != MaxSector)
4272 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4273 			  mdname(mddev));
4274 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4275 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4276 		conf->geo.raid_disks);
4277 	/*
4278 	 * Ok, everything is just fine now
4279 	 */
4280 	mddev->dev_sectors = conf->dev_sectors;
4281 	size = raid10_size(mddev, 0, 0);
4282 	md_set_array_sectors(mddev, size);
4283 	mddev->resync_max_sectors = size;
4284 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4285 
4286 	if (md_integrity_register(mddev))
4287 		goto out_free_conf;
4288 
4289 	if (conf->reshape_progress != MaxSector) {
4290 		unsigned long before_length, after_length;
4291 
4292 		before_length = ((1 << conf->prev.chunk_shift) *
4293 				 conf->prev.far_copies);
4294 		after_length = ((1 << conf->geo.chunk_shift) *
4295 				conf->geo.far_copies);
4296 
4297 		if (max(before_length, after_length) > min_offset_diff) {
4298 			/* This cannot work */
4299 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4300 			goto out_free_conf;
4301 		}
4302 		conf->offset_diff = min_offset_diff;
4303 
4304 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4305 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4306 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4307 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4308 		rcu_assign_pointer(mddev->sync_thread,
4309 			md_register_thread(md_do_sync, mddev, "reshape"));
4310 		if (!mddev->sync_thread)
4311 			goto out_free_conf;
4312 	}
4313 
4314 	return 0;
4315 
4316 out_free_conf:
4317 	md_unregister_thread(&mddev->thread);
4318 	raid10_free_conf(conf);
4319 	mddev->private = NULL;
4320 out:
4321 	return -EIO;
4322 }
4323 
4324 static void raid10_free(struct mddev *mddev, void *priv)
4325 {
4326 	raid10_free_conf(priv);
4327 }
4328 
4329 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4330 {
4331 	struct r10conf *conf = mddev->private;
4332 
4333 	if (quiesce)
4334 		raise_barrier(conf, 0);
4335 	else
4336 		lower_barrier(conf);
4337 }
4338 
4339 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4340 {
4341 	/* Resize of 'far' arrays is not supported.
4342 	 * For 'near' and 'offset' arrays we can set the
4343 	 * number of sectors used to be an appropriate multiple
4344 	 * of the chunk size.
4345 	 * For 'offset', this is far_copies*chunksize.
4346 	 * For 'near' the multiplier is the LCM of
4347 	 * near_copies and raid_disks.
4348 	 * So if far_copies > 1 && !far_offset, fail.
4349 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4350 	 * multiply by chunk_size.  Then round to this number.
4351 	 * This is mostly done by raid10_size()
4352 	 */
4353 	struct r10conf *conf = mddev->private;
4354 	sector_t oldsize, size;
4355 
4356 	if (mddev->reshape_position != MaxSector)
4357 		return -EBUSY;
4358 
4359 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4360 		return -EINVAL;
4361 
4362 	oldsize = raid10_size(mddev, 0, 0);
4363 	size = raid10_size(mddev, sectors, 0);
4364 	if (mddev->external_size &&
4365 	    mddev->array_sectors > size)
4366 		return -EINVAL;
4367 	if (mddev->bitmap) {
4368 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4369 		if (ret)
4370 			return ret;
4371 	}
4372 	md_set_array_sectors(mddev, size);
4373 	if (sectors > mddev->dev_sectors &&
4374 	    mddev->recovery_cp > oldsize) {
4375 		mddev->recovery_cp = oldsize;
4376 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4377 	}
4378 	calc_sectors(conf, sectors);
4379 	mddev->dev_sectors = conf->dev_sectors;
4380 	mddev->resync_max_sectors = size;
4381 	return 0;
4382 }
4383 
4384 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4385 {
4386 	struct md_rdev *rdev;
4387 	struct r10conf *conf;
4388 
4389 	if (mddev->degraded > 0) {
4390 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4391 			mdname(mddev));
4392 		return ERR_PTR(-EINVAL);
4393 	}
4394 	sector_div(size, devs);
4395 
4396 	/* Set new parameters */
4397 	mddev->new_level = 10;
4398 	/* new layout: far_copies = 1, near_copies = 2 */
4399 	mddev->new_layout = (1<<8) + 2;
4400 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4401 	mddev->delta_disks = mddev->raid_disks;
4402 	mddev->raid_disks *= 2;
4403 	/* make sure it will be not marked as dirty */
4404 	mddev->recovery_cp = MaxSector;
4405 	mddev->dev_sectors = size;
4406 
4407 	conf = setup_conf(mddev);
4408 	if (!IS_ERR(conf)) {
4409 		rdev_for_each(rdev, mddev)
4410 			if (rdev->raid_disk >= 0) {
4411 				rdev->new_raid_disk = rdev->raid_disk * 2;
4412 				rdev->sectors = size;
4413 			}
4414 		WRITE_ONCE(conf->barrier, 1);
4415 	}
4416 
4417 	return conf;
4418 }
4419 
4420 static void *raid10_takeover(struct mddev *mddev)
4421 {
4422 	struct r0conf *raid0_conf;
4423 
4424 	/* raid10 can take over:
4425 	 *  raid0 - providing it has only two drives
4426 	 */
4427 	if (mddev->level == 0) {
4428 		/* for raid0 takeover only one zone is supported */
4429 		raid0_conf = mddev->private;
4430 		if (raid0_conf->nr_strip_zones > 1) {
4431 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4432 				mdname(mddev));
4433 			return ERR_PTR(-EINVAL);
4434 		}
4435 		return raid10_takeover_raid0(mddev,
4436 			raid0_conf->strip_zone->zone_end,
4437 			raid0_conf->strip_zone->nb_dev);
4438 	}
4439 	return ERR_PTR(-EINVAL);
4440 }
4441 
4442 static int raid10_check_reshape(struct mddev *mddev)
4443 {
4444 	/* Called when there is a request to change
4445 	 * - layout (to ->new_layout)
4446 	 * - chunk size (to ->new_chunk_sectors)
4447 	 * - raid_disks (by delta_disks)
4448 	 * or when trying to restart a reshape that was ongoing.
4449 	 *
4450 	 * We need to validate the request and possibly allocate
4451 	 * space if that might be an issue later.
4452 	 *
4453 	 * Currently we reject any reshape of a 'far' mode array,
4454 	 * allow chunk size to change if new is generally acceptable,
4455 	 * allow raid_disks to increase, and allow
4456 	 * a switch between 'near' mode and 'offset' mode.
4457 	 */
4458 	struct r10conf *conf = mddev->private;
4459 	struct geom geo;
4460 
4461 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4462 		return -EINVAL;
4463 
4464 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4465 		/* mustn't change number of copies */
4466 		return -EINVAL;
4467 	if (geo.far_copies > 1 && !geo.far_offset)
4468 		/* Cannot switch to 'far' mode */
4469 		return -EINVAL;
4470 
4471 	if (mddev->array_sectors & geo.chunk_mask)
4472 			/* not factor of array size */
4473 			return -EINVAL;
4474 
4475 	if (!enough(conf, -1))
4476 		return -EINVAL;
4477 
4478 	kfree(conf->mirrors_new);
4479 	conf->mirrors_new = NULL;
4480 	if (mddev->delta_disks > 0) {
4481 		/* allocate new 'mirrors' list */
4482 		conf->mirrors_new =
4483 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4484 				sizeof(struct raid10_info),
4485 				GFP_KERNEL);
4486 		if (!conf->mirrors_new)
4487 			return -ENOMEM;
4488 	}
4489 	return 0;
4490 }
4491 
4492 /*
4493  * Need to check if array has failed when deciding whether to:
4494  *  - start an array
4495  *  - remove non-faulty devices
4496  *  - add a spare
4497  *  - allow a reshape
4498  * This determination is simple when no reshape is happening.
4499  * However if there is a reshape, we need to carefully check
4500  * both the before and after sections.
4501  * This is because some failed devices may only affect one
4502  * of the two sections, and some non-in_sync devices may
4503  * be insync in the section most affected by failed devices.
4504  */
4505 static int calc_degraded(struct r10conf *conf)
4506 {
4507 	int degraded, degraded2;
4508 	int i;
4509 
4510 	rcu_read_lock();
4511 	degraded = 0;
4512 	/* 'prev' section first */
4513 	for (i = 0; i < conf->prev.raid_disks; i++) {
4514 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4515 		if (!rdev || test_bit(Faulty, &rdev->flags))
4516 			degraded++;
4517 		else if (!test_bit(In_sync, &rdev->flags))
4518 			/* When we can reduce the number of devices in
4519 			 * an array, this might not contribute to
4520 			 * 'degraded'.  It does now.
4521 			 */
4522 			degraded++;
4523 	}
4524 	rcu_read_unlock();
4525 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4526 		return degraded;
4527 	rcu_read_lock();
4528 	degraded2 = 0;
4529 	for (i = 0; i < conf->geo.raid_disks; i++) {
4530 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4531 		if (!rdev || test_bit(Faulty, &rdev->flags))
4532 			degraded2++;
4533 		else if (!test_bit(In_sync, &rdev->flags)) {
4534 			/* If reshape is increasing the number of devices,
4535 			 * this section has already been recovered, so
4536 			 * it doesn't contribute to degraded.
4537 			 * else it does.
4538 			 */
4539 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4540 				degraded2++;
4541 		}
4542 	}
4543 	rcu_read_unlock();
4544 	if (degraded2 > degraded)
4545 		return degraded2;
4546 	return degraded;
4547 }
4548 
4549 static int raid10_start_reshape(struct mddev *mddev)
4550 {
4551 	/* A 'reshape' has been requested. This commits
4552 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4553 	 * This also checks if there are enough spares and adds them
4554 	 * to the array.
4555 	 * We currently require enough spares to make the final
4556 	 * array non-degraded.  We also require that the difference
4557 	 * between old and new data_offset - on each device - is
4558 	 * enough that we never risk over-writing.
4559 	 */
4560 
4561 	unsigned long before_length, after_length;
4562 	sector_t min_offset_diff = 0;
4563 	int first = 1;
4564 	struct geom new;
4565 	struct r10conf *conf = mddev->private;
4566 	struct md_rdev *rdev;
4567 	int spares = 0;
4568 	int ret;
4569 
4570 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4571 		return -EBUSY;
4572 
4573 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4574 		return -EINVAL;
4575 
4576 	before_length = ((1 << conf->prev.chunk_shift) *
4577 			 conf->prev.far_copies);
4578 	after_length = ((1 << conf->geo.chunk_shift) *
4579 			conf->geo.far_copies);
4580 
4581 	rdev_for_each(rdev, mddev) {
4582 		if (!test_bit(In_sync, &rdev->flags)
4583 		    && !test_bit(Faulty, &rdev->flags))
4584 			spares++;
4585 		if (rdev->raid_disk >= 0) {
4586 			long long diff = (rdev->new_data_offset
4587 					  - rdev->data_offset);
4588 			if (!mddev->reshape_backwards)
4589 				diff = -diff;
4590 			if (diff < 0)
4591 				diff = 0;
4592 			if (first || diff < min_offset_diff)
4593 				min_offset_diff = diff;
4594 			first = 0;
4595 		}
4596 	}
4597 
4598 	if (max(before_length, after_length) > min_offset_diff)
4599 		return -EINVAL;
4600 
4601 	if (spares < mddev->delta_disks)
4602 		return -EINVAL;
4603 
4604 	conf->offset_diff = min_offset_diff;
4605 	spin_lock_irq(&conf->device_lock);
4606 	if (conf->mirrors_new) {
4607 		memcpy(conf->mirrors_new, conf->mirrors,
4608 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4609 		smp_mb();
4610 		kfree(conf->mirrors_old);
4611 		conf->mirrors_old = conf->mirrors;
4612 		conf->mirrors = conf->mirrors_new;
4613 		conf->mirrors_new = NULL;
4614 	}
4615 	setup_geo(&conf->geo, mddev, geo_start);
4616 	smp_mb();
4617 	if (mddev->reshape_backwards) {
4618 		sector_t size = raid10_size(mddev, 0, 0);
4619 		if (size < mddev->array_sectors) {
4620 			spin_unlock_irq(&conf->device_lock);
4621 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4622 				mdname(mddev));
4623 			return -EINVAL;
4624 		}
4625 		mddev->resync_max_sectors = size;
4626 		conf->reshape_progress = size;
4627 	} else
4628 		conf->reshape_progress = 0;
4629 	conf->reshape_safe = conf->reshape_progress;
4630 	spin_unlock_irq(&conf->device_lock);
4631 
4632 	if (mddev->delta_disks && mddev->bitmap) {
4633 		struct mdp_superblock_1 *sb = NULL;
4634 		sector_t oldsize, newsize;
4635 
4636 		oldsize = raid10_size(mddev, 0, 0);
4637 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4638 
4639 		if (!mddev_is_clustered(mddev)) {
4640 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4641 			if (ret)
4642 				goto abort;
4643 			else
4644 				goto out;
4645 		}
4646 
4647 		rdev_for_each(rdev, mddev) {
4648 			if (rdev->raid_disk > -1 &&
4649 			    !test_bit(Faulty, &rdev->flags))
4650 				sb = page_address(rdev->sb_page);
4651 		}
4652 
4653 		/*
4654 		 * some node is already performing reshape, and no need to
4655 		 * call md_bitmap_resize again since it should be called when
4656 		 * receiving BITMAP_RESIZE msg
4657 		 */
4658 		if ((sb && (le32_to_cpu(sb->feature_map) &
4659 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4660 			goto out;
4661 
4662 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4663 		if (ret)
4664 			goto abort;
4665 
4666 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4667 		if (ret) {
4668 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4669 			goto abort;
4670 		}
4671 	}
4672 out:
4673 	if (mddev->delta_disks > 0) {
4674 		rdev_for_each(rdev, mddev)
4675 			if (rdev->raid_disk < 0 &&
4676 			    !test_bit(Faulty, &rdev->flags)) {
4677 				if (raid10_add_disk(mddev, rdev) == 0) {
4678 					if (rdev->raid_disk >=
4679 					    conf->prev.raid_disks)
4680 						set_bit(In_sync, &rdev->flags);
4681 					else
4682 						rdev->recovery_offset = 0;
4683 
4684 					/* Failure here is OK */
4685 					sysfs_link_rdev(mddev, rdev);
4686 				}
4687 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4688 				   && !test_bit(Faulty, &rdev->flags)) {
4689 				/* This is a spare that was manually added */
4690 				set_bit(In_sync, &rdev->flags);
4691 			}
4692 	}
4693 	/* When a reshape changes the number of devices,
4694 	 * ->degraded is measured against the larger of the
4695 	 * pre and  post numbers.
4696 	 */
4697 	spin_lock_irq(&conf->device_lock);
4698 	mddev->degraded = calc_degraded(conf);
4699 	spin_unlock_irq(&conf->device_lock);
4700 	mddev->raid_disks = conf->geo.raid_disks;
4701 	mddev->reshape_position = conf->reshape_progress;
4702 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4703 
4704 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4705 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4706 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4707 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4708 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4709 
4710 	rcu_assign_pointer(mddev->sync_thread,
4711 			   md_register_thread(md_do_sync, mddev, "reshape"));
4712 	if (!mddev->sync_thread) {
4713 		ret = -EAGAIN;
4714 		goto abort;
4715 	}
4716 	conf->reshape_checkpoint = jiffies;
4717 	md_wakeup_thread(mddev->sync_thread);
4718 	md_new_event();
4719 	return 0;
4720 
4721 abort:
4722 	mddev->recovery = 0;
4723 	spin_lock_irq(&conf->device_lock);
4724 	conf->geo = conf->prev;
4725 	mddev->raid_disks = conf->geo.raid_disks;
4726 	rdev_for_each(rdev, mddev)
4727 		rdev->new_data_offset = rdev->data_offset;
4728 	smp_wmb();
4729 	conf->reshape_progress = MaxSector;
4730 	conf->reshape_safe = MaxSector;
4731 	mddev->reshape_position = MaxSector;
4732 	spin_unlock_irq(&conf->device_lock);
4733 	return ret;
4734 }
4735 
4736 /* Calculate the last device-address that could contain
4737  * any block from the chunk that includes the array-address 's'
4738  * and report the next address.
4739  * i.e. the address returned will be chunk-aligned and after
4740  * any data that is in the chunk containing 's'.
4741  */
4742 static sector_t last_dev_address(sector_t s, struct geom *geo)
4743 {
4744 	s = (s | geo->chunk_mask) + 1;
4745 	s >>= geo->chunk_shift;
4746 	s *= geo->near_copies;
4747 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4748 	s *= geo->far_copies;
4749 	s <<= geo->chunk_shift;
4750 	return s;
4751 }
4752 
4753 /* Calculate the first device-address that could contain
4754  * any block from the chunk that includes the array-address 's'.
4755  * This too will be the start of a chunk
4756  */
4757 static sector_t first_dev_address(sector_t s, struct geom *geo)
4758 {
4759 	s >>= geo->chunk_shift;
4760 	s *= geo->near_copies;
4761 	sector_div(s, geo->raid_disks);
4762 	s *= geo->far_copies;
4763 	s <<= geo->chunk_shift;
4764 	return s;
4765 }
4766 
4767 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4768 				int *skipped)
4769 {
4770 	/* We simply copy at most one chunk (smallest of old and new)
4771 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4772 	 * or we hit a bad block or something.
4773 	 * This might mean we pause for normal IO in the middle of
4774 	 * a chunk, but that is not a problem as mddev->reshape_position
4775 	 * can record any location.
4776 	 *
4777 	 * If we will want to write to a location that isn't
4778 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4779 	 * we need to flush all reshape requests and update the metadata.
4780 	 *
4781 	 * When reshaping forwards (e.g. to more devices), we interpret
4782 	 * 'safe' as the earliest block which might not have been copied
4783 	 * down yet.  We divide this by previous stripe size and multiply
4784 	 * by previous stripe length to get lowest device offset that we
4785 	 * cannot write to yet.
4786 	 * We interpret 'sector_nr' as an address that we want to write to.
4787 	 * From this we use last_device_address() to find where we might
4788 	 * write to, and first_device_address on the  'safe' position.
4789 	 * If this 'next' write position is after the 'safe' position,
4790 	 * we must update the metadata to increase the 'safe' position.
4791 	 *
4792 	 * When reshaping backwards, we round in the opposite direction
4793 	 * and perform the reverse test:  next write position must not be
4794 	 * less than current safe position.
4795 	 *
4796 	 * In all this the minimum difference in data offsets
4797 	 * (conf->offset_diff - always positive) allows a bit of slack,
4798 	 * so next can be after 'safe', but not by more than offset_diff
4799 	 *
4800 	 * We need to prepare all the bios here before we start any IO
4801 	 * to ensure the size we choose is acceptable to all devices.
4802 	 * The means one for each copy for write-out and an extra one for
4803 	 * read-in.
4804 	 * We store the read-in bio in ->master_bio and the others in
4805 	 * ->devs[x].bio and ->devs[x].repl_bio.
4806 	 */
4807 	struct r10conf *conf = mddev->private;
4808 	struct r10bio *r10_bio;
4809 	sector_t next, safe, last;
4810 	int max_sectors;
4811 	int nr_sectors;
4812 	int s;
4813 	struct md_rdev *rdev;
4814 	int need_flush = 0;
4815 	struct bio *blist;
4816 	struct bio *bio, *read_bio;
4817 	int sectors_done = 0;
4818 	struct page **pages;
4819 
4820 	if (sector_nr == 0) {
4821 		/* If restarting in the middle, skip the initial sectors */
4822 		if (mddev->reshape_backwards &&
4823 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4824 			sector_nr = (raid10_size(mddev, 0, 0)
4825 				     - conf->reshape_progress);
4826 		} else if (!mddev->reshape_backwards &&
4827 			   conf->reshape_progress > 0)
4828 			sector_nr = conf->reshape_progress;
4829 		if (sector_nr) {
4830 			mddev->curr_resync_completed = sector_nr;
4831 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4832 			*skipped = 1;
4833 			return sector_nr;
4834 		}
4835 	}
4836 
4837 	/* We don't use sector_nr to track where we are up to
4838 	 * as that doesn't work well for ->reshape_backwards.
4839 	 * So just use ->reshape_progress.
4840 	 */
4841 	if (mddev->reshape_backwards) {
4842 		/* 'next' is the earliest device address that we might
4843 		 * write to for this chunk in the new layout
4844 		 */
4845 		next = first_dev_address(conf->reshape_progress - 1,
4846 					 &conf->geo);
4847 
4848 		/* 'safe' is the last device address that we might read from
4849 		 * in the old layout after a restart
4850 		 */
4851 		safe = last_dev_address(conf->reshape_safe - 1,
4852 					&conf->prev);
4853 
4854 		if (next + conf->offset_diff < safe)
4855 			need_flush = 1;
4856 
4857 		last = conf->reshape_progress - 1;
4858 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4859 					       & conf->prev.chunk_mask);
4860 		if (sector_nr + RESYNC_SECTORS < last)
4861 			sector_nr = last + 1 - RESYNC_SECTORS;
4862 	} else {
4863 		/* 'next' is after the last device address that we
4864 		 * might write to for this chunk in the new layout
4865 		 */
4866 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4867 
4868 		/* 'safe' is the earliest device address that we might
4869 		 * read from in the old layout after a restart
4870 		 */
4871 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4872 
4873 		/* Need to update metadata if 'next' might be beyond 'safe'
4874 		 * as that would possibly corrupt data
4875 		 */
4876 		if (next > safe + conf->offset_diff)
4877 			need_flush = 1;
4878 
4879 		sector_nr = conf->reshape_progress;
4880 		last  = sector_nr | (conf->geo.chunk_mask
4881 				     & conf->prev.chunk_mask);
4882 
4883 		if (sector_nr + RESYNC_SECTORS <= last)
4884 			last = sector_nr + RESYNC_SECTORS - 1;
4885 	}
4886 
4887 	if (need_flush ||
4888 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4889 		/* Need to update reshape_position in metadata */
4890 		wait_barrier(conf, false);
4891 		mddev->reshape_position = conf->reshape_progress;
4892 		if (mddev->reshape_backwards)
4893 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4894 				- conf->reshape_progress;
4895 		else
4896 			mddev->curr_resync_completed = conf->reshape_progress;
4897 		conf->reshape_checkpoint = jiffies;
4898 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4899 		md_wakeup_thread(mddev->thread);
4900 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4901 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4902 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4903 			allow_barrier(conf);
4904 			return sectors_done;
4905 		}
4906 		conf->reshape_safe = mddev->reshape_position;
4907 		allow_barrier(conf);
4908 	}
4909 
4910 	raise_barrier(conf, 0);
4911 read_more:
4912 	/* Now schedule reads for blocks from sector_nr to last */
4913 	r10_bio = raid10_alloc_init_r10buf(conf);
4914 	r10_bio->state = 0;
4915 	raise_barrier(conf, 1);
4916 	atomic_set(&r10_bio->remaining, 0);
4917 	r10_bio->mddev = mddev;
4918 	r10_bio->sector = sector_nr;
4919 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4920 	r10_bio->sectors = last - sector_nr + 1;
4921 	rdev = read_balance(conf, r10_bio, &max_sectors);
4922 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4923 
4924 	if (!rdev) {
4925 		/* Cannot read from here, so need to record bad blocks
4926 		 * on all the target devices.
4927 		 */
4928 		// FIXME
4929 		mempool_free(r10_bio, &conf->r10buf_pool);
4930 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4931 		return sectors_done;
4932 	}
4933 
4934 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4935 				    GFP_KERNEL, &mddev->bio_set);
4936 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4937 			       + rdev->data_offset);
4938 	read_bio->bi_private = r10_bio;
4939 	read_bio->bi_end_io = end_reshape_read;
4940 	r10_bio->master_bio = read_bio;
4941 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4942 
4943 	/*
4944 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4945 	 * write to the region to avoid conflict.
4946 	*/
4947 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4948 		struct mdp_superblock_1 *sb = NULL;
4949 		int sb_reshape_pos = 0;
4950 
4951 		conf->cluster_sync_low = sector_nr;
4952 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4953 		sb = page_address(rdev->sb_page);
4954 		if (sb) {
4955 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4956 			/*
4957 			 * Set cluster_sync_low again if next address for array
4958 			 * reshape is less than cluster_sync_low. Since we can't
4959 			 * update cluster_sync_low until it has finished reshape.
4960 			 */
4961 			if (sb_reshape_pos < conf->cluster_sync_low)
4962 				conf->cluster_sync_low = sb_reshape_pos;
4963 		}
4964 
4965 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4966 							  conf->cluster_sync_high);
4967 	}
4968 
4969 	/* Now find the locations in the new layout */
4970 	__raid10_find_phys(&conf->geo, r10_bio);
4971 
4972 	blist = read_bio;
4973 	read_bio->bi_next = NULL;
4974 
4975 	rcu_read_lock();
4976 	for (s = 0; s < conf->copies*2; s++) {
4977 		struct bio *b;
4978 		int d = r10_bio->devs[s/2].devnum;
4979 		struct md_rdev *rdev2;
4980 		if (s&1) {
4981 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4982 			b = r10_bio->devs[s/2].repl_bio;
4983 		} else {
4984 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4985 			b = r10_bio->devs[s/2].bio;
4986 		}
4987 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4988 			continue;
4989 
4990 		bio_set_dev(b, rdev2->bdev);
4991 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4992 			rdev2->new_data_offset;
4993 		b->bi_end_io = end_reshape_write;
4994 		b->bi_opf = REQ_OP_WRITE;
4995 		b->bi_next = blist;
4996 		blist = b;
4997 	}
4998 
4999 	/* Now add as many pages as possible to all of these bios. */
5000 
5001 	nr_sectors = 0;
5002 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5003 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
5004 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
5005 		int len = (max_sectors - s) << 9;
5006 		if (len > PAGE_SIZE)
5007 			len = PAGE_SIZE;
5008 		for (bio = blist; bio ; bio = bio->bi_next) {
5009 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5010 				bio->bi_status = BLK_STS_RESOURCE;
5011 				bio_endio(bio);
5012 				return sectors_done;
5013 			}
5014 		}
5015 		sector_nr += len >> 9;
5016 		nr_sectors += len >> 9;
5017 	}
5018 	rcu_read_unlock();
5019 	r10_bio->sectors = nr_sectors;
5020 
5021 	/* Now submit the read */
5022 	md_sync_acct_bio(read_bio, r10_bio->sectors);
5023 	atomic_inc(&r10_bio->remaining);
5024 	read_bio->bi_next = NULL;
5025 	submit_bio_noacct(read_bio);
5026 	sectors_done += nr_sectors;
5027 	if (sector_nr <= last)
5028 		goto read_more;
5029 
5030 	lower_barrier(conf);
5031 
5032 	/* Now that we have done the whole section we can
5033 	 * update reshape_progress
5034 	 */
5035 	if (mddev->reshape_backwards)
5036 		conf->reshape_progress -= sectors_done;
5037 	else
5038 		conf->reshape_progress += sectors_done;
5039 
5040 	return sectors_done;
5041 }
5042 
5043 static void end_reshape_request(struct r10bio *r10_bio);
5044 static int handle_reshape_read_error(struct mddev *mddev,
5045 				     struct r10bio *r10_bio);
5046 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5047 {
5048 	/* Reshape read completed.  Hopefully we have a block
5049 	 * to write out.
5050 	 * If we got a read error then we do sync 1-page reads from
5051 	 * elsewhere until we find the data - or give up.
5052 	 */
5053 	struct r10conf *conf = mddev->private;
5054 	int s;
5055 
5056 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5057 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5058 			/* Reshape has been aborted */
5059 			md_done_sync(mddev, r10_bio->sectors, 0);
5060 			return;
5061 		}
5062 
5063 	/* We definitely have the data in the pages, schedule the
5064 	 * writes.
5065 	 */
5066 	atomic_set(&r10_bio->remaining, 1);
5067 	for (s = 0; s < conf->copies*2; s++) {
5068 		struct bio *b;
5069 		int d = r10_bio->devs[s/2].devnum;
5070 		struct md_rdev *rdev;
5071 		rcu_read_lock();
5072 		if (s&1) {
5073 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5074 			b = r10_bio->devs[s/2].repl_bio;
5075 		} else {
5076 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5077 			b = r10_bio->devs[s/2].bio;
5078 		}
5079 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5080 			rcu_read_unlock();
5081 			continue;
5082 		}
5083 		atomic_inc(&rdev->nr_pending);
5084 		rcu_read_unlock();
5085 		md_sync_acct_bio(b, r10_bio->sectors);
5086 		atomic_inc(&r10_bio->remaining);
5087 		b->bi_next = NULL;
5088 		submit_bio_noacct(b);
5089 	}
5090 	end_reshape_request(r10_bio);
5091 }
5092 
5093 static void end_reshape(struct r10conf *conf)
5094 {
5095 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5096 		return;
5097 
5098 	spin_lock_irq(&conf->device_lock);
5099 	conf->prev = conf->geo;
5100 	md_finish_reshape(conf->mddev);
5101 	smp_wmb();
5102 	conf->reshape_progress = MaxSector;
5103 	conf->reshape_safe = MaxSector;
5104 	spin_unlock_irq(&conf->device_lock);
5105 
5106 	if (conf->mddev->queue)
5107 		raid10_set_io_opt(conf);
5108 	conf->fullsync = 0;
5109 }
5110 
5111 static void raid10_update_reshape_pos(struct mddev *mddev)
5112 {
5113 	struct r10conf *conf = mddev->private;
5114 	sector_t lo, hi;
5115 
5116 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5117 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5118 	    || mddev->reshape_position == MaxSector)
5119 		conf->reshape_progress = mddev->reshape_position;
5120 	else
5121 		WARN_ON_ONCE(1);
5122 }
5123 
5124 static int handle_reshape_read_error(struct mddev *mddev,
5125 				     struct r10bio *r10_bio)
5126 {
5127 	/* Use sync reads to get the blocks from somewhere else */
5128 	int sectors = r10_bio->sectors;
5129 	struct r10conf *conf = mddev->private;
5130 	struct r10bio *r10b;
5131 	int slot = 0;
5132 	int idx = 0;
5133 	struct page **pages;
5134 
5135 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5136 	if (!r10b) {
5137 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5138 		return -ENOMEM;
5139 	}
5140 
5141 	/* reshape IOs share pages from .devs[0].bio */
5142 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5143 
5144 	r10b->sector = r10_bio->sector;
5145 	__raid10_find_phys(&conf->prev, r10b);
5146 
5147 	while (sectors) {
5148 		int s = sectors;
5149 		int success = 0;
5150 		int first_slot = slot;
5151 
5152 		if (s > (PAGE_SIZE >> 9))
5153 			s = PAGE_SIZE >> 9;
5154 
5155 		rcu_read_lock();
5156 		while (!success) {
5157 			int d = r10b->devs[slot].devnum;
5158 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5159 			sector_t addr;
5160 			if (rdev == NULL ||
5161 			    test_bit(Faulty, &rdev->flags) ||
5162 			    !test_bit(In_sync, &rdev->flags))
5163 				goto failed;
5164 
5165 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5166 			atomic_inc(&rdev->nr_pending);
5167 			rcu_read_unlock();
5168 			success = sync_page_io(rdev,
5169 					       addr,
5170 					       s << 9,
5171 					       pages[idx],
5172 					       REQ_OP_READ, false);
5173 			rdev_dec_pending(rdev, mddev);
5174 			rcu_read_lock();
5175 			if (success)
5176 				break;
5177 		failed:
5178 			slot++;
5179 			if (slot >= conf->copies)
5180 				slot = 0;
5181 			if (slot == first_slot)
5182 				break;
5183 		}
5184 		rcu_read_unlock();
5185 		if (!success) {
5186 			/* couldn't read this block, must give up */
5187 			set_bit(MD_RECOVERY_INTR,
5188 				&mddev->recovery);
5189 			kfree(r10b);
5190 			return -EIO;
5191 		}
5192 		sectors -= s;
5193 		idx++;
5194 	}
5195 	kfree(r10b);
5196 	return 0;
5197 }
5198 
5199 static void end_reshape_write(struct bio *bio)
5200 {
5201 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5202 	struct mddev *mddev = r10_bio->mddev;
5203 	struct r10conf *conf = mddev->private;
5204 	int d;
5205 	int slot;
5206 	int repl;
5207 	struct md_rdev *rdev = NULL;
5208 
5209 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5210 	if (repl)
5211 		rdev = conf->mirrors[d].replacement;
5212 	if (!rdev) {
5213 		smp_mb();
5214 		rdev = conf->mirrors[d].rdev;
5215 	}
5216 
5217 	if (bio->bi_status) {
5218 		/* FIXME should record badblock */
5219 		md_error(mddev, rdev);
5220 	}
5221 
5222 	rdev_dec_pending(rdev, mddev);
5223 	end_reshape_request(r10_bio);
5224 }
5225 
5226 static void end_reshape_request(struct r10bio *r10_bio)
5227 {
5228 	if (!atomic_dec_and_test(&r10_bio->remaining))
5229 		return;
5230 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5231 	bio_put(r10_bio->master_bio);
5232 	put_buf(r10_bio);
5233 }
5234 
5235 static void raid10_finish_reshape(struct mddev *mddev)
5236 {
5237 	struct r10conf *conf = mddev->private;
5238 
5239 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5240 		return;
5241 
5242 	if (mddev->delta_disks > 0) {
5243 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5244 			mddev->recovery_cp = mddev->resync_max_sectors;
5245 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5246 		}
5247 		mddev->resync_max_sectors = mddev->array_sectors;
5248 	} else {
5249 		int d;
5250 		rcu_read_lock();
5251 		for (d = conf->geo.raid_disks ;
5252 		     d < conf->geo.raid_disks - mddev->delta_disks;
5253 		     d++) {
5254 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5255 			if (rdev)
5256 				clear_bit(In_sync, &rdev->flags);
5257 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5258 			if (rdev)
5259 				clear_bit(In_sync, &rdev->flags);
5260 		}
5261 		rcu_read_unlock();
5262 	}
5263 	mddev->layout = mddev->new_layout;
5264 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5265 	mddev->reshape_position = MaxSector;
5266 	mddev->delta_disks = 0;
5267 	mddev->reshape_backwards = 0;
5268 }
5269 
5270 static struct md_personality raid10_personality =
5271 {
5272 	.name		= "raid10",
5273 	.level		= 10,
5274 	.owner		= THIS_MODULE,
5275 	.make_request	= raid10_make_request,
5276 	.run		= raid10_run,
5277 	.free		= raid10_free,
5278 	.status		= raid10_status,
5279 	.error_handler	= raid10_error,
5280 	.hot_add_disk	= raid10_add_disk,
5281 	.hot_remove_disk= raid10_remove_disk,
5282 	.spare_active	= raid10_spare_active,
5283 	.sync_request	= raid10_sync_request,
5284 	.quiesce	= raid10_quiesce,
5285 	.size		= raid10_size,
5286 	.resize		= raid10_resize,
5287 	.takeover	= raid10_takeover,
5288 	.check_reshape	= raid10_check_reshape,
5289 	.start_reshape	= raid10_start_reshape,
5290 	.finish_reshape	= raid10_finish_reshape,
5291 	.update_reshape_pos = raid10_update_reshape_pos,
5292 };
5293 
5294 static int __init raid_init(void)
5295 {
5296 	return register_md_personality(&raid10_personality);
5297 }
5298 
5299 static void raid_exit(void)
5300 {
5301 	unregister_md_personality(&raid10_personality);
5302 }
5303 
5304 module_init(raid_init);
5305 module_exit(raid_exit);
5306 MODULE_LICENSE("GPL");
5307 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5308 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5309 MODULE_ALIAS("md-raid10");
5310 MODULE_ALIAS("md-level-10");
5311