xref: /openbmc/linux/drivers/md/raid10.c (revision 161f4089)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct r10bio *r10_bio = bio->bi_private;
446 	int dev;
447 	int dec_rdev = 1;
448 	struct r10conf *conf = r10_bio->mddev->private;
449 	int slot, repl;
450 	struct md_rdev *rdev = NULL;
451 
452 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 
454 	if (repl)
455 		rdev = conf->mirrors[dev].replacement;
456 	if (!rdev) {
457 		smp_rmb();
458 		repl = 0;
459 		rdev = conf->mirrors[dev].rdev;
460 	}
461 	/*
462 	 * this branch is our 'one mirror IO has finished' event handler:
463 	 */
464 	if (!uptodate) {
465 		if (repl)
466 			/* Never record new bad blocks to replacement,
467 			 * just fail it.
468 			 */
469 			md_error(rdev->mddev, rdev);
470 		else {
471 			set_bit(WriteErrorSeen,	&rdev->flags);
472 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 				set_bit(MD_RECOVERY_NEEDED,
474 					&rdev->mddev->recovery);
475 			set_bit(R10BIO_WriteError, &r10_bio->state);
476 			dec_rdev = 0;
477 		}
478 	} else {
479 		/*
480 		 * Set R10BIO_Uptodate in our master bio, so that
481 		 * we will return a good error code for to the higher
482 		 * levels even if IO on some other mirrored buffer fails.
483 		 *
484 		 * The 'master' represents the composite IO operation to
485 		 * user-side. So if something waits for IO, then it will
486 		 * wait for the 'master' bio.
487 		 */
488 		sector_t first_bad;
489 		int bad_sectors;
490 
491 		/*
492 		 * Do not set R10BIO_Uptodate if the current device is
493 		 * rebuilding or Faulty. This is because we cannot use
494 		 * such device for properly reading the data back (we could
495 		 * potentially use it, if the current write would have felt
496 		 * before rdev->recovery_offset, but for simplicity we don't
497 		 * check this here.
498 		 */
499 		if (test_bit(In_sync, &rdev->flags) &&
500 		    !test_bit(Faulty, &rdev->flags))
501 			set_bit(R10BIO_Uptodate, &r10_bio->state);
502 
503 		/* Maybe we can clear some bad blocks. */
504 		if (is_badblock(rdev,
505 				r10_bio->devs[slot].addr,
506 				r10_bio->sectors,
507 				&first_bad, &bad_sectors)) {
508 			bio_put(bio);
509 			if (repl)
510 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 			else
512 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 			dec_rdev = 0;
514 			set_bit(R10BIO_MadeGood, &r10_bio->state);
515 		}
516 	}
517 
518 	/*
519 	 *
520 	 * Let's see if all mirrored write operations have finished
521 	 * already.
522 	 */
523 	one_write_done(r10_bio);
524 	if (dec_rdev)
525 		rdev_dec_pending(rdev, conf->mddev);
526 }
527 
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552 
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 	int n,f;
556 	sector_t sector;
557 	sector_t chunk;
558 	sector_t stripe;
559 	int dev;
560 	int slot = 0;
561 	int last_far_set_start, last_far_set_size;
562 
563 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 	last_far_set_start *= geo->far_set_size;
565 
566 	last_far_set_size = geo->far_set_size;
567 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 
569 	/* now calculate first sector/dev */
570 	chunk = r10bio->sector >> geo->chunk_shift;
571 	sector = r10bio->sector & geo->chunk_mask;
572 
573 	chunk *= geo->near_copies;
574 	stripe = chunk;
575 	dev = sector_div(stripe, geo->raid_disks);
576 	if (geo->far_offset)
577 		stripe *= geo->far_copies;
578 
579 	sector += stripe << geo->chunk_shift;
580 
581 	/* and calculate all the others */
582 	for (n = 0; n < geo->near_copies; n++) {
583 		int d = dev;
584 		int set;
585 		sector_t s = sector;
586 		r10bio->devs[slot].devnum = d;
587 		r10bio->devs[slot].addr = s;
588 		slot++;
589 
590 		for (f = 1; f < geo->far_copies; f++) {
591 			set = d / geo->far_set_size;
592 			d += geo->near_copies;
593 
594 			if ((geo->raid_disks % geo->far_set_size) &&
595 			    (d > last_far_set_start)) {
596 				d -= last_far_set_start;
597 				d %= last_far_set_size;
598 				d += last_far_set_start;
599 			} else {
600 				d %= geo->far_set_size;
601 				d += geo->far_set_size * set;
602 			}
603 			s += geo->stride;
604 			r10bio->devs[slot].devnum = d;
605 			r10bio->devs[slot].addr = s;
606 			slot++;
607 		}
608 		dev++;
609 		if (dev >= geo->raid_disks) {
610 			dev = 0;
611 			sector += (geo->chunk_mask + 1);
612 		}
613 	}
614 }
615 
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 	struct geom *geo = &conf->geo;
619 
620 	if (conf->reshape_progress != MaxSector &&
621 	    ((r10bio->sector >= conf->reshape_progress) !=
622 	     conf->mddev->reshape_backwards)) {
623 		set_bit(R10BIO_Previous, &r10bio->state);
624 		geo = &conf->prev;
625 	} else
626 		clear_bit(R10BIO_Previous, &r10bio->state);
627 
628 	__raid10_find_phys(geo, r10bio);
629 }
630 
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 	sector_t offset, chunk, vchunk;
634 	/* Never use conf->prev as this is only called during resync
635 	 * or recovery, so reshape isn't happening
636 	 */
637 	struct geom *geo = &conf->geo;
638 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 	int far_set_size = geo->far_set_size;
640 	int last_far_set_start;
641 
642 	if (geo->raid_disks % geo->far_set_size) {
643 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 		last_far_set_start *= geo->far_set_size;
645 
646 		if (dev >= last_far_set_start) {
647 			far_set_size = geo->far_set_size;
648 			far_set_size += (geo->raid_disks % geo->far_set_size);
649 			far_set_start = last_far_set_start;
650 		}
651 	}
652 
653 	offset = sector & geo->chunk_mask;
654 	if (geo->far_offset) {
655 		int fc;
656 		chunk = sector >> geo->chunk_shift;
657 		fc = sector_div(chunk, geo->far_copies);
658 		dev -= fc * geo->near_copies;
659 		if (dev < far_set_start)
660 			dev += far_set_size;
661 	} else {
662 		while (sector >= geo->stride) {
663 			sector -= geo->stride;
664 			if (dev < (geo->near_copies + far_set_start))
665 				dev += far_set_size - geo->near_copies;
666 			else
667 				dev -= geo->near_copies;
668 		}
669 		chunk = sector >> geo->chunk_shift;
670 	}
671 	vchunk = chunk * geo->raid_disks + dev;
672 	sector_div(vchunk, geo->near_copies);
673 	return (vchunk << geo->chunk_shift) + offset;
674 }
675 
676 /**
677  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *	@q: request queue
679  *	@bvm: properties of new bio
680  *	@biovec: the request that could be merged to it.
681  *
682  *	Return amount of bytes we can accept at this offset
683  *	This requires checking for end-of-chunk if near_copies != raid_disks,
684  *	and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 				 struct bvec_merge_data *bvm,
688 				 struct bio_vec *biovec)
689 {
690 	struct mddev *mddev = q->queuedata;
691 	struct r10conf *conf = mddev->private;
692 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 	int max;
694 	unsigned int chunk_sectors;
695 	unsigned int bio_sectors = bvm->bi_size >> 9;
696 	struct geom *geo = &conf->geo;
697 
698 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 	if (conf->reshape_progress != MaxSector &&
700 	    ((sector >= conf->reshape_progress) !=
701 	     conf->mddev->reshape_backwards))
702 		geo = &conf->prev;
703 
704 	if (geo->near_copies < geo->raid_disks) {
705 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 					+ bio_sectors)) << 9;
707 		if (max < 0)
708 			/* bio_add cannot handle a negative return */
709 			max = 0;
710 		if (max <= biovec->bv_len && bio_sectors == 0)
711 			return biovec->bv_len;
712 	} else
713 		max = biovec->bv_len;
714 
715 	if (mddev->merge_check_needed) {
716 		struct {
717 			struct r10bio r10_bio;
718 			struct r10dev devs[conf->copies];
719 		} on_stack;
720 		struct r10bio *r10_bio = &on_stack.r10_bio;
721 		int s;
722 		if (conf->reshape_progress != MaxSector) {
723 			/* Cannot give any guidance during reshape */
724 			if (max <= biovec->bv_len && bio_sectors == 0)
725 				return biovec->bv_len;
726 			return 0;
727 		}
728 		r10_bio->sector = sector;
729 		raid10_find_phys(conf, r10_bio);
730 		rcu_read_lock();
731 		for (s = 0; s < conf->copies; s++) {
732 			int disk = r10_bio->devs[s].devnum;
733 			struct md_rdev *rdev = rcu_dereference(
734 				conf->mirrors[disk].rdev);
735 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 				struct request_queue *q =
737 					bdev_get_queue(rdev->bdev);
738 				if (q->merge_bvec_fn) {
739 					bvm->bi_sector = r10_bio->devs[s].addr
740 						+ rdev->data_offset;
741 					bvm->bi_bdev = rdev->bdev;
742 					max = min(max, q->merge_bvec_fn(
743 							  q, bvm, biovec));
744 				}
745 			}
746 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 				struct request_queue *q =
749 					bdev_get_queue(rdev->bdev);
750 				if (q->merge_bvec_fn) {
751 					bvm->bi_sector = r10_bio->devs[s].addr
752 						+ rdev->data_offset;
753 					bvm->bi_bdev = rdev->bdev;
754 					max = min(max, q->merge_bvec_fn(
755 							  q, bvm, biovec));
756 				}
757 			}
758 		}
759 		rcu_read_unlock();
760 	}
761 	return max;
762 }
763 
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778 
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 				    struct r10bio *r10_bio,
785 				    int *max_sectors)
786 {
787 	const sector_t this_sector = r10_bio->sector;
788 	int disk, slot;
789 	int sectors = r10_bio->sectors;
790 	int best_good_sectors;
791 	sector_t new_distance, best_dist;
792 	struct md_rdev *best_rdev, *rdev = NULL;
793 	int do_balance;
794 	int best_slot;
795 	struct geom *geo = &conf->geo;
796 
797 	raid10_find_phys(conf, r10_bio);
798 	rcu_read_lock();
799 retry:
800 	sectors = r10_bio->sectors;
801 	best_slot = -1;
802 	best_rdev = NULL;
803 	best_dist = MaxSector;
804 	best_good_sectors = 0;
805 	do_balance = 1;
806 	/*
807 	 * Check if we can balance. We can balance on the whole
808 	 * device if no resync is going on (recovery is ok), or below
809 	 * the resync window. We take the first readable disk when
810 	 * above the resync window.
811 	 */
812 	if (conf->mddev->recovery_cp < MaxSector
813 	    && (this_sector + sectors >= conf->next_resync))
814 		do_balance = 0;
815 
816 	for (slot = 0; slot < conf->copies ; slot++) {
817 		sector_t first_bad;
818 		int bad_sectors;
819 		sector_t dev_sector;
820 
821 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 			continue;
823 		disk = r10_bio->devs[slot].devnum;
824 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 		    test_bit(Unmerged, &rdev->flags) ||
827 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 		if (rdev == NULL ||
830 		    test_bit(Faulty, &rdev->flags) ||
831 		    test_bit(Unmerged, &rdev->flags))
832 			continue;
833 		if (!test_bit(In_sync, &rdev->flags) &&
834 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 			continue;
836 
837 		dev_sector = r10_bio->devs[slot].addr;
838 		if (is_badblock(rdev, dev_sector, sectors,
839 				&first_bad, &bad_sectors)) {
840 			if (best_dist < MaxSector)
841 				/* Already have a better slot */
842 				continue;
843 			if (first_bad <= dev_sector) {
844 				/* Cannot read here.  If this is the
845 				 * 'primary' device, then we must not read
846 				 * beyond 'bad_sectors' from another device.
847 				 */
848 				bad_sectors -= (dev_sector - first_bad);
849 				if (!do_balance && sectors > bad_sectors)
850 					sectors = bad_sectors;
851 				if (best_good_sectors > sectors)
852 					best_good_sectors = sectors;
853 			} else {
854 				sector_t good_sectors =
855 					first_bad - dev_sector;
856 				if (good_sectors > best_good_sectors) {
857 					best_good_sectors = good_sectors;
858 					best_slot = slot;
859 					best_rdev = rdev;
860 				}
861 				if (!do_balance)
862 					/* Must read from here */
863 					break;
864 			}
865 			continue;
866 		} else
867 			best_good_sectors = sectors;
868 
869 		if (!do_balance)
870 			break;
871 
872 		/* This optimisation is debatable, and completely destroys
873 		 * sequential read speed for 'far copies' arrays.  So only
874 		 * keep it for 'near' arrays, and review those later.
875 		 */
876 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 			break;
878 
879 		/* for far > 1 always use the lowest address */
880 		if (geo->far_copies > 1)
881 			new_distance = r10_bio->devs[slot].addr;
882 		else
883 			new_distance = abs(r10_bio->devs[slot].addr -
884 					   conf->mirrors[disk].head_position);
885 		if (new_distance < best_dist) {
886 			best_dist = new_distance;
887 			best_slot = slot;
888 			best_rdev = rdev;
889 		}
890 	}
891 	if (slot >= conf->copies) {
892 		slot = best_slot;
893 		rdev = best_rdev;
894 	}
895 
896 	if (slot >= 0) {
897 		atomic_inc(&rdev->nr_pending);
898 		if (test_bit(Faulty, &rdev->flags)) {
899 			/* Cannot risk returning a device that failed
900 			 * before we inc'ed nr_pending
901 			 */
902 			rdev_dec_pending(rdev, conf->mddev);
903 			goto retry;
904 		}
905 		r10_bio->read_slot = slot;
906 	} else
907 		rdev = NULL;
908 	rcu_read_unlock();
909 	*max_sectors = best_good_sectors;
910 
911 	return rdev;
912 }
913 
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 	struct r10conf *conf = mddev->private;
917 	int i, ret = 0;
918 
919 	if ((bits & (1 << BDI_async_congested)) &&
920 	    conf->pending_count >= max_queued_requests)
921 		return 1;
922 
923 	rcu_read_lock();
924 	for (i = 0;
925 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 		     && ret == 0;
927 	     i++) {
928 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 			struct request_queue *q = bdev_get_queue(rdev->bdev);
931 
932 			ret |= bdi_congested(&q->backing_dev_info, bits);
933 		}
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939 
940 static int raid10_congested(void *data, int bits)
941 {
942 	struct mddev *mddev = data;
943 
944 	return mddev_congested(mddev, bits) ||
945 		md_raid10_congested(mddev, bits);
946 }
947 
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 	/* Any writes that have been queued but are awaiting
951 	 * bitmap updates get flushed here.
952 	 */
953 	spin_lock_irq(&conf->device_lock);
954 
955 	if (conf->pending_bio_list.head) {
956 		struct bio *bio;
957 		bio = bio_list_get(&conf->pending_bio_list);
958 		conf->pending_count = 0;
959 		spin_unlock_irq(&conf->device_lock);
960 		/* flush any pending bitmap writes to disk
961 		 * before proceeding w/ I/O */
962 		bitmap_unplug(conf->mddev->bitmap);
963 		wake_up(&conf->wait_barrier);
964 
965 		while (bio) { /* submit pending writes */
966 			struct bio *next = bio->bi_next;
967 			bio->bi_next = NULL;
968 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 				/* Just ignore it */
971 				bio_endio(bio, 0);
972 			else
973 				generic_make_request(bio);
974 			bio = next;
975 		}
976 	} else
977 		spin_unlock_irq(&conf->device_lock);
978 }
979 
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001 
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 	BUG_ON(force && !conf->barrier);
1005 	spin_lock_irq(&conf->resync_lock);
1006 
1007 	/* Wait until no block IO is waiting (unless 'force') */
1008 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 			    conf->resync_lock);
1010 
1011 	/* block any new IO from starting */
1012 	conf->barrier++;
1013 
1014 	/* Now wait for all pending IO to complete */
1015 	wait_event_lock_irq(conf->wait_barrier,
1016 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 			    conf->resync_lock);
1018 
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 	unsigned long flags;
1025 	spin_lock_irqsave(&conf->resync_lock, flags);
1026 	conf->barrier--;
1027 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 	spin_lock_irq(&conf->resync_lock);
1034 	if (conf->barrier) {
1035 		conf->nr_waiting++;
1036 		/* Wait for the barrier to drop.
1037 		 * However if there are already pending
1038 		 * requests (preventing the barrier from
1039 		 * rising completely), and the
1040 		 * pre-process bio queue isn't empty,
1041 		 * then don't wait, as we need to empty
1042 		 * that queue to get the nr_pending
1043 		 * count down.
1044 		 */
1045 		wait_event_lock_irq(conf->wait_barrier,
1046 				    !conf->barrier ||
1047 				    (conf->nr_pending &&
1048 				     current->bio_list &&
1049 				     !bio_list_empty(current->bio_list)),
1050 				    conf->resync_lock);
1051 		conf->nr_waiting--;
1052 	}
1053 	conf->nr_pending++;
1054 	spin_unlock_irq(&conf->resync_lock);
1055 }
1056 
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	unsigned long flags;
1060 	spin_lock_irqsave(&conf->resync_lock, flags);
1061 	conf->nr_pending--;
1062 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->barrier++;
1082 	conf->nr_waiting++;
1083 	wait_event_lock_irq_cmd(conf->wait_barrier,
1084 				conf->nr_pending == conf->nr_queued+extra,
1085 				conf->resync_lock,
1086 				flush_pending_writes(conf));
1087 
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 	/* reverse the effect of the freeze */
1094 	spin_lock_irq(&conf->resync_lock);
1095 	conf->barrier--;
1096 	conf->nr_waiting--;
1097 	wake_up(&conf->wait_barrier);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 }
1100 
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 				   struct md_rdev *rdev)
1103 {
1104 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 	    test_bit(R10BIO_Previous, &r10_bio->state))
1106 		return rdev->data_offset;
1107 	else
1108 		return rdev->new_data_offset;
1109 }
1110 
1111 struct raid10_plug_cb {
1112 	struct blk_plug_cb	cb;
1113 	struct bio_list		pending;
1114 	int			pending_cnt;
1115 };
1116 
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 						   cb);
1121 	struct mddev *mddev = plug->cb.data;
1122 	struct r10conf *conf = mddev->private;
1123 	struct bio *bio;
1124 
1125 	if (from_schedule || current->bio_list) {
1126 		spin_lock_irq(&conf->device_lock);
1127 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 		conf->pending_count += plug->pending_cnt;
1129 		spin_unlock_irq(&conf->device_lock);
1130 		wake_up(&conf->wait_barrier);
1131 		md_wakeup_thread(mddev->thread);
1132 		kfree(plug);
1133 		return;
1134 	}
1135 
1136 	/* we aren't scheduling, so we can do the write-out directly. */
1137 	bio = bio_list_get(&plug->pending);
1138 	bitmap_unplug(mddev->bitmap);
1139 	wake_up(&conf->wait_barrier);
1140 
1141 	while (bio) { /* submit pending writes */
1142 		struct bio *next = bio->bi_next;
1143 		bio->bi_next = NULL;
1144 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio, 0);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157 	struct r10conf *conf = mddev->private;
1158 	struct r10bio *r10_bio;
1159 	struct bio *read_bio;
1160 	int i;
1161 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 	int chunk_sects = chunk_mask + 1;
1163 	const int rw = bio_data_dir(bio);
1164 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 	const unsigned long do_discard = (bio->bi_rw
1167 					  & (REQ_DISCARD | REQ_SECURE));
1168 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 	unsigned long flags;
1170 	struct md_rdev *blocked_rdev;
1171 	struct blk_plug_cb *cb;
1172 	struct raid10_plug_cb *plug = NULL;
1173 	int sectors_handled;
1174 	int max_sectors;
1175 	int sectors;
1176 
1177 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 		md_flush_request(mddev, bio);
1179 		return;
1180 	}
1181 
1182 	/* If this request crosses a chunk boundary, we need to
1183 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1184 	 */
1185 	if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186 		     > chunk_sects
1187 		     && (conf->geo.near_copies < conf->geo.raid_disks
1188 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 		struct bio_pair *bp;
1190 		/* Sanity check -- queue functions should prevent this happening */
1191 		if (bio_segments(bio) > 1)
1192 			goto bad_map;
1193 		/* This is a one page bio that upper layers
1194 		 * refuse to split for us, so we need to split it.
1195 		 */
1196 		bp = bio_split(bio,
1197 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1198 
1199 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1200 		 * If the first succeeds but the second blocks due to the resync
1201 		 * thread raising the barrier, we will deadlock because the
1202 		 * IO to the underlying device will be queued in generic_make_request
1203 		 * and will never complete, so will never reduce nr_pending.
1204 		 * So increment nr_waiting here so no new raise_barriers will
1205 		 * succeed, and so the second wait_barrier cannot block.
1206 		 */
1207 		spin_lock_irq(&conf->resync_lock);
1208 		conf->nr_waiting++;
1209 		spin_unlock_irq(&conf->resync_lock);
1210 
1211 		make_request(mddev, &bp->bio1);
1212 		make_request(mddev, &bp->bio2);
1213 
1214 		spin_lock_irq(&conf->resync_lock);
1215 		conf->nr_waiting--;
1216 		wake_up(&conf->wait_barrier);
1217 		spin_unlock_irq(&conf->resync_lock);
1218 
1219 		bio_pair_release(bp);
1220 		return;
1221 	bad_map:
1222 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 		       (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1225 
1226 		bio_io_error(bio);
1227 		return;
1228 	}
1229 
1230 	md_write_start(mddev, bio);
1231 
1232 	/*
1233 	 * Register the new request and wait if the reconstruction
1234 	 * thread has put up a bar for new requests.
1235 	 * Continue immediately if no resync is active currently.
1236 	 */
1237 	wait_barrier(conf);
1238 
1239 	sectors = bio_sectors(bio);
1240 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 	    bio->bi_sector < conf->reshape_progress &&
1242 	    bio->bi_sector + sectors > conf->reshape_progress) {
1243 		/* IO spans the reshape position.  Need to wait for
1244 		 * reshape to pass
1245 		 */
1246 		allow_barrier(conf);
1247 		wait_event(conf->wait_barrier,
1248 			   conf->reshape_progress <= bio->bi_sector ||
1249 			   conf->reshape_progress >= bio->bi_sector + sectors);
1250 		wait_barrier(conf);
1251 	}
1252 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 	    bio_data_dir(bio) == WRITE &&
1254 	    (mddev->reshape_backwards
1255 	     ? (bio->bi_sector < conf->reshape_safe &&
1256 		bio->bi_sector + sectors > conf->reshape_progress)
1257 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 		bio->bi_sector < conf->reshape_progress))) {
1259 		/* Need to update reshape_position in metadata */
1260 		mddev->reshape_position = conf->reshape_progress;
1261 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 		md_wakeup_thread(mddev->thread);
1264 		wait_event(mddev->sb_wait,
1265 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266 
1267 		conf->reshape_safe = mddev->reshape_position;
1268 	}
1269 
1270 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271 
1272 	r10_bio->master_bio = bio;
1273 	r10_bio->sectors = sectors;
1274 
1275 	r10_bio->mddev = mddev;
1276 	r10_bio->sector = bio->bi_sector;
1277 	r10_bio->state = 0;
1278 
1279 	/* We might need to issue multiple reads to different
1280 	 * devices if there are bad blocks around, so we keep
1281 	 * track of the number of reads in bio->bi_phys_segments.
1282 	 * If this is 0, there is only one r10_bio and no locking
1283 	 * will be needed when the request completes.  If it is
1284 	 * non-zero, then it is the number of not-completed requests.
1285 	 */
1286 	bio->bi_phys_segments = 0;
1287 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288 
1289 	if (rw == READ) {
1290 		/*
1291 		 * read balancing logic:
1292 		 */
1293 		struct md_rdev *rdev;
1294 		int slot;
1295 
1296 read_again:
1297 		rdev = read_balance(conf, r10_bio, &max_sectors);
1298 		if (!rdev) {
1299 			raid_end_bio_io(r10_bio);
1300 			return;
1301 		}
1302 		slot = r10_bio->read_slot;
1303 
1304 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 			    max_sectors);
1307 
1308 		r10_bio->devs[slot].bio = read_bio;
1309 		r10_bio->devs[slot].rdev = rdev;
1310 
1311 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1312 			choose_data_offset(r10_bio, rdev);
1313 		read_bio->bi_bdev = rdev->bdev;
1314 		read_bio->bi_end_io = raid10_end_read_request;
1315 		read_bio->bi_rw = READ | do_sync;
1316 		read_bio->bi_private = r10_bio;
1317 
1318 		if (max_sectors < r10_bio->sectors) {
1319 			/* Could not read all from this device, so we will
1320 			 * need another r10_bio.
1321 			 */
1322 			sectors_handled = (r10_bio->sectors + max_sectors
1323 					   - bio->bi_sector);
1324 			r10_bio->sectors = max_sectors;
1325 			spin_lock_irq(&conf->device_lock);
1326 			if (bio->bi_phys_segments == 0)
1327 				bio->bi_phys_segments = 2;
1328 			else
1329 				bio->bi_phys_segments++;
1330 			spin_unlock(&conf->device_lock);
1331 			/* Cannot call generic_make_request directly
1332 			 * as that will be queued in __generic_make_request
1333 			 * and subsequent mempool_alloc might block
1334 			 * waiting for it.  so hand bio over to raid10d.
1335 			 */
1336 			reschedule_retry(r10_bio);
1337 
1338 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339 
1340 			r10_bio->master_bio = bio;
1341 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342 			r10_bio->state = 0;
1343 			r10_bio->mddev = mddev;
1344 			r10_bio->sector = bio->bi_sector + sectors_handled;
1345 			goto read_again;
1346 		} else
1347 			generic_make_request(read_bio);
1348 		return;
1349 	}
1350 
1351 	/*
1352 	 * WRITE:
1353 	 */
1354 	if (conf->pending_count >= max_queued_requests) {
1355 		md_wakeup_thread(mddev->thread);
1356 		wait_event(conf->wait_barrier,
1357 			   conf->pending_count < max_queued_requests);
1358 	}
1359 	/* first select target devices under rcu_lock and
1360 	 * inc refcount on their rdev.  Record them by setting
1361 	 * bios[x] to bio
1362 	 * If there are known/acknowledged bad blocks on any device
1363 	 * on which we have seen a write error, we want to avoid
1364 	 * writing to those blocks.  This potentially requires several
1365 	 * writes to write around the bad blocks.  Each set of writes
1366 	 * gets its own r10_bio with a set of bios attached.  The number
1367 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 	 * the read case.
1369 	 */
1370 
1371 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372 	raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374 	blocked_rdev = NULL;
1375 	rcu_read_lock();
1376 	max_sectors = r10_bio->sectors;
1377 
1378 	for (i = 0;  i < conf->copies; i++) {
1379 		int d = r10_bio->devs[i].devnum;
1380 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381 		struct md_rdev *rrdev = rcu_dereference(
1382 			conf->mirrors[d].replacement);
1383 		if (rdev == rrdev)
1384 			rrdev = NULL;
1385 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 			atomic_inc(&rdev->nr_pending);
1387 			blocked_rdev = rdev;
1388 			break;
1389 		}
1390 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 			atomic_inc(&rrdev->nr_pending);
1392 			blocked_rdev = rrdev;
1393 			break;
1394 		}
1395 		if (rdev && (test_bit(Faulty, &rdev->flags)
1396 			     || test_bit(Unmerged, &rdev->flags)))
1397 			rdev = NULL;
1398 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 			      || test_bit(Unmerged, &rrdev->flags)))
1400 			rrdev = NULL;
1401 
1402 		r10_bio->devs[i].bio = NULL;
1403 		r10_bio->devs[i].repl_bio = NULL;
1404 
1405 		if (!rdev && !rrdev) {
1406 			set_bit(R10BIO_Degraded, &r10_bio->state);
1407 			continue;
1408 		}
1409 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410 			sector_t first_bad;
1411 			sector_t dev_sector = r10_bio->devs[i].addr;
1412 			int bad_sectors;
1413 			int is_bad;
1414 
1415 			is_bad = is_badblock(rdev, dev_sector,
1416 					     max_sectors,
1417 					     &first_bad, &bad_sectors);
1418 			if (is_bad < 0) {
1419 				/* Mustn't write here until the bad block
1420 				 * is acknowledged
1421 				 */
1422 				atomic_inc(&rdev->nr_pending);
1423 				set_bit(BlockedBadBlocks, &rdev->flags);
1424 				blocked_rdev = rdev;
1425 				break;
1426 			}
1427 			if (is_bad && first_bad <= dev_sector) {
1428 				/* Cannot write here at all */
1429 				bad_sectors -= (dev_sector - first_bad);
1430 				if (bad_sectors < max_sectors)
1431 					/* Mustn't write more than bad_sectors
1432 					 * to other devices yet
1433 					 */
1434 					max_sectors = bad_sectors;
1435 				/* We don't set R10BIO_Degraded as that
1436 				 * only applies if the disk is missing,
1437 				 * so it might be re-added, and we want to
1438 				 * know to recover this chunk.
1439 				 * In this case the device is here, and the
1440 				 * fact that this chunk is not in-sync is
1441 				 * recorded in the bad block log.
1442 				 */
1443 				continue;
1444 			}
1445 			if (is_bad) {
1446 				int good_sectors = first_bad - dev_sector;
1447 				if (good_sectors < max_sectors)
1448 					max_sectors = good_sectors;
1449 			}
1450 		}
1451 		if (rdev) {
1452 			r10_bio->devs[i].bio = bio;
1453 			atomic_inc(&rdev->nr_pending);
1454 		}
1455 		if (rrdev) {
1456 			r10_bio->devs[i].repl_bio = bio;
1457 			atomic_inc(&rrdev->nr_pending);
1458 		}
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (unlikely(blocked_rdev)) {
1463 		/* Have to wait for this device to get unblocked, then retry */
1464 		int j;
1465 		int d;
1466 
1467 		for (j = 0; j < i; j++) {
1468 			if (r10_bio->devs[j].bio) {
1469 				d = r10_bio->devs[j].devnum;
1470 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 			}
1472 			if (r10_bio->devs[j].repl_bio) {
1473 				struct md_rdev *rdev;
1474 				d = r10_bio->devs[j].devnum;
1475 				rdev = conf->mirrors[d].replacement;
1476 				if (!rdev) {
1477 					/* Race with remove_disk */
1478 					smp_mb();
1479 					rdev = conf->mirrors[d].rdev;
1480 				}
1481 				rdev_dec_pending(rdev, mddev);
1482 			}
1483 		}
1484 		allow_barrier(conf);
1485 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 		wait_barrier(conf);
1487 		goto retry_write;
1488 	}
1489 
1490 	if (max_sectors < r10_bio->sectors) {
1491 		/* We are splitting this into multiple parts, so
1492 		 * we need to prepare for allocating another r10_bio.
1493 		 */
1494 		r10_bio->sectors = max_sectors;
1495 		spin_lock_irq(&conf->device_lock);
1496 		if (bio->bi_phys_segments == 0)
1497 			bio->bi_phys_segments = 2;
1498 		else
1499 			bio->bi_phys_segments++;
1500 		spin_unlock_irq(&conf->device_lock);
1501 	}
1502 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503 
1504 	atomic_set(&r10_bio->remaining, 1);
1505 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506 
1507 	for (i = 0; i < conf->copies; i++) {
1508 		struct bio *mbio;
1509 		int d = r10_bio->devs[i].devnum;
1510 		if (r10_bio->devs[i].bio) {
1511 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 				    max_sectors);
1515 			r10_bio->devs[i].bio = mbio;
1516 
1517 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1518 					   choose_data_offset(r10_bio,
1519 							      rdev));
1520 			mbio->bi_bdev = rdev->bdev;
1521 			mbio->bi_end_io	= raid10_end_write_request;
1522 			mbio->bi_rw =
1523 				WRITE | do_sync | do_fua | do_discard | do_same;
1524 			mbio->bi_private = r10_bio;
1525 
1526 			atomic_inc(&r10_bio->remaining);
1527 
1528 			cb = blk_check_plugged(raid10_unplug, mddev,
1529 					       sizeof(*plug));
1530 			if (cb)
1531 				plug = container_of(cb, struct raid10_plug_cb,
1532 						    cb);
1533 			else
1534 				plug = NULL;
1535 			spin_lock_irqsave(&conf->device_lock, flags);
1536 			if (plug) {
1537 				bio_list_add(&plug->pending, mbio);
1538 				plug->pending_cnt++;
1539 			} else {
1540 				bio_list_add(&conf->pending_bio_list, mbio);
1541 				conf->pending_count++;
1542 			}
1543 			spin_unlock_irqrestore(&conf->device_lock, flags);
1544 			if (!plug)
1545 				md_wakeup_thread(mddev->thread);
1546 		}
1547 
1548 		if (r10_bio->devs[i].repl_bio) {
1549 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 			if (rdev == NULL) {
1551 				/* Replacement just got moved to main 'rdev' */
1552 				smp_mb();
1553 				rdev = conf->mirrors[d].rdev;
1554 			}
1555 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 				    max_sectors);
1558 			r10_bio->devs[i].repl_bio = mbio;
1559 
1560 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1561 					   choose_data_offset(
1562 						   r10_bio, rdev));
1563 			mbio->bi_bdev = rdev->bdev;
1564 			mbio->bi_end_io	= raid10_end_write_request;
1565 			mbio->bi_rw =
1566 				WRITE | do_sync | do_fua | do_discard | do_same;
1567 			mbio->bi_private = r10_bio;
1568 
1569 			atomic_inc(&r10_bio->remaining);
1570 			spin_lock_irqsave(&conf->device_lock, flags);
1571 			bio_list_add(&conf->pending_bio_list, mbio);
1572 			conf->pending_count++;
1573 			spin_unlock_irqrestore(&conf->device_lock, flags);
1574 			if (!mddev_check_plugged(mddev))
1575 				md_wakeup_thread(mddev->thread);
1576 		}
1577 	}
1578 
1579 	/* Don't remove the bias on 'remaining' (one_write_done) until
1580 	 * after checking if we need to go around again.
1581 	 */
1582 
1583 	if (sectors_handled < bio_sectors(bio)) {
1584 		one_write_done(r10_bio);
1585 		/* We need another r10_bio.  It has already been counted
1586 		 * in bio->bi_phys_segments.
1587 		 */
1588 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589 
1590 		r10_bio->master_bio = bio;
1591 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1592 
1593 		r10_bio->mddev = mddev;
1594 		r10_bio->sector = bio->bi_sector + sectors_handled;
1595 		r10_bio->state = 0;
1596 		goto retry_write;
1597 	}
1598 	one_write_done(r10_bio);
1599 
1600 	/* In case raid10d snuck in to freeze_array */
1601 	wake_up(&conf->wait_barrier);
1602 }
1603 
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606 	struct r10conf *conf = mddev->private;
1607 	int i;
1608 
1609 	if (conf->geo.near_copies < conf->geo.raid_disks)
1610 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611 	if (conf->geo.near_copies > 1)
1612 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 	if (conf->geo.far_copies > 1) {
1614 		if (conf->geo.far_offset)
1615 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616 		else
1617 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1618 	}
1619 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 					conf->geo.raid_disks - mddev->degraded);
1621 	for (i = 0; i < conf->geo.raid_disks; i++)
1622 		seq_printf(seq, "%s",
1623 			      conf->mirrors[i].rdev &&
1624 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625 	seq_printf(seq, "]");
1626 }
1627 
1628 /* check if there are enough drives for
1629  * every block to appear on atleast one.
1630  * Don't consider the device numbered 'ignore'
1631  * as we might be about to remove it.
1632  */
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1634 {
1635 	int first = 0;
1636 	int has_enough = 0;
1637 	int disks, ncopies;
1638 	if (previous) {
1639 		disks = conf->prev.raid_disks;
1640 		ncopies = conf->prev.near_copies;
1641 	} else {
1642 		disks = conf->geo.raid_disks;
1643 		ncopies = conf->geo.near_copies;
1644 	}
1645 
1646 	rcu_read_lock();
1647 	do {
1648 		int n = conf->copies;
1649 		int cnt = 0;
1650 		int this = first;
1651 		while (n--) {
1652 			struct md_rdev *rdev;
1653 			if (this != ignore &&
1654 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 			    test_bit(In_sync, &rdev->flags))
1656 				cnt++;
1657 			this = (this+1) % disks;
1658 		}
1659 		if (cnt == 0)
1660 			goto out;
1661 		first = (first + ncopies) % disks;
1662 	} while (first != 0);
1663 	has_enough = 1;
1664 out:
1665 	rcu_read_unlock();
1666 	return has_enough;
1667 }
1668 
1669 static int enough(struct r10conf *conf, int ignore)
1670 {
1671 	/* when calling 'enough', both 'prev' and 'geo' must
1672 	 * be stable.
1673 	 * This is ensured if ->reconfig_mutex or ->device_lock
1674 	 * is held.
1675 	 */
1676 	return _enough(conf, 0, ignore) &&
1677 		_enough(conf, 1, ignore);
1678 }
1679 
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	char b[BDEVNAME_SIZE];
1683 	struct r10conf *conf = mddev->private;
1684 	unsigned long flags;
1685 
1686 	/*
1687 	 * If it is not operational, then we have already marked it as dead
1688 	 * else if it is the last working disks, ignore the error, let the
1689 	 * next level up know.
1690 	 * else mark the drive as failed
1691 	 */
1692 	spin_lock_irqsave(&conf->device_lock, flags);
1693 	if (test_bit(In_sync, &rdev->flags)
1694 	    && !enough(conf, rdev->raid_disk)) {
1695 		/*
1696 		 * Don't fail the drive, just return an IO error.
1697 		 */
1698 		spin_unlock_irqrestore(&conf->device_lock, flags);
1699 		return;
1700 	}
1701 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702 		mddev->degraded++;
1703 			/*
1704 		 * if recovery is running, make sure it aborts.
1705 		 */
1706 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1707 	}
1708 	set_bit(Blocked, &rdev->flags);
1709 	set_bit(Faulty, &rdev->flags);
1710 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 	spin_unlock_irqrestore(&conf->device_lock, flags);
1712 	printk(KERN_ALERT
1713 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1715 	       mdname(mddev), bdevname(rdev->bdev, b),
1716 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1717 }
1718 
1719 static void print_conf(struct r10conf *conf)
1720 {
1721 	int i;
1722 	struct raid10_info *tmp;
1723 
1724 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1725 	if (!conf) {
1726 		printk(KERN_DEBUG "(!conf)\n");
1727 		return;
1728 	}
1729 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 		conf->geo.raid_disks);
1731 
1732 	for (i = 0; i < conf->geo.raid_disks; i++) {
1733 		char b[BDEVNAME_SIZE];
1734 		tmp = conf->mirrors + i;
1735 		if (tmp->rdev)
1736 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737 				i, !test_bit(In_sync, &tmp->rdev->flags),
1738 			        !test_bit(Faulty, &tmp->rdev->flags),
1739 				bdevname(tmp->rdev->bdev,b));
1740 	}
1741 }
1742 
1743 static void close_sync(struct r10conf *conf)
1744 {
1745 	wait_barrier(conf);
1746 	allow_barrier(conf);
1747 
1748 	mempool_destroy(conf->r10buf_pool);
1749 	conf->r10buf_pool = NULL;
1750 }
1751 
1752 static int raid10_spare_active(struct mddev *mddev)
1753 {
1754 	int i;
1755 	struct r10conf *conf = mddev->private;
1756 	struct raid10_info *tmp;
1757 	int count = 0;
1758 	unsigned long flags;
1759 
1760 	/*
1761 	 * Find all non-in_sync disks within the RAID10 configuration
1762 	 * and mark them in_sync
1763 	 */
1764 	for (i = 0; i < conf->geo.raid_disks; i++) {
1765 		tmp = conf->mirrors + i;
1766 		if (tmp->replacement
1767 		    && tmp->replacement->recovery_offset == MaxSector
1768 		    && !test_bit(Faulty, &tmp->replacement->flags)
1769 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 			/* Replacement has just become active */
1771 			if (!tmp->rdev
1772 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 				count++;
1774 			if (tmp->rdev) {
1775 				/* Replaced device not technically faulty,
1776 				 * but we need to be sure it gets removed
1777 				 * and never re-added.
1778 				 */
1779 				set_bit(Faulty, &tmp->rdev->flags);
1780 				sysfs_notify_dirent_safe(
1781 					tmp->rdev->sysfs_state);
1782 			}
1783 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 		} else if (tmp->rdev
1785 			   && tmp->rdev->recovery_offset == MaxSector
1786 			   && !test_bit(Faulty, &tmp->rdev->flags)
1787 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1788 			count++;
1789 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1790 		}
1791 	}
1792 	spin_lock_irqsave(&conf->device_lock, flags);
1793 	mddev->degraded -= count;
1794 	spin_unlock_irqrestore(&conf->device_lock, flags);
1795 
1796 	print_conf(conf);
1797 	return count;
1798 }
1799 
1800 
1801 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1802 {
1803 	struct r10conf *conf = mddev->private;
1804 	int err = -EEXIST;
1805 	int mirror;
1806 	int first = 0;
1807 	int last = conf->geo.raid_disks - 1;
1808 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1809 
1810 	if (mddev->recovery_cp < MaxSector)
1811 		/* only hot-add to in-sync arrays, as recovery is
1812 		 * very different from resync
1813 		 */
1814 		return -EBUSY;
1815 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1816 		return -EINVAL;
1817 
1818 	if (rdev->raid_disk >= 0)
1819 		first = last = rdev->raid_disk;
1820 
1821 	if (q->merge_bvec_fn) {
1822 		set_bit(Unmerged, &rdev->flags);
1823 		mddev->merge_check_needed = 1;
1824 	}
1825 
1826 	if (rdev->saved_raid_disk >= first &&
1827 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1828 		mirror = rdev->saved_raid_disk;
1829 	else
1830 		mirror = first;
1831 	for ( ; mirror <= last ; mirror++) {
1832 		struct raid10_info *p = &conf->mirrors[mirror];
1833 		if (p->recovery_disabled == mddev->recovery_disabled)
1834 			continue;
1835 		if (p->rdev) {
1836 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1837 			    p->replacement != NULL)
1838 				continue;
1839 			clear_bit(In_sync, &rdev->flags);
1840 			set_bit(Replacement, &rdev->flags);
1841 			rdev->raid_disk = mirror;
1842 			err = 0;
1843 			if (mddev->gendisk)
1844 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1845 						  rdev->data_offset << 9);
1846 			conf->fullsync = 1;
1847 			rcu_assign_pointer(p->replacement, rdev);
1848 			break;
1849 		}
1850 
1851 		if (mddev->gendisk)
1852 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1853 					  rdev->data_offset << 9);
1854 
1855 		p->head_position = 0;
1856 		p->recovery_disabled = mddev->recovery_disabled - 1;
1857 		rdev->raid_disk = mirror;
1858 		err = 0;
1859 		if (rdev->saved_raid_disk != mirror)
1860 			conf->fullsync = 1;
1861 		rcu_assign_pointer(p->rdev, rdev);
1862 		break;
1863 	}
1864 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1865 		/* Some requests might not have seen this new
1866 		 * merge_bvec_fn.  We must wait for them to complete
1867 		 * before merging the device fully.
1868 		 * First we make sure any code which has tested
1869 		 * our function has submitted the request, then
1870 		 * we wait for all outstanding requests to complete.
1871 		 */
1872 		synchronize_sched();
1873 		freeze_array(conf, 0);
1874 		unfreeze_array(conf);
1875 		clear_bit(Unmerged, &rdev->flags);
1876 	}
1877 	md_integrity_add_rdev(rdev, mddev);
1878 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1879 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1880 
1881 	print_conf(conf);
1882 	return err;
1883 }
1884 
1885 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1886 {
1887 	struct r10conf *conf = mddev->private;
1888 	int err = 0;
1889 	int number = rdev->raid_disk;
1890 	struct md_rdev **rdevp;
1891 	struct raid10_info *p = conf->mirrors + number;
1892 
1893 	print_conf(conf);
1894 	if (rdev == p->rdev)
1895 		rdevp = &p->rdev;
1896 	else if (rdev == p->replacement)
1897 		rdevp = &p->replacement;
1898 	else
1899 		return 0;
1900 
1901 	if (test_bit(In_sync, &rdev->flags) ||
1902 	    atomic_read(&rdev->nr_pending)) {
1903 		err = -EBUSY;
1904 		goto abort;
1905 	}
1906 	/* Only remove faulty devices if recovery
1907 	 * is not possible.
1908 	 */
1909 	if (!test_bit(Faulty, &rdev->flags) &&
1910 	    mddev->recovery_disabled != p->recovery_disabled &&
1911 	    (!p->replacement || p->replacement == rdev) &&
1912 	    number < conf->geo.raid_disks &&
1913 	    enough(conf, -1)) {
1914 		err = -EBUSY;
1915 		goto abort;
1916 	}
1917 	*rdevp = NULL;
1918 	synchronize_rcu();
1919 	if (atomic_read(&rdev->nr_pending)) {
1920 		/* lost the race, try later */
1921 		err = -EBUSY;
1922 		*rdevp = rdev;
1923 		goto abort;
1924 	} else if (p->replacement) {
1925 		/* We must have just cleared 'rdev' */
1926 		p->rdev = p->replacement;
1927 		clear_bit(Replacement, &p->replacement->flags);
1928 		smp_mb(); /* Make sure other CPUs may see both as identical
1929 			   * but will never see neither -- if they are careful.
1930 			   */
1931 		p->replacement = NULL;
1932 		clear_bit(WantReplacement, &rdev->flags);
1933 	} else
1934 		/* We might have just remove the Replacement as faulty
1935 		 * Clear the flag just in case
1936 		 */
1937 		clear_bit(WantReplacement, &rdev->flags);
1938 
1939 	err = md_integrity_register(mddev);
1940 
1941 abort:
1942 
1943 	print_conf(conf);
1944 	return err;
1945 }
1946 
1947 
1948 static void end_sync_read(struct bio *bio, int error)
1949 {
1950 	struct r10bio *r10_bio = bio->bi_private;
1951 	struct r10conf *conf = r10_bio->mddev->private;
1952 	int d;
1953 
1954 	if (bio == r10_bio->master_bio) {
1955 		/* this is a reshape read */
1956 		d = r10_bio->read_slot; /* really the read dev */
1957 	} else
1958 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1959 
1960 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1961 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1962 	else
1963 		/* The write handler will notice the lack of
1964 		 * R10BIO_Uptodate and record any errors etc
1965 		 */
1966 		atomic_add(r10_bio->sectors,
1967 			   &conf->mirrors[d].rdev->corrected_errors);
1968 
1969 	/* for reconstruct, we always reschedule after a read.
1970 	 * for resync, only after all reads
1971 	 */
1972 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1973 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1974 	    atomic_dec_and_test(&r10_bio->remaining)) {
1975 		/* we have read all the blocks,
1976 		 * do the comparison in process context in raid10d
1977 		 */
1978 		reschedule_retry(r10_bio);
1979 	}
1980 }
1981 
1982 static void end_sync_request(struct r10bio *r10_bio)
1983 {
1984 	struct mddev *mddev = r10_bio->mddev;
1985 
1986 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1987 		if (r10_bio->master_bio == NULL) {
1988 			/* the primary of several recovery bios */
1989 			sector_t s = r10_bio->sectors;
1990 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1991 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1992 				reschedule_retry(r10_bio);
1993 			else
1994 				put_buf(r10_bio);
1995 			md_done_sync(mddev, s, 1);
1996 			break;
1997 		} else {
1998 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1999 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2000 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2001 				reschedule_retry(r10_bio);
2002 			else
2003 				put_buf(r10_bio);
2004 			r10_bio = r10_bio2;
2005 		}
2006 	}
2007 }
2008 
2009 static void end_sync_write(struct bio *bio, int error)
2010 {
2011 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2012 	struct r10bio *r10_bio = bio->bi_private;
2013 	struct mddev *mddev = r10_bio->mddev;
2014 	struct r10conf *conf = mddev->private;
2015 	int d;
2016 	sector_t first_bad;
2017 	int bad_sectors;
2018 	int slot;
2019 	int repl;
2020 	struct md_rdev *rdev = NULL;
2021 
2022 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2023 	if (repl)
2024 		rdev = conf->mirrors[d].replacement;
2025 	else
2026 		rdev = conf->mirrors[d].rdev;
2027 
2028 	if (!uptodate) {
2029 		if (repl)
2030 			md_error(mddev, rdev);
2031 		else {
2032 			set_bit(WriteErrorSeen, &rdev->flags);
2033 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2034 				set_bit(MD_RECOVERY_NEEDED,
2035 					&rdev->mddev->recovery);
2036 			set_bit(R10BIO_WriteError, &r10_bio->state);
2037 		}
2038 	} else if (is_badblock(rdev,
2039 			     r10_bio->devs[slot].addr,
2040 			     r10_bio->sectors,
2041 			     &first_bad, &bad_sectors))
2042 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2043 
2044 	rdev_dec_pending(rdev, mddev);
2045 
2046 	end_sync_request(r10_bio);
2047 }
2048 
2049 /*
2050  * Note: sync and recover and handled very differently for raid10
2051  * This code is for resync.
2052  * For resync, we read through virtual addresses and read all blocks.
2053  * If there is any error, we schedule a write.  The lowest numbered
2054  * drive is authoritative.
2055  * However requests come for physical address, so we need to map.
2056  * For every physical address there are raid_disks/copies virtual addresses,
2057  * which is always are least one, but is not necessarly an integer.
2058  * This means that a physical address can span multiple chunks, so we may
2059  * have to submit multiple io requests for a single sync request.
2060  */
2061 /*
2062  * We check if all blocks are in-sync and only write to blocks that
2063  * aren't in sync
2064  */
2065 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2066 {
2067 	struct r10conf *conf = mddev->private;
2068 	int i, first;
2069 	struct bio *tbio, *fbio;
2070 	int vcnt;
2071 
2072 	atomic_set(&r10_bio->remaining, 1);
2073 
2074 	/* find the first device with a block */
2075 	for (i=0; i<conf->copies; i++)
2076 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2077 			break;
2078 
2079 	if (i == conf->copies)
2080 		goto done;
2081 
2082 	first = i;
2083 	fbio = r10_bio->devs[i].bio;
2084 
2085 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2086 	/* now find blocks with errors */
2087 	for (i=0 ; i < conf->copies ; i++) {
2088 		int  j, d;
2089 
2090 		tbio = r10_bio->devs[i].bio;
2091 
2092 		if (tbio->bi_end_io != end_sync_read)
2093 			continue;
2094 		if (i == first)
2095 			continue;
2096 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2097 			/* We know that the bi_io_vec layout is the same for
2098 			 * both 'first' and 'i', so we just compare them.
2099 			 * All vec entries are PAGE_SIZE;
2100 			 */
2101 			int sectors = r10_bio->sectors;
2102 			for (j = 0; j < vcnt; j++) {
2103 				int len = PAGE_SIZE;
2104 				if (sectors < (len / 512))
2105 					len = sectors * 512;
2106 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2107 					   page_address(tbio->bi_io_vec[j].bv_page),
2108 					   len))
2109 					break;
2110 				sectors -= len/512;
2111 			}
2112 			if (j == vcnt)
2113 				continue;
2114 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2115 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2116 				/* Don't fix anything. */
2117 				continue;
2118 		}
2119 		/* Ok, we need to write this bio, either to correct an
2120 		 * inconsistency or to correct an unreadable block.
2121 		 * First we need to fixup bv_offset, bv_len and
2122 		 * bi_vecs, as the read request might have corrupted these
2123 		 */
2124 		bio_reset(tbio);
2125 
2126 		tbio->bi_vcnt = vcnt;
2127 		tbio->bi_size = r10_bio->sectors << 9;
2128 		tbio->bi_rw = WRITE;
2129 		tbio->bi_private = r10_bio;
2130 		tbio->bi_sector = r10_bio->devs[i].addr;
2131 
2132 		for (j=0; j < vcnt ; j++) {
2133 			tbio->bi_io_vec[j].bv_offset = 0;
2134 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2135 
2136 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2137 			       page_address(fbio->bi_io_vec[j].bv_page),
2138 			       PAGE_SIZE);
2139 		}
2140 		tbio->bi_end_io = end_sync_write;
2141 
2142 		d = r10_bio->devs[i].devnum;
2143 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2144 		atomic_inc(&r10_bio->remaining);
2145 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2146 
2147 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2148 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149 		generic_make_request(tbio);
2150 	}
2151 
2152 	/* Now write out to any replacement devices
2153 	 * that are active
2154 	 */
2155 	for (i = 0; i < conf->copies; i++) {
2156 		int j, d;
2157 
2158 		tbio = r10_bio->devs[i].repl_bio;
2159 		if (!tbio || !tbio->bi_end_io)
2160 			continue;
2161 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162 		    && r10_bio->devs[i].bio != fbio)
2163 			for (j = 0; j < vcnt; j++)
2164 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2165 				       page_address(fbio->bi_io_vec[j].bv_page),
2166 				       PAGE_SIZE);
2167 		d = r10_bio->devs[i].devnum;
2168 		atomic_inc(&r10_bio->remaining);
2169 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2170 			     bio_sectors(tbio));
2171 		generic_make_request(tbio);
2172 	}
2173 
2174 done:
2175 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2176 		md_done_sync(mddev, r10_bio->sectors, 1);
2177 		put_buf(r10_bio);
2178 	}
2179 }
2180 
2181 /*
2182  * Now for the recovery code.
2183  * Recovery happens across physical sectors.
2184  * We recover all non-is_sync drives by finding the virtual address of
2185  * each, and then choose a working drive that also has that virt address.
2186  * There is a separate r10_bio for each non-in_sync drive.
2187  * Only the first two slots are in use. The first for reading,
2188  * The second for writing.
2189  *
2190  */
2191 static void fix_recovery_read_error(struct r10bio *r10_bio)
2192 {
2193 	/* We got a read error during recovery.
2194 	 * We repeat the read in smaller page-sized sections.
2195 	 * If a read succeeds, write it to the new device or record
2196 	 * a bad block if we cannot.
2197 	 * If a read fails, record a bad block on both old and
2198 	 * new devices.
2199 	 */
2200 	struct mddev *mddev = r10_bio->mddev;
2201 	struct r10conf *conf = mddev->private;
2202 	struct bio *bio = r10_bio->devs[0].bio;
2203 	sector_t sect = 0;
2204 	int sectors = r10_bio->sectors;
2205 	int idx = 0;
2206 	int dr = r10_bio->devs[0].devnum;
2207 	int dw = r10_bio->devs[1].devnum;
2208 
2209 	while (sectors) {
2210 		int s = sectors;
2211 		struct md_rdev *rdev;
2212 		sector_t addr;
2213 		int ok;
2214 
2215 		if (s > (PAGE_SIZE>>9))
2216 			s = PAGE_SIZE >> 9;
2217 
2218 		rdev = conf->mirrors[dr].rdev;
2219 		addr = r10_bio->devs[0].addr + sect,
2220 		ok = sync_page_io(rdev,
2221 				  addr,
2222 				  s << 9,
2223 				  bio->bi_io_vec[idx].bv_page,
2224 				  READ, false);
2225 		if (ok) {
2226 			rdev = conf->mirrors[dw].rdev;
2227 			addr = r10_bio->devs[1].addr + sect;
2228 			ok = sync_page_io(rdev,
2229 					  addr,
2230 					  s << 9,
2231 					  bio->bi_io_vec[idx].bv_page,
2232 					  WRITE, false);
2233 			if (!ok) {
2234 				set_bit(WriteErrorSeen, &rdev->flags);
2235 				if (!test_and_set_bit(WantReplacement,
2236 						      &rdev->flags))
2237 					set_bit(MD_RECOVERY_NEEDED,
2238 						&rdev->mddev->recovery);
2239 			}
2240 		}
2241 		if (!ok) {
2242 			/* We don't worry if we cannot set a bad block -
2243 			 * it really is bad so there is no loss in not
2244 			 * recording it yet
2245 			 */
2246 			rdev_set_badblocks(rdev, addr, s, 0);
2247 
2248 			if (rdev != conf->mirrors[dw].rdev) {
2249 				/* need bad block on destination too */
2250 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2251 				addr = r10_bio->devs[1].addr + sect;
2252 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2253 				if (!ok) {
2254 					/* just abort the recovery */
2255 					printk(KERN_NOTICE
2256 					       "md/raid10:%s: recovery aborted"
2257 					       " due to read error\n",
2258 					       mdname(mddev));
2259 
2260 					conf->mirrors[dw].recovery_disabled
2261 						= mddev->recovery_disabled;
2262 					set_bit(MD_RECOVERY_INTR,
2263 						&mddev->recovery);
2264 					break;
2265 				}
2266 			}
2267 		}
2268 
2269 		sectors -= s;
2270 		sect += s;
2271 		idx++;
2272 	}
2273 }
2274 
2275 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2276 {
2277 	struct r10conf *conf = mddev->private;
2278 	int d;
2279 	struct bio *wbio, *wbio2;
2280 
2281 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2282 		fix_recovery_read_error(r10_bio);
2283 		end_sync_request(r10_bio);
2284 		return;
2285 	}
2286 
2287 	/*
2288 	 * share the pages with the first bio
2289 	 * and submit the write request
2290 	 */
2291 	d = r10_bio->devs[1].devnum;
2292 	wbio = r10_bio->devs[1].bio;
2293 	wbio2 = r10_bio->devs[1].repl_bio;
2294 	/* Need to test wbio2->bi_end_io before we call
2295 	 * generic_make_request as if the former is NULL,
2296 	 * the latter is free to free wbio2.
2297 	 */
2298 	if (wbio2 && !wbio2->bi_end_io)
2299 		wbio2 = NULL;
2300 	if (wbio->bi_end_io) {
2301 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2302 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2303 		generic_make_request(wbio);
2304 	}
2305 	if (wbio2) {
2306 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2307 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2308 			     bio_sectors(wbio2));
2309 		generic_make_request(wbio2);
2310 	}
2311 }
2312 
2313 
2314 /*
2315  * Used by fix_read_error() to decay the per rdev read_errors.
2316  * We halve the read error count for every hour that has elapsed
2317  * since the last recorded read error.
2318  *
2319  */
2320 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2321 {
2322 	struct timespec cur_time_mon;
2323 	unsigned long hours_since_last;
2324 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2325 
2326 	ktime_get_ts(&cur_time_mon);
2327 
2328 	if (rdev->last_read_error.tv_sec == 0 &&
2329 	    rdev->last_read_error.tv_nsec == 0) {
2330 		/* first time we've seen a read error */
2331 		rdev->last_read_error = cur_time_mon;
2332 		return;
2333 	}
2334 
2335 	hours_since_last = (cur_time_mon.tv_sec -
2336 			    rdev->last_read_error.tv_sec) / 3600;
2337 
2338 	rdev->last_read_error = cur_time_mon;
2339 
2340 	/*
2341 	 * if hours_since_last is > the number of bits in read_errors
2342 	 * just set read errors to 0. We do this to avoid
2343 	 * overflowing the shift of read_errors by hours_since_last.
2344 	 */
2345 	if (hours_since_last >= 8 * sizeof(read_errors))
2346 		atomic_set(&rdev->read_errors, 0);
2347 	else
2348 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2349 }
2350 
2351 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2352 			    int sectors, struct page *page, int rw)
2353 {
2354 	sector_t first_bad;
2355 	int bad_sectors;
2356 
2357 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2358 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2359 		return -1;
2360 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2361 		/* success */
2362 		return 1;
2363 	if (rw == WRITE) {
2364 		set_bit(WriteErrorSeen, &rdev->flags);
2365 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2366 			set_bit(MD_RECOVERY_NEEDED,
2367 				&rdev->mddev->recovery);
2368 	}
2369 	/* need to record an error - either for the block or the device */
2370 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2371 		md_error(rdev->mddev, rdev);
2372 	return 0;
2373 }
2374 
2375 /*
2376  * This is a kernel thread which:
2377  *
2378  *	1.	Retries failed read operations on working mirrors.
2379  *	2.	Updates the raid superblock when problems encounter.
2380  *	3.	Performs writes following reads for array synchronising.
2381  */
2382 
2383 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2384 {
2385 	int sect = 0; /* Offset from r10_bio->sector */
2386 	int sectors = r10_bio->sectors;
2387 	struct md_rdev*rdev;
2388 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2389 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2390 
2391 	/* still own a reference to this rdev, so it cannot
2392 	 * have been cleared recently.
2393 	 */
2394 	rdev = conf->mirrors[d].rdev;
2395 
2396 	if (test_bit(Faulty, &rdev->flags))
2397 		/* drive has already been failed, just ignore any
2398 		   more fix_read_error() attempts */
2399 		return;
2400 
2401 	check_decay_read_errors(mddev, rdev);
2402 	atomic_inc(&rdev->read_errors);
2403 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2404 		char b[BDEVNAME_SIZE];
2405 		bdevname(rdev->bdev, b);
2406 
2407 		printk(KERN_NOTICE
2408 		       "md/raid10:%s: %s: Raid device exceeded "
2409 		       "read_error threshold [cur %d:max %d]\n",
2410 		       mdname(mddev), b,
2411 		       atomic_read(&rdev->read_errors), max_read_errors);
2412 		printk(KERN_NOTICE
2413 		       "md/raid10:%s: %s: Failing raid device\n",
2414 		       mdname(mddev), b);
2415 		md_error(mddev, conf->mirrors[d].rdev);
2416 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2417 		return;
2418 	}
2419 
2420 	while(sectors) {
2421 		int s = sectors;
2422 		int sl = r10_bio->read_slot;
2423 		int success = 0;
2424 		int start;
2425 
2426 		if (s > (PAGE_SIZE>>9))
2427 			s = PAGE_SIZE >> 9;
2428 
2429 		rcu_read_lock();
2430 		do {
2431 			sector_t first_bad;
2432 			int bad_sectors;
2433 
2434 			d = r10_bio->devs[sl].devnum;
2435 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 			if (rdev &&
2437 			    !test_bit(Unmerged, &rdev->flags) &&
2438 			    test_bit(In_sync, &rdev->flags) &&
2439 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2440 					&first_bad, &bad_sectors) == 0) {
2441 				atomic_inc(&rdev->nr_pending);
2442 				rcu_read_unlock();
2443 				success = sync_page_io(rdev,
2444 						       r10_bio->devs[sl].addr +
2445 						       sect,
2446 						       s<<9,
2447 						       conf->tmppage, READ, false);
2448 				rdev_dec_pending(rdev, mddev);
2449 				rcu_read_lock();
2450 				if (success)
2451 					break;
2452 			}
2453 			sl++;
2454 			if (sl == conf->copies)
2455 				sl = 0;
2456 		} while (!success && sl != r10_bio->read_slot);
2457 		rcu_read_unlock();
2458 
2459 		if (!success) {
2460 			/* Cannot read from anywhere, just mark the block
2461 			 * as bad on the first device to discourage future
2462 			 * reads.
2463 			 */
2464 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2465 			rdev = conf->mirrors[dn].rdev;
2466 
2467 			if (!rdev_set_badblocks(
2468 				    rdev,
2469 				    r10_bio->devs[r10_bio->read_slot].addr
2470 				    + sect,
2471 				    s, 0)) {
2472 				md_error(mddev, rdev);
2473 				r10_bio->devs[r10_bio->read_slot].bio
2474 					= IO_BLOCKED;
2475 			}
2476 			break;
2477 		}
2478 
2479 		start = sl;
2480 		/* write it back and re-read */
2481 		rcu_read_lock();
2482 		while (sl != r10_bio->read_slot) {
2483 			char b[BDEVNAME_SIZE];
2484 
2485 			if (sl==0)
2486 				sl = conf->copies;
2487 			sl--;
2488 			d = r10_bio->devs[sl].devnum;
2489 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 			if (!rdev ||
2491 			    test_bit(Unmerged, &rdev->flags) ||
2492 			    !test_bit(In_sync, &rdev->flags))
2493 				continue;
2494 
2495 			atomic_inc(&rdev->nr_pending);
2496 			rcu_read_unlock();
2497 			if (r10_sync_page_io(rdev,
2498 					     r10_bio->devs[sl].addr +
2499 					     sect,
2500 					     s, conf->tmppage, WRITE)
2501 			    == 0) {
2502 				/* Well, this device is dead */
2503 				printk(KERN_NOTICE
2504 				       "md/raid10:%s: read correction "
2505 				       "write failed"
2506 				       " (%d sectors at %llu on %s)\n",
2507 				       mdname(mddev), s,
2508 				       (unsigned long long)(
2509 					       sect +
2510 					       choose_data_offset(r10_bio,
2511 								  rdev)),
2512 				       bdevname(rdev->bdev, b));
2513 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2514 				       "drive\n",
2515 				       mdname(mddev),
2516 				       bdevname(rdev->bdev, b));
2517 			}
2518 			rdev_dec_pending(rdev, mddev);
2519 			rcu_read_lock();
2520 		}
2521 		sl = start;
2522 		while (sl != r10_bio->read_slot) {
2523 			char b[BDEVNAME_SIZE];
2524 
2525 			if (sl==0)
2526 				sl = conf->copies;
2527 			sl--;
2528 			d = r10_bio->devs[sl].devnum;
2529 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2530 			if (!rdev ||
2531 			    !test_bit(In_sync, &rdev->flags))
2532 				continue;
2533 
2534 			atomic_inc(&rdev->nr_pending);
2535 			rcu_read_unlock();
2536 			switch (r10_sync_page_io(rdev,
2537 					     r10_bio->devs[sl].addr +
2538 					     sect,
2539 					     s, conf->tmppage,
2540 						 READ)) {
2541 			case 0:
2542 				/* Well, this device is dead */
2543 				printk(KERN_NOTICE
2544 				       "md/raid10:%s: unable to read back "
2545 				       "corrected sectors"
2546 				       " (%d sectors at %llu on %s)\n",
2547 				       mdname(mddev), s,
2548 				       (unsigned long long)(
2549 					       sect +
2550 					       choose_data_offset(r10_bio, rdev)),
2551 				       bdevname(rdev->bdev, b));
2552 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2553 				       "drive\n",
2554 				       mdname(mddev),
2555 				       bdevname(rdev->bdev, b));
2556 				break;
2557 			case 1:
2558 				printk(KERN_INFO
2559 				       "md/raid10:%s: read error corrected"
2560 				       " (%d sectors at %llu on %s)\n",
2561 				       mdname(mddev), s,
2562 				       (unsigned long long)(
2563 					       sect +
2564 					       choose_data_offset(r10_bio, rdev)),
2565 				       bdevname(rdev->bdev, b));
2566 				atomic_add(s, &rdev->corrected_errors);
2567 			}
2568 
2569 			rdev_dec_pending(rdev, mddev);
2570 			rcu_read_lock();
2571 		}
2572 		rcu_read_unlock();
2573 
2574 		sectors -= s;
2575 		sect += s;
2576 	}
2577 }
2578 
2579 static int narrow_write_error(struct r10bio *r10_bio, int i)
2580 {
2581 	struct bio *bio = r10_bio->master_bio;
2582 	struct mddev *mddev = r10_bio->mddev;
2583 	struct r10conf *conf = mddev->private;
2584 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2585 	/* bio has the data to be written to slot 'i' where
2586 	 * we just recently had a write error.
2587 	 * We repeatedly clone the bio and trim down to one block,
2588 	 * then try the write.  Where the write fails we record
2589 	 * a bad block.
2590 	 * It is conceivable that the bio doesn't exactly align with
2591 	 * blocks.  We must handle this.
2592 	 *
2593 	 * We currently own a reference to the rdev.
2594 	 */
2595 
2596 	int block_sectors;
2597 	sector_t sector;
2598 	int sectors;
2599 	int sect_to_write = r10_bio->sectors;
2600 	int ok = 1;
2601 
2602 	if (rdev->badblocks.shift < 0)
2603 		return 0;
2604 
2605 	block_sectors = 1 << rdev->badblocks.shift;
2606 	sector = r10_bio->sector;
2607 	sectors = ((r10_bio->sector + block_sectors)
2608 		   & ~(sector_t)(block_sectors - 1))
2609 		- sector;
2610 
2611 	while (sect_to_write) {
2612 		struct bio *wbio;
2613 		if (sectors > sect_to_write)
2614 			sectors = sect_to_write;
2615 		/* Write at 'sector' for 'sectors' */
2616 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2617 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2618 		wbio->bi_sector = (r10_bio->devs[i].addr+
2619 				   choose_data_offset(r10_bio, rdev) +
2620 				   (sector - r10_bio->sector));
2621 		wbio->bi_bdev = rdev->bdev;
2622 		if (submit_bio_wait(WRITE, wbio) == 0)
2623 			/* Failure! */
2624 			ok = rdev_set_badblocks(rdev, sector,
2625 						sectors, 0)
2626 				&& ok;
2627 
2628 		bio_put(wbio);
2629 		sect_to_write -= sectors;
2630 		sector += sectors;
2631 		sectors = block_sectors;
2632 	}
2633 	return ok;
2634 }
2635 
2636 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2637 {
2638 	int slot = r10_bio->read_slot;
2639 	struct bio *bio;
2640 	struct r10conf *conf = mddev->private;
2641 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2642 	char b[BDEVNAME_SIZE];
2643 	unsigned long do_sync;
2644 	int max_sectors;
2645 
2646 	/* we got a read error. Maybe the drive is bad.  Maybe just
2647 	 * the block and we can fix it.
2648 	 * We freeze all other IO, and try reading the block from
2649 	 * other devices.  When we find one, we re-write
2650 	 * and check it that fixes the read error.
2651 	 * This is all done synchronously while the array is
2652 	 * frozen.
2653 	 */
2654 	bio = r10_bio->devs[slot].bio;
2655 	bdevname(bio->bi_bdev, b);
2656 	bio_put(bio);
2657 	r10_bio->devs[slot].bio = NULL;
2658 
2659 	if (mddev->ro == 0) {
2660 		freeze_array(conf, 1);
2661 		fix_read_error(conf, mddev, r10_bio);
2662 		unfreeze_array(conf);
2663 	} else
2664 		r10_bio->devs[slot].bio = IO_BLOCKED;
2665 
2666 	rdev_dec_pending(rdev, mddev);
2667 
2668 read_more:
2669 	rdev = read_balance(conf, r10_bio, &max_sectors);
2670 	if (rdev == NULL) {
2671 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2672 		       " read error for block %llu\n",
2673 		       mdname(mddev), b,
2674 		       (unsigned long long)r10_bio->sector);
2675 		raid_end_bio_io(r10_bio);
2676 		return;
2677 	}
2678 
2679 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2680 	slot = r10_bio->read_slot;
2681 	printk_ratelimited(
2682 		KERN_ERR
2683 		"md/raid10:%s: %s: redirecting "
2684 		"sector %llu to another mirror\n",
2685 		mdname(mddev),
2686 		bdevname(rdev->bdev, b),
2687 		(unsigned long long)r10_bio->sector);
2688 	bio = bio_clone_mddev(r10_bio->master_bio,
2689 			      GFP_NOIO, mddev);
2690 	md_trim_bio(bio,
2691 		    r10_bio->sector - bio->bi_sector,
2692 		    max_sectors);
2693 	r10_bio->devs[slot].bio = bio;
2694 	r10_bio->devs[slot].rdev = rdev;
2695 	bio->bi_sector = r10_bio->devs[slot].addr
2696 		+ choose_data_offset(r10_bio, rdev);
2697 	bio->bi_bdev = rdev->bdev;
2698 	bio->bi_rw = READ | do_sync;
2699 	bio->bi_private = r10_bio;
2700 	bio->bi_end_io = raid10_end_read_request;
2701 	if (max_sectors < r10_bio->sectors) {
2702 		/* Drat - have to split this up more */
2703 		struct bio *mbio = r10_bio->master_bio;
2704 		int sectors_handled =
2705 			r10_bio->sector + max_sectors
2706 			- mbio->bi_sector;
2707 		r10_bio->sectors = max_sectors;
2708 		spin_lock_irq(&conf->device_lock);
2709 		if (mbio->bi_phys_segments == 0)
2710 			mbio->bi_phys_segments = 2;
2711 		else
2712 			mbio->bi_phys_segments++;
2713 		spin_unlock_irq(&conf->device_lock);
2714 		generic_make_request(bio);
2715 
2716 		r10_bio = mempool_alloc(conf->r10bio_pool,
2717 					GFP_NOIO);
2718 		r10_bio->master_bio = mbio;
2719 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2720 		r10_bio->state = 0;
2721 		set_bit(R10BIO_ReadError,
2722 			&r10_bio->state);
2723 		r10_bio->mddev = mddev;
2724 		r10_bio->sector = mbio->bi_sector
2725 			+ sectors_handled;
2726 
2727 		goto read_more;
2728 	} else
2729 		generic_make_request(bio);
2730 }
2731 
2732 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2733 {
2734 	/* Some sort of write request has finished and it
2735 	 * succeeded in writing where we thought there was a
2736 	 * bad block.  So forget the bad block.
2737 	 * Or possibly if failed and we need to record
2738 	 * a bad block.
2739 	 */
2740 	int m;
2741 	struct md_rdev *rdev;
2742 
2743 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2744 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2745 		for (m = 0; m < conf->copies; m++) {
2746 			int dev = r10_bio->devs[m].devnum;
2747 			rdev = conf->mirrors[dev].rdev;
2748 			if (r10_bio->devs[m].bio == NULL)
2749 				continue;
2750 			if (test_bit(BIO_UPTODATE,
2751 				     &r10_bio->devs[m].bio->bi_flags)) {
2752 				rdev_clear_badblocks(
2753 					rdev,
2754 					r10_bio->devs[m].addr,
2755 					r10_bio->sectors, 0);
2756 			} else {
2757 				if (!rdev_set_badblocks(
2758 					    rdev,
2759 					    r10_bio->devs[m].addr,
2760 					    r10_bio->sectors, 0))
2761 					md_error(conf->mddev, rdev);
2762 			}
2763 			rdev = conf->mirrors[dev].replacement;
2764 			if (r10_bio->devs[m].repl_bio == NULL)
2765 				continue;
2766 			if (test_bit(BIO_UPTODATE,
2767 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2768 				rdev_clear_badblocks(
2769 					rdev,
2770 					r10_bio->devs[m].addr,
2771 					r10_bio->sectors, 0);
2772 			} else {
2773 				if (!rdev_set_badblocks(
2774 					    rdev,
2775 					    r10_bio->devs[m].addr,
2776 					    r10_bio->sectors, 0))
2777 					md_error(conf->mddev, rdev);
2778 			}
2779 		}
2780 		put_buf(r10_bio);
2781 	} else {
2782 		for (m = 0; m < conf->copies; m++) {
2783 			int dev = r10_bio->devs[m].devnum;
2784 			struct bio *bio = r10_bio->devs[m].bio;
2785 			rdev = conf->mirrors[dev].rdev;
2786 			if (bio == IO_MADE_GOOD) {
2787 				rdev_clear_badblocks(
2788 					rdev,
2789 					r10_bio->devs[m].addr,
2790 					r10_bio->sectors, 0);
2791 				rdev_dec_pending(rdev, conf->mddev);
2792 			} else if (bio != NULL &&
2793 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2794 				if (!narrow_write_error(r10_bio, m)) {
2795 					md_error(conf->mddev, rdev);
2796 					set_bit(R10BIO_Degraded,
2797 						&r10_bio->state);
2798 				}
2799 				rdev_dec_pending(rdev, conf->mddev);
2800 			}
2801 			bio = r10_bio->devs[m].repl_bio;
2802 			rdev = conf->mirrors[dev].replacement;
2803 			if (rdev && bio == IO_MADE_GOOD) {
2804 				rdev_clear_badblocks(
2805 					rdev,
2806 					r10_bio->devs[m].addr,
2807 					r10_bio->sectors, 0);
2808 				rdev_dec_pending(rdev, conf->mddev);
2809 			}
2810 		}
2811 		if (test_bit(R10BIO_WriteError,
2812 			     &r10_bio->state))
2813 			close_write(r10_bio);
2814 		raid_end_bio_io(r10_bio);
2815 	}
2816 }
2817 
2818 static void raid10d(struct md_thread *thread)
2819 {
2820 	struct mddev *mddev = thread->mddev;
2821 	struct r10bio *r10_bio;
2822 	unsigned long flags;
2823 	struct r10conf *conf = mddev->private;
2824 	struct list_head *head = &conf->retry_list;
2825 	struct blk_plug plug;
2826 
2827 	md_check_recovery(mddev);
2828 
2829 	blk_start_plug(&plug);
2830 	for (;;) {
2831 
2832 		flush_pending_writes(conf);
2833 
2834 		spin_lock_irqsave(&conf->device_lock, flags);
2835 		if (list_empty(head)) {
2836 			spin_unlock_irqrestore(&conf->device_lock, flags);
2837 			break;
2838 		}
2839 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2840 		list_del(head->prev);
2841 		conf->nr_queued--;
2842 		spin_unlock_irqrestore(&conf->device_lock, flags);
2843 
2844 		mddev = r10_bio->mddev;
2845 		conf = mddev->private;
2846 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2847 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2848 			handle_write_completed(conf, r10_bio);
2849 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2850 			reshape_request_write(mddev, r10_bio);
2851 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2852 			sync_request_write(mddev, r10_bio);
2853 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2854 			recovery_request_write(mddev, r10_bio);
2855 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2856 			handle_read_error(mddev, r10_bio);
2857 		else {
2858 			/* just a partial read to be scheduled from a
2859 			 * separate context
2860 			 */
2861 			int slot = r10_bio->read_slot;
2862 			generic_make_request(r10_bio->devs[slot].bio);
2863 		}
2864 
2865 		cond_resched();
2866 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2867 			md_check_recovery(mddev);
2868 	}
2869 	blk_finish_plug(&plug);
2870 }
2871 
2872 
2873 static int init_resync(struct r10conf *conf)
2874 {
2875 	int buffs;
2876 	int i;
2877 
2878 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2879 	BUG_ON(conf->r10buf_pool);
2880 	conf->have_replacement = 0;
2881 	for (i = 0; i < conf->geo.raid_disks; i++)
2882 		if (conf->mirrors[i].replacement)
2883 			conf->have_replacement = 1;
2884 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2885 	if (!conf->r10buf_pool)
2886 		return -ENOMEM;
2887 	conf->next_resync = 0;
2888 	return 0;
2889 }
2890 
2891 /*
2892  * perform a "sync" on one "block"
2893  *
2894  * We need to make sure that no normal I/O request - particularly write
2895  * requests - conflict with active sync requests.
2896  *
2897  * This is achieved by tracking pending requests and a 'barrier' concept
2898  * that can be installed to exclude normal IO requests.
2899  *
2900  * Resync and recovery are handled very differently.
2901  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2902  *
2903  * For resync, we iterate over virtual addresses, read all copies,
2904  * and update if there are differences.  If only one copy is live,
2905  * skip it.
2906  * For recovery, we iterate over physical addresses, read a good
2907  * value for each non-in_sync drive, and over-write.
2908  *
2909  * So, for recovery we may have several outstanding complex requests for a
2910  * given address, one for each out-of-sync device.  We model this by allocating
2911  * a number of r10_bio structures, one for each out-of-sync device.
2912  * As we setup these structures, we collect all bio's together into a list
2913  * which we then process collectively to add pages, and then process again
2914  * to pass to generic_make_request.
2915  *
2916  * The r10_bio structures are linked using a borrowed master_bio pointer.
2917  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2918  * has its remaining count decremented to 0, the whole complex operation
2919  * is complete.
2920  *
2921  */
2922 
2923 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2924 			     int *skipped, int go_faster)
2925 {
2926 	struct r10conf *conf = mddev->private;
2927 	struct r10bio *r10_bio;
2928 	struct bio *biolist = NULL, *bio;
2929 	sector_t max_sector, nr_sectors;
2930 	int i;
2931 	int max_sync;
2932 	sector_t sync_blocks;
2933 	sector_t sectors_skipped = 0;
2934 	int chunks_skipped = 0;
2935 	sector_t chunk_mask = conf->geo.chunk_mask;
2936 
2937 	if (!conf->r10buf_pool)
2938 		if (init_resync(conf))
2939 			return 0;
2940 
2941 	/*
2942 	 * Allow skipping a full rebuild for incremental assembly
2943 	 * of a clean array, like RAID1 does.
2944 	 */
2945 	if (mddev->bitmap == NULL &&
2946 	    mddev->recovery_cp == MaxSector &&
2947 	    mddev->reshape_position == MaxSector &&
2948 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2949 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2950 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2951 	    conf->fullsync == 0) {
2952 		*skipped = 1;
2953 		return mddev->dev_sectors - sector_nr;
2954 	}
2955 
2956  skipped:
2957 	max_sector = mddev->dev_sectors;
2958 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2959 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2960 		max_sector = mddev->resync_max_sectors;
2961 	if (sector_nr >= max_sector) {
2962 		/* If we aborted, we need to abort the
2963 		 * sync on the 'current' bitmap chucks (there can
2964 		 * be several when recovering multiple devices).
2965 		 * as we may have started syncing it but not finished.
2966 		 * We can find the current address in
2967 		 * mddev->curr_resync, but for recovery,
2968 		 * we need to convert that to several
2969 		 * virtual addresses.
2970 		 */
2971 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2972 			end_reshape(conf);
2973 			return 0;
2974 		}
2975 
2976 		if (mddev->curr_resync < max_sector) { /* aborted */
2977 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2978 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2979 						&sync_blocks, 1);
2980 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2981 				sector_t sect =
2982 					raid10_find_virt(conf, mddev->curr_resync, i);
2983 				bitmap_end_sync(mddev->bitmap, sect,
2984 						&sync_blocks, 1);
2985 			}
2986 		} else {
2987 			/* completed sync */
2988 			if ((!mddev->bitmap || conf->fullsync)
2989 			    && conf->have_replacement
2990 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2991 				/* Completed a full sync so the replacements
2992 				 * are now fully recovered.
2993 				 */
2994 				for (i = 0; i < conf->geo.raid_disks; i++)
2995 					if (conf->mirrors[i].replacement)
2996 						conf->mirrors[i].replacement
2997 							->recovery_offset
2998 							= MaxSector;
2999 			}
3000 			conf->fullsync = 0;
3001 		}
3002 		bitmap_close_sync(mddev->bitmap);
3003 		close_sync(conf);
3004 		*skipped = 1;
3005 		return sectors_skipped;
3006 	}
3007 
3008 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3009 		return reshape_request(mddev, sector_nr, skipped);
3010 
3011 	if (chunks_skipped >= conf->geo.raid_disks) {
3012 		/* if there has been nothing to do on any drive,
3013 		 * then there is nothing to do at all..
3014 		 */
3015 		*skipped = 1;
3016 		return (max_sector - sector_nr) + sectors_skipped;
3017 	}
3018 
3019 	if (max_sector > mddev->resync_max)
3020 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3021 
3022 	/* make sure whole request will fit in a chunk - if chunks
3023 	 * are meaningful
3024 	 */
3025 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3026 	    max_sector > (sector_nr | chunk_mask))
3027 		max_sector = (sector_nr | chunk_mask) + 1;
3028 	/*
3029 	 * If there is non-resync activity waiting for us then
3030 	 * put in a delay to throttle resync.
3031 	 */
3032 	if (!go_faster && conf->nr_waiting)
3033 		msleep_interruptible(1000);
3034 
3035 	/* Again, very different code for resync and recovery.
3036 	 * Both must result in an r10bio with a list of bios that
3037 	 * have bi_end_io, bi_sector, bi_bdev set,
3038 	 * and bi_private set to the r10bio.
3039 	 * For recovery, we may actually create several r10bios
3040 	 * with 2 bios in each, that correspond to the bios in the main one.
3041 	 * In this case, the subordinate r10bios link back through a
3042 	 * borrowed master_bio pointer, and the counter in the master
3043 	 * includes a ref from each subordinate.
3044 	 */
3045 	/* First, we decide what to do and set ->bi_end_io
3046 	 * To end_sync_read if we want to read, and
3047 	 * end_sync_write if we will want to write.
3048 	 */
3049 
3050 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3051 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3052 		/* recovery... the complicated one */
3053 		int j;
3054 		r10_bio = NULL;
3055 
3056 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3057 			int still_degraded;
3058 			struct r10bio *rb2;
3059 			sector_t sect;
3060 			int must_sync;
3061 			int any_working;
3062 			struct raid10_info *mirror = &conf->mirrors[i];
3063 
3064 			if ((mirror->rdev == NULL ||
3065 			     test_bit(In_sync, &mirror->rdev->flags))
3066 			    &&
3067 			    (mirror->replacement == NULL ||
3068 			     test_bit(Faulty,
3069 				      &mirror->replacement->flags)))
3070 				continue;
3071 
3072 			still_degraded = 0;
3073 			/* want to reconstruct this device */
3074 			rb2 = r10_bio;
3075 			sect = raid10_find_virt(conf, sector_nr, i);
3076 			if (sect >= mddev->resync_max_sectors) {
3077 				/* last stripe is not complete - don't
3078 				 * try to recover this sector.
3079 				 */
3080 				continue;
3081 			}
3082 			/* Unless we are doing a full sync, or a replacement
3083 			 * we only need to recover the block if it is set in
3084 			 * the bitmap
3085 			 */
3086 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3087 						      &sync_blocks, 1);
3088 			if (sync_blocks < max_sync)
3089 				max_sync = sync_blocks;
3090 			if (!must_sync &&
3091 			    mirror->replacement == NULL &&
3092 			    !conf->fullsync) {
3093 				/* yep, skip the sync_blocks here, but don't assume
3094 				 * that there will never be anything to do here
3095 				 */
3096 				chunks_skipped = -1;
3097 				continue;
3098 			}
3099 
3100 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3101 			raise_barrier(conf, rb2 != NULL);
3102 			atomic_set(&r10_bio->remaining, 0);
3103 
3104 			r10_bio->master_bio = (struct bio*)rb2;
3105 			if (rb2)
3106 				atomic_inc(&rb2->remaining);
3107 			r10_bio->mddev = mddev;
3108 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3109 			r10_bio->sector = sect;
3110 
3111 			raid10_find_phys(conf, r10_bio);
3112 
3113 			/* Need to check if the array will still be
3114 			 * degraded
3115 			 */
3116 			for (j = 0; j < conf->geo.raid_disks; j++)
3117 				if (conf->mirrors[j].rdev == NULL ||
3118 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3119 					still_degraded = 1;
3120 					break;
3121 				}
3122 
3123 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3124 						      &sync_blocks, still_degraded);
3125 
3126 			any_working = 0;
3127 			for (j=0; j<conf->copies;j++) {
3128 				int k;
3129 				int d = r10_bio->devs[j].devnum;
3130 				sector_t from_addr, to_addr;
3131 				struct md_rdev *rdev;
3132 				sector_t sector, first_bad;
3133 				int bad_sectors;
3134 				if (!conf->mirrors[d].rdev ||
3135 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3136 					continue;
3137 				/* This is where we read from */
3138 				any_working = 1;
3139 				rdev = conf->mirrors[d].rdev;
3140 				sector = r10_bio->devs[j].addr;
3141 
3142 				if (is_badblock(rdev, sector, max_sync,
3143 						&first_bad, &bad_sectors)) {
3144 					if (first_bad > sector)
3145 						max_sync = first_bad - sector;
3146 					else {
3147 						bad_sectors -= (sector
3148 								- first_bad);
3149 						if (max_sync > bad_sectors)
3150 							max_sync = bad_sectors;
3151 						continue;
3152 					}
3153 				}
3154 				bio = r10_bio->devs[0].bio;
3155 				bio_reset(bio);
3156 				bio->bi_next = biolist;
3157 				biolist = bio;
3158 				bio->bi_private = r10_bio;
3159 				bio->bi_end_io = end_sync_read;
3160 				bio->bi_rw = READ;
3161 				from_addr = r10_bio->devs[j].addr;
3162 				bio->bi_sector = from_addr + rdev->data_offset;
3163 				bio->bi_bdev = rdev->bdev;
3164 				atomic_inc(&rdev->nr_pending);
3165 				/* and we write to 'i' (if not in_sync) */
3166 
3167 				for (k=0; k<conf->copies; k++)
3168 					if (r10_bio->devs[k].devnum == i)
3169 						break;
3170 				BUG_ON(k == conf->copies);
3171 				to_addr = r10_bio->devs[k].addr;
3172 				r10_bio->devs[0].devnum = d;
3173 				r10_bio->devs[0].addr = from_addr;
3174 				r10_bio->devs[1].devnum = i;
3175 				r10_bio->devs[1].addr = to_addr;
3176 
3177 				rdev = mirror->rdev;
3178 				if (!test_bit(In_sync, &rdev->flags)) {
3179 					bio = r10_bio->devs[1].bio;
3180 					bio_reset(bio);
3181 					bio->bi_next = biolist;
3182 					biolist = bio;
3183 					bio->bi_private = r10_bio;
3184 					bio->bi_end_io = end_sync_write;
3185 					bio->bi_rw = WRITE;
3186 					bio->bi_sector = to_addr
3187 						+ rdev->data_offset;
3188 					bio->bi_bdev = rdev->bdev;
3189 					atomic_inc(&r10_bio->remaining);
3190 				} else
3191 					r10_bio->devs[1].bio->bi_end_io = NULL;
3192 
3193 				/* and maybe write to replacement */
3194 				bio = r10_bio->devs[1].repl_bio;
3195 				if (bio)
3196 					bio->bi_end_io = NULL;
3197 				rdev = mirror->replacement;
3198 				/* Note: if rdev != NULL, then bio
3199 				 * cannot be NULL as r10buf_pool_alloc will
3200 				 * have allocated it.
3201 				 * So the second test here is pointless.
3202 				 * But it keeps semantic-checkers happy, and
3203 				 * this comment keeps human reviewers
3204 				 * happy.
3205 				 */
3206 				if (rdev == NULL || bio == NULL ||
3207 				    test_bit(Faulty, &rdev->flags))
3208 					break;
3209 				bio_reset(bio);
3210 				bio->bi_next = biolist;
3211 				biolist = bio;
3212 				bio->bi_private = r10_bio;
3213 				bio->bi_end_io = end_sync_write;
3214 				bio->bi_rw = WRITE;
3215 				bio->bi_sector = to_addr + rdev->data_offset;
3216 				bio->bi_bdev = rdev->bdev;
3217 				atomic_inc(&r10_bio->remaining);
3218 				break;
3219 			}
3220 			if (j == conf->copies) {
3221 				/* Cannot recover, so abort the recovery or
3222 				 * record a bad block */
3223 				put_buf(r10_bio);
3224 				if (rb2)
3225 					atomic_dec(&rb2->remaining);
3226 				r10_bio = rb2;
3227 				if (any_working) {
3228 					/* problem is that there are bad blocks
3229 					 * on other device(s)
3230 					 */
3231 					int k;
3232 					for (k = 0; k < conf->copies; k++)
3233 						if (r10_bio->devs[k].devnum == i)
3234 							break;
3235 					if (!test_bit(In_sync,
3236 						      &mirror->rdev->flags)
3237 					    && !rdev_set_badblocks(
3238 						    mirror->rdev,
3239 						    r10_bio->devs[k].addr,
3240 						    max_sync, 0))
3241 						any_working = 0;
3242 					if (mirror->replacement &&
3243 					    !rdev_set_badblocks(
3244 						    mirror->replacement,
3245 						    r10_bio->devs[k].addr,
3246 						    max_sync, 0))
3247 						any_working = 0;
3248 				}
3249 				if (!any_working)  {
3250 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3251 							      &mddev->recovery))
3252 						printk(KERN_INFO "md/raid10:%s: insufficient "
3253 						       "working devices for recovery.\n",
3254 						       mdname(mddev));
3255 					mirror->recovery_disabled
3256 						= mddev->recovery_disabled;
3257 				}
3258 				break;
3259 			}
3260 		}
3261 		if (biolist == NULL) {
3262 			while (r10_bio) {
3263 				struct r10bio *rb2 = r10_bio;
3264 				r10_bio = (struct r10bio*) rb2->master_bio;
3265 				rb2->master_bio = NULL;
3266 				put_buf(rb2);
3267 			}
3268 			goto giveup;
3269 		}
3270 	} else {
3271 		/* resync. Schedule a read for every block at this virt offset */
3272 		int count = 0;
3273 
3274 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3275 
3276 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3277 				       &sync_blocks, mddev->degraded) &&
3278 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3279 						 &mddev->recovery)) {
3280 			/* We can skip this block */
3281 			*skipped = 1;
3282 			return sync_blocks + sectors_skipped;
3283 		}
3284 		if (sync_blocks < max_sync)
3285 			max_sync = sync_blocks;
3286 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3287 
3288 		r10_bio->mddev = mddev;
3289 		atomic_set(&r10_bio->remaining, 0);
3290 		raise_barrier(conf, 0);
3291 		conf->next_resync = sector_nr;
3292 
3293 		r10_bio->master_bio = NULL;
3294 		r10_bio->sector = sector_nr;
3295 		set_bit(R10BIO_IsSync, &r10_bio->state);
3296 		raid10_find_phys(conf, r10_bio);
3297 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3298 
3299 		for (i = 0; i < conf->copies; i++) {
3300 			int d = r10_bio->devs[i].devnum;
3301 			sector_t first_bad, sector;
3302 			int bad_sectors;
3303 
3304 			if (r10_bio->devs[i].repl_bio)
3305 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3306 
3307 			bio = r10_bio->devs[i].bio;
3308 			bio_reset(bio);
3309 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3310 			if (conf->mirrors[d].rdev == NULL ||
3311 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3312 				continue;
3313 			sector = r10_bio->devs[i].addr;
3314 			if (is_badblock(conf->mirrors[d].rdev,
3315 					sector, max_sync,
3316 					&first_bad, &bad_sectors)) {
3317 				if (first_bad > sector)
3318 					max_sync = first_bad - sector;
3319 				else {
3320 					bad_sectors -= (sector - first_bad);
3321 					if (max_sync > bad_sectors)
3322 						max_sync = bad_sectors;
3323 					continue;
3324 				}
3325 			}
3326 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3327 			atomic_inc(&r10_bio->remaining);
3328 			bio->bi_next = biolist;
3329 			biolist = bio;
3330 			bio->bi_private = r10_bio;
3331 			bio->bi_end_io = end_sync_read;
3332 			bio->bi_rw = READ;
3333 			bio->bi_sector = sector +
3334 				conf->mirrors[d].rdev->data_offset;
3335 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3336 			count++;
3337 
3338 			if (conf->mirrors[d].replacement == NULL ||
3339 			    test_bit(Faulty,
3340 				     &conf->mirrors[d].replacement->flags))
3341 				continue;
3342 
3343 			/* Need to set up for writing to the replacement */
3344 			bio = r10_bio->devs[i].repl_bio;
3345 			bio_reset(bio);
3346 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3347 
3348 			sector = r10_bio->devs[i].addr;
3349 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3350 			bio->bi_next = biolist;
3351 			biolist = bio;
3352 			bio->bi_private = r10_bio;
3353 			bio->bi_end_io = end_sync_write;
3354 			bio->bi_rw = WRITE;
3355 			bio->bi_sector = sector +
3356 				conf->mirrors[d].replacement->data_offset;
3357 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3358 			count++;
3359 		}
3360 
3361 		if (count < 2) {
3362 			for (i=0; i<conf->copies; i++) {
3363 				int d = r10_bio->devs[i].devnum;
3364 				if (r10_bio->devs[i].bio->bi_end_io)
3365 					rdev_dec_pending(conf->mirrors[d].rdev,
3366 							 mddev);
3367 				if (r10_bio->devs[i].repl_bio &&
3368 				    r10_bio->devs[i].repl_bio->bi_end_io)
3369 					rdev_dec_pending(
3370 						conf->mirrors[d].replacement,
3371 						mddev);
3372 			}
3373 			put_buf(r10_bio);
3374 			biolist = NULL;
3375 			goto giveup;
3376 		}
3377 	}
3378 
3379 	nr_sectors = 0;
3380 	if (sector_nr + max_sync < max_sector)
3381 		max_sector = sector_nr + max_sync;
3382 	do {
3383 		struct page *page;
3384 		int len = PAGE_SIZE;
3385 		if (sector_nr + (len>>9) > max_sector)
3386 			len = (max_sector - sector_nr) << 9;
3387 		if (len == 0)
3388 			break;
3389 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3390 			struct bio *bio2;
3391 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3392 			if (bio_add_page(bio, page, len, 0))
3393 				continue;
3394 
3395 			/* stop here */
3396 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3397 			for (bio2 = biolist;
3398 			     bio2 && bio2 != bio;
3399 			     bio2 = bio2->bi_next) {
3400 				/* remove last page from this bio */
3401 				bio2->bi_vcnt--;
3402 				bio2->bi_size -= len;
3403 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3404 			}
3405 			goto bio_full;
3406 		}
3407 		nr_sectors += len>>9;
3408 		sector_nr += len>>9;
3409 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3410  bio_full:
3411 	r10_bio->sectors = nr_sectors;
3412 
3413 	while (biolist) {
3414 		bio = biolist;
3415 		biolist = biolist->bi_next;
3416 
3417 		bio->bi_next = NULL;
3418 		r10_bio = bio->bi_private;
3419 		r10_bio->sectors = nr_sectors;
3420 
3421 		if (bio->bi_end_io == end_sync_read) {
3422 			md_sync_acct(bio->bi_bdev, nr_sectors);
3423 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3424 			generic_make_request(bio);
3425 		}
3426 	}
3427 
3428 	if (sectors_skipped)
3429 		/* pretend they weren't skipped, it makes
3430 		 * no important difference in this case
3431 		 */
3432 		md_done_sync(mddev, sectors_skipped, 1);
3433 
3434 	return sectors_skipped + nr_sectors;
3435  giveup:
3436 	/* There is nowhere to write, so all non-sync
3437 	 * drives must be failed or in resync, all drives
3438 	 * have a bad block, so try the next chunk...
3439 	 */
3440 	if (sector_nr + max_sync < max_sector)
3441 		max_sector = sector_nr + max_sync;
3442 
3443 	sectors_skipped += (max_sector - sector_nr);
3444 	chunks_skipped ++;
3445 	sector_nr = max_sector;
3446 	goto skipped;
3447 }
3448 
3449 static sector_t
3450 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3451 {
3452 	sector_t size;
3453 	struct r10conf *conf = mddev->private;
3454 
3455 	if (!raid_disks)
3456 		raid_disks = min(conf->geo.raid_disks,
3457 				 conf->prev.raid_disks);
3458 	if (!sectors)
3459 		sectors = conf->dev_sectors;
3460 
3461 	size = sectors >> conf->geo.chunk_shift;
3462 	sector_div(size, conf->geo.far_copies);
3463 	size = size * raid_disks;
3464 	sector_div(size, conf->geo.near_copies);
3465 
3466 	return size << conf->geo.chunk_shift;
3467 }
3468 
3469 static void calc_sectors(struct r10conf *conf, sector_t size)
3470 {
3471 	/* Calculate the number of sectors-per-device that will
3472 	 * actually be used, and set conf->dev_sectors and
3473 	 * conf->stride
3474 	 */
3475 
3476 	size = size >> conf->geo.chunk_shift;
3477 	sector_div(size, conf->geo.far_copies);
3478 	size = size * conf->geo.raid_disks;
3479 	sector_div(size, conf->geo.near_copies);
3480 	/* 'size' is now the number of chunks in the array */
3481 	/* calculate "used chunks per device" */
3482 	size = size * conf->copies;
3483 
3484 	/* We need to round up when dividing by raid_disks to
3485 	 * get the stride size.
3486 	 */
3487 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3488 
3489 	conf->dev_sectors = size << conf->geo.chunk_shift;
3490 
3491 	if (conf->geo.far_offset)
3492 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3493 	else {
3494 		sector_div(size, conf->geo.far_copies);
3495 		conf->geo.stride = size << conf->geo.chunk_shift;
3496 	}
3497 }
3498 
3499 enum geo_type {geo_new, geo_old, geo_start};
3500 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3501 {
3502 	int nc, fc, fo;
3503 	int layout, chunk, disks;
3504 	switch (new) {
3505 	case geo_old:
3506 		layout = mddev->layout;
3507 		chunk = mddev->chunk_sectors;
3508 		disks = mddev->raid_disks - mddev->delta_disks;
3509 		break;
3510 	case geo_new:
3511 		layout = mddev->new_layout;
3512 		chunk = mddev->new_chunk_sectors;
3513 		disks = mddev->raid_disks;
3514 		break;
3515 	default: /* avoid 'may be unused' warnings */
3516 	case geo_start: /* new when starting reshape - raid_disks not
3517 			 * updated yet. */
3518 		layout = mddev->new_layout;
3519 		chunk = mddev->new_chunk_sectors;
3520 		disks = mddev->raid_disks + mddev->delta_disks;
3521 		break;
3522 	}
3523 	if (layout >> 18)
3524 		return -1;
3525 	if (chunk < (PAGE_SIZE >> 9) ||
3526 	    !is_power_of_2(chunk))
3527 		return -2;
3528 	nc = layout & 255;
3529 	fc = (layout >> 8) & 255;
3530 	fo = layout & (1<<16);
3531 	geo->raid_disks = disks;
3532 	geo->near_copies = nc;
3533 	geo->far_copies = fc;
3534 	geo->far_offset = fo;
3535 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3536 	geo->chunk_mask = chunk - 1;
3537 	geo->chunk_shift = ffz(~chunk);
3538 	return nc*fc;
3539 }
3540 
3541 static struct r10conf *setup_conf(struct mddev *mddev)
3542 {
3543 	struct r10conf *conf = NULL;
3544 	int err = -EINVAL;
3545 	struct geom geo;
3546 	int copies;
3547 
3548 	copies = setup_geo(&geo, mddev, geo_new);
3549 
3550 	if (copies == -2) {
3551 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3552 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3553 		       mdname(mddev), PAGE_SIZE);
3554 		goto out;
3555 	}
3556 
3557 	if (copies < 2 || copies > mddev->raid_disks) {
3558 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3559 		       mdname(mddev), mddev->new_layout);
3560 		goto out;
3561 	}
3562 
3563 	err = -ENOMEM;
3564 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3565 	if (!conf)
3566 		goto out;
3567 
3568 	/* FIXME calc properly */
3569 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3570 							    max(0,-mddev->delta_disks)),
3571 				GFP_KERNEL);
3572 	if (!conf->mirrors)
3573 		goto out;
3574 
3575 	conf->tmppage = alloc_page(GFP_KERNEL);
3576 	if (!conf->tmppage)
3577 		goto out;
3578 
3579 	conf->geo = geo;
3580 	conf->copies = copies;
3581 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3582 					   r10bio_pool_free, conf);
3583 	if (!conf->r10bio_pool)
3584 		goto out;
3585 
3586 	calc_sectors(conf, mddev->dev_sectors);
3587 	if (mddev->reshape_position == MaxSector) {
3588 		conf->prev = conf->geo;
3589 		conf->reshape_progress = MaxSector;
3590 	} else {
3591 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3592 			err = -EINVAL;
3593 			goto out;
3594 		}
3595 		conf->reshape_progress = mddev->reshape_position;
3596 		if (conf->prev.far_offset)
3597 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3598 		else
3599 			/* far_copies must be 1 */
3600 			conf->prev.stride = conf->dev_sectors;
3601 	}
3602 	spin_lock_init(&conf->device_lock);
3603 	INIT_LIST_HEAD(&conf->retry_list);
3604 
3605 	spin_lock_init(&conf->resync_lock);
3606 	init_waitqueue_head(&conf->wait_barrier);
3607 
3608 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3609 	if (!conf->thread)
3610 		goto out;
3611 
3612 	conf->mddev = mddev;
3613 	return conf;
3614 
3615  out:
3616 	if (err == -ENOMEM)
3617 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3618 		       mdname(mddev));
3619 	if (conf) {
3620 		if (conf->r10bio_pool)
3621 			mempool_destroy(conf->r10bio_pool);
3622 		kfree(conf->mirrors);
3623 		safe_put_page(conf->tmppage);
3624 		kfree(conf);
3625 	}
3626 	return ERR_PTR(err);
3627 }
3628 
3629 static int run(struct mddev *mddev)
3630 {
3631 	struct r10conf *conf;
3632 	int i, disk_idx, chunk_size;
3633 	struct raid10_info *disk;
3634 	struct md_rdev *rdev;
3635 	sector_t size;
3636 	sector_t min_offset_diff = 0;
3637 	int first = 1;
3638 	bool discard_supported = false;
3639 
3640 	if (mddev->private == NULL) {
3641 		conf = setup_conf(mddev);
3642 		if (IS_ERR(conf))
3643 			return PTR_ERR(conf);
3644 		mddev->private = conf;
3645 	}
3646 	conf = mddev->private;
3647 	if (!conf)
3648 		goto out;
3649 
3650 	mddev->thread = conf->thread;
3651 	conf->thread = NULL;
3652 
3653 	chunk_size = mddev->chunk_sectors << 9;
3654 	if (mddev->queue) {
3655 		blk_queue_max_discard_sectors(mddev->queue,
3656 					      mddev->chunk_sectors);
3657 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3658 		blk_queue_io_min(mddev->queue, chunk_size);
3659 		if (conf->geo.raid_disks % conf->geo.near_copies)
3660 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3661 		else
3662 			blk_queue_io_opt(mddev->queue, chunk_size *
3663 					 (conf->geo.raid_disks / conf->geo.near_copies));
3664 	}
3665 
3666 	rdev_for_each(rdev, mddev) {
3667 		long long diff;
3668 		struct request_queue *q;
3669 
3670 		disk_idx = rdev->raid_disk;
3671 		if (disk_idx < 0)
3672 			continue;
3673 		if (disk_idx >= conf->geo.raid_disks &&
3674 		    disk_idx >= conf->prev.raid_disks)
3675 			continue;
3676 		disk = conf->mirrors + disk_idx;
3677 
3678 		if (test_bit(Replacement, &rdev->flags)) {
3679 			if (disk->replacement)
3680 				goto out_free_conf;
3681 			disk->replacement = rdev;
3682 		} else {
3683 			if (disk->rdev)
3684 				goto out_free_conf;
3685 			disk->rdev = rdev;
3686 		}
3687 		q = bdev_get_queue(rdev->bdev);
3688 		if (q->merge_bvec_fn)
3689 			mddev->merge_check_needed = 1;
3690 		diff = (rdev->new_data_offset - rdev->data_offset);
3691 		if (!mddev->reshape_backwards)
3692 			diff = -diff;
3693 		if (diff < 0)
3694 			diff = 0;
3695 		if (first || diff < min_offset_diff)
3696 			min_offset_diff = diff;
3697 
3698 		if (mddev->gendisk)
3699 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3700 					  rdev->data_offset << 9);
3701 
3702 		disk->head_position = 0;
3703 
3704 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3705 			discard_supported = true;
3706 	}
3707 
3708 	if (mddev->queue) {
3709 		if (discard_supported)
3710 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3711 						mddev->queue);
3712 		else
3713 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3714 						  mddev->queue);
3715 	}
3716 	/* need to check that every block has at least one working mirror */
3717 	if (!enough(conf, -1)) {
3718 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3719 		       mdname(mddev));
3720 		goto out_free_conf;
3721 	}
3722 
3723 	if (conf->reshape_progress != MaxSector) {
3724 		/* must ensure that shape change is supported */
3725 		if (conf->geo.far_copies != 1 &&
3726 		    conf->geo.far_offset == 0)
3727 			goto out_free_conf;
3728 		if (conf->prev.far_copies != 1 &&
3729 		    conf->prev.far_offset == 0)
3730 			goto out_free_conf;
3731 	}
3732 
3733 	mddev->degraded = 0;
3734 	for (i = 0;
3735 	     i < conf->geo.raid_disks
3736 		     || i < conf->prev.raid_disks;
3737 	     i++) {
3738 
3739 		disk = conf->mirrors + i;
3740 
3741 		if (!disk->rdev && disk->replacement) {
3742 			/* The replacement is all we have - use it */
3743 			disk->rdev = disk->replacement;
3744 			disk->replacement = NULL;
3745 			clear_bit(Replacement, &disk->rdev->flags);
3746 		}
3747 
3748 		if (!disk->rdev ||
3749 		    !test_bit(In_sync, &disk->rdev->flags)) {
3750 			disk->head_position = 0;
3751 			mddev->degraded++;
3752 			if (disk->rdev)
3753 				conf->fullsync = 1;
3754 		}
3755 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3756 	}
3757 
3758 	if (mddev->recovery_cp != MaxSector)
3759 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3760 		       " -- starting background reconstruction\n",
3761 		       mdname(mddev));
3762 	printk(KERN_INFO
3763 		"md/raid10:%s: active with %d out of %d devices\n",
3764 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3765 		conf->geo.raid_disks);
3766 	/*
3767 	 * Ok, everything is just fine now
3768 	 */
3769 	mddev->dev_sectors = conf->dev_sectors;
3770 	size = raid10_size(mddev, 0, 0);
3771 	md_set_array_sectors(mddev, size);
3772 	mddev->resync_max_sectors = size;
3773 
3774 	if (mddev->queue) {
3775 		int stripe = conf->geo.raid_disks *
3776 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3777 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3778 		mddev->queue->backing_dev_info.congested_data = mddev;
3779 
3780 		/* Calculate max read-ahead size.
3781 		 * We need to readahead at least twice a whole stripe....
3782 		 * maybe...
3783 		 */
3784 		stripe /= conf->geo.near_copies;
3785 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3786 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3787 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3788 	}
3789 
3790 
3791 	if (md_integrity_register(mddev))
3792 		goto out_free_conf;
3793 
3794 	if (conf->reshape_progress != MaxSector) {
3795 		unsigned long before_length, after_length;
3796 
3797 		before_length = ((1 << conf->prev.chunk_shift) *
3798 				 conf->prev.far_copies);
3799 		after_length = ((1 << conf->geo.chunk_shift) *
3800 				conf->geo.far_copies);
3801 
3802 		if (max(before_length, after_length) > min_offset_diff) {
3803 			/* This cannot work */
3804 			printk("md/raid10: offset difference not enough to continue reshape\n");
3805 			goto out_free_conf;
3806 		}
3807 		conf->offset_diff = min_offset_diff;
3808 
3809 		conf->reshape_safe = conf->reshape_progress;
3810 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3811 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3812 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3813 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3814 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3815 							"reshape");
3816 	}
3817 
3818 	return 0;
3819 
3820 out_free_conf:
3821 	md_unregister_thread(&mddev->thread);
3822 	if (conf->r10bio_pool)
3823 		mempool_destroy(conf->r10bio_pool);
3824 	safe_put_page(conf->tmppage);
3825 	kfree(conf->mirrors);
3826 	kfree(conf);
3827 	mddev->private = NULL;
3828 out:
3829 	return -EIO;
3830 }
3831 
3832 static int stop(struct mddev *mddev)
3833 {
3834 	struct r10conf *conf = mddev->private;
3835 
3836 	raise_barrier(conf, 0);
3837 	lower_barrier(conf);
3838 
3839 	md_unregister_thread(&mddev->thread);
3840 	if (mddev->queue)
3841 		/* the unplug fn references 'conf'*/
3842 		blk_sync_queue(mddev->queue);
3843 
3844 	if (conf->r10bio_pool)
3845 		mempool_destroy(conf->r10bio_pool);
3846 	safe_put_page(conf->tmppage);
3847 	kfree(conf->mirrors);
3848 	kfree(conf);
3849 	mddev->private = NULL;
3850 	return 0;
3851 }
3852 
3853 static void raid10_quiesce(struct mddev *mddev, int state)
3854 {
3855 	struct r10conf *conf = mddev->private;
3856 
3857 	switch(state) {
3858 	case 1:
3859 		raise_barrier(conf, 0);
3860 		break;
3861 	case 0:
3862 		lower_barrier(conf);
3863 		break;
3864 	}
3865 }
3866 
3867 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3868 {
3869 	/* Resize of 'far' arrays is not supported.
3870 	 * For 'near' and 'offset' arrays we can set the
3871 	 * number of sectors used to be an appropriate multiple
3872 	 * of the chunk size.
3873 	 * For 'offset', this is far_copies*chunksize.
3874 	 * For 'near' the multiplier is the LCM of
3875 	 * near_copies and raid_disks.
3876 	 * So if far_copies > 1 && !far_offset, fail.
3877 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3878 	 * multiply by chunk_size.  Then round to this number.
3879 	 * This is mostly done by raid10_size()
3880 	 */
3881 	struct r10conf *conf = mddev->private;
3882 	sector_t oldsize, size;
3883 
3884 	if (mddev->reshape_position != MaxSector)
3885 		return -EBUSY;
3886 
3887 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3888 		return -EINVAL;
3889 
3890 	oldsize = raid10_size(mddev, 0, 0);
3891 	size = raid10_size(mddev, sectors, 0);
3892 	if (mddev->external_size &&
3893 	    mddev->array_sectors > size)
3894 		return -EINVAL;
3895 	if (mddev->bitmap) {
3896 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3897 		if (ret)
3898 			return ret;
3899 	}
3900 	md_set_array_sectors(mddev, size);
3901 	set_capacity(mddev->gendisk, mddev->array_sectors);
3902 	revalidate_disk(mddev->gendisk);
3903 	if (sectors > mddev->dev_sectors &&
3904 	    mddev->recovery_cp > oldsize) {
3905 		mddev->recovery_cp = oldsize;
3906 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3907 	}
3908 	calc_sectors(conf, sectors);
3909 	mddev->dev_sectors = conf->dev_sectors;
3910 	mddev->resync_max_sectors = size;
3911 	return 0;
3912 }
3913 
3914 static void *raid10_takeover_raid0(struct mddev *mddev)
3915 {
3916 	struct md_rdev *rdev;
3917 	struct r10conf *conf;
3918 
3919 	if (mddev->degraded > 0) {
3920 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3921 		       mdname(mddev));
3922 		return ERR_PTR(-EINVAL);
3923 	}
3924 
3925 	/* Set new parameters */
3926 	mddev->new_level = 10;
3927 	/* new layout: far_copies = 1, near_copies = 2 */
3928 	mddev->new_layout = (1<<8) + 2;
3929 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3930 	mddev->delta_disks = mddev->raid_disks;
3931 	mddev->raid_disks *= 2;
3932 	/* make sure it will be not marked as dirty */
3933 	mddev->recovery_cp = MaxSector;
3934 
3935 	conf = setup_conf(mddev);
3936 	if (!IS_ERR(conf)) {
3937 		rdev_for_each(rdev, mddev)
3938 			if (rdev->raid_disk >= 0)
3939 				rdev->new_raid_disk = rdev->raid_disk * 2;
3940 		conf->barrier = 1;
3941 	}
3942 
3943 	return conf;
3944 }
3945 
3946 static void *raid10_takeover(struct mddev *mddev)
3947 {
3948 	struct r0conf *raid0_conf;
3949 
3950 	/* raid10 can take over:
3951 	 *  raid0 - providing it has only two drives
3952 	 */
3953 	if (mddev->level == 0) {
3954 		/* for raid0 takeover only one zone is supported */
3955 		raid0_conf = mddev->private;
3956 		if (raid0_conf->nr_strip_zones > 1) {
3957 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3958 			       " with more than one zone.\n",
3959 			       mdname(mddev));
3960 			return ERR_PTR(-EINVAL);
3961 		}
3962 		return raid10_takeover_raid0(mddev);
3963 	}
3964 	return ERR_PTR(-EINVAL);
3965 }
3966 
3967 static int raid10_check_reshape(struct mddev *mddev)
3968 {
3969 	/* Called when there is a request to change
3970 	 * - layout (to ->new_layout)
3971 	 * - chunk size (to ->new_chunk_sectors)
3972 	 * - raid_disks (by delta_disks)
3973 	 * or when trying to restart a reshape that was ongoing.
3974 	 *
3975 	 * We need to validate the request and possibly allocate
3976 	 * space if that might be an issue later.
3977 	 *
3978 	 * Currently we reject any reshape of a 'far' mode array,
3979 	 * allow chunk size to change if new is generally acceptable,
3980 	 * allow raid_disks to increase, and allow
3981 	 * a switch between 'near' mode and 'offset' mode.
3982 	 */
3983 	struct r10conf *conf = mddev->private;
3984 	struct geom geo;
3985 
3986 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3987 		return -EINVAL;
3988 
3989 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3990 		/* mustn't change number of copies */
3991 		return -EINVAL;
3992 	if (geo.far_copies > 1 && !geo.far_offset)
3993 		/* Cannot switch to 'far' mode */
3994 		return -EINVAL;
3995 
3996 	if (mddev->array_sectors & geo.chunk_mask)
3997 			/* not factor of array size */
3998 			return -EINVAL;
3999 
4000 	if (!enough(conf, -1))
4001 		return -EINVAL;
4002 
4003 	kfree(conf->mirrors_new);
4004 	conf->mirrors_new = NULL;
4005 	if (mddev->delta_disks > 0) {
4006 		/* allocate new 'mirrors' list */
4007 		conf->mirrors_new = kzalloc(
4008 			sizeof(struct raid10_info)
4009 			*(mddev->raid_disks +
4010 			  mddev->delta_disks),
4011 			GFP_KERNEL);
4012 		if (!conf->mirrors_new)
4013 			return -ENOMEM;
4014 	}
4015 	return 0;
4016 }
4017 
4018 /*
4019  * Need to check if array has failed when deciding whether to:
4020  *  - start an array
4021  *  - remove non-faulty devices
4022  *  - add a spare
4023  *  - allow a reshape
4024  * This determination is simple when no reshape is happening.
4025  * However if there is a reshape, we need to carefully check
4026  * both the before and after sections.
4027  * This is because some failed devices may only affect one
4028  * of the two sections, and some non-in_sync devices may
4029  * be insync in the section most affected by failed devices.
4030  */
4031 static int calc_degraded(struct r10conf *conf)
4032 {
4033 	int degraded, degraded2;
4034 	int i;
4035 
4036 	rcu_read_lock();
4037 	degraded = 0;
4038 	/* 'prev' section first */
4039 	for (i = 0; i < conf->prev.raid_disks; i++) {
4040 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041 		if (!rdev || test_bit(Faulty, &rdev->flags))
4042 			degraded++;
4043 		else if (!test_bit(In_sync, &rdev->flags))
4044 			/* When we can reduce the number of devices in
4045 			 * an array, this might not contribute to
4046 			 * 'degraded'.  It does now.
4047 			 */
4048 			degraded++;
4049 	}
4050 	rcu_read_unlock();
4051 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4052 		return degraded;
4053 	rcu_read_lock();
4054 	degraded2 = 0;
4055 	for (i = 0; i < conf->geo.raid_disks; i++) {
4056 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4057 		if (!rdev || test_bit(Faulty, &rdev->flags))
4058 			degraded2++;
4059 		else if (!test_bit(In_sync, &rdev->flags)) {
4060 			/* If reshape is increasing the number of devices,
4061 			 * this section has already been recovered, so
4062 			 * it doesn't contribute to degraded.
4063 			 * else it does.
4064 			 */
4065 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4066 				degraded2++;
4067 		}
4068 	}
4069 	rcu_read_unlock();
4070 	if (degraded2 > degraded)
4071 		return degraded2;
4072 	return degraded;
4073 }
4074 
4075 static int raid10_start_reshape(struct mddev *mddev)
4076 {
4077 	/* A 'reshape' has been requested. This commits
4078 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4079 	 * This also checks if there are enough spares and adds them
4080 	 * to the array.
4081 	 * We currently require enough spares to make the final
4082 	 * array non-degraded.  We also require that the difference
4083 	 * between old and new data_offset - on each device - is
4084 	 * enough that we never risk over-writing.
4085 	 */
4086 
4087 	unsigned long before_length, after_length;
4088 	sector_t min_offset_diff = 0;
4089 	int first = 1;
4090 	struct geom new;
4091 	struct r10conf *conf = mddev->private;
4092 	struct md_rdev *rdev;
4093 	int spares = 0;
4094 	int ret;
4095 
4096 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4097 		return -EBUSY;
4098 
4099 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4100 		return -EINVAL;
4101 
4102 	before_length = ((1 << conf->prev.chunk_shift) *
4103 			 conf->prev.far_copies);
4104 	after_length = ((1 << conf->geo.chunk_shift) *
4105 			conf->geo.far_copies);
4106 
4107 	rdev_for_each(rdev, mddev) {
4108 		if (!test_bit(In_sync, &rdev->flags)
4109 		    && !test_bit(Faulty, &rdev->flags))
4110 			spares++;
4111 		if (rdev->raid_disk >= 0) {
4112 			long long diff = (rdev->new_data_offset
4113 					  - rdev->data_offset);
4114 			if (!mddev->reshape_backwards)
4115 				diff = -diff;
4116 			if (diff < 0)
4117 				diff = 0;
4118 			if (first || diff < min_offset_diff)
4119 				min_offset_diff = diff;
4120 		}
4121 	}
4122 
4123 	if (max(before_length, after_length) > min_offset_diff)
4124 		return -EINVAL;
4125 
4126 	if (spares < mddev->delta_disks)
4127 		return -EINVAL;
4128 
4129 	conf->offset_diff = min_offset_diff;
4130 	spin_lock_irq(&conf->device_lock);
4131 	if (conf->mirrors_new) {
4132 		memcpy(conf->mirrors_new, conf->mirrors,
4133 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4134 		smp_mb();
4135 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4136 		conf->mirrors_old = conf->mirrors;
4137 		conf->mirrors = conf->mirrors_new;
4138 		conf->mirrors_new = NULL;
4139 	}
4140 	setup_geo(&conf->geo, mddev, geo_start);
4141 	smp_mb();
4142 	if (mddev->reshape_backwards) {
4143 		sector_t size = raid10_size(mddev, 0, 0);
4144 		if (size < mddev->array_sectors) {
4145 			spin_unlock_irq(&conf->device_lock);
4146 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4147 			       mdname(mddev));
4148 			return -EINVAL;
4149 		}
4150 		mddev->resync_max_sectors = size;
4151 		conf->reshape_progress = size;
4152 	} else
4153 		conf->reshape_progress = 0;
4154 	spin_unlock_irq(&conf->device_lock);
4155 
4156 	if (mddev->delta_disks && mddev->bitmap) {
4157 		ret = bitmap_resize(mddev->bitmap,
4158 				    raid10_size(mddev, 0,
4159 						conf->geo.raid_disks),
4160 				    0, 0);
4161 		if (ret)
4162 			goto abort;
4163 	}
4164 	if (mddev->delta_disks > 0) {
4165 		rdev_for_each(rdev, mddev)
4166 			if (rdev->raid_disk < 0 &&
4167 			    !test_bit(Faulty, &rdev->flags)) {
4168 				if (raid10_add_disk(mddev, rdev) == 0) {
4169 					if (rdev->raid_disk >=
4170 					    conf->prev.raid_disks)
4171 						set_bit(In_sync, &rdev->flags);
4172 					else
4173 						rdev->recovery_offset = 0;
4174 
4175 					if (sysfs_link_rdev(mddev, rdev))
4176 						/* Failure here  is OK */;
4177 				}
4178 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4179 				   && !test_bit(Faulty, &rdev->flags)) {
4180 				/* This is a spare that was manually added */
4181 				set_bit(In_sync, &rdev->flags);
4182 			}
4183 	}
4184 	/* When a reshape changes the number of devices,
4185 	 * ->degraded is measured against the larger of the
4186 	 * pre and  post numbers.
4187 	 */
4188 	spin_lock_irq(&conf->device_lock);
4189 	mddev->degraded = calc_degraded(conf);
4190 	spin_unlock_irq(&conf->device_lock);
4191 	mddev->raid_disks = conf->geo.raid_disks;
4192 	mddev->reshape_position = conf->reshape_progress;
4193 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4194 
4195 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4196 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4197 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4198 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4199 
4200 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4201 						"reshape");
4202 	if (!mddev->sync_thread) {
4203 		ret = -EAGAIN;
4204 		goto abort;
4205 	}
4206 	conf->reshape_checkpoint = jiffies;
4207 	md_wakeup_thread(mddev->sync_thread);
4208 	md_new_event(mddev);
4209 	return 0;
4210 
4211 abort:
4212 	mddev->recovery = 0;
4213 	spin_lock_irq(&conf->device_lock);
4214 	conf->geo = conf->prev;
4215 	mddev->raid_disks = conf->geo.raid_disks;
4216 	rdev_for_each(rdev, mddev)
4217 		rdev->new_data_offset = rdev->data_offset;
4218 	smp_wmb();
4219 	conf->reshape_progress = MaxSector;
4220 	mddev->reshape_position = MaxSector;
4221 	spin_unlock_irq(&conf->device_lock);
4222 	return ret;
4223 }
4224 
4225 /* Calculate the last device-address that could contain
4226  * any block from the chunk that includes the array-address 's'
4227  * and report the next address.
4228  * i.e. the address returned will be chunk-aligned and after
4229  * any data that is in the chunk containing 's'.
4230  */
4231 static sector_t last_dev_address(sector_t s, struct geom *geo)
4232 {
4233 	s = (s | geo->chunk_mask) + 1;
4234 	s >>= geo->chunk_shift;
4235 	s *= geo->near_copies;
4236 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4237 	s *= geo->far_copies;
4238 	s <<= geo->chunk_shift;
4239 	return s;
4240 }
4241 
4242 /* Calculate the first device-address that could contain
4243  * any block from the chunk that includes the array-address 's'.
4244  * This too will be the start of a chunk
4245  */
4246 static sector_t first_dev_address(sector_t s, struct geom *geo)
4247 {
4248 	s >>= geo->chunk_shift;
4249 	s *= geo->near_copies;
4250 	sector_div(s, geo->raid_disks);
4251 	s *= geo->far_copies;
4252 	s <<= geo->chunk_shift;
4253 	return s;
4254 }
4255 
4256 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4257 				int *skipped)
4258 {
4259 	/* We simply copy at most one chunk (smallest of old and new)
4260 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4261 	 * or we hit a bad block or something.
4262 	 * This might mean we pause for normal IO in the middle of
4263 	 * a chunk, but that is not a problem was mddev->reshape_position
4264 	 * can record any location.
4265 	 *
4266 	 * If we will want to write to a location that isn't
4267 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4268 	 * we need to flush all reshape requests and update the metadata.
4269 	 *
4270 	 * When reshaping forwards (e.g. to more devices), we interpret
4271 	 * 'safe' as the earliest block which might not have been copied
4272 	 * down yet.  We divide this by previous stripe size and multiply
4273 	 * by previous stripe length to get lowest device offset that we
4274 	 * cannot write to yet.
4275 	 * We interpret 'sector_nr' as an address that we want to write to.
4276 	 * From this we use last_device_address() to find where we might
4277 	 * write to, and first_device_address on the  'safe' position.
4278 	 * If this 'next' write position is after the 'safe' position,
4279 	 * we must update the metadata to increase the 'safe' position.
4280 	 *
4281 	 * When reshaping backwards, we round in the opposite direction
4282 	 * and perform the reverse test:  next write position must not be
4283 	 * less than current safe position.
4284 	 *
4285 	 * In all this the minimum difference in data offsets
4286 	 * (conf->offset_diff - always positive) allows a bit of slack,
4287 	 * so next can be after 'safe', but not by more than offset_disk
4288 	 *
4289 	 * We need to prepare all the bios here before we start any IO
4290 	 * to ensure the size we choose is acceptable to all devices.
4291 	 * The means one for each copy for write-out and an extra one for
4292 	 * read-in.
4293 	 * We store the read-in bio in ->master_bio and the others in
4294 	 * ->devs[x].bio and ->devs[x].repl_bio.
4295 	 */
4296 	struct r10conf *conf = mddev->private;
4297 	struct r10bio *r10_bio;
4298 	sector_t next, safe, last;
4299 	int max_sectors;
4300 	int nr_sectors;
4301 	int s;
4302 	struct md_rdev *rdev;
4303 	int need_flush = 0;
4304 	struct bio *blist;
4305 	struct bio *bio, *read_bio;
4306 	int sectors_done = 0;
4307 
4308 	if (sector_nr == 0) {
4309 		/* If restarting in the middle, skip the initial sectors */
4310 		if (mddev->reshape_backwards &&
4311 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4312 			sector_nr = (raid10_size(mddev, 0, 0)
4313 				     - conf->reshape_progress);
4314 		} else if (!mddev->reshape_backwards &&
4315 			   conf->reshape_progress > 0)
4316 			sector_nr = conf->reshape_progress;
4317 		if (sector_nr) {
4318 			mddev->curr_resync_completed = sector_nr;
4319 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4320 			*skipped = 1;
4321 			return sector_nr;
4322 		}
4323 	}
4324 
4325 	/* We don't use sector_nr to track where we are up to
4326 	 * as that doesn't work well for ->reshape_backwards.
4327 	 * So just use ->reshape_progress.
4328 	 */
4329 	if (mddev->reshape_backwards) {
4330 		/* 'next' is the earliest device address that we might
4331 		 * write to for this chunk in the new layout
4332 		 */
4333 		next = first_dev_address(conf->reshape_progress - 1,
4334 					 &conf->geo);
4335 
4336 		/* 'safe' is the last device address that we might read from
4337 		 * in the old layout after a restart
4338 		 */
4339 		safe = last_dev_address(conf->reshape_safe - 1,
4340 					&conf->prev);
4341 
4342 		if (next + conf->offset_diff < safe)
4343 			need_flush = 1;
4344 
4345 		last = conf->reshape_progress - 1;
4346 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4347 					       & conf->prev.chunk_mask);
4348 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4349 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4350 	} else {
4351 		/* 'next' is after the last device address that we
4352 		 * might write to for this chunk in the new layout
4353 		 */
4354 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4355 
4356 		/* 'safe' is the earliest device address that we might
4357 		 * read from in the old layout after a restart
4358 		 */
4359 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4360 
4361 		/* Need to update metadata if 'next' might be beyond 'safe'
4362 		 * as that would possibly corrupt data
4363 		 */
4364 		if (next > safe + conf->offset_diff)
4365 			need_flush = 1;
4366 
4367 		sector_nr = conf->reshape_progress;
4368 		last  = sector_nr | (conf->geo.chunk_mask
4369 				     & conf->prev.chunk_mask);
4370 
4371 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4372 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4373 	}
4374 
4375 	if (need_flush ||
4376 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4377 		/* Need to update reshape_position in metadata */
4378 		wait_barrier(conf);
4379 		mddev->reshape_position = conf->reshape_progress;
4380 		if (mddev->reshape_backwards)
4381 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4382 				- conf->reshape_progress;
4383 		else
4384 			mddev->curr_resync_completed = conf->reshape_progress;
4385 		conf->reshape_checkpoint = jiffies;
4386 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4387 		md_wakeup_thread(mddev->thread);
4388 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4389 			   kthread_should_stop());
4390 		conf->reshape_safe = mddev->reshape_position;
4391 		allow_barrier(conf);
4392 	}
4393 
4394 read_more:
4395 	/* Now schedule reads for blocks from sector_nr to last */
4396 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4397 	raise_barrier(conf, sectors_done != 0);
4398 	atomic_set(&r10_bio->remaining, 0);
4399 	r10_bio->mddev = mddev;
4400 	r10_bio->sector = sector_nr;
4401 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4402 	r10_bio->sectors = last - sector_nr + 1;
4403 	rdev = read_balance(conf, r10_bio, &max_sectors);
4404 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4405 
4406 	if (!rdev) {
4407 		/* Cannot read from here, so need to record bad blocks
4408 		 * on all the target devices.
4409 		 */
4410 		// FIXME
4411 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4412 		return sectors_done;
4413 	}
4414 
4415 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4416 
4417 	read_bio->bi_bdev = rdev->bdev;
4418 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4419 			       + rdev->data_offset);
4420 	read_bio->bi_private = r10_bio;
4421 	read_bio->bi_end_io = end_sync_read;
4422 	read_bio->bi_rw = READ;
4423 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4424 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4425 	read_bio->bi_vcnt = 0;
4426 	read_bio->bi_size = 0;
4427 	r10_bio->master_bio = read_bio;
4428 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4429 
4430 	/* Now find the locations in the new layout */
4431 	__raid10_find_phys(&conf->geo, r10_bio);
4432 
4433 	blist = read_bio;
4434 	read_bio->bi_next = NULL;
4435 
4436 	for (s = 0; s < conf->copies*2; s++) {
4437 		struct bio *b;
4438 		int d = r10_bio->devs[s/2].devnum;
4439 		struct md_rdev *rdev2;
4440 		if (s&1) {
4441 			rdev2 = conf->mirrors[d].replacement;
4442 			b = r10_bio->devs[s/2].repl_bio;
4443 		} else {
4444 			rdev2 = conf->mirrors[d].rdev;
4445 			b = r10_bio->devs[s/2].bio;
4446 		}
4447 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4448 			continue;
4449 
4450 		bio_reset(b);
4451 		b->bi_bdev = rdev2->bdev;
4452 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4453 		b->bi_private = r10_bio;
4454 		b->bi_end_io = end_reshape_write;
4455 		b->bi_rw = WRITE;
4456 		b->bi_next = blist;
4457 		blist = b;
4458 	}
4459 
4460 	/* Now add as many pages as possible to all of these bios. */
4461 
4462 	nr_sectors = 0;
4463 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4464 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4465 		int len = (max_sectors - s) << 9;
4466 		if (len > PAGE_SIZE)
4467 			len = PAGE_SIZE;
4468 		for (bio = blist; bio ; bio = bio->bi_next) {
4469 			struct bio *bio2;
4470 			if (bio_add_page(bio, page, len, 0))
4471 				continue;
4472 
4473 			/* Didn't fit, must stop */
4474 			for (bio2 = blist;
4475 			     bio2 && bio2 != bio;
4476 			     bio2 = bio2->bi_next) {
4477 				/* Remove last page from this bio */
4478 				bio2->bi_vcnt--;
4479 				bio2->bi_size -= len;
4480 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4481 			}
4482 			goto bio_full;
4483 		}
4484 		sector_nr += len >> 9;
4485 		nr_sectors += len >> 9;
4486 	}
4487 bio_full:
4488 	r10_bio->sectors = nr_sectors;
4489 
4490 	/* Now submit the read */
4491 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4492 	atomic_inc(&r10_bio->remaining);
4493 	read_bio->bi_next = NULL;
4494 	generic_make_request(read_bio);
4495 	sector_nr += nr_sectors;
4496 	sectors_done += nr_sectors;
4497 	if (sector_nr <= last)
4498 		goto read_more;
4499 
4500 	/* Now that we have done the whole section we can
4501 	 * update reshape_progress
4502 	 */
4503 	if (mddev->reshape_backwards)
4504 		conf->reshape_progress -= sectors_done;
4505 	else
4506 		conf->reshape_progress += sectors_done;
4507 
4508 	return sectors_done;
4509 }
4510 
4511 static void end_reshape_request(struct r10bio *r10_bio);
4512 static int handle_reshape_read_error(struct mddev *mddev,
4513 				     struct r10bio *r10_bio);
4514 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4515 {
4516 	/* Reshape read completed.  Hopefully we have a block
4517 	 * to write out.
4518 	 * If we got a read error then we do sync 1-page reads from
4519 	 * elsewhere until we find the data - or give up.
4520 	 */
4521 	struct r10conf *conf = mddev->private;
4522 	int s;
4523 
4524 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4525 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4526 			/* Reshape has been aborted */
4527 			md_done_sync(mddev, r10_bio->sectors, 0);
4528 			return;
4529 		}
4530 
4531 	/* We definitely have the data in the pages, schedule the
4532 	 * writes.
4533 	 */
4534 	atomic_set(&r10_bio->remaining, 1);
4535 	for (s = 0; s < conf->copies*2; s++) {
4536 		struct bio *b;
4537 		int d = r10_bio->devs[s/2].devnum;
4538 		struct md_rdev *rdev;
4539 		if (s&1) {
4540 			rdev = conf->mirrors[d].replacement;
4541 			b = r10_bio->devs[s/2].repl_bio;
4542 		} else {
4543 			rdev = conf->mirrors[d].rdev;
4544 			b = r10_bio->devs[s/2].bio;
4545 		}
4546 		if (!rdev || test_bit(Faulty, &rdev->flags))
4547 			continue;
4548 		atomic_inc(&rdev->nr_pending);
4549 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4550 		atomic_inc(&r10_bio->remaining);
4551 		b->bi_next = NULL;
4552 		generic_make_request(b);
4553 	}
4554 	end_reshape_request(r10_bio);
4555 }
4556 
4557 static void end_reshape(struct r10conf *conf)
4558 {
4559 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4560 		return;
4561 
4562 	spin_lock_irq(&conf->device_lock);
4563 	conf->prev = conf->geo;
4564 	md_finish_reshape(conf->mddev);
4565 	smp_wmb();
4566 	conf->reshape_progress = MaxSector;
4567 	spin_unlock_irq(&conf->device_lock);
4568 
4569 	/* read-ahead size must cover two whole stripes, which is
4570 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4571 	 */
4572 	if (conf->mddev->queue) {
4573 		int stripe = conf->geo.raid_disks *
4574 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4575 		stripe /= conf->geo.near_copies;
4576 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4577 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4578 	}
4579 	conf->fullsync = 0;
4580 }
4581 
4582 
4583 static int handle_reshape_read_error(struct mddev *mddev,
4584 				     struct r10bio *r10_bio)
4585 {
4586 	/* Use sync reads to get the blocks from somewhere else */
4587 	int sectors = r10_bio->sectors;
4588 	struct r10conf *conf = mddev->private;
4589 	struct {
4590 		struct r10bio r10_bio;
4591 		struct r10dev devs[conf->copies];
4592 	} on_stack;
4593 	struct r10bio *r10b = &on_stack.r10_bio;
4594 	int slot = 0;
4595 	int idx = 0;
4596 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4597 
4598 	r10b->sector = r10_bio->sector;
4599 	__raid10_find_phys(&conf->prev, r10b);
4600 
4601 	while (sectors) {
4602 		int s = sectors;
4603 		int success = 0;
4604 		int first_slot = slot;
4605 
4606 		if (s > (PAGE_SIZE >> 9))
4607 			s = PAGE_SIZE >> 9;
4608 
4609 		while (!success) {
4610 			int d = r10b->devs[slot].devnum;
4611 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4612 			sector_t addr;
4613 			if (rdev == NULL ||
4614 			    test_bit(Faulty, &rdev->flags) ||
4615 			    !test_bit(In_sync, &rdev->flags))
4616 				goto failed;
4617 
4618 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4619 			success = sync_page_io(rdev,
4620 					       addr,
4621 					       s << 9,
4622 					       bvec[idx].bv_page,
4623 					       READ, false);
4624 			if (success)
4625 				break;
4626 		failed:
4627 			slot++;
4628 			if (slot >= conf->copies)
4629 				slot = 0;
4630 			if (slot == first_slot)
4631 				break;
4632 		}
4633 		if (!success) {
4634 			/* couldn't read this block, must give up */
4635 			set_bit(MD_RECOVERY_INTR,
4636 				&mddev->recovery);
4637 			return -EIO;
4638 		}
4639 		sectors -= s;
4640 		idx++;
4641 	}
4642 	return 0;
4643 }
4644 
4645 static void end_reshape_write(struct bio *bio, int error)
4646 {
4647 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4648 	struct r10bio *r10_bio = bio->bi_private;
4649 	struct mddev *mddev = r10_bio->mddev;
4650 	struct r10conf *conf = mddev->private;
4651 	int d;
4652 	int slot;
4653 	int repl;
4654 	struct md_rdev *rdev = NULL;
4655 
4656 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4657 	if (repl)
4658 		rdev = conf->mirrors[d].replacement;
4659 	if (!rdev) {
4660 		smp_mb();
4661 		rdev = conf->mirrors[d].rdev;
4662 	}
4663 
4664 	if (!uptodate) {
4665 		/* FIXME should record badblock */
4666 		md_error(mddev, rdev);
4667 	}
4668 
4669 	rdev_dec_pending(rdev, mddev);
4670 	end_reshape_request(r10_bio);
4671 }
4672 
4673 static void end_reshape_request(struct r10bio *r10_bio)
4674 {
4675 	if (!atomic_dec_and_test(&r10_bio->remaining))
4676 		return;
4677 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4678 	bio_put(r10_bio->master_bio);
4679 	put_buf(r10_bio);
4680 }
4681 
4682 static void raid10_finish_reshape(struct mddev *mddev)
4683 {
4684 	struct r10conf *conf = mddev->private;
4685 
4686 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4687 		return;
4688 
4689 	if (mddev->delta_disks > 0) {
4690 		sector_t size = raid10_size(mddev, 0, 0);
4691 		md_set_array_sectors(mddev, size);
4692 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4693 			mddev->recovery_cp = mddev->resync_max_sectors;
4694 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4695 		}
4696 		mddev->resync_max_sectors = size;
4697 		set_capacity(mddev->gendisk, mddev->array_sectors);
4698 		revalidate_disk(mddev->gendisk);
4699 	} else {
4700 		int d;
4701 		for (d = conf->geo.raid_disks ;
4702 		     d < conf->geo.raid_disks - mddev->delta_disks;
4703 		     d++) {
4704 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4705 			if (rdev)
4706 				clear_bit(In_sync, &rdev->flags);
4707 			rdev = conf->mirrors[d].replacement;
4708 			if (rdev)
4709 				clear_bit(In_sync, &rdev->flags);
4710 		}
4711 	}
4712 	mddev->layout = mddev->new_layout;
4713 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4714 	mddev->reshape_position = MaxSector;
4715 	mddev->delta_disks = 0;
4716 	mddev->reshape_backwards = 0;
4717 }
4718 
4719 static struct md_personality raid10_personality =
4720 {
4721 	.name		= "raid10",
4722 	.level		= 10,
4723 	.owner		= THIS_MODULE,
4724 	.make_request	= make_request,
4725 	.run		= run,
4726 	.stop		= stop,
4727 	.status		= status,
4728 	.error_handler	= error,
4729 	.hot_add_disk	= raid10_add_disk,
4730 	.hot_remove_disk= raid10_remove_disk,
4731 	.spare_active	= raid10_spare_active,
4732 	.sync_request	= sync_request,
4733 	.quiesce	= raid10_quiesce,
4734 	.size		= raid10_size,
4735 	.resize		= raid10_resize,
4736 	.takeover	= raid10_takeover,
4737 	.check_reshape	= raid10_check_reshape,
4738 	.start_reshape	= raid10_start_reshape,
4739 	.finish_reshape	= raid10_finish_reshape,
4740 };
4741 
4742 static int __init raid_init(void)
4743 {
4744 	return register_md_personality(&raid10_personality);
4745 }
4746 
4747 static void raid_exit(void)
4748 {
4749 	unregister_md_personality(&raid10_personality);
4750 }
4751 
4752 module_init(raid_init);
4753 module_exit(raid_exit);
4754 MODULE_LICENSE("GPL");
4755 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4756 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4757 MODULE_ALIAS("md-raid10");
4758 MODULE_ALIAS("md-level-10");
4759 
4760 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4761