xref: /openbmc/linux/drivers/md/raid10.c (revision 160b8e75)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 	struct r10conf *conf = data;
157 	struct r10bio *r10_bio;
158 	struct bio *bio;
159 	int j;
160 	int nalloc, nalloc_rp;
161 	struct resync_pages *rps;
162 
163 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 	if (!r10_bio)
165 		return NULL;
166 
167 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 		nalloc = conf->copies; /* resync */
170 	else
171 		nalloc = 2; /* recovery */
172 
173 	/* allocate once for all bios */
174 	if (!conf->have_replacement)
175 		nalloc_rp = nalloc;
176 	else
177 		nalloc_rp = nalloc * 2;
178 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 	if (!rps)
180 		goto out_free_r10bio;
181 
182 	/*
183 	 * Allocate bios.
184 	 */
185 	for (j = nalloc ; j-- ; ) {
186 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 		if (!bio)
188 			goto out_free_bio;
189 		r10_bio->devs[j].bio = bio;
190 		if (!conf->have_replacement)
191 			continue;
192 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 		if (!bio)
194 			goto out_free_bio;
195 		r10_bio->devs[j].repl_bio = bio;
196 	}
197 	/*
198 	 * Allocate RESYNC_PAGES data pages and attach them
199 	 * where needed.
200 	 */
201 	for (j = 0; j < nalloc; j++) {
202 		struct bio *rbio = r10_bio->devs[j].repl_bio;
203 		struct resync_pages *rp, *rp_repl;
204 
205 		rp = &rps[j];
206 		if (rbio)
207 			rp_repl = &rps[nalloc + j];
208 
209 		bio = r10_bio->devs[j].bio;
210 
211 		if (!j || test_bit(MD_RECOVERY_SYNC,
212 				   &conf->mddev->recovery)) {
213 			if (resync_alloc_pages(rp, gfp_flags))
214 				goto out_free_pages;
215 		} else {
216 			memcpy(rp, &rps[0], sizeof(*rp));
217 			resync_get_all_pages(rp);
218 		}
219 
220 		rp->raid_bio = r10_bio;
221 		bio->bi_private = rp;
222 		if (rbio) {
223 			memcpy(rp_repl, rp, sizeof(*rp));
224 			rbio->bi_private = rp_repl;
225 		}
226 	}
227 
228 	return r10_bio;
229 
230 out_free_pages:
231 	while (--j >= 0)
232 		resync_free_pages(&rps[j * 2]);
233 
234 	j = 0;
235 out_free_bio:
236 	for ( ; j < nalloc; j++) {
237 		if (r10_bio->devs[j].bio)
238 			bio_put(r10_bio->devs[j].bio);
239 		if (r10_bio->devs[j].repl_bio)
240 			bio_put(r10_bio->devs[j].repl_bio);
241 	}
242 	kfree(rps);
243 out_free_r10bio:
244 	r10bio_pool_free(r10_bio, conf);
245 	return NULL;
246 }
247 
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 	struct r10conf *conf = data;
251 	struct r10bio *r10bio = __r10_bio;
252 	int j;
253 	struct resync_pages *rp = NULL;
254 
255 	for (j = conf->copies; j--; ) {
256 		struct bio *bio = r10bio->devs[j].bio;
257 
258 		rp = get_resync_pages(bio);
259 		resync_free_pages(rp);
260 		bio_put(bio);
261 
262 		bio = r10bio->devs[j].repl_bio;
263 		if (bio)
264 			bio_put(bio);
265 	}
266 
267 	/* resync pages array stored in the 1st bio's .bi_private */
268 	kfree(rp);
269 
270 	r10bio_pool_free(r10bio, conf);
271 }
272 
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275 	int i;
276 
277 	for (i = 0; i < conf->copies; i++) {
278 		struct bio **bio = & r10_bio->devs[i].bio;
279 		if (!BIO_SPECIAL(*bio))
280 			bio_put(*bio);
281 		*bio = NULL;
282 		bio = &r10_bio->devs[i].repl_bio;
283 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 			bio_put(*bio);
285 		*bio = NULL;
286 	}
287 }
288 
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291 	struct r10conf *conf = r10_bio->mddev->private;
292 
293 	put_all_bios(conf, r10_bio);
294 	mempool_free(r10_bio, conf->r10bio_pool);
295 }
296 
297 static void put_buf(struct r10bio *r10_bio)
298 {
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	mempool_free(r10_bio, conf->r10buf_pool);
302 
303 	lower_barrier(conf);
304 }
305 
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308 	unsigned long flags;
309 	struct mddev *mddev = r10_bio->mddev;
310 	struct r10conf *conf = mddev->private;
311 
312 	spin_lock_irqsave(&conf->device_lock, flags);
313 	list_add(&r10_bio->retry_list, &conf->retry_list);
314 	conf->nr_queued ++;
315 	spin_unlock_irqrestore(&conf->device_lock, flags);
316 
317 	/* wake up frozen array... */
318 	wake_up(&conf->wait_barrier);
319 
320 	md_wakeup_thread(mddev->thread);
321 }
322 
323 /*
324  * raid_end_bio_io() is called when we have finished servicing a mirrored
325  * operation and are ready to return a success/failure code to the buffer
326  * cache layer.
327  */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330 	struct bio *bio = r10_bio->master_bio;
331 	struct r10conf *conf = r10_bio->mddev->private;
332 
333 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_endio(bio);
337 	/*
338 	 * Wake up any possible resync thread that waits for the device
339 	 * to go idle.
340 	 */
341 	allow_barrier(conf);
342 
343 	free_r10bio(r10_bio);
344 }
345 
346 /*
347  * Update disk head position estimator based on IRQ completion info.
348  */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351 	struct r10conf *conf = r10_bio->mddev->private;
352 
353 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 		r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356 
357 /*
358  * Find the disk number which triggered given bio
359  */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 			 struct bio *bio, int *slotp, int *replp)
362 {
363 	int slot;
364 	int repl = 0;
365 
366 	for (slot = 0; slot < conf->copies; slot++) {
367 		if (r10_bio->devs[slot].bio == bio)
368 			break;
369 		if (r10_bio->devs[slot].repl_bio == bio) {
370 			repl = 1;
371 			break;
372 		}
373 	}
374 
375 	BUG_ON(slot == conf->copies);
376 	update_head_pos(slot, r10_bio);
377 
378 	if (slotp)
379 		*slotp = slot;
380 	if (replp)
381 		*replp = repl;
382 	return r10_bio->devs[slot].devnum;
383 }
384 
385 static void raid10_end_read_request(struct bio *bio)
386 {
387 	int uptodate = !bio->bi_status;
388 	struct r10bio *r10_bio = bio->bi_private;
389 	int slot;
390 	struct md_rdev *rdev;
391 	struct r10conf *conf = r10_bio->mddev->private;
392 
393 	slot = r10_bio->read_slot;
394 	rdev = r10_bio->devs[slot].rdev;
395 	/*
396 	 * this branch is our 'one mirror IO has finished' event handler:
397 	 */
398 	update_head_pos(slot, r10_bio);
399 
400 	if (uptodate) {
401 		/*
402 		 * Set R10BIO_Uptodate in our master bio, so that
403 		 * we will return a good error code to the higher
404 		 * levels even if IO on some other mirrored buffer fails.
405 		 *
406 		 * The 'master' represents the composite IO operation to
407 		 * user-side. So if something waits for IO, then it will
408 		 * wait for the 'master' bio.
409 		 */
410 		set_bit(R10BIO_Uptodate, &r10_bio->state);
411 	} else {
412 		/* If all other devices that store this block have
413 		 * failed, we want to return the error upwards rather
414 		 * than fail the last device.  Here we redefine
415 		 * "uptodate" to mean "Don't want to retry"
416 		 */
417 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 			     rdev->raid_disk))
419 			uptodate = 1;
420 	}
421 	if (uptodate) {
422 		raid_end_bio_io(r10_bio);
423 		rdev_dec_pending(rdev, conf->mddev);
424 	} else {
425 		/*
426 		 * oops, read error - keep the refcount on the rdev
427 		 */
428 		char b[BDEVNAME_SIZE];
429 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 				   mdname(conf->mddev),
431 				   bdevname(rdev->bdev, b),
432 				   (unsigned long long)r10_bio->sector);
433 		set_bit(R10BIO_ReadError, &r10_bio->state);
434 		reschedule_retry(r10_bio);
435 	}
436 }
437 
438 static void close_write(struct r10bio *r10_bio)
439 {
440 	/* clear the bitmap if all writes complete successfully */
441 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 			r10_bio->sectors,
443 			!test_bit(R10BIO_Degraded, &r10_bio->state),
444 			0);
445 	md_write_end(r10_bio->mddev);
446 }
447 
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450 	if (atomic_dec_and_test(&r10_bio->remaining)) {
451 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 			reschedule_retry(r10_bio);
453 		else {
454 			close_write(r10_bio);
455 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 				reschedule_retry(r10_bio);
457 			else
458 				raid_end_bio_io(r10_bio);
459 		}
460 	}
461 }
462 
463 static void raid10_end_write_request(struct bio *bio)
464 {
465 	struct r10bio *r10_bio = bio->bi_private;
466 	int dev;
467 	int dec_rdev = 1;
468 	struct r10conf *conf = r10_bio->mddev->private;
469 	int slot, repl;
470 	struct md_rdev *rdev = NULL;
471 	struct bio *to_put = NULL;
472 	bool discard_error;
473 
474 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475 
476 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477 
478 	if (repl)
479 		rdev = conf->mirrors[dev].replacement;
480 	if (!rdev) {
481 		smp_rmb();
482 		repl = 0;
483 		rdev = conf->mirrors[dev].rdev;
484 	}
485 	/*
486 	 * this branch is our 'one mirror IO has finished' event handler:
487 	 */
488 	if (bio->bi_status && !discard_error) {
489 		if (repl)
490 			/* Never record new bad blocks to replacement,
491 			 * just fail it.
492 			 */
493 			md_error(rdev->mddev, rdev);
494 		else {
495 			set_bit(WriteErrorSeen,	&rdev->flags);
496 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 				set_bit(MD_RECOVERY_NEEDED,
498 					&rdev->mddev->recovery);
499 
500 			dec_rdev = 0;
501 			if (test_bit(FailFast, &rdev->flags) &&
502 			    (bio->bi_opf & MD_FAILFAST)) {
503 				md_error(rdev->mddev, rdev);
504 				if (!test_bit(Faulty, &rdev->flags))
505 					/* This is the only remaining device,
506 					 * We need to retry the write without
507 					 * FailFast
508 					 */
509 					set_bit(R10BIO_WriteError, &r10_bio->state);
510 				else {
511 					r10_bio->devs[slot].bio = NULL;
512 					to_put = bio;
513 					dec_rdev = 1;
514 				}
515 			} else
516 				set_bit(R10BIO_WriteError, &r10_bio->state);
517 		}
518 	} else {
519 		/*
520 		 * Set R10BIO_Uptodate in our master bio, so that
521 		 * we will return a good error code for to the higher
522 		 * levels even if IO on some other mirrored buffer fails.
523 		 *
524 		 * The 'master' represents the composite IO operation to
525 		 * user-side. So if something waits for IO, then it will
526 		 * wait for the 'master' bio.
527 		 */
528 		sector_t first_bad;
529 		int bad_sectors;
530 
531 		/*
532 		 * Do not set R10BIO_Uptodate if the current device is
533 		 * rebuilding or Faulty. This is because we cannot use
534 		 * such device for properly reading the data back (we could
535 		 * potentially use it, if the current write would have felt
536 		 * before rdev->recovery_offset, but for simplicity we don't
537 		 * check this here.
538 		 */
539 		if (test_bit(In_sync, &rdev->flags) &&
540 		    !test_bit(Faulty, &rdev->flags))
541 			set_bit(R10BIO_Uptodate, &r10_bio->state);
542 
543 		/* Maybe we can clear some bad blocks. */
544 		if (is_badblock(rdev,
545 				r10_bio->devs[slot].addr,
546 				r10_bio->sectors,
547 				&first_bad, &bad_sectors) && !discard_error) {
548 			bio_put(bio);
549 			if (repl)
550 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 			else
552 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 			dec_rdev = 0;
554 			set_bit(R10BIO_MadeGood, &r10_bio->state);
555 		}
556 	}
557 
558 	/*
559 	 *
560 	 * Let's see if all mirrored write operations have finished
561 	 * already.
562 	 */
563 	one_write_done(r10_bio);
564 	if (dec_rdev)
565 		rdev_dec_pending(rdev, conf->mddev);
566 	if (to_put)
567 		bio_put(to_put);
568 }
569 
570 /*
571  * RAID10 layout manager
572  * As well as the chunksize and raid_disks count, there are two
573  * parameters: near_copies and far_copies.
574  * near_copies * far_copies must be <= raid_disks.
575  * Normally one of these will be 1.
576  * If both are 1, we get raid0.
577  * If near_copies == raid_disks, we get raid1.
578  *
579  * Chunks are laid out in raid0 style with near_copies copies of the
580  * first chunk, followed by near_copies copies of the next chunk and
581  * so on.
582  * If far_copies > 1, then after 1/far_copies of the array has been assigned
583  * as described above, we start again with a device offset of near_copies.
584  * So we effectively have another copy of the whole array further down all
585  * the drives, but with blocks on different drives.
586  * With this layout, and block is never stored twice on the one device.
587  *
588  * raid10_find_phys finds the sector offset of a given virtual sector
589  * on each device that it is on.
590  *
591  * raid10_find_virt does the reverse mapping, from a device and a
592  * sector offset to a virtual address
593  */
594 
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597 	int n,f;
598 	sector_t sector;
599 	sector_t chunk;
600 	sector_t stripe;
601 	int dev;
602 	int slot = 0;
603 	int last_far_set_start, last_far_set_size;
604 
605 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 	last_far_set_start *= geo->far_set_size;
607 
608 	last_far_set_size = geo->far_set_size;
609 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
610 
611 	/* now calculate first sector/dev */
612 	chunk = r10bio->sector >> geo->chunk_shift;
613 	sector = r10bio->sector & geo->chunk_mask;
614 
615 	chunk *= geo->near_copies;
616 	stripe = chunk;
617 	dev = sector_div(stripe, geo->raid_disks);
618 	if (geo->far_offset)
619 		stripe *= geo->far_copies;
620 
621 	sector += stripe << geo->chunk_shift;
622 
623 	/* and calculate all the others */
624 	for (n = 0; n < geo->near_copies; n++) {
625 		int d = dev;
626 		int set;
627 		sector_t s = sector;
628 		r10bio->devs[slot].devnum = d;
629 		r10bio->devs[slot].addr = s;
630 		slot++;
631 
632 		for (f = 1; f < geo->far_copies; f++) {
633 			set = d / geo->far_set_size;
634 			d += geo->near_copies;
635 
636 			if ((geo->raid_disks % geo->far_set_size) &&
637 			    (d > last_far_set_start)) {
638 				d -= last_far_set_start;
639 				d %= last_far_set_size;
640 				d += last_far_set_start;
641 			} else {
642 				d %= geo->far_set_size;
643 				d += geo->far_set_size * set;
644 			}
645 			s += geo->stride;
646 			r10bio->devs[slot].devnum = d;
647 			r10bio->devs[slot].addr = s;
648 			slot++;
649 		}
650 		dev++;
651 		if (dev >= geo->raid_disks) {
652 			dev = 0;
653 			sector += (geo->chunk_mask + 1);
654 		}
655 	}
656 }
657 
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660 	struct geom *geo = &conf->geo;
661 
662 	if (conf->reshape_progress != MaxSector &&
663 	    ((r10bio->sector >= conf->reshape_progress) !=
664 	     conf->mddev->reshape_backwards)) {
665 		set_bit(R10BIO_Previous, &r10bio->state);
666 		geo = &conf->prev;
667 	} else
668 		clear_bit(R10BIO_Previous, &r10bio->state);
669 
670 	__raid10_find_phys(geo, r10bio);
671 }
672 
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675 	sector_t offset, chunk, vchunk;
676 	/* Never use conf->prev as this is only called during resync
677 	 * or recovery, so reshape isn't happening
678 	 */
679 	struct geom *geo = &conf->geo;
680 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 	int far_set_size = geo->far_set_size;
682 	int last_far_set_start;
683 
684 	if (geo->raid_disks % geo->far_set_size) {
685 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 		last_far_set_start *= geo->far_set_size;
687 
688 		if (dev >= last_far_set_start) {
689 			far_set_size = geo->far_set_size;
690 			far_set_size += (geo->raid_disks % geo->far_set_size);
691 			far_set_start = last_far_set_start;
692 		}
693 	}
694 
695 	offset = sector & geo->chunk_mask;
696 	if (geo->far_offset) {
697 		int fc;
698 		chunk = sector >> geo->chunk_shift;
699 		fc = sector_div(chunk, geo->far_copies);
700 		dev -= fc * geo->near_copies;
701 		if (dev < far_set_start)
702 			dev += far_set_size;
703 	} else {
704 		while (sector >= geo->stride) {
705 			sector -= geo->stride;
706 			if (dev < (geo->near_copies + far_set_start))
707 				dev += far_set_size - geo->near_copies;
708 			else
709 				dev -= geo->near_copies;
710 		}
711 		chunk = sector >> geo->chunk_shift;
712 	}
713 	vchunk = chunk * geo->raid_disks + dev;
714 	sector_div(vchunk, geo->near_copies);
715 	return (vchunk << geo->chunk_shift) + offset;
716 }
717 
718 /*
719  * This routine returns the disk from which the requested read should
720  * be done. There is a per-array 'next expected sequential IO' sector
721  * number - if this matches on the next IO then we use the last disk.
722  * There is also a per-disk 'last know head position' sector that is
723  * maintained from IRQ contexts, both the normal and the resync IO
724  * completion handlers update this position correctly. If there is no
725  * perfect sequential match then we pick the disk whose head is closest.
726  *
727  * If there are 2 mirrors in the same 2 devices, performance degrades
728  * because position is mirror, not device based.
729  *
730  * The rdev for the device selected will have nr_pending incremented.
731  */
732 
733 /*
734  * FIXME: possibly should rethink readbalancing and do it differently
735  * depending on near_copies / far_copies geometry.
736  */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 				    struct r10bio *r10_bio,
739 				    int *max_sectors)
740 {
741 	const sector_t this_sector = r10_bio->sector;
742 	int disk, slot;
743 	int sectors = r10_bio->sectors;
744 	int best_good_sectors;
745 	sector_t new_distance, best_dist;
746 	struct md_rdev *best_rdev, *rdev = NULL;
747 	int do_balance;
748 	int best_slot;
749 	struct geom *geo = &conf->geo;
750 
751 	raid10_find_phys(conf, r10_bio);
752 	rcu_read_lock();
753 	best_slot = -1;
754 	best_rdev = NULL;
755 	best_dist = MaxSector;
756 	best_good_sectors = 0;
757 	do_balance = 1;
758 	clear_bit(R10BIO_FailFast, &r10_bio->state);
759 	/*
760 	 * Check if we can balance. We can balance on the whole
761 	 * device if no resync is going on (recovery is ok), or below
762 	 * the resync window. We take the first readable disk when
763 	 * above the resync window.
764 	 */
765 	if ((conf->mddev->recovery_cp < MaxSector
766 	     && (this_sector + sectors >= conf->next_resync)) ||
767 	    (mddev_is_clustered(conf->mddev) &&
768 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 					    this_sector + sectors)))
770 		do_balance = 0;
771 
772 	for (slot = 0; slot < conf->copies ; slot++) {
773 		sector_t first_bad;
774 		int bad_sectors;
775 		sector_t dev_sector;
776 
777 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 			continue;
779 		disk = r10_bio->devs[slot].devnum;
780 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 		if (rdev == NULL ||
785 		    test_bit(Faulty, &rdev->flags))
786 			continue;
787 		if (!test_bit(In_sync, &rdev->flags) &&
788 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 			continue;
790 
791 		dev_sector = r10_bio->devs[slot].addr;
792 		if (is_badblock(rdev, dev_sector, sectors,
793 				&first_bad, &bad_sectors)) {
794 			if (best_dist < MaxSector)
795 				/* Already have a better slot */
796 				continue;
797 			if (first_bad <= dev_sector) {
798 				/* Cannot read here.  If this is the
799 				 * 'primary' device, then we must not read
800 				 * beyond 'bad_sectors' from another device.
801 				 */
802 				bad_sectors -= (dev_sector - first_bad);
803 				if (!do_balance && sectors > bad_sectors)
804 					sectors = bad_sectors;
805 				if (best_good_sectors > sectors)
806 					best_good_sectors = sectors;
807 			} else {
808 				sector_t good_sectors =
809 					first_bad - dev_sector;
810 				if (good_sectors > best_good_sectors) {
811 					best_good_sectors = good_sectors;
812 					best_slot = slot;
813 					best_rdev = rdev;
814 				}
815 				if (!do_balance)
816 					/* Must read from here */
817 					break;
818 			}
819 			continue;
820 		} else
821 			best_good_sectors = sectors;
822 
823 		if (!do_balance)
824 			break;
825 
826 		if (best_slot >= 0)
827 			/* At least 2 disks to choose from so failfast is OK */
828 			set_bit(R10BIO_FailFast, &r10_bio->state);
829 		/* This optimisation is debatable, and completely destroys
830 		 * sequential read speed for 'far copies' arrays.  So only
831 		 * keep it for 'near' arrays, and review those later.
832 		 */
833 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 			new_distance = 0;
835 
836 		/* for far > 1 always use the lowest address */
837 		else if (geo->far_copies > 1)
838 			new_distance = r10_bio->devs[slot].addr;
839 		else
840 			new_distance = abs(r10_bio->devs[slot].addr -
841 					   conf->mirrors[disk].head_position);
842 		if (new_distance < best_dist) {
843 			best_dist = new_distance;
844 			best_slot = slot;
845 			best_rdev = rdev;
846 		}
847 	}
848 	if (slot >= conf->copies) {
849 		slot = best_slot;
850 		rdev = best_rdev;
851 	}
852 
853 	if (slot >= 0) {
854 		atomic_inc(&rdev->nr_pending);
855 		r10_bio->read_slot = slot;
856 	} else
857 		rdev = NULL;
858 	rcu_read_unlock();
859 	*max_sectors = best_good_sectors;
860 
861 	return rdev;
862 }
863 
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866 	struct r10conf *conf = mddev->private;
867 	int i, ret = 0;
868 
869 	if ((bits & (1 << WB_async_congested)) &&
870 	    conf->pending_count >= max_queued_requests)
871 		return 1;
872 
873 	rcu_read_lock();
874 	for (i = 0;
875 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 		     && ret == 0;
877 	     i++) {
878 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 			struct request_queue *q = bdev_get_queue(rdev->bdev);
881 
882 			ret |= bdi_congested(q->backing_dev_info, bits);
883 		}
884 	}
885 	rcu_read_unlock();
886 	return ret;
887 }
888 
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891 	/* Any writes that have been queued but are awaiting
892 	 * bitmap updates get flushed here.
893 	 */
894 	spin_lock_irq(&conf->device_lock);
895 
896 	if (conf->pending_bio_list.head) {
897 		struct blk_plug plug;
898 		struct bio *bio;
899 
900 		bio = bio_list_get(&conf->pending_bio_list);
901 		conf->pending_count = 0;
902 		spin_unlock_irq(&conf->device_lock);
903 
904 		/*
905 		 * As this is called in a wait_event() loop (see freeze_array),
906 		 * current->state might be TASK_UNINTERRUPTIBLE which will
907 		 * cause a warning when we prepare to wait again.  As it is
908 		 * rare that this path is taken, it is perfectly safe to force
909 		 * us to go around the wait_event() loop again, so the warning
910 		 * is a false-positive. Silence the warning by resetting
911 		 * thread state
912 		 */
913 		__set_current_state(TASK_RUNNING);
914 
915 		blk_start_plug(&plug);
916 		/* flush any pending bitmap writes to disk
917 		 * before proceeding w/ I/O */
918 		bitmap_unplug(conf->mddev->bitmap);
919 		wake_up(&conf->wait_barrier);
920 
921 		while (bio) { /* submit pending writes */
922 			struct bio *next = bio->bi_next;
923 			struct md_rdev *rdev = (void*)bio->bi_disk;
924 			bio->bi_next = NULL;
925 			bio_set_dev(bio, rdev->bdev);
926 			if (test_bit(Faulty, &rdev->flags)) {
927 				bio_io_error(bio);
928 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
929 					    !blk_queue_discard(bio->bi_disk->queue)))
930 				/* Just ignore it */
931 				bio_endio(bio);
932 			else
933 				generic_make_request(bio);
934 			bio = next;
935 		}
936 		blk_finish_plug(&plug);
937 	} else
938 		spin_unlock_irq(&conf->device_lock);
939 }
940 
941 /* Barriers....
942  * Sometimes we need to suspend IO while we do something else,
943  * either some resync/recovery, or reconfigure the array.
944  * To do this we raise a 'barrier'.
945  * The 'barrier' is a counter that can be raised multiple times
946  * to count how many activities are happening which preclude
947  * normal IO.
948  * We can only raise the barrier if there is no pending IO.
949  * i.e. if nr_pending == 0.
950  * We choose only to raise the barrier if no-one is waiting for the
951  * barrier to go down.  This means that as soon as an IO request
952  * is ready, no other operations which require a barrier will start
953  * until the IO request has had a chance.
954  *
955  * So: regular IO calls 'wait_barrier'.  When that returns there
956  *    is no backgroup IO happening,  It must arrange to call
957  *    allow_barrier when it has finished its IO.
958  * backgroup IO calls must call raise_barrier.  Once that returns
959  *    there is no normal IO happeing.  It must arrange to call
960  *    lower_barrier when the particular background IO completes.
961  */
962 
963 static void raise_barrier(struct r10conf *conf, int force)
964 {
965 	BUG_ON(force && !conf->barrier);
966 	spin_lock_irq(&conf->resync_lock);
967 
968 	/* Wait until no block IO is waiting (unless 'force') */
969 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
970 			    conf->resync_lock);
971 
972 	/* block any new IO from starting */
973 	conf->barrier++;
974 
975 	/* Now wait for all pending IO to complete */
976 	wait_event_lock_irq(conf->wait_barrier,
977 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
978 			    conf->resync_lock);
979 
980 	spin_unlock_irq(&conf->resync_lock);
981 }
982 
983 static void lower_barrier(struct r10conf *conf)
984 {
985 	unsigned long flags;
986 	spin_lock_irqsave(&conf->resync_lock, flags);
987 	conf->barrier--;
988 	spin_unlock_irqrestore(&conf->resync_lock, flags);
989 	wake_up(&conf->wait_barrier);
990 }
991 
992 static void wait_barrier(struct r10conf *conf)
993 {
994 	spin_lock_irq(&conf->resync_lock);
995 	if (conf->barrier) {
996 		conf->nr_waiting++;
997 		/* Wait for the barrier to drop.
998 		 * However if there are already pending
999 		 * requests (preventing the barrier from
1000 		 * rising completely), and the
1001 		 * pre-process bio queue isn't empty,
1002 		 * then don't wait, as we need to empty
1003 		 * that queue to get the nr_pending
1004 		 * count down.
1005 		 */
1006 		raid10_log(conf->mddev, "wait barrier");
1007 		wait_event_lock_irq(conf->wait_barrier,
1008 				    !conf->barrier ||
1009 				    (atomic_read(&conf->nr_pending) &&
1010 				     current->bio_list &&
1011 				     (!bio_list_empty(&current->bio_list[0]) ||
1012 				      !bio_list_empty(&current->bio_list[1]))),
1013 				    conf->resync_lock);
1014 		conf->nr_waiting--;
1015 		if (!conf->nr_waiting)
1016 			wake_up(&conf->wait_barrier);
1017 	}
1018 	atomic_inc(&conf->nr_pending);
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void allow_barrier(struct r10conf *conf)
1023 {
1024 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1025 			(conf->array_freeze_pending))
1026 		wake_up(&conf->wait_barrier);
1027 }
1028 
1029 static void freeze_array(struct r10conf *conf, int extra)
1030 {
1031 	/* stop syncio and normal IO and wait for everything to
1032 	 * go quiet.
1033 	 * We increment barrier and nr_waiting, and then
1034 	 * wait until nr_pending match nr_queued+extra
1035 	 * This is called in the context of one normal IO request
1036 	 * that has failed. Thus any sync request that might be pending
1037 	 * will be blocked by nr_pending, and we need to wait for
1038 	 * pending IO requests to complete or be queued for re-try.
1039 	 * Thus the number queued (nr_queued) plus this request (extra)
1040 	 * must match the number of pending IOs (nr_pending) before
1041 	 * we continue.
1042 	 */
1043 	spin_lock_irq(&conf->resync_lock);
1044 	conf->array_freeze_pending++;
1045 	conf->barrier++;
1046 	conf->nr_waiting++;
1047 	wait_event_lock_irq_cmd(conf->wait_barrier,
1048 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1049 				conf->resync_lock,
1050 				flush_pending_writes(conf));
1051 
1052 	conf->array_freeze_pending--;
1053 	spin_unlock_irq(&conf->resync_lock);
1054 }
1055 
1056 static void unfreeze_array(struct r10conf *conf)
1057 {
1058 	/* reverse the effect of the freeze */
1059 	spin_lock_irq(&conf->resync_lock);
1060 	conf->barrier--;
1061 	conf->nr_waiting--;
1062 	wake_up(&conf->wait_barrier);
1063 	spin_unlock_irq(&conf->resync_lock);
1064 }
1065 
1066 static sector_t choose_data_offset(struct r10bio *r10_bio,
1067 				   struct md_rdev *rdev)
1068 {
1069 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1070 	    test_bit(R10BIO_Previous, &r10_bio->state))
1071 		return rdev->data_offset;
1072 	else
1073 		return rdev->new_data_offset;
1074 }
1075 
1076 struct raid10_plug_cb {
1077 	struct blk_plug_cb	cb;
1078 	struct bio_list		pending;
1079 	int			pending_cnt;
1080 };
1081 
1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1083 {
1084 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1085 						   cb);
1086 	struct mddev *mddev = plug->cb.data;
1087 	struct r10conf *conf = mddev->private;
1088 	struct bio *bio;
1089 
1090 	if (from_schedule || current->bio_list) {
1091 		spin_lock_irq(&conf->device_lock);
1092 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1093 		conf->pending_count += plug->pending_cnt;
1094 		spin_unlock_irq(&conf->device_lock);
1095 		wake_up(&conf->wait_barrier);
1096 		md_wakeup_thread(mddev->thread);
1097 		kfree(plug);
1098 		return;
1099 	}
1100 
1101 	/* we aren't scheduling, so we can do the write-out directly. */
1102 	bio = bio_list_get(&plug->pending);
1103 	bitmap_unplug(mddev->bitmap);
1104 	wake_up(&conf->wait_barrier);
1105 
1106 	while (bio) { /* submit pending writes */
1107 		struct bio *next = bio->bi_next;
1108 		struct md_rdev *rdev = (void*)bio->bi_disk;
1109 		bio->bi_next = NULL;
1110 		bio_set_dev(bio, rdev->bdev);
1111 		if (test_bit(Faulty, &rdev->flags)) {
1112 			bio_io_error(bio);
1113 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1114 				    !blk_queue_discard(bio->bi_disk->queue)))
1115 			/* Just ignore it */
1116 			bio_endio(bio);
1117 		else
1118 			generic_make_request(bio);
1119 		bio = next;
1120 	}
1121 	kfree(plug);
1122 }
1123 
1124 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1125 				struct r10bio *r10_bio)
1126 {
1127 	struct r10conf *conf = mddev->private;
1128 	struct bio *read_bio;
1129 	const int op = bio_op(bio);
1130 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1131 	int max_sectors;
1132 	sector_t sectors;
1133 	struct md_rdev *rdev;
1134 	char b[BDEVNAME_SIZE];
1135 	int slot = r10_bio->read_slot;
1136 	struct md_rdev *err_rdev = NULL;
1137 	gfp_t gfp = GFP_NOIO;
1138 
1139 	if (r10_bio->devs[slot].rdev) {
1140 		/*
1141 		 * This is an error retry, but we cannot
1142 		 * safely dereference the rdev in the r10_bio,
1143 		 * we must use the one in conf.
1144 		 * If it has already been disconnected (unlikely)
1145 		 * we lose the device name in error messages.
1146 		 */
1147 		int disk;
1148 		/*
1149 		 * As we are blocking raid10, it is a little safer to
1150 		 * use __GFP_HIGH.
1151 		 */
1152 		gfp = GFP_NOIO | __GFP_HIGH;
1153 
1154 		rcu_read_lock();
1155 		disk = r10_bio->devs[slot].devnum;
1156 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1157 		if (err_rdev)
1158 			bdevname(err_rdev->bdev, b);
1159 		else {
1160 			strcpy(b, "???");
1161 			/* This never gets dereferenced */
1162 			err_rdev = r10_bio->devs[slot].rdev;
1163 		}
1164 		rcu_read_unlock();
1165 	}
1166 	/*
1167 	 * Register the new request and wait if the reconstruction
1168 	 * thread has put up a bar for new requests.
1169 	 * Continue immediately if no resync is active currently.
1170 	 */
1171 	wait_barrier(conf);
1172 
1173 	sectors = r10_bio->sectors;
1174 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1175 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1176 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1177 		/*
1178 		 * IO spans the reshape position.  Need to wait for reshape to
1179 		 * pass
1180 		 */
1181 		raid10_log(conf->mddev, "wait reshape");
1182 		allow_barrier(conf);
1183 		wait_event(conf->wait_barrier,
1184 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1186 			   sectors);
1187 		wait_barrier(conf);
1188 	}
1189 
1190 	rdev = read_balance(conf, r10_bio, &max_sectors);
1191 	if (!rdev) {
1192 		if (err_rdev) {
1193 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194 					    mdname(mddev), b,
1195 					    (unsigned long long)r10_bio->sector);
1196 		}
1197 		raid_end_bio_io(r10_bio);
1198 		return;
1199 	}
1200 	if (err_rdev)
1201 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1202 				   mdname(mddev),
1203 				   bdevname(rdev->bdev, b),
1204 				   (unsigned long long)r10_bio->sector);
1205 	if (max_sectors < bio_sectors(bio)) {
1206 		struct bio *split = bio_split(bio, max_sectors,
1207 					      gfp, conf->bio_split);
1208 		bio_chain(split, bio);
1209 		generic_make_request(bio);
1210 		bio = split;
1211 		r10_bio->master_bio = bio;
1212 		r10_bio->sectors = max_sectors;
1213 	}
1214 	slot = r10_bio->read_slot;
1215 
1216 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1217 
1218 	r10_bio->devs[slot].bio = read_bio;
1219 	r10_bio->devs[slot].rdev = rdev;
1220 
1221 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1222 		choose_data_offset(r10_bio, rdev);
1223 	bio_set_dev(read_bio, rdev->bdev);
1224 	read_bio->bi_end_io = raid10_end_read_request;
1225 	bio_set_op_attrs(read_bio, op, do_sync);
1226 	if (test_bit(FailFast, &rdev->flags) &&
1227 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1228 	        read_bio->bi_opf |= MD_FAILFAST;
1229 	read_bio->bi_private = r10_bio;
1230 
1231 	if (mddev->gendisk)
1232 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1233 	                              read_bio, disk_devt(mddev->gendisk),
1234 	                              r10_bio->sector);
1235 	generic_make_request(read_bio);
1236 	return;
1237 }
1238 
1239 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1240 				  struct bio *bio, bool replacement,
1241 				  int n_copy)
1242 {
1243 	const int op = bio_op(bio);
1244 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1245 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1246 	unsigned long flags;
1247 	struct blk_plug_cb *cb;
1248 	struct raid10_plug_cb *plug = NULL;
1249 	struct r10conf *conf = mddev->private;
1250 	struct md_rdev *rdev;
1251 	int devnum = r10_bio->devs[n_copy].devnum;
1252 	struct bio *mbio;
1253 
1254 	if (replacement) {
1255 		rdev = conf->mirrors[devnum].replacement;
1256 		if (rdev == NULL) {
1257 			/* Replacement just got moved to main 'rdev' */
1258 			smp_mb();
1259 			rdev = conf->mirrors[devnum].rdev;
1260 		}
1261 	} else
1262 		rdev = conf->mirrors[devnum].rdev;
1263 
1264 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1265 	if (replacement)
1266 		r10_bio->devs[n_copy].repl_bio = mbio;
1267 	else
1268 		r10_bio->devs[n_copy].bio = mbio;
1269 
1270 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1271 				   choose_data_offset(r10_bio, rdev));
1272 	bio_set_dev(mbio, rdev->bdev);
1273 	mbio->bi_end_io	= raid10_end_write_request;
1274 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1275 	if (!replacement && test_bit(FailFast,
1276 				     &conf->mirrors[devnum].rdev->flags)
1277 			 && enough(conf, devnum))
1278 		mbio->bi_opf |= MD_FAILFAST;
1279 	mbio->bi_private = r10_bio;
1280 
1281 	if (conf->mddev->gendisk)
1282 		trace_block_bio_remap(mbio->bi_disk->queue,
1283 				      mbio, disk_devt(conf->mddev->gendisk),
1284 				      r10_bio->sector);
1285 	/* flush_pending_writes() needs access to the rdev so...*/
1286 	mbio->bi_disk = (void *)rdev;
1287 
1288 	atomic_inc(&r10_bio->remaining);
1289 
1290 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1291 	if (cb)
1292 		plug = container_of(cb, struct raid10_plug_cb, cb);
1293 	else
1294 		plug = NULL;
1295 	if (plug) {
1296 		bio_list_add(&plug->pending, mbio);
1297 		plug->pending_cnt++;
1298 	} else {
1299 		spin_lock_irqsave(&conf->device_lock, flags);
1300 		bio_list_add(&conf->pending_bio_list, mbio);
1301 		conf->pending_count++;
1302 		spin_unlock_irqrestore(&conf->device_lock, flags);
1303 		md_wakeup_thread(mddev->thread);
1304 	}
1305 }
1306 
1307 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1308 				 struct r10bio *r10_bio)
1309 {
1310 	struct r10conf *conf = mddev->private;
1311 	int i;
1312 	struct md_rdev *blocked_rdev;
1313 	sector_t sectors;
1314 	int max_sectors;
1315 
1316 	if ((mddev_is_clustered(mddev) &&
1317 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318 					    bio->bi_iter.bi_sector,
1319 					    bio_end_sector(bio)))) {
1320 		DEFINE_WAIT(w);
1321 		for (;;) {
1322 			prepare_to_wait(&conf->wait_barrier,
1323 					&w, TASK_IDLE);
1324 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1326 				break;
1327 			schedule();
1328 		}
1329 		finish_wait(&conf->wait_barrier, &w);
1330 	}
1331 
1332 	/*
1333 	 * Register the new request and wait if the reconstruction
1334 	 * thread has put up a bar for new requests.
1335 	 * Continue immediately if no resync is active currently.
1336 	 */
1337 	wait_barrier(conf);
1338 
1339 	sectors = r10_bio->sectors;
1340 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1342 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1343 		/*
1344 		 * IO spans the reshape position.  Need to wait for reshape to
1345 		 * pass
1346 		 */
1347 		raid10_log(conf->mddev, "wait reshape");
1348 		allow_barrier(conf);
1349 		wait_event(conf->wait_barrier,
1350 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1351 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1352 			   sectors);
1353 		wait_barrier(conf);
1354 	}
1355 
1356 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1357 	    (mddev->reshape_backwards
1358 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1359 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1360 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1361 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1362 		/* Need to update reshape_position in metadata */
1363 		mddev->reshape_position = conf->reshape_progress;
1364 		set_mask_bits(&mddev->sb_flags, 0,
1365 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1366 		md_wakeup_thread(mddev->thread);
1367 		raid10_log(conf->mddev, "wait reshape metadata");
1368 		wait_event(mddev->sb_wait,
1369 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1370 
1371 		conf->reshape_safe = mddev->reshape_position;
1372 	}
1373 
1374 	if (conf->pending_count >= max_queued_requests) {
1375 		md_wakeup_thread(mddev->thread);
1376 		raid10_log(mddev, "wait queued");
1377 		wait_event(conf->wait_barrier,
1378 			   conf->pending_count < max_queued_requests);
1379 	}
1380 	/* first select target devices under rcu_lock and
1381 	 * inc refcount on their rdev.  Record them by setting
1382 	 * bios[x] to bio
1383 	 * If there are known/acknowledged bad blocks on any device
1384 	 * on which we have seen a write error, we want to avoid
1385 	 * writing to those blocks.  This potentially requires several
1386 	 * writes to write around the bad blocks.  Each set of writes
1387 	 * gets its own r10_bio with a set of bios attached.
1388 	 */
1389 
1390 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1391 	raid10_find_phys(conf, r10_bio);
1392 retry_write:
1393 	blocked_rdev = NULL;
1394 	rcu_read_lock();
1395 	max_sectors = r10_bio->sectors;
1396 
1397 	for (i = 0;  i < conf->copies; i++) {
1398 		int d = r10_bio->devs[i].devnum;
1399 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1400 		struct md_rdev *rrdev = rcu_dereference(
1401 			conf->mirrors[d].replacement);
1402 		if (rdev == rrdev)
1403 			rrdev = NULL;
1404 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405 			atomic_inc(&rdev->nr_pending);
1406 			blocked_rdev = rdev;
1407 			break;
1408 		}
1409 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1410 			atomic_inc(&rrdev->nr_pending);
1411 			blocked_rdev = rrdev;
1412 			break;
1413 		}
1414 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1415 			rdev = NULL;
1416 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1417 			rrdev = NULL;
1418 
1419 		r10_bio->devs[i].bio = NULL;
1420 		r10_bio->devs[i].repl_bio = NULL;
1421 
1422 		if (!rdev && !rrdev) {
1423 			set_bit(R10BIO_Degraded, &r10_bio->state);
1424 			continue;
1425 		}
1426 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1427 			sector_t first_bad;
1428 			sector_t dev_sector = r10_bio->devs[i].addr;
1429 			int bad_sectors;
1430 			int is_bad;
1431 
1432 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1433 					     &first_bad, &bad_sectors);
1434 			if (is_bad < 0) {
1435 				/* Mustn't write here until the bad block
1436 				 * is acknowledged
1437 				 */
1438 				atomic_inc(&rdev->nr_pending);
1439 				set_bit(BlockedBadBlocks, &rdev->flags);
1440 				blocked_rdev = rdev;
1441 				break;
1442 			}
1443 			if (is_bad && first_bad <= dev_sector) {
1444 				/* Cannot write here at all */
1445 				bad_sectors -= (dev_sector - first_bad);
1446 				if (bad_sectors < max_sectors)
1447 					/* Mustn't write more than bad_sectors
1448 					 * to other devices yet
1449 					 */
1450 					max_sectors = bad_sectors;
1451 				/* We don't set R10BIO_Degraded as that
1452 				 * only applies if the disk is missing,
1453 				 * so it might be re-added, and we want to
1454 				 * know to recover this chunk.
1455 				 * In this case the device is here, and the
1456 				 * fact that this chunk is not in-sync is
1457 				 * recorded in the bad block log.
1458 				 */
1459 				continue;
1460 			}
1461 			if (is_bad) {
1462 				int good_sectors = first_bad - dev_sector;
1463 				if (good_sectors < max_sectors)
1464 					max_sectors = good_sectors;
1465 			}
1466 		}
1467 		if (rdev) {
1468 			r10_bio->devs[i].bio = bio;
1469 			atomic_inc(&rdev->nr_pending);
1470 		}
1471 		if (rrdev) {
1472 			r10_bio->devs[i].repl_bio = bio;
1473 			atomic_inc(&rrdev->nr_pending);
1474 		}
1475 	}
1476 	rcu_read_unlock();
1477 
1478 	if (unlikely(blocked_rdev)) {
1479 		/* Have to wait for this device to get unblocked, then retry */
1480 		int j;
1481 		int d;
1482 
1483 		for (j = 0; j < i; j++) {
1484 			if (r10_bio->devs[j].bio) {
1485 				d = r10_bio->devs[j].devnum;
1486 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1487 			}
1488 			if (r10_bio->devs[j].repl_bio) {
1489 				struct md_rdev *rdev;
1490 				d = r10_bio->devs[j].devnum;
1491 				rdev = conf->mirrors[d].replacement;
1492 				if (!rdev) {
1493 					/* Race with remove_disk */
1494 					smp_mb();
1495 					rdev = conf->mirrors[d].rdev;
1496 				}
1497 				rdev_dec_pending(rdev, mddev);
1498 			}
1499 		}
1500 		allow_barrier(conf);
1501 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1502 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1503 		wait_barrier(conf);
1504 		goto retry_write;
1505 	}
1506 
1507 	if (max_sectors < r10_bio->sectors)
1508 		r10_bio->sectors = max_sectors;
1509 
1510 	if (r10_bio->sectors < bio_sectors(bio)) {
1511 		struct bio *split = bio_split(bio, r10_bio->sectors,
1512 					      GFP_NOIO, conf->bio_split);
1513 		bio_chain(split, bio);
1514 		generic_make_request(bio);
1515 		bio = split;
1516 		r10_bio->master_bio = bio;
1517 	}
1518 
1519 	atomic_set(&r10_bio->remaining, 1);
1520 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521 
1522 	for (i = 0; i < conf->copies; i++) {
1523 		if (r10_bio->devs[i].bio)
1524 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525 		if (r10_bio->devs[i].repl_bio)
1526 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527 	}
1528 	one_write_done(r10_bio);
1529 }
1530 
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532 {
1533 	struct r10conf *conf = mddev->private;
1534 	struct r10bio *r10_bio;
1535 
1536 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1537 
1538 	r10_bio->master_bio = bio;
1539 	r10_bio->sectors = sectors;
1540 
1541 	r10_bio->mddev = mddev;
1542 	r10_bio->sector = bio->bi_iter.bi_sector;
1543 	r10_bio->state = 0;
1544 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1545 
1546 	if (bio_data_dir(bio) == READ)
1547 		raid10_read_request(mddev, bio, r10_bio);
1548 	else
1549 		raid10_write_request(mddev, bio, r10_bio);
1550 }
1551 
1552 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1553 {
1554 	struct r10conf *conf = mddev->private;
1555 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1556 	int chunk_sects = chunk_mask + 1;
1557 	int sectors = bio_sectors(bio);
1558 
1559 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560 		md_flush_request(mddev, bio);
1561 		return true;
1562 	}
1563 
1564 	if (!md_write_start(mddev, bio))
1565 		return false;
1566 
1567 	/*
1568 	 * If this request crosses a chunk boundary, we need to split
1569 	 * it.
1570 	 */
1571 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1572 		     sectors > chunk_sects
1573 		     && (conf->geo.near_copies < conf->geo.raid_disks
1574 			 || conf->prev.near_copies <
1575 			 conf->prev.raid_disks)))
1576 		sectors = chunk_sects -
1577 			(bio->bi_iter.bi_sector &
1578 			 (chunk_sects - 1));
1579 	__make_request(mddev, bio, sectors);
1580 
1581 	/* In case raid10d snuck in to freeze_array */
1582 	wake_up(&conf->wait_barrier);
1583 	return true;
1584 }
1585 
1586 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1587 {
1588 	struct r10conf *conf = mddev->private;
1589 	int i;
1590 
1591 	if (conf->geo.near_copies < conf->geo.raid_disks)
1592 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1593 	if (conf->geo.near_copies > 1)
1594 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1595 	if (conf->geo.far_copies > 1) {
1596 		if (conf->geo.far_offset)
1597 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1598 		else
1599 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1600 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1601 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1602 	}
1603 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604 					conf->geo.raid_disks - mddev->degraded);
1605 	rcu_read_lock();
1606 	for (i = 0; i < conf->geo.raid_disks; i++) {
1607 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1608 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609 	}
1610 	rcu_read_unlock();
1611 	seq_printf(seq, "]");
1612 }
1613 
1614 /* check if there are enough drives for
1615  * every block to appear on atleast one.
1616  * Don't consider the device numbered 'ignore'
1617  * as we might be about to remove it.
1618  */
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1620 {
1621 	int first = 0;
1622 	int has_enough = 0;
1623 	int disks, ncopies;
1624 	if (previous) {
1625 		disks = conf->prev.raid_disks;
1626 		ncopies = conf->prev.near_copies;
1627 	} else {
1628 		disks = conf->geo.raid_disks;
1629 		ncopies = conf->geo.near_copies;
1630 	}
1631 
1632 	rcu_read_lock();
1633 	do {
1634 		int n = conf->copies;
1635 		int cnt = 0;
1636 		int this = first;
1637 		while (n--) {
1638 			struct md_rdev *rdev;
1639 			if (this != ignore &&
1640 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 			    test_bit(In_sync, &rdev->flags))
1642 				cnt++;
1643 			this = (this+1) % disks;
1644 		}
1645 		if (cnt == 0)
1646 			goto out;
1647 		first = (first + ncopies) % disks;
1648 	} while (first != 0);
1649 	has_enough = 1;
1650 out:
1651 	rcu_read_unlock();
1652 	return has_enough;
1653 }
1654 
1655 static int enough(struct r10conf *conf, int ignore)
1656 {
1657 	/* when calling 'enough', both 'prev' and 'geo' must
1658 	 * be stable.
1659 	 * This is ensured if ->reconfig_mutex or ->device_lock
1660 	 * is held.
1661 	 */
1662 	return _enough(conf, 0, ignore) &&
1663 		_enough(conf, 1, ignore);
1664 }
1665 
1666 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1667 {
1668 	char b[BDEVNAME_SIZE];
1669 	struct r10conf *conf = mddev->private;
1670 	unsigned long flags;
1671 
1672 	/*
1673 	 * If it is not operational, then we have already marked it as dead
1674 	 * else if it is the last working disks, ignore the error, let the
1675 	 * next level up know.
1676 	 * else mark the drive as failed
1677 	 */
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 	if (test_bit(In_sync, &rdev->flags)
1680 	    && !enough(conf, rdev->raid_disk)) {
1681 		/*
1682 		 * Don't fail the drive, just return an IO error.
1683 		 */
1684 		spin_unlock_irqrestore(&conf->device_lock, flags);
1685 		return;
1686 	}
1687 	if (test_and_clear_bit(In_sync, &rdev->flags))
1688 		mddev->degraded++;
1689 	/*
1690 	 * If recovery is running, make sure it aborts.
1691 	 */
1692 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693 	set_bit(Blocked, &rdev->flags);
1694 	set_bit(Faulty, &rdev->flags);
1695 	set_mask_bits(&mddev->sb_flags, 0,
1696 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1697 	spin_unlock_irqrestore(&conf->device_lock, flags);
1698 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 		"md/raid10:%s: Operation continuing on %d devices.\n",
1700 		mdname(mddev), bdevname(rdev->bdev, b),
1701 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702 }
1703 
1704 static void print_conf(struct r10conf *conf)
1705 {
1706 	int i;
1707 	struct md_rdev *rdev;
1708 
1709 	pr_debug("RAID10 conf printout:\n");
1710 	if (!conf) {
1711 		pr_debug("(!conf)\n");
1712 		return;
1713 	}
1714 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715 		 conf->geo.raid_disks);
1716 
1717 	/* This is only called with ->reconfix_mutex held, so
1718 	 * rcu protection of rdev is not needed */
1719 	for (i = 0; i < conf->geo.raid_disks; i++) {
1720 		char b[BDEVNAME_SIZE];
1721 		rdev = conf->mirrors[i].rdev;
1722 		if (rdev)
1723 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724 				 i, !test_bit(In_sync, &rdev->flags),
1725 				 !test_bit(Faulty, &rdev->flags),
1726 				 bdevname(rdev->bdev,b));
1727 	}
1728 }
1729 
1730 static void close_sync(struct r10conf *conf)
1731 {
1732 	wait_barrier(conf);
1733 	allow_barrier(conf);
1734 
1735 	mempool_destroy(conf->r10buf_pool);
1736 	conf->r10buf_pool = NULL;
1737 }
1738 
1739 static int raid10_spare_active(struct mddev *mddev)
1740 {
1741 	int i;
1742 	struct r10conf *conf = mddev->private;
1743 	struct raid10_info *tmp;
1744 	int count = 0;
1745 	unsigned long flags;
1746 
1747 	/*
1748 	 * Find all non-in_sync disks within the RAID10 configuration
1749 	 * and mark them in_sync
1750 	 */
1751 	for (i = 0; i < conf->geo.raid_disks; i++) {
1752 		tmp = conf->mirrors + i;
1753 		if (tmp->replacement
1754 		    && tmp->replacement->recovery_offset == MaxSector
1755 		    && !test_bit(Faulty, &tmp->replacement->flags)
1756 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1757 			/* Replacement has just become active */
1758 			if (!tmp->rdev
1759 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1760 				count++;
1761 			if (tmp->rdev) {
1762 				/* Replaced device not technically faulty,
1763 				 * but we need to be sure it gets removed
1764 				 * and never re-added.
1765 				 */
1766 				set_bit(Faulty, &tmp->rdev->flags);
1767 				sysfs_notify_dirent_safe(
1768 					tmp->rdev->sysfs_state);
1769 			}
1770 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1771 		} else if (tmp->rdev
1772 			   && tmp->rdev->recovery_offset == MaxSector
1773 			   && !test_bit(Faulty, &tmp->rdev->flags)
1774 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1775 			count++;
1776 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1777 		}
1778 	}
1779 	spin_lock_irqsave(&conf->device_lock, flags);
1780 	mddev->degraded -= count;
1781 	spin_unlock_irqrestore(&conf->device_lock, flags);
1782 
1783 	print_conf(conf);
1784 	return count;
1785 }
1786 
1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789 	struct r10conf *conf = mddev->private;
1790 	int err = -EEXIST;
1791 	int mirror;
1792 	int first = 0;
1793 	int last = conf->geo.raid_disks - 1;
1794 
1795 	if (mddev->recovery_cp < MaxSector)
1796 		/* only hot-add to in-sync arrays, as recovery is
1797 		 * very different from resync
1798 		 */
1799 		return -EBUSY;
1800 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801 		return -EINVAL;
1802 
1803 	if (md_integrity_add_rdev(rdev, mddev))
1804 		return -ENXIO;
1805 
1806 	if (rdev->raid_disk >= 0)
1807 		first = last = rdev->raid_disk;
1808 
1809 	if (rdev->saved_raid_disk >= first &&
1810 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1811 		mirror = rdev->saved_raid_disk;
1812 	else
1813 		mirror = first;
1814 	for ( ; mirror <= last ; mirror++) {
1815 		struct raid10_info *p = &conf->mirrors[mirror];
1816 		if (p->recovery_disabled == mddev->recovery_disabled)
1817 			continue;
1818 		if (p->rdev) {
1819 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1820 			    p->replacement != NULL)
1821 				continue;
1822 			clear_bit(In_sync, &rdev->flags);
1823 			set_bit(Replacement, &rdev->flags);
1824 			rdev->raid_disk = mirror;
1825 			err = 0;
1826 			if (mddev->gendisk)
1827 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1828 						  rdev->data_offset << 9);
1829 			conf->fullsync = 1;
1830 			rcu_assign_pointer(p->replacement, rdev);
1831 			break;
1832 		}
1833 
1834 		if (mddev->gendisk)
1835 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1836 					  rdev->data_offset << 9);
1837 
1838 		p->head_position = 0;
1839 		p->recovery_disabled = mddev->recovery_disabled - 1;
1840 		rdev->raid_disk = mirror;
1841 		err = 0;
1842 		if (rdev->saved_raid_disk != mirror)
1843 			conf->fullsync = 1;
1844 		rcu_assign_pointer(p->rdev, rdev);
1845 		break;
1846 	}
1847 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1849 
1850 	print_conf(conf);
1851 	return err;
1852 }
1853 
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855 {
1856 	struct r10conf *conf = mddev->private;
1857 	int err = 0;
1858 	int number = rdev->raid_disk;
1859 	struct md_rdev **rdevp;
1860 	struct raid10_info *p = conf->mirrors + number;
1861 
1862 	print_conf(conf);
1863 	if (rdev == p->rdev)
1864 		rdevp = &p->rdev;
1865 	else if (rdev == p->replacement)
1866 		rdevp = &p->replacement;
1867 	else
1868 		return 0;
1869 
1870 	if (test_bit(In_sync, &rdev->flags) ||
1871 	    atomic_read(&rdev->nr_pending)) {
1872 		err = -EBUSY;
1873 		goto abort;
1874 	}
1875 	/* Only remove non-faulty devices if recovery
1876 	 * is not possible.
1877 	 */
1878 	if (!test_bit(Faulty, &rdev->flags) &&
1879 	    mddev->recovery_disabled != p->recovery_disabled &&
1880 	    (!p->replacement || p->replacement == rdev) &&
1881 	    number < conf->geo.raid_disks &&
1882 	    enough(conf, -1)) {
1883 		err = -EBUSY;
1884 		goto abort;
1885 	}
1886 	*rdevp = NULL;
1887 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1888 		synchronize_rcu();
1889 		if (atomic_read(&rdev->nr_pending)) {
1890 			/* lost the race, try later */
1891 			err = -EBUSY;
1892 			*rdevp = rdev;
1893 			goto abort;
1894 		}
1895 	}
1896 	if (p->replacement) {
1897 		/* We must have just cleared 'rdev' */
1898 		p->rdev = p->replacement;
1899 		clear_bit(Replacement, &p->replacement->flags);
1900 		smp_mb(); /* Make sure other CPUs may see both as identical
1901 			   * but will never see neither -- if they are careful.
1902 			   */
1903 		p->replacement = NULL;
1904 	}
1905 
1906 	clear_bit(WantReplacement, &rdev->flags);
1907 	err = md_integrity_register(mddev);
1908 
1909 abort:
1910 
1911 	print_conf(conf);
1912 	return err;
1913 }
1914 
1915 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1916 {
1917 	struct r10conf *conf = r10_bio->mddev->private;
1918 
1919 	if (!bio->bi_status)
1920 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1921 	else
1922 		/* The write handler will notice the lack of
1923 		 * R10BIO_Uptodate and record any errors etc
1924 		 */
1925 		atomic_add(r10_bio->sectors,
1926 			   &conf->mirrors[d].rdev->corrected_errors);
1927 
1928 	/* for reconstruct, we always reschedule after a read.
1929 	 * for resync, only after all reads
1930 	 */
1931 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1932 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1933 	    atomic_dec_and_test(&r10_bio->remaining)) {
1934 		/* we have read all the blocks,
1935 		 * do the comparison in process context in raid10d
1936 		 */
1937 		reschedule_retry(r10_bio);
1938 	}
1939 }
1940 
1941 static void end_sync_read(struct bio *bio)
1942 {
1943 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1944 	struct r10conf *conf = r10_bio->mddev->private;
1945 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1946 
1947 	__end_sync_read(r10_bio, bio, d);
1948 }
1949 
1950 static void end_reshape_read(struct bio *bio)
1951 {
1952 	/* reshape read bio isn't allocated from r10buf_pool */
1953 	struct r10bio *r10_bio = bio->bi_private;
1954 
1955 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1956 }
1957 
1958 static void end_sync_request(struct r10bio *r10_bio)
1959 {
1960 	struct mddev *mddev = r10_bio->mddev;
1961 
1962 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1963 		if (r10_bio->master_bio == NULL) {
1964 			/* the primary of several recovery bios */
1965 			sector_t s = r10_bio->sectors;
1966 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1968 				reschedule_retry(r10_bio);
1969 			else
1970 				put_buf(r10_bio);
1971 			md_done_sync(mddev, s, 1);
1972 			break;
1973 		} else {
1974 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1975 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1977 				reschedule_retry(r10_bio);
1978 			else
1979 				put_buf(r10_bio);
1980 			r10_bio = r10_bio2;
1981 		}
1982 	}
1983 }
1984 
1985 static void end_sync_write(struct bio *bio)
1986 {
1987 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1988 	struct mddev *mddev = r10_bio->mddev;
1989 	struct r10conf *conf = mddev->private;
1990 	int d;
1991 	sector_t first_bad;
1992 	int bad_sectors;
1993 	int slot;
1994 	int repl;
1995 	struct md_rdev *rdev = NULL;
1996 
1997 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1998 	if (repl)
1999 		rdev = conf->mirrors[d].replacement;
2000 	else
2001 		rdev = conf->mirrors[d].rdev;
2002 
2003 	if (bio->bi_status) {
2004 		if (repl)
2005 			md_error(mddev, rdev);
2006 		else {
2007 			set_bit(WriteErrorSeen, &rdev->flags);
2008 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009 				set_bit(MD_RECOVERY_NEEDED,
2010 					&rdev->mddev->recovery);
2011 			set_bit(R10BIO_WriteError, &r10_bio->state);
2012 		}
2013 	} else if (is_badblock(rdev,
2014 			     r10_bio->devs[slot].addr,
2015 			     r10_bio->sectors,
2016 			     &first_bad, &bad_sectors))
2017 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2018 
2019 	rdev_dec_pending(rdev, mddev);
2020 
2021 	end_sync_request(r10_bio);
2022 }
2023 
2024 /*
2025  * Note: sync and recover and handled very differently for raid10
2026  * This code is for resync.
2027  * For resync, we read through virtual addresses and read all blocks.
2028  * If there is any error, we schedule a write.  The lowest numbered
2029  * drive is authoritative.
2030  * However requests come for physical address, so we need to map.
2031  * For every physical address there are raid_disks/copies virtual addresses,
2032  * which is always are least one, but is not necessarly an integer.
2033  * This means that a physical address can span multiple chunks, so we may
2034  * have to submit multiple io requests for a single sync request.
2035  */
2036 /*
2037  * We check if all blocks are in-sync and only write to blocks that
2038  * aren't in sync
2039  */
2040 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2041 {
2042 	struct r10conf *conf = mddev->private;
2043 	int i, first;
2044 	struct bio *tbio, *fbio;
2045 	int vcnt;
2046 	struct page **tpages, **fpages;
2047 
2048 	atomic_set(&r10_bio->remaining, 1);
2049 
2050 	/* find the first device with a block */
2051 	for (i=0; i<conf->copies; i++)
2052 		if (!r10_bio->devs[i].bio->bi_status)
2053 			break;
2054 
2055 	if (i == conf->copies)
2056 		goto done;
2057 
2058 	first = i;
2059 	fbio = r10_bio->devs[i].bio;
2060 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2061 	fbio->bi_iter.bi_idx = 0;
2062 	fpages = get_resync_pages(fbio)->pages;
2063 
2064 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065 	/* now find blocks with errors */
2066 	for (i=0 ; i < conf->copies ; i++) {
2067 		int  j, d;
2068 		struct md_rdev *rdev;
2069 		struct resync_pages *rp;
2070 
2071 		tbio = r10_bio->devs[i].bio;
2072 
2073 		if (tbio->bi_end_io != end_sync_read)
2074 			continue;
2075 		if (i == first)
2076 			continue;
2077 
2078 		tpages = get_resync_pages(tbio)->pages;
2079 		d = r10_bio->devs[i].devnum;
2080 		rdev = conf->mirrors[d].rdev;
2081 		if (!r10_bio->devs[i].bio->bi_status) {
2082 			/* We know that the bi_io_vec layout is the same for
2083 			 * both 'first' and 'i', so we just compare them.
2084 			 * All vec entries are PAGE_SIZE;
2085 			 */
2086 			int sectors = r10_bio->sectors;
2087 			for (j = 0; j < vcnt; j++) {
2088 				int len = PAGE_SIZE;
2089 				if (sectors < (len / 512))
2090 					len = sectors * 512;
2091 				if (memcmp(page_address(fpages[j]),
2092 					   page_address(tpages[j]),
2093 					   len))
2094 					break;
2095 				sectors -= len/512;
2096 			}
2097 			if (j == vcnt)
2098 				continue;
2099 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101 				/* Don't fix anything. */
2102 				continue;
2103 		} else if (test_bit(FailFast, &rdev->flags)) {
2104 			/* Just give up on this device */
2105 			md_error(rdev->mddev, rdev);
2106 			continue;
2107 		}
2108 		/* Ok, we need to write this bio, either to correct an
2109 		 * inconsistency or to correct an unreadable block.
2110 		 * First we need to fixup bv_offset, bv_len and
2111 		 * bi_vecs, as the read request might have corrupted these
2112 		 */
2113 		rp = get_resync_pages(tbio);
2114 		bio_reset(tbio);
2115 
2116 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2117 
2118 		rp->raid_bio = r10_bio;
2119 		tbio->bi_private = rp;
2120 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2121 		tbio->bi_end_io = end_sync_write;
2122 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2123 
2124 		bio_copy_data(tbio, fbio);
2125 
2126 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2127 		atomic_inc(&r10_bio->remaining);
2128 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2129 
2130 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2131 			tbio->bi_opf |= MD_FAILFAST;
2132 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2134 		generic_make_request(tbio);
2135 	}
2136 
2137 	/* Now write out to any replacement devices
2138 	 * that are active
2139 	 */
2140 	for (i = 0; i < conf->copies; i++) {
2141 		int d;
2142 
2143 		tbio = r10_bio->devs[i].repl_bio;
2144 		if (!tbio || !tbio->bi_end_io)
2145 			continue;
2146 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147 		    && r10_bio->devs[i].bio != fbio)
2148 			bio_copy_data(tbio, fbio);
2149 		d = r10_bio->devs[i].devnum;
2150 		atomic_inc(&r10_bio->remaining);
2151 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2152 			     bio_sectors(tbio));
2153 		generic_make_request(tbio);
2154 	}
2155 
2156 done:
2157 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2158 		md_done_sync(mddev, r10_bio->sectors, 1);
2159 		put_buf(r10_bio);
2160 	}
2161 }
2162 
2163 /*
2164  * Now for the recovery code.
2165  * Recovery happens across physical sectors.
2166  * We recover all non-is_sync drives by finding the virtual address of
2167  * each, and then choose a working drive that also has that virt address.
2168  * There is a separate r10_bio for each non-in_sync drive.
2169  * Only the first two slots are in use. The first for reading,
2170  * The second for writing.
2171  *
2172  */
2173 static void fix_recovery_read_error(struct r10bio *r10_bio)
2174 {
2175 	/* We got a read error during recovery.
2176 	 * We repeat the read in smaller page-sized sections.
2177 	 * If a read succeeds, write it to the new device or record
2178 	 * a bad block if we cannot.
2179 	 * If a read fails, record a bad block on both old and
2180 	 * new devices.
2181 	 */
2182 	struct mddev *mddev = r10_bio->mddev;
2183 	struct r10conf *conf = mddev->private;
2184 	struct bio *bio = r10_bio->devs[0].bio;
2185 	sector_t sect = 0;
2186 	int sectors = r10_bio->sectors;
2187 	int idx = 0;
2188 	int dr = r10_bio->devs[0].devnum;
2189 	int dw = r10_bio->devs[1].devnum;
2190 	struct page **pages = get_resync_pages(bio)->pages;
2191 
2192 	while (sectors) {
2193 		int s = sectors;
2194 		struct md_rdev *rdev;
2195 		sector_t addr;
2196 		int ok;
2197 
2198 		if (s > (PAGE_SIZE>>9))
2199 			s = PAGE_SIZE >> 9;
2200 
2201 		rdev = conf->mirrors[dr].rdev;
2202 		addr = r10_bio->devs[0].addr + sect,
2203 		ok = sync_page_io(rdev,
2204 				  addr,
2205 				  s << 9,
2206 				  pages[idx],
2207 				  REQ_OP_READ, 0, false);
2208 		if (ok) {
2209 			rdev = conf->mirrors[dw].rdev;
2210 			addr = r10_bio->devs[1].addr + sect;
2211 			ok = sync_page_io(rdev,
2212 					  addr,
2213 					  s << 9,
2214 					  pages[idx],
2215 					  REQ_OP_WRITE, 0, false);
2216 			if (!ok) {
2217 				set_bit(WriteErrorSeen, &rdev->flags);
2218 				if (!test_and_set_bit(WantReplacement,
2219 						      &rdev->flags))
2220 					set_bit(MD_RECOVERY_NEEDED,
2221 						&rdev->mddev->recovery);
2222 			}
2223 		}
2224 		if (!ok) {
2225 			/* We don't worry if we cannot set a bad block -
2226 			 * it really is bad so there is no loss in not
2227 			 * recording it yet
2228 			 */
2229 			rdev_set_badblocks(rdev, addr, s, 0);
2230 
2231 			if (rdev != conf->mirrors[dw].rdev) {
2232 				/* need bad block on destination too */
2233 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2234 				addr = r10_bio->devs[1].addr + sect;
2235 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2236 				if (!ok) {
2237 					/* just abort the recovery */
2238 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2239 						  mdname(mddev));
2240 
2241 					conf->mirrors[dw].recovery_disabled
2242 						= mddev->recovery_disabled;
2243 					set_bit(MD_RECOVERY_INTR,
2244 						&mddev->recovery);
2245 					break;
2246 				}
2247 			}
2248 		}
2249 
2250 		sectors -= s;
2251 		sect += s;
2252 		idx++;
2253 	}
2254 }
2255 
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257 {
2258 	struct r10conf *conf = mddev->private;
2259 	int d;
2260 	struct bio *wbio, *wbio2;
2261 
2262 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263 		fix_recovery_read_error(r10_bio);
2264 		end_sync_request(r10_bio);
2265 		return;
2266 	}
2267 
2268 	/*
2269 	 * share the pages with the first bio
2270 	 * and submit the write request
2271 	 */
2272 	d = r10_bio->devs[1].devnum;
2273 	wbio = r10_bio->devs[1].bio;
2274 	wbio2 = r10_bio->devs[1].repl_bio;
2275 	/* Need to test wbio2->bi_end_io before we call
2276 	 * generic_make_request as if the former is NULL,
2277 	 * the latter is free to free wbio2.
2278 	 */
2279 	if (wbio2 && !wbio2->bi_end_io)
2280 		wbio2 = NULL;
2281 	if (wbio->bi_end_io) {
2282 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284 		generic_make_request(wbio);
2285 	}
2286 	if (wbio2) {
2287 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2289 			     bio_sectors(wbio2));
2290 		generic_make_request(wbio2);
2291 	}
2292 }
2293 
2294 /*
2295  * Used by fix_read_error() to decay the per rdev read_errors.
2296  * We halve the read error count for every hour that has elapsed
2297  * since the last recorded read error.
2298  *
2299  */
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301 {
2302 	long cur_time_mon;
2303 	unsigned long hours_since_last;
2304 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2305 
2306 	cur_time_mon = ktime_get_seconds();
2307 
2308 	if (rdev->last_read_error == 0) {
2309 		/* first time we've seen a read error */
2310 		rdev->last_read_error = cur_time_mon;
2311 		return;
2312 	}
2313 
2314 	hours_since_last = (long)(cur_time_mon -
2315 			    rdev->last_read_error) / 3600;
2316 
2317 	rdev->last_read_error = cur_time_mon;
2318 
2319 	/*
2320 	 * if hours_since_last is > the number of bits in read_errors
2321 	 * just set read errors to 0. We do this to avoid
2322 	 * overflowing the shift of read_errors by hours_since_last.
2323 	 */
2324 	if (hours_since_last >= 8 * sizeof(read_errors))
2325 		atomic_set(&rdev->read_errors, 0);
2326 	else
2327 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2328 }
2329 
2330 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2331 			    int sectors, struct page *page, int rw)
2332 {
2333 	sector_t first_bad;
2334 	int bad_sectors;
2335 
2336 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2337 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2338 		return -1;
2339 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2340 		/* success */
2341 		return 1;
2342 	if (rw == WRITE) {
2343 		set_bit(WriteErrorSeen, &rdev->flags);
2344 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2345 			set_bit(MD_RECOVERY_NEEDED,
2346 				&rdev->mddev->recovery);
2347 	}
2348 	/* need to record an error - either for the block or the device */
2349 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2350 		md_error(rdev->mddev, rdev);
2351 	return 0;
2352 }
2353 
2354 /*
2355  * This is a kernel thread which:
2356  *
2357  *	1.	Retries failed read operations on working mirrors.
2358  *	2.	Updates the raid superblock when problems encounter.
2359  *	3.	Performs writes following reads for array synchronising.
2360  */
2361 
2362 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2363 {
2364 	int sect = 0; /* Offset from r10_bio->sector */
2365 	int sectors = r10_bio->sectors;
2366 	struct md_rdev*rdev;
2367 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2368 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2369 
2370 	/* still own a reference to this rdev, so it cannot
2371 	 * have been cleared recently.
2372 	 */
2373 	rdev = conf->mirrors[d].rdev;
2374 
2375 	if (test_bit(Faulty, &rdev->flags))
2376 		/* drive has already been failed, just ignore any
2377 		   more fix_read_error() attempts */
2378 		return;
2379 
2380 	check_decay_read_errors(mddev, rdev);
2381 	atomic_inc(&rdev->read_errors);
2382 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2383 		char b[BDEVNAME_SIZE];
2384 		bdevname(rdev->bdev, b);
2385 
2386 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2387 			  mdname(mddev), b,
2388 			  atomic_read(&rdev->read_errors), max_read_errors);
2389 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2390 			  mdname(mddev), b);
2391 		md_error(mddev, rdev);
2392 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2393 		return;
2394 	}
2395 
2396 	while(sectors) {
2397 		int s = sectors;
2398 		int sl = r10_bio->read_slot;
2399 		int success = 0;
2400 		int start;
2401 
2402 		if (s > (PAGE_SIZE>>9))
2403 			s = PAGE_SIZE >> 9;
2404 
2405 		rcu_read_lock();
2406 		do {
2407 			sector_t first_bad;
2408 			int bad_sectors;
2409 
2410 			d = r10_bio->devs[sl].devnum;
2411 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2412 			if (rdev &&
2413 			    test_bit(In_sync, &rdev->flags) &&
2414 			    !test_bit(Faulty, &rdev->flags) &&
2415 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2416 					&first_bad, &bad_sectors) == 0) {
2417 				atomic_inc(&rdev->nr_pending);
2418 				rcu_read_unlock();
2419 				success = sync_page_io(rdev,
2420 						       r10_bio->devs[sl].addr +
2421 						       sect,
2422 						       s<<9,
2423 						       conf->tmppage,
2424 						       REQ_OP_READ, 0, false);
2425 				rdev_dec_pending(rdev, mddev);
2426 				rcu_read_lock();
2427 				if (success)
2428 					break;
2429 			}
2430 			sl++;
2431 			if (sl == conf->copies)
2432 				sl = 0;
2433 		} while (!success && sl != r10_bio->read_slot);
2434 		rcu_read_unlock();
2435 
2436 		if (!success) {
2437 			/* Cannot read from anywhere, just mark the block
2438 			 * as bad on the first device to discourage future
2439 			 * reads.
2440 			 */
2441 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2442 			rdev = conf->mirrors[dn].rdev;
2443 
2444 			if (!rdev_set_badblocks(
2445 				    rdev,
2446 				    r10_bio->devs[r10_bio->read_slot].addr
2447 				    + sect,
2448 				    s, 0)) {
2449 				md_error(mddev, rdev);
2450 				r10_bio->devs[r10_bio->read_slot].bio
2451 					= IO_BLOCKED;
2452 			}
2453 			break;
2454 		}
2455 
2456 		start = sl;
2457 		/* write it back and re-read */
2458 		rcu_read_lock();
2459 		while (sl != r10_bio->read_slot) {
2460 			char b[BDEVNAME_SIZE];
2461 
2462 			if (sl==0)
2463 				sl = conf->copies;
2464 			sl--;
2465 			d = r10_bio->devs[sl].devnum;
2466 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2467 			if (!rdev ||
2468 			    test_bit(Faulty, &rdev->flags) ||
2469 			    !test_bit(In_sync, &rdev->flags))
2470 				continue;
2471 
2472 			atomic_inc(&rdev->nr_pending);
2473 			rcu_read_unlock();
2474 			if (r10_sync_page_io(rdev,
2475 					     r10_bio->devs[sl].addr +
2476 					     sect,
2477 					     s, conf->tmppage, WRITE)
2478 			    == 0) {
2479 				/* Well, this device is dead */
2480 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2481 					  mdname(mddev), s,
2482 					  (unsigned long long)(
2483 						  sect +
2484 						  choose_data_offset(r10_bio,
2485 								     rdev)),
2486 					  bdevname(rdev->bdev, b));
2487 				pr_notice("md/raid10:%s: %s: failing drive\n",
2488 					  mdname(mddev),
2489 					  bdevname(rdev->bdev, b));
2490 			}
2491 			rdev_dec_pending(rdev, mddev);
2492 			rcu_read_lock();
2493 		}
2494 		sl = start;
2495 		while (sl != r10_bio->read_slot) {
2496 			char b[BDEVNAME_SIZE];
2497 
2498 			if (sl==0)
2499 				sl = conf->copies;
2500 			sl--;
2501 			d = r10_bio->devs[sl].devnum;
2502 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2503 			if (!rdev ||
2504 			    test_bit(Faulty, &rdev->flags) ||
2505 			    !test_bit(In_sync, &rdev->flags))
2506 				continue;
2507 
2508 			atomic_inc(&rdev->nr_pending);
2509 			rcu_read_unlock();
2510 			switch (r10_sync_page_io(rdev,
2511 					     r10_bio->devs[sl].addr +
2512 					     sect,
2513 					     s, conf->tmppage,
2514 						 READ)) {
2515 			case 0:
2516 				/* Well, this device is dead */
2517 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2518 				       mdname(mddev), s,
2519 				       (unsigned long long)(
2520 					       sect +
2521 					       choose_data_offset(r10_bio, rdev)),
2522 				       bdevname(rdev->bdev, b));
2523 				pr_notice("md/raid10:%s: %s: failing drive\n",
2524 				       mdname(mddev),
2525 				       bdevname(rdev->bdev, b));
2526 				break;
2527 			case 1:
2528 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2529 				       mdname(mddev), s,
2530 				       (unsigned long long)(
2531 					       sect +
2532 					       choose_data_offset(r10_bio, rdev)),
2533 				       bdevname(rdev->bdev, b));
2534 				atomic_add(s, &rdev->corrected_errors);
2535 			}
2536 
2537 			rdev_dec_pending(rdev, mddev);
2538 			rcu_read_lock();
2539 		}
2540 		rcu_read_unlock();
2541 
2542 		sectors -= s;
2543 		sect += s;
2544 	}
2545 }
2546 
2547 static int narrow_write_error(struct r10bio *r10_bio, int i)
2548 {
2549 	struct bio *bio = r10_bio->master_bio;
2550 	struct mddev *mddev = r10_bio->mddev;
2551 	struct r10conf *conf = mddev->private;
2552 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2553 	/* bio has the data to be written to slot 'i' where
2554 	 * we just recently had a write error.
2555 	 * We repeatedly clone the bio and trim down to one block,
2556 	 * then try the write.  Where the write fails we record
2557 	 * a bad block.
2558 	 * It is conceivable that the bio doesn't exactly align with
2559 	 * blocks.  We must handle this.
2560 	 *
2561 	 * We currently own a reference to the rdev.
2562 	 */
2563 
2564 	int block_sectors;
2565 	sector_t sector;
2566 	int sectors;
2567 	int sect_to_write = r10_bio->sectors;
2568 	int ok = 1;
2569 
2570 	if (rdev->badblocks.shift < 0)
2571 		return 0;
2572 
2573 	block_sectors = roundup(1 << rdev->badblocks.shift,
2574 				bdev_logical_block_size(rdev->bdev) >> 9);
2575 	sector = r10_bio->sector;
2576 	sectors = ((r10_bio->sector + block_sectors)
2577 		   & ~(sector_t)(block_sectors - 1))
2578 		- sector;
2579 
2580 	while (sect_to_write) {
2581 		struct bio *wbio;
2582 		sector_t wsector;
2583 		if (sectors > sect_to_write)
2584 			sectors = sect_to_write;
2585 		/* Write at 'sector' for 'sectors' */
2586 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2587 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2588 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2589 		wbio->bi_iter.bi_sector = wsector +
2590 				   choose_data_offset(r10_bio, rdev);
2591 		bio_set_dev(wbio, rdev->bdev);
2592 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2593 
2594 		if (submit_bio_wait(wbio) < 0)
2595 			/* Failure! */
2596 			ok = rdev_set_badblocks(rdev, wsector,
2597 						sectors, 0)
2598 				&& ok;
2599 
2600 		bio_put(wbio);
2601 		sect_to_write -= sectors;
2602 		sector += sectors;
2603 		sectors = block_sectors;
2604 	}
2605 	return ok;
2606 }
2607 
2608 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2609 {
2610 	int slot = r10_bio->read_slot;
2611 	struct bio *bio;
2612 	struct r10conf *conf = mddev->private;
2613 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2614 
2615 	/* we got a read error. Maybe the drive is bad.  Maybe just
2616 	 * the block and we can fix it.
2617 	 * We freeze all other IO, and try reading the block from
2618 	 * other devices.  When we find one, we re-write
2619 	 * and check it that fixes the read error.
2620 	 * This is all done synchronously while the array is
2621 	 * frozen.
2622 	 */
2623 	bio = r10_bio->devs[slot].bio;
2624 	bio_put(bio);
2625 	r10_bio->devs[slot].bio = NULL;
2626 
2627 	if (mddev->ro)
2628 		r10_bio->devs[slot].bio = IO_BLOCKED;
2629 	else if (!test_bit(FailFast, &rdev->flags)) {
2630 		freeze_array(conf, 1);
2631 		fix_read_error(conf, mddev, r10_bio);
2632 		unfreeze_array(conf);
2633 	} else
2634 		md_error(mddev, rdev);
2635 
2636 	rdev_dec_pending(rdev, mddev);
2637 	allow_barrier(conf);
2638 	r10_bio->state = 0;
2639 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2640 }
2641 
2642 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2643 {
2644 	/* Some sort of write request has finished and it
2645 	 * succeeded in writing where we thought there was a
2646 	 * bad block.  So forget the bad block.
2647 	 * Or possibly if failed and we need to record
2648 	 * a bad block.
2649 	 */
2650 	int m;
2651 	struct md_rdev *rdev;
2652 
2653 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2654 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2655 		for (m = 0; m < conf->copies; m++) {
2656 			int dev = r10_bio->devs[m].devnum;
2657 			rdev = conf->mirrors[dev].rdev;
2658 			if (r10_bio->devs[m].bio == NULL)
2659 				continue;
2660 			if (!r10_bio->devs[m].bio->bi_status) {
2661 				rdev_clear_badblocks(
2662 					rdev,
2663 					r10_bio->devs[m].addr,
2664 					r10_bio->sectors, 0);
2665 			} else {
2666 				if (!rdev_set_badblocks(
2667 					    rdev,
2668 					    r10_bio->devs[m].addr,
2669 					    r10_bio->sectors, 0))
2670 					md_error(conf->mddev, rdev);
2671 			}
2672 			rdev = conf->mirrors[dev].replacement;
2673 			if (r10_bio->devs[m].repl_bio == NULL)
2674 				continue;
2675 
2676 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2677 				rdev_clear_badblocks(
2678 					rdev,
2679 					r10_bio->devs[m].addr,
2680 					r10_bio->sectors, 0);
2681 			} else {
2682 				if (!rdev_set_badblocks(
2683 					    rdev,
2684 					    r10_bio->devs[m].addr,
2685 					    r10_bio->sectors, 0))
2686 					md_error(conf->mddev, rdev);
2687 			}
2688 		}
2689 		put_buf(r10_bio);
2690 	} else {
2691 		bool fail = false;
2692 		for (m = 0; m < conf->copies; m++) {
2693 			int dev = r10_bio->devs[m].devnum;
2694 			struct bio *bio = r10_bio->devs[m].bio;
2695 			rdev = conf->mirrors[dev].rdev;
2696 			if (bio == IO_MADE_GOOD) {
2697 				rdev_clear_badblocks(
2698 					rdev,
2699 					r10_bio->devs[m].addr,
2700 					r10_bio->sectors, 0);
2701 				rdev_dec_pending(rdev, conf->mddev);
2702 			} else if (bio != NULL && bio->bi_status) {
2703 				fail = true;
2704 				if (!narrow_write_error(r10_bio, m)) {
2705 					md_error(conf->mddev, rdev);
2706 					set_bit(R10BIO_Degraded,
2707 						&r10_bio->state);
2708 				}
2709 				rdev_dec_pending(rdev, conf->mddev);
2710 			}
2711 			bio = r10_bio->devs[m].repl_bio;
2712 			rdev = conf->mirrors[dev].replacement;
2713 			if (rdev && bio == IO_MADE_GOOD) {
2714 				rdev_clear_badblocks(
2715 					rdev,
2716 					r10_bio->devs[m].addr,
2717 					r10_bio->sectors, 0);
2718 				rdev_dec_pending(rdev, conf->mddev);
2719 			}
2720 		}
2721 		if (fail) {
2722 			spin_lock_irq(&conf->device_lock);
2723 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2724 			conf->nr_queued++;
2725 			spin_unlock_irq(&conf->device_lock);
2726 			/*
2727 			 * In case freeze_array() is waiting for condition
2728 			 * nr_pending == nr_queued + extra to be true.
2729 			 */
2730 			wake_up(&conf->wait_barrier);
2731 			md_wakeup_thread(conf->mddev->thread);
2732 		} else {
2733 			if (test_bit(R10BIO_WriteError,
2734 				     &r10_bio->state))
2735 				close_write(r10_bio);
2736 			raid_end_bio_io(r10_bio);
2737 		}
2738 	}
2739 }
2740 
2741 static void raid10d(struct md_thread *thread)
2742 {
2743 	struct mddev *mddev = thread->mddev;
2744 	struct r10bio *r10_bio;
2745 	unsigned long flags;
2746 	struct r10conf *conf = mddev->private;
2747 	struct list_head *head = &conf->retry_list;
2748 	struct blk_plug plug;
2749 
2750 	md_check_recovery(mddev);
2751 
2752 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2753 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2754 		LIST_HEAD(tmp);
2755 		spin_lock_irqsave(&conf->device_lock, flags);
2756 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2757 			while (!list_empty(&conf->bio_end_io_list)) {
2758 				list_move(conf->bio_end_io_list.prev, &tmp);
2759 				conf->nr_queued--;
2760 			}
2761 		}
2762 		spin_unlock_irqrestore(&conf->device_lock, flags);
2763 		while (!list_empty(&tmp)) {
2764 			r10_bio = list_first_entry(&tmp, struct r10bio,
2765 						   retry_list);
2766 			list_del(&r10_bio->retry_list);
2767 			if (mddev->degraded)
2768 				set_bit(R10BIO_Degraded, &r10_bio->state);
2769 
2770 			if (test_bit(R10BIO_WriteError,
2771 				     &r10_bio->state))
2772 				close_write(r10_bio);
2773 			raid_end_bio_io(r10_bio);
2774 		}
2775 	}
2776 
2777 	blk_start_plug(&plug);
2778 	for (;;) {
2779 
2780 		flush_pending_writes(conf);
2781 
2782 		spin_lock_irqsave(&conf->device_lock, flags);
2783 		if (list_empty(head)) {
2784 			spin_unlock_irqrestore(&conf->device_lock, flags);
2785 			break;
2786 		}
2787 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2788 		list_del(head->prev);
2789 		conf->nr_queued--;
2790 		spin_unlock_irqrestore(&conf->device_lock, flags);
2791 
2792 		mddev = r10_bio->mddev;
2793 		conf = mddev->private;
2794 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2795 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2796 			handle_write_completed(conf, r10_bio);
2797 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2798 			reshape_request_write(mddev, r10_bio);
2799 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2800 			sync_request_write(mddev, r10_bio);
2801 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2802 			recovery_request_write(mddev, r10_bio);
2803 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2804 			handle_read_error(mddev, r10_bio);
2805 		else
2806 			WARN_ON_ONCE(1);
2807 
2808 		cond_resched();
2809 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2810 			md_check_recovery(mddev);
2811 	}
2812 	blk_finish_plug(&plug);
2813 }
2814 
2815 static int init_resync(struct r10conf *conf)
2816 {
2817 	int buffs;
2818 	int i;
2819 
2820 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2821 	BUG_ON(conf->r10buf_pool);
2822 	conf->have_replacement = 0;
2823 	for (i = 0; i < conf->geo.raid_disks; i++)
2824 		if (conf->mirrors[i].replacement)
2825 			conf->have_replacement = 1;
2826 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2827 	if (!conf->r10buf_pool)
2828 		return -ENOMEM;
2829 	conf->next_resync = 0;
2830 	return 0;
2831 }
2832 
2833 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2834 {
2835 	struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2836 	struct rsync_pages *rp;
2837 	struct bio *bio;
2838 	int nalloc;
2839 	int i;
2840 
2841 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2842 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2843 		nalloc = conf->copies; /* resync */
2844 	else
2845 		nalloc = 2; /* recovery */
2846 
2847 	for (i = 0; i < nalloc; i++) {
2848 		bio = r10bio->devs[i].bio;
2849 		rp = bio->bi_private;
2850 		bio_reset(bio);
2851 		bio->bi_private = rp;
2852 		bio = r10bio->devs[i].repl_bio;
2853 		if (bio) {
2854 			rp = bio->bi_private;
2855 			bio_reset(bio);
2856 			bio->bi_private = rp;
2857 		}
2858 	}
2859 	return r10bio;
2860 }
2861 
2862 /*
2863  * Set cluster_sync_high since we need other nodes to add the
2864  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2865  */
2866 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2867 {
2868 	sector_t window_size;
2869 	int extra_chunk, chunks;
2870 
2871 	/*
2872 	 * First, here we define "stripe" as a unit which across
2873 	 * all member devices one time, so we get chunks by use
2874 	 * raid_disks / near_copies. Otherwise, if near_copies is
2875 	 * close to raid_disks, then resync window could increases
2876 	 * linearly with the increase of raid_disks, which means
2877 	 * we will suspend a really large IO window while it is not
2878 	 * necessary. If raid_disks is not divisible by near_copies,
2879 	 * an extra chunk is needed to ensure the whole "stripe" is
2880 	 * covered.
2881 	 */
2882 
2883 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2884 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2885 		extra_chunk = 0;
2886 	else
2887 		extra_chunk = 1;
2888 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2889 
2890 	/*
2891 	 * At least use a 32M window to align with raid1's resync window
2892 	 */
2893 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2894 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2895 
2896 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2897 }
2898 
2899 /*
2900  * perform a "sync" on one "block"
2901  *
2902  * We need to make sure that no normal I/O request - particularly write
2903  * requests - conflict with active sync requests.
2904  *
2905  * This is achieved by tracking pending requests and a 'barrier' concept
2906  * that can be installed to exclude normal IO requests.
2907  *
2908  * Resync and recovery are handled very differently.
2909  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2910  *
2911  * For resync, we iterate over virtual addresses, read all copies,
2912  * and update if there are differences.  If only one copy is live,
2913  * skip it.
2914  * For recovery, we iterate over physical addresses, read a good
2915  * value for each non-in_sync drive, and over-write.
2916  *
2917  * So, for recovery we may have several outstanding complex requests for a
2918  * given address, one for each out-of-sync device.  We model this by allocating
2919  * a number of r10_bio structures, one for each out-of-sync device.
2920  * As we setup these structures, we collect all bio's together into a list
2921  * which we then process collectively to add pages, and then process again
2922  * to pass to generic_make_request.
2923  *
2924  * The r10_bio structures are linked using a borrowed master_bio pointer.
2925  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2926  * has its remaining count decremented to 0, the whole complex operation
2927  * is complete.
2928  *
2929  */
2930 
2931 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2932 			     int *skipped)
2933 {
2934 	struct r10conf *conf = mddev->private;
2935 	struct r10bio *r10_bio;
2936 	struct bio *biolist = NULL, *bio;
2937 	sector_t max_sector, nr_sectors;
2938 	int i;
2939 	int max_sync;
2940 	sector_t sync_blocks;
2941 	sector_t sectors_skipped = 0;
2942 	int chunks_skipped = 0;
2943 	sector_t chunk_mask = conf->geo.chunk_mask;
2944 	int page_idx = 0;
2945 
2946 	if (!conf->r10buf_pool)
2947 		if (init_resync(conf))
2948 			return 0;
2949 
2950 	/*
2951 	 * Allow skipping a full rebuild for incremental assembly
2952 	 * of a clean array, like RAID1 does.
2953 	 */
2954 	if (mddev->bitmap == NULL &&
2955 	    mddev->recovery_cp == MaxSector &&
2956 	    mddev->reshape_position == MaxSector &&
2957 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2958 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2959 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2960 	    conf->fullsync == 0) {
2961 		*skipped = 1;
2962 		return mddev->dev_sectors - sector_nr;
2963 	}
2964 
2965  skipped:
2966 	max_sector = mddev->dev_sectors;
2967 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2968 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2969 		max_sector = mddev->resync_max_sectors;
2970 	if (sector_nr >= max_sector) {
2971 		conf->cluster_sync_low = 0;
2972 		conf->cluster_sync_high = 0;
2973 
2974 		/* If we aborted, we need to abort the
2975 		 * sync on the 'current' bitmap chucks (there can
2976 		 * be several when recovering multiple devices).
2977 		 * as we may have started syncing it but not finished.
2978 		 * We can find the current address in
2979 		 * mddev->curr_resync, but for recovery,
2980 		 * we need to convert that to several
2981 		 * virtual addresses.
2982 		 */
2983 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2984 			end_reshape(conf);
2985 			close_sync(conf);
2986 			return 0;
2987 		}
2988 
2989 		if (mddev->curr_resync < max_sector) { /* aborted */
2990 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2991 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2992 						&sync_blocks, 1);
2993 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2994 				sector_t sect =
2995 					raid10_find_virt(conf, mddev->curr_resync, i);
2996 				bitmap_end_sync(mddev->bitmap, sect,
2997 						&sync_blocks, 1);
2998 			}
2999 		} else {
3000 			/* completed sync */
3001 			if ((!mddev->bitmap || conf->fullsync)
3002 			    && conf->have_replacement
3003 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3004 				/* Completed a full sync so the replacements
3005 				 * are now fully recovered.
3006 				 */
3007 				rcu_read_lock();
3008 				for (i = 0; i < conf->geo.raid_disks; i++) {
3009 					struct md_rdev *rdev =
3010 						rcu_dereference(conf->mirrors[i].replacement);
3011 					if (rdev)
3012 						rdev->recovery_offset = MaxSector;
3013 				}
3014 				rcu_read_unlock();
3015 			}
3016 			conf->fullsync = 0;
3017 		}
3018 		bitmap_close_sync(mddev->bitmap);
3019 		close_sync(conf);
3020 		*skipped = 1;
3021 		return sectors_skipped;
3022 	}
3023 
3024 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3025 		return reshape_request(mddev, sector_nr, skipped);
3026 
3027 	if (chunks_skipped >= conf->geo.raid_disks) {
3028 		/* if there has been nothing to do on any drive,
3029 		 * then there is nothing to do at all..
3030 		 */
3031 		*skipped = 1;
3032 		return (max_sector - sector_nr) + sectors_skipped;
3033 	}
3034 
3035 	if (max_sector > mddev->resync_max)
3036 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3037 
3038 	/* make sure whole request will fit in a chunk - if chunks
3039 	 * are meaningful
3040 	 */
3041 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3042 	    max_sector > (sector_nr | chunk_mask))
3043 		max_sector = (sector_nr | chunk_mask) + 1;
3044 
3045 	/*
3046 	 * If there is non-resync activity waiting for a turn, then let it
3047 	 * though before starting on this new sync request.
3048 	 */
3049 	if (conf->nr_waiting)
3050 		schedule_timeout_uninterruptible(1);
3051 
3052 	/* Again, very different code for resync and recovery.
3053 	 * Both must result in an r10bio with a list of bios that
3054 	 * have bi_end_io, bi_sector, bi_disk set,
3055 	 * and bi_private set to the r10bio.
3056 	 * For recovery, we may actually create several r10bios
3057 	 * with 2 bios in each, that correspond to the bios in the main one.
3058 	 * In this case, the subordinate r10bios link back through a
3059 	 * borrowed master_bio pointer, and the counter in the master
3060 	 * includes a ref from each subordinate.
3061 	 */
3062 	/* First, we decide what to do and set ->bi_end_io
3063 	 * To end_sync_read if we want to read, and
3064 	 * end_sync_write if we will want to write.
3065 	 */
3066 
3067 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3068 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3069 		/* recovery... the complicated one */
3070 		int j;
3071 		r10_bio = NULL;
3072 
3073 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3074 			int still_degraded;
3075 			struct r10bio *rb2;
3076 			sector_t sect;
3077 			int must_sync;
3078 			int any_working;
3079 			struct raid10_info *mirror = &conf->mirrors[i];
3080 			struct md_rdev *mrdev, *mreplace;
3081 
3082 			rcu_read_lock();
3083 			mrdev = rcu_dereference(mirror->rdev);
3084 			mreplace = rcu_dereference(mirror->replacement);
3085 
3086 			if ((mrdev == NULL ||
3087 			     test_bit(Faulty, &mrdev->flags) ||
3088 			     test_bit(In_sync, &mrdev->flags)) &&
3089 			    (mreplace == NULL ||
3090 			     test_bit(Faulty, &mreplace->flags))) {
3091 				rcu_read_unlock();
3092 				continue;
3093 			}
3094 
3095 			still_degraded = 0;
3096 			/* want to reconstruct this device */
3097 			rb2 = r10_bio;
3098 			sect = raid10_find_virt(conf, sector_nr, i);
3099 			if (sect >= mddev->resync_max_sectors) {
3100 				/* last stripe is not complete - don't
3101 				 * try to recover this sector.
3102 				 */
3103 				rcu_read_unlock();
3104 				continue;
3105 			}
3106 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3107 				mreplace = NULL;
3108 			/* Unless we are doing a full sync, or a replacement
3109 			 * we only need to recover the block if it is set in
3110 			 * the bitmap
3111 			 */
3112 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3113 						      &sync_blocks, 1);
3114 			if (sync_blocks < max_sync)
3115 				max_sync = sync_blocks;
3116 			if (!must_sync &&
3117 			    mreplace == NULL &&
3118 			    !conf->fullsync) {
3119 				/* yep, skip the sync_blocks here, but don't assume
3120 				 * that there will never be anything to do here
3121 				 */
3122 				chunks_skipped = -1;
3123 				rcu_read_unlock();
3124 				continue;
3125 			}
3126 			atomic_inc(&mrdev->nr_pending);
3127 			if (mreplace)
3128 				atomic_inc(&mreplace->nr_pending);
3129 			rcu_read_unlock();
3130 
3131 			r10_bio = raid10_alloc_init_r10buf(conf);
3132 			r10_bio->state = 0;
3133 			raise_barrier(conf, rb2 != NULL);
3134 			atomic_set(&r10_bio->remaining, 0);
3135 
3136 			r10_bio->master_bio = (struct bio*)rb2;
3137 			if (rb2)
3138 				atomic_inc(&rb2->remaining);
3139 			r10_bio->mddev = mddev;
3140 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3141 			r10_bio->sector = sect;
3142 
3143 			raid10_find_phys(conf, r10_bio);
3144 
3145 			/* Need to check if the array will still be
3146 			 * degraded
3147 			 */
3148 			rcu_read_lock();
3149 			for (j = 0; j < conf->geo.raid_disks; j++) {
3150 				struct md_rdev *rdev = rcu_dereference(
3151 					conf->mirrors[j].rdev);
3152 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3153 					still_degraded = 1;
3154 					break;
3155 				}
3156 			}
3157 
3158 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3159 						      &sync_blocks, still_degraded);
3160 
3161 			any_working = 0;
3162 			for (j=0; j<conf->copies;j++) {
3163 				int k;
3164 				int d = r10_bio->devs[j].devnum;
3165 				sector_t from_addr, to_addr;
3166 				struct md_rdev *rdev =
3167 					rcu_dereference(conf->mirrors[d].rdev);
3168 				sector_t sector, first_bad;
3169 				int bad_sectors;
3170 				if (!rdev ||
3171 				    !test_bit(In_sync, &rdev->flags))
3172 					continue;
3173 				/* This is where we read from */
3174 				any_working = 1;
3175 				sector = r10_bio->devs[j].addr;
3176 
3177 				if (is_badblock(rdev, sector, max_sync,
3178 						&first_bad, &bad_sectors)) {
3179 					if (first_bad > sector)
3180 						max_sync = first_bad - sector;
3181 					else {
3182 						bad_sectors -= (sector
3183 								- first_bad);
3184 						if (max_sync > bad_sectors)
3185 							max_sync = bad_sectors;
3186 						continue;
3187 					}
3188 				}
3189 				bio = r10_bio->devs[0].bio;
3190 				bio->bi_next = biolist;
3191 				biolist = bio;
3192 				bio->bi_end_io = end_sync_read;
3193 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3194 				if (test_bit(FailFast, &rdev->flags))
3195 					bio->bi_opf |= MD_FAILFAST;
3196 				from_addr = r10_bio->devs[j].addr;
3197 				bio->bi_iter.bi_sector = from_addr +
3198 					rdev->data_offset;
3199 				bio_set_dev(bio, rdev->bdev);
3200 				atomic_inc(&rdev->nr_pending);
3201 				/* and we write to 'i' (if not in_sync) */
3202 
3203 				for (k=0; k<conf->copies; k++)
3204 					if (r10_bio->devs[k].devnum == i)
3205 						break;
3206 				BUG_ON(k == conf->copies);
3207 				to_addr = r10_bio->devs[k].addr;
3208 				r10_bio->devs[0].devnum = d;
3209 				r10_bio->devs[0].addr = from_addr;
3210 				r10_bio->devs[1].devnum = i;
3211 				r10_bio->devs[1].addr = to_addr;
3212 
3213 				if (!test_bit(In_sync, &mrdev->flags)) {
3214 					bio = r10_bio->devs[1].bio;
3215 					bio->bi_next = biolist;
3216 					biolist = bio;
3217 					bio->bi_end_io = end_sync_write;
3218 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3219 					bio->bi_iter.bi_sector = to_addr
3220 						+ mrdev->data_offset;
3221 					bio_set_dev(bio, mrdev->bdev);
3222 					atomic_inc(&r10_bio->remaining);
3223 				} else
3224 					r10_bio->devs[1].bio->bi_end_io = NULL;
3225 
3226 				/* and maybe write to replacement */
3227 				bio = r10_bio->devs[1].repl_bio;
3228 				if (bio)
3229 					bio->bi_end_io = NULL;
3230 				/* Note: if mreplace != NULL, then bio
3231 				 * cannot be NULL as r10buf_pool_alloc will
3232 				 * have allocated it.
3233 				 * So the second test here is pointless.
3234 				 * But it keeps semantic-checkers happy, and
3235 				 * this comment keeps human reviewers
3236 				 * happy.
3237 				 */
3238 				if (mreplace == NULL || bio == NULL ||
3239 				    test_bit(Faulty, &mreplace->flags))
3240 					break;
3241 				bio->bi_next = biolist;
3242 				biolist = bio;
3243 				bio->bi_end_io = end_sync_write;
3244 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3245 				bio->bi_iter.bi_sector = to_addr +
3246 					mreplace->data_offset;
3247 				bio_set_dev(bio, mreplace->bdev);
3248 				atomic_inc(&r10_bio->remaining);
3249 				break;
3250 			}
3251 			rcu_read_unlock();
3252 			if (j == conf->copies) {
3253 				/* Cannot recover, so abort the recovery or
3254 				 * record a bad block */
3255 				if (any_working) {
3256 					/* problem is that there are bad blocks
3257 					 * on other device(s)
3258 					 */
3259 					int k;
3260 					for (k = 0; k < conf->copies; k++)
3261 						if (r10_bio->devs[k].devnum == i)
3262 							break;
3263 					if (!test_bit(In_sync,
3264 						      &mrdev->flags)
3265 					    && !rdev_set_badblocks(
3266 						    mrdev,
3267 						    r10_bio->devs[k].addr,
3268 						    max_sync, 0))
3269 						any_working = 0;
3270 					if (mreplace &&
3271 					    !rdev_set_badblocks(
3272 						    mreplace,
3273 						    r10_bio->devs[k].addr,
3274 						    max_sync, 0))
3275 						any_working = 0;
3276 				}
3277 				if (!any_working)  {
3278 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3279 							      &mddev->recovery))
3280 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3281 						       mdname(mddev));
3282 					mirror->recovery_disabled
3283 						= mddev->recovery_disabled;
3284 				}
3285 				put_buf(r10_bio);
3286 				if (rb2)
3287 					atomic_dec(&rb2->remaining);
3288 				r10_bio = rb2;
3289 				rdev_dec_pending(mrdev, mddev);
3290 				if (mreplace)
3291 					rdev_dec_pending(mreplace, mddev);
3292 				break;
3293 			}
3294 			rdev_dec_pending(mrdev, mddev);
3295 			if (mreplace)
3296 				rdev_dec_pending(mreplace, mddev);
3297 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3298 				/* Only want this if there is elsewhere to
3299 				 * read from. 'j' is currently the first
3300 				 * readable copy.
3301 				 */
3302 				int targets = 1;
3303 				for (; j < conf->copies; j++) {
3304 					int d = r10_bio->devs[j].devnum;
3305 					if (conf->mirrors[d].rdev &&
3306 					    test_bit(In_sync,
3307 						      &conf->mirrors[d].rdev->flags))
3308 						targets++;
3309 				}
3310 				if (targets == 1)
3311 					r10_bio->devs[0].bio->bi_opf
3312 						&= ~MD_FAILFAST;
3313 			}
3314 		}
3315 		if (biolist == NULL) {
3316 			while (r10_bio) {
3317 				struct r10bio *rb2 = r10_bio;
3318 				r10_bio = (struct r10bio*) rb2->master_bio;
3319 				rb2->master_bio = NULL;
3320 				put_buf(rb2);
3321 			}
3322 			goto giveup;
3323 		}
3324 	} else {
3325 		/* resync. Schedule a read for every block at this virt offset */
3326 		int count = 0;
3327 
3328 		/*
3329 		 * Since curr_resync_completed could probably not update in
3330 		 * time, and we will set cluster_sync_low based on it.
3331 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3332 		 * safety reason, which ensures curr_resync_completed is
3333 		 * updated in bitmap_cond_end_sync.
3334 		 */
3335 		bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3336 				     mddev_is_clustered(mddev) &&
3337 				     (sector_nr + 2 * RESYNC_SECTORS >
3338 				      conf->cluster_sync_high));
3339 
3340 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3341 				       &sync_blocks, mddev->degraded) &&
3342 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3343 						 &mddev->recovery)) {
3344 			/* We can skip this block */
3345 			*skipped = 1;
3346 			return sync_blocks + sectors_skipped;
3347 		}
3348 		if (sync_blocks < max_sync)
3349 			max_sync = sync_blocks;
3350 		r10_bio = raid10_alloc_init_r10buf(conf);
3351 		r10_bio->state = 0;
3352 
3353 		r10_bio->mddev = mddev;
3354 		atomic_set(&r10_bio->remaining, 0);
3355 		raise_barrier(conf, 0);
3356 		conf->next_resync = sector_nr;
3357 
3358 		r10_bio->master_bio = NULL;
3359 		r10_bio->sector = sector_nr;
3360 		set_bit(R10BIO_IsSync, &r10_bio->state);
3361 		raid10_find_phys(conf, r10_bio);
3362 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3363 
3364 		for (i = 0; i < conf->copies; i++) {
3365 			int d = r10_bio->devs[i].devnum;
3366 			sector_t first_bad, sector;
3367 			int bad_sectors;
3368 			struct md_rdev *rdev;
3369 
3370 			if (r10_bio->devs[i].repl_bio)
3371 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3372 
3373 			bio = r10_bio->devs[i].bio;
3374 			bio->bi_status = BLK_STS_IOERR;
3375 			rcu_read_lock();
3376 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3377 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3378 				rcu_read_unlock();
3379 				continue;
3380 			}
3381 			sector = r10_bio->devs[i].addr;
3382 			if (is_badblock(rdev, sector, max_sync,
3383 					&first_bad, &bad_sectors)) {
3384 				if (first_bad > sector)
3385 					max_sync = first_bad - sector;
3386 				else {
3387 					bad_sectors -= (sector - first_bad);
3388 					if (max_sync > bad_sectors)
3389 						max_sync = bad_sectors;
3390 					rcu_read_unlock();
3391 					continue;
3392 				}
3393 			}
3394 			atomic_inc(&rdev->nr_pending);
3395 			atomic_inc(&r10_bio->remaining);
3396 			bio->bi_next = biolist;
3397 			biolist = bio;
3398 			bio->bi_end_io = end_sync_read;
3399 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3400 			if (test_bit(FailFast, &rdev->flags))
3401 				bio->bi_opf |= MD_FAILFAST;
3402 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3403 			bio_set_dev(bio, rdev->bdev);
3404 			count++;
3405 
3406 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3407 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3408 				rcu_read_unlock();
3409 				continue;
3410 			}
3411 			atomic_inc(&rdev->nr_pending);
3412 
3413 			/* Need to set up for writing to the replacement */
3414 			bio = r10_bio->devs[i].repl_bio;
3415 			bio->bi_status = BLK_STS_IOERR;
3416 
3417 			sector = r10_bio->devs[i].addr;
3418 			bio->bi_next = biolist;
3419 			biolist = bio;
3420 			bio->bi_end_io = end_sync_write;
3421 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3422 			if (test_bit(FailFast, &rdev->flags))
3423 				bio->bi_opf |= MD_FAILFAST;
3424 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3425 			bio_set_dev(bio, rdev->bdev);
3426 			count++;
3427 			rcu_read_unlock();
3428 		}
3429 
3430 		if (count < 2) {
3431 			for (i=0; i<conf->copies; i++) {
3432 				int d = r10_bio->devs[i].devnum;
3433 				if (r10_bio->devs[i].bio->bi_end_io)
3434 					rdev_dec_pending(conf->mirrors[d].rdev,
3435 							 mddev);
3436 				if (r10_bio->devs[i].repl_bio &&
3437 				    r10_bio->devs[i].repl_bio->bi_end_io)
3438 					rdev_dec_pending(
3439 						conf->mirrors[d].replacement,
3440 						mddev);
3441 			}
3442 			put_buf(r10_bio);
3443 			biolist = NULL;
3444 			goto giveup;
3445 		}
3446 	}
3447 
3448 	nr_sectors = 0;
3449 	if (sector_nr + max_sync < max_sector)
3450 		max_sector = sector_nr + max_sync;
3451 	do {
3452 		struct page *page;
3453 		int len = PAGE_SIZE;
3454 		if (sector_nr + (len>>9) > max_sector)
3455 			len = (max_sector - sector_nr) << 9;
3456 		if (len == 0)
3457 			break;
3458 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3459 			struct resync_pages *rp = get_resync_pages(bio);
3460 			page = resync_fetch_page(rp, page_idx);
3461 			/*
3462 			 * won't fail because the vec table is big enough
3463 			 * to hold all these pages
3464 			 */
3465 			bio_add_page(bio, page, len, 0);
3466 		}
3467 		nr_sectors += len>>9;
3468 		sector_nr += len>>9;
3469 	} while (++page_idx < RESYNC_PAGES);
3470 	r10_bio->sectors = nr_sectors;
3471 
3472 	if (mddev_is_clustered(mddev) &&
3473 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3474 		/* It is resync not recovery */
3475 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3476 			conf->cluster_sync_low = mddev->curr_resync_completed;
3477 			raid10_set_cluster_sync_high(conf);
3478 			/* Send resync message */
3479 			md_cluster_ops->resync_info_update(mddev,
3480 						conf->cluster_sync_low,
3481 						conf->cluster_sync_high);
3482 		}
3483 	} else if (mddev_is_clustered(mddev)) {
3484 		/* This is recovery not resync */
3485 		sector_t sect_va1, sect_va2;
3486 		bool broadcast_msg = false;
3487 
3488 		for (i = 0; i < conf->geo.raid_disks; i++) {
3489 			/*
3490 			 * sector_nr is a device address for recovery, so we
3491 			 * need translate it to array address before compare
3492 			 * with cluster_sync_high.
3493 			 */
3494 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3495 
3496 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3497 				broadcast_msg = true;
3498 				/*
3499 				 * curr_resync_completed is similar as
3500 				 * sector_nr, so make the translation too.
3501 				 */
3502 				sect_va2 = raid10_find_virt(conf,
3503 					mddev->curr_resync_completed, i);
3504 
3505 				if (conf->cluster_sync_low == 0 ||
3506 				    conf->cluster_sync_low > sect_va2)
3507 					conf->cluster_sync_low = sect_va2;
3508 			}
3509 		}
3510 		if (broadcast_msg) {
3511 			raid10_set_cluster_sync_high(conf);
3512 			md_cluster_ops->resync_info_update(mddev,
3513 						conf->cluster_sync_low,
3514 						conf->cluster_sync_high);
3515 		}
3516 	}
3517 
3518 	while (biolist) {
3519 		bio = biolist;
3520 		biolist = biolist->bi_next;
3521 
3522 		bio->bi_next = NULL;
3523 		r10_bio = get_resync_r10bio(bio);
3524 		r10_bio->sectors = nr_sectors;
3525 
3526 		if (bio->bi_end_io == end_sync_read) {
3527 			md_sync_acct_bio(bio, nr_sectors);
3528 			bio->bi_status = 0;
3529 			generic_make_request(bio);
3530 		}
3531 	}
3532 
3533 	if (sectors_skipped)
3534 		/* pretend they weren't skipped, it makes
3535 		 * no important difference in this case
3536 		 */
3537 		md_done_sync(mddev, sectors_skipped, 1);
3538 
3539 	return sectors_skipped + nr_sectors;
3540  giveup:
3541 	/* There is nowhere to write, so all non-sync
3542 	 * drives must be failed or in resync, all drives
3543 	 * have a bad block, so try the next chunk...
3544 	 */
3545 	if (sector_nr + max_sync < max_sector)
3546 		max_sector = sector_nr + max_sync;
3547 
3548 	sectors_skipped += (max_sector - sector_nr);
3549 	chunks_skipped ++;
3550 	sector_nr = max_sector;
3551 	goto skipped;
3552 }
3553 
3554 static sector_t
3555 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3556 {
3557 	sector_t size;
3558 	struct r10conf *conf = mddev->private;
3559 
3560 	if (!raid_disks)
3561 		raid_disks = min(conf->geo.raid_disks,
3562 				 conf->prev.raid_disks);
3563 	if (!sectors)
3564 		sectors = conf->dev_sectors;
3565 
3566 	size = sectors >> conf->geo.chunk_shift;
3567 	sector_div(size, conf->geo.far_copies);
3568 	size = size * raid_disks;
3569 	sector_div(size, conf->geo.near_copies);
3570 
3571 	return size << conf->geo.chunk_shift;
3572 }
3573 
3574 static void calc_sectors(struct r10conf *conf, sector_t size)
3575 {
3576 	/* Calculate the number of sectors-per-device that will
3577 	 * actually be used, and set conf->dev_sectors and
3578 	 * conf->stride
3579 	 */
3580 
3581 	size = size >> conf->geo.chunk_shift;
3582 	sector_div(size, conf->geo.far_copies);
3583 	size = size * conf->geo.raid_disks;
3584 	sector_div(size, conf->geo.near_copies);
3585 	/* 'size' is now the number of chunks in the array */
3586 	/* calculate "used chunks per device" */
3587 	size = size * conf->copies;
3588 
3589 	/* We need to round up when dividing by raid_disks to
3590 	 * get the stride size.
3591 	 */
3592 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3593 
3594 	conf->dev_sectors = size << conf->geo.chunk_shift;
3595 
3596 	if (conf->geo.far_offset)
3597 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3598 	else {
3599 		sector_div(size, conf->geo.far_copies);
3600 		conf->geo.stride = size << conf->geo.chunk_shift;
3601 	}
3602 }
3603 
3604 enum geo_type {geo_new, geo_old, geo_start};
3605 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3606 {
3607 	int nc, fc, fo;
3608 	int layout, chunk, disks;
3609 	switch (new) {
3610 	case geo_old:
3611 		layout = mddev->layout;
3612 		chunk = mddev->chunk_sectors;
3613 		disks = mddev->raid_disks - mddev->delta_disks;
3614 		break;
3615 	case geo_new:
3616 		layout = mddev->new_layout;
3617 		chunk = mddev->new_chunk_sectors;
3618 		disks = mddev->raid_disks;
3619 		break;
3620 	default: /* avoid 'may be unused' warnings */
3621 	case geo_start: /* new when starting reshape - raid_disks not
3622 			 * updated yet. */
3623 		layout = mddev->new_layout;
3624 		chunk = mddev->new_chunk_sectors;
3625 		disks = mddev->raid_disks + mddev->delta_disks;
3626 		break;
3627 	}
3628 	if (layout >> 19)
3629 		return -1;
3630 	if (chunk < (PAGE_SIZE >> 9) ||
3631 	    !is_power_of_2(chunk))
3632 		return -2;
3633 	nc = layout & 255;
3634 	fc = (layout >> 8) & 255;
3635 	fo = layout & (1<<16);
3636 	geo->raid_disks = disks;
3637 	geo->near_copies = nc;
3638 	geo->far_copies = fc;
3639 	geo->far_offset = fo;
3640 	switch (layout >> 17) {
3641 	case 0:	/* original layout.  simple but not always optimal */
3642 		geo->far_set_size = disks;
3643 		break;
3644 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3645 		 * actually using this, but leave code here just in case.*/
3646 		geo->far_set_size = disks/fc;
3647 		WARN(geo->far_set_size < fc,
3648 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3649 		break;
3650 	case 2: /* "improved" layout fixed to match documentation */
3651 		geo->far_set_size = fc * nc;
3652 		break;
3653 	default: /* Not a valid layout */
3654 		return -1;
3655 	}
3656 	geo->chunk_mask = chunk - 1;
3657 	geo->chunk_shift = ffz(~chunk);
3658 	return nc*fc;
3659 }
3660 
3661 static struct r10conf *setup_conf(struct mddev *mddev)
3662 {
3663 	struct r10conf *conf = NULL;
3664 	int err = -EINVAL;
3665 	struct geom geo;
3666 	int copies;
3667 
3668 	copies = setup_geo(&geo, mddev, geo_new);
3669 
3670 	if (copies == -2) {
3671 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3672 			mdname(mddev), PAGE_SIZE);
3673 		goto out;
3674 	}
3675 
3676 	if (copies < 2 || copies > mddev->raid_disks) {
3677 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3678 			mdname(mddev), mddev->new_layout);
3679 		goto out;
3680 	}
3681 
3682 	err = -ENOMEM;
3683 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3684 	if (!conf)
3685 		goto out;
3686 
3687 	/* FIXME calc properly */
3688 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3689 							    max(0,-mddev->delta_disks)),
3690 				GFP_KERNEL);
3691 	if (!conf->mirrors)
3692 		goto out;
3693 
3694 	conf->tmppage = alloc_page(GFP_KERNEL);
3695 	if (!conf->tmppage)
3696 		goto out;
3697 
3698 	conf->geo = geo;
3699 	conf->copies = copies;
3700 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3701 					   r10bio_pool_free, conf);
3702 	if (!conf->r10bio_pool)
3703 		goto out;
3704 
3705 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3706 	if (!conf->bio_split)
3707 		goto out;
3708 
3709 	calc_sectors(conf, mddev->dev_sectors);
3710 	if (mddev->reshape_position == MaxSector) {
3711 		conf->prev = conf->geo;
3712 		conf->reshape_progress = MaxSector;
3713 	} else {
3714 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3715 			err = -EINVAL;
3716 			goto out;
3717 		}
3718 		conf->reshape_progress = mddev->reshape_position;
3719 		if (conf->prev.far_offset)
3720 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3721 		else
3722 			/* far_copies must be 1 */
3723 			conf->prev.stride = conf->dev_sectors;
3724 	}
3725 	conf->reshape_safe = conf->reshape_progress;
3726 	spin_lock_init(&conf->device_lock);
3727 	INIT_LIST_HEAD(&conf->retry_list);
3728 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3729 
3730 	spin_lock_init(&conf->resync_lock);
3731 	init_waitqueue_head(&conf->wait_barrier);
3732 	atomic_set(&conf->nr_pending, 0);
3733 
3734 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3735 	if (!conf->thread)
3736 		goto out;
3737 
3738 	conf->mddev = mddev;
3739 	return conf;
3740 
3741  out:
3742 	if (conf) {
3743 		mempool_destroy(conf->r10bio_pool);
3744 		kfree(conf->mirrors);
3745 		safe_put_page(conf->tmppage);
3746 		if (conf->bio_split)
3747 			bioset_free(conf->bio_split);
3748 		kfree(conf);
3749 	}
3750 	return ERR_PTR(err);
3751 }
3752 
3753 static int raid10_run(struct mddev *mddev)
3754 {
3755 	struct r10conf *conf;
3756 	int i, disk_idx, chunk_size;
3757 	struct raid10_info *disk;
3758 	struct md_rdev *rdev;
3759 	sector_t size;
3760 	sector_t min_offset_diff = 0;
3761 	int first = 1;
3762 	bool discard_supported = false;
3763 
3764 	if (mddev_init_writes_pending(mddev) < 0)
3765 		return -ENOMEM;
3766 
3767 	if (mddev->private == NULL) {
3768 		conf = setup_conf(mddev);
3769 		if (IS_ERR(conf))
3770 			return PTR_ERR(conf);
3771 		mddev->private = conf;
3772 	}
3773 	conf = mddev->private;
3774 	if (!conf)
3775 		goto out;
3776 
3777 	if (mddev_is_clustered(conf->mddev)) {
3778 		int fc, fo;
3779 
3780 		fc = (mddev->layout >> 8) & 255;
3781 		fo = mddev->layout & (1<<16);
3782 		if (fc > 1 || fo > 0) {
3783 			pr_err("only near layout is supported by clustered"
3784 				" raid10\n");
3785 			goto out;
3786 		}
3787 	}
3788 
3789 	mddev->thread = conf->thread;
3790 	conf->thread = NULL;
3791 
3792 	chunk_size = mddev->chunk_sectors << 9;
3793 	if (mddev->queue) {
3794 		blk_queue_max_discard_sectors(mddev->queue,
3795 					      mddev->chunk_sectors);
3796 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3797 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3798 		blk_queue_io_min(mddev->queue, chunk_size);
3799 		if (conf->geo.raid_disks % conf->geo.near_copies)
3800 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3801 		else
3802 			blk_queue_io_opt(mddev->queue, chunk_size *
3803 					 (conf->geo.raid_disks / conf->geo.near_copies));
3804 	}
3805 
3806 	rdev_for_each(rdev, mddev) {
3807 		long long diff;
3808 
3809 		disk_idx = rdev->raid_disk;
3810 		if (disk_idx < 0)
3811 			continue;
3812 		if (disk_idx >= conf->geo.raid_disks &&
3813 		    disk_idx >= conf->prev.raid_disks)
3814 			continue;
3815 		disk = conf->mirrors + disk_idx;
3816 
3817 		if (test_bit(Replacement, &rdev->flags)) {
3818 			if (disk->replacement)
3819 				goto out_free_conf;
3820 			disk->replacement = rdev;
3821 		} else {
3822 			if (disk->rdev)
3823 				goto out_free_conf;
3824 			disk->rdev = rdev;
3825 		}
3826 		diff = (rdev->new_data_offset - rdev->data_offset);
3827 		if (!mddev->reshape_backwards)
3828 			diff = -diff;
3829 		if (diff < 0)
3830 			diff = 0;
3831 		if (first || diff < min_offset_diff)
3832 			min_offset_diff = diff;
3833 
3834 		if (mddev->gendisk)
3835 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3836 					  rdev->data_offset << 9);
3837 
3838 		disk->head_position = 0;
3839 
3840 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3841 			discard_supported = true;
3842 		first = 0;
3843 	}
3844 
3845 	if (mddev->queue) {
3846 		if (discard_supported)
3847 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3848 						mddev->queue);
3849 		else
3850 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3851 						  mddev->queue);
3852 	}
3853 	/* need to check that every block has at least one working mirror */
3854 	if (!enough(conf, -1)) {
3855 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3856 		       mdname(mddev));
3857 		goto out_free_conf;
3858 	}
3859 
3860 	if (conf->reshape_progress != MaxSector) {
3861 		/* must ensure that shape change is supported */
3862 		if (conf->geo.far_copies != 1 &&
3863 		    conf->geo.far_offset == 0)
3864 			goto out_free_conf;
3865 		if (conf->prev.far_copies != 1 &&
3866 		    conf->prev.far_offset == 0)
3867 			goto out_free_conf;
3868 	}
3869 
3870 	mddev->degraded = 0;
3871 	for (i = 0;
3872 	     i < conf->geo.raid_disks
3873 		     || i < conf->prev.raid_disks;
3874 	     i++) {
3875 
3876 		disk = conf->mirrors + i;
3877 
3878 		if (!disk->rdev && disk->replacement) {
3879 			/* The replacement is all we have - use it */
3880 			disk->rdev = disk->replacement;
3881 			disk->replacement = NULL;
3882 			clear_bit(Replacement, &disk->rdev->flags);
3883 		}
3884 
3885 		if (!disk->rdev ||
3886 		    !test_bit(In_sync, &disk->rdev->flags)) {
3887 			disk->head_position = 0;
3888 			mddev->degraded++;
3889 			if (disk->rdev &&
3890 			    disk->rdev->saved_raid_disk < 0)
3891 				conf->fullsync = 1;
3892 		}
3893 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3894 	}
3895 
3896 	if (mddev->recovery_cp != MaxSector)
3897 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3898 			  mdname(mddev));
3899 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3900 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3901 		conf->geo.raid_disks);
3902 	/*
3903 	 * Ok, everything is just fine now
3904 	 */
3905 	mddev->dev_sectors = conf->dev_sectors;
3906 	size = raid10_size(mddev, 0, 0);
3907 	md_set_array_sectors(mddev, size);
3908 	mddev->resync_max_sectors = size;
3909 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3910 
3911 	if (mddev->queue) {
3912 		int stripe = conf->geo.raid_disks *
3913 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3914 
3915 		/* Calculate max read-ahead size.
3916 		 * We need to readahead at least twice a whole stripe....
3917 		 * maybe...
3918 		 */
3919 		stripe /= conf->geo.near_copies;
3920 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3921 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3922 	}
3923 
3924 	if (md_integrity_register(mddev))
3925 		goto out_free_conf;
3926 
3927 	if (conf->reshape_progress != MaxSector) {
3928 		unsigned long before_length, after_length;
3929 
3930 		before_length = ((1 << conf->prev.chunk_shift) *
3931 				 conf->prev.far_copies);
3932 		after_length = ((1 << conf->geo.chunk_shift) *
3933 				conf->geo.far_copies);
3934 
3935 		if (max(before_length, after_length) > min_offset_diff) {
3936 			/* This cannot work */
3937 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3938 			goto out_free_conf;
3939 		}
3940 		conf->offset_diff = min_offset_diff;
3941 
3942 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3943 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3944 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3945 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3946 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3947 							"reshape");
3948 	}
3949 
3950 	return 0;
3951 
3952 out_free_conf:
3953 	md_unregister_thread(&mddev->thread);
3954 	mempool_destroy(conf->r10bio_pool);
3955 	safe_put_page(conf->tmppage);
3956 	kfree(conf->mirrors);
3957 	kfree(conf);
3958 	mddev->private = NULL;
3959 out:
3960 	return -EIO;
3961 }
3962 
3963 static void raid10_free(struct mddev *mddev, void *priv)
3964 {
3965 	struct r10conf *conf = priv;
3966 
3967 	mempool_destroy(conf->r10bio_pool);
3968 	safe_put_page(conf->tmppage);
3969 	kfree(conf->mirrors);
3970 	kfree(conf->mirrors_old);
3971 	kfree(conf->mirrors_new);
3972 	if (conf->bio_split)
3973 		bioset_free(conf->bio_split);
3974 	kfree(conf);
3975 }
3976 
3977 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3978 {
3979 	struct r10conf *conf = mddev->private;
3980 
3981 	if (quiesce)
3982 		raise_barrier(conf, 0);
3983 	else
3984 		lower_barrier(conf);
3985 }
3986 
3987 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3988 {
3989 	/* Resize of 'far' arrays is not supported.
3990 	 * For 'near' and 'offset' arrays we can set the
3991 	 * number of sectors used to be an appropriate multiple
3992 	 * of the chunk size.
3993 	 * For 'offset', this is far_copies*chunksize.
3994 	 * For 'near' the multiplier is the LCM of
3995 	 * near_copies and raid_disks.
3996 	 * So if far_copies > 1 && !far_offset, fail.
3997 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3998 	 * multiply by chunk_size.  Then round to this number.
3999 	 * This is mostly done by raid10_size()
4000 	 */
4001 	struct r10conf *conf = mddev->private;
4002 	sector_t oldsize, size;
4003 
4004 	if (mddev->reshape_position != MaxSector)
4005 		return -EBUSY;
4006 
4007 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4008 		return -EINVAL;
4009 
4010 	oldsize = raid10_size(mddev, 0, 0);
4011 	size = raid10_size(mddev, sectors, 0);
4012 	if (mddev->external_size &&
4013 	    mddev->array_sectors > size)
4014 		return -EINVAL;
4015 	if (mddev->bitmap) {
4016 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4017 		if (ret)
4018 			return ret;
4019 	}
4020 	md_set_array_sectors(mddev, size);
4021 	if (sectors > mddev->dev_sectors &&
4022 	    mddev->recovery_cp > oldsize) {
4023 		mddev->recovery_cp = oldsize;
4024 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4025 	}
4026 	calc_sectors(conf, sectors);
4027 	mddev->dev_sectors = conf->dev_sectors;
4028 	mddev->resync_max_sectors = size;
4029 	return 0;
4030 }
4031 
4032 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4033 {
4034 	struct md_rdev *rdev;
4035 	struct r10conf *conf;
4036 
4037 	if (mddev->degraded > 0) {
4038 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4039 			mdname(mddev));
4040 		return ERR_PTR(-EINVAL);
4041 	}
4042 	sector_div(size, devs);
4043 
4044 	/* Set new parameters */
4045 	mddev->new_level = 10;
4046 	/* new layout: far_copies = 1, near_copies = 2 */
4047 	mddev->new_layout = (1<<8) + 2;
4048 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4049 	mddev->delta_disks = mddev->raid_disks;
4050 	mddev->raid_disks *= 2;
4051 	/* make sure it will be not marked as dirty */
4052 	mddev->recovery_cp = MaxSector;
4053 	mddev->dev_sectors = size;
4054 
4055 	conf = setup_conf(mddev);
4056 	if (!IS_ERR(conf)) {
4057 		rdev_for_each(rdev, mddev)
4058 			if (rdev->raid_disk >= 0) {
4059 				rdev->new_raid_disk = rdev->raid_disk * 2;
4060 				rdev->sectors = size;
4061 			}
4062 		conf->barrier = 1;
4063 	}
4064 
4065 	return conf;
4066 }
4067 
4068 static void *raid10_takeover(struct mddev *mddev)
4069 {
4070 	struct r0conf *raid0_conf;
4071 
4072 	/* raid10 can take over:
4073 	 *  raid0 - providing it has only two drives
4074 	 */
4075 	if (mddev->level == 0) {
4076 		/* for raid0 takeover only one zone is supported */
4077 		raid0_conf = mddev->private;
4078 		if (raid0_conf->nr_strip_zones > 1) {
4079 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4080 				mdname(mddev));
4081 			return ERR_PTR(-EINVAL);
4082 		}
4083 		return raid10_takeover_raid0(mddev,
4084 			raid0_conf->strip_zone->zone_end,
4085 			raid0_conf->strip_zone->nb_dev);
4086 	}
4087 	return ERR_PTR(-EINVAL);
4088 }
4089 
4090 static int raid10_check_reshape(struct mddev *mddev)
4091 {
4092 	/* Called when there is a request to change
4093 	 * - layout (to ->new_layout)
4094 	 * - chunk size (to ->new_chunk_sectors)
4095 	 * - raid_disks (by delta_disks)
4096 	 * or when trying to restart a reshape that was ongoing.
4097 	 *
4098 	 * We need to validate the request and possibly allocate
4099 	 * space if that might be an issue later.
4100 	 *
4101 	 * Currently we reject any reshape of a 'far' mode array,
4102 	 * allow chunk size to change if new is generally acceptable,
4103 	 * allow raid_disks to increase, and allow
4104 	 * a switch between 'near' mode and 'offset' mode.
4105 	 */
4106 	struct r10conf *conf = mddev->private;
4107 	struct geom geo;
4108 
4109 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4110 		return -EINVAL;
4111 
4112 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4113 		/* mustn't change number of copies */
4114 		return -EINVAL;
4115 	if (geo.far_copies > 1 && !geo.far_offset)
4116 		/* Cannot switch to 'far' mode */
4117 		return -EINVAL;
4118 
4119 	if (mddev->array_sectors & geo.chunk_mask)
4120 			/* not factor of array size */
4121 			return -EINVAL;
4122 
4123 	if (!enough(conf, -1))
4124 		return -EINVAL;
4125 
4126 	kfree(conf->mirrors_new);
4127 	conf->mirrors_new = NULL;
4128 	if (mddev->delta_disks > 0) {
4129 		/* allocate new 'mirrors' list */
4130 		conf->mirrors_new = kzalloc(
4131 			sizeof(struct raid10_info)
4132 			*(mddev->raid_disks +
4133 			  mddev->delta_disks),
4134 			GFP_KERNEL);
4135 		if (!conf->mirrors_new)
4136 			return -ENOMEM;
4137 	}
4138 	return 0;
4139 }
4140 
4141 /*
4142  * Need to check if array has failed when deciding whether to:
4143  *  - start an array
4144  *  - remove non-faulty devices
4145  *  - add a spare
4146  *  - allow a reshape
4147  * This determination is simple when no reshape is happening.
4148  * However if there is a reshape, we need to carefully check
4149  * both the before and after sections.
4150  * This is because some failed devices may only affect one
4151  * of the two sections, and some non-in_sync devices may
4152  * be insync in the section most affected by failed devices.
4153  */
4154 static int calc_degraded(struct r10conf *conf)
4155 {
4156 	int degraded, degraded2;
4157 	int i;
4158 
4159 	rcu_read_lock();
4160 	degraded = 0;
4161 	/* 'prev' section first */
4162 	for (i = 0; i < conf->prev.raid_disks; i++) {
4163 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4164 		if (!rdev || test_bit(Faulty, &rdev->flags))
4165 			degraded++;
4166 		else if (!test_bit(In_sync, &rdev->flags))
4167 			/* When we can reduce the number of devices in
4168 			 * an array, this might not contribute to
4169 			 * 'degraded'.  It does now.
4170 			 */
4171 			degraded++;
4172 	}
4173 	rcu_read_unlock();
4174 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4175 		return degraded;
4176 	rcu_read_lock();
4177 	degraded2 = 0;
4178 	for (i = 0; i < conf->geo.raid_disks; i++) {
4179 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4180 		if (!rdev || test_bit(Faulty, &rdev->flags))
4181 			degraded2++;
4182 		else if (!test_bit(In_sync, &rdev->flags)) {
4183 			/* If reshape is increasing the number of devices,
4184 			 * this section has already been recovered, so
4185 			 * it doesn't contribute to degraded.
4186 			 * else it does.
4187 			 */
4188 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4189 				degraded2++;
4190 		}
4191 	}
4192 	rcu_read_unlock();
4193 	if (degraded2 > degraded)
4194 		return degraded2;
4195 	return degraded;
4196 }
4197 
4198 static int raid10_start_reshape(struct mddev *mddev)
4199 {
4200 	/* A 'reshape' has been requested. This commits
4201 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4202 	 * This also checks if there are enough spares and adds them
4203 	 * to the array.
4204 	 * We currently require enough spares to make the final
4205 	 * array non-degraded.  We also require that the difference
4206 	 * between old and new data_offset - on each device - is
4207 	 * enough that we never risk over-writing.
4208 	 */
4209 
4210 	unsigned long before_length, after_length;
4211 	sector_t min_offset_diff = 0;
4212 	int first = 1;
4213 	struct geom new;
4214 	struct r10conf *conf = mddev->private;
4215 	struct md_rdev *rdev;
4216 	int spares = 0;
4217 	int ret;
4218 
4219 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 		return -EBUSY;
4221 
4222 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4223 		return -EINVAL;
4224 
4225 	before_length = ((1 << conf->prev.chunk_shift) *
4226 			 conf->prev.far_copies);
4227 	after_length = ((1 << conf->geo.chunk_shift) *
4228 			conf->geo.far_copies);
4229 
4230 	rdev_for_each(rdev, mddev) {
4231 		if (!test_bit(In_sync, &rdev->flags)
4232 		    && !test_bit(Faulty, &rdev->flags))
4233 			spares++;
4234 		if (rdev->raid_disk >= 0) {
4235 			long long diff = (rdev->new_data_offset
4236 					  - rdev->data_offset);
4237 			if (!mddev->reshape_backwards)
4238 				diff = -diff;
4239 			if (diff < 0)
4240 				diff = 0;
4241 			if (first || diff < min_offset_diff)
4242 				min_offset_diff = diff;
4243 			first = 0;
4244 		}
4245 	}
4246 
4247 	if (max(before_length, after_length) > min_offset_diff)
4248 		return -EINVAL;
4249 
4250 	if (spares < mddev->delta_disks)
4251 		return -EINVAL;
4252 
4253 	conf->offset_diff = min_offset_diff;
4254 	spin_lock_irq(&conf->device_lock);
4255 	if (conf->mirrors_new) {
4256 		memcpy(conf->mirrors_new, conf->mirrors,
4257 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4258 		smp_mb();
4259 		kfree(conf->mirrors_old);
4260 		conf->mirrors_old = conf->mirrors;
4261 		conf->mirrors = conf->mirrors_new;
4262 		conf->mirrors_new = NULL;
4263 	}
4264 	setup_geo(&conf->geo, mddev, geo_start);
4265 	smp_mb();
4266 	if (mddev->reshape_backwards) {
4267 		sector_t size = raid10_size(mddev, 0, 0);
4268 		if (size < mddev->array_sectors) {
4269 			spin_unlock_irq(&conf->device_lock);
4270 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4271 				mdname(mddev));
4272 			return -EINVAL;
4273 		}
4274 		mddev->resync_max_sectors = size;
4275 		conf->reshape_progress = size;
4276 	} else
4277 		conf->reshape_progress = 0;
4278 	conf->reshape_safe = conf->reshape_progress;
4279 	spin_unlock_irq(&conf->device_lock);
4280 
4281 	if (mddev->delta_disks && mddev->bitmap) {
4282 		ret = bitmap_resize(mddev->bitmap,
4283 				    raid10_size(mddev, 0,
4284 						conf->geo.raid_disks),
4285 				    0, 0);
4286 		if (ret)
4287 			goto abort;
4288 	}
4289 	if (mddev->delta_disks > 0) {
4290 		rdev_for_each(rdev, mddev)
4291 			if (rdev->raid_disk < 0 &&
4292 			    !test_bit(Faulty, &rdev->flags)) {
4293 				if (raid10_add_disk(mddev, rdev) == 0) {
4294 					if (rdev->raid_disk >=
4295 					    conf->prev.raid_disks)
4296 						set_bit(In_sync, &rdev->flags);
4297 					else
4298 						rdev->recovery_offset = 0;
4299 
4300 					if (sysfs_link_rdev(mddev, rdev))
4301 						/* Failure here  is OK */;
4302 				}
4303 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4304 				   && !test_bit(Faulty, &rdev->flags)) {
4305 				/* This is a spare that was manually added */
4306 				set_bit(In_sync, &rdev->flags);
4307 			}
4308 	}
4309 	/* When a reshape changes the number of devices,
4310 	 * ->degraded is measured against the larger of the
4311 	 * pre and  post numbers.
4312 	 */
4313 	spin_lock_irq(&conf->device_lock);
4314 	mddev->degraded = calc_degraded(conf);
4315 	spin_unlock_irq(&conf->device_lock);
4316 	mddev->raid_disks = conf->geo.raid_disks;
4317 	mddev->reshape_position = conf->reshape_progress;
4318 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4319 
4320 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4321 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4322 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4323 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4324 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4325 
4326 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4327 						"reshape");
4328 	if (!mddev->sync_thread) {
4329 		ret = -EAGAIN;
4330 		goto abort;
4331 	}
4332 	conf->reshape_checkpoint = jiffies;
4333 	md_wakeup_thread(mddev->sync_thread);
4334 	md_new_event(mddev);
4335 	return 0;
4336 
4337 abort:
4338 	mddev->recovery = 0;
4339 	spin_lock_irq(&conf->device_lock);
4340 	conf->geo = conf->prev;
4341 	mddev->raid_disks = conf->geo.raid_disks;
4342 	rdev_for_each(rdev, mddev)
4343 		rdev->new_data_offset = rdev->data_offset;
4344 	smp_wmb();
4345 	conf->reshape_progress = MaxSector;
4346 	conf->reshape_safe = MaxSector;
4347 	mddev->reshape_position = MaxSector;
4348 	spin_unlock_irq(&conf->device_lock);
4349 	return ret;
4350 }
4351 
4352 /* Calculate the last device-address that could contain
4353  * any block from the chunk that includes the array-address 's'
4354  * and report the next address.
4355  * i.e. the address returned will be chunk-aligned and after
4356  * any data that is in the chunk containing 's'.
4357  */
4358 static sector_t last_dev_address(sector_t s, struct geom *geo)
4359 {
4360 	s = (s | geo->chunk_mask) + 1;
4361 	s >>= geo->chunk_shift;
4362 	s *= geo->near_copies;
4363 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4364 	s *= geo->far_copies;
4365 	s <<= geo->chunk_shift;
4366 	return s;
4367 }
4368 
4369 /* Calculate the first device-address that could contain
4370  * any block from the chunk that includes the array-address 's'.
4371  * This too will be the start of a chunk
4372  */
4373 static sector_t first_dev_address(sector_t s, struct geom *geo)
4374 {
4375 	s >>= geo->chunk_shift;
4376 	s *= geo->near_copies;
4377 	sector_div(s, geo->raid_disks);
4378 	s *= geo->far_copies;
4379 	s <<= geo->chunk_shift;
4380 	return s;
4381 }
4382 
4383 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4384 				int *skipped)
4385 {
4386 	/* We simply copy at most one chunk (smallest of old and new)
4387 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4388 	 * or we hit a bad block or something.
4389 	 * This might mean we pause for normal IO in the middle of
4390 	 * a chunk, but that is not a problem as mddev->reshape_position
4391 	 * can record any location.
4392 	 *
4393 	 * If we will want to write to a location that isn't
4394 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4395 	 * we need to flush all reshape requests and update the metadata.
4396 	 *
4397 	 * When reshaping forwards (e.g. to more devices), we interpret
4398 	 * 'safe' as the earliest block which might not have been copied
4399 	 * down yet.  We divide this by previous stripe size and multiply
4400 	 * by previous stripe length to get lowest device offset that we
4401 	 * cannot write to yet.
4402 	 * We interpret 'sector_nr' as an address that we want to write to.
4403 	 * From this we use last_device_address() to find where we might
4404 	 * write to, and first_device_address on the  'safe' position.
4405 	 * If this 'next' write position is after the 'safe' position,
4406 	 * we must update the metadata to increase the 'safe' position.
4407 	 *
4408 	 * When reshaping backwards, we round in the opposite direction
4409 	 * and perform the reverse test:  next write position must not be
4410 	 * less than current safe position.
4411 	 *
4412 	 * In all this the minimum difference in data offsets
4413 	 * (conf->offset_diff - always positive) allows a bit of slack,
4414 	 * so next can be after 'safe', but not by more than offset_diff
4415 	 *
4416 	 * We need to prepare all the bios here before we start any IO
4417 	 * to ensure the size we choose is acceptable to all devices.
4418 	 * The means one for each copy for write-out and an extra one for
4419 	 * read-in.
4420 	 * We store the read-in bio in ->master_bio and the others in
4421 	 * ->devs[x].bio and ->devs[x].repl_bio.
4422 	 */
4423 	struct r10conf *conf = mddev->private;
4424 	struct r10bio *r10_bio;
4425 	sector_t next, safe, last;
4426 	int max_sectors;
4427 	int nr_sectors;
4428 	int s;
4429 	struct md_rdev *rdev;
4430 	int need_flush = 0;
4431 	struct bio *blist;
4432 	struct bio *bio, *read_bio;
4433 	int sectors_done = 0;
4434 	struct page **pages;
4435 
4436 	if (sector_nr == 0) {
4437 		/* If restarting in the middle, skip the initial sectors */
4438 		if (mddev->reshape_backwards &&
4439 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4440 			sector_nr = (raid10_size(mddev, 0, 0)
4441 				     - conf->reshape_progress);
4442 		} else if (!mddev->reshape_backwards &&
4443 			   conf->reshape_progress > 0)
4444 			sector_nr = conf->reshape_progress;
4445 		if (sector_nr) {
4446 			mddev->curr_resync_completed = sector_nr;
4447 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4448 			*skipped = 1;
4449 			return sector_nr;
4450 		}
4451 	}
4452 
4453 	/* We don't use sector_nr to track where we are up to
4454 	 * as that doesn't work well for ->reshape_backwards.
4455 	 * So just use ->reshape_progress.
4456 	 */
4457 	if (mddev->reshape_backwards) {
4458 		/* 'next' is the earliest device address that we might
4459 		 * write to for this chunk in the new layout
4460 		 */
4461 		next = first_dev_address(conf->reshape_progress - 1,
4462 					 &conf->geo);
4463 
4464 		/* 'safe' is the last device address that we might read from
4465 		 * in the old layout after a restart
4466 		 */
4467 		safe = last_dev_address(conf->reshape_safe - 1,
4468 					&conf->prev);
4469 
4470 		if (next + conf->offset_diff < safe)
4471 			need_flush = 1;
4472 
4473 		last = conf->reshape_progress - 1;
4474 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4475 					       & conf->prev.chunk_mask);
4476 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4477 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4478 	} else {
4479 		/* 'next' is after the last device address that we
4480 		 * might write to for this chunk in the new layout
4481 		 */
4482 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4483 
4484 		/* 'safe' is the earliest device address that we might
4485 		 * read from in the old layout after a restart
4486 		 */
4487 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4488 
4489 		/* Need to update metadata if 'next' might be beyond 'safe'
4490 		 * as that would possibly corrupt data
4491 		 */
4492 		if (next > safe + conf->offset_diff)
4493 			need_flush = 1;
4494 
4495 		sector_nr = conf->reshape_progress;
4496 		last  = sector_nr | (conf->geo.chunk_mask
4497 				     & conf->prev.chunk_mask);
4498 
4499 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4500 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4501 	}
4502 
4503 	if (need_flush ||
4504 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4505 		/* Need to update reshape_position in metadata */
4506 		wait_barrier(conf);
4507 		mddev->reshape_position = conf->reshape_progress;
4508 		if (mddev->reshape_backwards)
4509 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4510 				- conf->reshape_progress;
4511 		else
4512 			mddev->curr_resync_completed = conf->reshape_progress;
4513 		conf->reshape_checkpoint = jiffies;
4514 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4515 		md_wakeup_thread(mddev->thread);
4516 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4517 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4518 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4519 			allow_barrier(conf);
4520 			return sectors_done;
4521 		}
4522 		conf->reshape_safe = mddev->reshape_position;
4523 		allow_barrier(conf);
4524 	}
4525 
4526 read_more:
4527 	/* Now schedule reads for blocks from sector_nr to last */
4528 	r10_bio = raid10_alloc_init_r10buf(conf);
4529 	r10_bio->state = 0;
4530 	raise_barrier(conf, sectors_done != 0);
4531 	atomic_set(&r10_bio->remaining, 0);
4532 	r10_bio->mddev = mddev;
4533 	r10_bio->sector = sector_nr;
4534 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4535 	r10_bio->sectors = last - sector_nr + 1;
4536 	rdev = read_balance(conf, r10_bio, &max_sectors);
4537 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4538 
4539 	if (!rdev) {
4540 		/* Cannot read from here, so need to record bad blocks
4541 		 * on all the target devices.
4542 		 */
4543 		// FIXME
4544 		mempool_free(r10_bio, conf->r10buf_pool);
4545 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4546 		return sectors_done;
4547 	}
4548 
4549 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4550 
4551 	bio_set_dev(read_bio, rdev->bdev);
4552 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4553 			       + rdev->data_offset);
4554 	read_bio->bi_private = r10_bio;
4555 	read_bio->bi_end_io = end_reshape_read;
4556 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4557 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4558 	read_bio->bi_status = 0;
4559 	read_bio->bi_vcnt = 0;
4560 	read_bio->bi_iter.bi_size = 0;
4561 	r10_bio->master_bio = read_bio;
4562 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4563 
4564 	/* Now find the locations in the new layout */
4565 	__raid10_find_phys(&conf->geo, r10_bio);
4566 
4567 	blist = read_bio;
4568 	read_bio->bi_next = NULL;
4569 
4570 	rcu_read_lock();
4571 	for (s = 0; s < conf->copies*2; s++) {
4572 		struct bio *b;
4573 		int d = r10_bio->devs[s/2].devnum;
4574 		struct md_rdev *rdev2;
4575 		if (s&1) {
4576 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4577 			b = r10_bio->devs[s/2].repl_bio;
4578 		} else {
4579 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4580 			b = r10_bio->devs[s/2].bio;
4581 		}
4582 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4583 			continue;
4584 
4585 		bio_set_dev(b, rdev2->bdev);
4586 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4587 			rdev2->new_data_offset;
4588 		b->bi_end_io = end_reshape_write;
4589 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4590 		b->bi_next = blist;
4591 		blist = b;
4592 	}
4593 
4594 	/* Now add as many pages as possible to all of these bios. */
4595 
4596 	nr_sectors = 0;
4597 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4598 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4599 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4600 		int len = (max_sectors - s) << 9;
4601 		if (len > PAGE_SIZE)
4602 			len = PAGE_SIZE;
4603 		for (bio = blist; bio ; bio = bio->bi_next) {
4604 			/*
4605 			 * won't fail because the vec table is big enough
4606 			 * to hold all these pages
4607 			 */
4608 			bio_add_page(bio, page, len, 0);
4609 		}
4610 		sector_nr += len >> 9;
4611 		nr_sectors += len >> 9;
4612 	}
4613 	rcu_read_unlock();
4614 	r10_bio->sectors = nr_sectors;
4615 
4616 	/* Now submit the read */
4617 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4618 	atomic_inc(&r10_bio->remaining);
4619 	read_bio->bi_next = NULL;
4620 	generic_make_request(read_bio);
4621 	sector_nr += nr_sectors;
4622 	sectors_done += nr_sectors;
4623 	if (sector_nr <= last)
4624 		goto read_more;
4625 
4626 	/* Now that we have done the whole section we can
4627 	 * update reshape_progress
4628 	 */
4629 	if (mddev->reshape_backwards)
4630 		conf->reshape_progress -= sectors_done;
4631 	else
4632 		conf->reshape_progress += sectors_done;
4633 
4634 	return sectors_done;
4635 }
4636 
4637 static void end_reshape_request(struct r10bio *r10_bio);
4638 static int handle_reshape_read_error(struct mddev *mddev,
4639 				     struct r10bio *r10_bio);
4640 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4641 {
4642 	/* Reshape read completed.  Hopefully we have a block
4643 	 * to write out.
4644 	 * If we got a read error then we do sync 1-page reads from
4645 	 * elsewhere until we find the data - or give up.
4646 	 */
4647 	struct r10conf *conf = mddev->private;
4648 	int s;
4649 
4650 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4651 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4652 			/* Reshape has been aborted */
4653 			md_done_sync(mddev, r10_bio->sectors, 0);
4654 			return;
4655 		}
4656 
4657 	/* We definitely have the data in the pages, schedule the
4658 	 * writes.
4659 	 */
4660 	atomic_set(&r10_bio->remaining, 1);
4661 	for (s = 0; s < conf->copies*2; s++) {
4662 		struct bio *b;
4663 		int d = r10_bio->devs[s/2].devnum;
4664 		struct md_rdev *rdev;
4665 		rcu_read_lock();
4666 		if (s&1) {
4667 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4668 			b = r10_bio->devs[s/2].repl_bio;
4669 		} else {
4670 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4671 			b = r10_bio->devs[s/2].bio;
4672 		}
4673 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4674 			rcu_read_unlock();
4675 			continue;
4676 		}
4677 		atomic_inc(&rdev->nr_pending);
4678 		rcu_read_unlock();
4679 		md_sync_acct_bio(b, r10_bio->sectors);
4680 		atomic_inc(&r10_bio->remaining);
4681 		b->bi_next = NULL;
4682 		generic_make_request(b);
4683 	}
4684 	end_reshape_request(r10_bio);
4685 }
4686 
4687 static void end_reshape(struct r10conf *conf)
4688 {
4689 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4690 		return;
4691 
4692 	spin_lock_irq(&conf->device_lock);
4693 	conf->prev = conf->geo;
4694 	md_finish_reshape(conf->mddev);
4695 	smp_wmb();
4696 	conf->reshape_progress = MaxSector;
4697 	conf->reshape_safe = MaxSector;
4698 	spin_unlock_irq(&conf->device_lock);
4699 
4700 	/* read-ahead size must cover two whole stripes, which is
4701 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4702 	 */
4703 	if (conf->mddev->queue) {
4704 		int stripe = conf->geo.raid_disks *
4705 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4706 		stripe /= conf->geo.near_copies;
4707 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4708 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4709 	}
4710 	conf->fullsync = 0;
4711 }
4712 
4713 static int handle_reshape_read_error(struct mddev *mddev,
4714 				     struct r10bio *r10_bio)
4715 {
4716 	/* Use sync reads to get the blocks from somewhere else */
4717 	int sectors = r10_bio->sectors;
4718 	struct r10conf *conf = mddev->private;
4719 	struct r10bio *r10b;
4720 	int slot = 0;
4721 	int idx = 0;
4722 	struct page **pages;
4723 
4724 	r10b = kmalloc(sizeof(*r10b) +
4725 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4726 	if (!r10b) {
4727 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4728 		return -ENOMEM;
4729 	}
4730 
4731 	/* reshape IOs share pages from .devs[0].bio */
4732 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4733 
4734 	r10b->sector = r10_bio->sector;
4735 	__raid10_find_phys(&conf->prev, r10b);
4736 
4737 	while (sectors) {
4738 		int s = sectors;
4739 		int success = 0;
4740 		int first_slot = slot;
4741 
4742 		if (s > (PAGE_SIZE >> 9))
4743 			s = PAGE_SIZE >> 9;
4744 
4745 		rcu_read_lock();
4746 		while (!success) {
4747 			int d = r10b->devs[slot].devnum;
4748 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4749 			sector_t addr;
4750 			if (rdev == NULL ||
4751 			    test_bit(Faulty, &rdev->flags) ||
4752 			    !test_bit(In_sync, &rdev->flags))
4753 				goto failed;
4754 
4755 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4756 			atomic_inc(&rdev->nr_pending);
4757 			rcu_read_unlock();
4758 			success = sync_page_io(rdev,
4759 					       addr,
4760 					       s << 9,
4761 					       pages[idx],
4762 					       REQ_OP_READ, 0, false);
4763 			rdev_dec_pending(rdev, mddev);
4764 			rcu_read_lock();
4765 			if (success)
4766 				break;
4767 		failed:
4768 			slot++;
4769 			if (slot >= conf->copies)
4770 				slot = 0;
4771 			if (slot == first_slot)
4772 				break;
4773 		}
4774 		rcu_read_unlock();
4775 		if (!success) {
4776 			/* couldn't read this block, must give up */
4777 			set_bit(MD_RECOVERY_INTR,
4778 				&mddev->recovery);
4779 			kfree(r10b);
4780 			return -EIO;
4781 		}
4782 		sectors -= s;
4783 		idx++;
4784 	}
4785 	kfree(r10b);
4786 	return 0;
4787 }
4788 
4789 static void end_reshape_write(struct bio *bio)
4790 {
4791 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4792 	struct mddev *mddev = r10_bio->mddev;
4793 	struct r10conf *conf = mddev->private;
4794 	int d;
4795 	int slot;
4796 	int repl;
4797 	struct md_rdev *rdev = NULL;
4798 
4799 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4800 	if (repl)
4801 		rdev = conf->mirrors[d].replacement;
4802 	if (!rdev) {
4803 		smp_mb();
4804 		rdev = conf->mirrors[d].rdev;
4805 	}
4806 
4807 	if (bio->bi_status) {
4808 		/* FIXME should record badblock */
4809 		md_error(mddev, rdev);
4810 	}
4811 
4812 	rdev_dec_pending(rdev, mddev);
4813 	end_reshape_request(r10_bio);
4814 }
4815 
4816 static void end_reshape_request(struct r10bio *r10_bio)
4817 {
4818 	if (!atomic_dec_and_test(&r10_bio->remaining))
4819 		return;
4820 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4821 	bio_put(r10_bio->master_bio);
4822 	put_buf(r10_bio);
4823 }
4824 
4825 static void raid10_finish_reshape(struct mddev *mddev)
4826 {
4827 	struct r10conf *conf = mddev->private;
4828 
4829 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4830 		return;
4831 
4832 	if (mddev->delta_disks > 0) {
4833 		sector_t size = raid10_size(mddev, 0, 0);
4834 		md_set_array_sectors(mddev, size);
4835 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836 			mddev->recovery_cp = mddev->resync_max_sectors;
4837 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838 		}
4839 		mddev->resync_max_sectors = size;
4840 		if (mddev->queue) {
4841 			set_capacity(mddev->gendisk, mddev->array_sectors);
4842 			revalidate_disk(mddev->gendisk);
4843 		}
4844 	} else {
4845 		int d;
4846 		rcu_read_lock();
4847 		for (d = conf->geo.raid_disks ;
4848 		     d < conf->geo.raid_disks - mddev->delta_disks;
4849 		     d++) {
4850 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4851 			if (rdev)
4852 				clear_bit(In_sync, &rdev->flags);
4853 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4854 			if (rdev)
4855 				clear_bit(In_sync, &rdev->flags);
4856 		}
4857 		rcu_read_unlock();
4858 	}
4859 	mddev->layout = mddev->new_layout;
4860 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4861 	mddev->reshape_position = MaxSector;
4862 	mddev->delta_disks = 0;
4863 	mddev->reshape_backwards = 0;
4864 }
4865 
4866 static struct md_personality raid10_personality =
4867 {
4868 	.name		= "raid10",
4869 	.level		= 10,
4870 	.owner		= THIS_MODULE,
4871 	.make_request	= raid10_make_request,
4872 	.run		= raid10_run,
4873 	.free		= raid10_free,
4874 	.status		= raid10_status,
4875 	.error_handler	= raid10_error,
4876 	.hot_add_disk	= raid10_add_disk,
4877 	.hot_remove_disk= raid10_remove_disk,
4878 	.spare_active	= raid10_spare_active,
4879 	.sync_request	= raid10_sync_request,
4880 	.quiesce	= raid10_quiesce,
4881 	.size		= raid10_size,
4882 	.resize		= raid10_resize,
4883 	.takeover	= raid10_takeover,
4884 	.check_reshape	= raid10_check_reshape,
4885 	.start_reshape	= raid10_start_reshape,
4886 	.finish_reshape	= raid10_finish_reshape,
4887 	.congested	= raid10_congested,
4888 };
4889 
4890 static int __init raid_init(void)
4891 {
4892 	return register_md_personality(&raid10_personality);
4893 }
4894 
4895 static void raid_exit(void)
4896 {
4897 	unregister_md_personality(&raid10_personality);
4898 }
4899 
4900 module_init(raid_init);
4901 module_exit(raid_exit);
4902 MODULE_LICENSE("GPL");
4903 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4904 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4905 MODULE_ALIAS("md-raid10");
4906 MODULE_ALIAS("md-level-10");
4907 
4908 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4909