1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio, int error) 443 { 444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct r10bio *r10_bio = bio->bi_private; 446 int dev; 447 int dec_rdev = 1; 448 struct r10conf *conf = r10_bio->mddev->private; 449 int slot, repl; 450 struct md_rdev *rdev = NULL; 451 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 453 454 if (repl) 455 rdev = conf->mirrors[dev].replacement; 456 if (!rdev) { 457 smp_rmb(); 458 repl = 0; 459 rdev = conf->mirrors[dev].rdev; 460 } 461 /* 462 * this branch is our 'one mirror IO has finished' event handler: 463 */ 464 if (!uptodate) { 465 if (repl) 466 /* Never record new bad blocks to replacement, 467 * just fail it. 468 */ 469 md_error(rdev->mddev, rdev); 470 else { 471 set_bit(WriteErrorSeen, &rdev->flags); 472 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 473 set_bit(MD_RECOVERY_NEEDED, 474 &rdev->mddev->recovery); 475 set_bit(R10BIO_WriteError, &r10_bio->state); 476 dec_rdev = 0; 477 } 478 } else { 479 /* 480 * Set R10BIO_Uptodate in our master bio, so that 481 * we will return a good error code for to the higher 482 * levels even if IO on some other mirrored buffer fails. 483 * 484 * The 'master' represents the composite IO operation to 485 * user-side. So if something waits for IO, then it will 486 * wait for the 'master' bio. 487 */ 488 sector_t first_bad; 489 int bad_sectors; 490 491 /* 492 * Do not set R10BIO_Uptodate if the current device is 493 * rebuilding or Faulty. This is because we cannot use 494 * such device for properly reading the data back (we could 495 * potentially use it, if the current write would have felt 496 * before rdev->recovery_offset, but for simplicity we don't 497 * check this here. 498 */ 499 if (test_bit(In_sync, &rdev->flags) && 500 !test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_Uptodate, &r10_bio->state); 502 503 /* Maybe we can clear some bad blocks. */ 504 if (is_badblock(rdev, 505 r10_bio->devs[slot].addr, 506 r10_bio->sectors, 507 &first_bad, &bad_sectors)) { 508 bio_put(bio); 509 if (repl) 510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 511 else 512 r10_bio->devs[slot].bio = IO_MADE_GOOD; 513 dec_rdev = 0; 514 set_bit(R10BIO_MadeGood, &r10_bio->state); 515 } 516 } 517 518 /* 519 * 520 * Let's see if all mirrored write operations have finished 521 * already. 522 */ 523 one_write_done(r10_bio); 524 if (dec_rdev) 525 rdev_dec_pending(rdev, conf->mddev); 526 } 527 528 /* 529 * RAID10 layout manager 530 * As well as the chunksize and raid_disks count, there are two 531 * parameters: near_copies and far_copies. 532 * near_copies * far_copies must be <= raid_disks. 533 * Normally one of these will be 1. 534 * If both are 1, we get raid0. 535 * If near_copies == raid_disks, we get raid1. 536 * 537 * Chunks are laid out in raid0 style with near_copies copies of the 538 * first chunk, followed by near_copies copies of the next chunk and 539 * so on. 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned 541 * as described above, we start again with a device offset of near_copies. 542 * So we effectively have another copy of the whole array further down all 543 * the drives, but with blocks on different drives. 544 * With this layout, and block is never stored twice on the one device. 545 * 546 * raid10_find_phys finds the sector offset of a given virtual sector 547 * on each device that it is on. 548 * 549 * raid10_find_virt does the reverse mapping, from a device and a 550 * sector offset to a virtual address 551 */ 552 553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 554 { 555 int n,f; 556 sector_t sector; 557 sector_t chunk; 558 sector_t stripe; 559 int dev; 560 int slot = 0; 561 int last_far_set_start, last_far_set_size; 562 563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 564 last_far_set_start *= geo->far_set_size; 565 566 last_far_set_size = geo->far_set_size; 567 last_far_set_size += (geo->raid_disks % geo->far_set_size); 568 569 /* now calculate first sector/dev */ 570 chunk = r10bio->sector >> geo->chunk_shift; 571 sector = r10bio->sector & geo->chunk_mask; 572 573 chunk *= geo->near_copies; 574 stripe = chunk; 575 dev = sector_div(stripe, geo->raid_disks); 576 if (geo->far_offset) 577 stripe *= geo->far_copies; 578 579 sector += stripe << geo->chunk_shift; 580 581 /* and calculate all the others */ 582 for (n = 0; n < geo->near_copies; n++) { 583 int d = dev; 584 int set; 585 sector_t s = sector; 586 r10bio->devs[slot].devnum = d; 587 r10bio->devs[slot].addr = s; 588 slot++; 589 590 for (f = 1; f < geo->far_copies; f++) { 591 set = d / geo->far_set_size; 592 d += geo->near_copies; 593 594 if ((geo->raid_disks % geo->far_set_size) && 595 (d > last_far_set_start)) { 596 d -= last_far_set_start; 597 d %= last_far_set_size; 598 d += last_far_set_start; 599 } else { 600 d %= geo->far_set_size; 601 d += geo->far_set_size * set; 602 } 603 s += geo->stride; 604 r10bio->devs[slot].devnum = d; 605 r10bio->devs[slot].addr = s; 606 slot++; 607 } 608 dev++; 609 if (dev >= geo->raid_disks) { 610 dev = 0; 611 sector += (geo->chunk_mask + 1); 612 } 613 } 614 } 615 616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 617 { 618 struct geom *geo = &conf->geo; 619 620 if (conf->reshape_progress != MaxSector && 621 ((r10bio->sector >= conf->reshape_progress) != 622 conf->mddev->reshape_backwards)) { 623 set_bit(R10BIO_Previous, &r10bio->state); 624 geo = &conf->prev; 625 } else 626 clear_bit(R10BIO_Previous, &r10bio->state); 627 628 __raid10_find_phys(geo, r10bio); 629 } 630 631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 632 { 633 sector_t offset, chunk, vchunk; 634 /* Never use conf->prev as this is only called during resync 635 * or recovery, so reshape isn't happening 636 */ 637 struct geom *geo = &conf->geo; 638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 639 int far_set_size = geo->far_set_size; 640 int last_far_set_start; 641 642 if (geo->raid_disks % geo->far_set_size) { 643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 644 last_far_set_start *= geo->far_set_size; 645 646 if (dev >= last_far_set_start) { 647 far_set_size = geo->far_set_size; 648 far_set_size += (geo->raid_disks % geo->far_set_size); 649 far_set_start = last_far_set_start; 650 } 651 } 652 653 offset = sector & geo->chunk_mask; 654 if (geo->far_offset) { 655 int fc; 656 chunk = sector >> geo->chunk_shift; 657 fc = sector_div(chunk, geo->far_copies); 658 dev -= fc * geo->near_copies; 659 if (dev < far_set_start) 660 dev += far_set_size; 661 } else { 662 while (sector >= geo->stride) { 663 sector -= geo->stride; 664 if (dev < (geo->near_copies + far_set_start)) 665 dev += far_set_size - geo->near_copies; 666 else 667 dev -= geo->near_copies; 668 } 669 chunk = sector >> geo->chunk_shift; 670 } 671 vchunk = chunk * geo->raid_disks + dev; 672 sector_div(vchunk, geo->near_copies); 673 return (vchunk << geo->chunk_shift) + offset; 674 } 675 676 /** 677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 678 * @q: request queue 679 * @bvm: properties of new bio 680 * @biovec: the request that could be merged to it. 681 * 682 * Return amount of bytes we can accept at this offset 683 * This requires checking for end-of-chunk if near_copies != raid_disks, 684 * and for subordinate merge_bvec_fns if merge_check_needed. 685 */ 686 static int raid10_mergeable_bvec(struct request_queue *q, 687 struct bvec_merge_data *bvm, 688 struct bio_vec *biovec) 689 { 690 struct mddev *mddev = q->queuedata; 691 struct r10conf *conf = mddev->private; 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 693 int max; 694 unsigned int chunk_sectors; 695 unsigned int bio_sectors = bvm->bi_size >> 9; 696 struct geom *geo = &conf->geo; 697 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 699 if (conf->reshape_progress != MaxSector && 700 ((sector >= conf->reshape_progress) != 701 conf->mddev->reshape_backwards)) 702 geo = &conf->prev; 703 704 if (geo->near_copies < geo->raid_disks) { 705 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 706 + bio_sectors)) << 9; 707 if (max < 0) 708 /* bio_add cannot handle a negative return */ 709 max = 0; 710 if (max <= biovec->bv_len && bio_sectors == 0) 711 return biovec->bv_len; 712 } else 713 max = biovec->bv_len; 714 715 if (mddev->merge_check_needed) { 716 struct { 717 struct r10bio r10_bio; 718 struct r10dev devs[conf->copies]; 719 } on_stack; 720 struct r10bio *r10_bio = &on_stack.r10_bio; 721 int s; 722 if (conf->reshape_progress != MaxSector) { 723 /* Cannot give any guidance during reshape */ 724 if (max <= biovec->bv_len && bio_sectors == 0) 725 return biovec->bv_len; 726 return 0; 727 } 728 r10_bio->sector = sector; 729 raid10_find_phys(conf, r10_bio); 730 rcu_read_lock(); 731 for (s = 0; s < conf->copies; s++) { 732 int disk = r10_bio->devs[s].devnum; 733 struct md_rdev *rdev = rcu_dereference( 734 conf->mirrors[disk].rdev); 735 if (rdev && !test_bit(Faulty, &rdev->flags)) { 736 struct request_queue *q = 737 bdev_get_queue(rdev->bdev); 738 if (q->merge_bvec_fn) { 739 bvm->bi_sector = r10_bio->devs[s].addr 740 + rdev->data_offset; 741 bvm->bi_bdev = rdev->bdev; 742 max = min(max, q->merge_bvec_fn( 743 q, bvm, biovec)); 744 } 745 } 746 rdev = rcu_dereference(conf->mirrors[disk].replacement); 747 if (rdev && !test_bit(Faulty, &rdev->flags)) { 748 struct request_queue *q = 749 bdev_get_queue(rdev->bdev); 750 if (q->merge_bvec_fn) { 751 bvm->bi_sector = r10_bio->devs[s].addr 752 + rdev->data_offset; 753 bvm->bi_bdev = rdev->bdev; 754 max = min(max, q->merge_bvec_fn( 755 q, bvm, biovec)); 756 } 757 } 758 } 759 rcu_read_unlock(); 760 } 761 return max; 762 } 763 764 /* 765 * This routine returns the disk from which the requested read should 766 * be done. There is a per-array 'next expected sequential IO' sector 767 * number - if this matches on the next IO then we use the last disk. 768 * There is also a per-disk 'last know head position' sector that is 769 * maintained from IRQ contexts, both the normal and the resync IO 770 * completion handlers update this position correctly. If there is no 771 * perfect sequential match then we pick the disk whose head is closest. 772 * 773 * If there are 2 mirrors in the same 2 devices, performance degrades 774 * because position is mirror, not device based. 775 * 776 * The rdev for the device selected will have nr_pending incremented. 777 */ 778 779 /* 780 * FIXME: possibly should rethink readbalancing and do it differently 781 * depending on near_copies / far_copies geometry. 782 */ 783 static struct md_rdev *read_balance(struct r10conf *conf, 784 struct r10bio *r10_bio, 785 int *max_sectors) 786 { 787 const sector_t this_sector = r10_bio->sector; 788 int disk, slot; 789 int sectors = r10_bio->sectors; 790 int best_good_sectors; 791 sector_t new_distance, best_dist; 792 struct md_rdev *best_rdev, *rdev = NULL; 793 int do_balance; 794 int best_slot; 795 struct geom *geo = &conf->geo; 796 797 raid10_find_phys(conf, r10_bio); 798 rcu_read_lock(); 799 retry: 800 sectors = r10_bio->sectors; 801 best_slot = -1; 802 best_rdev = NULL; 803 best_dist = MaxSector; 804 best_good_sectors = 0; 805 do_balance = 1; 806 /* 807 * Check if we can balance. We can balance on the whole 808 * device if no resync is going on (recovery is ok), or below 809 * the resync window. We take the first readable disk when 810 * above the resync window. 811 */ 812 if (conf->mddev->recovery_cp < MaxSector 813 && (this_sector + sectors >= conf->next_resync)) 814 do_balance = 0; 815 816 for (slot = 0; slot < conf->copies ; slot++) { 817 sector_t first_bad; 818 int bad_sectors; 819 sector_t dev_sector; 820 821 if (r10_bio->devs[slot].bio == IO_BLOCKED) 822 continue; 823 disk = r10_bio->devs[slot].devnum; 824 rdev = rcu_dereference(conf->mirrors[disk].replacement); 825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 826 test_bit(Unmerged, &rdev->flags) || 827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 828 rdev = rcu_dereference(conf->mirrors[disk].rdev); 829 if (rdev == NULL || 830 test_bit(Faulty, &rdev->flags) || 831 test_bit(Unmerged, &rdev->flags)) 832 continue; 833 if (!test_bit(In_sync, &rdev->flags) && 834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 835 continue; 836 837 dev_sector = r10_bio->devs[slot].addr; 838 if (is_badblock(rdev, dev_sector, sectors, 839 &first_bad, &bad_sectors)) { 840 if (best_dist < MaxSector) 841 /* Already have a better slot */ 842 continue; 843 if (first_bad <= dev_sector) { 844 /* Cannot read here. If this is the 845 * 'primary' device, then we must not read 846 * beyond 'bad_sectors' from another device. 847 */ 848 bad_sectors -= (dev_sector - first_bad); 849 if (!do_balance && sectors > bad_sectors) 850 sectors = bad_sectors; 851 if (best_good_sectors > sectors) 852 best_good_sectors = sectors; 853 } else { 854 sector_t good_sectors = 855 first_bad - dev_sector; 856 if (good_sectors > best_good_sectors) { 857 best_good_sectors = good_sectors; 858 best_slot = slot; 859 best_rdev = rdev; 860 } 861 if (!do_balance) 862 /* Must read from here */ 863 break; 864 } 865 continue; 866 } else 867 best_good_sectors = sectors; 868 869 if (!do_balance) 870 break; 871 872 /* This optimisation is debatable, and completely destroys 873 * sequential read speed for 'far copies' arrays. So only 874 * keep it for 'near' arrays, and review those later. 875 */ 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 877 break; 878 879 /* for far > 1 always use the lowest address */ 880 if (geo->far_copies > 1) 881 new_distance = r10_bio->devs[slot].addr; 882 else 883 new_distance = abs(r10_bio->devs[slot].addr - 884 conf->mirrors[disk].head_position); 885 if (new_distance < best_dist) { 886 best_dist = new_distance; 887 best_slot = slot; 888 best_rdev = rdev; 889 } 890 } 891 if (slot >= conf->copies) { 892 slot = best_slot; 893 rdev = best_rdev; 894 } 895 896 if (slot >= 0) { 897 atomic_inc(&rdev->nr_pending); 898 if (test_bit(Faulty, &rdev->flags)) { 899 /* Cannot risk returning a device that failed 900 * before we inc'ed nr_pending 901 */ 902 rdev_dec_pending(rdev, conf->mddev); 903 goto retry; 904 } 905 r10_bio->read_slot = slot; 906 } else 907 rdev = NULL; 908 rcu_read_unlock(); 909 *max_sectors = best_good_sectors; 910 911 return rdev; 912 } 913 914 int md_raid10_congested(struct mddev *mddev, int bits) 915 { 916 struct r10conf *conf = mddev->private; 917 int i, ret = 0; 918 919 if ((bits & (1 << BDI_async_congested)) && 920 conf->pending_count >= max_queued_requests) 921 return 1; 922 923 rcu_read_lock(); 924 for (i = 0; 925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 926 && ret == 0; 927 i++) { 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 struct request_queue *q = bdev_get_queue(rdev->bdev); 931 932 ret |= bdi_congested(&q->backing_dev_info, bits); 933 } 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(md_raid10_congested); 939 940 static int raid10_congested(void *data, int bits) 941 { 942 struct mddev *mddev = data; 943 944 return mddev_congested(mddev, bits) || 945 md_raid10_congested(mddev, bits); 946 } 947 948 static void flush_pending_writes(struct r10conf *conf) 949 { 950 /* Any writes that have been queued but are awaiting 951 * bitmap updates get flushed here. 952 */ 953 spin_lock_irq(&conf->device_lock); 954 955 if (conf->pending_bio_list.head) { 956 struct bio *bio; 957 bio = bio_list_get(&conf->pending_bio_list); 958 conf->pending_count = 0; 959 spin_unlock_irq(&conf->device_lock); 960 /* flush any pending bitmap writes to disk 961 * before proceeding w/ I/O */ 962 bitmap_unplug(conf->mddev->bitmap); 963 wake_up(&conf->wait_barrier); 964 965 while (bio) { /* submit pending writes */ 966 struct bio *next = bio->bi_next; 967 bio->bi_next = NULL; 968 if (unlikely((bio->bi_rw & REQ_DISCARD) && 969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 970 /* Just ignore it */ 971 bio_endio(bio, 0); 972 else 973 generic_make_request(bio); 974 bio = next; 975 } 976 } else 977 spin_unlock_irq(&conf->device_lock); 978 } 979 980 /* Barriers.... 981 * Sometimes we need to suspend IO while we do something else, 982 * either some resync/recovery, or reconfigure the array. 983 * To do this we raise a 'barrier'. 984 * The 'barrier' is a counter that can be raised multiple times 985 * to count how many activities are happening which preclude 986 * normal IO. 987 * We can only raise the barrier if there is no pending IO. 988 * i.e. if nr_pending == 0. 989 * We choose only to raise the barrier if no-one is waiting for the 990 * barrier to go down. This means that as soon as an IO request 991 * is ready, no other operations which require a barrier will start 992 * until the IO request has had a chance. 993 * 994 * So: regular IO calls 'wait_barrier'. When that returns there 995 * is no backgroup IO happening, It must arrange to call 996 * allow_barrier when it has finished its IO. 997 * backgroup IO calls must call raise_barrier. Once that returns 998 * there is no normal IO happeing. It must arrange to call 999 * lower_barrier when the particular background IO completes. 1000 */ 1001 1002 static void raise_barrier(struct r10conf *conf, int force) 1003 { 1004 BUG_ON(force && !conf->barrier); 1005 spin_lock_irq(&conf->resync_lock); 1006 1007 /* Wait until no block IO is waiting (unless 'force') */ 1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1009 conf->resync_lock); 1010 1011 /* block any new IO from starting */ 1012 conf->barrier++; 1013 1014 /* Now wait for all pending IO to complete */ 1015 wait_event_lock_irq(conf->wait_barrier, 1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1017 conf->resync_lock); 1018 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void lower_barrier(struct r10conf *conf) 1023 { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->resync_lock, flags); 1026 conf->barrier--; 1027 spin_unlock_irqrestore(&conf->resync_lock, flags); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static void wait_barrier(struct r10conf *conf) 1032 { 1033 spin_lock_irq(&conf->resync_lock); 1034 if (conf->barrier) { 1035 conf->nr_waiting++; 1036 /* Wait for the barrier to drop. 1037 * However if there are already pending 1038 * requests (preventing the barrier from 1039 * rising completely), and the 1040 * pre-process bio queue isn't empty, 1041 * then don't wait, as we need to empty 1042 * that queue to get the nr_pending 1043 * count down. 1044 */ 1045 wait_event_lock_irq(conf->wait_barrier, 1046 !conf->barrier || 1047 (conf->nr_pending && 1048 current->bio_list && 1049 !bio_list_empty(current->bio_list)), 1050 conf->resync_lock); 1051 conf->nr_waiting--; 1052 } 1053 conf->nr_pending++; 1054 spin_unlock_irq(&conf->resync_lock); 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->resync_lock, flags); 1061 conf->nr_pending--; 1062 spin_unlock_irqrestore(&conf->resync_lock, flags); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->barrier++; 1082 conf->nr_waiting++; 1083 wait_event_lock_irq_cmd(conf->wait_barrier, 1084 conf->nr_pending == conf->nr_queued+extra, 1085 conf->resync_lock, 1086 flush_pending_writes(conf)); 1087 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 1091 static void unfreeze_array(struct r10conf *conf) 1092 { 1093 /* reverse the effect of the freeze */ 1094 spin_lock_irq(&conf->resync_lock); 1095 conf->barrier--; 1096 conf->nr_waiting--; 1097 wake_up(&conf->wait_barrier); 1098 spin_unlock_irq(&conf->resync_lock); 1099 } 1100 1101 static sector_t choose_data_offset(struct r10bio *r10_bio, 1102 struct md_rdev *rdev) 1103 { 1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1105 test_bit(R10BIO_Previous, &r10_bio->state)) 1106 return rdev->data_offset; 1107 else 1108 return rdev->new_data_offset; 1109 } 1110 1111 struct raid10_plug_cb { 1112 struct blk_plug_cb cb; 1113 struct bio_list pending; 1114 int pending_cnt; 1115 }; 1116 1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1118 { 1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1120 cb); 1121 struct mddev *mddev = plug->cb.data; 1122 struct r10conf *conf = mddev->private; 1123 struct bio *bio; 1124 1125 if (from_schedule || current->bio_list) { 1126 spin_lock_irq(&conf->device_lock); 1127 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1128 conf->pending_count += plug->pending_cnt; 1129 spin_unlock_irq(&conf->device_lock); 1130 wake_up(&conf->wait_barrier); 1131 md_wakeup_thread(mddev->thread); 1132 kfree(plug); 1133 return; 1134 } 1135 1136 /* we aren't scheduling, so we can do the write-out directly. */ 1137 bio = bio_list_get(&plug->pending); 1138 bitmap_unplug(mddev->bitmap); 1139 wake_up(&conf->wait_barrier); 1140 1141 while (bio) { /* submit pending writes */ 1142 struct bio *next = bio->bi_next; 1143 bio->bi_next = NULL; 1144 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio, 0); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static void make_request(struct mddev *mddev, struct bio * bio) 1156 { 1157 struct r10conf *conf = mddev->private; 1158 struct r10bio *r10_bio; 1159 struct bio *read_bio; 1160 int i; 1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1162 int chunk_sects = chunk_mask + 1; 1163 const int rw = bio_data_dir(bio); 1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1166 const unsigned long do_discard = (bio->bi_rw 1167 & (REQ_DISCARD | REQ_SECURE)); 1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1169 unsigned long flags; 1170 struct md_rdev *blocked_rdev; 1171 struct blk_plug_cb *cb; 1172 struct raid10_plug_cb *plug = NULL; 1173 int sectors_handled; 1174 int max_sectors; 1175 int sectors; 1176 1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1178 md_flush_request(mddev, bio); 1179 return; 1180 } 1181 1182 /* If this request crosses a chunk boundary, we need to 1183 * split it. This will only happen for 1 PAGE (or less) requests. 1184 */ 1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio) 1186 > chunk_sects 1187 && (conf->geo.near_copies < conf->geo.raid_disks 1188 || conf->prev.near_copies < conf->prev.raid_disks))) { 1189 struct bio_pair *bp; 1190 /* Sanity check -- queue functions should prevent this happening */ 1191 if (bio_segments(bio) > 1) 1192 goto bad_map; 1193 /* This is a one page bio that upper layers 1194 * refuse to split for us, so we need to split it. 1195 */ 1196 bp = bio_split(bio, 1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1198 1199 /* Each of these 'make_request' calls will call 'wait_barrier'. 1200 * If the first succeeds but the second blocks due to the resync 1201 * thread raising the barrier, we will deadlock because the 1202 * IO to the underlying device will be queued in generic_make_request 1203 * and will never complete, so will never reduce nr_pending. 1204 * So increment nr_waiting here so no new raise_barriers will 1205 * succeed, and so the second wait_barrier cannot block. 1206 */ 1207 spin_lock_irq(&conf->resync_lock); 1208 conf->nr_waiting++; 1209 spin_unlock_irq(&conf->resync_lock); 1210 1211 make_request(mddev, &bp->bio1); 1212 make_request(mddev, &bp->bio2); 1213 1214 spin_lock_irq(&conf->resync_lock); 1215 conf->nr_waiting--; 1216 wake_up(&conf->wait_barrier); 1217 spin_unlock_irq(&conf->resync_lock); 1218 1219 bio_pair_release(bp); 1220 return; 1221 bad_map: 1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2); 1225 1226 bio_io_error(bio); 1227 return; 1228 } 1229 1230 md_write_start(mddev, bio); 1231 1232 /* 1233 * Register the new request and wait if the reconstruction 1234 * thread has put up a bar for new requests. 1235 * Continue immediately if no resync is active currently. 1236 */ 1237 wait_barrier(conf); 1238 1239 sectors = bio_sectors(bio); 1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1241 bio->bi_sector < conf->reshape_progress && 1242 bio->bi_sector + sectors > conf->reshape_progress) { 1243 /* IO spans the reshape position. Need to wait for 1244 * reshape to pass 1245 */ 1246 allow_barrier(conf); 1247 wait_event(conf->wait_barrier, 1248 conf->reshape_progress <= bio->bi_sector || 1249 conf->reshape_progress >= bio->bi_sector + sectors); 1250 wait_barrier(conf); 1251 } 1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1253 bio_data_dir(bio) == WRITE && 1254 (mddev->reshape_backwards 1255 ? (bio->bi_sector < conf->reshape_safe && 1256 bio->bi_sector + sectors > conf->reshape_progress) 1257 : (bio->bi_sector + sectors > conf->reshape_safe && 1258 bio->bi_sector < conf->reshape_progress))) { 1259 /* Need to update reshape_position in metadata */ 1260 mddev->reshape_position = conf->reshape_progress; 1261 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1262 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1263 md_wakeup_thread(mddev->thread); 1264 wait_event(mddev->sb_wait, 1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1266 1267 conf->reshape_safe = mddev->reshape_position; 1268 } 1269 1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1271 1272 r10_bio->master_bio = bio; 1273 r10_bio->sectors = sectors; 1274 1275 r10_bio->mddev = mddev; 1276 r10_bio->sector = bio->bi_sector; 1277 r10_bio->state = 0; 1278 1279 /* We might need to issue multiple reads to different 1280 * devices if there are bad blocks around, so we keep 1281 * track of the number of reads in bio->bi_phys_segments. 1282 * If this is 0, there is only one r10_bio and no locking 1283 * will be needed when the request completes. If it is 1284 * non-zero, then it is the number of not-completed requests. 1285 */ 1286 bio->bi_phys_segments = 0; 1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1288 1289 if (rw == READ) { 1290 /* 1291 * read balancing logic: 1292 */ 1293 struct md_rdev *rdev; 1294 int slot; 1295 1296 read_again: 1297 rdev = read_balance(conf, r10_bio, &max_sectors); 1298 if (!rdev) { 1299 raid_end_bio_io(r10_bio); 1300 return; 1301 } 1302 slot = r10_bio->read_slot; 1303 1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1305 bio_trim(read_bio, r10_bio->sector - bio->bi_sector, 1306 max_sectors); 1307 1308 r10_bio->devs[slot].bio = read_bio; 1309 r10_bio->devs[slot].rdev = rdev; 1310 1311 read_bio->bi_sector = r10_bio->devs[slot].addr + 1312 choose_data_offset(r10_bio, rdev); 1313 read_bio->bi_bdev = rdev->bdev; 1314 read_bio->bi_end_io = raid10_end_read_request; 1315 read_bio->bi_rw = READ | do_sync; 1316 read_bio->bi_private = r10_bio; 1317 1318 if (max_sectors < r10_bio->sectors) { 1319 /* Could not read all from this device, so we will 1320 * need another r10_bio. 1321 */ 1322 sectors_handled = (r10_bio->sectors + max_sectors 1323 - bio->bi_sector); 1324 r10_bio->sectors = max_sectors; 1325 spin_lock_irq(&conf->device_lock); 1326 if (bio->bi_phys_segments == 0) 1327 bio->bi_phys_segments = 2; 1328 else 1329 bio->bi_phys_segments++; 1330 spin_unlock(&conf->device_lock); 1331 /* Cannot call generic_make_request directly 1332 * as that will be queued in __generic_make_request 1333 * and subsequent mempool_alloc might block 1334 * waiting for it. so hand bio over to raid10d. 1335 */ 1336 reschedule_retry(r10_bio); 1337 1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1339 1340 r10_bio->master_bio = bio; 1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1342 r10_bio->state = 0; 1343 r10_bio->mddev = mddev; 1344 r10_bio->sector = bio->bi_sector + sectors_handled; 1345 goto read_again; 1346 } else 1347 generic_make_request(read_bio); 1348 return; 1349 } 1350 1351 /* 1352 * WRITE: 1353 */ 1354 if (conf->pending_count >= max_queued_requests) { 1355 md_wakeup_thread(mddev->thread); 1356 wait_event(conf->wait_barrier, 1357 conf->pending_count < max_queued_requests); 1358 } 1359 /* first select target devices under rcu_lock and 1360 * inc refcount on their rdev. Record them by setting 1361 * bios[x] to bio 1362 * If there are known/acknowledged bad blocks on any device 1363 * on which we have seen a write error, we want to avoid 1364 * writing to those blocks. This potentially requires several 1365 * writes to write around the bad blocks. Each set of writes 1366 * gets its own r10_bio with a set of bios attached. The number 1367 * of r10_bios is recored in bio->bi_phys_segments just as with 1368 * the read case. 1369 */ 1370 1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1372 raid10_find_phys(conf, r10_bio); 1373 retry_write: 1374 blocked_rdev = NULL; 1375 rcu_read_lock(); 1376 max_sectors = r10_bio->sectors; 1377 1378 for (i = 0; i < conf->copies; i++) { 1379 int d = r10_bio->devs[i].devnum; 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1381 struct md_rdev *rrdev = rcu_dereference( 1382 conf->mirrors[d].replacement); 1383 if (rdev == rrdev) 1384 rrdev = NULL; 1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1386 atomic_inc(&rdev->nr_pending); 1387 blocked_rdev = rdev; 1388 break; 1389 } 1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1391 atomic_inc(&rrdev->nr_pending); 1392 blocked_rdev = rrdev; 1393 break; 1394 } 1395 if (rdev && (test_bit(Faulty, &rdev->flags) 1396 || test_bit(Unmerged, &rdev->flags))) 1397 rdev = NULL; 1398 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1399 || test_bit(Unmerged, &rrdev->flags))) 1400 rrdev = NULL; 1401 1402 r10_bio->devs[i].bio = NULL; 1403 r10_bio->devs[i].repl_bio = NULL; 1404 1405 if (!rdev && !rrdev) { 1406 set_bit(R10BIO_Degraded, &r10_bio->state); 1407 continue; 1408 } 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1410 sector_t first_bad; 1411 sector_t dev_sector = r10_bio->devs[i].addr; 1412 int bad_sectors; 1413 int is_bad; 1414 1415 is_bad = is_badblock(rdev, dev_sector, 1416 max_sectors, 1417 &first_bad, &bad_sectors); 1418 if (is_bad < 0) { 1419 /* Mustn't write here until the bad block 1420 * is acknowledged 1421 */ 1422 atomic_inc(&rdev->nr_pending); 1423 set_bit(BlockedBadBlocks, &rdev->flags); 1424 blocked_rdev = rdev; 1425 break; 1426 } 1427 if (is_bad && first_bad <= dev_sector) { 1428 /* Cannot write here at all */ 1429 bad_sectors -= (dev_sector - first_bad); 1430 if (bad_sectors < max_sectors) 1431 /* Mustn't write more than bad_sectors 1432 * to other devices yet 1433 */ 1434 max_sectors = bad_sectors; 1435 /* We don't set R10BIO_Degraded as that 1436 * only applies if the disk is missing, 1437 * so it might be re-added, and we want to 1438 * know to recover this chunk. 1439 * In this case the device is here, and the 1440 * fact that this chunk is not in-sync is 1441 * recorded in the bad block log. 1442 */ 1443 continue; 1444 } 1445 if (is_bad) { 1446 int good_sectors = first_bad - dev_sector; 1447 if (good_sectors < max_sectors) 1448 max_sectors = good_sectors; 1449 } 1450 } 1451 if (rdev) { 1452 r10_bio->devs[i].bio = bio; 1453 atomic_inc(&rdev->nr_pending); 1454 } 1455 if (rrdev) { 1456 r10_bio->devs[i].repl_bio = bio; 1457 atomic_inc(&rrdev->nr_pending); 1458 } 1459 } 1460 rcu_read_unlock(); 1461 1462 if (unlikely(blocked_rdev)) { 1463 /* Have to wait for this device to get unblocked, then retry */ 1464 int j; 1465 int d; 1466 1467 for (j = 0; j < i; j++) { 1468 if (r10_bio->devs[j].bio) { 1469 d = r10_bio->devs[j].devnum; 1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1471 } 1472 if (r10_bio->devs[j].repl_bio) { 1473 struct md_rdev *rdev; 1474 d = r10_bio->devs[j].devnum; 1475 rdev = conf->mirrors[d].replacement; 1476 if (!rdev) { 1477 /* Race with remove_disk */ 1478 smp_mb(); 1479 rdev = conf->mirrors[d].rdev; 1480 } 1481 rdev_dec_pending(rdev, mddev); 1482 } 1483 } 1484 allow_barrier(conf); 1485 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1486 wait_barrier(conf); 1487 goto retry_write; 1488 } 1489 1490 if (max_sectors < r10_bio->sectors) { 1491 /* We are splitting this into multiple parts, so 1492 * we need to prepare for allocating another r10_bio. 1493 */ 1494 r10_bio->sectors = max_sectors; 1495 spin_lock_irq(&conf->device_lock); 1496 if (bio->bi_phys_segments == 0) 1497 bio->bi_phys_segments = 2; 1498 else 1499 bio->bi_phys_segments++; 1500 spin_unlock_irq(&conf->device_lock); 1501 } 1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1503 1504 atomic_set(&r10_bio->remaining, 1); 1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1506 1507 for (i = 0; i < conf->copies; i++) { 1508 struct bio *mbio; 1509 int d = r10_bio->devs[i].devnum; 1510 if (r10_bio->devs[i].bio) { 1511 struct md_rdev *rdev = conf->mirrors[d].rdev; 1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1513 bio_trim(mbio, r10_bio->sector - bio->bi_sector, 1514 max_sectors); 1515 r10_bio->devs[i].bio = mbio; 1516 1517 mbio->bi_sector = (r10_bio->devs[i].addr+ 1518 choose_data_offset(r10_bio, 1519 rdev)); 1520 mbio->bi_bdev = rdev->bdev; 1521 mbio->bi_end_io = raid10_end_write_request; 1522 mbio->bi_rw = 1523 WRITE | do_sync | do_fua | do_discard | do_same; 1524 mbio->bi_private = r10_bio; 1525 1526 atomic_inc(&r10_bio->remaining); 1527 1528 cb = blk_check_plugged(raid10_unplug, mddev, 1529 sizeof(*plug)); 1530 if (cb) 1531 plug = container_of(cb, struct raid10_plug_cb, 1532 cb); 1533 else 1534 plug = NULL; 1535 spin_lock_irqsave(&conf->device_lock, flags); 1536 if (plug) { 1537 bio_list_add(&plug->pending, mbio); 1538 plug->pending_cnt++; 1539 } else { 1540 bio_list_add(&conf->pending_bio_list, mbio); 1541 conf->pending_count++; 1542 } 1543 spin_unlock_irqrestore(&conf->device_lock, flags); 1544 if (!plug) 1545 md_wakeup_thread(mddev->thread); 1546 } 1547 1548 if (r10_bio->devs[i].repl_bio) { 1549 struct md_rdev *rdev = conf->mirrors[d].replacement; 1550 if (rdev == NULL) { 1551 /* Replacement just got moved to main 'rdev' */ 1552 smp_mb(); 1553 rdev = conf->mirrors[d].rdev; 1554 } 1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1556 bio_trim(mbio, r10_bio->sector - bio->bi_sector, 1557 max_sectors); 1558 r10_bio->devs[i].repl_bio = mbio; 1559 1560 mbio->bi_sector = (r10_bio->devs[i].addr + 1561 choose_data_offset( 1562 r10_bio, rdev)); 1563 mbio->bi_bdev = rdev->bdev; 1564 mbio->bi_end_io = raid10_end_write_request; 1565 mbio->bi_rw = 1566 WRITE | do_sync | do_fua | do_discard | do_same; 1567 mbio->bi_private = r10_bio; 1568 1569 atomic_inc(&r10_bio->remaining); 1570 spin_lock_irqsave(&conf->device_lock, flags); 1571 bio_list_add(&conf->pending_bio_list, mbio); 1572 conf->pending_count++; 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 if (!mddev_check_plugged(mddev)) 1575 md_wakeup_thread(mddev->thread); 1576 } 1577 } 1578 1579 /* Don't remove the bias on 'remaining' (one_write_done) until 1580 * after checking if we need to go around again. 1581 */ 1582 1583 if (sectors_handled < bio_sectors(bio)) { 1584 one_write_done(r10_bio); 1585 /* We need another r10_bio. It has already been counted 1586 * in bio->bi_phys_segments. 1587 */ 1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1589 1590 r10_bio->master_bio = bio; 1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1592 1593 r10_bio->mddev = mddev; 1594 r10_bio->sector = bio->bi_sector + sectors_handled; 1595 r10_bio->state = 0; 1596 goto retry_write; 1597 } 1598 one_write_done(r10_bio); 1599 1600 /* In case raid10d snuck in to freeze_array */ 1601 wake_up(&conf->wait_barrier); 1602 } 1603 1604 static void status(struct seq_file *seq, struct mddev *mddev) 1605 { 1606 struct r10conf *conf = mddev->private; 1607 int i; 1608 1609 if (conf->geo.near_copies < conf->geo.raid_disks) 1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1611 if (conf->geo.near_copies > 1) 1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1613 if (conf->geo.far_copies > 1) { 1614 if (conf->geo.far_offset) 1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1616 else 1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1618 } 1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1620 conf->geo.raid_disks - mddev->degraded); 1621 for (i = 0; i < conf->geo.raid_disks; i++) 1622 seq_printf(seq, "%s", 1623 conf->mirrors[i].rdev && 1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1625 seq_printf(seq, "]"); 1626 } 1627 1628 /* check if there are enough drives for 1629 * every block to appear on atleast one. 1630 * Don't consider the device numbered 'ignore' 1631 * as we might be about to remove it. 1632 */ 1633 static int _enough(struct r10conf *conf, int previous, int ignore) 1634 { 1635 int first = 0; 1636 int has_enough = 0; 1637 int disks, ncopies; 1638 if (previous) { 1639 disks = conf->prev.raid_disks; 1640 ncopies = conf->prev.near_copies; 1641 } else { 1642 disks = conf->geo.raid_disks; 1643 ncopies = conf->geo.near_copies; 1644 } 1645 1646 rcu_read_lock(); 1647 do { 1648 int n = conf->copies; 1649 int cnt = 0; 1650 int this = first; 1651 while (n--) { 1652 struct md_rdev *rdev; 1653 if (this != ignore && 1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1655 test_bit(In_sync, &rdev->flags)) 1656 cnt++; 1657 this = (this+1) % disks; 1658 } 1659 if (cnt == 0) 1660 goto out; 1661 first = (first + ncopies) % disks; 1662 } while (first != 0); 1663 has_enough = 1; 1664 out: 1665 rcu_read_unlock(); 1666 return has_enough; 1667 } 1668 1669 static int enough(struct r10conf *conf, int ignore) 1670 { 1671 /* when calling 'enough', both 'prev' and 'geo' must 1672 * be stable. 1673 * This is ensured if ->reconfig_mutex or ->device_lock 1674 * is held. 1675 */ 1676 return _enough(conf, 0, ignore) && 1677 _enough(conf, 1, ignore); 1678 } 1679 1680 static void error(struct mddev *mddev, struct md_rdev *rdev) 1681 { 1682 char b[BDEVNAME_SIZE]; 1683 struct r10conf *conf = mddev->private; 1684 unsigned long flags; 1685 1686 /* 1687 * If it is not operational, then we have already marked it as dead 1688 * else if it is the last working disks, ignore the error, let the 1689 * next level up know. 1690 * else mark the drive as failed 1691 */ 1692 spin_lock_irqsave(&conf->device_lock, flags); 1693 if (test_bit(In_sync, &rdev->flags) 1694 && !enough(conf, rdev->raid_disk)) { 1695 /* 1696 * Don't fail the drive, just return an IO error. 1697 */ 1698 spin_unlock_irqrestore(&conf->device_lock, flags); 1699 return; 1700 } 1701 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1702 mddev->degraded++; 1703 /* 1704 * if recovery is running, make sure it aborts. 1705 */ 1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1707 } 1708 set_bit(Blocked, &rdev->flags); 1709 set_bit(Faulty, &rdev->flags); 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1711 spin_unlock_irqrestore(&conf->device_lock, flags); 1712 printk(KERN_ALERT 1713 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1714 "md/raid10:%s: Operation continuing on %d devices.\n", 1715 mdname(mddev), bdevname(rdev->bdev, b), 1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1717 } 1718 1719 static void print_conf(struct r10conf *conf) 1720 { 1721 int i; 1722 struct raid10_info *tmp; 1723 1724 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1725 if (!conf) { 1726 printk(KERN_DEBUG "(!conf)\n"); 1727 return; 1728 } 1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1730 conf->geo.raid_disks); 1731 1732 for (i = 0; i < conf->geo.raid_disks; i++) { 1733 char b[BDEVNAME_SIZE]; 1734 tmp = conf->mirrors + i; 1735 if (tmp->rdev) 1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1737 i, !test_bit(In_sync, &tmp->rdev->flags), 1738 !test_bit(Faulty, &tmp->rdev->flags), 1739 bdevname(tmp->rdev->bdev,b)); 1740 } 1741 } 1742 1743 static void close_sync(struct r10conf *conf) 1744 { 1745 wait_barrier(conf); 1746 allow_barrier(conf); 1747 1748 mempool_destroy(conf->r10buf_pool); 1749 conf->r10buf_pool = NULL; 1750 } 1751 1752 static int raid10_spare_active(struct mddev *mddev) 1753 { 1754 int i; 1755 struct r10conf *conf = mddev->private; 1756 struct raid10_info *tmp; 1757 int count = 0; 1758 unsigned long flags; 1759 1760 /* 1761 * Find all non-in_sync disks within the RAID10 configuration 1762 * and mark them in_sync 1763 */ 1764 for (i = 0; i < conf->geo.raid_disks; i++) { 1765 tmp = conf->mirrors + i; 1766 if (tmp->replacement 1767 && tmp->replacement->recovery_offset == MaxSector 1768 && !test_bit(Faulty, &tmp->replacement->flags) 1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1770 /* Replacement has just become active */ 1771 if (!tmp->rdev 1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1773 count++; 1774 if (tmp->rdev) { 1775 /* Replaced device not technically faulty, 1776 * but we need to be sure it gets removed 1777 * and never re-added. 1778 */ 1779 set_bit(Faulty, &tmp->rdev->flags); 1780 sysfs_notify_dirent_safe( 1781 tmp->rdev->sysfs_state); 1782 } 1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1784 } else if (tmp->rdev 1785 && tmp->rdev->recovery_offset == MaxSector 1786 && !test_bit(Faulty, &tmp->rdev->flags) 1787 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1788 count++; 1789 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1790 } 1791 } 1792 spin_lock_irqsave(&conf->device_lock, flags); 1793 mddev->degraded -= count; 1794 spin_unlock_irqrestore(&conf->device_lock, flags); 1795 1796 print_conf(conf); 1797 return count; 1798 } 1799 1800 1801 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1802 { 1803 struct r10conf *conf = mddev->private; 1804 int err = -EEXIST; 1805 int mirror; 1806 int first = 0; 1807 int last = conf->geo.raid_disks - 1; 1808 struct request_queue *q = bdev_get_queue(rdev->bdev); 1809 1810 if (mddev->recovery_cp < MaxSector) 1811 /* only hot-add to in-sync arrays, as recovery is 1812 * very different from resync 1813 */ 1814 return -EBUSY; 1815 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1816 return -EINVAL; 1817 1818 if (rdev->raid_disk >= 0) 1819 first = last = rdev->raid_disk; 1820 1821 if (q->merge_bvec_fn) { 1822 set_bit(Unmerged, &rdev->flags); 1823 mddev->merge_check_needed = 1; 1824 } 1825 1826 if (rdev->saved_raid_disk >= first && 1827 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1828 mirror = rdev->saved_raid_disk; 1829 else 1830 mirror = first; 1831 for ( ; mirror <= last ; mirror++) { 1832 struct raid10_info *p = &conf->mirrors[mirror]; 1833 if (p->recovery_disabled == mddev->recovery_disabled) 1834 continue; 1835 if (p->rdev) { 1836 if (!test_bit(WantReplacement, &p->rdev->flags) || 1837 p->replacement != NULL) 1838 continue; 1839 clear_bit(In_sync, &rdev->flags); 1840 set_bit(Replacement, &rdev->flags); 1841 rdev->raid_disk = mirror; 1842 err = 0; 1843 if (mddev->gendisk) 1844 disk_stack_limits(mddev->gendisk, rdev->bdev, 1845 rdev->data_offset << 9); 1846 conf->fullsync = 1; 1847 rcu_assign_pointer(p->replacement, rdev); 1848 break; 1849 } 1850 1851 if (mddev->gendisk) 1852 disk_stack_limits(mddev->gendisk, rdev->bdev, 1853 rdev->data_offset << 9); 1854 1855 p->head_position = 0; 1856 p->recovery_disabled = mddev->recovery_disabled - 1; 1857 rdev->raid_disk = mirror; 1858 err = 0; 1859 if (rdev->saved_raid_disk != mirror) 1860 conf->fullsync = 1; 1861 rcu_assign_pointer(p->rdev, rdev); 1862 break; 1863 } 1864 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1865 /* Some requests might not have seen this new 1866 * merge_bvec_fn. We must wait for them to complete 1867 * before merging the device fully. 1868 * First we make sure any code which has tested 1869 * our function has submitted the request, then 1870 * we wait for all outstanding requests to complete. 1871 */ 1872 synchronize_sched(); 1873 freeze_array(conf, 0); 1874 unfreeze_array(conf); 1875 clear_bit(Unmerged, &rdev->flags); 1876 } 1877 md_integrity_add_rdev(rdev, mddev); 1878 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1879 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1880 1881 print_conf(conf); 1882 return err; 1883 } 1884 1885 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1886 { 1887 struct r10conf *conf = mddev->private; 1888 int err = 0; 1889 int number = rdev->raid_disk; 1890 struct md_rdev **rdevp; 1891 struct raid10_info *p = conf->mirrors + number; 1892 1893 print_conf(conf); 1894 if (rdev == p->rdev) 1895 rdevp = &p->rdev; 1896 else if (rdev == p->replacement) 1897 rdevp = &p->replacement; 1898 else 1899 return 0; 1900 1901 if (test_bit(In_sync, &rdev->flags) || 1902 atomic_read(&rdev->nr_pending)) { 1903 err = -EBUSY; 1904 goto abort; 1905 } 1906 /* Only remove faulty devices if recovery 1907 * is not possible. 1908 */ 1909 if (!test_bit(Faulty, &rdev->flags) && 1910 mddev->recovery_disabled != p->recovery_disabled && 1911 (!p->replacement || p->replacement == rdev) && 1912 number < conf->geo.raid_disks && 1913 enough(conf, -1)) { 1914 err = -EBUSY; 1915 goto abort; 1916 } 1917 *rdevp = NULL; 1918 synchronize_rcu(); 1919 if (atomic_read(&rdev->nr_pending)) { 1920 /* lost the race, try later */ 1921 err = -EBUSY; 1922 *rdevp = rdev; 1923 goto abort; 1924 } else if (p->replacement) { 1925 /* We must have just cleared 'rdev' */ 1926 p->rdev = p->replacement; 1927 clear_bit(Replacement, &p->replacement->flags); 1928 smp_mb(); /* Make sure other CPUs may see both as identical 1929 * but will never see neither -- if they are careful. 1930 */ 1931 p->replacement = NULL; 1932 clear_bit(WantReplacement, &rdev->flags); 1933 } else 1934 /* We might have just remove the Replacement as faulty 1935 * Clear the flag just in case 1936 */ 1937 clear_bit(WantReplacement, &rdev->flags); 1938 1939 err = md_integrity_register(mddev); 1940 1941 abort: 1942 1943 print_conf(conf); 1944 return err; 1945 } 1946 1947 1948 static void end_sync_read(struct bio *bio, int error) 1949 { 1950 struct r10bio *r10_bio = bio->bi_private; 1951 struct r10conf *conf = r10_bio->mddev->private; 1952 int d; 1953 1954 if (bio == r10_bio->master_bio) { 1955 /* this is a reshape read */ 1956 d = r10_bio->read_slot; /* really the read dev */ 1957 } else 1958 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1959 1960 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1961 set_bit(R10BIO_Uptodate, &r10_bio->state); 1962 else 1963 /* The write handler will notice the lack of 1964 * R10BIO_Uptodate and record any errors etc 1965 */ 1966 atomic_add(r10_bio->sectors, 1967 &conf->mirrors[d].rdev->corrected_errors); 1968 1969 /* for reconstruct, we always reschedule after a read. 1970 * for resync, only after all reads 1971 */ 1972 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1973 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1974 atomic_dec_and_test(&r10_bio->remaining)) { 1975 /* we have read all the blocks, 1976 * do the comparison in process context in raid10d 1977 */ 1978 reschedule_retry(r10_bio); 1979 } 1980 } 1981 1982 static void end_sync_request(struct r10bio *r10_bio) 1983 { 1984 struct mddev *mddev = r10_bio->mddev; 1985 1986 while (atomic_dec_and_test(&r10_bio->remaining)) { 1987 if (r10_bio->master_bio == NULL) { 1988 /* the primary of several recovery bios */ 1989 sector_t s = r10_bio->sectors; 1990 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1991 test_bit(R10BIO_WriteError, &r10_bio->state)) 1992 reschedule_retry(r10_bio); 1993 else 1994 put_buf(r10_bio); 1995 md_done_sync(mddev, s, 1); 1996 break; 1997 } else { 1998 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1999 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2000 test_bit(R10BIO_WriteError, &r10_bio->state)) 2001 reschedule_retry(r10_bio); 2002 else 2003 put_buf(r10_bio); 2004 r10_bio = r10_bio2; 2005 } 2006 } 2007 } 2008 2009 static void end_sync_write(struct bio *bio, int error) 2010 { 2011 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2012 struct r10bio *r10_bio = bio->bi_private; 2013 struct mddev *mddev = r10_bio->mddev; 2014 struct r10conf *conf = mddev->private; 2015 int d; 2016 sector_t first_bad; 2017 int bad_sectors; 2018 int slot; 2019 int repl; 2020 struct md_rdev *rdev = NULL; 2021 2022 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2023 if (repl) 2024 rdev = conf->mirrors[d].replacement; 2025 else 2026 rdev = conf->mirrors[d].rdev; 2027 2028 if (!uptodate) { 2029 if (repl) 2030 md_error(mddev, rdev); 2031 else { 2032 set_bit(WriteErrorSeen, &rdev->flags); 2033 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2034 set_bit(MD_RECOVERY_NEEDED, 2035 &rdev->mddev->recovery); 2036 set_bit(R10BIO_WriteError, &r10_bio->state); 2037 } 2038 } else if (is_badblock(rdev, 2039 r10_bio->devs[slot].addr, 2040 r10_bio->sectors, 2041 &first_bad, &bad_sectors)) 2042 set_bit(R10BIO_MadeGood, &r10_bio->state); 2043 2044 rdev_dec_pending(rdev, mddev); 2045 2046 end_sync_request(r10_bio); 2047 } 2048 2049 /* 2050 * Note: sync and recover and handled very differently for raid10 2051 * This code is for resync. 2052 * For resync, we read through virtual addresses and read all blocks. 2053 * If there is any error, we schedule a write. The lowest numbered 2054 * drive is authoritative. 2055 * However requests come for physical address, so we need to map. 2056 * For every physical address there are raid_disks/copies virtual addresses, 2057 * which is always are least one, but is not necessarly an integer. 2058 * This means that a physical address can span multiple chunks, so we may 2059 * have to submit multiple io requests for a single sync request. 2060 */ 2061 /* 2062 * We check if all blocks are in-sync and only write to blocks that 2063 * aren't in sync 2064 */ 2065 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2066 { 2067 struct r10conf *conf = mddev->private; 2068 int i, first; 2069 struct bio *tbio, *fbio; 2070 int vcnt; 2071 2072 atomic_set(&r10_bio->remaining, 1); 2073 2074 /* find the first device with a block */ 2075 for (i=0; i<conf->copies; i++) 2076 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2077 break; 2078 2079 if (i == conf->copies) 2080 goto done; 2081 2082 first = i; 2083 fbio = r10_bio->devs[i].bio; 2084 2085 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2086 /* now find blocks with errors */ 2087 for (i=0 ; i < conf->copies ; i++) { 2088 int j, d; 2089 2090 tbio = r10_bio->devs[i].bio; 2091 2092 if (tbio->bi_end_io != end_sync_read) 2093 continue; 2094 if (i == first) 2095 continue; 2096 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2097 /* We know that the bi_io_vec layout is the same for 2098 * both 'first' and 'i', so we just compare them. 2099 * All vec entries are PAGE_SIZE; 2100 */ 2101 int sectors = r10_bio->sectors; 2102 for (j = 0; j < vcnt; j++) { 2103 int len = PAGE_SIZE; 2104 if (sectors < (len / 512)) 2105 len = sectors * 512; 2106 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2107 page_address(tbio->bi_io_vec[j].bv_page), 2108 len)) 2109 break; 2110 sectors -= len/512; 2111 } 2112 if (j == vcnt) 2113 continue; 2114 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2115 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2116 /* Don't fix anything. */ 2117 continue; 2118 } 2119 /* Ok, we need to write this bio, either to correct an 2120 * inconsistency or to correct an unreadable block. 2121 * First we need to fixup bv_offset, bv_len and 2122 * bi_vecs, as the read request might have corrupted these 2123 */ 2124 bio_reset(tbio); 2125 2126 tbio->bi_vcnt = vcnt; 2127 tbio->bi_size = r10_bio->sectors << 9; 2128 tbio->bi_rw = WRITE; 2129 tbio->bi_private = r10_bio; 2130 tbio->bi_sector = r10_bio->devs[i].addr; 2131 2132 for (j=0; j < vcnt ; j++) { 2133 tbio->bi_io_vec[j].bv_offset = 0; 2134 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2135 2136 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2137 page_address(fbio->bi_io_vec[j].bv_page), 2138 PAGE_SIZE); 2139 } 2140 tbio->bi_end_io = end_sync_write; 2141 2142 d = r10_bio->devs[i].devnum; 2143 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2144 atomic_inc(&r10_bio->remaining); 2145 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2146 2147 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2148 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2149 generic_make_request(tbio); 2150 } 2151 2152 /* Now write out to any replacement devices 2153 * that are active 2154 */ 2155 for (i = 0; i < conf->copies; i++) { 2156 int j, d; 2157 2158 tbio = r10_bio->devs[i].repl_bio; 2159 if (!tbio || !tbio->bi_end_io) 2160 continue; 2161 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2162 && r10_bio->devs[i].bio != fbio) 2163 for (j = 0; j < vcnt; j++) 2164 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2165 page_address(fbio->bi_io_vec[j].bv_page), 2166 PAGE_SIZE); 2167 d = r10_bio->devs[i].devnum; 2168 atomic_inc(&r10_bio->remaining); 2169 md_sync_acct(conf->mirrors[d].replacement->bdev, 2170 bio_sectors(tbio)); 2171 generic_make_request(tbio); 2172 } 2173 2174 done: 2175 if (atomic_dec_and_test(&r10_bio->remaining)) { 2176 md_done_sync(mddev, r10_bio->sectors, 1); 2177 put_buf(r10_bio); 2178 } 2179 } 2180 2181 /* 2182 * Now for the recovery code. 2183 * Recovery happens across physical sectors. 2184 * We recover all non-is_sync drives by finding the virtual address of 2185 * each, and then choose a working drive that also has that virt address. 2186 * There is a separate r10_bio for each non-in_sync drive. 2187 * Only the first two slots are in use. The first for reading, 2188 * The second for writing. 2189 * 2190 */ 2191 static void fix_recovery_read_error(struct r10bio *r10_bio) 2192 { 2193 /* We got a read error during recovery. 2194 * We repeat the read in smaller page-sized sections. 2195 * If a read succeeds, write it to the new device or record 2196 * a bad block if we cannot. 2197 * If a read fails, record a bad block on both old and 2198 * new devices. 2199 */ 2200 struct mddev *mddev = r10_bio->mddev; 2201 struct r10conf *conf = mddev->private; 2202 struct bio *bio = r10_bio->devs[0].bio; 2203 sector_t sect = 0; 2204 int sectors = r10_bio->sectors; 2205 int idx = 0; 2206 int dr = r10_bio->devs[0].devnum; 2207 int dw = r10_bio->devs[1].devnum; 2208 2209 while (sectors) { 2210 int s = sectors; 2211 struct md_rdev *rdev; 2212 sector_t addr; 2213 int ok; 2214 2215 if (s > (PAGE_SIZE>>9)) 2216 s = PAGE_SIZE >> 9; 2217 2218 rdev = conf->mirrors[dr].rdev; 2219 addr = r10_bio->devs[0].addr + sect, 2220 ok = sync_page_io(rdev, 2221 addr, 2222 s << 9, 2223 bio->bi_io_vec[idx].bv_page, 2224 READ, false); 2225 if (ok) { 2226 rdev = conf->mirrors[dw].rdev; 2227 addr = r10_bio->devs[1].addr + sect; 2228 ok = sync_page_io(rdev, 2229 addr, 2230 s << 9, 2231 bio->bi_io_vec[idx].bv_page, 2232 WRITE, false); 2233 if (!ok) { 2234 set_bit(WriteErrorSeen, &rdev->flags); 2235 if (!test_and_set_bit(WantReplacement, 2236 &rdev->flags)) 2237 set_bit(MD_RECOVERY_NEEDED, 2238 &rdev->mddev->recovery); 2239 } 2240 } 2241 if (!ok) { 2242 /* We don't worry if we cannot set a bad block - 2243 * it really is bad so there is no loss in not 2244 * recording it yet 2245 */ 2246 rdev_set_badblocks(rdev, addr, s, 0); 2247 2248 if (rdev != conf->mirrors[dw].rdev) { 2249 /* need bad block on destination too */ 2250 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2251 addr = r10_bio->devs[1].addr + sect; 2252 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2253 if (!ok) { 2254 /* just abort the recovery */ 2255 printk(KERN_NOTICE 2256 "md/raid10:%s: recovery aborted" 2257 " due to read error\n", 2258 mdname(mddev)); 2259 2260 conf->mirrors[dw].recovery_disabled 2261 = mddev->recovery_disabled; 2262 set_bit(MD_RECOVERY_INTR, 2263 &mddev->recovery); 2264 break; 2265 } 2266 } 2267 } 2268 2269 sectors -= s; 2270 sect += s; 2271 idx++; 2272 } 2273 } 2274 2275 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2276 { 2277 struct r10conf *conf = mddev->private; 2278 int d; 2279 struct bio *wbio, *wbio2; 2280 2281 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2282 fix_recovery_read_error(r10_bio); 2283 end_sync_request(r10_bio); 2284 return; 2285 } 2286 2287 /* 2288 * share the pages with the first bio 2289 * and submit the write request 2290 */ 2291 d = r10_bio->devs[1].devnum; 2292 wbio = r10_bio->devs[1].bio; 2293 wbio2 = r10_bio->devs[1].repl_bio; 2294 /* Need to test wbio2->bi_end_io before we call 2295 * generic_make_request as if the former is NULL, 2296 * the latter is free to free wbio2. 2297 */ 2298 if (wbio2 && !wbio2->bi_end_io) 2299 wbio2 = NULL; 2300 if (wbio->bi_end_io) { 2301 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2302 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2303 generic_make_request(wbio); 2304 } 2305 if (wbio2) { 2306 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2307 md_sync_acct(conf->mirrors[d].replacement->bdev, 2308 bio_sectors(wbio2)); 2309 generic_make_request(wbio2); 2310 } 2311 } 2312 2313 2314 /* 2315 * Used by fix_read_error() to decay the per rdev read_errors. 2316 * We halve the read error count for every hour that has elapsed 2317 * since the last recorded read error. 2318 * 2319 */ 2320 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2321 { 2322 struct timespec cur_time_mon; 2323 unsigned long hours_since_last; 2324 unsigned int read_errors = atomic_read(&rdev->read_errors); 2325 2326 ktime_get_ts(&cur_time_mon); 2327 2328 if (rdev->last_read_error.tv_sec == 0 && 2329 rdev->last_read_error.tv_nsec == 0) { 2330 /* first time we've seen a read error */ 2331 rdev->last_read_error = cur_time_mon; 2332 return; 2333 } 2334 2335 hours_since_last = (cur_time_mon.tv_sec - 2336 rdev->last_read_error.tv_sec) / 3600; 2337 2338 rdev->last_read_error = cur_time_mon; 2339 2340 /* 2341 * if hours_since_last is > the number of bits in read_errors 2342 * just set read errors to 0. We do this to avoid 2343 * overflowing the shift of read_errors by hours_since_last. 2344 */ 2345 if (hours_since_last >= 8 * sizeof(read_errors)) 2346 atomic_set(&rdev->read_errors, 0); 2347 else 2348 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2349 } 2350 2351 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2352 int sectors, struct page *page, int rw) 2353 { 2354 sector_t first_bad; 2355 int bad_sectors; 2356 2357 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2358 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2359 return -1; 2360 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2361 /* success */ 2362 return 1; 2363 if (rw == WRITE) { 2364 set_bit(WriteErrorSeen, &rdev->flags); 2365 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2366 set_bit(MD_RECOVERY_NEEDED, 2367 &rdev->mddev->recovery); 2368 } 2369 /* need to record an error - either for the block or the device */ 2370 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2371 md_error(rdev->mddev, rdev); 2372 return 0; 2373 } 2374 2375 /* 2376 * This is a kernel thread which: 2377 * 2378 * 1. Retries failed read operations on working mirrors. 2379 * 2. Updates the raid superblock when problems encounter. 2380 * 3. Performs writes following reads for array synchronising. 2381 */ 2382 2383 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2384 { 2385 int sect = 0; /* Offset from r10_bio->sector */ 2386 int sectors = r10_bio->sectors; 2387 struct md_rdev*rdev; 2388 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2389 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2390 2391 /* still own a reference to this rdev, so it cannot 2392 * have been cleared recently. 2393 */ 2394 rdev = conf->mirrors[d].rdev; 2395 2396 if (test_bit(Faulty, &rdev->flags)) 2397 /* drive has already been failed, just ignore any 2398 more fix_read_error() attempts */ 2399 return; 2400 2401 check_decay_read_errors(mddev, rdev); 2402 atomic_inc(&rdev->read_errors); 2403 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2404 char b[BDEVNAME_SIZE]; 2405 bdevname(rdev->bdev, b); 2406 2407 printk(KERN_NOTICE 2408 "md/raid10:%s: %s: Raid device exceeded " 2409 "read_error threshold [cur %d:max %d]\n", 2410 mdname(mddev), b, 2411 atomic_read(&rdev->read_errors), max_read_errors); 2412 printk(KERN_NOTICE 2413 "md/raid10:%s: %s: Failing raid device\n", 2414 mdname(mddev), b); 2415 md_error(mddev, conf->mirrors[d].rdev); 2416 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2417 return; 2418 } 2419 2420 while(sectors) { 2421 int s = sectors; 2422 int sl = r10_bio->read_slot; 2423 int success = 0; 2424 int start; 2425 2426 if (s > (PAGE_SIZE>>9)) 2427 s = PAGE_SIZE >> 9; 2428 2429 rcu_read_lock(); 2430 do { 2431 sector_t first_bad; 2432 int bad_sectors; 2433 2434 d = r10_bio->devs[sl].devnum; 2435 rdev = rcu_dereference(conf->mirrors[d].rdev); 2436 if (rdev && 2437 !test_bit(Unmerged, &rdev->flags) && 2438 test_bit(In_sync, &rdev->flags) && 2439 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2440 &first_bad, &bad_sectors) == 0) { 2441 atomic_inc(&rdev->nr_pending); 2442 rcu_read_unlock(); 2443 success = sync_page_io(rdev, 2444 r10_bio->devs[sl].addr + 2445 sect, 2446 s<<9, 2447 conf->tmppage, READ, false); 2448 rdev_dec_pending(rdev, mddev); 2449 rcu_read_lock(); 2450 if (success) 2451 break; 2452 } 2453 sl++; 2454 if (sl == conf->copies) 2455 sl = 0; 2456 } while (!success && sl != r10_bio->read_slot); 2457 rcu_read_unlock(); 2458 2459 if (!success) { 2460 /* Cannot read from anywhere, just mark the block 2461 * as bad on the first device to discourage future 2462 * reads. 2463 */ 2464 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2465 rdev = conf->mirrors[dn].rdev; 2466 2467 if (!rdev_set_badblocks( 2468 rdev, 2469 r10_bio->devs[r10_bio->read_slot].addr 2470 + sect, 2471 s, 0)) { 2472 md_error(mddev, rdev); 2473 r10_bio->devs[r10_bio->read_slot].bio 2474 = IO_BLOCKED; 2475 } 2476 break; 2477 } 2478 2479 start = sl; 2480 /* write it back and re-read */ 2481 rcu_read_lock(); 2482 while (sl != r10_bio->read_slot) { 2483 char b[BDEVNAME_SIZE]; 2484 2485 if (sl==0) 2486 sl = conf->copies; 2487 sl--; 2488 d = r10_bio->devs[sl].devnum; 2489 rdev = rcu_dereference(conf->mirrors[d].rdev); 2490 if (!rdev || 2491 test_bit(Unmerged, &rdev->flags) || 2492 !test_bit(In_sync, &rdev->flags)) 2493 continue; 2494 2495 atomic_inc(&rdev->nr_pending); 2496 rcu_read_unlock(); 2497 if (r10_sync_page_io(rdev, 2498 r10_bio->devs[sl].addr + 2499 sect, 2500 s, conf->tmppage, WRITE) 2501 == 0) { 2502 /* Well, this device is dead */ 2503 printk(KERN_NOTICE 2504 "md/raid10:%s: read correction " 2505 "write failed" 2506 " (%d sectors at %llu on %s)\n", 2507 mdname(mddev), s, 2508 (unsigned long long)( 2509 sect + 2510 choose_data_offset(r10_bio, 2511 rdev)), 2512 bdevname(rdev->bdev, b)); 2513 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2514 "drive\n", 2515 mdname(mddev), 2516 bdevname(rdev->bdev, b)); 2517 } 2518 rdev_dec_pending(rdev, mddev); 2519 rcu_read_lock(); 2520 } 2521 sl = start; 2522 while (sl != r10_bio->read_slot) { 2523 char b[BDEVNAME_SIZE]; 2524 2525 if (sl==0) 2526 sl = conf->copies; 2527 sl--; 2528 d = r10_bio->devs[sl].devnum; 2529 rdev = rcu_dereference(conf->mirrors[d].rdev); 2530 if (!rdev || 2531 !test_bit(In_sync, &rdev->flags)) 2532 continue; 2533 2534 atomic_inc(&rdev->nr_pending); 2535 rcu_read_unlock(); 2536 switch (r10_sync_page_io(rdev, 2537 r10_bio->devs[sl].addr + 2538 sect, 2539 s, conf->tmppage, 2540 READ)) { 2541 case 0: 2542 /* Well, this device is dead */ 2543 printk(KERN_NOTICE 2544 "md/raid10:%s: unable to read back " 2545 "corrected sectors" 2546 " (%d sectors at %llu on %s)\n", 2547 mdname(mddev), s, 2548 (unsigned long long)( 2549 sect + 2550 choose_data_offset(r10_bio, rdev)), 2551 bdevname(rdev->bdev, b)); 2552 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2553 "drive\n", 2554 mdname(mddev), 2555 bdevname(rdev->bdev, b)); 2556 break; 2557 case 1: 2558 printk(KERN_INFO 2559 "md/raid10:%s: read error corrected" 2560 " (%d sectors at %llu on %s)\n", 2561 mdname(mddev), s, 2562 (unsigned long long)( 2563 sect + 2564 choose_data_offset(r10_bio, rdev)), 2565 bdevname(rdev->bdev, b)); 2566 atomic_add(s, &rdev->corrected_errors); 2567 } 2568 2569 rdev_dec_pending(rdev, mddev); 2570 rcu_read_lock(); 2571 } 2572 rcu_read_unlock(); 2573 2574 sectors -= s; 2575 sect += s; 2576 } 2577 } 2578 2579 static int narrow_write_error(struct r10bio *r10_bio, int i) 2580 { 2581 struct bio *bio = r10_bio->master_bio; 2582 struct mddev *mddev = r10_bio->mddev; 2583 struct r10conf *conf = mddev->private; 2584 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2585 /* bio has the data to be written to slot 'i' where 2586 * we just recently had a write error. 2587 * We repeatedly clone the bio and trim down to one block, 2588 * then try the write. Where the write fails we record 2589 * a bad block. 2590 * It is conceivable that the bio doesn't exactly align with 2591 * blocks. We must handle this. 2592 * 2593 * We currently own a reference to the rdev. 2594 */ 2595 2596 int block_sectors; 2597 sector_t sector; 2598 int sectors; 2599 int sect_to_write = r10_bio->sectors; 2600 int ok = 1; 2601 2602 if (rdev->badblocks.shift < 0) 2603 return 0; 2604 2605 block_sectors = 1 << rdev->badblocks.shift; 2606 sector = r10_bio->sector; 2607 sectors = ((r10_bio->sector + block_sectors) 2608 & ~(sector_t)(block_sectors - 1)) 2609 - sector; 2610 2611 while (sect_to_write) { 2612 struct bio *wbio; 2613 if (sectors > sect_to_write) 2614 sectors = sect_to_write; 2615 /* Write at 'sector' for 'sectors' */ 2616 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2617 bio_trim(wbio, sector - bio->bi_sector, sectors); 2618 wbio->bi_sector = (r10_bio->devs[i].addr+ 2619 choose_data_offset(r10_bio, rdev) + 2620 (sector - r10_bio->sector)); 2621 wbio->bi_bdev = rdev->bdev; 2622 if (submit_bio_wait(WRITE, wbio) == 0) 2623 /* Failure! */ 2624 ok = rdev_set_badblocks(rdev, sector, 2625 sectors, 0) 2626 && ok; 2627 2628 bio_put(wbio); 2629 sect_to_write -= sectors; 2630 sector += sectors; 2631 sectors = block_sectors; 2632 } 2633 return ok; 2634 } 2635 2636 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2637 { 2638 int slot = r10_bio->read_slot; 2639 struct bio *bio; 2640 struct r10conf *conf = mddev->private; 2641 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2642 char b[BDEVNAME_SIZE]; 2643 unsigned long do_sync; 2644 int max_sectors; 2645 2646 /* we got a read error. Maybe the drive is bad. Maybe just 2647 * the block and we can fix it. 2648 * We freeze all other IO, and try reading the block from 2649 * other devices. When we find one, we re-write 2650 * and check it that fixes the read error. 2651 * This is all done synchronously while the array is 2652 * frozen. 2653 */ 2654 bio = r10_bio->devs[slot].bio; 2655 bdevname(bio->bi_bdev, b); 2656 bio_put(bio); 2657 r10_bio->devs[slot].bio = NULL; 2658 2659 if (mddev->ro == 0) { 2660 freeze_array(conf, 1); 2661 fix_read_error(conf, mddev, r10_bio); 2662 unfreeze_array(conf); 2663 } else 2664 r10_bio->devs[slot].bio = IO_BLOCKED; 2665 2666 rdev_dec_pending(rdev, mddev); 2667 2668 read_more: 2669 rdev = read_balance(conf, r10_bio, &max_sectors); 2670 if (rdev == NULL) { 2671 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2672 " read error for block %llu\n", 2673 mdname(mddev), b, 2674 (unsigned long long)r10_bio->sector); 2675 raid_end_bio_io(r10_bio); 2676 return; 2677 } 2678 2679 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2680 slot = r10_bio->read_slot; 2681 printk_ratelimited( 2682 KERN_ERR 2683 "md/raid10:%s: %s: redirecting " 2684 "sector %llu to another mirror\n", 2685 mdname(mddev), 2686 bdevname(rdev->bdev, b), 2687 (unsigned long long)r10_bio->sector); 2688 bio = bio_clone_mddev(r10_bio->master_bio, 2689 GFP_NOIO, mddev); 2690 bio_trim(bio, r10_bio->sector - bio->bi_sector, max_sectors); 2691 r10_bio->devs[slot].bio = bio; 2692 r10_bio->devs[slot].rdev = rdev; 2693 bio->bi_sector = r10_bio->devs[slot].addr 2694 + choose_data_offset(r10_bio, rdev); 2695 bio->bi_bdev = rdev->bdev; 2696 bio->bi_rw = READ | do_sync; 2697 bio->bi_private = r10_bio; 2698 bio->bi_end_io = raid10_end_read_request; 2699 if (max_sectors < r10_bio->sectors) { 2700 /* Drat - have to split this up more */ 2701 struct bio *mbio = r10_bio->master_bio; 2702 int sectors_handled = 2703 r10_bio->sector + max_sectors 2704 - mbio->bi_sector; 2705 r10_bio->sectors = max_sectors; 2706 spin_lock_irq(&conf->device_lock); 2707 if (mbio->bi_phys_segments == 0) 2708 mbio->bi_phys_segments = 2; 2709 else 2710 mbio->bi_phys_segments++; 2711 spin_unlock_irq(&conf->device_lock); 2712 generic_make_request(bio); 2713 2714 r10_bio = mempool_alloc(conf->r10bio_pool, 2715 GFP_NOIO); 2716 r10_bio->master_bio = mbio; 2717 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2718 r10_bio->state = 0; 2719 set_bit(R10BIO_ReadError, 2720 &r10_bio->state); 2721 r10_bio->mddev = mddev; 2722 r10_bio->sector = mbio->bi_sector 2723 + sectors_handled; 2724 2725 goto read_more; 2726 } else 2727 generic_make_request(bio); 2728 } 2729 2730 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2731 { 2732 /* Some sort of write request has finished and it 2733 * succeeded in writing where we thought there was a 2734 * bad block. So forget the bad block. 2735 * Or possibly if failed and we need to record 2736 * a bad block. 2737 */ 2738 int m; 2739 struct md_rdev *rdev; 2740 2741 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2742 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2743 for (m = 0; m < conf->copies; m++) { 2744 int dev = r10_bio->devs[m].devnum; 2745 rdev = conf->mirrors[dev].rdev; 2746 if (r10_bio->devs[m].bio == NULL) 2747 continue; 2748 if (test_bit(BIO_UPTODATE, 2749 &r10_bio->devs[m].bio->bi_flags)) { 2750 rdev_clear_badblocks( 2751 rdev, 2752 r10_bio->devs[m].addr, 2753 r10_bio->sectors, 0); 2754 } else { 2755 if (!rdev_set_badblocks( 2756 rdev, 2757 r10_bio->devs[m].addr, 2758 r10_bio->sectors, 0)) 2759 md_error(conf->mddev, rdev); 2760 } 2761 rdev = conf->mirrors[dev].replacement; 2762 if (r10_bio->devs[m].repl_bio == NULL) 2763 continue; 2764 if (test_bit(BIO_UPTODATE, 2765 &r10_bio->devs[m].repl_bio->bi_flags)) { 2766 rdev_clear_badblocks( 2767 rdev, 2768 r10_bio->devs[m].addr, 2769 r10_bio->sectors, 0); 2770 } else { 2771 if (!rdev_set_badblocks( 2772 rdev, 2773 r10_bio->devs[m].addr, 2774 r10_bio->sectors, 0)) 2775 md_error(conf->mddev, rdev); 2776 } 2777 } 2778 put_buf(r10_bio); 2779 } else { 2780 for (m = 0; m < conf->copies; m++) { 2781 int dev = r10_bio->devs[m].devnum; 2782 struct bio *bio = r10_bio->devs[m].bio; 2783 rdev = conf->mirrors[dev].rdev; 2784 if (bio == IO_MADE_GOOD) { 2785 rdev_clear_badblocks( 2786 rdev, 2787 r10_bio->devs[m].addr, 2788 r10_bio->sectors, 0); 2789 rdev_dec_pending(rdev, conf->mddev); 2790 } else if (bio != NULL && 2791 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2792 if (!narrow_write_error(r10_bio, m)) { 2793 md_error(conf->mddev, rdev); 2794 set_bit(R10BIO_Degraded, 2795 &r10_bio->state); 2796 } 2797 rdev_dec_pending(rdev, conf->mddev); 2798 } 2799 bio = r10_bio->devs[m].repl_bio; 2800 rdev = conf->mirrors[dev].replacement; 2801 if (rdev && bio == IO_MADE_GOOD) { 2802 rdev_clear_badblocks( 2803 rdev, 2804 r10_bio->devs[m].addr, 2805 r10_bio->sectors, 0); 2806 rdev_dec_pending(rdev, conf->mddev); 2807 } 2808 } 2809 if (test_bit(R10BIO_WriteError, 2810 &r10_bio->state)) 2811 close_write(r10_bio); 2812 raid_end_bio_io(r10_bio); 2813 } 2814 } 2815 2816 static void raid10d(struct md_thread *thread) 2817 { 2818 struct mddev *mddev = thread->mddev; 2819 struct r10bio *r10_bio; 2820 unsigned long flags; 2821 struct r10conf *conf = mddev->private; 2822 struct list_head *head = &conf->retry_list; 2823 struct blk_plug plug; 2824 2825 md_check_recovery(mddev); 2826 2827 blk_start_plug(&plug); 2828 for (;;) { 2829 2830 flush_pending_writes(conf); 2831 2832 spin_lock_irqsave(&conf->device_lock, flags); 2833 if (list_empty(head)) { 2834 spin_unlock_irqrestore(&conf->device_lock, flags); 2835 break; 2836 } 2837 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2838 list_del(head->prev); 2839 conf->nr_queued--; 2840 spin_unlock_irqrestore(&conf->device_lock, flags); 2841 2842 mddev = r10_bio->mddev; 2843 conf = mddev->private; 2844 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2845 test_bit(R10BIO_WriteError, &r10_bio->state)) 2846 handle_write_completed(conf, r10_bio); 2847 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2848 reshape_request_write(mddev, r10_bio); 2849 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2850 sync_request_write(mddev, r10_bio); 2851 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2852 recovery_request_write(mddev, r10_bio); 2853 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2854 handle_read_error(mddev, r10_bio); 2855 else { 2856 /* just a partial read to be scheduled from a 2857 * separate context 2858 */ 2859 int slot = r10_bio->read_slot; 2860 generic_make_request(r10_bio->devs[slot].bio); 2861 } 2862 2863 cond_resched(); 2864 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2865 md_check_recovery(mddev); 2866 } 2867 blk_finish_plug(&plug); 2868 } 2869 2870 2871 static int init_resync(struct r10conf *conf) 2872 { 2873 int buffs; 2874 int i; 2875 2876 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2877 BUG_ON(conf->r10buf_pool); 2878 conf->have_replacement = 0; 2879 for (i = 0; i < conf->geo.raid_disks; i++) 2880 if (conf->mirrors[i].replacement) 2881 conf->have_replacement = 1; 2882 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2883 if (!conf->r10buf_pool) 2884 return -ENOMEM; 2885 conf->next_resync = 0; 2886 return 0; 2887 } 2888 2889 /* 2890 * perform a "sync" on one "block" 2891 * 2892 * We need to make sure that no normal I/O request - particularly write 2893 * requests - conflict with active sync requests. 2894 * 2895 * This is achieved by tracking pending requests and a 'barrier' concept 2896 * that can be installed to exclude normal IO requests. 2897 * 2898 * Resync and recovery are handled very differently. 2899 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2900 * 2901 * For resync, we iterate over virtual addresses, read all copies, 2902 * and update if there are differences. If only one copy is live, 2903 * skip it. 2904 * For recovery, we iterate over physical addresses, read a good 2905 * value for each non-in_sync drive, and over-write. 2906 * 2907 * So, for recovery we may have several outstanding complex requests for a 2908 * given address, one for each out-of-sync device. We model this by allocating 2909 * a number of r10_bio structures, one for each out-of-sync device. 2910 * As we setup these structures, we collect all bio's together into a list 2911 * which we then process collectively to add pages, and then process again 2912 * to pass to generic_make_request. 2913 * 2914 * The r10_bio structures are linked using a borrowed master_bio pointer. 2915 * This link is counted in ->remaining. When the r10_bio that points to NULL 2916 * has its remaining count decremented to 0, the whole complex operation 2917 * is complete. 2918 * 2919 */ 2920 2921 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2922 int *skipped, int go_faster) 2923 { 2924 struct r10conf *conf = mddev->private; 2925 struct r10bio *r10_bio; 2926 struct bio *biolist = NULL, *bio; 2927 sector_t max_sector, nr_sectors; 2928 int i; 2929 int max_sync; 2930 sector_t sync_blocks; 2931 sector_t sectors_skipped = 0; 2932 int chunks_skipped = 0; 2933 sector_t chunk_mask = conf->geo.chunk_mask; 2934 2935 if (!conf->r10buf_pool) 2936 if (init_resync(conf)) 2937 return 0; 2938 2939 /* 2940 * Allow skipping a full rebuild for incremental assembly 2941 * of a clean array, like RAID1 does. 2942 */ 2943 if (mddev->bitmap == NULL && 2944 mddev->recovery_cp == MaxSector && 2945 mddev->reshape_position == MaxSector && 2946 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2947 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2948 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2949 conf->fullsync == 0) { 2950 *skipped = 1; 2951 return mddev->dev_sectors - sector_nr; 2952 } 2953 2954 skipped: 2955 max_sector = mddev->dev_sectors; 2956 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2957 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2958 max_sector = mddev->resync_max_sectors; 2959 if (sector_nr >= max_sector) { 2960 /* If we aborted, we need to abort the 2961 * sync on the 'current' bitmap chucks (there can 2962 * be several when recovering multiple devices). 2963 * as we may have started syncing it but not finished. 2964 * We can find the current address in 2965 * mddev->curr_resync, but for recovery, 2966 * we need to convert that to several 2967 * virtual addresses. 2968 */ 2969 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2970 end_reshape(conf); 2971 return 0; 2972 } 2973 2974 if (mddev->curr_resync < max_sector) { /* aborted */ 2975 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2976 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2977 &sync_blocks, 1); 2978 else for (i = 0; i < conf->geo.raid_disks; i++) { 2979 sector_t sect = 2980 raid10_find_virt(conf, mddev->curr_resync, i); 2981 bitmap_end_sync(mddev->bitmap, sect, 2982 &sync_blocks, 1); 2983 } 2984 } else { 2985 /* completed sync */ 2986 if ((!mddev->bitmap || conf->fullsync) 2987 && conf->have_replacement 2988 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2989 /* Completed a full sync so the replacements 2990 * are now fully recovered. 2991 */ 2992 for (i = 0; i < conf->geo.raid_disks; i++) 2993 if (conf->mirrors[i].replacement) 2994 conf->mirrors[i].replacement 2995 ->recovery_offset 2996 = MaxSector; 2997 } 2998 conf->fullsync = 0; 2999 } 3000 bitmap_close_sync(mddev->bitmap); 3001 close_sync(conf); 3002 *skipped = 1; 3003 return sectors_skipped; 3004 } 3005 3006 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3007 return reshape_request(mddev, sector_nr, skipped); 3008 3009 if (chunks_skipped >= conf->geo.raid_disks) { 3010 /* if there has been nothing to do on any drive, 3011 * then there is nothing to do at all.. 3012 */ 3013 *skipped = 1; 3014 return (max_sector - sector_nr) + sectors_skipped; 3015 } 3016 3017 if (max_sector > mddev->resync_max) 3018 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3019 3020 /* make sure whole request will fit in a chunk - if chunks 3021 * are meaningful 3022 */ 3023 if (conf->geo.near_copies < conf->geo.raid_disks && 3024 max_sector > (sector_nr | chunk_mask)) 3025 max_sector = (sector_nr | chunk_mask) + 1; 3026 /* 3027 * If there is non-resync activity waiting for us then 3028 * put in a delay to throttle resync. 3029 */ 3030 if (!go_faster && conf->nr_waiting) 3031 msleep_interruptible(1000); 3032 3033 /* Again, very different code for resync and recovery. 3034 * Both must result in an r10bio with a list of bios that 3035 * have bi_end_io, bi_sector, bi_bdev set, 3036 * and bi_private set to the r10bio. 3037 * For recovery, we may actually create several r10bios 3038 * with 2 bios in each, that correspond to the bios in the main one. 3039 * In this case, the subordinate r10bios link back through a 3040 * borrowed master_bio pointer, and the counter in the master 3041 * includes a ref from each subordinate. 3042 */ 3043 /* First, we decide what to do and set ->bi_end_io 3044 * To end_sync_read if we want to read, and 3045 * end_sync_write if we will want to write. 3046 */ 3047 3048 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3049 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3050 /* recovery... the complicated one */ 3051 int j; 3052 r10_bio = NULL; 3053 3054 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3055 int still_degraded; 3056 struct r10bio *rb2; 3057 sector_t sect; 3058 int must_sync; 3059 int any_working; 3060 struct raid10_info *mirror = &conf->mirrors[i]; 3061 3062 if ((mirror->rdev == NULL || 3063 test_bit(In_sync, &mirror->rdev->flags)) 3064 && 3065 (mirror->replacement == NULL || 3066 test_bit(Faulty, 3067 &mirror->replacement->flags))) 3068 continue; 3069 3070 still_degraded = 0; 3071 /* want to reconstruct this device */ 3072 rb2 = r10_bio; 3073 sect = raid10_find_virt(conf, sector_nr, i); 3074 if (sect >= mddev->resync_max_sectors) { 3075 /* last stripe is not complete - don't 3076 * try to recover this sector. 3077 */ 3078 continue; 3079 } 3080 /* Unless we are doing a full sync, or a replacement 3081 * we only need to recover the block if it is set in 3082 * the bitmap 3083 */ 3084 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3085 &sync_blocks, 1); 3086 if (sync_blocks < max_sync) 3087 max_sync = sync_blocks; 3088 if (!must_sync && 3089 mirror->replacement == NULL && 3090 !conf->fullsync) { 3091 /* yep, skip the sync_blocks here, but don't assume 3092 * that there will never be anything to do here 3093 */ 3094 chunks_skipped = -1; 3095 continue; 3096 } 3097 3098 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3099 raise_barrier(conf, rb2 != NULL); 3100 atomic_set(&r10_bio->remaining, 0); 3101 3102 r10_bio->master_bio = (struct bio*)rb2; 3103 if (rb2) 3104 atomic_inc(&rb2->remaining); 3105 r10_bio->mddev = mddev; 3106 set_bit(R10BIO_IsRecover, &r10_bio->state); 3107 r10_bio->sector = sect; 3108 3109 raid10_find_phys(conf, r10_bio); 3110 3111 /* Need to check if the array will still be 3112 * degraded 3113 */ 3114 for (j = 0; j < conf->geo.raid_disks; j++) 3115 if (conf->mirrors[j].rdev == NULL || 3116 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3117 still_degraded = 1; 3118 break; 3119 } 3120 3121 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3122 &sync_blocks, still_degraded); 3123 3124 any_working = 0; 3125 for (j=0; j<conf->copies;j++) { 3126 int k; 3127 int d = r10_bio->devs[j].devnum; 3128 sector_t from_addr, to_addr; 3129 struct md_rdev *rdev; 3130 sector_t sector, first_bad; 3131 int bad_sectors; 3132 if (!conf->mirrors[d].rdev || 3133 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3134 continue; 3135 /* This is where we read from */ 3136 any_working = 1; 3137 rdev = conf->mirrors[d].rdev; 3138 sector = r10_bio->devs[j].addr; 3139 3140 if (is_badblock(rdev, sector, max_sync, 3141 &first_bad, &bad_sectors)) { 3142 if (first_bad > sector) 3143 max_sync = first_bad - sector; 3144 else { 3145 bad_sectors -= (sector 3146 - first_bad); 3147 if (max_sync > bad_sectors) 3148 max_sync = bad_sectors; 3149 continue; 3150 } 3151 } 3152 bio = r10_bio->devs[0].bio; 3153 bio_reset(bio); 3154 bio->bi_next = biolist; 3155 biolist = bio; 3156 bio->bi_private = r10_bio; 3157 bio->bi_end_io = end_sync_read; 3158 bio->bi_rw = READ; 3159 from_addr = r10_bio->devs[j].addr; 3160 bio->bi_sector = from_addr + rdev->data_offset; 3161 bio->bi_bdev = rdev->bdev; 3162 atomic_inc(&rdev->nr_pending); 3163 /* and we write to 'i' (if not in_sync) */ 3164 3165 for (k=0; k<conf->copies; k++) 3166 if (r10_bio->devs[k].devnum == i) 3167 break; 3168 BUG_ON(k == conf->copies); 3169 to_addr = r10_bio->devs[k].addr; 3170 r10_bio->devs[0].devnum = d; 3171 r10_bio->devs[0].addr = from_addr; 3172 r10_bio->devs[1].devnum = i; 3173 r10_bio->devs[1].addr = to_addr; 3174 3175 rdev = mirror->rdev; 3176 if (!test_bit(In_sync, &rdev->flags)) { 3177 bio = r10_bio->devs[1].bio; 3178 bio_reset(bio); 3179 bio->bi_next = biolist; 3180 biolist = bio; 3181 bio->bi_private = r10_bio; 3182 bio->bi_end_io = end_sync_write; 3183 bio->bi_rw = WRITE; 3184 bio->bi_sector = to_addr 3185 + rdev->data_offset; 3186 bio->bi_bdev = rdev->bdev; 3187 atomic_inc(&r10_bio->remaining); 3188 } else 3189 r10_bio->devs[1].bio->bi_end_io = NULL; 3190 3191 /* and maybe write to replacement */ 3192 bio = r10_bio->devs[1].repl_bio; 3193 if (bio) 3194 bio->bi_end_io = NULL; 3195 rdev = mirror->replacement; 3196 /* Note: if rdev != NULL, then bio 3197 * cannot be NULL as r10buf_pool_alloc will 3198 * have allocated it. 3199 * So the second test here is pointless. 3200 * But it keeps semantic-checkers happy, and 3201 * this comment keeps human reviewers 3202 * happy. 3203 */ 3204 if (rdev == NULL || bio == NULL || 3205 test_bit(Faulty, &rdev->flags)) 3206 break; 3207 bio_reset(bio); 3208 bio->bi_next = biolist; 3209 biolist = bio; 3210 bio->bi_private = r10_bio; 3211 bio->bi_end_io = end_sync_write; 3212 bio->bi_rw = WRITE; 3213 bio->bi_sector = to_addr + rdev->data_offset; 3214 bio->bi_bdev = rdev->bdev; 3215 atomic_inc(&r10_bio->remaining); 3216 break; 3217 } 3218 if (j == conf->copies) { 3219 /* Cannot recover, so abort the recovery or 3220 * record a bad block */ 3221 put_buf(r10_bio); 3222 if (rb2) 3223 atomic_dec(&rb2->remaining); 3224 r10_bio = rb2; 3225 if (any_working) { 3226 /* problem is that there are bad blocks 3227 * on other device(s) 3228 */ 3229 int k; 3230 for (k = 0; k < conf->copies; k++) 3231 if (r10_bio->devs[k].devnum == i) 3232 break; 3233 if (!test_bit(In_sync, 3234 &mirror->rdev->flags) 3235 && !rdev_set_badblocks( 3236 mirror->rdev, 3237 r10_bio->devs[k].addr, 3238 max_sync, 0)) 3239 any_working = 0; 3240 if (mirror->replacement && 3241 !rdev_set_badblocks( 3242 mirror->replacement, 3243 r10_bio->devs[k].addr, 3244 max_sync, 0)) 3245 any_working = 0; 3246 } 3247 if (!any_working) { 3248 if (!test_and_set_bit(MD_RECOVERY_INTR, 3249 &mddev->recovery)) 3250 printk(KERN_INFO "md/raid10:%s: insufficient " 3251 "working devices for recovery.\n", 3252 mdname(mddev)); 3253 mirror->recovery_disabled 3254 = mddev->recovery_disabled; 3255 } 3256 break; 3257 } 3258 } 3259 if (biolist == NULL) { 3260 while (r10_bio) { 3261 struct r10bio *rb2 = r10_bio; 3262 r10_bio = (struct r10bio*) rb2->master_bio; 3263 rb2->master_bio = NULL; 3264 put_buf(rb2); 3265 } 3266 goto giveup; 3267 } 3268 } else { 3269 /* resync. Schedule a read for every block at this virt offset */ 3270 int count = 0; 3271 3272 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3273 3274 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3275 &sync_blocks, mddev->degraded) && 3276 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3277 &mddev->recovery)) { 3278 /* We can skip this block */ 3279 *skipped = 1; 3280 return sync_blocks + sectors_skipped; 3281 } 3282 if (sync_blocks < max_sync) 3283 max_sync = sync_blocks; 3284 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3285 3286 r10_bio->mddev = mddev; 3287 atomic_set(&r10_bio->remaining, 0); 3288 raise_barrier(conf, 0); 3289 conf->next_resync = sector_nr; 3290 3291 r10_bio->master_bio = NULL; 3292 r10_bio->sector = sector_nr; 3293 set_bit(R10BIO_IsSync, &r10_bio->state); 3294 raid10_find_phys(conf, r10_bio); 3295 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3296 3297 for (i = 0; i < conf->copies; i++) { 3298 int d = r10_bio->devs[i].devnum; 3299 sector_t first_bad, sector; 3300 int bad_sectors; 3301 3302 if (r10_bio->devs[i].repl_bio) 3303 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3304 3305 bio = r10_bio->devs[i].bio; 3306 bio_reset(bio); 3307 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3308 if (conf->mirrors[d].rdev == NULL || 3309 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3310 continue; 3311 sector = r10_bio->devs[i].addr; 3312 if (is_badblock(conf->mirrors[d].rdev, 3313 sector, max_sync, 3314 &first_bad, &bad_sectors)) { 3315 if (first_bad > sector) 3316 max_sync = first_bad - sector; 3317 else { 3318 bad_sectors -= (sector - first_bad); 3319 if (max_sync > bad_sectors) 3320 max_sync = bad_sectors; 3321 continue; 3322 } 3323 } 3324 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3325 atomic_inc(&r10_bio->remaining); 3326 bio->bi_next = biolist; 3327 biolist = bio; 3328 bio->bi_private = r10_bio; 3329 bio->bi_end_io = end_sync_read; 3330 bio->bi_rw = READ; 3331 bio->bi_sector = sector + 3332 conf->mirrors[d].rdev->data_offset; 3333 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3334 count++; 3335 3336 if (conf->mirrors[d].replacement == NULL || 3337 test_bit(Faulty, 3338 &conf->mirrors[d].replacement->flags)) 3339 continue; 3340 3341 /* Need to set up for writing to the replacement */ 3342 bio = r10_bio->devs[i].repl_bio; 3343 bio_reset(bio); 3344 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3345 3346 sector = r10_bio->devs[i].addr; 3347 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3348 bio->bi_next = biolist; 3349 biolist = bio; 3350 bio->bi_private = r10_bio; 3351 bio->bi_end_io = end_sync_write; 3352 bio->bi_rw = WRITE; 3353 bio->bi_sector = sector + 3354 conf->mirrors[d].replacement->data_offset; 3355 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3356 count++; 3357 } 3358 3359 if (count < 2) { 3360 for (i=0; i<conf->copies; i++) { 3361 int d = r10_bio->devs[i].devnum; 3362 if (r10_bio->devs[i].bio->bi_end_io) 3363 rdev_dec_pending(conf->mirrors[d].rdev, 3364 mddev); 3365 if (r10_bio->devs[i].repl_bio && 3366 r10_bio->devs[i].repl_bio->bi_end_io) 3367 rdev_dec_pending( 3368 conf->mirrors[d].replacement, 3369 mddev); 3370 } 3371 put_buf(r10_bio); 3372 biolist = NULL; 3373 goto giveup; 3374 } 3375 } 3376 3377 nr_sectors = 0; 3378 if (sector_nr + max_sync < max_sector) 3379 max_sector = sector_nr + max_sync; 3380 do { 3381 struct page *page; 3382 int len = PAGE_SIZE; 3383 if (sector_nr + (len>>9) > max_sector) 3384 len = (max_sector - sector_nr) << 9; 3385 if (len == 0) 3386 break; 3387 for (bio= biolist ; bio ; bio=bio->bi_next) { 3388 struct bio *bio2; 3389 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3390 if (bio_add_page(bio, page, len, 0)) 3391 continue; 3392 3393 /* stop here */ 3394 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3395 for (bio2 = biolist; 3396 bio2 && bio2 != bio; 3397 bio2 = bio2->bi_next) { 3398 /* remove last page from this bio */ 3399 bio2->bi_vcnt--; 3400 bio2->bi_size -= len; 3401 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3402 } 3403 goto bio_full; 3404 } 3405 nr_sectors += len>>9; 3406 sector_nr += len>>9; 3407 } while (biolist->bi_vcnt < RESYNC_PAGES); 3408 bio_full: 3409 r10_bio->sectors = nr_sectors; 3410 3411 while (biolist) { 3412 bio = biolist; 3413 biolist = biolist->bi_next; 3414 3415 bio->bi_next = NULL; 3416 r10_bio = bio->bi_private; 3417 r10_bio->sectors = nr_sectors; 3418 3419 if (bio->bi_end_io == end_sync_read) { 3420 md_sync_acct(bio->bi_bdev, nr_sectors); 3421 set_bit(BIO_UPTODATE, &bio->bi_flags); 3422 generic_make_request(bio); 3423 } 3424 } 3425 3426 if (sectors_skipped) 3427 /* pretend they weren't skipped, it makes 3428 * no important difference in this case 3429 */ 3430 md_done_sync(mddev, sectors_skipped, 1); 3431 3432 return sectors_skipped + nr_sectors; 3433 giveup: 3434 /* There is nowhere to write, so all non-sync 3435 * drives must be failed or in resync, all drives 3436 * have a bad block, so try the next chunk... 3437 */ 3438 if (sector_nr + max_sync < max_sector) 3439 max_sector = sector_nr + max_sync; 3440 3441 sectors_skipped += (max_sector - sector_nr); 3442 chunks_skipped ++; 3443 sector_nr = max_sector; 3444 goto skipped; 3445 } 3446 3447 static sector_t 3448 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3449 { 3450 sector_t size; 3451 struct r10conf *conf = mddev->private; 3452 3453 if (!raid_disks) 3454 raid_disks = min(conf->geo.raid_disks, 3455 conf->prev.raid_disks); 3456 if (!sectors) 3457 sectors = conf->dev_sectors; 3458 3459 size = sectors >> conf->geo.chunk_shift; 3460 sector_div(size, conf->geo.far_copies); 3461 size = size * raid_disks; 3462 sector_div(size, conf->geo.near_copies); 3463 3464 return size << conf->geo.chunk_shift; 3465 } 3466 3467 static void calc_sectors(struct r10conf *conf, sector_t size) 3468 { 3469 /* Calculate the number of sectors-per-device that will 3470 * actually be used, and set conf->dev_sectors and 3471 * conf->stride 3472 */ 3473 3474 size = size >> conf->geo.chunk_shift; 3475 sector_div(size, conf->geo.far_copies); 3476 size = size * conf->geo.raid_disks; 3477 sector_div(size, conf->geo.near_copies); 3478 /* 'size' is now the number of chunks in the array */ 3479 /* calculate "used chunks per device" */ 3480 size = size * conf->copies; 3481 3482 /* We need to round up when dividing by raid_disks to 3483 * get the stride size. 3484 */ 3485 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3486 3487 conf->dev_sectors = size << conf->geo.chunk_shift; 3488 3489 if (conf->geo.far_offset) 3490 conf->geo.stride = 1 << conf->geo.chunk_shift; 3491 else { 3492 sector_div(size, conf->geo.far_copies); 3493 conf->geo.stride = size << conf->geo.chunk_shift; 3494 } 3495 } 3496 3497 enum geo_type {geo_new, geo_old, geo_start}; 3498 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3499 { 3500 int nc, fc, fo; 3501 int layout, chunk, disks; 3502 switch (new) { 3503 case geo_old: 3504 layout = mddev->layout; 3505 chunk = mddev->chunk_sectors; 3506 disks = mddev->raid_disks - mddev->delta_disks; 3507 break; 3508 case geo_new: 3509 layout = mddev->new_layout; 3510 chunk = mddev->new_chunk_sectors; 3511 disks = mddev->raid_disks; 3512 break; 3513 default: /* avoid 'may be unused' warnings */ 3514 case geo_start: /* new when starting reshape - raid_disks not 3515 * updated yet. */ 3516 layout = mddev->new_layout; 3517 chunk = mddev->new_chunk_sectors; 3518 disks = mddev->raid_disks + mddev->delta_disks; 3519 break; 3520 } 3521 if (layout >> 18) 3522 return -1; 3523 if (chunk < (PAGE_SIZE >> 9) || 3524 !is_power_of_2(chunk)) 3525 return -2; 3526 nc = layout & 255; 3527 fc = (layout >> 8) & 255; 3528 fo = layout & (1<<16); 3529 geo->raid_disks = disks; 3530 geo->near_copies = nc; 3531 geo->far_copies = fc; 3532 geo->far_offset = fo; 3533 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3534 geo->chunk_mask = chunk - 1; 3535 geo->chunk_shift = ffz(~chunk); 3536 return nc*fc; 3537 } 3538 3539 static struct r10conf *setup_conf(struct mddev *mddev) 3540 { 3541 struct r10conf *conf = NULL; 3542 int err = -EINVAL; 3543 struct geom geo; 3544 int copies; 3545 3546 copies = setup_geo(&geo, mddev, geo_new); 3547 3548 if (copies == -2) { 3549 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3550 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3551 mdname(mddev), PAGE_SIZE); 3552 goto out; 3553 } 3554 3555 if (copies < 2 || copies > mddev->raid_disks) { 3556 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3557 mdname(mddev), mddev->new_layout); 3558 goto out; 3559 } 3560 3561 err = -ENOMEM; 3562 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3563 if (!conf) 3564 goto out; 3565 3566 /* FIXME calc properly */ 3567 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3568 max(0,-mddev->delta_disks)), 3569 GFP_KERNEL); 3570 if (!conf->mirrors) 3571 goto out; 3572 3573 conf->tmppage = alloc_page(GFP_KERNEL); 3574 if (!conf->tmppage) 3575 goto out; 3576 3577 conf->geo = geo; 3578 conf->copies = copies; 3579 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3580 r10bio_pool_free, conf); 3581 if (!conf->r10bio_pool) 3582 goto out; 3583 3584 calc_sectors(conf, mddev->dev_sectors); 3585 if (mddev->reshape_position == MaxSector) { 3586 conf->prev = conf->geo; 3587 conf->reshape_progress = MaxSector; 3588 } else { 3589 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3590 err = -EINVAL; 3591 goto out; 3592 } 3593 conf->reshape_progress = mddev->reshape_position; 3594 if (conf->prev.far_offset) 3595 conf->prev.stride = 1 << conf->prev.chunk_shift; 3596 else 3597 /* far_copies must be 1 */ 3598 conf->prev.stride = conf->dev_sectors; 3599 } 3600 spin_lock_init(&conf->device_lock); 3601 INIT_LIST_HEAD(&conf->retry_list); 3602 3603 spin_lock_init(&conf->resync_lock); 3604 init_waitqueue_head(&conf->wait_barrier); 3605 3606 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3607 if (!conf->thread) 3608 goto out; 3609 3610 conf->mddev = mddev; 3611 return conf; 3612 3613 out: 3614 if (err == -ENOMEM) 3615 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3616 mdname(mddev)); 3617 if (conf) { 3618 if (conf->r10bio_pool) 3619 mempool_destroy(conf->r10bio_pool); 3620 kfree(conf->mirrors); 3621 safe_put_page(conf->tmppage); 3622 kfree(conf); 3623 } 3624 return ERR_PTR(err); 3625 } 3626 3627 static int run(struct mddev *mddev) 3628 { 3629 struct r10conf *conf; 3630 int i, disk_idx, chunk_size; 3631 struct raid10_info *disk; 3632 struct md_rdev *rdev; 3633 sector_t size; 3634 sector_t min_offset_diff = 0; 3635 int first = 1; 3636 bool discard_supported = false; 3637 3638 if (mddev->private == NULL) { 3639 conf = setup_conf(mddev); 3640 if (IS_ERR(conf)) 3641 return PTR_ERR(conf); 3642 mddev->private = conf; 3643 } 3644 conf = mddev->private; 3645 if (!conf) 3646 goto out; 3647 3648 mddev->thread = conf->thread; 3649 conf->thread = NULL; 3650 3651 chunk_size = mddev->chunk_sectors << 9; 3652 if (mddev->queue) { 3653 blk_queue_max_discard_sectors(mddev->queue, 3654 mddev->chunk_sectors); 3655 blk_queue_max_write_same_sectors(mddev->queue, 0); 3656 blk_queue_io_min(mddev->queue, chunk_size); 3657 if (conf->geo.raid_disks % conf->geo.near_copies) 3658 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3659 else 3660 blk_queue_io_opt(mddev->queue, chunk_size * 3661 (conf->geo.raid_disks / conf->geo.near_copies)); 3662 } 3663 3664 rdev_for_each(rdev, mddev) { 3665 long long diff; 3666 struct request_queue *q; 3667 3668 disk_idx = rdev->raid_disk; 3669 if (disk_idx < 0) 3670 continue; 3671 if (disk_idx >= conf->geo.raid_disks && 3672 disk_idx >= conf->prev.raid_disks) 3673 continue; 3674 disk = conf->mirrors + disk_idx; 3675 3676 if (test_bit(Replacement, &rdev->flags)) { 3677 if (disk->replacement) 3678 goto out_free_conf; 3679 disk->replacement = rdev; 3680 } else { 3681 if (disk->rdev) 3682 goto out_free_conf; 3683 disk->rdev = rdev; 3684 } 3685 q = bdev_get_queue(rdev->bdev); 3686 if (q->merge_bvec_fn) 3687 mddev->merge_check_needed = 1; 3688 diff = (rdev->new_data_offset - rdev->data_offset); 3689 if (!mddev->reshape_backwards) 3690 diff = -diff; 3691 if (diff < 0) 3692 diff = 0; 3693 if (first || diff < min_offset_diff) 3694 min_offset_diff = diff; 3695 3696 if (mddev->gendisk) 3697 disk_stack_limits(mddev->gendisk, rdev->bdev, 3698 rdev->data_offset << 9); 3699 3700 disk->head_position = 0; 3701 3702 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3703 discard_supported = true; 3704 } 3705 3706 if (mddev->queue) { 3707 if (discard_supported) 3708 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3709 mddev->queue); 3710 else 3711 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3712 mddev->queue); 3713 } 3714 /* need to check that every block has at least one working mirror */ 3715 if (!enough(conf, -1)) { 3716 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3717 mdname(mddev)); 3718 goto out_free_conf; 3719 } 3720 3721 if (conf->reshape_progress != MaxSector) { 3722 /* must ensure that shape change is supported */ 3723 if (conf->geo.far_copies != 1 && 3724 conf->geo.far_offset == 0) 3725 goto out_free_conf; 3726 if (conf->prev.far_copies != 1 && 3727 conf->prev.far_offset == 0) 3728 goto out_free_conf; 3729 } 3730 3731 mddev->degraded = 0; 3732 for (i = 0; 3733 i < conf->geo.raid_disks 3734 || i < conf->prev.raid_disks; 3735 i++) { 3736 3737 disk = conf->mirrors + i; 3738 3739 if (!disk->rdev && disk->replacement) { 3740 /* The replacement is all we have - use it */ 3741 disk->rdev = disk->replacement; 3742 disk->replacement = NULL; 3743 clear_bit(Replacement, &disk->rdev->flags); 3744 } 3745 3746 if (!disk->rdev || 3747 !test_bit(In_sync, &disk->rdev->flags)) { 3748 disk->head_position = 0; 3749 mddev->degraded++; 3750 if (disk->rdev) 3751 conf->fullsync = 1; 3752 } 3753 disk->recovery_disabled = mddev->recovery_disabled - 1; 3754 } 3755 3756 if (mddev->recovery_cp != MaxSector) 3757 printk(KERN_NOTICE "md/raid10:%s: not clean" 3758 " -- starting background reconstruction\n", 3759 mdname(mddev)); 3760 printk(KERN_INFO 3761 "md/raid10:%s: active with %d out of %d devices\n", 3762 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3763 conf->geo.raid_disks); 3764 /* 3765 * Ok, everything is just fine now 3766 */ 3767 mddev->dev_sectors = conf->dev_sectors; 3768 size = raid10_size(mddev, 0, 0); 3769 md_set_array_sectors(mddev, size); 3770 mddev->resync_max_sectors = size; 3771 3772 if (mddev->queue) { 3773 int stripe = conf->geo.raid_disks * 3774 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3775 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3776 mddev->queue->backing_dev_info.congested_data = mddev; 3777 3778 /* Calculate max read-ahead size. 3779 * We need to readahead at least twice a whole stripe.... 3780 * maybe... 3781 */ 3782 stripe /= conf->geo.near_copies; 3783 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3784 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3785 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3786 } 3787 3788 3789 if (md_integrity_register(mddev)) 3790 goto out_free_conf; 3791 3792 if (conf->reshape_progress != MaxSector) { 3793 unsigned long before_length, after_length; 3794 3795 before_length = ((1 << conf->prev.chunk_shift) * 3796 conf->prev.far_copies); 3797 after_length = ((1 << conf->geo.chunk_shift) * 3798 conf->geo.far_copies); 3799 3800 if (max(before_length, after_length) > min_offset_diff) { 3801 /* This cannot work */ 3802 printk("md/raid10: offset difference not enough to continue reshape\n"); 3803 goto out_free_conf; 3804 } 3805 conf->offset_diff = min_offset_diff; 3806 3807 conf->reshape_safe = conf->reshape_progress; 3808 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3809 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3810 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3811 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3812 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3813 "reshape"); 3814 } 3815 3816 return 0; 3817 3818 out_free_conf: 3819 md_unregister_thread(&mddev->thread); 3820 if (conf->r10bio_pool) 3821 mempool_destroy(conf->r10bio_pool); 3822 safe_put_page(conf->tmppage); 3823 kfree(conf->mirrors); 3824 kfree(conf); 3825 mddev->private = NULL; 3826 out: 3827 return -EIO; 3828 } 3829 3830 static int stop(struct mddev *mddev) 3831 { 3832 struct r10conf *conf = mddev->private; 3833 3834 raise_barrier(conf, 0); 3835 lower_barrier(conf); 3836 3837 md_unregister_thread(&mddev->thread); 3838 if (mddev->queue) 3839 /* the unplug fn references 'conf'*/ 3840 blk_sync_queue(mddev->queue); 3841 3842 if (conf->r10bio_pool) 3843 mempool_destroy(conf->r10bio_pool); 3844 safe_put_page(conf->tmppage); 3845 kfree(conf->mirrors); 3846 kfree(conf); 3847 mddev->private = NULL; 3848 return 0; 3849 } 3850 3851 static void raid10_quiesce(struct mddev *mddev, int state) 3852 { 3853 struct r10conf *conf = mddev->private; 3854 3855 switch(state) { 3856 case 1: 3857 raise_barrier(conf, 0); 3858 break; 3859 case 0: 3860 lower_barrier(conf); 3861 break; 3862 } 3863 } 3864 3865 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3866 { 3867 /* Resize of 'far' arrays is not supported. 3868 * For 'near' and 'offset' arrays we can set the 3869 * number of sectors used to be an appropriate multiple 3870 * of the chunk size. 3871 * For 'offset', this is far_copies*chunksize. 3872 * For 'near' the multiplier is the LCM of 3873 * near_copies and raid_disks. 3874 * So if far_copies > 1 && !far_offset, fail. 3875 * Else find LCM(raid_disks, near_copy)*far_copies and 3876 * multiply by chunk_size. Then round to this number. 3877 * This is mostly done by raid10_size() 3878 */ 3879 struct r10conf *conf = mddev->private; 3880 sector_t oldsize, size; 3881 3882 if (mddev->reshape_position != MaxSector) 3883 return -EBUSY; 3884 3885 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3886 return -EINVAL; 3887 3888 oldsize = raid10_size(mddev, 0, 0); 3889 size = raid10_size(mddev, sectors, 0); 3890 if (mddev->external_size && 3891 mddev->array_sectors > size) 3892 return -EINVAL; 3893 if (mddev->bitmap) { 3894 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3895 if (ret) 3896 return ret; 3897 } 3898 md_set_array_sectors(mddev, size); 3899 set_capacity(mddev->gendisk, mddev->array_sectors); 3900 revalidate_disk(mddev->gendisk); 3901 if (sectors > mddev->dev_sectors && 3902 mddev->recovery_cp > oldsize) { 3903 mddev->recovery_cp = oldsize; 3904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3905 } 3906 calc_sectors(conf, sectors); 3907 mddev->dev_sectors = conf->dev_sectors; 3908 mddev->resync_max_sectors = size; 3909 return 0; 3910 } 3911 3912 static void *raid10_takeover_raid0(struct mddev *mddev) 3913 { 3914 struct md_rdev *rdev; 3915 struct r10conf *conf; 3916 3917 if (mddev->degraded > 0) { 3918 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3919 mdname(mddev)); 3920 return ERR_PTR(-EINVAL); 3921 } 3922 3923 /* Set new parameters */ 3924 mddev->new_level = 10; 3925 /* new layout: far_copies = 1, near_copies = 2 */ 3926 mddev->new_layout = (1<<8) + 2; 3927 mddev->new_chunk_sectors = mddev->chunk_sectors; 3928 mddev->delta_disks = mddev->raid_disks; 3929 mddev->raid_disks *= 2; 3930 /* make sure it will be not marked as dirty */ 3931 mddev->recovery_cp = MaxSector; 3932 3933 conf = setup_conf(mddev); 3934 if (!IS_ERR(conf)) { 3935 rdev_for_each(rdev, mddev) 3936 if (rdev->raid_disk >= 0) 3937 rdev->new_raid_disk = rdev->raid_disk * 2; 3938 conf->barrier = 1; 3939 } 3940 3941 return conf; 3942 } 3943 3944 static void *raid10_takeover(struct mddev *mddev) 3945 { 3946 struct r0conf *raid0_conf; 3947 3948 /* raid10 can take over: 3949 * raid0 - providing it has only two drives 3950 */ 3951 if (mddev->level == 0) { 3952 /* for raid0 takeover only one zone is supported */ 3953 raid0_conf = mddev->private; 3954 if (raid0_conf->nr_strip_zones > 1) { 3955 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3956 " with more than one zone.\n", 3957 mdname(mddev)); 3958 return ERR_PTR(-EINVAL); 3959 } 3960 return raid10_takeover_raid0(mddev); 3961 } 3962 return ERR_PTR(-EINVAL); 3963 } 3964 3965 static int raid10_check_reshape(struct mddev *mddev) 3966 { 3967 /* Called when there is a request to change 3968 * - layout (to ->new_layout) 3969 * - chunk size (to ->new_chunk_sectors) 3970 * - raid_disks (by delta_disks) 3971 * or when trying to restart a reshape that was ongoing. 3972 * 3973 * We need to validate the request and possibly allocate 3974 * space if that might be an issue later. 3975 * 3976 * Currently we reject any reshape of a 'far' mode array, 3977 * allow chunk size to change if new is generally acceptable, 3978 * allow raid_disks to increase, and allow 3979 * a switch between 'near' mode and 'offset' mode. 3980 */ 3981 struct r10conf *conf = mddev->private; 3982 struct geom geo; 3983 3984 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3985 return -EINVAL; 3986 3987 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3988 /* mustn't change number of copies */ 3989 return -EINVAL; 3990 if (geo.far_copies > 1 && !geo.far_offset) 3991 /* Cannot switch to 'far' mode */ 3992 return -EINVAL; 3993 3994 if (mddev->array_sectors & geo.chunk_mask) 3995 /* not factor of array size */ 3996 return -EINVAL; 3997 3998 if (!enough(conf, -1)) 3999 return -EINVAL; 4000 4001 kfree(conf->mirrors_new); 4002 conf->mirrors_new = NULL; 4003 if (mddev->delta_disks > 0) { 4004 /* allocate new 'mirrors' list */ 4005 conf->mirrors_new = kzalloc( 4006 sizeof(struct raid10_info) 4007 *(mddev->raid_disks + 4008 mddev->delta_disks), 4009 GFP_KERNEL); 4010 if (!conf->mirrors_new) 4011 return -ENOMEM; 4012 } 4013 return 0; 4014 } 4015 4016 /* 4017 * Need to check if array has failed when deciding whether to: 4018 * - start an array 4019 * - remove non-faulty devices 4020 * - add a spare 4021 * - allow a reshape 4022 * This determination is simple when no reshape is happening. 4023 * However if there is a reshape, we need to carefully check 4024 * both the before and after sections. 4025 * This is because some failed devices may only affect one 4026 * of the two sections, and some non-in_sync devices may 4027 * be insync in the section most affected by failed devices. 4028 */ 4029 static int calc_degraded(struct r10conf *conf) 4030 { 4031 int degraded, degraded2; 4032 int i; 4033 4034 rcu_read_lock(); 4035 degraded = 0; 4036 /* 'prev' section first */ 4037 for (i = 0; i < conf->prev.raid_disks; i++) { 4038 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4039 if (!rdev || test_bit(Faulty, &rdev->flags)) 4040 degraded++; 4041 else if (!test_bit(In_sync, &rdev->flags)) 4042 /* When we can reduce the number of devices in 4043 * an array, this might not contribute to 4044 * 'degraded'. It does now. 4045 */ 4046 degraded++; 4047 } 4048 rcu_read_unlock(); 4049 if (conf->geo.raid_disks == conf->prev.raid_disks) 4050 return degraded; 4051 rcu_read_lock(); 4052 degraded2 = 0; 4053 for (i = 0; i < conf->geo.raid_disks; i++) { 4054 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4055 if (!rdev || test_bit(Faulty, &rdev->flags)) 4056 degraded2++; 4057 else if (!test_bit(In_sync, &rdev->flags)) { 4058 /* If reshape is increasing the number of devices, 4059 * this section has already been recovered, so 4060 * it doesn't contribute to degraded. 4061 * else it does. 4062 */ 4063 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4064 degraded2++; 4065 } 4066 } 4067 rcu_read_unlock(); 4068 if (degraded2 > degraded) 4069 return degraded2; 4070 return degraded; 4071 } 4072 4073 static int raid10_start_reshape(struct mddev *mddev) 4074 { 4075 /* A 'reshape' has been requested. This commits 4076 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4077 * This also checks if there are enough spares and adds them 4078 * to the array. 4079 * We currently require enough spares to make the final 4080 * array non-degraded. We also require that the difference 4081 * between old and new data_offset - on each device - is 4082 * enough that we never risk over-writing. 4083 */ 4084 4085 unsigned long before_length, after_length; 4086 sector_t min_offset_diff = 0; 4087 int first = 1; 4088 struct geom new; 4089 struct r10conf *conf = mddev->private; 4090 struct md_rdev *rdev; 4091 int spares = 0; 4092 int ret; 4093 4094 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4095 return -EBUSY; 4096 4097 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4098 return -EINVAL; 4099 4100 before_length = ((1 << conf->prev.chunk_shift) * 4101 conf->prev.far_copies); 4102 after_length = ((1 << conf->geo.chunk_shift) * 4103 conf->geo.far_copies); 4104 4105 rdev_for_each(rdev, mddev) { 4106 if (!test_bit(In_sync, &rdev->flags) 4107 && !test_bit(Faulty, &rdev->flags)) 4108 spares++; 4109 if (rdev->raid_disk >= 0) { 4110 long long diff = (rdev->new_data_offset 4111 - rdev->data_offset); 4112 if (!mddev->reshape_backwards) 4113 diff = -diff; 4114 if (diff < 0) 4115 diff = 0; 4116 if (first || diff < min_offset_diff) 4117 min_offset_diff = diff; 4118 } 4119 } 4120 4121 if (max(before_length, after_length) > min_offset_diff) 4122 return -EINVAL; 4123 4124 if (spares < mddev->delta_disks) 4125 return -EINVAL; 4126 4127 conf->offset_diff = min_offset_diff; 4128 spin_lock_irq(&conf->device_lock); 4129 if (conf->mirrors_new) { 4130 memcpy(conf->mirrors_new, conf->mirrors, 4131 sizeof(struct raid10_info)*conf->prev.raid_disks); 4132 smp_mb(); 4133 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4134 conf->mirrors_old = conf->mirrors; 4135 conf->mirrors = conf->mirrors_new; 4136 conf->mirrors_new = NULL; 4137 } 4138 setup_geo(&conf->geo, mddev, geo_start); 4139 smp_mb(); 4140 if (mddev->reshape_backwards) { 4141 sector_t size = raid10_size(mddev, 0, 0); 4142 if (size < mddev->array_sectors) { 4143 spin_unlock_irq(&conf->device_lock); 4144 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4145 mdname(mddev)); 4146 return -EINVAL; 4147 } 4148 mddev->resync_max_sectors = size; 4149 conf->reshape_progress = size; 4150 } else 4151 conf->reshape_progress = 0; 4152 spin_unlock_irq(&conf->device_lock); 4153 4154 if (mddev->delta_disks && mddev->bitmap) { 4155 ret = bitmap_resize(mddev->bitmap, 4156 raid10_size(mddev, 0, 4157 conf->geo.raid_disks), 4158 0, 0); 4159 if (ret) 4160 goto abort; 4161 } 4162 if (mddev->delta_disks > 0) { 4163 rdev_for_each(rdev, mddev) 4164 if (rdev->raid_disk < 0 && 4165 !test_bit(Faulty, &rdev->flags)) { 4166 if (raid10_add_disk(mddev, rdev) == 0) { 4167 if (rdev->raid_disk >= 4168 conf->prev.raid_disks) 4169 set_bit(In_sync, &rdev->flags); 4170 else 4171 rdev->recovery_offset = 0; 4172 4173 if (sysfs_link_rdev(mddev, rdev)) 4174 /* Failure here is OK */; 4175 } 4176 } else if (rdev->raid_disk >= conf->prev.raid_disks 4177 && !test_bit(Faulty, &rdev->flags)) { 4178 /* This is a spare that was manually added */ 4179 set_bit(In_sync, &rdev->flags); 4180 } 4181 } 4182 /* When a reshape changes the number of devices, 4183 * ->degraded is measured against the larger of the 4184 * pre and post numbers. 4185 */ 4186 spin_lock_irq(&conf->device_lock); 4187 mddev->degraded = calc_degraded(conf); 4188 spin_unlock_irq(&conf->device_lock); 4189 mddev->raid_disks = conf->geo.raid_disks; 4190 mddev->reshape_position = conf->reshape_progress; 4191 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4192 4193 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4194 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4195 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4196 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4197 4198 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4199 "reshape"); 4200 if (!mddev->sync_thread) { 4201 ret = -EAGAIN; 4202 goto abort; 4203 } 4204 conf->reshape_checkpoint = jiffies; 4205 md_wakeup_thread(mddev->sync_thread); 4206 md_new_event(mddev); 4207 return 0; 4208 4209 abort: 4210 mddev->recovery = 0; 4211 spin_lock_irq(&conf->device_lock); 4212 conf->geo = conf->prev; 4213 mddev->raid_disks = conf->geo.raid_disks; 4214 rdev_for_each(rdev, mddev) 4215 rdev->new_data_offset = rdev->data_offset; 4216 smp_wmb(); 4217 conf->reshape_progress = MaxSector; 4218 mddev->reshape_position = MaxSector; 4219 spin_unlock_irq(&conf->device_lock); 4220 return ret; 4221 } 4222 4223 /* Calculate the last device-address that could contain 4224 * any block from the chunk that includes the array-address 's' 4225 * and report the next address. 4226 * i.e. the address returned will be chunk-aligned and after 4227 * any data that is in the chunk containing 's'. 4228 */ 4229 static sector_t last_dev_address(sector_t s, struct geom *geo) 4230 { 4231 s = (s | geo->chunk_mask) + 1; 4232 s >>= geo->chunk_shift; 4233 s *= geo->near_copies; 4234 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4235 s *= geo->far_copies; 4236 s <<= geo->chunk_shift; 4237 return s; 4238 } 4239 4240 /* Calculate the first device-address that could contain 4241 * any block from the chunk that includes the array-address 's'. 4242 * This too will be the start of a chunk 4243 */ 4244 static sector_t first_dev_address(sector_t s, struct geom *geo) 4245 { 4246 s >>= geo->chunk_shift; 4247 s *= geo->near_copies; 4248 sector_div(s, geo->raid_disks); 4249 s *= geo->far_copies; 4250 s <<= geo->chunk_shift; 4251 return s; 4252 } 4253 4254 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4255 int *skipped) 4256 { 4257 /* We simply copy at most one chunk (smallest of old and new) 4258 * at a time, possibly less if that exceeds RESYNC_PAGES, 4259 * or we hit a bad block or something. 4260 * This might mean we pause for normal IO in the middle of 4261 * a chunk, but that is not a problem was mddev->reshape_position 4262 * can record any location. 4263 * 4264 * If we will want to write to a location that isn't 4265 * yet recorded as 'safe' (i.e. in metadata on disk) then 4266 * we need to flush all reshape requests and update the metadata. 4267 * 4268 * When reshaping forwards (e.g. to more devices), we interpret 4269 * 'safe' as the earliest block which might not have been copied 4270 * down yet. We divide this by previous stripe size and multiply 4271 * by previous stripe length to get lowest device offset that we 4272 * cannot write to yet. 4273 * We interpret 'sector_nr' as an address that we want to write to. 4274 * From this we use last_device_address() to find where we might 4275 * write to, and first_device_address on the 'safe' position. 4276 * If this 'next' write position is after the 'safe' position, 4277 * we must update the metadata to increase the 'safe' position. 4278 * 4279 * When reshaping backwards, we round in the opposite direction 4280 * and perform the reverse test: next write position must not be 4281 * less than current safe position. 4282 * 4283 * In all this the minimum difference in data offsets 4284 * (conf->offset_diff - always positive) allows a bit of slack, 4285 * so next can be after 'safe', but not by more than offset_disk 4286 * 4287 * We need to prepare all the bios here before we start any IO 4288 * to ensure the size we choose is acceptable to all devices. 4289 * The means one for each copy for write-out and an extra one for 4290 * read-in. 4291 * We store the read-in bio in ->master_bio and the others in 4292 * ->devs[x].bio and ->devs[x].repl_bio. 4293 */ 4294 struct r10conf *conf = mddev->private; 4295 struct r10bio *r10_bio; 4296 sector_t next, safe, last; 4297 int max_sectors; 4298 int nr_sectors; 4299 int s; 4300 struct md_rdev *rdev; 4301 int need_flush = 0; 4302 struct bio *blist; 4303 struct bio *bio, *read_bio; 4304 int sectors_done = 0; 4305 4306 if (sector_nr == 0) { 4307 /* If restarting in the middle, skip the initial sectors */ 4308 if (mddev->reshape_backwards && 4309 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4310 sector_nr = (raid10_size(mddev, 0, 0) 4311 - conf->reshape_progress); 4312 } else if (!mddev->reshape_backwards && 4313 conf->reshape_progress > 0) 4314 sector_nr = conf->reshape_progress; 4315 if (sector_nr) { 4316 mddev->curr_resync_completed = sector_nr; 4317 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4318 *skipped = 1; 4319 return sector_nr; 4320 } 4321 } 4322 4323 /* We don't use sector_nr to track where we are up to 4324 * as that doesn't work well for ->reshape_backwards. 4325 * So just use ->reshape_progress. 4326 */ 4327 if (mddev->reshape_backwards) { 4328 /* 'next' is the earliest device address that we might 4329 * write to for this chunk in the new layout 4330 */ 4331 next = first_dev_address(conf->reshape_progress - 1, 4332 &conf->geo); 4333 4334 /* 'safe' is the last device address that we might read from 4335 * in the old layout after a restart 4336 */ 4337 safe = last_dev_address(conf->reshape_safe - 1, 4338 &conf->prev); 4339 4340 if (next + conf->offset_diff < safe) 4341 need_flush = 1; 4342 4343 last = conf->reshape_progress - 1; 4344 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4345 & conf->prev.chunk_mask); 4346 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4347 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4348 } else { 4349 /* 'next' is after the last device address that we 4350 * might write to for this chunk in the new layout 4351 */ 4352 next = last_dev_address(conf->reshape_progress, &conf->geo); 4353 4354 /* 'safe' is the earliest device address that we might 4355 * read from in the old layout after a restart 4356 */ 4357 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4358 4359 /* Need to update metadata if 'next' might be beyond 'safe' 4360 * as that would possibly corrupt data 4361 */ 4362 if (next > safe + conf->offset_diff) 4363 need_flush = 1; 4364 4365 sector_nr = conf->reshape_progress; 4366 last = sector_nr | (conf->geo.chunk_mask 4367 & conf->prev.chunk_mask); 4368 4369 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4370 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4371 } 4372 4373 if (need_flush || 4374 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4375 /* Need to update reshape_position in metadata */ 4376 wait_barrier(conf); 4377 mddev->reshape_position = conf->reshape_progress; 4378 if (mddev->reshape_backwards) 4379 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4380 - conf->reshape_progress; 4381 else 4382 mddev->curr_resync_completed = conf->reshape_progress; 4383 conf->reshape_checkpoint = jiffies; 4384 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4385 md_wakeup_thread(mddev->thread); 4386 wait_event(mddev->sb_wait, mddev->flags == 0 || 4387 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4388 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4389 allow_barrier(conf); 4390 return sectors_done; 4391 } 4392 conf->reshape_safe = mddev->reshape_position; 4393 allow_barrier(conf); 4394 } 4395 4396 read_more: 4397 /* Now schedule reads for blocks from sector_nr to last */ 4398 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4399 raise_barrier(conf, sectors_done != 0); 4400 atomic_set(&r10_bio->remaining, 0); 4401 r10_bio->mddev = mddev; 4402 r10_bio->sector = sector_nr; 4403 set_bit(R10BIO_IsReshape, &r10_bio->state); 4404 r10_bio->sectors = last - sector_nr + 1; 4405 rdev = read_balance(conf, r10_bio, &max_sectors); 4406 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4407 4408 if (!rdev) { 4409 /* Cannot read from here, so need to record bad blocks 4410 * on all the target devices. 4411 */ 4412 // FIXME 4413 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4414 return sectors_done; 4415 } 4416 4417 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4418 4419 read_bio->bi_bdev = rdev->bdev; 4420 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4421 + rdev->data_offset); 4422 read_bio->bi_private = r10_bio; 4423 read_bio->bi_end_io = end_sync_read; 4424 read_bio->bi_rw = READ; 4425 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4426 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4427 read_bio->bi_vcnt = 0; 4428 read_bio->bi_size = 0; 4429 r10_bio->master_bio = read_bio; 4430 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4431 4432 /* Now find the locations in the new layout */ 4433 __raid10_find_phys(&conf->geo, r10_bio); 4434 4435 blist = read_bio; 4436 read_bio->bi_next = NULL; 4437 4438 for (s = 0; s < conf->copies*2; s++) { 4439 struct bio *b; 4440 int d = r10_bio->devs[s/2].devnum; 4441 struct md_rdev *rdev2; 4442 if (s&1) { 4443 rdev2 = conf->mirrors[d].replacement; 4444 b = r10_bio->devs[s/2].repl_bio; 4445 } else { 4446 rdev2 = conf->mirrors[d].rdev; 4447 b = r10_bio->devs[s/2].bio; 4448 } 4449 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4450 continue; 4451 4452 bio_reset(b); 4453 b->bi_bdev = rdev2->bdev; 4454 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4455 b->bi_private = r10_bio; 4456 b->bi_end_io = end_reshape_write; 4457 b->bi_rw = WRITE; 4458 b->bi_next = blist; 4459 blist = b; 4460 } 4461 4462 /* Now add as many pages as possible to all of these bios. */ 4463 4464 nr_sectors = 0; 4465 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4466 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4467 int len = (max_sectors - s) << 9; 4468 if (len > PAGE_SIZE) 4469 len = PAGE_SIZE; 4470 for (bio = blist; bio ; bio = bio->bi_next) { 4471 struct bio *bio2; 4472 if (bio_add_page(bio, page, len, 0)) 4473 continue; 4474 4475 /* Didn't fit, must stop */ 4476 for (bio2 = blist; 4477 bio2 && bio2 != bio; 4478 bio2 = bio2->bi_next) { 4479 /* Remove last page from this bio */ 4480 bio2->bi_vcnt--; 4481 bio2->bi_size -= len; 4482 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4483 } 4484 goto bio_full; 4485 } 4486 sector_nr += len >> 9; 4487 nr_sectors += len >> 9; 4488 } 4489 bio_full: 4490 r10_bio->sectors = nr_sectors; 4491 4492 /* Now submit the read */ 4493 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4494 atomic_inc(&r10_bio->remaining); 4495 read_bio->bi_next = NULL; 4496 generic_make_request(read_bio); 4497 sector_nr += nr_sectors; 4498 sectors_done += nr_sectors; 4499 if (sector_nr <= last) 4500 goto read_more; 4501 4502 /* Now that we have done the whole section we can 4503 * update reshape_progress 4504 */ 4505 if (mddev->reshape_backwards) 4506 conf->reshape_progress -= sectors_done; 4507 else 4508 conf->reshape_progress += sectors_done; 4509 4510 return sectors_done; 4511 } 4512 4513 static void end_reshape_request(struct r10bio *r10_bio); 4514 static int handle_reshape_read_error(struct mddev *mddev, 4515 struct r10bio *r10_bio); 4516 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4517 { 4518 /* Reshape read completed. Hopefully we have a block 4519 * to write out. 4520 * If we got a read error then we do sync 1-page reads from 4521 * elsewhere until we find the data - or give up. 4522 */ 4523 struct r10conf *conf = mddev->private; 4524 int s; 4525 4526 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4527 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4528 /* Reshape has been aborted */ 4529 md_done_sync(mddev, r10_bio->sectors, 0); 4530 return; 4531 } 4532 4533 /* We definitely have the data in the pages, schedule the 4534 * writes. 4535 */ 4536 atomic_set(&r10_bio->remaining, 1); 4537 for (s = 0; s < conf->copies*2; s++) { 4538 struct bio *b; 4539 int d = r10_bio->devs[s/2].devnum; 4540 struct md_rdev *rdev; 4541 if (s&1) { 4542 rdev = conf->mirrors[d].replacement; 4543 b = r10_bio->devs[s/2].repl_bio; 4544 } else { 4545 rdev = conf->mirrors[d].rdev; 4546 b = r10_bio->devs[s/2].bio; 4547 } 4548 if (!rdev || test_bit(Faulty, &rdev->flags)) 4549 continue; 4550 atomic_inc(&rdev->nr_pending); 4551 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4552 atomic_inc(&r10_bio->remaining); 4553 b->bi_next = NULL; 4554 generic_make_request(b); 4555 } 4556 end_reshape_request(r10_bio); 4557 } 4558 4559 static void end_reshape(struct r10conf *conf) 4560 { 4561 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4562 return; 4563 4564 spin_lock_irq(&conf->device_lock); 4565 conf->prev = conf->geo; 4566 md_finish_reshape(conf->mddev); 4567 smp_wmb(); 4568 conf->reshape_progress = MaxSector; 4569 spin_unlock_irq(&conf->device_lock); 4570 4571 /* read-ahead size must cover two whole stripes, which is 4572 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4573 */ 4574 if (conf->mddev->queue) { 4575 int stripe = conf->geo.raid_disks * 4576 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4577 stripe /= conf->geo.near_copies; 4578 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4579 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4580 } 4581 conf->fullsync = 0; 4582 } 4583 4584 4585 static int handle_reshape_read_error(struct mddev *mddev, 4586 struct r10bio *r10_bio) 4587 { 4588 /* Use sync reads to get the blocks from somewhere else */ 4589 int sectors = r10_bio->sectors; 4590 struct r10conf *conf = mddev->private; 4591 struct { 4592 struct r10bio r10_bio; 4593 struct r10dev devs[conf->copies]; 4594 } on_stack; 4595 struct r10bio *r10b = &on_stack.r10_bio; 4596 int slot = 0; 4597 int idx = 0; 4598 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4599 4600 r10b->sector = r10_bio->sector; 4601 __raid10_find_phys(&conf->prev, r10b); 4602 4603 while (sectors) { 4604 int s = sectors; 4605 int success = 0; 4606 int first_slot = slot; 4607 4608 if (s > (PAGE_SIZE >> 9)) 4609 s = PAGE_SIZE >> 9; 4610 4611 while (!success) { 4612 int d = r10b->devs[slot].devnum; 4613 struct md_rdev *rdev = conf->mirrors[d].rdev; 4614 sector_t addr; 4615 if (rdev == NULL || 4616 test_bit(Faulty, &rdev->flags) || 4617 !test_bit(In_sync, &rdev->flags)) 4618 goto failed; 4619 4620 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4621 success = sync_page_io(rdev, 4622 addr, 4623 s << 9, 4624 bvec[idx].bv_page, 4625 READ, false); 4626 if (success) 4627 break; 4628 failed: 4629 slot++; 4630 if (slot >= conf->copies) 4631 slot = 0; 4632 if (slot == first_slot) 4633 break; 4634 } 4635 if (!success) { 4636 /* couldn't read this block, must give up */ 4637 set_bit(MD_RECOVERY_INTR, 4638 &mddev->recovery); 4639 return -EIO; 4640 } 4641 sectors -= s; 4642 idx++; 4643 } 4644 return 0; 4645 } 4646 4647 static void end_reshape_write(struct bio *bio, int error) 4648 { 4649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4650 struct r10bio *r10_bio = bio->bi_private; 4651 struct mddev *mddev = r10_bio->mddev; 4652 struct r10conf *conf = mddev->private; 4653 int d; 4654 int slot; 4655 int repl; 4656 struct md_rdev *rdev = NULL; 4657 4658 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4659 if (repl) 4660 rdev = conf->mirrors[d].replacement; 4661 if (!rdev) { 4662 smp_mb(); 4663 rdev = conf->mirrors[d].rdev; 4664 } 4665 4666 if (!uptodate) { 4667 /* FIXME should record badblock */ 4668 md_error(mddev, rdev); 4669 } 4670 4671 rdev_dec_pending(rdev, mddev); 4672 end_reshape_request(r10_bio); 4673 } 4674 4675 static void end_reshape_request(struct r10bio *r10_bio) 4676 { 4677 if (!atomic_dec_and_test(&r10_bio->remaining)) 4678 return; 4679 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4680 bio_put(r10_bio->master_bio); 4681 put_buf(r10_bio); 4682 } 4683 4684 static void raid10_finish_reshape(struct mddev *mddev) 4685 { 4686 struct r10conf *conf = mddev->private; 4687 4688 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4689 return; 4690 4691 if (mddev->delta_disks > 0) { 4692 sector_t size = raid10_size(mddev, 0, 0); 4693 md_set_array_sectors(mddev, size); 4694 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4695 mddev->recovery_cp = mddev->resync_max_sectors; 4696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4697 } 4698 mddev->resync_max_sectors = size; 4699 set_capacity(mddev->gendisk, mddev->array_sectors); 4700 revalidate_disk(mddev->gendisk); 4701 } else { 4702 int d; 4703 for (d = conf->geo.raid_disks ; 4704 d < conf->geo.raid_disks - mddev->delta_disks; 4705 d++) { 4706 struct md_rdev *rdev = conf->mirrors[d].rdev; 4707 if (rdev) 4708 clear_bit(In_sync, &rdev->flags); 4709 rdev = conf->mirrors[d].replacement; 4710 if (rdev) 4711 clear_bit(In_sync, &rdev->flags); 4712 } 4713 } 4714 mddev->layout = mddev->new_layout; 4715 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4716 mddev->reshape_position = MaxSector; 4717 mddev->delta_disks = 0; 4718 mddev->reshape_backwards = 0; 4719 } 4720 4721 static struct md_personality raid10_personality = 4722 { 4723 .name = "raid10", 4724 .level = 10, 4725 .owner = THIS_MODULE, 4726 .make_request = make_request, 4727 .run = run, 4728 .stop = stop, 4729 .status = status, 4730 .error_handler = error, 4731 .hot_add_disk = raid10_add_disk, 4732 .hot_remove_disk= raid10_remove_disk, 4733 .spare_active = raid10_spare_active, 4734 .sync_request = sync_request, 4735 .quiesce = raid10_quiesce, 4736 .size = raid10_size, 4737 .resize = raid10_resize, 4738 .takeover = raid10_takeover, 4739 .check_reshape = raid10_check_reshape, 4740 .start_reshape = raid10_start_reshape, 4741 .finish_reshape = raid10_finish_reshape, 4742 }; 4743 4744 static int __init raid_init(void) 4745 { 4746 return register_md_personality(&raid10_personality); 4747 } 4748 4749 static void raid_exit(void) 4750 { 4751 unregister_md_personality(&raid10_personality); 4752 } 4753 4754 module_init(raid_init); 4755 module_exit(raid_exit); 4756 MODULE_LICENSE("GPL"); 4757 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4758 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4759 MODULE_ALIAS("md-raid10"); 4760 MODULE_ALIAS("md-level-10"); 4761 4762 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4763