xref: /openbmc/linux/drivers/md/raid10.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
149 		if (!bio)
150 			goto out_free_bio;
151 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
152 		r10_bio->devs[j].bio = bio;
153 		if (!conf->have_replacement)
154 			continue;
155 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
156 		if (!bio)
157 			goto out_free_bio;
158 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
159 		r10_bio->devs[j].repl_bio = bio;
160 	}
161 	/*
162 	 * Allocate RESYNC_PAGES data pages and attach them
163 	 * where needed.
164 	 */
165 	for (j = 0; j < nalloc; j++) {
166 		struct bio *rbio = r10_bio->devs[j].repl_bio;
167 		struct resync_pages *rp, *rp_repl;
168 
169 		rp = &rps[j];
170 		if (rbio)
171 			rp_repl = &rps[nalloc + j];
172 
173 		bio = r10_bio->devs[j].bio;
174 
175 		if (!j || test_bit(MD_RECOVERY_SYNC,
176 				   &conf->mddev->recovery)) {
177 			if (resync_alloc_pages(rp, gfp_flags))
178 				goto out_free_pages;
179 		} else {
180 			memcpy(rp, &rps[0], sizeof(*rp));
181 			resync_get_all_pages(rp);
182 		}
183 
184 		rp->raid_bio = r10_bio;
185 		bio->bi_private = rp;
186 		if (rbio) {
187 			memcpy(rp_repl, rp, sizeof(*rp));
188 			rbio->bi_private = rp_repl;
189 		}
190 	}
191 
192 	return r10_bio;
193 
194 out_free_pages:
195 	while (--j >= 0)
196 		resync_free_pages(&rps[j]);
197 
198 	j = 0;
199 out_free_bio:
200 	for ( ; j < nalloc; j++) {
201 		if (r10_bio->devs[j].bio)
202 			bio_uninit(r10_bio->devs[j].bio);
203 		kfree(r10_bio->devs[j].bio);
204 		if (r10_bio->devs[j].repl_bio)
205 			bio_uninit(r10_bio->devs[j].repl_bio);
206 		kfree(r10_bio->devs[j].repl_bio);
207 	}
208 	kfree(rps);
209 out_free_r10bio:
210 	rbio_pool_free(r10_bio, conf);
211 	return NULL;
212 }
213 
214 static void r10buf_pool_free(void *__r10_bio, void *data)
215 {
216 	struct r10conf *conf = data;
217 	struct r10bio *r10bio = __r10_bio;
218 	int j;
219 	struct resync_pages *rp = NULL;
220 
221 	for (j = conf->copies; j--; ) {
222 		struct bio *bio = r10bio->devs[j].bio;
223 
224 		if (bio) {
225 			rp = get_resync_pages(bio);
226 			resync_free_pages(rp);
227 			bio_uninit(bio);
228 			kfree(bio);
229 		}
230 
231 		bio = r10bio->devs[j].repl_bio;
232 		if (bio) {
233 			bio_uninit(bio);
234 			kfree(bio);
235 		}
236 	}
237 
238 	/* resync pages array stored in the 1st bio's .bi_private */
239 	kfree(rp);
240 
241 	rbio_pool_free(r10bio, conf);
242 }
243 
244 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
245 {
246 	int i;
247 
248 	for (i = 0; i < conf->geo.raid_disks; i++) {
249 		struct bio **bio = & r10_bio->devs[i].bio;
250 		if (!BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 		bio = &r10_bio->devs[i].repl_bio;
254 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
255 			bio_put(*bio);
256 		*bio = NULL;
257 	}
258 }
259 
260 static void free_r10bio(struct r10bio *r10_bio)
261 {
262 	struct r10conf *conf = r10_bio->mddev->private;
263 
264 	put_all_bios(conf, r10_bio);
265 	mempool_free(r10_bio, &conf->r10bio_pool);
266 }
267 
268 static void put_buf(struct r10bio *r10_bio)
269 {
270 	struct r10conf *conf = r10_bio->mddev->private;
271 
272 	mempool_free(r10_bio, &conf->r10buf_pool);
273 
274 	lower_barrier(conf);
275 }
276 
277 static void reschedule_retry(struct r10bio *r10_bio)
278 {
279 	unsigned long flags;
280 	struct mddev *mddev = r10_bio->mddev;
281 	struct r10conf *conf = mddev->private;
282 
283 	spin_lock_irqsave(&conf->device_lock, flags);
284 	list_add(&r10_bio->retry_list, &conf->retry_list);
285 	conf->nr_queued ++;
286 	spin_unlock_irqrestore(&conf->device_lock, flags);
287 
288 	/* wake up frozen array... */
289 	wake_up(&conf->wait_barrier);
290 
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void raid_end_bio_io(struct r10bio *r10_bio)
300 {
301 	struct bio *bio = r10_bio->master_bio;
302 	struct r10conf *conf = r10_bio->mddev->private;
303 
304 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 		bio_end_io_acct(bio, r10_bio->start_time);
309 	bio_endio(bio);
310 	/*
311 	 * Wake up any possible resync thread that waits for the device
312 	 * to go idle.
313 	 */
314 	allow_barrier(conf);
315 
316 	free_r10bio(r10_bio);
317 }
318 
319 /*
320  * Update disk head position estimator based on IRQ completion info.
321  */
322 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
323 {
324 	struct r10conf *conf = r10_bio->mddev->private;
325 
326 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
327 		r10_bio->devs[slot].addr + (r10_bio->sectors);
328 }
329 
330 /*
331  * Find the disk number which triggered given bio
332  */
333 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
334 			 struct bio *bio, int *slotp, int *replp)
335 {
336 	int slot;
337 	int repl = 0;
338 
339 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
340 		if (r10_bio->devs[slot].bio == bio)
341 			break;
342 		if (r10_bio->devs[slot].repl_bio == bio) {
343 			repl = 1;
344 			break;
345 		}
346 	}
347 
348 	update_head_pos(slot, r10_bio);
349 
350 	if (slotp)
351 		*slotp = slot;
352 	if (replp)
353 		*replp = repl;
354 	return r10_bio->devs[slot].devnum;
355 }
356 
357 static void raid10_end_read_request(struct bio *bio)
358 {
359 	int uptodate = !bio->bi_status;
360 	struct r10bio *r10_bio = bio->bi_private;
361 	int slot;
362 	struct md_rdev *rdev;
363 	struct r10conf *conf = r10_bio->mddev->private;
364 
365 	slot = r10_bio->read_slot;
366 	rdev = r10_bio->devs[slot].rdev;
367 	/*
368 	 * this branch is our 'one mirror IO has finished' event handler:
369 	 */
370 	update_head_pos(slot, r10_bio);
371 
372 	if (uptodate) {
373 		/*
374 		 * Set R10BIO_Uptodate in our master bio, so that
375 		 * we will return a good error code to the higher
376 		 * levels even if IO on some other mirrored buffer fails.
377 		 *
378 		 * The 'master' represents the composite IO operation to
379 		 * user-side. So if something waits for IO, then it will
380 		 * wait for the 'master' bio.
381 		 */
382 		set_bit(R10BIO_Uptodate, &r10_bio->state);
383 	} else {
384 		/* If all other devices that store this block have
385 		 * failed, we want to return the error upwards rather
386 		 * than fail the last device.  Here we redefine
387 		 * "uptodate" to mean "Don't want to retry"
388 		 */
389 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
390 			     rdev->raid_disk))
391 			uptodate = 1;
392 	}
393 	if (uptodate) {
394 		raid_end_bio_io(r10_bio);
395 		rdev_dec_pending(rdev, conf->mddev);
396 	} else {
397 		/*
398 		 * oops, read error - keep the refcount on the rdev
399 		 */
400 		char b[BDEVNAME_SIZE];
401 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
402 				   mdname(conf->mddev),
403 				   bdevname(rdev->bdev, b),
404 				   (unsigned long long)r10_bio->sector);
405 		set_bit(R10BIO_ReadError, &r10_bio->state);
406 		reschedule_retry(r10_bio);
407 	}
408 }
409 
410 static void close_write(struct r10bio *r10_bio)
411 {
412 	/* clear the bitmap if all writes complete successfully */
413 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
414 			   r10_bio->sectors,
415 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
416 			   0);
417 	md_write_end(r10_bio->mddev);
418 }
419 
420 static void one_write_done(struct r10bio *r10_bio)
421 {
422 	if (atomic_dec_and_test(&r10_bio->remaining)) {
423 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
424 			reschedule_retry(r10_bio);
425 		else {
426 			close_write(r10_bio);
427 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
428 				reschedule_retry(r10_bio);
429 			else
430 				raid_end_bio_io(r10_bio);
431 		}
432 	}
433 }
434 
435 static void raid10_end_write_request(struct bio *bio)
436 {
437 	struct r10bio *r10_bio = bio->bi_private;
438 	int dev;
439 	int dec_rdev = 1;
440 	struct r10conf *conf = r10_bio->mddev->private;
441 	int slot, repl;
442 	struct md_rdev *rdev = NULL;
443 	struct bio *to_put = NULL;
444 	bool discard_error;
445 
446 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
447 
448 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
449 
450 	if (repl)
451 		rdev = conf->mirrors[dev].replacement;
452 	if (!rdev) {
453 		smp_rmb();
454 		repl = 0;
455 		rdev = conf->mirrors[dev].rdev;
456 	}
457 	/*
458 	 * this branch is our 'one mirror IO has finished' event handler:
459 	 */
460 	if (bio->bi_status && !discard_error) {
461 		if (repl)
462 			/* Never record new bad blocks to replacement,
463 			 * just fail it.
464 			 */
465 			md_error(rdev->mddev, rdev);
466 		else {
467 			set_bit(WriteErrorSeen,	&rdev->flags);
468 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
469 				set_bit(MD_RECOVERY_NEEDED,
470 					&rdev->mddev->recovery);
471 
472 			dec_rdev = 0;
473 			if (test_bit(FailFast, &rdev->flags) &&
474 			    (bio->bi_opf & MD_FAILFAST)) {
475 				md_error(rdev->mddev, rdev);
476 			}
477 
478 			/*
479 			 * When the device is faulty, it is not necessary to
480 			 * handle write error.
481 			 */
482 			if (!test_bit(Faulty, &rdev->flags))
483 				set_bit(R10BIO_WriteError, &r10_bio->state);
484 			else {
485 				/* Fail the request */
486 				set_bit(R10BIO_Degraded, &r10_bio->state);
487 				r10_bio->devs[slot].bio = NULL;
488 				to_put = bio;
489 				dec_rdev = 1;
490 			}
491 		}
492 	} else {
493 		/*
494 		 * Set R10BIO_Uptodate in our master bio, so that
495 		 * we will return a good error code for to the higher
496 		 * levels even if IO on some other mirrored buffer fails.
497 		 *
498 		 * The 'master' represents the composite IO operation to
499 		 * user-side. So if something waits for IO, then it will
500 		 * wait for the 'master' bio.
501 		 */
502 		sector_t first_bad;
503 		int bad_sectors;
504 
505 		/*
506 		 * Do not set R10BIO_Uptodate if the current device is
507 		 * rebuilding or Faulty. This is because we cannot use
508 		 * such device for properly reading the data back (we could
509 		 * potentially use it, if the current write would have felt
510 		 * before rdev->recovery_offset, but for simplicity we don't
511 		 * check this here.
512 		 */
513 		if (test_bit(In_sync, &rdev->flags) &&
514 		    !test_bit(Faulty, &rdev->flags))
515 			set_bit(R10BIO_Uptodate, &r10_bio->state);
516 
517 		/* Maybe we can clear some bad blocks. */
518 		if (is_badblock(rdev,
519 				r10_bio->devs[slot].addr,
520 				r10_bio->sectors,
521 				&first_bad, &bad_sectors) && !discard_error) {
522 			bio_put(bio);
523 			if (repl)
524 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
525 			else
526 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
527 			dec_rdev = 0;
528 			set_bit(R10BIO_MadeGood, &r10_bio->state);
529 		}
530 	}
531 
532 	/*
533 	 *
534 	 * Let's see if all mirrored write operations have finished
535 	 * already.
536 	 */
537 	one_write_done(r10_bio);
538 	if (dec_rdev)
539 		rdev_dec_pending(rdev, conf->mddev);
540 	if (to_put)
541 		bio_put(to_put);
542 }
543 
544 /*
545  * RAID10 layout manager
546  * As well as the chunksize and raid_disks count, there are two
547  * parameters: near_copies and far_copies.
548  * near_copies * far_copies must be <= raid_disks.
549  * Normally one of these will be 1.
550  * If both are 1, we get raid0.
551  * If near_copies == raid_disks, we get raid1.
552  *
553  * Chunks are laid out in raid0 style with near_copies copies of the
554  * first chunk, followed by near_copies copies of the next chunk and
555  * so on.
556  * If far_copies > 1, then after 1/far_copies of the array has been assigned
557  * as described above, we start again with a device offset of near_copies.
558  * So we effectively have another copy of the whole array further down all
559  * the drives, but with blocks on different drives.
560  * With this layout, and block is never stored twice on the one device.
561  *
562  * raid10_find_phys finds the sector offset of a given virtual sector
563  * on each device that it is on.
564  *
565  * raid10_find_virt does the reverse mapping, from a device and a
566  * sector offset to a virtual address
567  */
568 
569 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
570 {
571 	int n,f;
572 	sector_t sector;
573 	sector_t chunk;
574 	sector_t stripe;
575 	int dev;
576 	int slot = 0;
577 	int last_far_set_start, last_far_set_size;
578 
579 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
580 	last_far_set_start *= geo->far_set_size;
581 
582 	last_far_set_size = geo->far_set_size;
583 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
584 
585 	/* now calculate first sector/dev */
586 	chunk = r10bio->sector >> geo->chunk_shift;
587 	sector = r10bio->sector & geo->chunk_mask;
588 
589 	chunk *= geo->near_copies;
590 	stripe = chunk;
591 	dev = sector_div(stripe, geo->raid_disks);
592 	if (geo->far_offset)
593 		stripe *= geo->far_copies;
594 
595 	sector += stripe << geo->chunk_shift;
596 
597 	/* and calculate all the others */
598 	for (n = 0; n < geo->near_copies; n++) {
599 		int d = dev;
600 		int set;
601 		sector_t s = sector;
602 		r10bio->devs[slot].devnum = d;
603 		r10bio->devs[slot].addr = s;
604 		slot++;
605 
606 		for (f = 1; f < geo->far_copies; f++) {
607 			set = d / geo->far_set_size;
608 			d += geo->near_copies;
609 
610 			if ((geo->raid_disks % geo->far_set_size) &&
611 			    (d > last_far_set_start)) {
612 				d -= last_far_set_start;
613 				d %= last_far_set_size;
614 				d += last_far_set_start;
615 			} else {
616 				d %= geo->far_set_size;
617 				d += geo->far_set_size * set;
618 			}
619 			s += geo->stride;
620 			r10bio->devs[slot].devnum = d;
621 			r10bio->devs[slot].addr = s;
622 			slot++;
623 		}
624 		dev++;
625 		if (dev >= geo->raid_disks) {
626 			dev = 0;
627 			sector += (geo->chunk_mask + 1);
628 		}
629 	}
630 }
631 
632 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
633 {
634 	struct geom *geo = &conf->geo;
635 
636 	if (conf->reshape_progress != MaxSector &&
637 	    ((r10bio->sector >= conf->reshape_progress) !=
638 	     conf->mddev->reshape_backwards)) {
639 		set_bit(R10BIO_Previous, &r10bio->state);
640 		geo = &conf->prev;
641 	} else
642 		clear_bit(R10BIO_Previous, &r10bio->state);
643 
644 	__raid10_find_phys(geo, r10bio);
645 }
646 
647 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
648 {
649 	sector_t offset, chunk, vchunk;
650 	/* Never use conf->prev as this is only called during resync
651 	 * or recovery, so reshape isn't happening
652 	 */
653 	struct geom *geo = &conf->geo;
654 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
655 	int far_set_size = geo->far_set_size;
656 	int last_far_set_start;
657 
658 	if (geo->raid_disks % geo->far_set_size) {
659 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
660 		last_far_set_start *= geo->far_set_size;
661 
662 		if (dev >= last_far_set_start) {
663 			far_set_size = geo->far_set_size;
664 			far_set_size += (geo->raid_disks % geo->far_set_size);
665 			far_set_start = last_far_set_start;
666 		}
667 	}
668 
669 	offset = sector & geo->chunk_mask;
670 	if (geo->far_offset) {
671 		int fc;
672 		chunk = sector >> geo->chunk_shift;
673 		fc = sector_div(chunk, geo->far_copies);
674 		dev -= fc * geo->near_copies;
675 		if (dev < far_set_start)
676 			dev += far_set_size;
677 	} else {
678 		while (sector >= geo->stride) {
679 			sector -= geo->stride;
680 			if (dev < (geo->near_copies + far_set_start))
681 				dev += far_set_size - geo->near_copies;
682 			else
683 				dev -= geo->near_copies;
684 		}
685 		chunk = sector >> geo->chunk_shift;
686 	}
687 	vchunk = chunk * geo->raid_disks + dev;
688 	sector_div(vchunk, geo->near_copies);
689 	return (vchunk << geo->chunk_shift) + offset;
690 }
691 
692 /*
693  * This routine returns the disk from which the requested read should
694  * be done. There is a per-array 'next expected sequential IO' sector
695  * number - if this matches on the next IO then we use the last disk.
696  * There is also a per-disk 'last know head position' sector that is
697  * maintained from IRQ contexts, both the normal and the resync IO
698  * completion handlers update this position correctly. If there is no
699  * perfect sequential match then we pick the disk whose head is closest.
700  *
701  * If there are 2 mirrors in the same 2 devices, performance degrades
702  * because position is mirror, not device based.
703  *
704  * The rdev for the device selected will have nr_pending incremented.
705  */
706 
707 /*
708  * FIXME: possibly should rethink readbalancing and do it differently
709  * depending on near_copies / far_copies geometry.
710  */
711 static struct md_rdev *read_balance(struct r10conf *conf,
712 				    struct r10bio *r10_bio,
713 				    int *max_sectors)
714 {
715 	const sector_t this_sector = r10_bio->sector;
716 	int disk, slot;
717 	int sectors = r10_bio->sectors;
718 	int best_good_sectors;
719 	sector_t new_distance, best_dist;
720 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
721 	int do_balance;
722 	int best_dist_slot, best_pending_slot;
723 	bool has_nonrot_disk = false;
724 	unsigned int min_pending;
725 	struct geom *geo = &conf->geo;
726 
727 	raid10_find_phys(conf, r10_bio);
728 	rcu_read_lock();
729 	best_dist_slot = -1;
730 	min_pending = UINT_MAX;
731 	best_dist_rdev = NULL;
732 	best_pending_rdev = NULL;
733 	best_dist = MaxSector;
734 	best_good_sectors = 0;
735 	do_balance = 1;
736 	clear_bit(R10BIO_FailFast, &r10_bio->state);
737 	/*
738 	 * Check if we can balance. We can balance on the whole
739 	 * device if no resync is going on (recovery is ok), or below
740 	 * the resync window. We take the first readable disk when
741 	 * above the resync window.
742 	 */
743 	if ((conf->mddev->recovery_cp < MaxSector
744 	     && (this_sector + sectors >= conf->next_resync)) ||
745 	    (mddev_is_clustered(conf->mddev) &&
746 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
747 					    this_sector + sectors)))
748 		do_balance = 0;
749 
750 	for (slot = 0; slot < conf->copies ; slot++) {
751 		sector_t first_bad;
752 		int bad_sectors;
753 		sector_t dev_sector;
754 		unsigned int pending;
755 		bool nonrot;
756 
757 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
758 			continue;
759 		disk = r10_bio->devs[slot].devnum;
760 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
761 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
762 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
763 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
764 		if (rdev == NULL ||
765 		    test_bit(Faulty, &rdev->flags))
766 			continue;
767 		if (!test_bit(In_sync, &rdev->flags) &&
768 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769 			continue;
770 
771 		dev_sector = r10_bio->devs[slot].addr;
772 		if (is_badblock(rdev, dev_sector, sectors,
773 				&first_bad, &bad_sectors)) {
774 			if (best_dist < MaxSector)
775 				/* Already have a better slot */
776 				continue;
777 			if (first_bad <= dev_sector) {
778 				/* Cannot read here.  If this is the
779 				 * 'primary' device, then we must not read
780 				 * beyond 'bad_sectors' from another device.
781 				 */
782 				bad_sectors -= (dev_sector - first_bad);
783 				if (!do_balance && sectors > bad_sectors)
784 					sectors = bad_sectors;
785 				if (best_good_sectors > sectors)
786 					best_good_sectors = sectors;
787 			} else {
788 				sector_t good_sectors =
789 					first_bad - dev_sector;
790 				if (good_sectors > best_good_sectors) {
791 					best_good_sectors = good_sectors;
792 					best_dist_slot = slot;
793 					best_dist_rdev = rdev;
794 				}
795 				if (!do_balance)
796 					/* Must read from here */
797 					break;
798 			}
799 			continue;
800 		} else
801 			best_good_sectors = sectors;
802 
803 		if (!do_balance)
804 			break;
805 
806 		nonrot = bdev_nonrot(rdev->bdev);
807 		has_nonrot_disk |= nonrot;
808 		pending = atomic_read(&rdev->nr_pending);
809 		if (min_pending > pending && nonrot) {
810 			min_pending = pending;
811 			best_pending_slot = slot;
812 			best_pending_rdev = rdev;
813 		}
814 
815 		if (best_dist_slot >= 0)
816 			/* At least 2 disks to choose from so failfast is OK */
817 			set_bit(R10BIO_FailFast, &r10_bio->state);
818 		/* This optimisation is debatable, and completely destroys
819 		 * sequential read speed for 'far copies' arrays.  So only
820 		 * keep it for 'near' arrays, and review those later.
821 		 */
822 		if (geo->near_copies > 1 && !pending)
823 			new_distance = 0;
824 
825 		/* for far > 1 always use the lowest address */
826 		else if (geo->far_copies > 1)
827 			new_distance = r10_bio->devs[slot].addr;
828 		else
829 			new_distance = abs(r10_bio->devs[slot].addr -
830 					   conf->mirrors[disk].head_position);
831 
832 		if (new_distance < best_dist) {
833 			best_dist = new_distance;
834 			best_dist_slot = slot;
835 			best_dist_rdev = rdev;
836 		}
837 	}
838 	if (slot >= conf->copies) {
839 		if (has_nonrot_disk) {
840 			slot = best_pending_slot;
841 			rdev = best_pending_rdev;
842 		} else {
843 			slot = best_dist_slot;
844 			rdev = best_dist_rdev;
845 		}
846 	}
847 
848 	if (slot >= 0) {
849 		atomic_inc(&rdev->nr_pending);
850 		r10_bio->read_slot = slot;
851 	} else
852 		rdev = NULL;
853 	rcu_read_unlock();
854 	*max_sectors = best_good_sectors;
855 
856 	return rdev;
857 }
858 
859 static void flush_pending_writes(struct r10conf *conf)
860 {
861 	/* Any writes that have been queued but are awaiting
862 	 * bitmap updates get flushed here.
863 	 */
864 	spin_lock_irq(&conf->device_lock);
865 
866 	if (conf->pending_bio_list.head) {
867 		struct blk_plug plug;
868 		struct bio *bio;
869 
870 		bio = bio_list_get(&conf->pending_bio_list);
871 		spin_unlock_irq(&conf->device_lock);
872 
873 		/*
874 		 * As this is called in a wait_event() loop (see freeze_array),
875 		 * current->state might be TASK_UNINTERRUPTIBLE which will
876 		 * cause a warning when we prepare to wait again.  As it is
877 		 * rare that this path is taken, it is perfectly safe to force
878 		 * us to go around the wait_event() loop again, so the warning
879 		 * is a false-positive. Silence the warning by resetting
880 		 * thread state
881 		 */
882 		__set_current_state(TASK_RUNNING);
883 
884 		blk_start_plug(&plug);
885 		/* flush any pending bitmap writes to disk
886 		 * before proceeding w/ I/O */
887 		md_bitmap_unplug(conf->mddev->bitmap);
888 		wake_up(&conf->wait_barrier);
889 
890 		while (bio) { /* submit pending writes */
891 			struct bio *next = bio->bi_next;
892 			struct md_rdev *rdev = (void*)bio->bi_bdev;
893 			bio->bi_next = NULL;
894 			bio_set_dev(bio, rdev->bdev);
895 			if (test_bit(Faulty, &rdev->flags)) {
896 				bio_io_error(bio);
897 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
898 					    !bdev_max_discard_sectors(bio->bi_bdev)))
899 				/* Just ignore it */
900 				bio_endio(bio);
901 			else
902 				submit_bio_noacct(bio);
903 			bio = next;
904 		}
905 		blk_finish_plug(&plug);
906 	} else
907 		spin_unlock_irq(&conf->device_lock);
908 }
909 
910 /* Barriers....
911  * Sometimes we need to suspend IO while we do something else,
912  * either some resync/recovery, or reconfigure the array.
913  * To do this we raise a 'barrier'.
914  * The 'barrier' is a counter that can be raised multiple times
915  * to count how many activities are happening which preclude
916  * normal IO.
917  * We can only raise the barrier if there is no pending IO.
918  * i.e. if nr_pending == 0.
919  * We choose only to raise the barrier if no-one is waiting for the
920  * barrier to go down.  This means that as soon as an IO request
921  * is ready, no other operations which require a barrier will start
922  * until the IO request has had a chance.
923  *
924  * So: regular IO calls 'wait_barrier'.  When that returns there
925  *    is no backgroup IO happening,  It must arrange to call
926  *    allow_barrier when it has finished its IO.
927  * backgroup IO calls must call raise_barrier.  Once that returns
928  *    there is no normal IO happeing.  It must arrange to call
929  *    lower_barrier when the particular background IO completes.
930  */
931 
932 static void raise_barrier(struct r10conf *conf, int force)
933 {
934 	BUG_ON(force && !conf->barrier);
935 	spin_lock_irq(&conf->resync_lock);
936 
937 	/* Wait until no block IO is waiting (unless 'force') */
938 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
939 			    conf->resync_lock);
940 
941 	/* block any new IO from starting */
942 	conf->barrier++;
943 
944 	/* Now wait for all pending IO to complete */
945 	wait_event_lock_irq(conf->wait_barrier,
946 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
947 			    conf->resync_lock);
948 
949 	spin_unlock_irq(&conf->resync_lock);
950 }
951 
952 static void lower_barrier(struct r10conf *conf)
953 {
954 	unsigned long flags;
955 	spin_lock_irqsave(&conf->resync_lock, flags);
956 	conf->barrier--;
957 	spin_unlock_irqrestore(&conf->resync_lock, flags);
958 	wake_up(&conf->wait_barrier);
959 }
960 
961 static bool wait_barrier(struct r10conf *conf, bool nowait)
962 {
963 	bool ret = true;
964 
965 	spin_lock_irq(&conf->resync_lock);
966 	if (conf->barrier) {
967 		struct bio_list *bio_list = current->bio_list;
968 		conf->nr_waiting++;
969 		/* Wait for the barrier to drop.
970 		 * However if there are already pending
971 		 * requests (preventing the barrier from
972 		 * rising completely), and the
973 		 * pre-process bio queue isn't empty,
974 		 * then don't wait, as we need to empty
975 		 * that queue to get the nr_pending
976 		 * count down.
977 		 */
978 		/* Return false when nowait flag is set */
979 		if (nowait) {
980 			ret = false;
981 		} else {
982 			raid10_log(conf->mddev, "wait barrier");
983 			wait_event_lock_irq(conf->wait_barrier,
984 					    !conf->barrier ||
985 					    (atomic_read(&conf->nr_pending) &&
986 					     bio_list &&
987 					     (!bio_list_empty(&bio_list[0]) ||
988 					      !bio_list_empty(&bio_list[1]))) ||
989 					     /* move on if recovery thread is
990 					      * blocked by us
991 					      */
992 					     (conf->mddev->thread->tsk == current &&
993 					      test_bit(MD_RECOVERY_RUNNING,
994 						       &conf->mddev->recovery) &&
995 					      conf->nr_queued > 0),
996 					    conf->resync_lock);
997 		}
998 		conf->nr_waiting--;
999 		if (!conf->nr_waiting)
1000 			wake_up(&conf->wait_barrier);
1001 	}
1002 	/* Only increment nr_pending when we wait */
1003 	if (ret)
1004 		atomic_inc(&conf->nr_pending);
1005 	spin_unlock_irq(&conf->resync_lock);
1006 	return ret;
1007 }
1008 
1009 static void allow_barrier(struct r10conf *conf)
1010 {
1011 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012 			(conf->array_freeze_pending))
1013 		wake_up(&conf->wait_barrier);
1014 }
1015 
1016 static void freeze_array(struct r10conf *conf, int extra)
1017 {
1018 	/* stop syncio and normal IO and wait for everything to
1019 	 * go quiet.
1020 	 * We increment barrier and nr_waiting, and then
1021 	 * wait until nr_pending match nr_queued+extra
1022 	 * This is called in the context of one normal IO request
1023 	 * that has failed. Thus any sync request that might be pending
1024 	 * will be blocked by nr_pending, and we need to wait for
1025 	 * pending IO requests to complete or be queued for re-try.
1026 	 * Thus the number queued (nr_queued) plus this request (extra)
1027 	 * must match the number of pending IOs (nr_pending) before
1028 	 * we continue.
1029 	 */
1030 	spin_lock_irq(&conf->resync_lock);
1031 	conf->array_freeze_pending++;
1032 	conf->barrier++;
1033 	conf->nr_waiting++;
1034 	wait_event_lock_irq_cmd(conf->wait_barrier,
1035 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036 				conf->resync_lock,
1037 				flush_pending_writes(conf));
1038 
1039 	conf->array_freeze_pending--;
1040 	spin_unlock_irq(&conf->resync_lock);
1041 }
1042 
1043 static void unfreeze_array(struct r10conf *conf)
1044 {
1045 	/* reverse the effect of the freeze */
1046 	spin_lock_irq(&conf->resync_lock);
1047 	conf->barrier--;
1048 	conf->nr_waiting--;
1049 	wake_up(&conf->wait_barrier);
1050 	spin_unlock_irq(&conf->resync_lock);
1051 }
1052 
1053 static sector_t choose_data_offset(struct r10bio *r10_bio,
1054 				   struct md_rdev *rdev)
1055 {
1056 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057 	    test_bit(R10BIO_Previous, &r10_bio->state))
1058 		return rdev->data_offset;
1059 	else
1060 		return rdev->new_data_offset;
1061 }
1062 
1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1064 {
1065 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1066 	struct mddev *mddev = plug->cb.data;
1067 	struct r10conf *conf = mddev->private;
1068 	struct bio *bio;
1069 
1070 	if (from_schedule || current->bio_list) {
1071 		spin_lock_irq(&conf->device_lock);
1072 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073 		spin_unlock_irq(&conf->device_lock);
1074 		wake_up(&conf->wait_barrier);
1075 		md_wakeup_thread(mddev->thread);
1076 		kfree(plug);
1077 		return;
1078 	}
1079 
1080 	/* we aren't scheduling, so we can do the write-out directly. */
1081 	bio = bio_list_get(&plug->pending);
1082 	md_bitmap_unplug(mddev->bitmap);
1083 	wake_up(&conf->wait_barrier);
1084 
1085 	while (bio) { /* submit pending writes */
1086 		struct bio *next = bio->bi_next;
1087 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1088 		bio->bi_next = NULL;
1089 		bio_set_dev(bio, rdev->bdev);
1090 		if (test_bit(Faulty, &rdev->flags)) {
1091 			bio_io_error(bio);
1092 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1093 				    !bdev_max_discard_sectors(bio->bi_bdev)))
1094 			/* Just ignore it */
1095 			bio_endio(bio);
1096 		else
1097 			submit_bio_noacct(bio);
1098 		bio = next;
1099 	}
1100 	kfree(plug);
1101 }
1102 
1103 /*
1104  * 1. Register the new request and wait if the reconstruction thread has put
1105  * up a bar for new requests. Continue immediately if no resync is active
1106  * currently.
1107  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1108  */
1109 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1110 				 struct bio *bio, sector_t sectors)
1111 {
1112 	/* Bail out if REQ_NOWAIT is set for the bio */
1113 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1114 		bio_wouldblock_error(bio);
1115 		return false;
1116 	}
1117 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1118 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1119 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1120 		allow_barrier(conf);
1121 		if (bio->bi_opf & REQ_NOWAIT) {
1122 			bio_wouldblock_error(bio);
1123 			return false;
1124 		}
1125 		raid10_log(conf->mddev, "wait reshape");
1126 		wait_event(conf->wait_barrier,
1127 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129 			   sectors);
1130 		wait_barrier(conf, false);
1131 	}
1132 	return true;
1133 }
1134 
1135 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1136 				struct r10bio *r10_bio)
1137 {
1138 	struct r10conf *conf = mddev->private;
1139 	struct bio *read_bio;
1140 	const int op = bio_op(bio);
1141 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1142 	int max_sectors;
1143 	struct md_rdev *rdev;
1144 	char b[BDEVNAME_SIZE];
1145 	int slot = r10_bio->read_slot;
1146 	struct md_rdev *err_rdev = NULL;
1147 	gfp_t gfp = GFP_NOIO;
1148 
1149 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1150 		/*
1151 		 * This is an error retry, but we cannot
1152 		 * safely dereference the rdev in the r10_bio,
1153 		 * we must use the one in conf.
1154 		 * If it has already been disconnected (unlikely)
1155 		 * we lose the device name in error messages.
1156 		 */
1157 		int disk;
1158 		/*
1159 		 * As we are blocking raid10, it is a little safer to
1160 		 * use __GFP_HIGH.
1161 		 */
1162 		gfp = GFP_NOIO | __GFP_HIGH;
1163 
1164 		rcu_read_lock();
1165 		disk = r10_bio->devs[slot].devnum;
1166 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1167 		if (err_rdev)
1168 			bdevname(err_rdev->bdev, b);
1169 		else {
1170 			strcpy(b, "???");
1171 			/* This never gets dereferenced */
1172 			err_rdev = r10_bio->devs[slot].rdev;
1173 		}
1174 		rcu_read_unlock();
1175 	}
1176 
1177 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1178 		return;
1179 	rdev = read_balance(conf, r10_bio, &max_sectors);
1180 	if (!rdev) {
1181 		if (err_rdev) {
1182 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1183 					    mdname(mddev), b,
1184 					    (unsigned long long)r10_bio->sector);
1185 		}
1186 		raid_end_bio_io(r10_bio);
1187 		return;
1188 	}
1189 	if (err_rdev)
1190 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1191 				   mdname(mddev),
1192 				   bdevname(rdev->bdev, b),
1193 				   (unsigned long long)r10_bio->sector);
1194 	if (max_sectors < bio_sectors(bio)) {
1195 		struct bio *split = bio_split(bio, max_sectors,
1196 					      gfp, &conf->bio_split);
1197 		bio_chain(split, bio);
1198 		allow_barrier(conf);
1199 		submit_bio_noacct(bio);
1200 		wait_barrier(conf, false);
1201 		bio = split;
1202 		r10_bio->master_bio = bio;
1203 		r10_bio->sectors = max_sectors;
1204 	}
1205 	slot = r10_bio->read_slot;
1206 
1207 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1208 		r10_bio->start_time = bio_start_io_acct(bio);
1209 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1210 
1211 	r10_bio->devs[slot].bio = read_bio;
1212 	r10_bio->devs[slot].rdev = rdev;
1213 
1214 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1215 		choose_data_offset(r10_bio, rdev);
1216 	read_bio->bi_end_io = raid10_end_read_request;
1217 	bio_set_op_attrs(read_bio, op, do_sync);
1218 	if (test_bit(FailFast, &rdev->flags) &&
1219 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1220 	        read_bio->bi_opf |= MD_FAILFAST;
1221 	read_bio->bi_private = r10_bio;
1222 
1223 	if (mddev->gendisk)
1224 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1225 	                              r10_bio->sector);
1226 	submit_bio_noacct(read_bio);
1227 	return;
1228 }
1229 
1230 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1231 				  struct bio *bio, bool replacement,
1232 				  int n_copy)
1233 {
1234 	const int op = bio_op(bio);
1235 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1236 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1237 	unsigned long flags;
1238 	struct blk_plug_cb *cb;
1239 	struct raid1_plug_cb *plug = NULL;
1240 	struct r10conf *conf = mddev->private;
1241 	struct md_rdev *rdev;
1242 	int devnum = r10_bio->devs[n_copy].devnum;
1243 	struct bio *mbio;
1244 
1245 	if (replacement) {
1246 		rdev = conf->mirrors[devnum].replacement;
1247 		if (rdev == NULL) {
1248 			/* Replacement just got moved to main 'rdev' */
1249 			smp_mb();
1250 			rdev = conf->mirrors[devnum].rdev;
1251 		}
1252 	} else
1253 		rdev = conf->mirrors[devnum].rdev;
1254 
1255 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1256 	if (replacement)
1257 		r10_bio->devs[n_copy].repl_bio = mbio;
1258 	else
1259 		r10_bio->devs[n_copy].bio = mbio;
1260 
1261 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1262 				   choose_data_offset(r10_bio, rdev));
1263 	mbio->bi_end_io	= raid10_end_write_request;
1264 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 	if (!replacement && test_bit(FailFast,
1266 				     &conf->mirrors[devnum].rdev->flags)
1267 			 && enough(conf, devnum))
1268 		mbio->bi_opf |= MD_FAILFAST;
1269 	mbio->bi_private = r10_bio;
1270 
1271 	if (conf->mddev->gendisk)
1272 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1273 				      r10_bio->sector);
1274 	/* flush_pending_writes() needs access to the rdev so...*/
1275 	mbio->bi_bdev = (void *)rdev;
1276 
1277 	atomic_inc(&r10_bio->remaining);
1278 
1279 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280 	if (cb)
1281 		plug = container_of(cb, struct raid1_plug_cb, cb);
1282 	else
1283 		plug = NULL;
1284 	if (plug) {
1285 		bio_list_add(&plug->pending, mbio);
1286 	} else {
1287 		spin_lock_irqsave(&conf->device_lock, flags);
1288 		bio_list_add(&conf->pending_bio_list, mbio);
1289 		spin_unlock_irqrestore(&conf->device_lock, flags);
1290 		md_wakeup_thread(mddev->thread);
1291 	}
1292 }
1293 
1294 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1295 {
1296 	int i;
1297 	struct r10conf *conf = mddev->private;
1298 	struct md_rdev *blocked_rdev;
1299 
1300 retry_wait:
1301 	blocked_rdev = NULL;
1302 	rcu_read_lock();
1303 	for (i = 0; i < conf->copies; i++) {
1304 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1305 		struct md_rdev *rrdev = rcu_dereference(
1306 			conf->mirrors[i].replacement);
1307 		if (rdev == rrdev)
1308 			rrdev = NULL;
1309 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1310 			atomic_inc(&rdev->nr_pending);
1311 			blocked_rdev = rdev;
1312 			break;
1313 		}
1314 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1315 			atomic_inc(&rrdev->nr_pending);
1316 			blocked_rdev = rrdev;
1317 			break;
1318 		}
1319 
1320 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1321 			sector_t first_bad;
1322 			sector_t dev_sector = r10_bio->devs[i].addr;
1323 			int bad_sectors;
1324 			int is_bad;
1325 
1326 			/*
1327 			 * Discard request doesn't care the write result
1328 			 * so it doesn't need to wait blocked disk here.
1329 			 */
1330 			if (!r10_bio->sectors)
1331 				continue;
1332 
1333 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1334 					     &first_bad, &bad_sectors);
1335 			if (is_bad < 0) {
1336 				/*
1337 				 * Mustn't write here until the bad block
1338 				 * is acknowledged
1339 				 */
1340 				atomic_inc(&rdev->nr_pending);
1341 				set_bit(BlockedBadBlocks, &rdev->flags);
1342 				blocked_rdev = rdev;
1343 				break;
1344 			}
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 
1349 	if (unlikely(blocked_rdev)) {
1350 		/* Have to wait for this device to get unblocked, then retry */
1351 		allow_barrier(conf);
1352 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1353 				__func__, blocked_rdev->raid_disk);
1354 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1355 		wait_barrier(conf, false);
1356 		goto retry_wait;
1357 	}
1358 }
1359 
1360 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1361 				 struct r10bio *r10_bio)
1362 {
1363 	struct r10conf *conf = mddev->private;
1364 	int i;
1365 	sector_t sectors;
1366 	int max_sectors;
1367 
1368 	if ((mddev_is_clustered(mddev) &&
1369 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1370 					    bio->bi_iter.bi_sector,
1371 					    bio_end_sector(bio)))) {
1372 		DEFINE_WAIT(w);
1373 		/* Bail out if REQ_NOWAIT is set for the bio */
1374 		if (bio->bi_opf & REQ_NOWAIT) {
1375 			bio_wouldblock_error(bio);
1376 			return;
1377 		}
1378 		for (;;) {
1379 			prepare_to_wait(&conf->wait_barrier,
1380 					&w, TASK_IDLE);
1381 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1382 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1383 				break;
1384 			schedule();
1385 		}
1386 		finish_wait(&conf->wait_barrier, &w);
1387 	}
1388 
1389 	sectors = r10_bio->sectors;
1390 	if (!regular_request_wait(mddev, conf, bio, sectors))
1391 		return;
1392 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1393 	    (mddev->reshape_backwards
1394 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1395 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1396 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1397 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1398 		/* Need to update reshape_position in metadata */
1399 		mddev->reshape_position = conf->reshape_progress;
1400 		set_mask_bits(&mddev->sb_flags, 0,
1401 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1402 		md_wakeup_thread(mddev->thread);
1403 		if (bio->bi_opf & REQ_NOWAIT) {
1404 			allow_barrier(conf);
1405 			bio_wouldblock_error(bio);
1406 			return;
1407 		}
1408 		raid10_log(conf->mddev, "wait reshape metadata");
1409 		wait_event(mddev->sb_wait,
1410 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1411 
1412 		conf->reshape_safe = mddev->reshape_position;
1413 	}
1414 
1415 	/* first select target devices under rcu_lock and
1416 	 * inc refcount on their rdev.  Record them by setting
1417 	 * bios[x] to bio
1418 	 * If there are known/acknowledged bad blocks on any device
1419 	 * on which we have seen a write error, we want to avoid
1420 	 * writing to those blocks.  This potentially requires several
1421 	 * writes to write around the bad blocks.  Each set of writes
1422 	 * gets its own r10_bio with a set of bios attached.
1423 	 */
1424 
1425 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1426 	raid10_find_phys(conf, r10_bio);
1427 
1428 	wait_blocked_dev(mddev, r10_bio);
1429 
1430 	rcu_read_lock();
1431 	max_sectors = r10_bio->sectors;
1432 
1433 	for (i = 0;  i < conf->copies; i++) {
1434 		int d = r10_bio->devs[i].devnum;
1435 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1436 		struct md_rdev *rrdev = rcu_dereference(
1437 			conf->mirrors[d].replacement);
1438 		if (rdev == rrdev)
1439 			rrdev = NULL;
1440 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1441 			rdev = NULL;
1442 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1443 			rrdev = NULL;
1444 
1445 		r10_bio->devs[i].bio = NULL;
1446 		r10_bio->devs[i].repl_bio = NULL;
1447 
1448 		if (!rdev && !rrdev) {
1449 			set_bit(R10BIO_Degraded, &r10_bio->state);
1450 			continue;
1451 		}
1452 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1453 			sector_t first_bad;
1454 			sector_t dev_sector = r10_bio->devs[i].addr;
1455 			int bad_sectors;
1456 			int is_bad;
1457 
1458 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1459 					     &first_bad, &bad_sectors);
1460 			if (is_bad && first_bad <= dev_sector) {
1461 				/* Cannot write here at all */
1462 				bad_sectors -= (dev_sector - first_bad);
1463 				if (bad_sectors < max_sectors)
1464 					/* Mustn't write more than bad_sectors
1465 					 * to other devices yet
1466 					 */
1467 					max_sectors = bad_sectors;
1468 				/* We don't set R10BIO_Degraded as that
1469 				 * only applies if the disk is missing,
1470 				 * so it might be re-added, and we want to
1471 				 * know to recover this chunk.
1472 				 * In this case the device is here, and the
1473 				 * fact that this chunk is not in-sync is
1474 				 * recorded in the bad block log.
1475 				 */
1476 				continue;
1477 			}
1478 			if (is_bad) {
1479 				int good_sectors = first_bad - dev_sector;
1480 				if (good_sectors < max_sectors)
1481 					max_sectors = good_sectors;
1482 			}
1483 		}
1484 		if (rdev) {
1485 			r10_bio->devs[i].bio = bio;
1486 			atomic_inc(&rdev->nr_pending);
1487 		}
1488 		if (rrdev) {
1489 			r10_bio->devs[i].repl_bio = bio;
1490 			atomic_inc(&rrdev->nr_pending);
1491 		}
1492 	}
1493 	rcu_read_unlock();
1494 
1495 	if (max_sectors < r10_bio->sectors)
1496 		r10_bio->sectors = max_sectors;
1497 
1498 	if (r10_bio->sectors < bio_sectors(bio)) {
1499 		struct bio *split = bio_split(bio, r10_bio->sectors,
1500 					      GFP_NOIO, &conf->bio_split);
1501 		bio_chain(split, bio);
1502 		allow_barrier(conf);
1503 		submit_bio_noacct(bio);
1504 		wait_barrier(conf, false);
1505 		bio = split;
1506 		r10_bio->master_bio = bio;
1507 	}
1508 
1509 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1510 		r10_bio->start_time = bio_start_io_acct(bio);
1511 	atomic_set(&r10_bio->remaining, 1);
1512 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1513 
1514 	for (i = 0; i < conf->copies; i++) {
1515 		if (r10_bio->devs[i].bio)
1516 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1517 		if (r10_bio->devs[i].repl_bio)
1518 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1519 	}
1520 	one_write_done(r10_bio);
1521 }
1522 
1523 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1524 {
1525 	struct r10conf *conf = mddev->private;
1526 	struct r10bio *r10_bio;
1527 
1528 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1529 
1530 	r10_bio->master_bio = bio;
1531 	r10_bio->sectors = sectors;
1532 
1533 	r10_bio->mddev = mddev;
1534 	r10_bio->sector = bio->bi_iter.bi_sector;
1535 	r10_bio->state = 0;
1536 	r10_bio->read_slot = -1;
1537 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1538 			conf->geo.raid_disks);
1539 
1540 	if (bio_data_dir(bio) == READ)
1541 		raid10_read_request(mddev, bio, r10_bio);
1542 	else
1543 		raid10_write_request(mddev, bio, r10_bio);
1544 }
1545 
1546 static void raid_end_discard_bio(struct r10bio *r10bio)
1547 {
1548 	struct r10conf *conf = r10bio->mddev->private;
1549 	struct r10bio *first_r10bio;
1550 
1551 	while (atomic_dec_and_test(&r10bio->remaining)) {
1552 
1553 		allow_barrier(conf);
1554 
1555 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1556 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1557 			free_r10bio(r10bio);
1558 			r10bio = first_r10bio;
1559 		} else {
1560 			md_write_end(r10bio->mddev);
1561 			bio_endio(r10bio->master_bio);
1562 			free_r10bio(r10bio);
1563 			break;
1564 		}
1565 	}
1566 }
1567 
1568 static void raid10_end_discard_request(struct bio *bio)
1569 {
1570 	struct r10bio *r10_bio = bio->bi_private;
1571 	struct r10conf *conf = r10_bio->mddev->private;
1572 	struct md_rdev *rdev = NULL;
1573 	int dev;
1574 	int slot, repl;
1575 
1576 	/*
1577 	 * We don't care the return value of discard bio
1578 	 */
1579 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1580 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1581 
1582 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1583 	if (repl)
1584 		rdev = conf->mirrors[dev].replacement;
1585 	if (!rdev) {
1586 		/*
1587 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1588 		 * replacement before setting replacement to NULL. It can read
1589 		 * rdev first without barrier protect even replacment is NULL
1590 		 */
1591 		smp_rmb();
1592 		rdev = conf->mirrors[dev].rdev;
1593 	}
1594 
1595 	raid_end_discard_bio(r10_bio);
1596 	rdev_dec_pending(rdev, conf->mddev);
1597 }
1598 
1599 /*
1600  * There are some limitations to handle discard bio
1601  * 1st, the discard size is bigger than stripe_size*2.
1602  * 2st, if the discard bio spans reshape progress, we use the old way to
1603  * handle discard bio
1604  */
1605 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1606 {
1607 	struct r10conf *conf = mddev->private;
1608 	struct geom *geo = &conf->geo;
1609 	int far_copies = geo->far_copies;
1610 	bool first_copy = true;
1611 	struct r10bio *r10_bio, *first_r10bio;
1612 	struct bio *split;
1613 	int disk;
1614 	sector_t chunk;
1615 	unsigned int stripe_size;
1616 	unsigned int stripe_data_disks;
1617 	sector_t split_size;
1618 	sector_t bio_start, bio_end;
1619 	sector_t first_stripe_index, last_stripe_index;
1620 	sector_t start_disk_offset;
1621 	unsigned int start_disk_index;
1622 	sector_t end_disk_offset;
1623 	unsigned int end_disk_index;
1624 	unsigned int remainder;
1625 
1626 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1627 		return -EAGAIN;
1628 
1629 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1630 		bio_wouldblock_error(bio);
1631 		return 0;
1632 	}
1633 	wait_barrier(conf, false);
1634 
1635 	/*
1636 	 * Check reshape again to avoid reshape happens after checking
1637 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1638 	 */
1639 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1640 		goto out;
1641 
1642 	if (geo->near_copies)
1643 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1644 					geo->raid_disks % geo->near_copies;
1645 	else
1646 		stripe_data_disks = geo->raid_disks;
1647 
1648 	stripe_size = stripe_data_disks << geo->chunk_shift;
1649 
1650 	bio_start = bio->bi_iter.bi_sector;
1651 	bio_end = bio_end_sector(bio);
1652 
1653 	/*
1654 	 * Maybe one discard bio is smaller than strip size or across one
1655 	 * stripe and discard region is larger than one stripe size. For far
1656 	 * offset layout, if the discard region is not aligned with stripe
1657 	 * size, there is hole when we submit discard bio to member disk.
1658 	 * For simplicity, we only handle discard bio which discard region
1659 	 * is bigger than stripe_size * 2
1660 	 */
1661 	if (bio_sectors(bio) < stripe_size*2)
1662 		goto out;
1663 
1664 	/*
1665 	 * Keep bio aligned with strip size.
1666 	 */
1667 	div_u64_rem(bio_start, stripe_size, &remainder);
1668 	if (remainder) {
1669 		split_size = stripe_size - remainder;
1670 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1671 		bio_chain(split, bio);
1672 		allow_barrier(conf);
1673 		/* Resend the fist split part */
1674 		submit_bio_noacct(split);
1675 		wait_barrier(conf, false);
1676 	}
1677 	div_u64_rem(bio_end, stripe_size, &remainder);
1678 	if (remainder) {
1679 		split_size = bio_sectors(bio) - remainder;
1680 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1681 		bio_chain(split, bio);
1682 		allow_barrier(conf);
1683 		/* Resend the second split part */
1684 		submit_bio_noacct(bio);
1685 		bio = split;
1686 		wait_barrier(conf, false);
1687 	}
1688 
1689 	bio_start = bio->bi_iter.bi_sector;
1690 	bio_end = bio_end_sector(bio);
1691 
1692 	/*
1693 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1694 	 * One stripe contains the chunks from all member disk (one chunk from
1695 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1696 	 */
1697 	chunk = bio_start >> geo->chunk_shift;
1698 	chunk *= geo->near_copies;
1699 	first_stripe_index = chunk;
1700 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1701 	if (geo->far_offset)
1702 		first_stripe_index *= geo->far_copies;
1703 	start_disk_offset = (bio_start & geo->chunk_mask) +
1704 				(first_stripe_index << geo->chunk_shift);
1705 
1706 	chunk = bio_end >> geo->chunk_shift;
1707 	chunk *= geo->near_copies;
1708 	last_stripe_index = chunk;
1709 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1710 	if (geo->far_offset)
1711 		last_stripe_index *= geo->far_copies;
1712 	end_disk_offset = (bio_end & geo->chunk_mask) +
1713 				(last_stripe_index << geo->chunk_shift);
1714 
1715 retry_discard:
1716 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1717 	r10_bio->mddev = mddev;
1718 	r10_bio->state = 0;
1719 	r10_bio->sectors = 0;
1720 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1721 	wait_blocked_dev(mddev, r10_bio);
1722 
1723 	/*
1724 	 * For far layout it needs more than one r10bio to cover all regions.
1725 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1726 	 * to record the discard bio. Other r10bio->master_bio record the first
1727 	 * r10bio. The first r10bio only release after all other r10bios finish.
1728 	 * The discard bio returns only first r10bio finishes
1729 	 */
1730 	if (first_copy) {
1731 		r10_bio->master_bio = bio;
1732 		set_bit(R10BIO_Discard, &r10_bio->state);
1733 		first_copy = false;
1734 		first_r10bio = r10_bio;
1735 	} else
1736 		r10_bio->master_bio = (struct bio *)first_r10bio;
1737 
1738 	/*
1739 	 * first select target devices under rcu_lock and
1740 	 * inc refcount on their rdev.  Record them by setting
1741 	 * bios[x] to bio
1742 	 */
1743 	rcu_read_lock();
1744 	for (disk = 0; disk < geo->raid_disks; disk++) {
1745 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1746 		struct md_rdev *rrdev = rcu_dereference(
1747 			conf->mirrors[disk].replacement);
1748 
1749 		r10_bio->devs[disk].bio = NULL;
1750 		r10_bio->devs[disk].repl_bio = NULL;
1751 
1752 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1753 			rdev = NULL;
1754 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1755 			rrdev = NULL;
1756 		if (!rdev && !rrdev)
1757 			continue;
1758 
1759 		if (rdev) {
1760 			r10_bio->devs[disk].bio = bio;
1761 			atomic_inc(&rdev->nr_pending);
1762 		}
1763 		if (rrdev) {
1764 			r10_bio->devs[disk].repl_bio = bio;
1765 			atomic_inc(&rrdev->nr_pending);
1766 		}
1767 	}
1768 	rcu_read_unlock();
1769 
1770 	atomic_set(&r10_bio->remaining, 1);
1771 	for (disk = 0; disk < geo->raid_disks; disk++) {
1772 		sector_t dev_start, dev_end;
1773 		struct bio *mbio, *rbio = NULL;
1774 
1775 		/*
1776 		 * Now start to calculate the start and end address for each disk.
1777 		 * The space between dev_start and dev_end is the discard region.
1778 		 *
1779 		 * For dev_start, it needs to consider three conditions:
1780 		 * 1st, the disk is before start_disk, you can imagine the disk in
1781 		 * the next stripe. So the dev_start is the start address of next
1782 		 * stripe.
1783 		 * 2st, the disk is after start_disk, it means the disk is at the
1784 		 * same stripe of first disk
1785 		 * 3st, the first disk itself, we can use start_disk_offset directly
1786 		 */
1787 		if (disk < start_disk_index)
1788 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1789 		else if (disk > start_disk_index)
1790 			dev_start = first_stripe_index * mddev->chunk_sectors;
1791 		else
1792 			dev_start = start_disk_offset;
1793 
1794 		if (disk < end_disk_index)
1795 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1796 		else if (disk > end_disk_index)
1797 			dev_end = last_stripe_index * mddev->chunk_sectors;
1798 		else
1799 			dev_end = end_disk_offset;
1800 
1801 		/*
1802 		 * It only handles discard bio which size is >= stripe size, so
1803 		 * dev_end > dev_start all the time.
1804 		 * It doesn't need to use rcu lock to get rdev here. We already
1805 		 * add rdev->nr_pending in the first loop.
1806 		 */
1807 		if (r10_bio->devs[disk].bio) {
1808 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1809 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1810 					       &mddev->bio_set);
1811 			mbio->bi_end_io = raid10_end_discard_request;
1812 			mbio->bi_private = r10_bio;
1813 			r10_bio->devs[disk].bio = mbio;
1814 			r10_bio->devs[disk].devnum = disk;
1815 			atomic_inc(&r10_bio->remaining);
1816 			md_submit_discard_bio(mddev, rdev, mbio,
1817 					dev_start + choose_data_offset(r10_bio, rdev),
1818 					dev_end - dev_start);
1819 			bio_endio(mbio);
1820 		}
1821 		if (r10_bio->devs[disk].repl_bio) {
1822 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1823 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1824 					       &mddev->bio_set);
1825 			rbio->bi_end_io = raid10_end_discard_request;
1826 			rbio->bi_private = r10_bio;
1827 			r10_bio->devs[disk].repl_bio = rbio;
1828 			r10_bio->devs[disk].devnum = disk;
1829 			atomic_inc(&r10_bio->remaining);
1830 			md_submit_discard_bio(mddev, rrdev, rbio,
1831 					dev_start + choose_data_offset(r10_bio, rrdev),
1832 					dev_end - dev_start);
1833 			bio_endio(rbio);
1834 		}
1835 	}
1836 
1837 	if (!geo->far_offset && --far_copies) {
1838 		first_stripe_index += geo->stride >> geo->chunk_shift;
1839 		start_disk_offset += geo->stride;
1840 		last_stripe_index += geo->stride >> geo->chunk_shift;
1841 		end_disk_offset += geo->stride;
1842 		atomic_inc(&first_r10bio->remaining);
1843 		raid_end_discard_bio(r10_bio);
1844 		wait_barrier(conf, false);
1845 		goto retry_discard;
1846 	}
1847 
1848 	raid_end_discard_bio(r10_bio);
1849 
1850 	return 0;
1851 out:
1852 	allow_barrier(conf);
1853 	return -EAGAIN;
1854 }
1855 
1856 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1857 {
1858 	struct r10conf *conf = mddev->private;
1859 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1860 	int chunk_sects = chunk_mask + 1;
1861 	int sectors = bio_sectors(bio);
1862 
1863 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1864 	    && md_flush_request(mddev, bio))
1865 		return true;
1866 
1867 	if (!md_write_start(mddev, bio))
1868 		return false;
1869 
1870 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1871 		if (!raid10_handle_discard(mddev, bio))
1872 			return true;
1873 
1874 	/*
1875 	 * If this request crosses a chunk boundary, we need to split
1876 	 * it.
1877 	 */
1878 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1879 		     sectors > chunk_sects
1880 		     && (conf->geo.near_copies < conf->geo.raid_disks
1881 			 || conf->prev.near_copies <
1882 			 conf->prev.raid_disks)))
1883 		sectors = chunk_sects -
1884 			(bio->bi_iter.bi_sector &
1885 			 (chunk_sects - 1));
1886 	__make_request(mddev, bio, sectors);
1887 
1888 	/* In case raid10d snuck in to freeze_array */
1889 	wake_up(&conf->wait_barrier);
1890 	return true;
1891 }
1892 
1893 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1894 {
1895 	struct r10conf *conf = mddev->private;
1896 	int i;
1897 
1898 	if (conf->geo.near_copies < conf->geo.raid_disks)
1899 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1900 	if (conf->geo.near_copies > 1)
1901 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1902 	if (conf->geo.far_copies > 1) {
1903 		if (conf->geo.far_offset)
1904 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1905 		else
1906 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1907 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1908 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1909 	}
1910 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1911 					conf->geo.raid_disks - mddev->degraded);
1912 	rcu_read_lock();
1913 	for (i = 0; i < conf->geo.raid_disks; i++) {
1914 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1915 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1916 	}
1917 	rcu_read_unlock();
1918 	seq_printf(seq, "]");
1919 }
1920 
1921 /* check if there are enough drives for
1922  * every block to appear on atleast one.
1923  * Don't consider the device numbered 'ignore'
1924  * as we might be about to remove it.
1925  */
1926 static int _enough(struct r10conf *conf, int previous, int ignore)
1927 {
1928 	int first = 0;
1929 	int has_enough = 0;
1930 	int disks, ncopies;
1931 	if (previous) {
1932 		disks = conf->prev.raid_disks;
1933 		ncopies = conf->prev.near_copies;
1934 	} else {
1935 		disks = conf->geo.raid_disks;
1936 		ncopies = conf->geo.near_copies;
1937 	}
1938 
1939 	rcu_read_lock();
1940 	do {
1941 		int n = conf->copies;
1942 		int cnt = 0;
1943 		int this = first;
1944 		while (n--) {
1945 			struct md_rdev *rdev;
1946 			if (this != ignore &&
1947 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1948 			    test_bit(In_sync, &rdev->flags))
1949 				cnt++;
1950 			this = (this+1) % disks;
1951 		}
1952 		if (cnt == 0)
1953 			goto out;
1954 		first = (first + ncopies) % disks;
1955 	} while (first != 0);
1956 	has_enough = 1;
1957 out:
1958 	rcu_read_unlock();
1959 	return has_enough;
1960 }
1961 
1962 static int enough(struct r10conf *conf, int ignore)
1963 {
1964 	/* when calling 'enough', both 'prev' and 'geo' must
1965 	 * be stable.
1966 	 * This is ensured if ->reconfig_mutex or ->device_lock
1967 	 * is held.
1968 	 */
1969 	return _enough(conf, 0, ignore) &&
1970 		_enough(conf, 1, ignore);
1971 }
1972 
1973 /**
1974  * raid10_error() - RAID10 error handler.
1975  * @mddev: affected md device.
1976  * @rdev: member device to fail.
1977  *
1978  * The routine acknowledges &rdev failure and determines new @mddev state.
1979  * If it failed, then:
1980  *	- &MD_BROKEN flag is set in &mddev->flags.
1981  * Otherwise, it must be degraded:
1982  *	- recovery is interrupted.
1983  *	- &mddev->degraded is bumped.
1984 
1985  * @rdev is marked as &Faulty excluding case when array is failed and
1986  * &mddev->fail_last_dev is off.
1987  */
1988 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1989 {
1990 	char b[BDEVNAME_SIZE];
1991 	struct r10conf *conf = mddev->private;
1992 	unsigned long flags;
1993 
1994 	spin_lock_irqsave(&conf->device_lock, flags);
1995 
1996 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1997 		set_bit(MD_BROKEN, &mddev->flags);
1998 
1999 		if (!mddev->fail_last_dev) {
2000 			spin_unlock_irqrestore(&conf->device_lock, flags);
2001 			return;
2002 		}
2003 	}
2004 	if (test_and_clear_bit(In_sync, &rdev->flags))
2005 		mddev->degraded++;
2006 
2007 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2008 	set_bit(Blocked, &rdev->flags);
2009 	set_bit(Faulty, &rdev->flags);
2010 	set_mask_bits(&mddev->sb_flags, 0,
2011 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2012 	spin_unlock_irqrestore(&conf->device_lock, flags);
2013 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
2014 		"md/raid10:%s: Operation continuing on %d devices.\n",
2015 		mdname(mddev), bdevname(rdev->bdev, b),
2016 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2017 }
2018 
2019 static void print_conf(struct r10conf *conf)
2020 {
2021 	int i;
2022 	struct md_rdev *rdev;
2023 
2024 	pr_debug("RAID10 conf printout:\n");
2025 	if (!conf) {
2026 		pr_debug("(!conf)\n");
2027 		return;
2028 	}
2029 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2030 		 conf->geo.raid_disks);
2031 
2032 	/* This is only called with ->reconfix_mutex held, so
2033 	 * rcu protection of rdev is not needed */
2034 	for (i = 0; i < conf->geo.raid_disks; i++) {
2035 		char b[BDEVNAME_SIZE];
2036 		rdev = conf->mirrors[i].rdev;
2037 		if (rdev)
2038 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2039 				 i, !test_bit(In_sync, &rdev->flags),
2040 				 !test_bit(Faulty, &rdev->flags),
2041 				 bdevname(rdev->bdev,b));
2042 	}
2043 }
2044 
2045 static void close_sync(struct r10conf *conf)
2046 {
2047 	wait_barrier(conf, false);
2048 	allow_barrier(conf);
2049 
2050 	mempool_exit(&conf->r10buf_pool);
2051 }
2052 
2053 static int raid10_spare_active(struct mddev *mddev)
2054 {
2055 	int i;
2056 	struct r10conf *conf = mddev->private;
2057 	struct raid10_info *tmp;
2058 	int count = 0;
2059 	unsigned long flags;
2060 
2061 	/*
2062 	 * Find all non-in_sync disks within the RAID10 configuration
2063 	 * and mark them in_sync
2064 	 */
2065 	for (i = 0; i < conf->geo.raid_disks; i++) {
2066 		tmp = conf->mirrors + i;
2067 		if (tmp->replacement
2068 		    && tmp->replacement->recovery_offset == MaxSector
2069 		    && !test_bit(Faulty, &tmp->replacement->flags)
2070 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2071 			/* Replacement has just become active */
2072 			if (!tmp->rdev
2073 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2074 				count++;
2075 			if (tmp->rdev) {
2076 				/* Replaced device not technically faulty,
2077 				 * but we need to be sure it gets removed
2078 				 * and never re-added.
2079 				 */
2080 				set_bit(Faulty, &tmp->rdev->flags);
2081 				sysfs_notify_dirent_safe(
2082 					tmp->rdev->sysfs_state);
2083 			}
2084 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2085 		} else if (tmp->rdev
2086 			   && tmp->rdev->recovery_offset == MaxSector
2087 			   && !test_bit(Faulty, &tmp->rdev->flags)
2088 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2089 			count++;
2090 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2091 		}
2092 	}
2093 	spin_lock_irqsave(&conf->device_lock, flags);
2094 	mddev->degraded -= count;
2095 	spin_unlock_irqrestore(&conf->device_lock, flags);
2096 
2097 	print_conf(conf);
2098 	return count;
2099 }
2100 
2101 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2102 {
2103 	struct r10conf *conf = mddev->private;
2104 	int err = -EEXIST;
2105 	int mirror;
2106 	int first = 0;
2107 	int last = conf->geo.raid_disks - 1;
2108 
2109 	if (mddev->recovery_cp < MaxSector)
2110 		/* only hot-add to in-sync arrays, as recovery is
2111 		 * very different from resync
2112 		 */
2113 		return -EBUSY;
2114 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2115 		return -EINVAL;
2116 
2117 	if (md_integrity_add_rdev(rdev, mddev))
2118 		return -ENXIO;
2119 
2120 	if (rdev->raid_disk >= 0)
2121 		first = last = rdev->raid_disk;
2122 
2123 	if (rdev->saved_raid_disk >= first &&
2124 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2125 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2126 		mirror = rdev->saved_raid_disk;
2127 	else
2128 		mirror = first;
2129 	for ( ; mirror <= last ; mirror++) {
2130 		struct raid10_info *p = &conf->mirrors[mirror];
2131 		if (p->recovery_disabled == mddev->recovery_disabled)
2132 			continue;
2133 		if (p->rdev) {
2134 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2135 			    p->replacement != NULL)
2136 				continue;
2137 			clear_bit(In_sync, &rdev->flags);
2138 			set_bit(Replacement, &rdev->flags);
2139 			rdev->raid_disk = mirror;
2140 			err = 0;
2141 			if (mddev->gendisk)
2142 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2143 						  rdev->data_offset << 9);
2144 			conf->fullsync = 1;
2145 			rcu_assign_pointer(p->replacement, rdev);
2146 			break;
2147 		}
2148 
2149 		if (mddev->gendisk)
2150 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2151 					  rdev->data_offset << 9);
2152 
2153 		p->head_position = 0;
2154 		p->recovery_disabled = mddev->recovery_disabled - 1;
2155 		rdev->raid_disk = mirror;
2156 		err = 0;
2157 		if (rdev->saved_raid_disk != mirror)
2158 			conf->fullsync = 1;
2159 		rcu_assign_pointer(p->rdev, rdev);
2160 		break;
2161 	}
2162 
2163 	print_conf(conf);
2164 	return err;
2165 }
2166 
2167 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2168 {
2169 	struct r10conf *conf = mddev->private;
2170 	int err = 0;
2171 	int number = rdev->raid_disk;
2172 	struct md_rdev **rdevp;
2173 	struct raid10_info *p = conf->mirrors + number;
2174 
2175 	print_conf(conf);
2176 	if (rdev == p->rdev)
2177 		rdevp = &p->rdev;
2178 	else if (rdev == p->replacement)
2179 		rdevp = &p->replacement;
2180 	else
2181 		return 0;
2182 
2183 	if (test_bit(In_sync, &rdev->flags) ||
2184 	    atomic_read(&rdev->nr_pending)) {
2185 		err = -EBUSY;
2186 		goto abort;
2187 	}
2188 	/* Only remove non-faulty devices if recovery
2189 	 * is not possible.
2190 	 */
2191 	if (!test_bit(Faulty, &rdev->flags) &&
2192 	    mddev->recovery_disabled != p->recovery_disabled &&
2193 	    (!p->replacement || p->replacement == rdev) &&
2194 	    number < conf->geo.raid_disks &&
2195 	    enough(conf, -1)) {
2196 		err = -EBUSY;
2197 		goto abort;
2198 	}
2199 	*rdevp = NULL;
2200 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2201 		synchronize_rcu();
2202 		if (atomic_read(&rdev->nr_pending)) {
2203 			/* lost the race, try later */
2204 			err = -EBUSY;
2205 			*rdevp = rdev;
2206 			goto abort;
2207 		}
2208 	}
2209 	if (p->replacement) {
2210 		/* We must have just cleared 'rdev' */
2211 		p->rdev = p->replacement;
2212 		clear_bit(Replacement, &p->replacement->flags);
2213 		smp_mb(); /* Make sure other CPUs may see both as identical
2214 			   * but will never see neither -- if they are careful.
2215 			   */
2216 		p->replacement = NULL;
2217 	}
2218 
2219 	clear_bit(WantReplacement, &rdev->flags);
2220 	err = md_integrity_register(mddev);
2221 
2222 abort:
2223 
2224 	print_conf(conf);
2225 	return err;
2226 }
2227 
2228 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2229 {
2230 	struct r10conf *conf = r10_bio->mddev->private;
2231 
2232 	if (!bio->bi_status)
2233 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2234 	else
2235 		/* The write handler will notice the lack of
2236 		 * R10BIO_Uptodate and record any errors etc
2237 		 */
2238 		atomic_add(r10_bio->sectors,
2239 			   &conf->mirrors[d].rdev->corrected_errors);
2240 
2241 	/* for reconstruct, we always reschedule after a read.
2242 	 * for resync, only after all reads
2243 	 */
2244 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2245 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2246 	    atomic_dec_and_test(&r10_bio->remaining)) {
2247 		/* we have read all the blocks,
2248 		 * do the comparison in process context in raid10d
2249 		 */
2250 		reschedule_retry(r10_bio);
2251 	}
2252 }
2253 
2254 static void end_sync_read(struct bio *bio)
2255 {
2256 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2257 	struct r10conf *conf = r10_bio->mddev->private;
2258 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2259 
2260 	__end_sync_read(r10_bio, bio, d);
2261 }
2262 
2263 static void end_reshape_read(struct bio *bio)
2264 {
2265 	/* reshape read bio isn't allocated from r10buf_pool */
2266 	struct r10bio *r10_bio = bio->bi_private;
2267 
2268 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2269 }
2270 
2271 static void end_sync_request(struct r10bio *r10_bio)
2272 {
2273 	struct mddev *mddev = r10_bio->mddev;
2274 
2275 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2276 		if (r10_bio->master_bio == NULL) {
2277 			/* the primary of several recovery bios */
2278 			sector_t s = r10_bio->sectors;
2279 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2280 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2281 				reschedule_retry(r10_bio);
2282 			else
2283 				put_buf(r10_bio);
2284 			md_done_sync(mddev, s, 1);
2285 			break;
2286 		} else {
2287 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2288 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2289 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2290 				reschedule_retry(r10_bio);
2291 			else
2292 				put_buf(r10_bio);
2293 			r10_bio = r10_bio2;
2294 		}
2295 	}
2296 }
2297 
2298 static void end_sync_write(struct bio *bio)
2299 {
2300 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2301 	struct mddev *mddev = r10_bio->mddev;
2302 	struct r10conf *conf = mddev->private;
2303 	int d;
2304 	sector_t first_bad;
2305 	int bad_sectors;
2306 	int slot;
2307 	int repl;
2308 	struct md_rdev *rdev = NULL;
2309 
2310 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2311 	if (repl)
2312 		rdev = conf->mirrors[d].replacement;
2313 	else
2314 		rdev = conf->mirrors[d].rdev;
2315 
2316 	if (bio->bi_status) {
2317 		if (repl)
2318 			md_error(mddev, rdev);
2319 		else {
2320 			set_bit(WriteErrorSeen, &rdev->flags);
2321 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2322 				set_bit(MD_RECOVERY_NEEDED,
2323 					&rdev->mddev->recovery);
2324 			set_bit(R10BIO_WriteError, &r10_bio->state);
2325 		}
2326 	} else if (is_badblock(rdev,
2327 			     r10_bio->devs[slot].addr,
2328 			     r10_bio->sectors,
2329 			     &first_bad, &bad_sectors))
2330 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2331 
2332 	rdev_dec_pending(rdev, mddev);
2333 
2334 	end_sync_request(r10_bio);
2335 }
2336 
2337 /*
2338  * Note: sync and recover and handled very differently for raid10
2339  * This code is for resync.
2340  * For resync, we read through virtual addresses and read all blocks.
2341  * If there is any error, we schedule a write.  The lowest numbered
2342  * drive is authoritative.
2343  * However requests come for physical address, so we need to map.
2344  * For every physical address there are raid_disks/copies virtual addresses,
2345  * which is always are least one, but is not necessarly an integer.
2346  * This means that a physical address can span multiple chunks, so we may
2347  * have to submit multiple io requests for a single sync request.
2348  */
2349 /*
2350  * We check if all blocks are in-sync and only write to blocks that
2351  * aren't in sync
2352  */
2353 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2354 {
2355 	struct r10conf *conf = mddev->private;
2356 	int i, first;
2357 	struct bio *tbio, *fbio;
2358 	int vcnt;
2359 	struct page **tpages, **fpages;
2360 
2361 	atomic_set(&r10_bio->remaining, 1);
2362 
2363 	/* find the first device with a block */
2364 	for (i=0; i<conf->copies; i++)
2365 		if (!r10_bio->devs[i].bio->bi_status)
2366 			break;
2367 
2368 	if (i == conf->copies)
2369 		goto done;
2370 
2371 	first = i;
2372 	fbio = r10_bio->devs[i].bio;
2373 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2374 	fbio->bi_iter.bi_idx = 0;
2375 	fpages = get_resync_pages(fbio)->pages;
2376 
2377 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2378 	/* now find blocks with errors */
2379 	for (i=0 ; i < conf->copies ; i++) {
2380 		int  j, d;
2381 		struct md_rdev *rdev;
2382 		struct resync_pages *rp;
2383 
2384 		tbio = r10_bio->devs[i].bio;
2385 
2386 		if (tbio->bi_end_io != end_sync_read)
2387 			continue;
2388 		if (i == first)
2389 			continue;
2390 
2391 		tpages = get_resync_pages(tbio)->pages;
2392 		d = r10_bio->devs[i].devnum;
2393 		rdev = conf->mirrors[d].rdev;
2394 		if (!r10_bio->devs[i].bio->bi_status) {
2395 			/* We know that the bi_io_vec layout is the same for
2396 			 * both 'first' and 'i', so we just compare them.
2397 			 * All vec entries are PAGE_SIZE;
2398 			 */
2399 			int sectors = r10_bio->sectors;
2400 			for (j = 0; j < vcnt; j++) {
2401 				int len = PAGE_SIZE;
2402 				if (sectors < (len / 512))
2403 					len = sectors * 512;
2404 				if (memcmp(page_address(fpages[j]),
2405 					   page_address(tpages[j]),
2406 					   len))
2407 					break;
2408 				sectors -= len/512;
2409 			}
2410 			if (j == vcnt)
2411 				continue;
2412 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2413 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2414 				/* Don't fix anything. */
2415 				continue;
2416 		} else if (test_bit(FailFast, &rdev->flags)) {
2417 			/* Just give up on this device */
2418 			md_error(rdev->mddev, rdev);
2419 			continue;
2420 		}
2421 		/* Ok, we need to write this bio, either to correct an
2422 		 * inconsistency or to correct an unreadable block.
2423 		 * First we need to fixup bv_offset, bv_len and
2424 		 * bi_vecs, as the read request might have corrupted these
2425 		 */
2426 		rp = get_resync_pages(tbio);
2427 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2428 
2429 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2430 
2431 		rp->raid_bio = r10_bio;
2432 		tbio->bi_private = rp;
2433 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2434 		tbio->bi_end_io = end_sync_write;
2435 
2436 		bio_copy_data(tbio, fbio);
2437 
2438 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2439 		atomic_inc(&r10_bio->remaining);
2440 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2441 
2442 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2443 			tbio->bi_opf |= MD_FAILFAST;
2444 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2445 		submit_bio_noacct(tbio);
2446 	}
2447 
2448 	/* Now write out to any replacement devices
2449 	 * that are active
2450 	 */
2451 	for (i = 0; i < conf->copies; i++) {
2452 		int d;
2453 
2454 		tbio = r10_bio->devs[i].repl_bio;
2455 		if (!tbio || !tbio->bi_end_io)
2456 			continue;
2457 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2458 		    && r10_bio->devs[i].bio != fbio)
2459 			bio_copy_data(tbio, fbio);
2460 		d = r10_bio->devs[i].devnum;
2461 		atomic_inc(&r10_bio->remaining);
2462 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2463 			     bio_sectors(tbio));
2464 		submit_bio_noacct(tbio);
2465 	}
2466 
2467 done:
2468 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2469 		md_done_sync(mddev, r10_bio->sectors, 1);
2470 		put_buf(r10_bio);
2471 	}
2472 }
2473 
2474 /*
2475  * Now for the recovery code.
2476  * Recovery happens across physical sectors.
2477  * We recover all non-is_sync drives by finding the virtual address of
2478  * each, and then choose a working drive that also has that virt address.
2479  * There is a separate r10_bio for each non-in_sync drive.
2480  * Only the first two slots are in use. The first for reading,
2481  * The second for writing.
2482  *
2483  */
2484 static void fix_recovery_read_error(struct r10bio *r10_bio)
2485 {
2486 	/* We got a read error during recovery.
2487 	 * We repeat the read in smaller page-sized sections.
2488 	 * If a read succeeds, write it to the new device or record
2489 	 * a bad block if we cannot.
2490 	 * If a read fails, record a bad block on both old and
2491 	 * new devices.
2492 	 */
2493 	struct mddev *mddev = r10_bio->mddev;
2494 	struct r10conf *conf = mddev->private;
2495 	struct bio *bio = r10_bio->devs[0].bio;
2496 	sector_t sect = 0;
2497 	int sectors = r10_bio->sectors;
2498 	int idx = 0;
2499 	int dr = r10_bio->devs[0].devnum;
2500 	int dw = r10_bio->devs[1].devnum;
2501 	struct page **pages = get_resync_pages(bio)->pages;
2502 
2503 	while (sectors) {
2504 		int s = sectors;
2505 		struct md_rdev *rdev;
2506 		sector_t addr;
2507 		int ok;
2508 
2509 		if (s > (PAGE_SIZE>>9))
2510 			s = PAGE_SIZE >> 9;
2511 
2512 		rdev = conf->mirrors[dr].rdev;
2513 		addr = r10_bio->devs[0].addr + sect,
2514 		ok = sync_page_io(rdev,
2515 				  addr,
2516 				  s << 9,
2517 				  pages[idx],
2518 				  REQ_OP_READ, 0, false);
2519 		if (ok) {
2520 			rdev = conf->mirrors[dw].rdev;
2521 			addr = r10_bio->devs[1].addr + sect;
2522 			ok = sync_page_io(rdev,
2523 					  addr,
2524 					  s << 9,
2525 					  pages[idx],
2526 					  REQ_OP_WRITE, 0, false);
2527 			if (!ok) {
2528 				set_bit(WriteErrorSeen, &rdev->flags);
2529 				if (!test_and_set_bit(WantReplacement,
2530 						      &rdev->flags))
2531 					set_bit(MD_RECOVERY_NEEDED,
2532 						&rdev->mddev->recovery);
2533 			}
2534 		}
2535 		if (!ok) {
2536 			/* We don't worry if we cannot set a bad block -
2537 			 * it really is bad so there is no loss in not
2538 			 * recording it yet
2539 			 */
2540 			rdev_set_badblocks(rdev, addr, s, 0);
2541 
2542 			if (rdev != conf->mirrors[dw].rdev) {
2543 				/* need bad block on destination too */
2544 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2545 				addr = r10_bio->devs[1].addr + sect;
2546 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2547 				if (!ok) {
2548 					/* just abort the recovery */
2549 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2550 						  mdname(mddev));
2551 
2552 					conf->mirrors[dw].recovery_disabled
2553 						= mddev->recovery_disabled;
2554 					set_bit(MD_RECOVERY_INTR,
2555 						&mddev->recovery);
2556 					break;
2557 				}
2558 			}
2559 		}
2560 
2561 		sectors -= s;
2562 		sect += s;
2563 		idx++;
2564 	}
2565 }
2566 
2567 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2568 {
2569 	struct r10conf *conf = mddev->private;
2570 	int d;
2571 	struct bio *wbio, *wbio2;
2572 
2573 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2574 		fix_recovery_read_error(r10_bio);
2575 		end_sync_request(r10_bio);
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * share the pages with the first bio
2581 	 * and submit the write request
2582 	 */
2583 	d = r10_bio->devs[1].devnum;
2584 	wbio = r10_bio->devs[1].bio;
2585 	wbio2 = r10_bio->devs[1].repl_bio;
2586 	/* Need to test wbio2->bi_end_io before we call
2587 	 * submit_bio_noacct as if the former is NULL,
2588 	 * the latter is free to free wbio2.
2589 	 */
2590 	if (wbio2 && !wbio2->bi_end_io)
2591 		wbio2 = NULL;
2592 	if (wbio->bi_end_io) {
2593 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2594 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2595 		submit_bio_noacct(wbio);
2596 	}
2597 	if (wbio2) {
2598 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2599 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2600 			     bio_sectors(wbio2));
2601 		submit_bio_noacct(wbio2);
2602 	}
2603 }
2604 
2605 /*
2606  * Used by fix_read_error() to decay the per rdev read_errors.
2607  * We halve the read error count for every hour that has elapsed
2608  * since the last recorded read error.
2609  *
2610  */
2611 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2612 {
2613 	long cur_time_mon;
2614 	unsigned long hours_since_last;
2615 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2616 
2617 	cur_time_mon = ktime_get_seconds();
2618 
2619 	if (rdev->last_read_error == 0) {
2620 		/* first time we've seen a read error */
2621 		rdev->last_read_error = cur_time_mon;
2622 		return;
2623 	}
2624 
2625 	hours_since_last = (long)(cur_time_mon -
2626 			    rdev->last_read_error) / 3600;
2627 
2628 	rdev->last_read_error = cur_time_mon;
2629 
2630 	/*
2631 	 * if hours_since_last is > the number of bits in read_errors
2632 	 * just set read errors to 0. We do this to avoid
2633 	 * overflowing the shift of read_errors by hours_since_last.
2634 	 */
2635 	if (hours_since_last >= 8 * sizeof(read_errors))
2636 		atomic_set(&rdev->read_errors, 0);
2637 	else
2638 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2639 }
2640 
2641 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2642 			    int sectors, struct page *page, int rw)
2643 {
2644 	sector_t first_bad;
2645 	int bad_sectors;
2646 
2647 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2648 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2649 		return -1;
2650 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2651 		/* success */
2652 		return 1;
2653 	if (rw == WRITE) {
2654 		set_bit(WriteErrorSeen, &rdev->flags);
2655 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2656 			set_bit(MD_RECOVERY_NEEDED,
2657 				&rdev->mddev->recovery);
2658 	}
2659 	/* need to record an error - either for the block or the device */
2660 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2661 		md_error(rdev->mddev, rdev);
2662 	return 0;
2663 }
2664 
2665 /*
2666  * This is a kernel thread which:
2667  *
2668  *	1.	Retries failed read operations on working mirrors.
2669  *	2.	Updates the raid superblock when problems encounter.
2670  *	3.	Performs writes following reads for array synchronising.
2671  */
2672 
2673 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2674 {
2675 	int sect = 0; /* Offset from r10_bio->sector */
2676 	int sectors = r10_bio->sectors;
2677 	struct md_rdev *rdev;
2678 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2679 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2680 
2681 	/* still own a reference to this rdev, so it cannot
2682 	 * have been cleared recently.
2683 	 */
2684 	rdev = conf->mirrors[d].rdev;
2685 
2686 	if (test_bit(Faulty, &rdev->flags))
2687 		/* drive has already been failed, just ignore any
2688 		   more fix_read_error() attempts */
2689 		return;
2690 
2691 	check_decay_read_errors(mddev, rdev);
2692 	atomic_inc(&rdev->read_errors);
2693 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2694 		char b[BDEVNAME_SIZE];
2695 		bdevname(rdev->bdev, b);
2696 
2697 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2698 			  mdname(mddev), b,
2699 			  atomic_read(&rdev->read_errors), max_read_errors);
2700 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2701 			  mdname(mddev), b);
2702 		md_error(mddev, rdev);
2703 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2704 		return;
2705 	}
2706 
2707 	while(sectors) {
2708 		int s = sectors;
2709 		int sl = r10_bio->read_slot;
2710 		int success = 0;
2711 		int start;
2712 
2713 		if (s > (PAGE_SIZE>>9))
2714 			s = PAGE_SIZE >> 9;
2715 
2716 		rcu_read_lock();
2717 		do {
2718 			sector_t first_bad;
2719 			int bad_sectors;
2720 
2721 			d = r10_bio->devs[sl].devnum;
2722 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2723 			if (rdev &&
2724 			    test_bit(In_sync, &rdev->flags) &&
2725 			    !test_bit(Faulty, &rdev->flags) &&
2726 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2727 					&first_bad, &bad_sectors) == 0) {
2728 				atomic_inc(&rdev->nr_pending);
2729 				rcu_read_unlock();
2730 				success = sync_page_io(rdev,
2731 						       r10_bio->devs[sl].addr +
2732 						       sect,
2733 						       s<<9,
2734 						       conf->tmppage,
2735 						       REQ_OP_READ, 0, false);
2736 				rdev_dec_pending(rdev, mddev);
2737 				rcu_read_lock();
2738 				if (success)
2739 					break;
2740 			}
2741 			sl++;
2742 			if (sl == conf->copies)
2743 				sl = 0;
2744 		} while (!success && sl != r10_bio->read_slot);
2745 		rcu_read_unlock();
2746 
2747 		if (!success) {
2748 			/* Cannot read from anywhere, just mark the block
2749 			 * as bad on the first device to discourage future
2750 			 * reads.
2751 			 */
2752 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2753 			rdev = conf->mirrors[dn].rdev;
2754 
2755 			if (!rdev_set_badblocks(
2756 				    rdev,
2757 				    r10_bio->devs[r10_bio->read_slot].addr
2758 				    + sect,
2759 				    s, 0)) {
2760 				md_error(mddev, rdev);
2761 				r10_bio->devs[r10_bio->read_slot].bio
2762 					= IO_BLOCKED;
2763 			}
2764 			break;
2765 		}
2766 
2767 		start = sl;
2768 		/* write it back and re-read */
2769 		rcu_read_lock();
2770 		while (sl != r10_bio->read_slot) {
2771 			char b[BDEVNAME_SIZE];
2772 
2773 			if (sl==0)
2774 				sl = conf->copies;
2775 			sl--;
2776 			d = r10_bio->devs[sl].devnum;
2777 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2778 			if (!rdev ||
2779 			    test_bit(Faulty, &rdev->flags) ||
2780 			    !test_bit(In_sync, &rdev->flags))
2781 				continue;
2782 
2783 			atomic_inc(&rdev->nr_pending);
2784 			rcu_read_unlock();
2785 			if (r10_sync_page_io(rdev,
2786 					     r10_bio->devs[sl].addr +
2787 					     sect,
2788 					     s, conf->tmppage, WRITE)
2789 			    == 0) {
2790 				/* Well, this device is dead */
2791 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2792 					  mdname(mddev), s,
2793 					  (unsigned long long)(
2794 						  sect +
2795 						  choose_data_offset(r10_bio,
2796 								     rdev)),
2797 					  bdevname(rdev->bdev, b));
2798 				pr_notice("md/raid10:%s: %s: failing drive\n",
2799 					  mdname(mddev),
2800 					  bdevname(rdev->bdev, b));
2801 			}
2802 			rdev_dec_pending(rdev, mddev);
2803 			rcu_read_lock();
2804 		}
2805 		sl = start;
2806 		while (sl != r10_bio->read_slot) {
2807 			char b[BDEVNAME_SIZE];
2808 
2809 			if (sl==0)
2810 				sl = conf->copies;
2811 			sl--;
2812 			d = r10_bio->devs[sl].devnum;
2813 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2814 			if (!rdev ||
2815 			    test_bit(Faulty, &rdev->flags) ||
2816 			    !test_bit(In_sync, &rdev->flags))
2817 				continue;
2818 
2819 			atomic_inc(&rdev->nr_pending);
2820 			rcu_read_unlock();
2821 			switch (r10_sync_page_io(rdev,
2822 					     r10_bio->devs[sl].addr +
2823 					     sect,
2824 					     s, conf->tmppage,
2825 						 READ)) {
2826 			case 0:
2827 				/* Well, this device is dead */
2828 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2829 				       mdname(mddev), s,
2830 				       (unsigned long long)(
2831 					       sect +
2832 					       choose_data_offset(r10_bio, rdev)),
2833 				       bdevname(rdev->bdev, b));
2834 				pr_notice("md/raid10:%s: %s: failing drive\n",
2835 				       mdname(mddev),
2836 				       bdevname(rdev->bdev, b));
2837 				break;
2838 			case 1:
2839 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2840 				       mdname(mddev), s,
2841 				       (unsigned long long)(
2842 					       sect +
2843 					       choose_data_offset(r10_bio, rdev)),
2844 				       bdevname(rdev->bdev, b));
2845 				atomic_add(s, &rdev->corrected_errors);
2846 			}
2847 
2848 			rdev_dec_pending(rdev, mddev);
2849 			rcu_read_lock();
2850 		}
2851 		rcu_read_unlock();
2852 
2853 		sectors -= s;
2854 		sect += s;
2855 	}
2856 }
2857 
2858 static int narrow_write_error(struct r10bio *r10_bio, int i)
2859 {
2860 	struct bio *bio = r10_bio->master_bio;
2861 	struct mddev *mddev = r10_bio->mddev;
2862 	struct r10conf *conf = mddev->private;
2863 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2864 	/* bio has the data to be written to slot 'i' where
2865 	 * we just recently had a write error.
2866 	 * We repeatedly clone the bio and trim down to one block,
2867 	 * then try the write.  Where the write fails we record
2868 	 * a bad block.
2869 	 * It is conceivable that the bio doesn't exactly align with
2870 	 * blocks.  We must handle this.
2871 	 *
2872 	 * We currently own a reference to the rdev.
2873 	 */
2874 
2875 	int block_sectors;
2876 	sector_t sector;
2877 	int sectors;
2878 	int sect_to_write = r10_bio->sectors;
2879 	int ok = 1;
2880 
2881 	if (rdev->badblocks.shift < 0)
2882 		return 0;
2883 
2884 	block_sectors = roundup(1 << rdev->badblocks.shift,
2885 				bdev_logical_block_size(rdev->bdev) >> 9);
2886 	sector = r10_bio->sector;
2887 	sectors = ((r10_bio->sector + block_sectors)
2888 		   & ~(sector_t)(block_sectors - 1))
2889 		- sector;
2890 
2891 	while (sect_to_write) {
2892 		struct bio *wbio;
2893 		sector_t wsector;
2894 		if (sectors > sect_to_write)
2895 			sectors = sect_to_write;
2896 		/* Write at 'sector' for 'sectors' */
2897 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2898 				       &mddev->bio_set);
2899 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2900 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2901 		wbio->bi_iter.bi_sector = wsector +
2902 				   choose_data_offset(r10_bio, rdev);
2903 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2904 
2905 		if (submit_bio_wait(wbio) < 0)
2906 			/* Failure! */
2907 			ok = rdev_set_badblocks(rdev, wsector,
2908 						sectors, 0)
2909 				&& ok;
2910 
2911 		bio_put(wbio);
2912 		sect_to_write -= sectors;
2913 		sector += sectors;
2914 		sectors = block_sectors;
2915 	}
2916 	return ok;
2917 }
2918 
2919 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2920 {
2921 	int slot = r10_bio->read_slot;
2922 	struct bio *bio;
2923 	struct r10conf *conf = mddev->private;
2924 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2925 
2926 	/* we got a read error. Maybe the drive is bad.  Maybe just
2927 	 * the block and we can fix it.
2928 	 * We freeze all other IO, and try reading the block from
2929 	 * other devices.  When we find one, we re-write
2930 	 * and check it that fixes the read error.
2931 	 * This is all done synchronously while the array is
2932 	 * frozen.
2933 	 */
2934 	bio = r10_bio->devs[slot].bio;
2935 	bio_put(bio);
2936 	r10_bio->devs[slot].bio = NULL;
2937 
2938 	if (mddev->ro)
2939 		r10_bio->devs[slot].bio = IO_BLOCKED;
2940 	else if (!test_bit(FailFast, &rdev->flags)) {
2941 		freeze_array(conf, 1);
2942 		fix_read_error(conf, mddev, r10_bio);
2943 		unfreeze_array(conf);
2944 	} else
2945 		md_error(mddev, rdev);
2946 
2947 	rdev_dec_pending(rdev, mddev);
2948 	allow_barrier(conf);
2949 	r10_bio->state = 0;
2950 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2951 }
2952 
2953 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2954 {
2955 	/* Some sort of write request has finished and it
2956 	 * succeeded in writing where we thought there was a
2957 	 * bad block.  So forget the bad block.
2958 	 * Or possibly if failed and we need to record
2959 	 * a bad block.
2960 	 */
2961 	int m;
2962 	struct md_rdev *rdev;
2963 
2964 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2965 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2966 		for (m = 0; m < conf->copies; m++) {
2967 			int dev = r10_bio->devs[m].devnum;
2968 			rdev = conf->mirrors[dev].rdev;
2969 			if (r10_bio->devs[m].bio == NULL ||
2970 				r10_bio->devs[m].bio->bi_end_io == NULL)
2971 				continue;
2972 			if (!r10_bio->devs[m].bio->bi_status) {
2973 				rdev_clear_badblocks(
2974 					rdev,
2975 					r10_bio->devs[m].addr,
2976 					r10_bio->sectors, 0);
2977 			} else {
2978 				if (!rdev_set_badblocks(
2979 					    rdev,
2980 					    r10_bio->devs[m].addr,
2981 					    r10_bio->sectors, 0))
2982 					md_error(conf->mddev, rdev);
2983 			}
2984 			rdev = conf->mirrors[dev].replacement;
2985 			if (r10_bio->devs[m].repl_bio == NULL ||
2986 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2987 				continue;
2988 
2989 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2990 				rdev_clear_badblocks(
2991 					rdev,
2992 					r10_bio->devs[m].addr,
2993 					r10_bio->sectors, 0);
2994 			} else {
2995 				if (!rdev_set_badblocks(
2996 					    rdev,
2997 					    r10_bio->devs[m].addr,
2998 					    r10_bio->sectors, 0))
2999 					md_error(conf->mddev, rdev);
3000 			}
3001 		}
3002 		put_buf(r10_bio);
3003 	} else {
3004 		bool fail = false;
3005 		for (m = 0; m < conf->copies; m++) {
3006 			int dev = r10_bio->devs[m].devnum;
3007 			struct bio *bio = r10_bio->devs[m].bio;
3008 			rdev = conf->mirrors[dev].rdev;
3009 			if (bio == IO_MADE_GOOD) {
3010 				rdev_clear_badblocks(
3011 					rdev,
3012 					r10_bio->devs[m].addr,
3013 					r10_bio->sectors, 0);
3014 				rdev_dec_pending(rdev, conf->mddev);
3015 			} else if (bio != NULL && bio->bi_status) {
3016 				fail = true;
3017 				if (!narrow_write_error(r10_bio, m)) {
3018 					md_error(conf->mddev, rdev);
3019 					set_bit(R10BIO_Degraded,
3020 						&r10_bio->state);
3021 				}
3022 				rdev_dec_pending(rdev, conf->mddev);
3023 			}
3024 			bio = r10_bio->devs[m].repl_bio;
3025 			rdev = conf->mirrors[dev].replacement;
3026 			if (rdev && bio == IO_MADE_GOOD) {
3027 				rdev_clear_badblocks(
3028 					rdev,
3029 					r10_bio->devs[m].addr,
3030 					r10_bio->sectors, 0);
3031 				rdev_dec_pending(rdev, conf->mddev);
3032 			}
3033 		}
3034 		if (fail) {
3035 			spin_lock_irq(&conf->device_lock);
3036 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3037 			conf->nr_queued++;
3038 			spin_unlock_irq(&conf->device_lock);
3039 			/*
3040 			 * In case freeze_array() is waiting for condition
3041 			 * nr_pending == nr_queued + extra to be true.
3042 			 */
3043 			wake_up(&conf->wait_barrier);
3044 			md_wakeup_thread(conf->mddev->thread);
3045 		} else {
3046 			if (test_bit(R10BIO_WriteError,
3047 				     &r10_bio->state))
3048 				close_write(r10_bio);
3049 			raid_end_bio_io(r10_bio);
3050 		}
3051 	}
3052 }
3053 
3054 static void raid10d(struct md_thread *thread)
3055 {
3056 	struct mddev *mddev = thread->mddev;
3057 	struct r10bio *r10_bio;
3058 	unsigned long flags;
3059 	struct r10conf *conf = mddev->private;
3060 	struct list_head *head = &conf->retry_list;
3061 	struct blk_plug plug;
3062 
3063 	md_check_recovery(mddev);
3064 
3065 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3066 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3067 		LIST_HEAD(tmp);
3068 		spin_lock_irqsave(&conf->device_lock, flags);
3069 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3070 			while (!list_empty(&conf->bio_end_io_list)) {
3071 				list_move(conf->bio_end_io_list.prev, &tmp);
3072 				conf->nr_queued--;
3073 			}
3074 		}
3075 		spin_unlock_irqrestore(&conf->device_lock, flags);
3076 		while (!list_empty(&tmp)) {
3077 			r10_bio = list_first_entry(&tmp, struct r10bio,
3078 						   retry_list);
3079 			list_del(&r10_bio->retry_list);
3080 			if (mddev->degraded)
3081 				set_bit(R10BIO_Degraded, &r10_bio->state);
3082 
3083 			if (test_bit(R10BIO_WriteError,
3084 				     &r10_bio->state))
3085 				close_write(r10_bio);
3086 			raid_end_bio_io(r10_bio);
3087 		}
3088 	}
3089 
3090 	blk_start_plug(&plug);
3091 	for (;;) {
3092 
3093 		flush_pending_writes(conf);
3094 
3095 		spin_lock_irqsave(&conf->device_lock, flags);
3096 		if (list_empty(head)) {
3097 			spin_unlock_irqrestore(&conf->device_lock, flags);
3098 			break;
3099 		}
3100 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3101 		list_del(head->prev);
3102 		conf->nr_queued--;
3103 		spin_unlock_irqrestore(&conf->device_lock, flags);
3104 
3105 		mddev = r10_bio->mddev;
3106 		conf = mddev->private;
3107 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3108 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3109 			handle_write_completed(conf, r10_bio);
3110 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3111 			reshape_request_write(mddev, r10_bio);
3112 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3113 			sync_request_write(mddev, r10_bio);
3114 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3115 			recovery_request_write(mddev, r10_bio);
3116 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3117 			handle_read_error(mddev, r10_bio);
3118 		else
3119 			WARN_ON_ONCE(1);
3120 
3121 		cond_resched();
3122 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3123 			md_check_recovery(mddev);
3124 	}
3125 	blk_finish_plug(&plug);
3126 }
3127 
3128 static int init_resync(struct r10conf *conf)
3129 {
3130 	int ret, buffs, i;
3131 
3132 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3133 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3134 	conf->have_replacement = 0;
3135 	for (i = 0; i < conf->geo.raid_disks; i++)
3136 		if (conf->mirrors[i].replacement)
3137 			conf->have_replacement = 1;
3138 	ret = mempool_init(&conf->r10buf_pool, buffs,
3139 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3140 	if (ret)
3141 		return ret;
3142 	conf->next_resync = 0;
3143 	return 0;
3144 }
3145 
3146 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3147 {
3148 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3149 	struct rsync_pages *rp;
3150 	struct bio *bio;
3151 	int nalloc;
3152 	int i;
3153 
3154 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3155 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3156 		nalloc = conf->copies; /* resync */
3157 	else
3158 		nalloc = 2; /* recovery */
3159 
3160 	for (i = 0; i < nalloc; i++) {
3161 		bio = r10bio->devs[i].bio;
3162 		rp = bio->bi_private;
3163 		bio_reset(bio, NULL, 0);
3164 		bio->bi_private = rp;
3165 		bio = r10bio->devs[i].repl_bio;
3166 		if (bio) {
3167 			rp = bio->bi_private;
3168 			bio_reset(bio, NULL, 0);
3169 			bio->bi_private = rp;
3170 		}
3171 	}
3172 	return r10bio;
3173 }
3174 
3175 /*
3176  * Set cluster_sync_high since we need other nodes to add the
3177  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3178  */
3179 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3180 {
3181 	sector_t window_size;
3182 	int extra_chunk, chunks;
3183 
3184 	/*
3185 	 * First, here we define "stripe" as a unit which across
3186 	 * all member devices one time, so we get chunks by use
3187 	 * raid_disks / near_copies. Otherwise, if near_copies is
3188 	 * close to raid_disks, then resync window could increases
3189 	 * linearly with the increase of raid_disks, which means
3190 	 * we will suspend a really large IO window while it is not
3191 	 * necessary. If raid_disks is not divisible by near_copies,
3192 	 * an extra chunk is needed to ensure the whole "stripe" is
3193 	 * covered.
3194 	 */
3195 
3196 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3197 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3198 		extra_chunk = 0;
3199 	else
3200 		extra_chunk = 1;
3201 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3202 
3203 	/*
3204 	 * At least use a 32M window to align with raid1's resync window
3205 	 */
3206 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3207 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3208 
3209 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3210 }
3211 
3212 /*
3213  * perform a "sync" on one "block"
3214  *
3215  * We need to make sure that no normal I/O request - particularly write
3216  * requests - conflict with active sync requests.
3217  *
3218  * This is achieved by tracking pending requests and a 'barrier' concept
3219  * that can be installed to exclude normal IO requests.
3220  *
3221  * Resync and recovery are handled very differently.
3222  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3223  *
3224  * For resync, we iterate over virtual addresses, read all copies,
3225  * and update if there are differences.  If only one copy is live,
3226  * skip it.
3227  * For recovery, we iterate over physical addresses, read a good
3228  * value for each non-in_sync drive, and over-write.
3229  *
3230  * So, for recovery we may have several outstanding complex requests for a
3231  * given address, one for each out-of-sync device.  We model this by allocating
3232  * a number of r10_bio structures, one for each out-of-sync device.
3233  * As we setup these structures, we collect all bio's together into a list
3234  * which we then process collectively to add pages, and then process again
3235  * to pass to submit_bio_noacct.
3236  *
3237  * The r10_bio structures are linked using a borrowed master_bio pointer.
3238  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3239  * has its remaining count decremented to 0, the whole complex operation
3240  * is complete.
3241  *
3242  */
3243 
3244 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3245 			     int *skipped)
3246 {
3247 	struct r10conf *conf = mddev->private;
3248 	struct r10bio *r10_bio;
3249 	struct bio *biolist = NULL, *bio;
3250 	sector_t max_sector, nr_sectors;
3251 	int i;
3252 	int max_sync;
3253 	sector_t sync_blocks;
3254 	sector_t sectors_skipped = 0;
3255 	int chunks_skipped = 0;
3256 	sector_t chunk_mask = conf->geo.chunk_mask;
3257 	int page_idx = 0;
3258 
3259 	if (!mempool_initialized(&conf->r10buf_pool))
3260 		if (init_resync(conf))
3261 			return 0;
3262 
3263 	/*
3264 	 * Allow skipping a full rebuild for incremental assembly
3265 	 * of a clean array, like RAID1 does.
3266 	 */
3267 	if (mddev->bitmap == NULL &&
3268 	    mddev->recovery_cp == MaxSector &&
3269 	    mddev->reshape_position == MaxSector &&
3270 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3271 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3272 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3273 	    conf->fullsync == 0) {
3274 		*skipped = 1;
3275 		return mddev->dev_sectors - sector_nr;
3276 	}
3277 
3278  skipped:
3279 	max_sector = mddev->dev_sectors;
3280 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3281 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3282 		max_sector = mddev->resync_max_sectors;
3283 	if (sector_nr >= max_sector) {
3284 		conf->cluster_sync_low = 0;
3285 		conf->cluster_sync_high = 0;
3286 
3287 		/* If we aborted, we need to abort the
3288 		 * sync on the 'current' bitmap chucks (there can
3289 		 * be several when recovering multiple devices).
3290 		 * as we may have started syncing it but not finished.
3291 		 * We can find the current address in
3292 		 * mddev->curr_resync, but for recovery,
3293 		 * we need to convert that to several
3294 		 * virtual addresses.
3295 		 */
3296 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3297 			end_reshape(conf);
3298 			close_sync(conf);
3299 			return 0;
3300 		}
3301 
3302 		if (mddev->curr_resync < max_sector) { /* aborted */
3303 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3304 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3305 						   &sync_blocks, 1);
3306 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3307 				sector_t sect =
3308 					raid10_find_virt(conf, mddev->curr_resync, i);
3309 				md_bitmap_end_sync(mddev->bitmap, sect,
3310 						   &sync_blocks, 1);
3311 			}
3312 		} else {
3313 			/* completed sync */
3314 			if ((!mddev->bitmap || conf->fullsync)
3315 			    && conf->have_replacement
3316 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3317 				/* Completed a full sync so the replacements
3318 				 * are now fully recovered.
3319 				 */
3320 				rcu_read_lock();
3321 				for (i = 0; i < conf->geo.raid_disks; i++) {
3322 					struct md_rdev *rdev =
3323 						rcu_dereference(conf->mirrors[i].replacement);
3324 					if (rdev)
3325 						rdev->recovery_offset = MaxSector;
3326 				}
3327 				rcu_read_unlock();
3328 			}
3329 			conf->fullsync = 0;
3330 		}
3331 		md_bitmap_close_sync(mddev->bitmap);
3332 		close_sync(conf);
3333 		*skipped = 1;
3334 		return sectors_skipped;
3335 	}
3336 
3337 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3338 		return reshape_request(mddev, sector_nr, skipped);
3339 
3340 	if (chunks_skipped >= conf->geo.raid_disks) {
3341 		/* if there has been nothing to do on any drive,
3342 		 * then there is nothing to do at all..
3343 		 */
3344 		*skipped = 1;
3345 		return (max_sector - sector_nr) + sectors_skipped;
3346 	}
3347 
3348 	if (max_sector > mddev->resync_max)
3349 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3350 
3351 	/* make sure whole request will fit in a chunk - if chunks
3352 	 * are meaningful
3353 	 */
3354 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3355 	    max_sector > (sector_nr | chunk_mask))
3356 		max_sector = (sector_nr | chunk_mask) + 1;
3357 
3358 	/*
3359 	 * If there is non-resync activity waiting for a turn, then let it
3360 	 * though before starting on this new sync request.
3361 	 */
3362 	if (conf->nr_waiting)
3363 		schedule_timeout_uninterruptible(1);
3364 
3365 	/* Again, very different code for resync and recovery.
3366 	 * Both must result in an r10bio with a list of bios that
3367 	 * have bi_end_io, bi_sector, bi_bdev set,
3368 	 * and bi_private set to the r10bio.
3369 	 * For recovery, we may actually create several r10bios
3370 	 * with 2 bios in each, that correspond to the bios in the main one.
3371 	 * In this case, the subordinate r10bios link back through a
3372 	 * borrowed master_bio pointer, and the counter in the master
3373 	 * includes a ref from each subordinate.
3374 	 */
3375 	/* First, we decide what to do and set ->bi_end_io
3376 	 * To end_sync_read if we want to read, and
3377 	 * end_sync_write if we will want to write.
3378 	 */
3379 
3380 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3381 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3382 		/* recovery... the complicated one */
3383 		int j;
3384 		r10_bio = NULL;
3385 
3386 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3387 			int still_degraded;
3388 			struct r10bio *rb2;
3389 			sector_t sect;
3390 			int must_sync;
3391 			int any_working;
3392 			int need_recover = 0;
3393 			int need_replace = 0;
3394 			struct raid10_info *mirror = &conf->mirrors[i];
3395 			struct md_rdev *mrdev, *mreplace;
3396 
3397 			rcu_read_lock();
3398 			mrdev = rcu_dereference(mirror->rdev);
3399 			mreplace = rcu_dereference(mirror->replacement);
3400 
3401 			if (mrdev != NULL &&
3402 			    !test_bit(Faulty, &mrdev->flags) &&
3403 			    !test_bit(In_sync, &mrdev->flags))
3404 				need_recover = 1;
3405 			if (mreplace != NULL &&
3406 			    !test_bit(Faulty, &mreplace->flags))
3407 				need_replace = 1;
3408 
3409 			if (!need_recover && !need_replace) {
3410 				rcu_read_unlock();
3411 				continue;
3412 			}
3413 
3414 			still_degraded = 0;
3415 			/* want to reconstruct this device */
3416 			rb2 = r10_bio;
3417 			sect = raid10_find_virt(conf, sector_nr, i);
3418 			if (sect >= mddev->resync_max_sectors) {
3419 				/* last stripe is not complete - don't
3420 				 * try to recover this sector.
3421 				 */
3422 				rcu_read_unlock();
3423 				continue;
3424 			}
3425 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3426 				mreplace = NULL;
3427 			/* Unless we are doing a full sync, or a replacement
3428 			 * we only need to recover the block if it is set in
3429 			 * the bitmap
3430 			 */
3431 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3432 							 &sync_blocks, 1);
3433 			if (sync_blocks < max_sync)
3434 				max_sync = sync_blocks;
3435 			if (!must_sync &&
3436 			    mreplace == NULL &&
3437 			    !conf->fullsync) {
3438 				/* yep, skip the sync_blocks here, but don't assume
3439 				 * that there will never be anything to do here
3440 				 */
3441 				chunks_skipped = -1;
3442 				rcu_read_unlock();
3443 				continue;
3444 			}
3445 			atomic_inc(&mrdev->nr_pending);
3446 			if (mreplace)
3447 				atomic_inc(&mreplace->nr_pending);
3448 			rcu_read_unlock();
3449 
3450 			r10_bio = raid10_alloc_init_r10buf(conf);
3451 			r10_bio->state = 0;
3452 			raise_barrier(conf, rb2 != NULL);
3453 			atomic_set(&r10_bio->remaining, 0);
3454 
3455 			r10_bio->master_bio = (struct bio*)rb2;
3456 			if (rb2)
3457 				atomic_inc(&rb2->remaining);
3458 			r10_bio->mddev = mddev;
3459 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3460 			r10_bio->sector = sect;
3461 
3462 			raid10_find_phys(conf, r10_bio);
3463 
3464 			/* Need to check if the array will still be
3465 			 * degraded
3466 			 */
3467 			rcu_read_lock();
3468 			for (j = 0; j < conf->geo.raid_disks; j++) {
3469 				struct md_rdev *rdev = rcu_dereference(
3470 					conf->mirrors[j].rdev);
3471 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3472 					still_degraded = 1;
3473 					break;
3474 				}
3475 			}
3476 
3477 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3478 							 &sync_blocks, still_degraded);
3479 
3480 			any_working = 0;
3481 			for (j=0; j<conf->copies;j++) {
3482 				int k;
3483 				int d = r10_bio->devs[j].devnum;
3484 				sector_t from_addr, to_addr;
3485 				struct md_rdev *rdev =
3486 					rcu_dereference(conf->mirrors[d].rdev);
3487 				sector_t sector, first_bad;
3488 				int bad_sectors;
3489 				if (!rdev ||
3490 				    !test_bit(In_sync, &rdev->flags))
3491 					continue;
3492 				/* This is where we read from */
3493 				any_working = 1;
3494 				sector = r10_bio->devs[j].addr;
3495 
3496 				if (is_badblock(rdev, sector, max_sync,
3497 						&first_bad, &bad_sectors)) {
3498 					if (first_bad > sector)
3499 						max_sync = first_bad - sector;
3500 					else {
3501 						bad_sectors -= (sector
3502 								- first_bad);
3503 						if (max_sync > bad_sectors)
3504 							max_sync = bad_sectors;
3505 						continue;
3506 					}
3507 				}
3508 				bio = r10_bio->devs[0].bio;
3509 				bio->bi_next = biolist;
3510 				biolist = bio;
3511 				bio->bi_end_io = end_sync_read;
3512 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3513 				if (test_bit(FailFast, &rdev->flags))
3514 					bio->bi_opf |= MD_FAILFAST;
3515 				from_addr = r10_bio->devs[j].addr;
3516 				bio->bi_iter.bi_sector = from_addr +
3517 					rdev->data_offset;
3518 				bio_set_dev(bio, rdev->bdev);
3519 				atomic_inc(&rdev->nr_pending);
3520 				/* and we write to 'i' (if not in_sync) */
3521 
3522 				for (k=0; k<conf->copies; k++)
3523 					if (r10_bio->devs[k].devnum == i)
3524 						break;
3525 				BUG_ON(k == conf->copies);
3526 				to_addr = r10_bio->devs[k].addr;
3527 				r10_bio->devs[0].devnum = d;
3528 				r10_bio->devs[0].addr = from_addr;
3529 				r10_bio->devs[1].devnum = i;
3530 				r10_bio->devs[1].addr = to_addr;
3531 
3532 				if (need_recover) {
3533 					bio = r10_bio->devs[1].bio;
3534 					bio->bi_next = biolist;
3535 					biolist = bio;
3536 					bio->bi_end_io = end_sync_write;
3537 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3538 					bio->bi_iter.bi_sector = to_addr
3539 						+ mrdev->data_offset;
3540 					bio_set_dev(bio, mrdev->bdev);
3541 					atomic_inc(&r10_bio->remaining);
3542 				} else
3543 					r10_bio->devs[1].bio->bi_end_io = NULL;
3544 
3545 				/* and maybe write to replacement */
3546 				bio = r10_bio->devs[1].repl_bio;
3547 				if (bio)
3548 					bio->bi_end_io = NULL;
3549 				/* Note: if need_replace, then bio
3550 				 * cannot be NULL as r10buf_pool_alloc will
3551 				 * have allocated it.
3552 				 */
3553 				if (!need_replace)
3554 					break;
3555 				bio->bi_next = biolist;
3556 				biolist = bio;
3557 				bio->bi_end_io = end_sync_write;
3558 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3559 				bio->bi_iter.bi_sector = to_addr +
3560 					mreplace->data_offset;
3561 				bio_set_dev(bio, mreplace->bdev);
3562 				atomic_inc(&r10_bio->remaining);
3563 				break;
3564 			}
3565 			rcu_read_unlock();
3566 			if (j == conf->copies) {
3567 				/* Cannot recover, so abort the recovery or
3568 				 * record a bad block */
3569 				if (any_working) {
3570 					/* problem is that there are bad blocks
3571 					 * on other device(s)
3572 					 */
3573 					int k;
3574 					for (k = 0; k < conf->copies; k++)
3575 						if (r10_bio->devs[k].devnum == i)
3576 							break;
3577 					if (!test_bit(In_sync,
3578 						      &mrdev->flags)
3579 					    && !rdev_set_badblocks(
3580 						    mrdev,
3581 						    r10_bio->devs[k].addr,
3582 						    max_sync, 0))
3583 						any_working = 0;
3584 					if (mreplace &&
3585 					    !rdev_set_badblocks(
3586 						    mreplace,
3587 						    r10_bio->devs[k].addr,
3588 						    max_sync, 0))
3589 						any_working = 0;
3590 				}
3591 				if (!any_working)  {
3592 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3593 							      &mddev->recovery))
3594 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3595 						       mdname(mddev));
3596 					mirror->recovery_disabled
3597 						= mddev->recovery_disabled;
3598 				}
3599 				put_buf(r10_bio);
3600 				if (rb2)
3601 					atomic_dec(&rb2->remaining);
3602 				r10_bio = rb2;
3603 				rdev_dec_pending(mrdev, mddev);
3604 				if (mreplace)
3605 					rdev_dec_pending(mreplace, mddev);
3606 				break;
3607 			}
3608 			rdev_dec_pending(mrdev, mddev);
3609 			if (mreplace)
3610 				rdev_dec_pending(mreplace, mddev);
3611 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3612 				/* Only want this if there is elsewhere to
3613 				 * read from. 'j' is currently the first
3614 				 * readable copy.
3615 				 */
3616 				int targets = 1;
3617 				for (; j < conf->copies; j++) {
3618 					int d = r10_bio->devs[j].devnum;
3619 					if (conf->mirrors[d].rdev &&
3620 					    test_bit(In_sync,
3621 						      &conf->mirrors[d].rdev->flags))
3622 						targets++;
3623 				}
3624 				if (targets == 1)
3625 					r10_bio->devs[0].bio->bi_opf
3626 						&= ~MD_FAILFAST;
3627 			}
3628 		}
3629 		if (biolist == NULL) {
3630 			while (r10_bio) {
3631 				struct r10bio *rb2 = r10_bio;
3632 				r10_bio = (struct r10bio*) rb2->master_bio;
3633 				rb2->master_bio = NULL;
3634 				put_buf(rb2);
3635 			}
3636 			goto giveup;
3637 		}
3638 	} else {
3639 		/* resync. Schedule a read for every block at this virt offset */
3640 		int count = 0;
3641 
3642 		/*
3643 		 * Since curr_resync_completed could probably not update in
3644 		 * time, and we will set cluster_sync_low based on it.
3645 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3646 		 * safety reason, which ensures curr_resync_completed is
3647 		 * updated in bitmap_cond_end_sync.
3648 		 */
3649 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3650 					mddev_is_clustered(mddev) &&
3651 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3652 
3653 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3654 					  &sync_blocks, mddev->degraded) &&
3655 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3656 						 &mddev->recovery)) {
3657 			/* We can skip this block */
3658 			*skipped = 1;
3659 			return sync_blocks + sectors_skipped;
3660 		}
3661 		if (sync_blocks < max_sync)
3662 			max_sync = sync_blocks;
3663 		r10_bio = raid10_alloc_init_r10buf(conf);
3664 		r10_bio->state = 0;
3665 
3666 		r10_bio->mddev = mddev;
3667 		atomic_set(&r10_bio->remaining, 0);
3668 		raise_barrier(conf, 0);
3669 		conf->next_resync = sector_nr;
3670 
3671 		r10_bio->master_bio = NULL;
3672 		r10_bio->sector = sector_nr;
3673 		set_bit(R10BIO_IsSync, &r10_bio->state);
3674 		raid10_find_phys(conf, r10_bio);
3675 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3676 
3677 		for (i = 0; i < conf->copies; i++) {
3678 			int d = r10_bio->devs[i].devnum;
3679 			sector_t first_bad, sector;
3680 			int bad_sectors;
3681 			struct md_rdev *rdev;
3682 
3683 			if (r10_bio->devs[i].repl_bio)
3684 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3685 
3686 			bio = r10_bio->devs[i].bio;
3687 			bio->bi_status = BLK_STS_IOERR;
3688 			rcu_read_lock();
3689 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3690 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3691 				rcu_read_unlock();
3692 				continue;
3693 			}
3694 			sector = r10_bio->devs[i].addr;
3695 			if (is_badblock(rdev, sector, max_sync,
3696 					&first_bad, &bad_sectors)) {
3697 				if (first_bad > sector)
3698 					max_sync = first_bad - sector;
3699 				else {
3700 					bad_sectors -= (sector - first_bad);
3701 					if (max_sync > bad_sectors)
3702 						max_sync = bad_sectors;
3703 					rcu_read_unlock();
3704 					continue;
3705 				}
3706 			}
3707 			atomic_inc(&rdev->nr_pending);
3708 			atomic_inc(&r10_bio->remaining);
3709 			bio->bi_next = biolist;
3710 			biolist = bio;
3711 			bio->bi_end_io = end_sync_read;
3712 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3713 			if (test_bit(FailFast, &rdev->flags))
3714 				bio->bi_opf |= MD_FAILFAST;
3715 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3716 			bio_set_dev(bio, rdev->bdev);
3717 			count++;
3718 
3719 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3720 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3721 				rcu_read_unlock();
3722 				continue;
3723 			}
3724 			atomic_inc(&rdev->nr_pending);
3725 
3726 			/* Need to set up for writing to the replacement */
3727 			bio = r10_bio->devs[i].repl_bio;
3728 			bio->bi_status = BLK_STS_IOERR;
3729 
3730 			sector = r10_bio->devs[i].addr;
3731 			bio->bi_next = biolist;
3732 			biolist = bio;
3733 			bio->bi_end_io = end_sync_write;
3734 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3735 			if (test_bit(FailFast, &rdev->flags))
3736 				bio->bi_opf |= MD_FAILFAST;
3737 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3738 			bio_set_dev(bio, rdev->bdev);
3739 			count++;
3740 			rcu_read_unlock();
3741 		}
3742 
3743 		if (count < 2) {
3744 			for (i=0; i<conf->copies; i++) {
3745 				int d = r10_bio->devs[i].devnum;
3746 				if (r10_bio->devs[i].bio->bi_end_io)
3747 					rdev_dec_pending(conf->mirrors[d].rdev,
3748 							 mddev);
3749 				if (r10_bio->devs[i].repl_bio &&
3750 				    r10_bio->devs[i].repl_bio->bi_end_io)
3751 					rdev_dec_pending(
3752 						conf->mirrors[d].replacement,
3753 						mddev);
3754 			}
3755 			put_buf(r10_bio);
3756 			biolist = NULL;
3757 			goto giveup;
3758 		}
3759 	}
3760 
3761 	nr_sectors = 0;
3762 	if (sector_nr + max_sync < max_sector)
3763 		max_sector = sector_nr + max_sync;
3764 	do {
3765 		struct page *page;
3766 		int len = PAGE_SIZE;
3767 		if (sector_nr + (len>>9) > max_sector)
3768 			len = (max_sector - sector_nr) << 9;
3769 		if (len == 0)
3770 			break;
3771 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3772 			struct resync_pages *rp = get_resync_pages(bio);
3773 			page = resync_fetch_page(rp, page_idx);
3774 			/*
3775 			 * won't fail because the vec table is big enough
3776 			 * to hold all these pages
3777 			 */
3778 			bio_add_page(bio, page, len, 0);
3779 		}
3780 		nr_sectors += len>>9;
3781 		sector_nr += len>>9;
3782 	} while (++page_idx < RESYNC_PAGES);
3783 	r10_bio->sectors = nr_sectors;
3784 
3785 	if (mddev_is_clustered(mddev) &&
3786 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3787 		/* It is resync not recovery */
3788 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3789 			conf->cluster_sync_low = mddev->curr_resync_completed;
3790 			raid10_set_cluster_sync_high(conf);
3791 			/* Send resync message */
3792 			md_cluster_ops->resync_info_update(mddev,
3793 						conf->cluster_sync_low,
3794 						conf->cluster_sync_high);
3795 		}
3796 	} else if (mddev_is_clustered(mddev)) {
3797 		/* This is recovery not resync */
3798 		sector_t sect_va1, sect_va2;
3799 		bool broadcast_msg = false;
3800 
3801 		for (i = 0; i < conf->geo.raid_disks; i++) {
3802 			/*
3803 			 * sector_nr is a device address for recovery, so we
3804 			 * need translate it to array address before compare
3805 			 * with cluster_sync_high.
3806 			 */
3807 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3808 
3809 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3810 				broadcast_msg = true;
3811 				/*
3812 				 * curr_resync_completed is similar as
3813 				 * sector_nr, so make the translation too.
3814 				 */
3815 				sect_va2 = raid10_find_virt(conf,
3816 					mddev->curr_resync_completed, i);
3817 
3818 				if (conf->cluster_sync_low == 0 ||
3819 				    conf->cluster_sync_low > sect_va2)
3820 					conf->cluster_sync_low = sect_va2;
3821 			}
3822 		}
3823 		if (broadcast_msg) {
3824 			raid10_set_cluster_sync_high(conf);
3825 			md_cluster_ops->resync_info_update(mddev,
3826 						conf->cluster_sync_low,
3827 						conf->cluster_sync_high);
3828 		}
3829 	}
3830 
3831 	while (biolist) {
3832 		bio = biolist;
3833 		biolist = biolist->bi_next;
3834 
3835 		bio->bi_next = NULL;
3836 		r10_bio = get_resync_r10bio(bio);
3837 		r10_bio->sectors = nr_sectors;
3838 
3839 		if (bio->bi_end_io == end_sync_read) {
3840 			md_sync_acct_bio(bio, nr_sectors);
3841 			bio->bi_status = 0;
3842 			submit_bio_noacct(bio);
3843 		}
3844 	}
3845 
3846 	if (sectors_skipped)
3847 		/* pretend they weren't skipped, it makes
3848 		 * no important difference in this case
3849 		 */
3850 		md_done_sync(mddev, sectors_skipped, 1);
3851 
3852 	return sectors_skipped + nr_sectors;
3853  giveup:
3854 	/* There is nowhere to write, so all non-sync
3855 	 * drives must be failed or in resync, all drives
3856 	 * have a bad block, so try the next chunk...
3857 	 */
3858 	if (sector_nr + max_sync < max_sector)
3859 		max_sector = sector_nr + max_sync;
3860 
3861 	sectors_skipped += (max_sector - sector_nr);
3862 	chunks_skipped ++;
3863 	sector_nr = max_sector;
3864 	goto skipped;
3865 }
3866 
3867 static sector_t
3868 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3869 {
3870 	sector_t size;
3871 	struct r10conf *conf = mddev->private;
3872 
3873 	if (!raid_disks)
3874 		raid_disks = min(conf->geo.raid_disks,
3875 				 conf->prev.raid_disks);
3876 	if (!sectors)
3877 		sectors = conf->dev_sectors;
3878 
3879 	size = sectors >> conf->geo.chunk_shift;
3880 	sector_div(size, conf->geo.far_copies);
3881 	size = size * raid_disks;
3882 	sector_div(size, conf->geo.near_copies);
3883 
3884 	return size << conf->geo.chunk_shift;
3885 }
3886 
3887 static void calc_sectors(struct r10conf *conf, sector_t size)
3888 {
3889 	/* Calculate the number of sectors-per-device that will
3890 	 * actually be used, and set conf->dev_sectors and
3891 	 * conf->stride
3892 	 */
3893 
3894 	size = size >> conf->geo.chunk_shift;
3895 	sector_div(size, conf->geo.far_copies);
3896 	size = size * conf->geo.raid_disks;
3897 	sector_div(size, conf->geo.near_copies);
3898 	/* 'size' is now the number of chunks in the array */
3899 	/* calculate "used chunks per device" */
3900 	size = size * conf->copies;
3901 
3902 	/* We need to round up when dividing by raid_disks to
3903 	 * get the stride size.
3904 	 */
3905 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3906 
3907 	conf->dev_sectors = size << conf->geo.chunk_shift;
3908 
3909 	if (conf->geo.far_offset)
3910 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3911 	else {
3912 		sector_div(size, conf->geo.far_copies);
3913 		conf->geo.stride = size << conf->geo.chunk_shift;
3914 	}
3915 }
3916 
3917 enum geo_type {geo_new, geo_old, geo_start};
3918 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3919 {
3920 	int nc, fc, fo;
3921 	int layout, chunk, disks;
3922 	switch (new) {
3923 	case geo_old:
3924 		layout = mddev->layout;
3925 		chunk = mddev->chunk_sectors;
3926 		disks = mddev->raid_disks - mddev->delta_disks;
3927 		break;
3928 	case geo_new:
3929 		layout = mddev->new_layout;
3930 		chunk = mddev->new_chunk_sectors;
3931 		disks = mddev->raid_disks;
3932 		break;
3933 	default: /* avoid 'may be unused' warnings */
3934 	case geo_start: /* new when starting reshape - raid_disks not
3935 			 * updated yet. */
3936 		layout = mddev->new_layout;
3937 		chunk = mddev->new_chunk_sectors;
3938 		disks = mddev->raid_disks + mddev->delta_disks;
3939 		break;
3940 	}
3941 	if (layout >> 19)
3942 		return -1;
3943 	if (chunk < (PAGE_SIZE >> 9) ||
3944 	    !is_power_of_2(chunk))
3945 		return -2;
3946 	nc = layout & 255;
3947 	fc = (layout >> 8) & 255;
3948 	fo = layout & (1<<16);
3949 	geo->raid_disks = disks;
3950 	geo->near_copies = nc;
3951 	geo->far_copies = fc;
3952 	geo->far_offset = fo;
3953 	switch (layout >> 17) {
3954 	case 0:	/* original layout.  simple but not always optimal */
3955 		geo->far_set_size = disks;
3956 		break;
3957 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3958 		 * actually using this, but leave code here just in case.*/
3959 		geo->far_set_size = disks/fc;
3960 		WARN(geo->far_set_size < fc,
3961 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3962 		break;
3963 	case 2: /* "improved" layout fixed to match documentation */
3964 		geo->far_set_size = fc * nc;
3965 		break;
3966 	default: /* Not a valid layout */
3967 		return -1;
3968 	}
3969 	geo->chunk_mask = chunk - 1;
3970 	geo->chunk_shift = ffz(~chunk);
3971 	return nc*fc;
3972 }
3973 
3974 static struct r10conf *setup_conf(struct mddev *mddev)
3975 {
3976 	struct r10conf *conf = NULL;
3977 	int err = -EINVAL;
3978 	struct geom geo;
3979 	int copies;
3980 
3981 	copies = setup_geo(&geo, mddev, geo_new);
3982 
3983 	if (copies == -2) {
3984 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3985 			mdname(mddev), PAGE_SIZE);
3986 		goto out;
3987 	}
3988 
3989 	if (copies < 2 || copies > mddev->raid_disks) {
3990 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3991 			mdname(mddev), mddev->new_layout);
3992 		goto out;
3993 	}
3994 
3995 	err = -ENOMEM;
3996 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3997 	if (!conf)
3998 		goto out;
3999 
4000 	/* FIXME calc properly */
4001 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4002 				sizeof(struct raid10_info),
4003 				GFP_KERNEL);
4004 	if (!conf->mirrors)
4005 		goto out;
4006 
4007 	conf->tmppage = alloc_page(GFP_KERNEL);
4008 	if (!conf->tmppage)
4009 		goto out;
4010 
4011 	conf->geo = geo;
4012 	conf->copies = copies;
4013 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4014 			   rbio_pool_free, conf);
4015 	if (err)
4016 		goto out;
4017 
4018 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4019 	if (err)
4020 		goto out;
4021 
4022 	calc_sectors(conf, mddev->dev_sectors);
4023 	if (mddev->reshape_position == MaxSector) {
4024 		conf->prev = conf->geo;
4025 		conf->reshape_progress = MaxSector;
4026 	} else {
4027 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4028 			err = -EINVAL;
4029 			goto out;
4030 		}
4031 		conf->reshape_progress = mddev->reshape_position;
4032 		if (conf->prev.far_offset)
4033 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4034 		else
4035 			/* far_copies must be 1 */
4036 			conf->prev.stride = conf->dev_sectors;
4037 	}
4038 	conf->reshape_safe = conf->reshape_progress;
4039 	spin_lock_init(&conf->device_lock);
4040 	INIT_LIST_HEAD(&conf->retry_list);
4041 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4042 
4043 	spin_lock_init(&conf->resync_lock);
4044 	init_waitqueue_head(&conf->wait_barrier);
4045 	atomic_set(&conf->nr_pending, 0);
4046 
4047 	err = -ENOMEM;
4048 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4049 	if (!conf->thread)
4050 		goto out;
4051 
4052 	conf->mddev = mddev;
4053 	return conf;
4054 
4055  out:
4056 	if (conf) {
4057 		mempool_exit(&conf->r10bio_pool);
4058 		kfree(conf->mirrors);
4059 		safe_put_page(conf->tmppage);
4060 		bioset_exit(&conf->bio_split);
4061 		kfree(conf);
4062 	}
4063 	return ERR_PTR(err);
4064 }
4065 
4066 static void raid10_set_io_opt(struct r10conf *conf)
4067 {
4068 	int raid_disks = conf->geo.raid_disks;
4069 
4070 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4071 		raid_disks /= conf->geo.near_copies;
4072 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4073 			 raid_disks);
4074 }
4075 
4076 static int raid10_run(struct mddev *mddev)
4077 {
4078 	struct r10conf *conf;
4079 	int i, disk_idx;
4080 	struct raid10_info *disk;
4081 	struct md_rdev *rdev;
4082 	sector_t size;
4083 	sector_t min_offset_diff = 0;
4084 	int first = 1;
4085 
4086 	if (mddev_init_writes_pending(mddev) < 0)
4087 		return -ENOMEM;
4088 
4089 	if (mddev->private == NULL) {
4090 		conf = setup_conf(mddev);
4091 		if (IS_ERR(conf))
4092 			return PTR_ERR(conf);
4093 		mddev->private = conf;
4094 	}
4095 	conf = mddev->private;
4096 	if (!conf)
4097 		goto out;
4098 
4099 	if (mddev_is_clustered(conf->mddev)) {
4100 		int fc, fo;
4101 
4102 		fc = (mddev->layout >> 8) & 255;
4103 		fo = mddev->layout & (1<<16);
4104 		if (fc > 1 || fo > 0) {
4105 			pr_err("only near layout is supported by clustered"
4106 				" raid10\n");
4107 			goto out_free_conf;
4108 		}
4109 	}
4110 
4111 	mddev->thread = conf->thread;
4112 	conf->thread = NULL;
4113 
4114 	if (mddev->queue) {
4115 		blk_queue_max_discard_sectors(mddev->queue,
4116 					      UINT_MAX);
4117 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4118 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4119 		raid10_set_io_opt(conf);
4120 	}
4121 
4122 	rdev_for_each(rdev, mddev) {
4123 		long long diff;
4124 
4125 		disk_idx = rdev->raid_disk;
4126 		if (disk_idx < 0)
4127 			continue;
4128 		if (disk_idx >= conf->geo.raid_disks &&
4129 		    disk_idx >= conf->prev.raid_disks)
4130 			continue;
4131 		disk = conf->mirrors + disk_idx;
4132 
4133 		if (test_bit(Replacement, &rdev->flags)) {
4134 			if (disk->replacement)
4135 				goto out_free_conf;
4136 			disk->replacement = rdev;
4137 		} else {
4138 			if (disk->rdev)
4139 				goto out_free_conf;
4140 			disk->rdev = rdev;
4141 		}
4142 		diff = (rdev->new_data_offset - rdev->data_offset);
4143 		if (!mddev->reshape_backwards)
4144 			diff = -diff;
4145 		if (diff < 0)
4146 			diff = 0;
4147 		if (first || diff < min_offset_diff)
4148 			min_offset_diff = diff;
4149 
4150 		if (mddev->gendisk)
4151 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4152 					  rdev->data_offset << 9);
4153 
4154 		disk->head_position = 0;
4155 		first = 0;
4156 	}
4157 
4158 	/* need to check that every block has at least one working mirror */
4159 	if (!enough(conf, -1)) {
4160 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4161 		       mdname(mddev));
4162 		goto out_free_conf;
4163 	}
4164 
4165 	if (conf->reshape_progress != MaxSector) {
4166 		/* must ensure that shape change is supported */
4167 		if (conf->geo.far_copies != 1 &&
4168 		    conf->geo.far_offset == 0)
4169 			goto out_free_conf;
4170 		if (conf->prev.far_copies != 1 &&
4171 		    conf->prev.far_offset == 0)
4172 			goto out_free_conf;
4173 	}
4174 
4175 	mddev->degraded = 0;
4176 	for (i = 0;
4177 	     i < conf->geo.raid_disks
4178 		     || i < conf->prev.raid_disks;
4179 	     i++) {
4180 
4181 		disk = conf->mirrors + i;
4182 
4183 		if (!disk->rdev && disk->replacement) {
4184 			/* The replacement is all we have - use it */
4185 			disk->rdev = disk->replacement;
4186 			disk->replacement = NULL;
4187 			clear_bit(Replacement, &disk->rdev->flags);
4188 		}
4189 
4190 		if (!disk->rdev ||
4191 		    !test_bit(In_sync, &disk->rdev->flags)) {
4192 			disk->head_position = 0;
4193 			mddev->degraded++;
4194 			if (disk->rdev &&
4195 			    disk->rdev->saved_raid_disk < 0)
4196 				conf->fullsync = 1;
4197 		}
4198 
4199 		if (disk->replacement &&
4200 		    !test_bit(In_sync, &disk->replacement->flags) &&
4201 		    disk->replacement->saved_raid_disk < 0) {
4202 			conf->fullsync = 1;
4203 		}
4204 
4205 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4206 	}
4207 
4208 	if (mddev->recovery_cp != MaxSector)
4209 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4210 			  mdname(mddev));
4211 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4212 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4213 		conf->geo.raid_disks);
4214 	/*
4215 	 * Ok, everything is just fine now
4216 	 */
4217 	mddev->dev_sectors = conf->dev_sectors;
4218 	size = raid10_size(mddev, 0, 0);
4219 	md_set_array_sectors(mddev, size);
4220 	mddev->resync_max_sectors = size;
4221 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4222 
4223 	if (md_integrity_register(mddev))
4224 		goto out_free_conf;
4225 
4226 	if (conf->reshape_progress != MaxSector) {
4227 		unsigned long before_length, after_length;
4228 
4229 		before_length = ((1 << conf->prev.chunk_shift) *
4230 				 conf->prev.far_copies);
4231 		after_length = ((1 << conf->geo.chunk_shift) *
4232 				conf->geo.far_copies);
4233 
4234 		if (max(before_length, after_length) > min_offset_diff) {
4235 			/* This cannot work */
4236 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4237 			goto out_free_conf;
4238 		}
4239 		conf->offset_diff = min_offset_diff;
4240 
4241 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4242 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4243 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4244 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4245 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4246 							"reshape");
4247 		if (!mddev->sync_thread)
4248 			goto out_free_conf;
4249 	}
4250 
4251 	return 0;
4252 
4253 out_free_conf:
4254 	md_unregister_thread(&mddev->thread);
4255 	mempool_exit(&conf->r10bio_pool);
4256 	safe_put_page(conf->tmppage);
4257 	kfree(conf->mirrors);
4258 	kfree(conf);
4259 	mddev->private = NULL;
4260 out:
4261 	return -EIO;
4262 }
4263 
4264 static void raid10_free(struct mddev *mddev, void *priv)
4265 {
4266 	struct r10conf *conf = priv;
4267 
4268 	mempool_exit(&conf->r10bio_pool);
4269 	safe_put_page(conf->tmppage);
4270 	kfree(conf->mirrors);
4271 	kfree(conf->mirrors_old);
4272 	kfree(conf->mirrors_new);
4273 	bioset_exit(&conf->bio_split);
4274 	kfree(conf);
4275 }
4276 
4277 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4278 {
4279 	struct r10conf *conf = mddev->private;
4280 
4281 	if (quiesce)
4282 		raise_barrier(conf, 0);
4283 	else
4284 		lower_barrier(conf);
4285 }
4286 
4287 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4288 {
4289 	/* Resize of 'far' arrays is not supported.
4290 	 * For 'near' and 'offset' arrays we can set the
4291 	 * number of sectors used to be an appropriate multiple
4292 	 * of the chunk size.
4293 	 * For 'offset', this is far_copies*chunksize.
4294 	 * For 'near' the multiplier is the LCM of
4295 	 * near_copies and raid_disks.
4296 	 * So if far_copies > 1 && !far_offset, fail.
4297 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4298 	 * multiply by chunk_size.  Then round to this number.
4299 	 * This is mostly done by raid10_size()
4300 	 */
4301 	struct r10conf *conf = mddev->private;
4302 	sector_t oldsize, size;
4303 
4304 	if (mddev->reshape_position != MaxSector)
4305 		return -EBUSY;
4306 
4307 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4308 		return -EINVAL;
4309 
4310 	oldsize = raid10_size(mddev, 0, 0);
4311 	size = raid10_size(mddev, sectors, 0);
4312 	if (mddev->external_size &&
4313 	    mddev->array_sectors > size)
4314 		return -EINVAL;
4315 	if (mddev->bitmap) {
4316 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4317 		if (ret)
4318 			return ret;
4319 	}
4320 	md_set_array_sectors(mddev, size);
4321 	if (sectors > mddev->dev_sectors &&
4322 	    mddev->recovery_cp > oldsize) {
4323 		mddev->recovery_cp = oldsize;
4324 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4325 	}
4326 	calc_sectors(conf, sectors);
4327 	mddev->dev_sectors = conf->dev_sectors;
4328 	mddev->resync_max_sectors = size;
4329 	return 0;
4330 }
4331 
4332 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4333 {
4334 	struct md_rdev *rdev;
4335 	struct r10conf *conf;
4336 
4337 	if (mddev->degraded > 0) {
4338 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4339 			mdname(mddev));
4340 		return ERR_PTR(-EINVAL);
4341 	}
4342 	sector_div(size, devs);
4343 
4344 	/* Set new parameters */
4345 	mddev->new_level = 10;
4346 	/* new layout: far_copies = 1, near_copies = 2 */
4347 	mddev->new_layout = (1<<8) + 2;
4348 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4349 	mddev->delta_disks = mddev->raid_disks;
4350 	mddev->raid_disks *= 2;
4351 	/* make sure it will be not marked as dirty */
4352 	mddev->recovery_cp = MaxSector;
4353 	mddev->dev_sectors = size;
4354 
4355 	conf = setup_conf(mddev);
4356 	if (!IS_ERR(conf)) {
4357 		rdev_for_each(rdev, mddev)
4358 			if (rdev->raid_disk >= 0) {
4359 				rdev->new_raid_disk = rdev->raid_disk * 2;
4360 				rdev->sectors = size;
4361 			}
4362 		conf->barrier = 1;
4363 	}
4364 
4365 	return conf;
4366 }
4367 
4368 static void *raid10_takeover(struct mddev *mddev)
4369 {
4370 	struct r0conf *raid0_conf;
4371 
4372 	/* raid10 can take over:
4373 	 *  raid0 - providing it has only two drives
4374 	 */
4375 	if (mddev->level == 0) {
4376 		/* for raid0 takeover only one zone is supported */
4377 		raid0_conf = mddev->private;
4378 		if (raid0_conf->nr_strip_zones > 1) {
4379 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4380 				mdname(mddev));
4381 			return ERR_PTR(-EINVAL);
4382 		}
4383 		return raid10_takeover_raid0(mddev,
4384 			raid0_conf->strip_zone->zone_end,
4385 			raid0_conf->strip_zone->nb_dev);
4386 	}
4387 	return ERR_PTR(-EINVAL);
4388 }
4389 
4390 static int raid10_check_reshape(struct mddev *mddev)
4391 {
4392 	/* Called when there is a request to change
4393 	 * - layout (to ->new_layout)
4394 	 * - chunk size (to ->new_chunk_sectors)
4395 	 * - raid_disks (by delta_disks)
4396 	 * or when trying to restart a reshape that was ongoing.
4397 	 *
4398 	 * We need to validate the request and possibly allocate
4399 	 * space if that might be an issue later.
4400 	 *
4401 	 * Currently we reject any reshape of a 'far' mode array,
4402 	 * allow chunk size to change if new is generally acceptable,
4403 	 * allow raid_disks to increase, and allow
4404 	 * a switch between 'near' mode and 'offset' mode.
4405 	 */
4406 	struct r10conf *conf = mddev->private;
4407 	struct geom geo;
4408 
4409 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4410 		return -EINVAL;
4411 
4412 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4413 		/* mustn't change number of copies */
4414 		return -EINVAL;
4415 	if (geo.far_copies > 1 && !geo.far_offset)
4416 		/* Cannot switch to 'far' mode */
4417 		return -EINVAL;
4418 
4419 	if (mddev->array_sectors & geo.chunk_mask)
4420 			/* not factor of array size */
4421 			return -EINVAL;
4422 
4423 	if (!enough(conf, -1))
4424 		return -EINVAL;
4425 
4426 	kfree(conf->mirrors_new);
4427 	conf->mirrors_new = NULL;
4428 	if (mddev->delta_disks > 0) {
4429 		/* allocate new 'mirrors' list */
4430 		conf->mirrors_new =
4431 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4432 				sizeof(struct raid10_info),
4433 				GFP_KERNEL);
4434 		if (!conf->mirrors_new)
4435 			return -ENOMEM;
4436 	}
4437 	return 0;
4438 }
4439 
4440 /*
4441  * Need to check if array has failed when deciding whether to:
4442  *  - start an array
4443  *  - remove non-faulty devices
4444  *  - add a spare
4445  *  - allow a reshape
4446  * This determination is simple when no reshape is happening.
4447  * However if there is a reshape, we need to carefully check
4448  * both the before and after sections.
4449  * This is because some failed devices may only affect one
4450  * of the two sections, and some non-in_sync devices may
4451  * be insync in the section most affected by failed devices.
4452  */
4453 static int calc_degraded(struct r10conf *conf)
4454 {
4455 	int degraded, degraded2;
4456 	int i;
4457 
4458 	rcu_read_lock();
4459 	degraded = 0;
4460 	/* 'prev' section first */
4461 	for (i = 0; i < conf->prev.raid_disks; i++) {
4462 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463 		if (!rdev || test_bit(Faulty, &rdev->flags))
4464 			degraded++;
4465 		else if (!test_bit(In_sync, &rdev->flags))
4466 			/* When we can reduce the number of devices in
4467 			 * an array, this might not contribute to
4468 			 * 'degraded'.  It does now.
4469 			 */
4470 			degraded++;
4471 	}
4472 	rcu_read_unlock();
4473 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4474 		return degraded;
4475 	rcu_read_lock();
4476 	degraded2 = 0;
4477 	for (i = 0; i < conf->geo.raid_disks; i++) {
4478 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4479 		if (!rdev || test_bit(Faulty, &rdev->flags))
4480 			degraded2++;
4481 		else if (!test_bit(In_sync, &rdev->flags)) {
4482 			/* If reshape is increasing the number of devices,
4483 			 * this section has already been recovered, so
4484 			 * it doesn't contribute to degraded.
4485 			 * else it does.
4486 			 */
4487 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4488 				degraded2++;
4489 		}
4490 	}
4491 	rcu_read_unlock();
4492 	if (degraded2 > degraded)
4493 		return degraded2;
4494 	return degraded;
4495 }
4496 
4497 static int raid10_start_reshape(struct mddev *mddev)
4498 {
4499 	/* A 'reshape' has been requested. This commits
4500 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4501 	 * This also checks if there are enough spares and adds them
4502 	 * to the array.
4503 	 * We currently require enough spares to make the final
4504 	 * array non-degraded.  We also require that the difference
4505 	 * between old and new data_offset - on each device - is
4506 	 * enough that we never risk over-writing.
4507 	 */
4508 
4509 	unsigned long before_length, after_length;
4510 	sector_t min_offset_diff = 0;
4511 	int first = 1;
4512 	struct geom new;
4513 	struct r10conf *conf = mddev->private;
4514 	struct md_rdev *rdev;
4515 	int spares = 0;
4516 	int ret;
4517 
4518 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4519 		return -EBUSY;
4520 
4521 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4522 		return -EINVAL;
4523 
4524 	before_length = ((1 << conf->prev.chunk_shift) *
4525 			 conf->prev.far_copies);
4526 	after_length = ((1 << conf->geo.chunk_shift) *
4527 			conf->geo.far_copies);
4528 
4529 	rdev_for_each(rdev, mddev) {
4530 		if (!test_bit(In_sync, &rdev->flags)
4531 		    && !test_bit(Faulty, &rdev->flags))
4532 			spares++;
4533 		if (rdev->raid_disk >= 0) {
4534 			long long diff = (rdev->new_data_offset
4535 					  - rdev->data_offset);
4536 			if (!mddev->reshape_backwards)
4537 				diff = -diff;
4538 			if (diff < 0)
4539 				diff = 0;
4540 			if (first || diff < min_offset_diff)
4541 				min_offset_diff = diff;
4542 			first = 0;
4543 		}
4544 	}
4545 
4546 	if (max(before_length, after_length) > min_offset_diff)
4547 		return -EINVAL;
4548 
4549 	if (spares < mddev->delta_disks)
4550 		return -EINVAL;
4551 
4552 	conf->offset_diff = min_offset_diff;
4553 	spin_lock_irq(&conf->device_lock);
4554 	if (conf->mirrors_new) {
4555 		memcpy(conf->mirrors_new, conf->mirrors,
4556 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4557 		smp_mb();
4558 		kfree(conf->mirrors_old);
4559 		conf->mirrors_old = conf->mirrors;
4560 		conf->mirrors = conf->mirrors_new;
4561 		conf->mirrors_new = NULL;
4562 	}
4563 	setup_geo(&conf->geo, mddev, geo_start);
4564 	smp_mb();
4565 	if (mddev->reshape_backwards) {
4566 		sector_t size = raid10_size(mddev, 0, 0);
4567 		if (size < mddev->array_sectors) {
4568 			spin_unlock_irq(&conf->device_lock);
4569 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4570 				mdname(mddev));
4571 			return -EINVAL;
4572 		}
4573 		mddev->resync_max_sectors = size;
4574 		conf->reshape_progress = size;
4575 	} else
4576 		conf->reshape_progress = 0;
4577 	conf->reshape_safe = conf->reshape_progress;
4578 	spin_unlock_irq(&conf->device_lock);
4579 
4580 	if (mddev->delta_disks && mddev->bitmap) {
4581 		struct mdp_superblock_1 *sb = NULL;
4582 		sector_t oldsize, newsize;
4583 
4584 		oldsize = raid10_size(mddev, 0, 0);
4585 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4586 
4587 		if (!mddev_is_clustered(mddev)) {
4588 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4589 			if (ret)
4590 				goto abort;
4591 			else
4592 				goto out;
4593 		}
4594 
4595 		rdev_for_each(rdev, mddev) {
4596 			if (rdev->raid_disk > -1 &&
4597 			    !test_bit(Faulty, &rdev->flags))
4598 				sb = page_address(rdev->sb_page);
4599 		}
4600 
4601 		/*
4602 		 * some node is already performing reshape, and no need to
4603 		 * call md_bitmap_resize again since it should be called when
4604 		 * receiving BITMAP_RESIZE msg
4605 		 */
4606 		if ((sb && (le32_to_cpu(sb->feature_map) &
4607 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4608 			goto out;
4609 
4610 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4611 		if (ret)
4612 			goto abort;
4613 
4614 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4615 		if (ret) {
4616 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4617 			goto abort;
4618 		}
4619 	}
4620 out:
4621 	if (mddev->delta_disks > 0) {
4622 		rdev_for_each(rdev, mddev)
4623 			if (rdev->raid_disk < 0 &&
4624 			    !test_bit(Faulty, &rdev->flags)) {
4625 				if (raid10_add_disk(mddev, rdev) == 0) {
4626 					if (rdev->raid_disk >=
4627 					    conf->prev.raid_disks)
4628 						set_bit(In_sync, &rdev->flags);
4629 					else
4630 						rdev->recovery_offset = 0;
4631 
4632 					/* Failure here is OK */
4633 					sysfs_link_rdev(mddev, rdev);
4634 				}
4635 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4636 				   && !test_bit(Faulty, &rdev->flags)) {
4637 				/* This is a spare that was manually added */
4638 				set_bit(In_sync, &rdev->flags);
4639 			}
4640 	}
4641 	/* When a reshape changes the number of devices,
4642 	 * ->degraded is measured against the larger of the
4643 	 * pre and  post numbers.
4644 	 */
4645 	spin_lock_irq(&conf->device_lock);
4646 	mddev->degraded = calc_degraded(conf);
4647 	spin_unlock_irq(&conf->device_lock);
4648 	mddev->raid_disks = conf->geo.raid_disks;
4649 	mddev->reshape_position = conf->reshape_progress;
4650 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4651 
4652 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4653 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4654 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4655 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4656 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4657 
4658 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4659 						"reshape");
4660 	if (!mddev->sync_thread) {
4661 		ret = -EAGAIN;
4662 		goto abort;
4663 	}
4664 	conf->reshape_checkpoint = jiffies;
4665 	md_wakeup_thread(mddev->sync_thread);
4666 	md_new_event();
4667 	return 0;
4668 
4669 abort:
4670 	mddev->recovery = 0;
4671 	spin_lock_irq(&conf->device_lock);
4672 	conf->geo = conf->prev;
4673 	mddev->raid_disks = conf->geo.raid_disks;
4674 	rdev_for_each(rdev, mddev)
4675 		rdev->new_data_offset = rdev->data_offset;
4676 	smp_wmb();
4677 	conf->reshape_progress = MaxSector;
4678 	conf->reshape_safe = MaxSector;
4679 	mddev->reshape_position = MaxSector;
4680 	spin_unlock_irq(&conf->device_lock);
4681 	return ret;
4682 }
4683 
4684 /* Calculate the last device-address that could contain
4685  * any block from the chunk that includes the array-address 's'
4686  * and report the next address.
4687  * i.e. the address returned will be chunk-aligned and after
4688  * any data that is in the chunk containing 's'.
4689  */
4690 static sector_t last_dev_address(sector_t s, struct geom *geo)
4691 {
4692 	s = (s | geo->chunk_mask) + 1;
4693 	s >>= geo->chunk_shift;
4694 	s *= geo->near_copies;
4695 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4696 	s *= geo->far_copies;
4697 	s <<= geo->chunk_shift;
4698 	return s;
4699 }
4700 
4701 /* Calculate the first device-address that could contain
4702  * any block from the chunk that includes the array-address 's'.
4703  * This too will be the start of a chunk
4704  */
4705 static sector_t first_dev_address(sector_t s, struct geom *geo)
4706 {
4707 	s >>= geo->chunk_shift;
4708 	s *= geo->near_copies;
4709 	sector_div(s, geo->raid_disks);
4710 	s *= geo->far_copies;
4711 	s <<= geo->chunk_shift;
4712 	return s;
4713 }
4714 
4715 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4716 				int *skipped)
4717 {
4718 	/* We simply copy at most one chunk (smallest of old and new)
4719 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4720 	 * or we hit a bad block or something.
4721 	 * This might mean we pause for normal IO in the middle of
4722 	 * a chunk, but that is not a problem as mddev->reshape_position
4723 	 * can record any location.
4724 	 *
4725 	 * If we will want to write to a location that isn't
4726 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4727 	 * we need to flush all reshape requests and update the metadata.
4728 	 *
4729 	 * When reshaping forwards (e.g. to more devices), we interpret
4730 	 * 'safe' as the earliest block which might not have been copied
4731 	 * down yet.  We divide this by previous stripe size and multiply
4732 	 * by previous stripe length to get lowest device offset that we
4733 	 * cannot write to yet.
4734 	 * We interpret 'sector_nr' as an address that we want to write to.
4735 	 * From this we use last_device_address() to find where we might
4736 	 * write to, and first_device_address on the  'safe' position.
4737 	 * If this 'next' write position is after the 'safe' position,
4738 	 * we must update the metadata to increase the 'safe' position.
4739 	 *
4740 	 * When reshaping backwards, we round in the opposite direction
4741 	 * and perform the reverse test:  next write position must not be
4742 	 * less than current safe position.
4743 	 *
4744 	 * In all this the minimum difference in data offsets
4745 	 * (conf->offset_diff - always positive) allows a bit of slack,
4746 	 * so next can be after 'safe', but not by more than offset_diff
4747 	 *
4748 	 * We need to prepare all the bios here before we start any IO
4749 	 * to ensure the size we choose is acceptable to all devices.
4750 	 * The means one for each copy for write-out and an extra one for
4751 	 * read-in.
4752 	 * We store the read-in bio in ->master_bio and the others in
4753 	 * ->devs[x].bio and ->devs[x].repl_bio.
4754 	 */
4755 	struct r10conf *conf = mddev->private;
4756 	struct r10bio *r10_bio;
4757 	sector_t next, safe, last;
4758 	int max_sectors;
4759 	int nr_sectors;
4760 	int s;
4761 	struct md_rdev *rdev;
4762 	int need_flush = 0;
4763 	struct bio *blist;
4764 	struct bio *bio, *read_bio;
4765 	int sectors_done = 0;
4766 	struct page **pages;
4767 
4768 	if (sector_nr == 0) {
4769 		/* If restarting in the middle, skip the initial sectors */
4770 		if (mddev->reshape_backwards &&
4771 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4772 			sector_nr = (raid10_size(mddev, 0, 0)
4773 				     - conf->reshape_progress);
4774 		} else if (!mddev->reshape_backwards &&
4775 			   conf->reshape_progress > 0)
4776 			sector_nr = conf->reshape_progress;
4777 		if (sector_nr) {
4778 			mddev->curr_resync_completed = sector_nr;
4779 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4780 			*skipped = 1;
4781 			return sector_nr;
4782 		}
4783 	}
4784 
4785 	/* We don't use sector_nr to track where we are up to
4786 	 * as that doesn't work well for ->reshape_backwards.
4787 	 * So just use ->reshape_progress.
4788 	 */
4789 	if (mddev->reshape_backwards) {
4790 		/* 'next' is the earliest device address that we might
4791 		 * write to for this chunk in the new layout
4792 		 */
4793 		next = first_dev_address(conf->reshape_progress - 1,
4794 					 &conf->geo);
4795 
4796 		/* 'safe' is the last device address that we might read from
4797 		 * in the old layout after a restart
4798 		 */
4799 		safe = last_dev_address(conf->reshape_safe - 1,
4800 					&conf->prev);
4801 
4802 		if (next + conf->offset_diff < safe)
4803 			need_flush = 1;
4804 
4805 		last = conf->reshape_progress - 1;
4806 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4807 					       & conf->prev.chunk_mask);
4808 		if (sector_nr + RESYNC_SECTORS < last)
4809 			sector_nr = last + 1 - RESYNC_SECTORS;
4810 	} else {
4811 		/* 'next' is after the last device address that we
4812 		 * might write to for this chunk in the new layout
4813 		 */
4814 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4815 
4816 		/* 'safe' is the earliest device address that we might
4817 		 * read from in the old layout after a restart
4818 		 */
4819 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4820 
4821 		/* Need to update metadata if 'next' might be beyond 'safe'
4822 		 * as that would possibly corrupt data
4823 		 */
4824 		if (next > safe + conf->offset_diff)
4825 			need_flush = 1;
4826 
4827 		sector_nr = conf->reshape_progress;
4828 		last  = sector_nr | (conf->geo.chunk_mask
4829 				     & conf->prev.chunk_mask);
4830 
4831 		if (sector_nr + RESYNC_SECTORS <= last)
4832 			last = sector_nr + RESYNC_SECTORS - 1;
4833 	}
4834 
4835 	if (need_flush ||
4836 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4837 		/* Need to update reshape_position in metadata */
4838 		wait_barrier(conf, false);
4839 		mddev->reshape_position = conf->reshape_progress;
4840 		if (mddev->reshape_backwards)
4841 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4842 				- conf->reshape_progress;
4843 		else
4844 			mddev->curr_resync_completed = conf->reshape_progress;
4845 		conf->reshape_checkpoint = jiffies;
4846 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4847 		md_wakeup_thread(mddev->thread);
4848 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4849 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4850 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4851 			allow_barrier(conf);
4852 			return sectors_done;
4853 		}
4854 		conf->reshape_safe = mddev->reshape_position;
4855 		allow_barrier(conf);
4856 	}
4857 
4858 	raise_barrier(conf, 0);
4859 read_more:
4860 	/* Now schedule reads for blocks from sector_nr to last */
4861 	r10_bio = raid10_alloc_init_r10buf(conf);
4862 	r10_bio->state = 0;
4863 	raise_barrier(conf, 1);
4864 	atomic_set(&r10_bio->remaining, 0);
4865 	r10_bio->mddev = mddev;
4866 	r10_bio->sector = sector_nr;
4867 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4868 	r10_bio->sectors = last - sector_nr + 1;
4869 	rdev = read_balance(conf, r10_bio, &max_sectors);
4870 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4871 
4872 	if (!rdev) {
4873 		/* Cannot read from here, so need to record bad blocks
4874 		 * on all the target devices.
4875 		 */
4876 		// FIXME
4877 		mempool_free(r10_bio, &conf->r10buf_pool);
4878 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4879 		return sectors_done;
4880 	}
4881 
4882 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4883 				    GFP_KERNEL, &mddev->bio_set);
4884 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4885 			       + rdev->data_offset);
4886 	read_bio->bi_private = r10_bio;
4887 	read_bio->bi_end_io = end_reshape_read;
4888 	r10_bio->master_bio = read_bio;
4889 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4890 
4891 	/*
4892 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4893 	 * write to the region to avoid conflict.
4894 	*/
4895 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4896 		struct mdp_superblock_1 *sb = NULL;
4897 		int sb_reshape_pos = 0;
4898 
4899 		conf->cluster_sync_low = sector_nr;
4900 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4901 		sb = page_address(rdev->sb_page);
4902 		if (sb) {
4903 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4904 			/*
4905 			 * Set cluster_sync_low again if next address for array
4906 			 * reshape is less than cluster_sync_low. Since we can't
4907 			 * update cluster_sync_low until it has finished reshape.
4908 			 */
4909 			if (sb_reshape_pos < conf->cluster_sync_low)
4910 				conf->cluster_sync_low = sb_reshape_pos;
4911 		}
4912 
4913 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4914 							  conf->cluster_sync_high);
4915 	}
4916 
4917 	/* Now find the locations in the new layout */
4918 	__raid10_find_phys(&conf->geo, r10_bio);
4919 
4920 	blist = read_bio;
4921 	read_bio->bi_next = NULL;
4922 
4923 	rcu_read_lock();
4924 	for (s = 0; s < conf->copies*2; s++) {
4925 		struct bio *b;
4926 		int d = r10_bio->devs[s/2].devnum;
4927 		struct md_rdev *rdev2;
4928 		if (s&1) {
4929 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4930 			b = r10_bio->devs[s/2].repl_bio;
4931 		} else {
4932 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4933 			b = r10_bio->devs[s/2].bio;
4934 		}
4935 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4936 			continue;
4937 
4938 		bio_set_dev(b, rdev2->bdev);
4939 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4940 			rdev2->new_data_offset;
4941 		b->bi_end_io = end_reshape_write;
4942 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4943 		b->bi_next = blist;
4944 		blist = b;
4945 	}
4946 
4947 	/* Now add as many pages as possible to all of these bios. */
4948 
4949 	nr_sectors = 0;
4950 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4951 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4952 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4953 		int len = (max_sectors - s) << 9;
4954 		if (len > PAGE_SIZE)
4955 			len = PAGE_SIZE;
4956 		for (bio = blist; bio ; bio = bio->bi_next) {
4957 			/*
4958 			 * won't fail because the vec table is big enough
4959 			 * to hold all these pages
4960 			 */
4961 			bio_add_page(bio, page, len, 0);
4962 		}
4963 		sector_nr += len >> 9;
4964 		nr_sectors += len >> 9;
4965 	}
4966 	rcu_read_unlock();
4967 	r10_bio->sectors = nr_sectors;
4968 
4969 	/* Now submit the read */
4970 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4971 	atomic_inc(&r10_bio->remaining);
4972 	read_bio->bi_next = NULL;
4973 	submit_bio_noacct(read_bio);
4974 	sectors_done += nr_sectors;
4975 	if (sector_nr <= last)
4976 		goto read_more;
4977 
4978 	lower_barrier(conf);
4979 
4980 	/* Now that we have done the whole section we can
4981 	 * update reshape_progress
4982 	 */
4983 	if (mddev->reshape_backwards)
4984 		conf->reshape_progress -= sectors_done;
4985 	else
4986 		conf->reshape_progress += sectors_done;
4987 
4988 	return sectors_done;
4989 }
4990 
4991 static void end_reshape_request(struct r10bio *r10_bio);
4992 static int handle_reshape_read_error(struct mddev *mddev,
4993 				     struct r10bio *r10_bio);
4994 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4995 {
4996 	/* Reshape read completed.  Hopefully we have a block
4997 	 * to write out.
4998 	 * If we got a read error then we do sync 1-page reads from
4999 	 * elsewhere until we find the data - or give up.
5000 	 */
5001 	struct r10conf *conf = mddev->private;
5002 	int s;
5003 
5004 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5005 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5006 			/* Reshape has been aborted */
5007 			md_done_sync(mddev, r10_bio->sectors, 0);
5008 			return;
5009 		}
5010 
5011 	/* We definitely have the data in the pages, schedule the
5012 	 * writes.
5013 	 */
5014 	atomic_set(&r10_bio->remaining, 1);
5015 	for (s = 0; s < conf->copies*2; s++) {
5016 		struct bio *b;
5017 		int d = r10_bio->devs[s/2].devnum;
5018 		struct md_rdev *rdev;
5019 		rcu_read_lock();
5020 		if (s&1) {
5021 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5022 			b = r10_bio->devs[s/2].repl_bio;
5023 		} else {
5024 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5025 			b = r10_bio->devs[s/2].bio;
5026 		}
5027 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5028 			rcu_read_unlock();
5029 			continue;
5030 		}
5031 		atomic_inc(&rdev->nr_pending);
5032 		rcu_read_unlock();
5033 		md_sync_acct_bio(b, r10_bio->sectors);
5034 		atomic_inc(&r10_bio->remaining);
5035 		b->bi_next = NULL;
5036 		submit_bio_noacct(b);
5037 	}
5038 	end_reshape_request(r10_bio);
5039 }
5040 
5041 static void end_reshape(struct r10conf *conf)
5042 {
5043 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5044 		return;
5045 
5046 	spin_lock_irq(&conf->device_lock);
5047 	conf->prev = conf->geo;
5048 	md_finish_reshape(conf->mddev);
5049 	smp_wmb();
5050 	conf->reshape_progress = MaxSector;
5051 	conf->reshape_safe = MaxSector;
5052 	spin_unlock_irq(&conf->device_lock);
5053 
5054 	if (conf->mddev->queue)
5055 		raid10_set_io_opt(conf);
5056 	conf->fullsync = 0;
5057 }
5058 
5059 static void raid10_update_reshape_pos(struct mddev *mddev)
5060 {
5061 	struct r10conf *conf = mddev->private;
5062 	sector_t lo, hi;
5063 
5064 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5065 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5066 	    || mddev->reshape_position == MaxSector)
5067 		conf->reshape_progress = mddev->reshape_position;
5068 	else
5069 		WARN_ON_ONCE(1);
5070 }
5071 
5072 static int handle_reshape_read_error(struct mddev *mddev,
5073 				     struct r10bio *r10_bio)
5074 {
5075 	/* Use sync reads to get the blocks from somewhere else */
5076 	int sectors = r10_bio->sectors;
5077 	struct r10conf *conf = mddev->private;
5078 	struct r10bio *r10b;
5079 	int slot = 0;
5080 	int idx = 0;
5081 	struct page **pages;
5082 
5083 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5084 	if (!r10b) {
5085 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5086 		return -ENOMEM;
5087 	}
5088 
5089 	/* reshape IOs share pages from .devs[0].bio */
5090 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5091 
5092 	r10b->sector = r10_bio->sector;
5093 	__raid10_find_phys(&conf->prev, r10b);
5094 
5095 	while (sectors) {
5096 		int s = sectors;
5097 		int success = 0;
5098 		int first_slot = slot;
5099 
5100 		if (s > (PAGE_SIZE >> 9))
5101 			s = PAGE_SIZE >> 9;
5102 
5103 		rcu_read_lock();
5104 		while (!success) {
5105 			int d = r10b->devs[slot].devnum;
5106 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5107 			sector_t addr;
5108 			if (rdev == NULL ||
5109 			    test_bit(Faulty, &rdev->flags) ||
5110 			    !test_bit(In_sync, &rdev->flags))
5111 				goto failed;
5112 
5113 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5114 			atomic_inc(&rdev->nr_pending);
5115 			rcu_read_unlock();
5116 			success = sync_page_io(rdev,
5117 					       addr,
5118 					       s << 9,
5119 					       pages[idx],
5120 					       REQ_OP_READ, 0, false);
5121 			rdev_dec_pending(rdev, mddev);
5122 			rcu_read_lock();
5123 			if (success)
5124 				break;
5125 		failed:
5126 			slot++;
5127 			if (slot >= conf->copies)
5128 				slot = 0;
5129 			if (slot == first_slot)
5130 				break;
5131 		}
5132 		rcu_read_unlock();
5133 		if (!success) {
5134 			/* couldn't read this block, must give up */
5135 			set_bit(MD_RECOVERY_INTR,
5136 				&mddev->recovery);
5137 			kfree(r10b);
5138 			return -EIO;
5139 		}
5140 		sectors -= s;
5141 		idx++;
5142 	}
5143 	kfree(r10b);
5144 	return 0;
5145 }
5146 
5147 static void end_reshape_write(struct bio *bio)
5148 {
5149 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5150 	struct mddev *mddev = r10_bio->mddev;
5151 	struct r10conf *conf = mddev->private;
5152 	int d;
5153 	int slot;
5154 	int repl;
5155 	struct md_rdev *rdev = NULL;
5156 
5157 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5158 	if (repl)
5159 		rdev = conf->mirrors[d].replacement;
5160 	if (!rdev) {
5161 		smp_mb();
5162 		rdev = conf->mirrors[d].rdev;
5163 	}
5164 
5165 	if (bio->bi_status) {
5166 		/* FIXME should record badblock */
5167 		md_error(mddev, rdev);
5168 	}
5169 
5170 	rdev_dec_pending(rdev, mddev);
5171 	end_reshape_request(r10_bio);
5172 }
5173 
5174 static void end_reshape_request(struct r10bio *r10_bio)
5175 {
5176 	if (!atomic_dec_and_test(&r10_bio->remaining))
5177 		return;
5178 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5179 	bio_put(r10_bio->master_bio);
5180 	put_buf(r10_bio);
5181 }
5182 
5183 static void raid10_finish_reshape(struct mddev *mddev)
5184 {
5185 	struct r10conf *conf = mddev->private;
5186 
5187 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5188 		return;
5189 
5190 	if (mddev->delta_disks > 0) {
5191 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5192 			mddev->recovery_cp = mddev->resync_max_sectors;
5193 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5194 		}
5195 		mddev->resync_max_sectors = mddev->array_sectors;
5196 	} else {
5197 		int d;
5198 		rcu_read_lock();
5199 		for (d = conf->geo.raid_disks ;
5200 		     d < conf->geo.raid_disks - mddev->delta_disks;
5201 		     d++) {
5202 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5203 			if (rdev)
5204 				clear_bit(In_sync, &rdev->flags);
5205 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5206 			if (rdev)
5207 				clear_bit(In_sync, &rdev->flags);
5208 		}
5209 		rcu_read_unlock();
5210 	}
5211 	mddev->layout = mddev->new_layout;
5212 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5213 	mddev->reshape_position = MaxSector;
5214 	mddev->delta_disks = 0;
5215 	mddev->reshape_backwards = 0;
5216 }
5217 
5218 static struct md_personality raid10_personality =
5219 {
5220 	.name		= "raid10",
5221 	.level		= 10,
5222 	.owner		= THIS_MODULE,
5223 	.make_request	= raid10_make_request,
5224 	.run		= raid10_run,
5225 	.free		= raid10_free,
5226 	.status		= raid10_status,
5227 	.error_handler	= raid10_error,
5228 	.hot_add_disk	= raid10_add_disk,
5229 	.hot_remove_disk= raid10_remove_disk,
5230 	.spare_active	= raid10_spare_active,
5231 	.sync_request	= raid10_sync_request,
5232 	.quiesce	= raid10_quiesce,
5233 	.size		= raid10_size,
5234 	.resize		= raid10_resize,
5235 	.takeover	= raid10_takeover,
5236 	.check_reshape	= raid10_check_reshape,
5237 	.start_reshape	= raid10_start_reshape,
5238 	.finish_reshape	= raid10_finish_reshape,
5239 	.update_reshape_pos = raid10_update_reshape_pos,
5240 };
5241 
5242 static int __init raid_init(void)
5243 {
5244 	return register_md_personality(&raid10_personality);
5245 }
5246 
5247 static void raid_exit(void)
5248 {
5249 	unregister_md_personality(&raid10_personality);
5250 }
5251 
5252 module_init(raid_init);
5253 module_exit(raid_exit);
5254 MODULE_LICENSE("GPL");
5255 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5256 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5257 MODULE_ALIAS("md-raid10");
5258 MODULE_ALIAS("md-level-10");
5259