1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->geo.raid_disks; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 301 bio_end_io_acct(bio, r10_bio->start_time); 302 bio_endio(bio); 303 /* 304 * Wake up any possible resync thread that waits for the device 305 * to go idle. 306 */ 307 allow_barrier(conf); 308 309 free_r10bio(r10_bio); 310 } 311 312 /* 313 * Update disk head position estimator based on IRQ completion info. 314 */ 315 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 316 { 317 struct r10conf *conf = r10_bio->mddev->private; 318 319 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 320 r10_bio->devs[slot].addr + (r10_bio->sectors); 321 } 322 323 /* 324 * Find the disk number which triggered given bio 325 */ 326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 327 struct bio *bio, int *slotp, int *replp) 328 { 329 int slot; 330 int repl = 0; 331 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 333 if (r10_bio->devs[slot].bio == bio) 334 break; 335 if (r10_bio->devs[slot].repl_bio == bio) { 336 repl = 1; 337 break; 338 } 339 } 340 341 update_head_pos(slot, r10_bio); 342 343 if (slotp) 344 *slotp = slot; 345 if (replp) 346 *replp = repl; 347 return r10_bio->devs[slot].devnum; 348 } 349 350 static void raid10_end_read_request(struct bio *bio) 351 { 352 int uptodate = !bio->bi_status; 353 struct r10bio *r10_bio = bio->bi_private; 354 int slot; 355 struct md_rdev *rdev; 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 slot = r10_bio->read_slot; 359 rdev = r10_bio->devs[slot].rdev; 360 /* 361 * this branch is our 'one mirror IO has finished' event handler: 362 */ 363 update_head_pos(slot, r10_bio); 364 365 if (uptodate) { 366 /* 367 * Set R10BIO_Uptodate in our master bio, so that 368 * we will return a good error code to the higher 369 * levels even if IO on some other mirrored buffer fails. 370 * 371 * The 'master' represents the composite IO operation to 372 * user-side. So if something waits for IO, then it will 373 * wait for the 'master' bio. 374 */ 375 set_bit(R10BIO_Uptodate, &r10_bio->state); 376 } else { 377 /* If all other devices that store this block have 378 * failed, we want to return the error upwards rather 379 * than fail the last device. Here we redefine 380 * "uptodate" to mean "Don't want to retry" 381 */ 382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 383 rdev->raid_disk)) 384 uptodate = 1; 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 395 mdname(conf->mddev), 396 bdevname(rdev->bdev, b), 397 (unsigned long long)r10_bio->sector); 398 set_bit(R10BIO_ReadError, &r10_bio->state); 399 reschedule_retry(r10_bio); 400 } 401 } 402 403 static void close_write(struct r10bio *r10_bio) 404 { 405 /* clear the bitmap if all writes complete successfully */ 406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 407 r10_bio->sectors, 408 !test_bit(R10BIO_Degraded, &r10_bio->state), 409 0); 410 md_write_end(r10_bio->mddev); 411 } 412 413 static void one_write_done(struct r10bio *r10_bio) 414 { 415 if (atomic_dec_and_test(&r10_bio->remaining)) { 416 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 417 reschedule_retry(r10_bio); 418 else { 419 close_write(r10_bio); 420 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 421 reschedule_retry(r10_bio); 422 else 423 raid_end_bio_io(r10_bio); 424 } 425 } 426 } 427 428 static void raid10_end_write_request(struct bio *bio) 429 { 430 struct r10bio *r10_bio = bio->bi_private; 431 int dev; 432 int dec_rdev = 1; 433 struct r10conf *conf = r10_bio->mddev->private; 434 int slot, repl; 435 struct md_rdev *rdev = NULL; 436 struct bio *to_put = NULL; 437 bool discard_error; 438 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 440 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 442 443 if (repl) 444 rdev = conf->mirrors[dev].replacement; 445 if (!rdev) { 446 smp_rmb(); 447 repl = 0; 448 rdev = conf->mirrors[dev].rdev; 449 } 450 /* 451 * this branch is our 'one mirror IO has finished' event handler: 452 */ 453 if (bio->bi_status && !discard_error) { 454 if (repl) 455 /* Never record new bad blocks to replacement, 456 * just fail it. 457 */ 458 md_error(rdev->mddev, rdev); 459 else { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, 463 &rdev->mddev->recovery); 464 465 dec_rdev = 0; 466 if (test_bit(FailFast, &rdev->flags) && 467 (bio->bi_opf & MD_FAILFAST)) { 468 md_error(rdev->mddev, rdev); 469 } 470 471 /* 472 * When the device is faulty, it is not necessary to 473 * handle write error. 474 */ 475 if (!test_bit(Faulty, &rdev->flags)) 476 set_bit(R10BIO_WriteError, &r10_bio->state); 477 else { 478 /* Fail the request */ 479 set_bit(R10BIO_Degraded, &r10_bio->state); 480 r10_bio->devs[slot].bio = NULL; 481 to_put = bio; 482 dec_rdev = 1; 483 } 484 } 485 } else { 486 /* 487 * Set R10BIO_Uptodate in our master bio, so that 488 * we will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer fails. 490 * 491 * The 'master' represents the composite IO operation to 492 * user-side. So if something waits for IO, then it will 493 * wait for the 'master' bio. 494 */ 495 sector_t first_bad; 496 int bad_sectors; 497 498 /* 499 * Do not set R10BIO_Uptodate if the current device is 500 * rebuilding or Faulty. This is because we cannot use 501 * such device for properly reading the data back (we could 502 * potentially use it, if the current write would have felt 503 * before rdev->recovery_offset, but for simplicity we don't 504 * check this here. 505 */ 506 if (test_bit(In_sync, &rdev->flags) && 507 !test_bit(Faulty, &rdev->flags)) 508 set_bit(R10BIO_Uptodate, &r10_bio->state); 509 510 /* Maybe we can clear some bad blocks. */ 511 if (is_badblock(rdev, 512 r10_bio->devs[slot].addr, 513 r10_bio->sectors, 514 &first_bad, &bad_sectors) && !discard_error) { 515 bio_put(bio); 516 if (repl) 517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 518 else 519 r10_bio->devs[slot].bio = IO_MADE_GOOD; 520 dec_rdev = 0; 521 set_bit(R10BIO_MadeGood, &r10_bio->state); 522 } 523 } 524 525 /* 526 * 527 * Let's see if all mirrored write operations have finished 528 * already. 529 */ 530 one_write_done(r10_bio); 531 if (dec_rdev) 532 rdev_dec_pending(rdev, conf->mddev); 533 if (to_put) 534 bio_put(to_put); 535 } 536 537 /* 538 * RAID10 layout manager 539 * As well as the chunksize and raid_disks count, there are two 540 * parameters: near_copies and far_copies. 541 * near_copies * far_copies must be <= raid_disks. 542 * Normally one of these will be 1. 543 * If both are 1, we get raid0. 544 * If near_copies == raid_disks, we get raid1. 545 * 546 * Chunks are laid out in raid0 style with near_copies copies of the 547 * first chunk, followed by near_copies copies of the next chunk and 548 * so on. 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned 550 * as described above, we start again with a device offset of near_copies. 551 * So we effectively have another copy of the whole array further down all 552 * the drives, but with blocks on different drives. 553 * With this layout, and block is never stored twice on the one device. 554 * 555 * raid10_find_phys finds the sector offset of a given virtual sector 556 * on each device that it is on. 557 * 558 * raid10_find_virt does the reverse mapping, from a device and a 559 * sector offset to a virtual address 560 */ 561 562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 563 { 564 int n,f; 565 sector_t sector; 566 sector_t chunk; 567 sector_t stripe; 568 int dev; 569 int slot = 0; 570 int last_far_set_start, last_far_set_size; 571 572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 573 last_far_set_start *= geo->far_set_size; 574 575 last_far_set_size = geo->far_set_size; 576 last_far_set_size += (geo->raid_disks % geo->far_set_size); 577 578 /* now calculate first sector/dev */ 579 chunk = r10bio->sector >> geo->chunk_shift; 580 sector = r10bio->sector & geo->chunk_mask; 581 582 chunk *= geo->near_copies; 583 stripe = chunk; 584 dev = sector_div(stripe, geo->raid_disks); 585 if (geo->far_offset) 586 stripe *= geo->far_copies; 587 588 sector += stripe << geo->chunk_shift; 589 590 /* and calculate all the others */ 591 for (n = 0; n < geo->near_copies; n++) { 592 int d = dev; 593 int set; 594 sector_t s = sector; 595 r10bio->devs[slot].devnum = d; 596 r10bio->devs[slot].addr = s; 597 slot++; 598 599 for (f = 1; f < geo->far_copies; f++) { 600 set = d / geo->far_set_size; 601 d += geo->near_copies; 602 603 if ((geo->raid_disks % geo->far_set_size) && 604 (d > last_far_set_start)) { 605 d -= last_far_set_start; 606 d %= last_far_set_size; 607 d += last_far_set_start; 608 } else { 609 d %= geo->far_set_size; 610 d += geo->far_set_size * set; 611 } 612 s += geo->stride; 613 r10bio->devs[slot].devnum = d; 614 r10bio->devs[slot].addr = s; 615 slot++; 616 } 617 dev++; 618 if (dev >= geo->raid_disks) { 619 dev = 0; 620 sector += (geo->chunk_mask + 1); 621 } 622 } 623 } 624 625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 626 { 627 struct geom *geo = &conf->geo; 628 629 if (conf->reshape_progress != MaxSector && 630 ((r10bio->sector >= conf->reshape_progress) != 631 conf->mddev->reshape_backwards)) { 632 set_bit(R10BIO_Previous, &r10bio->state); 633 geo = &conf->prev; 634 } else 635 clear_bit(R10BIO_Previous, &r10bio->state); 636 637 __raid10_find_phys(geo, r10bio); 638 } 639 640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 641 { 642 sector_t offset, chunk, vchunk; 643 /* Never use conf->prev as this is only called during resync 644 * or recovery, so reshape isn't happening 645 */ 646 struct geom *geo = &conf->geo; 647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 648 int far_set_size = geo->far_set_size; 649 int last_far_set_start; 650 651 if (geo->raid_disks % geo->far_set_size) { 652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 653 last_far_set_start *= geo->far_set_size; 654 655 if (dev >= last_far_set_start) { 656 far_set_size = geo->far_set_size; 657 far_set_size += (geo->raid_disks % geo->far_set_size); 658 far_set_start = last_far_set_start; 659 } 660 } 661 662 offset = sector & geo->chunk_mask; 663 if (geo->far_offset) { 664 int fc; 665 chunk = sector >> geo->chunk_shift; 666 fc = sector_div(chunk, geo->far_copies); 667 dev -= fc * geo->near_copies; 668 if (dev < far_set_start) 669 dev += far_set_size; 670 } else { 671 while (sector >= geo->stride) { 672 sector -= geo->stride; 673 if (dev < (geo->near_copies + far_set_start)) 674 dev += far_set_size - geo->near_copies; 675 else 676 dev -= geo->near_copies; 677 } 678 chunk = sector >> geo->chunk_shift; 679 } 680 vchunk = chunk * geo->raid_disks + dev; 681 sector_div(vchunk, geo->near_copies); 682 return (vchunk << geo->chunk_shift) + offset; 683 } 684 685 /* 686 * This routine returns the disk from which the requested read should 687 * be done. There is a per-array 'next expected sequential IO' sector 688 * number - if this matches on the next IO then we use the last disk. 689 * There is also a per-disk 'last know head position' sector that is 690 * maintained from IRQ contexts, both the normal and the resync IO 691 * completion handlers update this position correctly. If there is no 692 * perfect sequential match then we pick the disk whose head is closest. 693 * 694 * If there are 2 mirrors in the same 2 devices, performance degrades 695 * because position is mirror, not device based. 696 * 697 * The rdev for the device selected will have nr_pending incremented. 698 */ 699 700 /* 701 * FIXME: possibly should rethink readbalancing and do it differently 702 * depending on near_copies / far_copies geometry. 703 */ 704 static struct md_rdev *read_balance(struct r10conf *conf, 705 struct r10bio *r10_bio, 706 int *max_sectors) 707 { 708 const sector_t this_sector = r10_bio->sector; 709 int disk, slot; 710 int sectors = r10_bio->sectors; 711 int best_good_sectors; 712 sector_t new_distance, best_dist; 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 714 int do_balance; 715 int best_dist_slot, best_pending_slot; 716 bool has_nonrot_disk = false; 717 unsigned int min_pending; 718 struct geom *geo = &conf->geo; 719 720 raid10_find_phys(conf, r10_bio); 721 rcu_read_lock(); 722 best_dist_slot = -1; 723 min_pending = UINT_MAX; 724 best_dist_rdev = NULL; 725 best_pending_rdev = NULL; 726 best_dist = MaxSector; 727 best_good_sectors = 0; 728 do_balance = 1; 729 clear_bit(R10BIO_FailFast, &r10_bio->state); 730 /* 731 * Check if we can balance. We can balance on the whole 732 * device if no resync is going on (recovery is ok), or below 733 * the resync window. We take the first readable disk when 734 * above the resync window. 735 */ 736 if ((conf->mddev->recovery_cp < MaxSector 737 && (this_sector + sectors >= conf->next_resync)) || 738 (mddev_is_clustered(conf->mddev) && 739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 740 this_sector + sectors))) 741 do_balance = 0; 742 743 for (slot = 0; slot < conf->copies ; slot++) { 744 sector_t first_bad; 745 int bad_sectors; 746 sector_t dev_sector; 747 unsigned int pending; 748 bool nonrot; 749 750 if (r10_bio->devs[slot].bio == IO_BLOCKED) 751 continue; 752 disk = r10_bio->devs[slot].devnum; 753 rdev = rcu_dereference(conf->mirrors[disk].replacement); 754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags)) 759 continue; 760 if (!test_bit(In_sync, &rdev->flags) && 761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 762 continue; 763 764 dev_sector = r10_bio->devs[slot].addr; 765 if (is_badblock(rdev, dev_sector, sectors, 766 &first_bad, &bad_sectors)) { 767 if (best_dist < MaxSector) 768 /* Already have a better slot */ 769 continue; 770 if (first_bad <= dev_sector) { 771 /* Cannot read here. If this is the 772 * 'primary' device, then we must not read 773 * beyond 'bad_sectors' from another device. 774 */ 775 bad_sectors -= (dev_sector - first_bad); 776 if (!do_balance && sectors > bad_sectors) 777 sectors = bad_sectors; 778 if (best_good_sectors > sectors) 779 best_good_sectors = sectors; 780 } else { 781 sector_t good_sectors = 782 first_bad - dev_sector; 783 if (good_sectors > best_good_sectors) { 784 best_good_sectors = good_sectors; 785 best_dist_slot = slot; 786 best_dist_rdev = rdev; 787 } 788 if (!do_balance) 789 /* Must read from here */ 790 break; 791 } 792 continue; 793 } else 794 best_good_sectors = sectors; 795 796 if (!do_balance) 797 break; 798 799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 800 has_nonrot_disk |= nonrot; 801 pending = atomic_read(&rdev->nr_pending); 802 if (min_pending > pending && nonrot) { 803 min_pending = pending; 804 best_pending_slot = slot; 805 best_pending_rdev = rdev; 806 } 807 808 if (best_dist_slot >= 0) 809 /* At least 2 disks to choose from so failfast is OK */ 810 set_bit(R10BIO_FailFast, &r10_bio->state); 811 /* This optimisation is debatable, and completely destroys 812 * sequential read speed for 'far copies' arrays. So only 813 * keep it for 'near' arrays, and review those later. 814 */ 815 if (geo->near_copies > 1 && !pending) 816 new_distance = 0; 817 818 /* for far > 1 always use the lowest address */ 819 else if (geo->far_copies > 1) 820 new_distance = r10_bio->devs[slot].addr; 821 else 822 new_distance = abs(r10_bio->devs[slot].addr - 823 conf->mirrors[disk].head_position); 824 825 if (new_distance < best_dist) { 826 best_dist = new_distance; 827 best_dist_slot = slot; 828 best_dist_rdev = rdev; 829 } 830 } 831 if (slot >= conf->copies) { 832 if (has_nonrot_disk) { 833 slot = best_pending_slot; 834 rdev = best_pending_rdev; 835 } else { 836 slot = best_dist_slot; 837 rdev = best_dist_rdev; 838 } 839 } 840 841 if (slot >= 0) { 842 atomic_inc(&rdev->nr_pending); 843 r10_bio->read_slot = slot; 844 } else 845 rdev = NULL; 846 rcu_read_unlock(); 847 *max_sectors = best_good_sectors; 848 849 return rdev; 850 } 851 852 static void flush_pending_writes(struct r10conf *conf) 853 { 854 /* Any writes that have been queued but are awaiting 855 * bitmap updates get flushed here. 856 */ 857 spin_lock_irq(&conf->device_lock); 858 859 if (conf->pending_bio_list.head) { 860 struct blk_plug plug; 861 struct bio *bio; 862 863 bio = bio_list_get(&conf->pending_bio_list); 864 spin_unlock_irq(&conf->device_lock); 865 866 /* 867 * As this is called in a wait_event() loop (see freeze_array), 868 * current->state might be TASK_UNINTERRUPTIBLE which will 869 * cause a warning when we prepare to wait again. As it is 870 * rare that this path is taken, it is perfectly safe to force 871 * us to go around the wait_event() loop again, so the warning 872 * is a false-positive. Silence the warning by resetting 873 * thread state 874 */ 875 __set_current_state(TASK_RUNNING); 876 877 blk_start_plug(&plug); 878 /* flush any pending bitmap writes to disk 879 * before proceeding w/ I/O */ 880 md_bitmap_unplug(conf->mddev->bitmap); 881 wake_up(&conf->wait_barrier); 882 883 while (bio) { /* submit pending writes */ 884 struct bio *next = bio->bi_next; 885 struct md_rdev *rdev = (void*)bio->bi_bdev; 886 bio->bi_next = NULL; 887 bio_set_dev(bio, rdev->bdev); 888 if (test_bit(Faulty, &rdev->flags)) { 889 bio_io_error(bio); 890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 891 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 892 /* Just ignore it */ 893 bio_endio(bio); 894 else 895 submit_bio_noacct(bio); 896 bio = next; 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 BUG_ON(force && !conf->barrier); 928 spin_lock_irq(&conf->resync_lock); 929 930 /* Wait until no block IO is waiting (unless 'force') */ 931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 932 conf->resync_lock); 933 934 /* block any new IO from starting */ 935 conf->barrier++; 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_lock_irq(conf->wait_barrier, 939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 940 conf->resync_lock); 941 942 spin_unlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 spin_lock_irqsave(&conf->resync_lock, flags); 949 conf->barrier--; 950 spin_unlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static bool wait_barrier(struct r10conf *conf, bool nowait) 955 { 956 bool ret = true; 957 958 spin_lock_irq(&conf->resync_lock); 959 if (conf->barrier) { 960 struct bio_list *bio_list = current->bio_list; 961 conf->nr_waiting++; 962 /* Wait for the barrier to drop. 963 * However if there are already pending 964 * requests (preventing the barrier from 965 * rising completely), and the 966 * pre-process bio queue isn't empty, 967 * then don't wait, as we need to empty 968 * that queue to get the nr_pending 969 * count down. 970 */ 971 /* Return false when nowait flag is set */ 972 if (nowait) { 973 ret = false; 974 } else { 975 raid10_log(conf->mddev, "wait barrier"); 976 wait_event_lock_irq(conf->wait_barrier, 977 !conf->barrier || 978 (atomic_read(&conf->nr_pending) && 979 bio_list && 980 (!bio_list_empty(&bio_list[0]) || 981 !bio_list_empty(&bio_list[1]))) || 982 /* move on if recovery thread is 983 * blocked by us 984 */ 985 (conf->mddev->thread->tsk == current && 986 test_bit(MD_RECOVERY_RUNNING, 987 &conf->mddev->recovery) && 988 conf->nr_queued > 0), 989 conf->resync_lock); 990 } 991 conf->nr_waiting--; 992 if (!conf->nr_waiting) 993 wake_up(&conf->wait_barrier); 994 } 995 /* Only increment nr_pending when we wait */ 996 if (ret) 997 atomic_inc(&conf->nr_pending); 998 spin_unlock_irq(&conf->resync_lock); 999 return ret; 1000 } 1001 1002 static void allow_barrier(struct r10conf *conf) 1003 { 1004 if ((atomic_dec_and_test(&conf->nr_pending)) || 1005 (conf->array_freeze_pending)) 1006 wake_up(&conf->wait_barrier); 1007 } 1008 1009 static void freeze_array(struct r10conf *conf, int extra) 1010 { 1011 /* stop syncio and normal IO and wait for everything to 1012 * go quiet. 1013 * We increment barrier and nr_waiting, and then 1014 * wait until nr_pending match nr_queued+extra 1015 * This is called in the context of one normal IO request 1016 * that has failed. Thus any sync request that might be pending 1017 * will be blocked by nr_pending, and we need to wait for 1018 * pending IO requests to complete or be queued for re-try. 1019 * Thus the number queued (nr_queued) plus this request (extra) 1020 * must match the number of pending IOs (nr_pending) before 1021 * we continue. 1022 */ 1023 spin_lock_irq(&conf->resync_lock); 1024 conf->array_freeze_pending++; 1025 conf->barrier++; 1026 conf->nr_waiting++; 1027 wait_event_lock_irq_cmd(conf->wait_barrier, 1028 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1029 conf->resync_lock, 1030 flush_pending_writes(conf)); 1031 1032 conf->array_freeze_pending--; 1033 spin_unlock_irq(&conf->resync_lock); 1034 } 1035 1036 static void unfreeze_array(struct r10conf *conf) 1037 { 1038 /* reverse the effect of the freeze */ 1039 spin_lock_irq(&conf->resync_lock); 1040 conf->barrier--; 1041 conf->nr_waiting--; 1042 wake_up(&conf->wait_barrier); 1043 spin_unlock_irq(&conf->resync_lock); 1044 } 1045 1046 static sector_t choose_data_offset(struct r10bio *r10_bio, 1047 struct md_rdev *rdev) 1048 { 1049 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1050 test_bit(R10BIO_Previous, &r10_bio->state)) 1051 return rdev->data_offset; 1052 else 1053 return rdev->new_data_offset; 1054 } 1055 1056 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1057 { 1058 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1059 struct mddev *mddev = plug->cb.data; 1060 struct r10conf *conf = mddev->private; 1061 struct bio *bio; 1062 1063 if (from_schedule || current->bio_list) { 1064 spin_lock_irq(&conf->device_lock); 1065 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1066 spin_unlock_irq(&conf->device_lock); 1067 wake_up(&conf->wait_barrier); 1068 md_wakeup_thread(mddev->thread); 1069 kfree(plug); 1070 return; 1071 } 1072 1073 /* we aren't scheduling, so we can do the write-out directly. */ 1074 bio = bio_list_get(&plug->pending); 1075 md_bitmap_unplug(mddev->bitmap); 1076 wake_up(&conf->wait_barrier); 1077 1078 while (bio) { /* submit pending writes */ 1079 struct bio *next = bio->bi_next; 1080 struct md_rdev *rdev = (void*)bio->bi_bdev; 1081 bio->bi_next = NULL; 1082 bio_set_dev(bio, rdev->bdev); 1083 if (test_bit(Faulty, &rdev->flags)) { 1084 bio_io_error(bio); 1085 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1086 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 1087 /* Just ignore it */ 1088 bio_endio(bio); 1089 else 1090 submit_bio_noacct(bio); 1091 bio = next; 1092 } 1093 kfree(plug); 1094 } 1095 1096 /* 1097 * 1. Register the new request and wait if the reconstruction thread has put 1098 * up a bar for new requests. Continue immediately if no resync is active 1099 * currently. 1100 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1101 */ 1102 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1103 struct bio *bio, sector_t sectors) 1104 { 1105 /* Bail out if REQ_NOWAIT is set for the bio */ 1106 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1107 bio_wouldblock_error(bio); 1108 return false; 1109 } 1110 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1111 bio->bi_iter.bi_sector < conf->reshape_progress && 1112 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1113 allow_barrier(conf); 1114 if (bio->bi_opf & REQ_NOWAIT) { 1115 bio_wouldblock_error(bio); 1116 return false; 1117 } 1118 raid10_log(conf->mddev, "wait reshape"); 1119 wait_event(conf->wait_barrier, 1120 conf->reshape_progress <= bio->bi_iter.bi_sector || 1121 conf->reshape_progress >= bio->bi_iter.bi_sector + 1122 sectors); 1123 wait_barrier(conf, false); 1124 } 1125 return true; 1126 } 1127 1128 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1129 struct r10bio *r10_bio) 1130 { 1131 struct r10conf *conf = mddev->private; 1132 struct bio *read_bio; 1133 const int op = bio_op(bio); 1134 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1135 int max_sectors; 1136 struct md_rdev *rdev; 1137 char b[BDEVNAME_SIZE]; 1138 int slot = r10_bio->read_slot; 1139 struct md_rdev *err_rdev = NULL; 1140 gfp_t gfp = GFP_NOIO; 1141 1142 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1143 /* 1144 * This is an error retry, but we cannot 1145 * safely dereference the rdev in the r10_bio, 1146 * we must use the one in conf. 1147 * If it has already been disconnected (unlikely) 1148 * we lose the device name in error messages. 1149 */ 1150 int disk; 1151 /* 1152 * As we are blocking raid10, it is a little safer to 1153 * use __GFP_HIGH. 1154 */ 1155 gfp = GFP_NOIO | __GFP_HIGH; 1156 1157 rcu_read_lock(); 1158 disk = r10_bio->devs[slot].devnum; 1159 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1160 if (err_rdev) 1161 bdevname(err_rdev->bdev, b); 1162 else { 1163 strcpy(b, "???"); 1164 /* This never gets dereferenced */ 1165 err_rdev = r10_bio->devs[slot].rdev; 1166 } 1167 rcu_read_unlock(); 1168 } 1169 1170 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1171 return; 1172 rdev = read_balance(conf, r10_bio, &max_sectors); 1173 if (!rdev) { 1174 if (err_rdev) { 1175 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1176 mdname(mddev), b, 1177 (unsigned long long)r10_bio->sector); 1178 } 1179 raid_end_bio_io(r10_bio); 1180 return; 1181 } 1182 if (err_rdev) 1183 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1184 mdname(mddev), 1185 bdevname(rdev->bdev, b), 1186 (unsigned long long)r10_bio->sector); 1187 if (max_sectors < bio_sectors(bio)) { 1188 struct bio *split = bio_split(bio, max_sectors, 1189 gfp, &conf->bio_split); 1190 bio_chain(split, bio); 1191 allow_barrier(conf); 1192 submit_bio_noacct(bio); 1193 wait_barrier(conf, false); 1194 bio = split; 1195 r10_bio->master_bio = bio; 1196 r10_bio->sectors = max_sectors; 1197 } 1198 slot = r10_bio->read_slot; 1199 1200 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1201 r10_bio->start_time = bio_start_io_acct(bio); 1202 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1203 1204 r10_bio->devs[slot].bio = read_bio; 1205 r10_bio->devs[slot].rdev = rdev; 1206 1207 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1208 choose_data_offset(r10_bio, rdev); 1209 read_bio->bi_end_io = raid10_end_read_request; 1210 bio_set_op_attrs(read_bio, op, do_sync); 1211 if (test_bit(FailFast, &rdev->flags) && 1212 test_bit(R10BIO_FailFast, &r10_bio->state)) 1213 read_bio->bi_opf |= MD_FAILFAST; 1214 read_bio->bi_private = r10_bio; 1215 1216 if (mddev->gendisk) 1217 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1218 r10_bio->sector); 1219 submit_bio_noacct(read_bio); 1220 return; 1221 } 1222 1223 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1224 struct bio *bio, bool replacement, 1225 int n_copy) 1226 { 1227 const int op = bio_op(bio); 1228 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1229 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1230 unsigned long flags; 1231 struct blk_plug_cb *cb; 1232 struct raid1_plug_cb *plug = NULL; 1233 struct r10conf *conf = mddev->private; 1234 struct md_rdev *rdev; 1235 int devnum = r10_bio->devs[n_copy].devnum; 1236 struct bio *mbio; 1237 1238 if (replacement) { 1239 rdev = conf->mirrors[devnum].replacement; 1240 if (rdev == NULL) { 1241 /* Replacement just got moved to main 'rdev' */ 1242 smp_mb(); 1243 rdev = conf->mirrors[devnum].rdev; 1244 } 1245 } else 1246 rdev = conf->mirrors[devnum].rdev; 1247 1248 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1249 if (replacement) 1250 r10_bio->devs[n_copy].repl_bio = mbio; 1251 else 1252 r10_bio->devs[n_copy].bio = mbio; 1253 1254 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1255 choose_data_offset(r10_bio, rdev)); 1256 mbio->bi_end_io = raid10_end_write_request; 1257 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1258 if (!replacement && test_bit(FailFast, 1259 &conf->mirrors[devnum].rdev->flags) 1260 && enough(conf, devnum)) 1261 mbio->bi_opf |= MD_FAILFAST; 1262 mbio->bi_private = r10_bio; 1263 1264 if (conf->mddev->gendisk) 1265 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1266 r10_bio->sector); 1267 /* flush_pending_writes() needs access to the rdev so...*/ 1268 mbio->bi_bdev = (void *)rdev; 1269 1270 atomic_inc(&r10_bio->remaining); 1271 1272 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1273 if (cb) 1274 plug = container_of(cb, struct raid1_plug_cb, cb); 1275 else 1276 plug = NULL; 1277 if (plug) { 1278 bio_list_add(&plug->pending, mbio); 1279 } else { 1280 spin_lock_irqsave(&conf->device_lock, flags); 1281 bio_list_add(&conf->pending_bio_list, mbio); 1282 spin_unlock_irqrestore(&conf->device_lock, flags); 1283 md_wakeup_thread(mddev->thread); 1284 } 1285 } 1286 1287 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1288 { 1289 int i; 1290 struct r10conf *conf = mddev->private; 1291 struct md_rdev *blocked_rdev; 1292 1293 retry_wait: 1294 blocked_rdev = NULL; 1295 rcu_read_lock(); 1296 for (i = 0; i < conf->copies; i++) { 1297 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1298 struct md_rdev *rrdev = rcu_dereference( 1299 conf->mirrors[i].replacement); 1300 if (rdev == rrdev) 1301 rrdev = NULL; 1302 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1303 atomic_inc(&rdev->nr_pending); 1304 blocked_rdev = rdev; 1305 break; 1306 } 1307 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1308 atomic_inc(&rrdev->nr_pending); 1309 blocked_rdev = rrdev; 1310 break; 1311 } 1312 1313 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1314 sector_t first_bad; 1315 sector_t dev_sector = r10_bio->devs[i].addr; 1316 int bad_sectors; 1317 int is_bad; 1318 1319 /* 1320 * Discard request doesn't care the write result 1321 * so it doesn't need to wait blocked disk here. 1322 */ 1323 if (!r10_bio->sectors) 1324 continue; 1325 1326 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1327 &first_bad, &bad_sectors); 1328 if (is_bad < 0) { 1329 /* 1330 * Mustn't write here until the bad block 1331 * is acknowledged 1332 */ 1333 atomic_inc(&rdev->nr_pending); 1334 set_bit(BlockedBadBlocks, &rdev->flags); 1335 blocked_rdev = rdev; 1336 break; 1337 } 1338 } 1339 } 1340 rcu_read_unlock(); 1341 1342 if (unlikely(blocked_rdev)) { 1343 /* Have to wait for this device to get unblocked, then retry */ 1344 allow_barrier(conf); 1345 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1346 __func__, blocked_rdev->raid_disk); 1347 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1348 wait_barrier(conf, false); 1349 goto retry_wait; 1350 } 1351 } 1352 1353 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1354 struct r10bio *r10_bio) 1355 { 1356 struct r10conf *conf = mddev->private; 1357 int i; 1358 sector_t sectors; 1359 int max_sectors; 1360 1361 if ((mddev_is_clustered(mddev) && 1362 md_cluster_ops->area_resyncing(mddev, WRITE, 1363 bio->bi_iter.bi_sector, 1364 bio_end_sector(bio)))) { 1365 DEFINE_WAIT(w); 1366 /* Bail out if REQ_NOWAIT is set for the bio */ 1367 if (bio->bi_opf & REQ_NOWAIT) { 1368 bio_wouldblock_error(bio); 1369 return; 1370 } 1371 for (;;) { 1372 prepare_to_wait(&conf->wait_barrier, 1373 &w, TASK_IDLE); 1374 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1375 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1376 break; 1377 schedule(); 1378 } 1379 finish_wait(&conf->wait_barrier, &w); 1380 } 1381 1382 sectors = r10_bio->sectors; 1383 if (!regular_request_wait(mddev, conf, bio, sectors)) 1384 return; 1385 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1386 (mddev->reshape_backwards 1387 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1388 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1389 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1390 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1391 /* Need to update reshape_position in metadata */ 1392 mddev->reshape_position = conf->reshape_progress; 1393 set_mask_bits(&mddev->sb_flags, 0, 1394 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1395 md_wakeup_thread(mddev->thread); 1396 if (bio->bi_opf & REQ_NOWAIT) { 1397 allow_barrier(conf); 1398 bio_wouldblock_error(bio); 1399 return; 1400 } 1401 raid10_log(conf->mddev, "wait reshape metadata"); 1402 wait_event(mddev->sb_wait, 1403 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1404 1405 conf->reshape_safe = mddev->reshape_position; 1406 } 1407 1408 /* first select target devices under rcu_lock and 1409 * inc refcount on their rdev. Record them by setting 1410 * bios[x] to bio 1411 * If there are known/acknowledged bad blocks on any device 1412 * on which we have seen a write error, we want to avoid 1413 * writing to those blocks. This potentially requires several 1414 * writes to write around the bad blocks. Each set of writes 1415 * gets its own r10_bio with a set of bios attached. 1416 */ 1417 1418 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1419 raid10_find_phys(conf, r10_bio); 1420 1421 wait_blocked_dev(mddev, r10_bio); 1422 1423 rcu_read_lock(); 1424 max_sectors = r10_bio->sectors; 1425 1426 for (i = 0; i < conf->copies; i++) { 1427 int d = r10_bio->devs[i].devnum; 1428 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1429 struct md_rdev *rrdev = rcu_dereference( 1430 conf->mirrors[d].replacement); 1431 if (rdev == rrdev) 1432 rrdev = NULL; 1433 if (rdev && (test_bit(Faulty, &rdev->flags))) 1434 rdev = NULL; 1435 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1436 rrdev = NULL; 1437 1438 r10_bio->devs[i].bio = NULL; 1439 r10_bio->devs[i].repl_bio = NULL; 1440 1441 if (!rdev && !rrdev) { 1442 set_bit(R10BIO_Degraded, &r10_bio->state); 1443 continue; 1444 } 1445 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1446 sector_t first_bad; 1447 sector_t dev_sector = r10_bio->devs[i].addr; 1448 int bad_sectors; 1449 int is_bad; 1450 1451 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1452 &first_bad, &bad_sectors); 1453 if (is_bad && first_bad <= dev_sector) { 1454 /* Cannot write here at all */ 1455 bad_sectors -= (dev_sector - first_bad); 1456 if (bad_sectors < max_sectors) 1457 /* Mustn't write more than bad_sectors 1458 * to other devices yet 1459 */ 1460 max_sectors = bad_sectors; 1461 /* We don't set R10BIO_Degraded as that 1462 * only applies if the disk is missing, 1463 * so it might be re-added, and we want to 1464 * know to recover this chunk. 1465 * In this case the device is here, and the 1466 * fact that this chunk is not in-sync is 1467 * recorded in the bad block log. 1468 */ 1469 continue; 1470 } 1471 if (is_bad) { 1472 int good_sectors = first_bad - dev_sector; 1473 if (good_sectors < max_sectors) 1474 max_sectors = good_sectors; 1475 } 1476 } 1477 if (rdev) { 1478 r10_bio->devs[i].bio = bio; 1479 atomic_inc(&rdev->nr_pending); 1480 } 1481 if (rrdev) { 1482 r10_bio->devs[i].repl_bio = bio; 1483 atomic_inc(&rrdev->nr_pending); 1484 } 1485 } 1486 rcu_read_unlock(); 1487 1488 if (max_sectors < r10_bio->sectors) 1489 r10_bio->sectors = max_sectors; 1490 1491 if (r10_bio->sectors < bio_sectors(bio)) { 1492 struct bio *split = bio_split(bio, r10_bio->sectors, 1493 GFP_NOIO, &conf->bio_split); 1494 bio_chain(split, bio); 1495 allow_barrier(conf); 1496 submit_bio_noacct(bio); 1497 wait_barrier(conf, false); 1498 bio = split; 1499 r10_bio->master_bio = bio; 1500 } 1501 1502 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1503 r10_bio->start_time = bio_start_io_acct(bio); 1504 atomic_set(&r10_bio->remaining, 1); 1505 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1506 1507 for (i = 0; i < conf->copies; i++) { 1508 if (r10_bio->devs[i].bio) 1509 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1510 if (r10_bio->devs[i].repl_bio) 1511 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1512 } 1513 one_write_done(r10_bio); 1514 } 1515 1516 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1517 { 1518 struct r10conf *conf = mddev->private; 1519 struct r10bio *r10_bio; 1520 1521 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1522 1523 r10_bio->master_bio = bio; 1524 r10_bio->sectors = sectors; 1525 1526 r10_bio->mddev = mddev; 1527 r10_bio->sector = bio->bi_iter.bi_sector; 1528 r10_bio->state = 0; 1529 r10_bio->read_slot = -1; 1530 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1531 conf->geo.raid_disks); 1532 1533 if (bio_data_dir(bio) == READ) 1534 raid10_read_request(mddev, bio, r10_bio); 1535 else 1536 raid10_write_request(mddev, bio, r10_bio); 1537 } 1538 1539 static void raid_end_discard_bio(struct r10bio *r10bio) 1540 { 1541 struct r10conf *conf = r10bio->mddev->private; 1542 struct r10bio *first_r10bio; 1543 1544 while (atomic_dec_and_test(&r10bio->remaining)) { 1545 1546 allow_barrier(conf); 1547 1548 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1549 first_r10bio = (struct r10bio *)r10bio->master_bio; 1550 free_r10bio(r10bio); 1551 r10bio = first_r10bio; 1552 } else { 1553 md_write_end(r10bio->mddev); 1554 bio_endio(r10bio->master_bio); 1555 free_r10bio(r10bio); 1556 break; 1557 } 1558 } 1559 } 1560 1561 static void raid10_end_discard_request(struct bio *bio) 1562 { 1563 struct r10bio *r10_bio = bio->bi_private; 1564 struct r10conf *conf = r10_bio->mddev->private; 1565 struct md_rdev *rdev = NULL; 1566 int dev; 1567 int slot, repl; 1568 1569 /* 1570 * We don't care the return value of discard bio 1571 */ 1572 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1573 set_bit(R10BIO_Uptodate, &r10_bio->state); 1574 1575 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1576 if (repl) 1577 rdev = conf->mirrors[dev].replacement; 1578 if (!rdev) { 1579 /* 1580 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1581 * replacement before setting replacement to NULL. It can read 1582 * rdev first without barrier protect even replacment is NULL 1583 */ 1584 smp_rmb(); 1585 rdev = conf->mirrors[dev].rdev; 1586 } 1587 1588 raid_end_discard_bio(r10_bio); 1589 rdev_dec_pending(rdev, conf->mddev); 1590 } 1591 1592 /* 1593 * There are some limitations to handle discard bio 1594 * 1st, the discard size is bigger than stripe_size*2. 1595 * 2st, if the discard bio spans reshape progress, we use the old way to 1596 * handle discard bio 1597 */ 1598 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1599 { 1600 struct r10conf *conf = mddev->private; 1601 struct geom *geo = &conf->geo; 1602 int far_copies = geo->far_copies; 1603 bool first_copy = true; 1604 struct r10bio *r10_bio, *first_r10bio; 1605 struct bio *split; 1606 int disk; 1607 sector_t chunk; 1608 unsigned int stripe_size; 1609 unsigned int stripe_data_disks; 1610 sector_t split_size; 1611 sector_t bio_start, bio_end; 1612 sector_t first_stripe_index, last_stripe_index; 1613 sector_t start_disk_offset; 1614 unsigned int start_disk_index; 1615 sector_t end_disk_offset; 1616 unsigned int end_disk_index; 1617 unsigned int remainder; 1618 1619 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1620 return -EAGAIN; 1621 1622 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1623 bio_wouldblock_error(bio); 1624 return 0; 1625 } 1626 wait_barrier(conf, false); 1627 1628 /* 1629 * Check reshape again to avoid reshape happens after checking 1630 * MD_RECOVERY_RESHAPE and before wait_barrier 1631 */ 1632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1633 goto out; 1634 1635 if (geo->near_copies) 1636 stripe_data_disks = geo->raid_disks / geo->near_copies + 1637 geo->raid_disks % geo->near_copies; 1638 else 1639 stripe_data_disks = geo->raid_disks; 1640 1641 stripe_size = stripe_data_disks << geo->chunk_shift; 1642 1643 bio_start = bio->bi_iter.bi_sector; 1644 bio_end = bio_end_sector(bio); 1645 1646 /* 1647 * Maybe one discard bio is smaller than strip size or across one 1648 * stripe and discard region is larger than one stripe size. For far 1649 * offset layout, if the discard region is not aligned with stripe 1650 * size, there is hole when we submit discard bio to member disk. 1651 * For simplicity, we only handle discard bio which discard region 1652 * is bigger than stripe_size * 2 1653 */ 1654 if (bio_sectors(bio) < stripe_size*2) 1655 goto out; 1656 1657 /* 1658 * Keep bio aligned with strip size. 1659 */ 1660 div_u64_rem(bio_start, stripe_size, &remainder); 1661 if (remainder) { 1662 split_size = stripe_size - remainder; 1663 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1664 bio_chain(split, bio); 1665 allow_barrier(conf); 1666 /* Resend the fist split part */ 1667 submit_bio_noacct(split); 1668 wait_barrier(conf, false); 1669 } 1670 div_u64_rem(bio_end, stripe_size, &remainder); 1671 if (remainder) { 1672 split_size = bio_sectors(bio) - remainder; 1673 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1674 bio_chain(split, bio); 1675 allow_barrier(conf); 1676 /* Resend the second split part */ 1677 submit_bio_noacct(bio); 1678 bio = split; 1679 wait_barrier(conf, false); 1680 } 1681 1682 bio_start = bio->bi_iter.bi_sector; 1683 bio_end = bio_end_sector(bio); 1684 1685 /* 1686 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1687 * One stripe contains the chunks from all member disk (one chunk from 1688 * one disk at the same HBA address). For layout detail, see 'man md 4' 1689 */ 1690 chunk = bio_start >> geo->chunk_shift; 1691 chunk *= geo->near_copies; 1692 first_stripe_index = chunk; 1693 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1694 if (geo->far_offset) 1695 first_stripe_index *= geo->far_copies; 1696 start_disk_offset = (bio_start & geo->chunk_mask) + 1697 (first_stripe_index << geo->chunk_shift); 1698 1699 chunk = bio_end >> geo->chunk_shift; 1700 chunk *= geo->near_copies; 1701 last_stripe_index = chunk; 1702 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1703 if (geo->far_offset) 1704 last_stripe_index *= geo->far_copies; 1705 end_disk_offset = (bio_end & geo->chunk_mask) + 1706 (last_stripe_index << geo->chunk_shift); 1707 1708 retry_discard: 1709 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1710 r10_bio->mddev = mddev; 1711 r10_bio->state = 0; 1712 r10_bio->sectors = 0; 1713 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1714 wait_blocked_dev(mddev, r10_bio); 1715 1716 /* 1717 * For far layout it needs more than one r10bio to cover all regions. 1718 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1719 * to record the discard bio. Other r10bio->master_bio record the first 1720 * r10bio. The first r10bio only release after all other r10bios finish. 1721 * The discard bio returns only first r10bio finishes 1722 */ 1723 if (first_copy) { 1724 r10_bio->master_bio = bio; 1725 set_bit(R10BIO_Discard, &r10_bio->state); 1726 first_copy = false; 1727 first_r10bio = r10_bio; 1728 } else 1729 r10_bio->master_bio = (struct bio *)first_r10bio; 1730 1731 /* 1732 * first select target devices under rcu_lock and 1733 * inc refcount on their rdev. Record them by setting 1734 * bios[x] to bio 1735 */ 1736 rcu_read_lock(); 1737 for (disk = 0; disk < geo->raid_disks; disk++) { 1738 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1739 struct md_rdev *rrdev = rcu_dereference( 1740 conf->mirrors[disk].replacement); 1741 1742 r10_bio->devs[disk].bio = NULL; 1743 r10_bio->devs[disk].repl_bio = NULL; 1744 1745 if (rdev && (test_bit(Faulty, &rdev->flags))) 1746 rdev = NULL; 1747 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1748 rrdev = NULL; 1749 if (!rdev && !rrdev) 1750 continue; 1751 1752 if (rdev) { 1753 r10_bio->devs[disk].bio = bio; 1754 atomic_inc(&rdev->nr_pending); 1755 } 1756 if (rrdev) { 1757 r10_bio->devs[disk].repl_bio = bio; 1758 atomic_inc(&rrdev->nr_pending); 1759 } 1760 } 1761 rcu_read_unlock(); 1762 1763 atomic_set(&r10_bio->remaining, 1); 1764 for (disk = 0; disk < geo->raid_disks; disk++) { 1765 sector_t dev_start, dev_end; 1766 struct bio *mbio, *rbio = NULL; 1767 1768 /* 1769 * Now start to calculate the start and end address for each disk. 1770 * The space between dev_start and dev_end is the discard region. 1771 * 1772 * For dev_start, it needs to consider three conditions: 1773 * 1st, the disk is before start_disk, you can imagine the disk in 1774 * the next stripe. So the dev_start is the start address of next 1775 * stripe. 1776 * 2st, the disk is after start_disk, it means the disk is at the 1777 * same stripe of first disk 1778 * 3st, the first disk itself, we can use start_disk_offset directly 1779 */ 1780 if (disk < start_disk_index) 1781 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1782 else if (disk > start_disk_index) 1783 dev_start = first_stripe_index * mddev->chunk_sectors; 1784 else 1785 dev_start = start_disk_offset; 1786 1787 if (disk < end_disk_index) 1788 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1789 else if (disk > end_disk_index) 1790 dev_end = last_stripe_index * mddev->chunk_sectors; 1791 else 1792 dev_end = end_disk_offset; 1793 1794 /* 1795 * It only handles discard bio which size is >= stripe size, so 1796 * dev_end > dev_start all the time. 1797 * It doesn't need to use rcu lock to get rdev here. We already 1798 * add rdev->nr_pending in the first loop. 1799 */ 1800 if (r10_bio->devs[disk].bio) { 1801 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1802 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1803 &mddev->bio_set); 1804 mbio->bi_end_io = raid10_end_discard_request; 1805 mbio->bi_private = r10_bio; 1806 r10_bio->devs[disk].bio = mbio; 1807 r10_bio->devs[disk].devnum = disk; 1808 atomic_inc(&r10_bio->remaining); 1809 md_submit_discard_bio(mddev, rdev, mbio, 1810 dev_start + choose_data_offset(r10_bio, rdev), 1811 dev_end - dev_start); 1812 bio_endio(mbio); 1813 } 1814 if (r10_bio->devs[disk].repl_bio) { 1815 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1816 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1817 &mddev->bio_set); 1818 rbio->bi_end_io = raid10_end_discard_request; 1819 rbio->bi_private = r10_bio; 1820 r10_bio->devs[disk].repl_bio = rbio; 1821 r10_bio->devs[disk].devnum = disk; 1822 atomic_inc(&r10_bio->remaining); 1823 md_submit_discard_bio(mddev, rrdev, rbio, 1824 dev_start + choose_data_offset(r10_bio, rrdev), 1825 dev_end - dev_start); 1826 bio_endio(rbio); 1827 } 1828 } 1829 1830 if (!geo->far_offset && --far_copies) { 1831 first_stripe_index += geo->stride >> geo->chunk_shift; 1832 start_disk_offset += geo->stride; 1833 last_stripe_index += geo->stride >> geo->chunk_shift; 1834 end_disk_offset += geo->stride; 1835 atomic_inc(&first_r10bio->remaining); 1836 raid_end_discard_bio(r10_bio); 1837 wait_barrier(conf, false); 1838 goto retry_discard; 1839 } 1840 1841 raid_end_discard_bio(r10_bio); 1842 1843 return 0; 1844 out: 1845 allow_barrier(conf); 1846 return -EAGAIN; 1847 } 1848 1849 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1850 { 1851 struct r10conf *conf = mddev->private; 1852 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1853 int chunk_sects = chunk_mask + 1; 1854 int sectors = bio_sectors(bio); 1855 1856 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1857 && md_flush_request(mddev, bio)) 1858 return true; 1859 1860 if (!md_write_start(mddev, bio)) 1861 return false; 1862 1863 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1864 if (!raid10_handle_discard(mddev, bio)) 1865 return true; 1866 1867 /* 1868 * If this request crosses a chunk boundary, we need to split 1869 * it. 1870 */ 1871 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1872 sectors > chunk_sects 1873 && (conf->geo.near_copies < conf->geo.raid_disks 1874 || conf->prev.near_copies < 1875 conf->prev.raid_disks))) 1876 sectors = chunk_sects - 1877 (bio->bi_iter.bi_sector & 1878 (chunk_sects - 1)); 1879 __make_request(mddev, bio, sectors); 1880 1881 /* In case raid10d snuck in to freeze_array */ 1882 wake_up(&conf->wait_barrier); 1883 return true; 1884 } 1885 1886 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1887 { 1888 struct r10conf *conf = mddev->private; 1889 int i; 1890 1891 if (conf->geo.near_copies < conf->geo.raid_disks) 1892 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1893 if (conf->geo.near_copies > 1) 1894 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1895 if (conf->geo.far_copies > 1) { 1896 if (conf->geo.far_offset) 1897 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1898 else 1899 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1900 if (conf->geo.far_set_size != conf->geo.raid_disks) 1901 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1902 } 1903 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1904 conf->geo.raid_disks - mddev->degraded); 1905 rcu_read_lock(); 1906 for (i = 0; i < conf->geo.raid_disks; i++) { 1907 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1908 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1909 } 1910 rcu_read_unlock(); 1911 seq_printf(seq, "]"); 1912 } 1913 1914 /* check if there are enough drives for 1915 * every block to appear on atleast one. 1916 * Don't consider the device numbered 'ignore' 1917 * as we might be about to remove it. 1918 */ 1919 static int _enough(struct r10conf *conf, int previous, int ignore) 1920 { 1921 int first = 0; 1922 int has_enough = 0; 1923 int disks, ncopies; 1924 if (previous) { 1925 disks = conf->prev.raid_disks; 1926 ncopies = conf->prev.near_copies; 1927 } else { 1928 disks = conf->geo.raid_disks; 1929 ncopies = conf->geo.near_copies; 1930 } 1931 1932 rcu_read_lock(); 1933 do { 1934 int n = conf->copies; 1935 int cnt = 0; 1936 int this = first; 1937 while (n--) { 1938 struct md_rdev *rdev; 1939 if (this != ignore && 1940 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1941 test_bit(In_sync, &rdev->flags)) 1942 cnt++; 1943 this = (this+1) % disks; 1944 } 1945 if (cnt == 0) 1946 goto out; 1947 first = (first + ncopies) % disks; 1948 } while (first != 0); 1949 has_enough = 1; 1950 out: 1951 rcu_read_unlock(); 1952 return has_enough; 1953 } 1954 1955 static int enough(struct r10conf *conf, int ignore) 1956 { 1957 /* when calling 'enough', both 'prev' and 'geo' must 1958 * be stable. 1959 * This is ensured if ->reconfig_mutex or ->device_lock 1960 * is held. 1961 */ 1962 return _enough(conf, 0, ignore) && 1963 _enough(conf, 1, ignore); 1964 } 1965 1966 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1967 { 1968 char b[BDEVNAME_SIZE]; 1969 struct r10conf *conf = mddev->private; 1970 unsigned long flags; 1971 1972 /* 1973 * If it is not operational, then we have already marked it as dead 1974 * else if it is the last working disks with "fail_last_dev == false", 1975 * ignore the error, let the next level up know. 1976 * else mark the drive as failed 1977 */ 1978 spin_lock_irqsave(&conf->device_lock, flags); 1979 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1980 && !enough(conf, rdev->raid_disk)) { 1981 /* 1982 * Don't fail the drive, just return an IO error. 1983 */ 1984 spin_unlock_irqrestore(&conf->device_lock, flags); 1985 return; 1986 } 1987 if (test_and_clear_bit(In_sync, &rdev->flags)) 1988 mddev->degraded++; 1989 /* 1990 * If recovery is running, make sure it aborts. 1991 */ 1992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1993 set_bit(Blocked, &rdev->flags); 1994 set_bit(Faulty, &rdev->flags); 1995 set_mask_bits(&mddev->sb_flags, 0, 1996 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1997 spin_unlock_irqrestore(&conf->device_lock, flags); 1998 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1999 "md/raid10:%s: Operation continuing on %d devices.\n", 2000 mdname(mddev), bdevname(rdev->bdev, b), 2001 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2002 } 2003 2004 static void print_conf(struct r10conf *conf) 2005 { 2006 int i; 2007 struct md_rdev *rdev; 2008 2009 pr_debug("RAID10 conf printout:\n"); 2010 if (!conf) { 2011 pr_debug("(!conf)\n"); 2012 return; 2013 } 2014 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2015 conf->geo.raid_disks); 2016 2017 /* This is only called with ->reconfix_mutex held, so 2018 * rcu protection of rdev is not needed */ 2019 for (i = 0; i < conf->geo.raid_disks; i++) { 2020 char b[BDEVNAME_SIZE]; 2021 rdev = conf->mirrors[i].rdev; 2022 if (rdev) 2023 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 2024 i, !test_bit(In_sync, &rdev->flags), 2025 !test_bit(Faulty, &rdev->flags), 2026 bdevname(rdev->bdev,b)); 2027 } 2028 } 2029 2030 static void close_sync(struct r10conf *conf) 2031 { 2032 wait_barrier(conf, false); 2033 allow_barrier(conf); 2034 2035 mempool_exit(&conf->r10buf_pool); 2036 } 2037 2038 static int raid10_spare_active(struct mddev *mddev) 2039 { 2040 int i; 2041 struct r10conf *conf = mddev->private; 2042 struct raid10_info *tmp; 2043 int count = 0; 2044 unsigned long flags; 2045 2046 /* 2047 * Find all non-in_sync disks within the RAID10 configuration 2048 * and mark them in_sync 2049 */ 2050 for (i = 0; i < conf->geo.raid_disks; i++) { 2051 tmp = conf->mirrors + i; 2052 if (tmp->replacement 2053 && tmp->replacement->recovery_offset == MaxSector 2054 && !test_bit(Faulty, &tmp->replacement->flags) 2055 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2056 /* Replacement has just become active */ 2057 if (!tmp->rdev 2058 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2059 count++; 2060 if (tmp->rdev) { 2061 /* Replaced device not technically faulty, 2062 * but we need to be sure it gets removed 2063 * and never re-added. 2064 */ 2065 set_bit(Faulty, &tmp->rdev->flags); 2066 sysfs_notify_dirent_safe( 2067 tmp->rdev->sysfs_state); 2068 } 2069 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2070 } else if (tmp->rdev 2071 && tmp->rdev->recovery_offset == MaxSector 2072 && !test_bit(Faulty, &tmp->rdev->flags) 2073 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2074 count++; 2075 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2076 } 2077 } 2078 spin_lock_irqsave(&conf->device_lock, flags); 2079 mddev->degraded -= count; 2080 spin_unlock_irqrestore(&conf->device_lock, flags); 2081 2082 print_conf(conf); 2083 return count; 2084 } 2085 2086 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2087 { 2088 struct r10conf *conf = mddev->private; 2089 int err = -EEXIST; 2090 int mirror; 2091 int first = 0; 2092 int last = conf->geo.raid_disks - 1; 2093 2094 if (mddev->recovery_cp < MaxSector) 2095 /* only hot-add to in-sync arrays, as recovery is 2096 * very different from resync 2097 */ 2098 return -EBUSY; 2099 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2100 return -EINVAL; 2101 2102 if (md_integrity_add_rdev(rdev, mddev)) 2103 return -ENXIO; 2104 2105 if (rdev->raid_disk >= 0) 2106 first = last = rdev->raid_disk; 2107 2108 if (rdev->saved_raid_disk >= first && 2109 rdev->saved_raid_disk < conf->geo.raid_disks && 2110 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2111 mirror = rdev->saved_raid_disk; 2112 else 2113 mirror = first; 2114 for ( ; mirror <= last ; mirror++) { 2115 struct raid10_info *p = &conf->mirrors[mirror]; 2116 if (p->recovery_disabled == mddev->recovery_disabled) 2117 continue; 2118 if (p->rdev) { 2119 if (!test_bit(WantReplacement, &p->rdev->flags) || 2120 p->replacement != NULL) 2121 continue; 2122 clear_bit(In_sync, &rdev->flags); 2123 set_bit(Replacement, &rdev->flags); 2124 rdev->raid_disk = mirror; 2125 err = 0; 2126 if (mddev->gendisk) 2127 disk_stack_limits(mddev->gendisk, rdev->bdev, 2128 rdev->data_offset << 9); 2129 conf->fullsync = 1; 2130 rcu_assign_pointer(p->replacement, rdev); 2131 break; 2132 } 2133 2134 if (mddev->gendisk) 2135 disk_stack_limits(mddev->gendisk, rdev->bdev, 2136 rdev->data_offset << 9); 2137 2138 p->head_position = 0; 2139 p->recovery_disabled = mddev->recovery_disabled - 1; 2140 rdev->raid_disk = mirror; 2141 err = 0; 2142 if (rdev->saved_raid_disk != mirror) 2143 conf->fullsync = 1; 2144 rcu_assign_pointer(p->rdev, rdev); 2145 break; 2146 } 2147 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 2148 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 2149 2150 print_conf(conf); 2151 return err; 2152 } 2153 2154 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2155 { 2156 struct r10conf *conf = mddev->private; 2157 int err = 0; 2158 int number = rdev->raid_disk; 2159 struct md_rdev **rdevp; 2160 struct raid10_info *p = conf->mirrors + number; 2161 2162 print_conf(conf); 2163 if (rdev == p->rdev) 2164 rdevp = &p->rdev; 2165 else if (rdev == p->replacement) 2166 rdevp = &p->replacement; 2167 else 2168 return 0; 2169 2170 if (test_bit(In_sync, &rdev->flags) || 2171 atomic_read(&rdev->nr_pending)) { 2172 err = -EBUSY; 2173 goto abort; 2174 } 2175 /* Only remove non-faulty devices if recovery 2176 * is not possible. 2177 */ 2178 if (!test_bit(Faulty, &rdev->flags) && 2179 mddev->recovery_disabled != p->recovery_disabled && 2180 (!p->replacement || p->replacement == rdev) && 2181 number < conf->geo.raid_disks && 2182 enough(conf, -1)) { 2183 err = -EBUSY; 2184 goto abort; 2185 } 2186 *rdevp = NULL; 2187 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2188 synchronize_rcu(); 2189 if (atomic_read(&rdev->nr_pending)) { 2190 /* lost the race, try later */ 2191 err = -EBUSY; 2192 *rdevp = rdev; 2193 goto abort; 2194 } 2195 } 2196 if (p->replacement) { 2197 /* We must have just cleared 'rdev' */ 2198 p->rdev = p->replacement; 2199 clear_bit(Replacement, &p->replacement->flags); 2200 smp_mb(); /* Make sure other CPUs may see both as identical 2201 * but will never see neither -- if they are careful. 2202 */ 2203 p->replacement = NULL; 2204 } 2205 2206 clear_bit(WantReplacement, &rdev->flags); 2207 err = md_integrity_register(mddev); 2208 2209 abort: 2210 2211 print_conf(conf); 2212 return err; 2213 } 2214 2215 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2216 { 2217 struct r10conf *conf = r10_bio->mddev->private; 2218 2219 if (!bio->bi_status) 2220 set_bit(R10BIO_Uptodate, &r10_bio->state); 2221 else 2222 /* The write handler will notice the lack of 2223 * R10BIO_Uptodate and record any errors etc 2224 */ 2225 atomic_add(r10_bio->sectors, 2226 &conf->mirrors[d].rdev->corrected_errors); 2227 2228 /* for reconstruct, we always reschedule after a read. 2229 * for resync, only after all reads 2230 */ 2231 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2232 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2233 atomic_dec_and_test(&r10_bio->remaining)) { 2234 /* we have read all the blocks, 2235 * do the comparison in process context in raid10d 2236 */ 2237 reschedule_retry(r10_bio); 2238 } 2239 } 2240 2241 static void end_sync_read(struct bio *bio) 2242 { 2243 struct r10bio *r10_bio = get_resync_r10bio(bio); 2244 struct r10conf *conf = r10_bio->mddev->private; 2245 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2246 2247 __end_sync_read(r10_bio, bio, d); 2248 } 2249 2250 static void end_reshape_read(struct bio *bio) 2251 { 2252 /* reshape read bio isn't allocated from r10buf_pool */ 2253 struct r10bio *r10_bio = bio->bi_private; 2254 2255 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2256 } 2257 2258 static void end_sync_request(struct r10bio *r10_bio) 2259 { 2260 struct mddev *mddev = r10_bio->mddev; 2261 2262 while (atomic_dec_and_test(&r10_bio->remaining)) { 2263 if (r10_bio->master_bio == NULL) { 2264 /* the primary of several recovery bios */ 2265 sector_t s = r10_bio->sectors; 2266 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2267 test_bit(R10BIO_WriteError, &r10_bio->state)) 2268 reschedule_retry(r10_bio); 2269 else 2270 put_buf(r10_bio); 2271 md_done_sync(mddev, s, 1); 2272 break; 2273 } else { 2274 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2275 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2276 test_bit(R10BIO_WriteError, &r10_bio->state)) 2277 reschedule_retry(r10_bio); 2278 else 2279 put_buf(r10_bio); 2280 r10_bio = r10_bio2; 2281 } 2282 } 2283 } 2284 2285 static void end_sync_write(struct bio *bio) 2286 { 2287 struct r10bio *r10_bio = get_resync_r10bio(bio); 2288 struct mddev *mddev = r10_bio->mddev; 2289 struct r10conf *conf = mddev->private; 2290 int d; 2291 sector_t first_bad; 2292 int bad_sectors; 2293 int slot; 2294 int repl; 2295 struct md_rdev *rdev = NULL; 2296 2297 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2298 if (repl) 2299 rdev = conf->mirrors[d].replacement; 2300 else 2301 rdev = conf->mirrors[d].rdev; 2302 2303 if (bio->bi_status) { 2304 if (repl) 2305 md_error(mddev, rdev); 2306 else { 2307 set_bit(WriteErrorSeen, &rdev->flags); 2308 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2309 set_bit(MD_RECOVERY_NEEDED, 2310 &rdev->mddev->recovery); 2311 set_bit(R10BIO_WriteError, &r10_bio->state); 2312 } 2313 } else if (is_badblock(rdev, 2314 r10_bio->devs[slot].addr, 2315 r10_bio->sectors, 2316 &first_bad, &bad_sectors)) 2317 set_bit(R10BIO_MadeGood, &r10_bio->state); 2318 2319 rdev_dec_pending(rdev, mddev); 2320 2321 end_sync_request(r10_bio); 2322 } 2323 2324 /* 2325 * Note: sync and recover and handled very differently for raid10 2326 * This code is for resync. 2327 * For resync, we read through virtual addresses and read all blocks. 2328 * If there is any error, we schedule a write. The lowest numbered 2329 * drive is authoritative. 2330 * However requests come for physical address, so we need to map. 2331 * For every physical address there are raid_disks/copies virtual addresses, 2332 * which is always are least one, but is not necessarly an integer. 2333 * This means that a physical address can span multiple chunks, so we may 2334 * have to submit multiple io requests for a single sync request. 2335 */ 2336 /* 2337 * We check if all blocks are in-sync and only write to blocks that 2338 * aren't in sync 2339 */ 2340 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2341 { 2342 struct r10conf *conf = mddev->private; 2343 int i, first; 2344 struct bio *tbio, *fbio; 2345 int vcnt; 2346 struct page **tpages, **fpages; 2347 2348 atomic_set(&r10_bio->remaining, 1); 2349 2350 /* find the first device with a block */ 2351 for (i=0; i<conf->copies; i++) 2352 if (!r10_bio->devs[i].bio->bi_status) 2353 break; 2354 2355 if (i == conf->copies) 2356 goto done; 2357 2358 first = i; 2359 fbio = r10_bio->devs[i].bio; 2360 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2361 fbio->bi_iter.bi_idx = 0; 2362 fpages = get_resync_pages(fbio)->pages; 2363 2364 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2365 /* now find blocks with errors */ 2366 for (i=0 ; i < conf->copies ; i++) { 2367 int j, d; 2368 struct md_rdev *rdev; 2369 struct resync_pages *rp; 2370 2371 tbio = r10_bio->devs[i].bio; 2372 2373 if (tbio->bi_end_io != end_sync_read) 2374 continue; 2375 if (i == first) 2376 continue; 2377 2378 tpages = get_resync_pages(tbio)->pages; 2379 d = r10_bio->devs[i].devnum; 2380 rdev = conf->mirrors[d].rdev; 2381 if (!r10_bio->devs[i].bio->bi_status) { 2382 /* We know that the bi_io_vec layout is the same for 2383 * both 'first' and 'i', so we just compare them. 2384 * All vec entries are PAGE_SIZE; 2385 */ 2386 int sectors = r10_bio->sectors; 2387 for (j = 0; j < vcnt; j++) { 2388 int len = PAGE_SIZE; 2389 if (sectors < (len / 512)) 2390 len = sectors * 512; 2391 if (memcmp(page_address(fpages[j]), 2392 page_address(tpages[j]), 2393 len)) 2394 break; 2395 sectors -= len/512; 2396 } 2397 if (j == vcnt) 2398 continue; 2399 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2400 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2401 /* Don't fix anything. */ 2402 continue; 2403 } else if (test_bit(FailFast, &rdev->flags)) { 2404 /* Just give up on this device */ 2405 md_error(rdev->mddev, rdev); 2406 continue; 2407 } 2408 /* Ok, we need to write this bio, either to correct an 2409 * inconsistency or to correct an unreadable block. 2410 * First we need to fixup bv_offset, bv_len and 2411 * bi_vecs, as the read request might have corrupted these 2412 */ 2413 rp = get_resync_pages(tbio); 2414 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2415 2416 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2417 2418 rp->raid_bio = r10_bio; 2419 tbio->bi_private = rp; 2420 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2421 tbio->bi_end_io = end_sync_write; 2422 2423 bio_copy_data(tbio, fbio); 2424 2425 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2426 atomic_inc(&r10_bio->remaining); 2427 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2428 2429 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2430 tbio->bi_opf |= MD_FAILFAST; 2431 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2432 submit_bio_noacct(tbio); 2433 } 2434 2435 /* Now write out to any replacement devices 2436 * that are active 2437 */ 2438 for (i = 0; i < conf->copies; i++) { 2439 int d; 2440 2441 tbio = r10_bio->devs[i].repl_bio; 2442 if (!tbio || !tbio->bi_end_io) 2443 continue; 2444 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2445 && r10_bio->devs[i].bio != fbio) 2446 bio_copy_data(tbio, fbio); 2447 d = r10_bio->devs[i].devnum; 2448 atomic_inc(&r10_bio->remaining); 2449 md_sync_acct(conf->mirrors[d].replacement->bdev, 2450 bio_sectors(tbio)); 2451 submit_bio_noacct(tbio); 2452 } 2453 2454 done: 2455 if (atomic_dec_and_test(&r10_bio->remaining)) { 2456 md_done_sync(mddev, r10_bio->sectors, 1); 2457 put_buf(r10_bio); 2458 } 2459 } 2460 2461 /* 2462 * Now for the recovery code. 2463 * Recovery happens across physical sectors. 2464 * We recover all non-is_sync drives by finding the virtual address of 2465 * each, and then choose a working drive that also has that virt address. 2466 * There is a separate r10_bio for each non-in_sync drive. 2467 * Only the first two slots are in use. The first for reading, 2468 * The second for writing. 2469 * 2470 */ 2471 static void fix_recovery_read_error(struct r10bio *r10_bio) 2472 { 2473 /* We got a read error during recovery. 2474 * We repeat the read in smaller page-sized sections. 2475 * If a read succeeds, write it to the new device or record 2476 * a bad block if we cannot. 2477 * If a read fails, record a bad block on both old and 2478 * new devices. 2479 */ 2480 struct mddev *mddev = r10_bio->mddev; 2481 struct r10conf *conf = mddev->private; 2482 struct bio *bio = r10_bio->devs[0].bio; 2483 sector_t sect = 0; 2484 int sectors = r10_bio->sectors; 2485 int idx = 0; 2486 int dr = r10_bio->devs[0].devnum; 2487 int dw = r10_bio->devs[1].devnum; 2488 struct page **pages = get_resync_pages(bio)->pages; 2489 2490 while (sectors) { 2491 int s = sectors; 2492 struct md_rdev *rdev; 2493 sector_t addr; 2494 int ok; 2495 2496 if (s > (PAGE_SIZE>>9)) 2497 s = PAGE_SIZE >> 9; 2498 2499 rdev = conf->mirrors[dr].rdev; 2500 addr = r10_bio->devs[0].addr + sect, 2501 ok = sync_page_io(rdev, 2502 addr, 2503 s << 9, 2504 pages[idx], 2505 REQ_OP_READ, 0, false); 2506 if (ok) { 2507 rdev = conf->mirrors[dw].rdev; 2508 addr = r10_bio->devs[1].addr + sect; 2509 ok = sync_page_io(rdev, 2510 addr, 2511 s << 9, 2512 pages[idx], 2513 REQ_OP_WRITE, 0, false); 2514 if (!ok) { 2515 set_bit(WriteErrorSeen, &rdev->flags); 2516 if (!test_and_set_bit(WantReplacement, 2517 &rdev->flags)) 2518 set_bit(MD_RECOVERY_NEEDED, 2519 &rdev->mddev->recovery); 2520 } 2521 } 2522 if (!ok) { 2523 /* We don't worry if we cannot set a bad block - 2524 * it really is bad so there is no loss in not 2525 * recording it yet 2526 */ 2527 rdev_set_badblocks(rdev, addr, s, 0); 2528 2529 if (rdev != conf->mirrors[dw].rdev) { 2530 /* need bad block on destination too */ 2531 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2532 addr = r10_bio->devs[1].addr + sect; 2533 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2534 if (!ok) { 2535 /* just abort the recovery */ 2536 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2537 mdname(mddev)); 2538 2539 conf->mirrors[dw].recovery_disabled 2540 = mddev->recovery_disabled; 2541 set_bit(MD_RECOVERY_INTR, 2542 &mddev->recovery); 2543 break; 2544 } 2545 } 2546 } 2547 2548 sectors -= s; 2549 sect += s; 2550 idx++; 2551 } 2552 } 2553 2554 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2555 { 2556 struct r10conf *conf = mddev->private; 2557 int d; 2558 struct bio *wbio, *wbio2; 2559 2560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2561 fix_recovery_read_error(r10_bio); 2562 end_sync_request(r10_bio); 2563 return; 2564 } 2565 2566 /* 2567 * share the pages with the first bio 2568 * and submit the write request 2569 */ 2570 d = r10_bio->devs[1].devnum; 2571 wbio = r10_bio->devs[1].bio; 2572 wbio2 = r10_bio->devs[1].repl_bio; 2573 /* Need to test wbio2->bi_end_io before we call 2574 * submit_bio_noacct as if the former is NULL, 2575 * the latter is free to free wbio2. 2576 */ 2577 if (wbio2 && !wbio2->bi_end_io) 2578 wbio2 = NULL; 2579 if (wbio->bi_end_io) { 2580 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2581 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2582 submit_bio_noacct(wbio); 2583 } 2584 if (wbio2) { 2585 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2586 md_sync_acct(conf->mirrors[d].replacement->bdev, 2587 bio_sectors(wbio2)); 2588 submit_bio_noacct(wbio2); 2589 } 2590 } 2591 2592 /* 2593 * Used by fix_read_error() to decay the per rdev read_errors. 2594 * We halve the read error count for every hour that has elapsed 2595 * since the last recorded read error. 2596 * 2597 */ 2598 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2599 { 2600 long cur_time_mon; 2601 unsigned long hours_since_last; 2602 unsigned int read_errors = atomic_read(&rdev->read_errors); 2603 2604 cur_time_mon = ktime_get_seconds(); 2605 2606 if (rdev->last_read_error == 0) { 2607 /* first time we've seen a read error */ 2608 rdev->last_read_error = cur_time_mon; 2609 return; 2610 } 2611 2612 hours_since_last = (long)(cur_time_mon - 2613 rdev->last_read_error) / 3600; 2614 2615 rdev->last_read_error = cur_time_mon; 2616 2617 /* 2618 * if hours_since_last is > the number of bits in read_errors 2619 * just set read errors to 0. We do this to avoid 2620 * overflowing the shift of read_errors by hours_since_last. 2621 */ 2622 if (hours_since_last >= 8 * sizeof(read_errors)) 2623 atomic_set(&rdev->read_errors, 0); 2624 else 2625 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2626 } 2627 2628 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2629 int sectors, struct page *page, int rw) 2630 { 2631 sector_t first_bad; 2632 int bad_sectors; 2633 2634 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2635 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2636 return -1; 2637 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2638 /* success */ 2639 return 1; 2640 if (rw == WRITE) { 2641 set_bit(WriteErrorSeen, &rdev->flags); 2642 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2643 set_bit(MD_RECOVERY_NEEDED, 2644 &rdev->mddev->recovery); 2645 } 2646 /* need to record an error - either for the block or the device */ 2647 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2648 md_error(rdev->mddev, rdev); 2649 return 0; 2650 } 2651 2652 /* 2653 * This is a kernel thread which: 2654 * 2655 * 1. Retries failed read operations on working mirrors. 2656 * 2. Updates the raid superblock when problems encounter. 2657 * 3. Performs writes following reads for array synchronising. 2658 */ 2659 2660 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2661 { 2662 int sect = 0; /* Offset from r10_bio->sector */ 2663 int sectors = r10_bio->sectors; 2664 struct md_rdev *rdev; 2665 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2666 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2667 2668 /* still own a reference to this rdev, so it cannot 2669 * have been cleared recently. 2670 */ 2671 rdev = conf->mirrors[d].rdev; 2672 2673 if (test_bit(Faulty, &rdev->flags)) 2674 /* drive has already been failed, just ignore any 2675 more fix_read_error() attempts */ 2676 return; 2677 2678 check_decay_read_errors(mddev, rdev); 2679 atomic_inc(&rdev->read_errors); 2680 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2681 char b[BDEVNAME_SIZE]; 2682 bdevname(rdev->bdev, b); 2683 2684 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2685 mdname(mddev), b, 2686 atomic_read(&rdev->read_errors), max_read_errors); 2687 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2688 mdname(mddev), b); 2689 md_error(mddev, rdev); 2690 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2691 return; 2692 } 2693 2694 while(sectors) { 2695 int s = sectors; 2696 int sl = r10_bio->read_slot; 2697 int success = 0; 2698 int start; 2699 2700 if (s > (PAGE_SIZE>>9)) 2701 s = PAGE_SIZE >> 9; 2702 2703 rcu_read_lock(); 2704 do { 2705 sector_t first_bad; 2706 int bad_sectors; 2707 2708 d = r10_bio->devs[sl].devnum; 2709 rdev = rcu_dereference(conf->mirrors[d].rdev); 2710 if (rdev && 2711 test_bit(In_sync, &rdev->flags) && 2712 !test_bit(Faulty, &rdev->flags) && 2713 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2714 &first_bad, &bad_sectors) == 0) { 2715 atomic_inc(&rdev->nr_pending); 2716 rcu_read_unlock(); 2717 success = sync_page_io(rdev, 2718 r10_bio->devs[sl].addr + 2719 sect, 2720 s<<9, 2721 conf->tmppage, 2722 REQ_OP_READ, 0, false); 2723 rdev_dec_pending(rdev, mddev); 2724 rcu_read_lock(); 2725 if (success) 2726 break; 2727 } 2728 sl++; 2729 if (sl == conf->copies) 2730 sl = 0; 2731 } while (!success && sl != r10_bio->read_slot); 2732 rcu_read_unlock(); 2733 2734 if (!success) { 2735 /* Cannot read from anywhere, just mark the block 2736 * as bad on the first device to discourage future 2737 * reads. 2738 */ 2739 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2740 rdev = conf->mirrors[dn].rdev; 2741 2742 if (!rdev_set_badblocks( 2743 rdev, 2744 r10_bio->devs[r10_bio->read_slot].addr 2745 + sect, 2746 s, 0)) { 2747 md_error(mddev, rdev); 2748 r10_bio->devs[r10_bio->read_slot].bio 2749 = IO_BLOCKED; 2750 } 2751 break; 2752 } 2753 2754 start = sl; 2755 /* write it back and re-read */ 2756 rcu_read_lock(); 2757 while (sl != r10_bio->read_slot) { 2758 char b[BDEVNAME_SIZE]; 2759 2760 if (sl==0) 2761 sl = conf->copies; 2762 sl--; 2763 d = r10_bio->devs[sl].devnum; 2764 rdev = rcu_dereference(conf->mirrors[d].rdev); 2765 if (!rdev || 2766 test_bit(Faulty, &rdev->flags) || 2767 !test_bit(In_sync, &rdev->flags)) 2768 continue; 2769 2770 atomic_inc(&rdev->nr_pending); 2771 rcu_read_unlock(); 2772 if (r10_sync_page_io(rdev, 2773 r10_bio->devs[sl].addr + 2774 sect, 2775 s, conf->tmppage, WRITE) 2776 == 0) { 2777 /* Well, this device is dead */ 2778 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2779 mdname(mddev), s, 2780 (unsigned long long)( 2781 sect + 2782 choose_data_offset(r10_bio, 2783 rdev)), 2784 bdevname(rdev->bdev, b)); 2785 pr_notice("md/raid10:%s: %s: failing drive\n", 2786 mdname(mddev), 2787 bdevname(rdev->bdev, b)); 2788 } 2789 rdev_dec_pending(rdev, mddev); 2790 rcu_read_lock(); 2791 } 2792 sl = start; 2793 while (sl != r10_bio->read_slot) { 2794 char b[BDEVNAME_SIZE]; 2795 2796 if (sl==0) 2797 sl = conf->copies; 2798 sl--; 2799 d = r10_bio->devs[sl].devnum; 2800 rdev = rcu_dereference(conf->mirrors[d].rdev); 2801 if (!rdev || 2802 test_bit(Faulty, &rdev->flags) || 2803 !test_bit(In_sync, &rdev->flags)) 2804 continue; 2805 2806 atomic_inc(&rdev->nr_pending); 2807 rcu_read_unlock(); 2808 switch (r10_sync_page_io(rdev, 2809 r10_bio->devs[sl].addr + 2810 sect, 2811 s, conf->tmppage, 2812 READ)) { 2813 case 0: 2814 /* Well, this device is dead */ 2815 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2816 mdname(mddev), s, 2817 (unsigned long long)( 2818 sect + 2819 choose_data_offset(r10_bio, rdev)), 2820 bdevname(rdev->bdev, b)); 2821 pr_notice("md/raid10:%s: %s: failing drive\n", 2822 mdname(mddev), 2823 bdevname(rdev->bdev, b)); 2824 break; 2825 case 1: 2826 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2827 mdname(mddev), s, 2828 (unsigned long long)( 2829 sect + 2830 choose_data_offset(r10_bio, rdev)), 2831 bdevname(rdev->bdev, b)); 2832 atomic_add(s, &rdev->corrected_errors); 2833 } 2834 2835 rdev_dec_pending(rdev, mddev); 2836 rcu_read_lock(); 2837 } 2838 rcu_read_unlock(); 2839 2840 sectors -= s; 2841 sect += s; 2842 } 2843 } 2844 2845 static int narrow_write_error(struct r10bio *r10_bio, int i) 2846 { 2847 struct bio *bio = r10_bio->master_bio; 2848 struct mddev *mddev = r10_bio->mddev; 2849 struct r10conf *conf = mddev->private; 2850 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2851 /* bio has the data to be written to slot 'i' where 2852 * we just recently had a write error. 2853 * We repeatedly clone the bio and trim down to one block, 2854 * then try the write. Where the write fails we record 2855 * a bad block. 2856 * It is conceivable that the bio doesn't exactly align with 2857 * blocks. We must handle this. 2858 * 2859 * We currently own a reference to the rdev. 2860 */ 2861 2862 int block_sectors; 2863 sector_t sector; 2864 int sectors; 2865 int sect_to_write = r10_bio->sectors; 2866 int ok = 1; 2867 2868 if (rdev->badblocks.shift < 0) 2869 return 0; 2870 2871 block_sectors = roundup(1 << rdev->badblocks.shift, 2872 bdev_logical_block_size(rdev->bdev) >> 9); 2873 sector = r10_bio->sector; 2874 sectors = ((r10_bio->sector + block_sectors) 2875 & ~(sector_t)(block_sectors - 1)) 2876 - sector; 2877 2878 while (sect_to_write) { 2879 struct bio *wbio; 2880 sector_t wsector; 2881 if (sectors > sect_to_write) 2882 sectors = sect_to_write; 2883 /* Write at 'sector' for 'sectors' */ 2884 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2885 &mddev->bio_set); 2886 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2887 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2888 wbio->bi_iter.bi_sector = wsector + 2889 choose_data_offset(r10_bio, rdev); 2890 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2891 2892 if (submit_bio_wait(wbio) < 0) 2893 /* Failure! */ 2894 ok = rdev_set_badblocks(rdev, wsector, 2895 sectors, 0) 2896 && ok; 2897 2898 bio_put(wbio); 2899 sect_to_write -= sectors; 2900 sector += sectors; 2901 sectors = block_sectors; 2902 } 2903 return ok; 2904 } 2905 2906 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2907 { 2908 int slot = r10_bio->read_slot; 2909 struct bio *bio; 2910 struct r10conf *conf = mddev->private; 2911 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2912 2913 /* we got a read error. Maybe the drive is bad. Maybe just 2914 * the block and we can fix it. 2915 * We freeze all other IO, and try reading the block from 2916 * other devices. When we find one, we re-write 2917 * and check it that fixes the read error. 2918 * This is all done synchronously while the array is 2919 * frozen. 2920 */ 2921 bio = r10_bio->devs[slot].bio; 2922 bio_put(bio); 2923 r10_bio->devs[slot].bio = NULL; 2924 2925 if (mddev->ro) 2926 r10_bio->devs[slot].bio = IO_BLOCKED; 2927 else if (!test_bit(FailFast, &rdev->flags)) { 2928 freeze_array(conf, 1); 2929 fix_read_error(conf, mddev, r10_bio); 2930 unfreeze_array(conf); 2931 } else 2932 md_error(mddev, rdev); 2933 2934 rdev_dec_pending(rdev, mddev); 2935 allow_barrier(conf); 2936 r10_bio->state = 0; 2937 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2938 } 2939 2940 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2941 { 2942 /* Some sort of write request has finished and it 2943 * succeeded in writing where we thought there was a 2944 * bad block. So forget the bad block. 2945 * Or possibly if failed and we need to record 2946 * a bad block. 2947 */ 2948 int m; 2949 struct md_rdev *rdev; 2950 2951 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2952 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2953 for (m = 0; m < conf->copies; m++) { 2954 int dev = r10_bio->devs[m].devnum; 2955 rdev = conf->mirrors[dev].rdev; 2956 if (r10_bio->devs[m].bio == NULL || 2957 r10_bio->devs[m].bio->bi_end_io == NULL) 2958 continue; 2959 if (!r10_bio->devs[m].bio->bi_status) { 2960 rdev_clear_badblocks( 2961 rdev, 2962 r10_bio->devs[m].addr, 2963 r10_bio->sectors, 0); 2964 } else { 2965 if (!rdev_set_badblocks( 2966 rdev, 2967 r10_bio->devs[m].addr, 2968 r10_bio->sectors, 0)) 2969 md_error(conf->mddev, rdev); 2970 } 2971 rdev = conf->mirrors[dev].replacement; 2972 if (r10_bio->devs[m].repl_bio == NULL || 2973 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2974 continue; 2975 2976 if (!r10_bio->devs[m].repl_bio->bi_status) { 2977 rdev_clear_badblocks( 2978 rdev, 2979 r10_bio->devs[m].addr, 2980 r10_bio->sectors, 0); 2981 } else { 2982 if (!rdev_set_badblocks( 2983 rdev, 2984 r10_bio->devs[m].addr, 2985 r10_bio->sectors, 0)) 2986 md_error(conf->mddev, rdev); 2987 } 2988 } 2989 put_buf(r10_bio); 2990 } else { 2991 bool fail = false; 2992 for (m = 0; m < conf->copies; m++) { 2993 int dev = r10_bio->devs[m].devnum; 2994 struct bio *bio = r10_bio->devs[m].bio; 2995 rdev = conf->mirrors[dev].rdev; 2996 if (bio == IO_MADE_GOOD) { 2997 rdev_clear_badblocks( 2998 rdev, 2999 r10_bio->devs[m].addr, 3000 r10_bio->sectors, 0); 3001 rdev_dec_pending(rdev, conf->mddev); 3002 } else if (bio != NULL && bio->bi_status) { 3003 fail = true; 3004 if (!narrow_write_error(r10_bio, m)) { 3005 md_error(conf->mddev, rdev); 3006 set_bit(R10BIO_Degraded, 3007 &r10_bio->state); 3008 } 3009 rdev_dec_pending(rdev, conf->mddev); 3010 } 3011 bio = r10_bio->devs[m].repl_bio; 3012 rdev = conf->mirrors[dev].replacement; 3013 if (rdev && bio == IO_MADE_GOOD) { 3014 rdev_clear_badblocks( 3015 rdev, 3016 r10_bio->devs[m].addr, 3017 r10_bio->sectors, 0); 3018 rdev_dec_pending(rdev, conf->mddev); 3019 } 3020 } 3021 if (fail) { 3022 spin_lock_irq(&conf->device_lock); 3023 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3024 conf->nr_queued++; 3025 spin_unlock_irq(&conf->device_lock); 3026 /* 3027 * In case freeze_array() is waiting for condition 3028 * nr_pending == nr_queued + extra to be true. 3029 */ 3030 wake_up(&conf->wait_barrier); 3031 md_wakeup_thread(conf->mddev->thread); 3032 } else { 3033 if (test_bit(R10BIO_WriteError, 3034 &r10_bio->state)) 3035 close_write(r10_bio); 3036 raid_end_bio_io(r10_bio); 3037 } 3038 } 3039 } 3040 3041 static void raid10d(struct md_thread *thread) 3042 { 3043 struct mddev *mddev = thread->mddev; 3044 struct r10bio *r10_bio; 3045 unsigned long flags; 3046 struct r10conf *conf = mddev->private; 3047 struct list_head *head = &conf->retry_list; 3048 struct blk_plug plug; 3049 3050 md_check_recovery(mddev); 3051 3052 if (!list_empty_careful(&conf->bio_end_io_list) && 3053 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3054 LIST_HEAD(tmp); 3055 spin_lock_irqsave(&conf->device_lock, flags); 3056 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3057 while (!list_empty(&conf->bio_end_io_list)) { 3058 list_move(conf->bio_end_io_list.prev, &tmp); 3059 conf->nr_queued--; 3060 } 3061 } 3062 spin_unlock_irqrestore(&conf->device_lock, flags); 3063 while (!list_empty(&tmp)) { 3064 r10_bio = list_first_entry(&tmp, struct r10bio, 3065 retry_list); 3066 list_del(&r10_bio->retry_list); 3067 if (mddev->degraded) 3068 set_bit(R10BIO_Degraded, &r10_bio->state); 3069 3070 if (test_bit(R10BIO_WriteError, 3071 &r10_bio->state)) 3072 close_write(r10_bio); 3073 raid_end_bio_io(r10_bio); 3074 } 3075 } 3076 3077 blk_start_plug(&plug); 3078 for (;;) { 3079 3080 flush_pending_writes(conf); 3081 3082 spin_lock_irqsave(&conf->device_lock, flags); 3083 if (list_empty(head)) { 3084 spin_unlock_irqrestore(&conf->device_lock, flags); 3085 break; 3086 } 3087 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3088 list_del(head->prev); 3089 conf->nr_queued--; 3090 spin_unlock_irqrestore(&conf->device_lock, flags); 3091 3092 mddev = r10_bio->mddev; 3093 conf = mddev->private; 3094 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3095 test_bit(R10BIO_WriteError, &r10_bio->state)) 3096 handle_write_completed(conf, r10_bio); 3097 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3098 reshape_request_write(mddev, r10_bio); 3099 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3100 sync_request_write(mddev, r10_bio); 3101 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3102 recovery_request_write(mddev, r10_bio); 3103 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3104 handle_read_error(mddev, r10_bio); 3105 else 3106 WARN_ON_ONCE(1); 3107 3108 cond_resched(); 3109 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3110 md_check_recovery(mddev); 3111 } 3112 blk_finish_plug(&plug); 3113 } 3114 3115 static int init_resync(struct r10conf *conf) 3116 { 3117 int ret, buffs, i; 3118 3119 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3120 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3121 conf->have_replacement = 0; 3122 for (i = 0; i < conf->geo.raid_disks; i++) 3123 if (conf->mirrors[i].replacement) 3124 conf->have_replacement = 1; 3125 ret = mempool_init(&conf->r10buf_pool, buffs, 3126 r10buf_pool_alloc, r10buf_pool_free, conf); 3127 if (ret) 3128 return ret; 3129 conf->next_resync = 0; 3130 return 0; 3131 } 3132 3133 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3134 { 3135 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3136 struct rsync_pages *rp; 3137 struct bio *bio; 3138 int nalloc; 3139 int i; 3140 3141 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3142 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3143 nalloc = conf->copies; /* resync */ 3144 else 3145 nalloc = 2; /* recovery */ 3146 3147 for (i = 0; i < nalloc; i++) { 3148 bio = r10bio->devs[i].bio; 3149 rp = bio->bi_private; 3150 bio_reset(bio, NULL, 0); 3151 bio->bi_private = rp; 3152 bio = r10bio->devs[i].repl_bio; 3153 if (bio) { 3154 rp = bio->bi_private; 3155 bio_reset(bio, NULL, 0); 3156 bio->bi_private = rp; 3157 } 3158 } 3159 return r10bio; 3160 } 3161 3162 /* 3163 * Set cluster_sync_high since we need other nodes to add the 3164 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3165 */ 3166 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3167 { 3168 sector_t window_size; 3169 int extra_chunk, chunks; 3170 3171 /* 3172 * First, here we define "stripe" as a unit which across 3173 * all member devices one time, so we get chunks by use 3174 * raid_disks / near_copies. Otherwise, if near_copies is 3175 * close to raid_disks, then resync window could increases 3176 * linearly with the increase of raid_disks, which means 3177 * we will suspend a really large IO window while it is not 3178 * necessary. If raid_disks is not divisible by near_copies, 3179 * an extra chunk is needed to ensure the whole "stripe" is 3180 * covered. 3181 */ 3182 3183 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3184 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3185 extra_chunk = 0; 3186 else 3187 extra_chunk = 1; 3188 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3189 3190 /* 3191 * At least use a 32M window to align with raid1's resync window 3192 */ 3193 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3194 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3195 3196 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3197 } 3198 3199 /* 3200 * perform a "sync" on one "block" 3201 * 3202 * We need to make sure that no normal I/O request - particularly write 3203 * requests - conflict with active sync requests. 3204 * 3205 * This is achieved by tracking pending requests and a 'barrier' concept 3206 * that can be installed to exclude normal IO requests. 3207 * 3208 * Resync and recovery are handled very differently. 3209 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3210 * 3211 * For resync, we iterate over virtual addresses, read all copies, 3212 * and update if there are differences. If only one copy is live, 3213 * skip it. 3214 * For recovery, we iterate over physical addresses, read a good 3215 * value for each non-in_sync drive, and over-write. 3216 * 3217 * So, for recovery we may have several outstanding complex requests for a 3218 * given address, one for each out-of-sync device. We model this by allocating 3219 * a number of r10_bio structures, one for each out-of-sync device. 3220 * As we setup these structures, we collect all bio's together into a list 3221 * which we then process collectively to add pages, and then process again 3222 * to pass to submit_bio_noacct. 3223 * 3224 * The r10_bio structures are linked using a borrowed master_bio pointer. 3225 * This link is counted in ->remaining. When the r10_bio that points to NULL 3226 * has its remaining count decremented to 0, the whole complex operation 3227 * is complete. 3228 * 3229 */ 3230 3231 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3232 int *skipped) 3233 { 3234 struct r10conf *conf = mddev->private; 3235 struct r10bio *r10_bio; 3236 struct bio *biolist = NULL, *bio; 3237 sector_t max_sector, nr_sectors; 3238 int i; 3239 int max_sync; 3240 sector_t sync_blocks; 3241 sector_t sectors_skipped = 0; 3242 int chunks_skipped = 0; 3243 sector_t chunk_mask = conf->geo.chunk_mask; 3244 int page_idx = 0; 3245 3246 if (!mempool_initialized(&conf->r10buf_pool)) 3247 if (init_resync(conf)) 3248 return 0; 3249 3250 /* 3251 * Allow skipping a full rebuild for incremental assembly 3252 * of a clean array, like RAID1 does. 3253 */ 3254 if (mddev->bitmap == NULL && 3255 mddev->recovery_cp == MaxSector && 3256 mddev->reshape_position == MaxSector && 3257 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3258 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3259 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3260 conf->fullsync == 0) { 3261 *skipped = 1; 3262 return mddev->dev_sectors - sector_nr; 3263 } 3264 3265 skipped: 3266 max_sector = mddev->dev_sectors; 3267 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3268 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3269 max_sector = mddev->resync_max_sectors; 3270 if (sector_nr >= max_sector) { 3271 conf->cluster_sync_low = 0; 3272 conf->cluster_sync_high = 0; 3273 3274 /* If we aborted, we need to abort the 3275 * sync on the 'current' bitmap chucks (there can 3276 * be several when recovering multiple devices). 3277 * as we may have started syncing it but not finished. 3278 * We can find the current address in 3279 * mddev->curr_resync, but for recovery, 3280 * we need to convert that to several 3281 * virtual addresses. 3282 */ 3283 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3284 end_reshape(conf); 3285 close_sync(conf); 3286 return 0; 3287 } 3288 3289 if (mddev->curr_resync < max_sector) { /* aborted */ 3290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3291 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3292 &sync_blocks, 1); 3293 else for (i = 0; i < conf->geo.raid_disks; i++) { 3294 sector_t sect = 3295 raid10_find_virt(conf, mddev->curr_resync, i); 3296 md_bitmap_end_sync(mddev->bitmap, sect, 3297 &sync_blocks, 1); 3298 } 3299 } else { 3300 /* completed sync */ 3301 if ((!mddev->bitmap || conf->fullsync) 3302 && conf->have_replacement 3303 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3304 /* Completed a full sync so the replacements 3305 * are now fully recovered. 3306 */ 3307 rcu_read_lock(); 3308 for (i = 0; i < conf->geo.raid_disks; i++) { 3309 struct md_rdev *rdev = 3310 rcu_dereference(conf->mirrors[i].replacement); 3311 if (rdev) 3312 rdev->recovery_offset = MaxSector; 3313 } 3314 rcu_read_unlock(); 3315 } 3316 conf->fullsync = 0; 3317 } 3318 md_bitmap_close_sync(mddev->bitmap); 3319 close_sync(conf); 3320 *skipped = 1; 3321 return sectors_skipped; 3322 } 3323 3324 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3325 return reshape_request(mddev, sector_nr, skipped); 3326 3327 if (chunks_skipped >= conf->geo.raid_disks) { 3328 /* if there has been nothing to do on any drive, 3329 * then there is nothing to do at all.. 3330 */ 3331 *skipped = 1; 3332 return (max_sector - sector_nr) + sectors_skipped; 3333 } 3334 3335 if (max_sector > mddev->resync_max) 3336 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3337 3338 /* make sure whole request will fit in a chunk - if chunks 3339 * are meaningful 3340 */ 3341 if (conf->geo.near_copies < conf->geo.raid_disks && 3342 max_sector > (sector_nr | chunk_mask)) 3343 max_sector = (sector_nr | chunk_mask) + 1; 3344 3345 /* 3346 * If there is non-resync activity waiting for a turn, then let it 3347 * though before starting on this new sync request. 3348 */ 3349 if (conf->nr_waiting) 3350 schedule_timeout_uninterruptible(1); 3351 3352 /* Again, very different code for resync and recovery. 3353 * Both must result in an r10bio with a list of bios that 3354 * have bi_end_io, bi_sector, bi_bdev set, 3355 * and bi_private set to the r10bio. 3356 * For recovery, we may actually create several r10bios 3357 * with 2 bios in each, that correspond to the bios in the main one. 3358 * In this case, the subordinate r10bios link back through a 3359 * borrowed master_bio pointer, and the counter in the master 3360 * includes a ref from each subordinate. 3361 */ 3362 /* First, we decide what to do and set ->bi_end_io 3363 * To end_sync_read if we want to read, and 3364 * end_sync_write if we will want to write. 3365 */ 3366 3367 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3368 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3369 /* recovery... the complicated one */ 3370 int j; 3371 r10_bio = NULL; 3372 3373 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3374 int still_degraded; 3375 struct r10bio *rb2; 3376 sector_t sect; 3377 int must_sync; 3378 int any_working; 3379 int need_recover = 0; 3380 int need_replace = 0; 3381 struct raid10_info *mirror = &conf->mirrors[i]; 3382 struct md_rdev *mrdev, *mreplace; 3383 3384 rcu_read_lock(); 3385 mrdev = rcu_dereference(mirror->rdev); 3386 mreplace = rcu_dereference(mirror->replacement); 3387 3388 if (mrdev != NULL && 3389 !test_bit(Faulty, &mrdev->flags) && 3390 !test_bit(In_sync, &mrdev->flags)) 3391 need_recover = 1; 3392 if (mreplace != NULL && 3393 !test_bit(Faulty, &mreplace->flags)) 3394 need_replace = 1; 3395 3396 if (!need_recover && !need_replace) { 3397 rcu_read_unlock(); 3398 continue; 3399 } 3400 3401 still_degraded = 0; 3402 /* want to reconstruct this device */ 3403 rb2 = r10_bio; 3404 sect = raid10_find_virt(conf, sector_nr, i); 3405 if (sect >= mddev->resync_max_sectors) { 3406 /* last stripe is not complete - don't 3407 * try to recover this sector. 3408 */ 3409 rcu_read_unlock(); 3410 continue; 3411 } 3412 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3413 mreplace = NULL; 3414 /* Unless we are doing a full sync, or a replacement 3415 * we only need to recover the block if it is set in 3416 * the bitmap 3417 */ 3418 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3419 &sync_blocks, 1); 3420 if (sync_blocks < max_sync) 3421 max_sync = sync_blocks; 3422 if (!must_sync && 3423 mreplace == NULL && 3424 !conf->fullsync) { 3425 /* yep, skip the sync_blocks here, but don't assume 3426 * that there will never be anything to do here 3427 */ 3428 chunks_skipped = -1; 3429 rcu_read_unlock(); 3430 continue; 3431 } 3432 atomic_inc(&mrdev->nr_pending); 3433 if (mreplace) 3434 atomic_inc(&mreplace->nr_pending); 3435 rcu_read_unlock(); 3436 3437 r10_bio = raid10_alloc_init_r10buf(conf); 3438 r10_bio->state = 0; 3439 raise_barrier(conf, rb2 != NULL); 3440 atomic_set(&r10_bio->remaining, 0); 3441 3442 r10_bio->master_bio = (struct bio*)rb2; 3443 if (rb2) 3444 atomic_inc(&rb2->remaining); 3445 r10_bio->mddev = mddev; 3446 set_bit(R10BIO_IsRecover, &r10_bio->state); 3447 r10_bio->sector = sect; 3448 3449 raid10_find_phys(conf, r10_bio); 3450 3451 /* Need to check if the array will still be 3452 * degraded 3453 */ 3454 rcu_read_lock(); 3455 for (j = 0; j < conf->geo.raid_disks; j++) { 3456 struct md_rdev *rdev = rcu_dereference( 3457 conf->mirrors[j].rdev); 3458 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3459 still_degraded = 1; 3460 break; 3461 } 3462 } 3463 3464 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3465 &sync_blocks, still_degraded); 3466 3467 any_working = 0; 3468 for (j=0; j<conf->copies;j++) { 3469 int k; 3470 int d = r10_bio->devs[j].devnum; 3471 sector_t from_addr, to_addr; 3472 struct md_rdev *rdev = 3473 rcu_dereference(conf->mirrors[d].rdev); 3474 sector_t sector, first_bad; 3475 int bad_sectors; 3476 if (!rdev || 3477 !test_bit(In_sync, &rdev->flags)) 3478 continue; 3479 /* This is where we read from */ 3480 any_working = 1; 3481 sector = r10_bio->devs[j].addr; 3482 3483 if (is_badblock(rdev, sector, max_sync, 3484 &first_bad, &bad_sectors)) { 3485 if (first_bad > sector) 3486 max_sync = first_bad - sector; 3487 else { 3488 bad_sectors -= (sector 3489 - first_bad); 3490 if (max_sync > bad_sectors) 3491 max_sync = bad_sectors; 3492 continue; 3493 } 3494 } 3495 bio = r10_bio->devs[0].bio; 3496 bio->bi_next = biolist; 3497 biolist = bio; 3498 bio->bi_end_io = end_sync_read; 3499 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3500 if (test_bit(FailFast, &rdev->flags)) 3501 bio->bi_opf |= MD_FAILFAST; 3502 from_addr = r10_bio->devs[j].addr; 3503 bio->bi_iter.bi_sector = from_addr + 3504 rdev->data_offset; 3505 bio_set_dev(bio, rdev->bdev); 3506 atomic_inc(&rdev->nr_pending); 3507 /* and we write to 'i' (if not in_sync) */ 3508 3509 for (k=0; k<conf->copies; k++) 3510 if (r10_bio->devs[k].devnum == i) 3511 break; 3512 BUG_ON(k == conf->copies); 3513 to_addr = r10_bio->devs[k].addr; 3514 r10_bio->devs[0].devnum = d; 3515 r10_bio->devs[0].addr = from_addr; 3516 r10_bio->devs[1].devnum = i; 3517 r10_bio->devs[1].addr = to_addr; 3518 3519 if (need_recover) { 3520 bio = r10_bio->devs[1].bio; 3521 bio->bi_next = biolist; 3522 biolist = bio; 3523 bio->bi_end_io = end_sync_write; 3524 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3525 bio->bi_iter.bi_sector = to_addr 3526 + mrdev->data_offset; 3527 bio_set_dev(bio, mrdev->bdev); 3528 atomic_inc(&r10_bio->remaining); 3529 } else 3530 r10_bio->devs[1].bio->bi_end_io = NULL; 3531 3532 /* and maybe write to replacement */ 3533 bio = r10_bio->devs[1].repl_bio; 3534 if (bio) 3535 bio->bi_end_io = NULL; 3536 /* Note: if need_replace, then bio 3537 * cannot be NULL as r10buf_pool_alloc will 3538 * have allocated it. 3539 */ 3540 if (!need_replace) 3541 break; 3542 bio->bi_next = biolist; 3543 biolist = bio; 3544 bio->bi_end_io = end_sync_write; 3545 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3546 bio->bi_iter.bi_sector = to_addr + 3547 mreplace->data_offset; 3548 bio_set_dev(bio, mreplace->bdev); 3549 atomic_inc(&r10_bio->remaining); 3550 break; 3551 } 3552 rcu_read_unlock(); 3553 if (j == conf->copies) { 3554 /* Cannot recover, so abort the recovery or 3555 * record a bad block */ 3556 if (any_working) { 3557 /* problem is that there are bad blocks 3558 * on other device(s) 3559 */ 3560 int k; 3561 for (k = 0; k < conf->copies; k++) 3562 if (r10_bio->devs[k].devnum == i) 3563 break; 3564 if (!test_bit(In_sync, 3565 &mrdev->flags) 3566 && !rdev_set_badblocks( 3567 mrdev, 3568 r10_bio->devs[k].addr, 3569 max_sync, 0)) 3570 any_working = 0; 3571 if (mreplace && 3572 !rdev_set_badblocks( 3573 mreplace, 3574 r10_bio->devs[k].addr, 3575 max_sync, 0)) 3576 any_working = 0; 3577 } 3578 if (!any_working) { 3579 if (!test_and_set_bit(MD_RECOVERY_INTR, 3580 &mddev->recovery)) 3581 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3582 mdname(mddev)); 3583 mirror->recovery_disabled 3584 = mddev->recovery_disabled; 3585 } 3586 put_buf(r10_bio); 3587 if (rb2) 3588 atomic_dec(&rb2->remaining); 3589 r10_bio = rb2; 3590 rdev_dec_pending(mrdev, mddev); 3591 if (mreplace) 3592 rdev_dec_pending(mreplace, mddev); 3593 break; 3594 } 3595 rdev_dec_pending(mrdev, mddev); 3596 if (mreplace) 3597 rdev_dec_pending(mreplace, mddev); 3598 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3599 /* Only want this if there is elsewhere to 3600 * read from. 'j' is currently the first 3601 * readable copy. 3602 */ 3603 int targets = 1; 3604 for (; j < conf->copies; j++) { 3605 int d = r10_bio->devs[j].devnum; 3606 if (conf->mirrors[d].rdev && 3607 test_bit(In_sync, 3608 &conf->mirrors[d].rdev->flags)) 3609 targets++; 3610 } 3611 if (targets == 1) 3612 r10_bio->devs[0].bio->bi_opf 3613 &= ~MD_FAILFAST; 3614 } 3615 } 3616 if (biolist == NULL) { 3617 while (r10_bio) { 3618 struct r10bio *rb2 = r10_bio; 3619 r10_bio = (struct r10bio*) rb2->master_bio; 3620 rb2->master_bio = NULL; 3621 put_buf(rb2); 3622 } 3623 goto giveup; 3624 } 3625 } else { 3626 /* resync. Schedule a read for every block at this virt offset */ 3627 int count = 0; 3628 3629 /* 3630 * Since curr_resync_completed could probably not update in 3631 * time, and we will set cluster_sync_low based on it. 3632 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3633 * safety reason, which ensures curr_resync_completed is 3634 * updated in bitmap_cond_end_sync. 3635 */ 3636 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3637 mddev_is_clustered(mddev) && 3638 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3639 3640 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3641 &sync_blocks, mddev->degraded) && 3642 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3643 &mddev->recovery)) { 3644 /* We can skip this block */ 3645 *skipped = 1; 3646 return sync_blocks + sectors_skipped; 3647 } 3648 if (sync_blocks < max_sync) 3649 max_sync = sync_blocks; 3650 r10_bio = raid10_alloc_init_r10buf(conf); 3651 r10_bio->state = 0; 3652 3653 r10_bio->mddev = mddev; 3654 atomic_set(&r10_bio->remaining, 0); 3655 raise_barrier(conf, 0); 3656 conf->next_resync = sector_nr; 3657 3658 r10_bio->master_bio = NULL; 3659 r10_bio->sector = sector_nr; 3660 set_bit(R10BIO_IsSync, &r10_bio->state); 3661 raid10_find_phys(conf, r10_bio); 3662 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3663 3664 for (i = 0; i < conf->copies; i++) { 3665 int d = r10_bio->devs[i].devnum; 3666 sector_t first_bad, sector; 3667 int bad_sectors; 3668 struct md_rdev *rdev; 3669 3670 if (r10_bio->devs[i].repl_bio) 3671 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3672 3673 bio = r10_bio->devs[i].bio; 3674 bio->bi_status = BLK_STS_IOERR; 3675 rcu_read_lock(); 3676 rdev = rcu_dereference(conf->mirrors[d].rdev); 3677 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3678 rcu_read_unlock(); 3679 continue; 3680 } 3681 sector = r10_bio->devs[i].addr; 3682 if (is_badblock(rdev, sector, max_sync, 3683 &first_bad, &bad_sectors)) { 3684 if (first_bad > sector) 3685 max_sync = first_bad - sector; 3686 else { 3687 bad_sectors -= (sector - first_bad); 3688 if (max_sync > bad_sectors) 3689 max_sync = bad_sectors; 3690 rcu_read_unlock(); 3691 continue; 3692 } 3693 } 3694 atomic_inc(&rdev->nr_pending); 3695 atomic_inc(&r10_bio->remaining); 3696 bio->bi_next = biolist; 3697 biolist = bio; 3698 bio->bi_end_io = end_sync_read; 3699 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3700 if (test_bit(FailFast, &rdev->flags)) 3701 bio->bi_opf |= MD_FAILFAST; 3702 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3703 bio_set_dev(bio, rdev->bdev); 3704 count++; 3705 3706 rdev = rcu_dereference(conf->mirrors[d].replacement); 3707 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3708 rcu_read_unlock(); 3709 continue; 3710 } 3711 atomic_inc(&rdev->nr_pending); 3712 3713 /* Need to set up for writing to the replacement */ 3714 bio = r10_bio->devs[i].repl_bio; 3715 bio->bi_status = BLK_STS_IOERR; 3716 3717 sector = r10_bio->devs[i].addr; 3718 bio->bi_next = biolist; 3719 biolist = bio; 3720 bio->bi_end_io = end_sync_write; 3721 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3722 if (test_bit(FailFast, &rdev->flags)) 3723 bio->bi_opf |= MD_FAILFAST; 3724 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3725 bio_set_dev(bio, rdev->bdev); 3726 count++; 3727 rcu_read_unlock(); 3728 } 3729 3730 if (count < 2) { 3731 for (i=0; i<conf->copies; i++) { 3732 int d = r10_bio->devs[i].devnum; 3733 if (r10_bio->devs[i].bio->bi_end_io) 3734 rdev_dec_pending(conf->mirrors[d].rdev, 3735 mddev); 3736 if (r10_bio->devs[i].repl_bio && 3737 r10_bio->devs[i].repl_bio->bi_end_io) 3738 rdev_dec_pending( 3739 conf->mirrors[d].replacement, 3740 mddev); 3741 } 3742 put_buf(r10_bio); 3743 biolist = NULL; 3744 goto giveup; 3745 } 3746 } 3747 3748 nr_sectors = 0; 3749 if (sector_nr + max_sync < max_sector) 3750 max_sector = sector_nr + max_sync; 3751 do { 3752 struct page *page; 3753 int len = PAGE_SIZE; 3754 if (sector_nr + (len>>9) > max_sector) 3755 len = (max_sector - sector_nr) << 9; 3756 if (len == 0) 3757 break; 3758 for (bio= biolist ; bio ; bio=bio->bi_next) { 3759 struct resync_pages *rp = get_resync_pages(bio); 3760 page = resync_fetch_page(rp, page_idx); 3761 /* 3762 * won't fail because the vec table is big enough 3763 * to hold all these pages 3764 */ 3765 bio_add_page(bio, page, len, 0); 3766 } 3767 nr_sectors += len>>9; 3768 sector_nr += len>>9; 3769 } while (++page_idx < RESYNC_PAGES); 3770 r10_bio->sectors = nr_sectors; 3771 3772 if (mddev_is_clustered(mddev) && 3773 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3774 /* It is resync not recovery */ 3775 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3776 conf->cluster_sync_low = mddev->curr_resync_completed; 3777 raid10_set_cluster_sync_high(conf); 3778 /* Send resync message */ 3779 md_cluster_ops->resync_info_update(mddev, 3780 conf->cluster_sync_low, 3781 conf->cluster_sync_high); 3782 } 3783 } else if (mddev_is_clustered(mddev)) { 3784 /* This is recovery not resync */ 3785 sector_t sect_va1, sect_va2; 3786 bool broadcast_msg = false; 3787 3788 for (i = 0; i < conf->geo.raid_disks; i++) { 3789 /* 3790 * sector_nr is a device address for recovery, so we 3791 * need translate it to array address before compare 3792 * with cluster_sync_high. 3793 */ 3794 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3795 3796 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3797 broadcast_msg = true; 3798 /* 3799 * curr_resync_completed is similar as 3800 * sector_nr, so make the translation too. 3801 */ 3802 sect_va2 = raid10_find_virt(conf, 3803 mddev->curr_resync_completed, i); 3804 3805 if (conf->cluster_sync_low == 0 || 3806 conf->cluster_sync_low > sect_va2) 3807 conf->cluster_sync_low = sect_va2; 3808 } 3809 } 3810 if (broadcast_msg) { 3811 raid10_set_cluster_sync_high(conf); 3812 md_cluster_ops->resync_info_update(mddev, 3813 conf->cluster_sync_low, 3814 conf->cluster_sync_high); 3815 } 3816 } 3817 3818 while (biolist) { 3819 bio = biolist; 3820 biolist = biolist->bi_next; 3821 3822 bio->bi_next = NULL; 3823 r10_bio = get_resync_r10bio(bio); 3824 r10_bio->sectors = nr_sectors; 3825 3826 if (bio->bi_end_io == end_sync_read) { 3827 md_sync_acct_bio(bio, nr_sectors); 3828 bio->bi_status = 0; 3829 submit_bio_noacct(bio); 3830 } 3831 } 3832 3833 if (sectors_skipped) 3834 /* pretend they weren't skipped, it makes 3835 * no important difference in this case 3836 */ 3837 md_done_sync(mddev, sectors_skipped, 1); 3838 3839 return sectors_skipped + nr_sectors; 3840 giveup: 3841 /* There is nowhere to write, so all non-sync 3842 * drives must be failed or in resync, all drives 3843 * have a bad block, so try the next chunk... 3844 */ 3845 if (sector_nr + max_sync < max_sector) 3846 max_sector = sector_nr + max_sync; 3847 3848 sectors_skipped += (max_sector - sector_nr); 3849 chunks_skipped ++; 3850 sector_nr = max_sector; 3851 goto skipped; 3852 } 3853 3854 static sector_t 3855 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3856 { 3857 sector_t size; 3858 struct r10conf *conf = mddev->private; 3859 3860 if (!raid_disks) 3861 raid_disks = min(conf->geo.raid_disks, 3862 conf->prev.raid_disks); 3863 if (!sectors) 3864 sectors = conf->dev_sectors; 3865 3866 size = sectors >> conf->geo.chunk_shift; 3867 sector_div(size, conf->geo.far_copies); 3868 size = size * raid_disks; 3869 sector_div(size, conf->geo.near_copies); 3870 3871 return size << conf->geo.chunk_shift; 3872 } 3873 3874 static void calc_sectors(struct r10conf *conf, sector_t size) 3875 { 3876 /* Calculate the number of sectors-per-device that will 3877 * actually be used, and set conf->dev_sectors and 3878 * conf->stride 3879 */ 3880 3881 size = size >> conf->geo.chunk_shift; 3882 sector_div(size, conf->geo.far_copies); 3883 size = size * conf->geo.raid_disks; 3884 sector_div(size, conf->geo.near_copies); 3885 /* 'size' is now the number of chunks in the array */ 3886 /* calculate "used chunks per device" */ 3887 size = size * conf->copies; 3888 3889 /* We need to round up when dividing by raid_disks to 3890 * get the stride size. 3891 */ 3892 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3893 3894 conf->dev_sectors = size << conf->geo.chunk_shift; 3895 3896 if (conf->geo.far_offset) 3897 conf->geo.stride = 1 << conf->geo.chunk_shift; 3898 else { 3899 sector_div(size, conf->geo.far_copies); 3900 conf->geo.stride = size << conf->geo.chunk_shift; 3901 } 3902 } 3903 3904 enum geo_type {geo_new, geo_old, geo_start}; 3905 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3906 { 3907 int nc, fc, fo; 3908 int layout, chunk, disks; 3909 switch (new) { 3910 case geo_old: 3911 layout = mddev->layout; 3912 chunk = mddev->chunk_sectors; 3913 disks = mddev->raid_disks - mddev->delta_disks; 3914 break; 3915 case geo_new: 3916 layout = mddev->new_layout; 3917 chunk = mddev->new_chunk_sectors; 3918 disks = mddev->raid_disks; 3919 break; 3920 default: /* avoid 'may be unused' warnings */ 3921 case geo_start: /* new when starting reshape - raid_disks not 3922 * updated yet. */ 3923 layout = mddev->new_layout; 3924 chunk = mddev->new_chunk_sectors; 3925 disks = mddev->raid_disks + mddev->delta_disks; 3926 break; 3927 } 3928 if (layout >> 19) 3929 return -1; 3930 if (chunk < (PAGE_SIZE >> 9) || 3931 !is_power_of_2(chunk)) 3932 return -2; 3933 nc = layout & 255; 3934 fc = (layout >> 8) & 255; 3935 fo = layout & (1<<16); 3936 geo->raid_disks = disks; 3937 geo->near_copies = nc; 3938 geo->far_copies = fc; 3939 geo->far_offset = fo; 3940 switch (layout >> 17) { 3941 case 0: /* original layout. simple but not always optimal */ 3942 geo->far_set_size = disks; 3943 break; 3944 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3945 * actually using this, but leave code here just in case.*/ 3946 geo->far_set_size = disks/fc; 3947 WARN(geo->far_set_size < fc, 3948 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3949 break; 3950 case 2: /* "improved" layout fixed to match documentation */ 3951 geo->far_set_size = fc * nc; 3952 break; 3953 default: /* Not a valid layout */ 3954 return -1; 3955 } 3956 geo->chunk_mask = chunk - 1; 3957 geo->chunk_shift = ffz(~chunk); 3958 return nc*fc; 3959 } 3960 3961 static struct r10conf *setup_conf(struct mddev *mddev) 3962 { 3963 struct r10conf *conf = NULL; 3964 int err = -EINVAL; 3965 struct geom geo; 3966 int copies; 3967 3968 copies = setup_geo(&geo, mddev, geo_new); 3969 3970 if (copies == -2) { 3971 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3972 mdname(mddev), PAGE_SIZE); 3973 goto out; 3974 } 3975 3976 if (copies < 2 || copies > mddev->raid_disks) { 3977 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3978 mdname(mddev), mddev->new_layout); 3979 goto out; 3980 } 3981 3982 err = -ENOMEM; 3983 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3984 if (!conf) 3985 goto out; 3986 3987 /* FIXME calc properly */ 3988 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3989 sizeof(struct raid10_info), 3990 GFP_KERNEL); 3991 if (!conf->mirrors) 3992 goto out; 3993 3994 conf->tmppage = alloc_page(GFP_KERNEL); 3995 if (!conf->tmppage) 3996 goto out; 3997 3998 conf->geo = geo; 3999 conf->copies = copies; 4000 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 4001 rbio_pool_free, conf); 4002 if (err) 4003 goto out; 4004 4005 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 4006 if (err) 4007 goto out; 4008 4009 calc_sectors(conf, mddev->dev_sectors); 4010 if (mddev->reshape_position == MaxSector) { 4011 conf->prev = conf->geo; 4012 conf->reshape_progress = MaxSector; 4013 } else { 4014 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 4015 err = -EINVAL; 4016 goto out; 4017 } 4018 conf->reshape_progress = mddev->reshape_position; 4019 if (conf->prev.far_offset) 4020 conf->prev.stride = 1 << conf->prev.chunk_shift; 4021 else 4022 /* far_copies must be 1 */ 4023 conf->prev.stride = conf->dev_sectors; 4024 } 4025 conf->reshape_safe = conf->reshape_progress; 4026 spin_lock_init(&conf->device_lock); 4027 INIT_LIST_HEAD(&conf->retry_list); 4028 INIT_LIST_HEAD(&conf->bio_end_io_list); 4029 4030 spin_lock_init(&conf->resync_lock); 4031 init_waitqueue_head(&conf->wait_barrier); 4032 atomic_set(&conf->nr_pending, 0); 4033 4034 err = -ENOMEM; 4035 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4036 if (!conf->thread) 4037 goto out; 4038 4039 conf->mddev = mddev; 4040 return conf; 4041 4042 out: 4043 if (conf) { 4044 mempool_exit(&conf->r10bio_pool); 4045 kfree(conf->mirrors); 4046 safe_put_page(conf->tmppage); 4047 bioset_exit(&conf->bio_split); 4048 kfree(conf); 4049 } 4050 return ERR_PTR(err); 4051 } 4052 4053 static void raid10_set_io_opt(struct r10conf *conf) 4054 { 4055 int raid_disks = conf->geo.raid_disks; 4056 4057 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4058 raid_disks /= conf->geo.near_copies; 4059 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4060 raid_disks); 4061 } 4062 4063 static int raid10_run(struct mddev *mddev) 4064 { 4065 struct r10conf *conf; 4066 int i, disk_idx; 4067 struct raid10_info *disk; 4068 struct md_rdev *rdev; 4069 sector_t size; 4070 sector_t min_offset_diff = 0; 4071 int first = 1; 4072 bool discard_supported = false; 4073 4074 if (mddev_init_writes_pending(mddev) < 0) 4075 return -ENOMEM; 4076 4077 if (mddev->private == NULL) { 4078 conf = setup_conf(mddev); 4079 if (IS_ERR(conf)) 4080 return PTR_ERR(conf); 4081 mddev->private = conf; 4082 } 4083 conf = mddev->private; 4084 if (!conf) 4085 goto out; 4086 4087 if (mddev_is_clustered(conf->mddev)) { 4088 int fc, fo; 4089 4090 fc = (mddev->layout >> 8) & 255; 4091 fo = mddev->layout & (1<<16); 4092 if (fc > 1 || fo > 0) { 4093 pr_err("only near layout is supported by clustered" 4094 " raid10\n"); 4095 goto out_free_conf; 4096 } 4097 } 4098 4099 mddev->thread = conf->thread; 4100 conf->thread = NULL; 4101 4102 if (mddev->queue) { 4103 blk_queue_max_discard_sectors(mddev->queue, 4104 UINT_MAX); 4105 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4106 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4107 raid10_set_io_opt(conf); 4108 } 4109 4110 rdev_for_each(rdev, mddev) { 4111 long long diff; 4112 4113 disk_idx = rdev->raid_disk; 4114 if (disk_idx < 0) 4115 continue; 4116 if (disk_idx >= conf->geo.raid_disks && 4117 disk_idx >= conf->prev.raid_disks) 4118 continue; 4119 disk = conf->mirrors + disk_idx; 4120 4121 if (test_bit(Replacement, &rdev->flags)) { 4122 if (disk->replacement) 4123 goto out_free_conf; 4124 disk->replacement = rdev; 4125 } else { 4126 if (disk->rdev) 4127 goto out_free_conf; 4128 disk->rdev = rdev; 4129 } 4130 diff = (rdev->new_data_offset - rdev->data_offset); 4131 if (!mddev->reshape_backwards) 4132 diff = -diff; 4133 if (diff < 0) 4134 diff = 0; 4135 if (first || diff < min_offset_diff) 4136 min_offset_diff = diff; 4137 4138 if (mddev->gendisk) 4139 disk_stack_limits(mddev->gendisk, rdev->bdev, 4140 rdev->data_offset << 9); 4141 4142 disk->head_position = 0; 4143 4144 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 4145 discard_supported = true; 4146 first = 0; 4147 } 4148 4149 if (mddev->queue) { 4150 if (discard_supported) 4151 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 4152 mddev->queue); 4153 else 4154 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 4155 mddev->queue); 4156 } 4157 /* need to check that every block has at least one working mirror */ 4158 if (!enough(conf, -1)) { 4159 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4160 mdname(mddev)); 4161 goto out_free_conf; 4162 } 4163 4164 if (conf->reshape_progress != MaxSector) { 4165 /* must ensure that shape change is supported */ 4166 if (conf->geo.far_copies != 1 && 4167 conf->geo.far_offset == 0) 4168 goto out_free_conf; 4169 if (conf->prev.far_copies != 1 && 4170 conf->prev.far_offset == 0) 4171 goto out_free_conf; 4172 } 4173 4174 mddev->degraded = 0; 4175 for (i = 0; 4176 i < conf->geo.raid_disks 4177 || i < conf->prev.raid_disks; 4178 i++) { 4179 4180 disk = conf->mirrors + i; 4181 4182 if (!disk->rdev && disk->replacement) { 4183 /* The replacement is all we have - use it */ 4184 disk->rdev = disk->replacement; 4185 disk->replacement = NULL; 4186 clear_bit(Replacement, &disk->rdev->flags); 4187 } 4188 4189 if (!disk->rdev || 4190 !test_bit(In_sync, &disk->rdev->flags)) { 4191 disk->head_position = 0; 4192 mddev->degraded++; 4193 if (disk->rdev && 4194 disk->rdev->saved_raid_disk < 0) 4195 conf->fullsync = 1; 4196 } 4197 4198 if (disk->replacement && 4199 !test_bit(In_sync, &disk->replacement->flags) && 4200 disk->replacement->saved_raid_disk < 0) { 4201 conf->fullsync = 1; 4202 } 4203 4204 disk->recovery_disabled = mddev->recovery_disabled - 1; 4205 } 4206 4207 if (mddev->recovery_cp != MaxSector) 4208 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4209 mdname(mddev)); 4210 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4211 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4212 conf->geo.raid_disks); 4213 /* 4214 * Ok, everything is just fine now 4215 */ 4216 mddev->dev_sectors = conf->dev_sectors; 4217 size = raid10_size(mddev, 0, 0); 4218 md_set_array_sectors(mddev, size); 4219 mddev->resync_max_sectors = size; 4220 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4221 4222 if (md_integrity_register(mddev)) 4223 goto out_free_conf; 4224 4225 if (conf->reshape_progress != MaxSector) { 4226 unsigned long before_length, after_length; 4227 4228 before_length = ((1 << conf->prev.chunk_shift) * 4229 conf->prev.far_copies); 4230 after_length = ((1 << conf->geo.chunk_shift) * 4231 conf->geo.far_copies); 4232 4233 if (max(before_length, after_length) > min_offset_diff) { 4234 /* This cannot work */ 4235 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4236 goto out_free_conf; 4237 } 4238 conf->offset_diff = min_offset_diff; 4239 4240 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4241 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4242 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4243 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4244 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4245 "reshape"); 4246 if (!mddev->sync_thread) 4247 goto out_free_conf; 4248 } 4249 4250 return 0; 4251 4252 out_free_conf: 4253 md_unregister_thread(&mddev->thread); 4254 mempool_exit(&conf->r10bio_pool); 4255 safe_put_page(conf->tmppage); 4256 kfree(conf->mirrors); 4257 kfree(conf); 4258 mddev->private = NULL; 4259 out: 4260 return -EIO; 4261 } 4262 4263 static void raid10_free(struct mddev *mddev, void *priv) 4264 { 4265 struct r10conf *conf = priv; 4266 4267 mempool_exit(&conf->r10bio_pool); 4268 safe_put_page(conf->tmppage); 4269 kfree(conf->mirrors); 4270 kfree(conf->mirrors_old); 4271 kfree(conf->mirrors_new); 4272 bioset_exit(&conf->bio_split); 4273 kfree(conf); 4274 } 4275 4276 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4277 { 4278 struct r10conf *conf = mddev->private; 4279 4280 if (quiesce) 4281 raise_barrier(conf, 0); 4282 else 4283 lower_barrier(conf); 4284 } 4285 4286 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4287 { 4288 /* Resize of 'far' arrays is not supported. 4289 * For 'near' and 'offset' arrays we can set the 4290 * number of sectors used to be an appropriate multiple 4291 * of the chunk size. 4292 * For 'offset', this is far_copies*chunksize. 4293 * For 'near' the multiplier is the LCM of 4294 * near_copies and raid_disks. 4295 * So if far_copies > 1 && !far_offset, fail. 4296 * Else find LCM(raid_disks, near_copy)*far_copies and 4297 * multiply by chunk_size. Then round to this number. 4298 * This is mostly done by raid10_size() 4299 */ 4300 struct r10conf *conf = mddev->private; 4301 sector_t oldsize, size; 4302 4303 if (mddev->reshape_position != MaxSector) 4304 return -EBUSY; 4305 4306 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4307 return -EINVAL; 4308 4309 oldsize = raid10_size(mddev, 0, 0); 4310 size = raid10_size(mddev, sectors, 0); 4311 if (mddev->external_size && 4312 mddev->array_sectors > size) 4313 return -EINVAL; 4314 if (mddev->bitmap) { 4315 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4316 if (ret) 4317 return ret; 4318 } 4319 md_set_array_sectors(mddev, size); 4320 if (sectors > mddev->dev_sectors && 4321 mddev->recovery_cp > oldsize) { 4322 mddev->recovery_cp = oldsize; 4323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4324 } 4325 calc_sectors(conf, sectors); 4326 mddev->dev_sectors = conf->dev_sectors; 4327 mddev->resync_max_sectors = size; 4328 return 0; 4329 } 4330 4331 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4332 { 4333 struct md_rdev *rdev; 4334 struct r10conf *conf; 4335 4336 if (mddev->degraded > 0) { 4337 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4338 mdname(mddev)); 4339 return ERR_PTR(-EINVAL); 4340 } 4341 sector_div(size, devs); 4342 4343 /* Set new parameters */ 4344 mddev->new_level = 10; 4345 /* new layout: far_copies = 1, near_copies = 2 */ 4346 mddev->new_layout = (1<<8) + 2; 4347 mddev->new_chunk_sectors = mddev->chunk_sectors; 4348 mddev->delta_disks = mddev->raid_disks; 4349 mddev->raid_disks *= 2; 4350 /* make sure it will be not marked as dirty */ 4351 mddev->recovery_cp = MaxSector; 4352 mddev->dev_sectors = size; 4353 4354 conf = setup_conf(mddev); 4355 if (!IS_ERR(conf)) { 4356 rdev_for_each(rdev, mddev) 4357 if (rdev->raid_disk >= 0) { 4358 rdev->new_raid_disk = rdev->raid_disk * 2; 4359 rdev->sectors = size; 4360 } 4361 conf->barrier = 1; 4362 } 4363 4364 return conf; 4365 } 4366 4367 static void *raid10_takeover(struct mddev *mddev) 4368 { 4369 struct r0conf *raid0_conf; 4370 4371 /* raid10 can take over: 4372 * raid0 - providing it has only two drives 4373 */ 4374 if (mddev->level == 0) { 4375 /* for raid0 takeover only one zone is supported */ 4376 raid0_conf = mddev->private; 4377 if (raid0_conf->nr_strip_zones > 1) { 4378 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4379 mdname(mddev)); 4380 return ERR_PTR(-EINVAL); 4381 } 4382 return raid10_takeover_raid0(mddev, 4383 raid0_conf->strip_zone->zone_end, 4384 raid0_conf->strip_zone->nb_dev); 4385 } 4386 return ERR_PTR(-EINVAL); 4387 } 4388 4389 static int raid10_check_reshape(struct mddev *mddev) 4390 { 4391 /* Called when there is a request to change 4392 * - layout (to ->new_layout) 4393 * - chunk size (to ->new_chunk_sectors) 4394 * - raid_disks (by delta_disks) 4395 * or when trying to restart a reshape that was ongoing. 4396 * 4397 * We need to validate the request and possibly allocate 4398 * space if that might be an issue later. 4399 * 4400 * Currently we reject any reshape of a 'far' mode array, 4401 * allow chunk size to change if new is generally acceptable, 4402 * allow raid_disks to increase, and allow 4403 * a switch between 'near' mode and 'offset' mode. 4404 */ 4405 struct r10conf *conf = mddev->private; 4406 struct geom geo; 4407 4408 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4409 return -EINVAL; 4410 4411 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4412 /* mustn't change number of copies */ 4413 return -EINVAL; 4414 if (geo.far_copies > 1 && !geo.far_offset) 4415 /* Cannot switch to 'far' mode */ 4416 return -EINVAL; 4417 4418 if (mddev->array_sectors & geo.chunk_mask) 4419 /* not factor of array size */ 4420 return -EINVAL; 4421 4422 if (!enough(conf, -1)) 4423 return -EINVAL; 4424 4425 kfree(conf->mirrors_new); 4426 conf->mirrors_new = NULL; 4427 if (mddev->delta_disks > 0) { 4428 /* allocate new 'mirrors' list */ 4429 conf->mirrors_new = 4430 kcalloc(mddev->raid_disks + mddev->delta_disks, 4431 sizeof(struct raid10_info), 4432 GFP_KERNEL); 4433 if (!conf->mirrors_new) 4434 return -ENOMEM; 4435 } 4436 return 0; 4437 } 4438 4439 /* 4440 * Need to check if array has failed when deciding whether to: 4441 * - start an array 4442 * - remove non-faulty devices 4443 * - add a spare 4444 * - allow a reshape 4445 * This determination is simple when no reshape is happening. 4446 * However if there is a reshape, we need to carefully check 4447 * both the before and after sections. 4448 * This is because some failed devices may only affect one 4449 * of the two sections, and some non-in_sync devices may 4450 * be insync in the section most affected by failed devices. 4451 */ 4452 static int calc_degraded(struct r10conf *conf) 4453 { 4454 int degraded, degraded2; 4455 int i; 4456 4457 rcu_read_lock(); 4458 degraded = 0; 4459 /* 'prev' section first */ 4460 for (i = 0; i < conf->prev.raid_disks; i++) { 4461 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4462 if (!rdev || test_bit(Faulty, &rdev->flags)) 4463 degraded++; 4464 else if (!test_bit(In_sync, &rdev->flags)) 4465 /* When we can reduce the number of devices in 4466 * an array, this might not contribute to 4467 * 'degraded'. It does now. 4468 */ 4469 degraded++; 4470 } 4471 rcu_read_unlock(); 4472 if (conf->geo.raid_disks == conf->prev.raid_disks) 4473 return degraded; 4474 rcu_read_lock(); 4475 degraded2 = 0; 4476 for (i = 0; i < conf->geo.raid_disks; i++) { 4477 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4478 if (!rdev || test_bit(Faulty, &rdev->flags)) 4479 degraded2++; 4480 else if (!test_bit(In_sync, &rdev->flags)) { 4481 /* If reshape is increasing the number of devices, 4482 * this section has already been recovered, so 4483 * it doesn't contribute to degraded. 4484 * else it does. 4485 */ 4486 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4487 degraded2++; 4488 } 4489 } 4490 rcu_read_unlock(); 4491 if (degraded2 > degraded) 4492 return degraded2; 4493 return degraded; 4494 } 4495 4496 static int raid10_start_reshape(struct mddev *mddev) 4497 { 4498 /* A 'reshape' has been requested. This commits 4499 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4500 * This also checks if there are enough spares and adds them 4501 * to the array. 4502 * We currently require enough spares to make the final 4503 * array non-degraded. We also require that the difference 4504 * between old and new data_offset - on each device - is 4505 * enough that we never risk over-writing. 4506 */ 4507 4508 unsigned long before_length, after_length; 4509 sector_t min_offset_diff = 0; 4510 int first = 1; 4511 struct geom new; 4512 struct r10conf *conf = mddev->private; 4513 struct md_rdev *rdev; 4514 int spares = 0; 4515 int ret; 4516 4517 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4518 return -EBUSY; 4519 4520 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4521 return -EINVAL; 4522 4523 before_length = ((1 << conf->prev.chunk_shift) * 4524 conf->prev.far_copies); 4525 after_length = ((1 << conf->geo.chunk_shift) * 4526 conf->geo.far_copies); 4527 4528 rdev_for_each(rdev, mddev) { 4529 if (!test_bit(In_sync, &rdev->flags) 4530 && !test_bit(Faulty, &rdev->flags)) 4531 spares++; 4532 if (rdev->raid_disk >= 0) { 4533 long long diff = (rdev->new_data_offset 4534 - rdev->data_offset); 4535 if (!mddev->reshape_backwards) 4536 diff = -diff; 4537 if (diff < 0) 4538 diff = 0; 4539 if (first || diff < min_offset_diff) 4540 min_offset_diff = diff; 4541 first = 0; 4542 } 4543 } 4544 4545 if (max(before_length, after_length) > min_offset_diff) 4546 return -EINVAL; 4547 4548 if (spares < mddev->delta_disks) 4549 return -EINVAL; 4550 4551 conf->offset_diff = min_offset_diff; 4552 spin_lock_irq(&conf->device_lock); 4553 if (conf->mirrors_new) { 4554 memcpy(conf->mirrors_new, conf->mirrors, 4555 sizeof(struct raid10_info)*conf->prev.raid_disks); 4556 smp_mb(); 4557 kfree(conf->mirrors_old); 4558 conf->mirrors_old = conf->mirrors; 4559 conf->mirrors = conf->mirrors_new; 4560 conf->mirrors_new = NULL; 4561 } 4562 setup_geo(&conf->geo, mddev, geo_start); 4563 smp_mb(); 4564 if (mddev->reshape_backwards) { 4565 sector_t size = raid10_size(mddev, 0, 0); 4566 if (size < mddev->array_sectors) { 4567 spin_unlock_irq(&conf->device_lock); 4568 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4569 mdname(mddev)); 4570 return -EINVAL; 4571 } 4572 mddev->resync_max_sectors = size; 4573 conf->reshape_progress = size; 4574 } else 4575 conf->reshape_progress = 0; 4576 conf->reshape_safe = conf->reshape_progress; 4577 spin_unlock_irq(&conf->device_lock); 4578 4579 if (mddev->delta_disks && mddev->bitmap) { 4580 struct mdp_superblock_1 *sb = NULL; 4581 sector_t oldsize, newsize; 4582 4583 oldsize = raid10_size(mddev, 0, 0); 4584 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4585 4586 if (!mddev_is_clustered(mddev)) { 4587 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4588 if (ret) 4589 goto abort; 4590 else 4591 goto out; 4592 } 4593 4594 rdev_for_each(rdev, mddev) { 4595 if (rdev->raid_disk > -1 && 4596 !test_bit(Faulty, &rdev->flags)) 4597 sb = page_address(rdev->sb_page); 4598 } 4599 4600 /* 4601 * some node is already performing reshape, and no need to 4602 * call md_bitmap_resize again since it should be called when 4603 * receiving BITMAP_RESIZE msg 4604 */ 4605 if ((sb && (le32_to_cpu(sb->feature_map) & 4606 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4607 goto out; 4608 4609 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4610 if (ret) 4611 goto abort; 4612 4613 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4614 if (ret) { 4615 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4616 goto abort; 4617 } 4618 } 4619 out: 4620 if (mddev->delta_disks > 0) { 4621 rdev_for_each(rdev, mddev) 4622 if (rdev->raid_disk < 0 && 4623 !test_bit(Faulty, &rdev->flags)) { 4624 if (raid10_add_disk(mddev, rdev) == 0) { 4625 if (rdev->raid_disk >= 4626 conf->prev.raid_disks) 4627 set_bit(In_sync, &rdev->flags); 4628 else 4629 rdev->recovery_offset = 0; 4630 4631 /* Failure here is OK */ 4632 sysfs_link_rdev(mddev, rdev); 4633 } 4634 } else if (rdev->raid_disk >= conf->prev.raid_disks 4635 && !test_bit(Faulty, &rdev->flags)) { 4636 /* This is a spare that was manually added */ 4637 set_bit(In_sync, &rdev->flags); 4638 } 4639 } 4640 /* When a reshape changes the number of devices, 4641 * ->degraded is measured against the larger of the 4642 * pre and post numbers. 4643 */ 4644 spin_lock_irq(&conf->device_lock); 4645 mddev->degraded = calc_degraded(conf); 4646 spin_unlock_irq(&conf->device_lock); 4647 mddev->raid_disks = conf->geo.raid_disks; 4648 mddev->reshape_position = conf->reshape_progress; 4649 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4650 4651 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4652 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4653 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4654 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4655 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4656 4657 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4658 "reshape"); 4659 if (!mddev->sync_thread) { 4660 ret = -EAGAIN; 4661 goto abort; 4662 } 4663 conf->reshape_checkpoint = jiffies; 4664 md_wakeup_thread(mddev->sync_thread); 4665 md_new_event(); 4666 return 0; 4667 4668 abort: 4669 mddev->recovery = 0; 4670 spin_lock_irq(&conf->device_lock); 4671 conf->geo = conf->prev; 4672 mddev->raid_disks = conf->geo.raid_disks; 4673 rdev_for_each(rdev, mddev) 4674 rdev->new_data_offset = rdev->data_offset; 4675 smp_wmb(); 4676 conf->reshape_progress = MaxSector; 4677 conf->reshape_safe = MaxSector; 4678 mddev->reshape_position = MaxSector; 4679 spin_unlock_irq(&conf->device_lock); 4680 return ret; 4681 } 4682 4683 /* Calculate the last device-address that could contain 4684 * any block from the chunk that includes the array-address 's' 4685 * and report the next address. 4686 * i.e. the address returned will be chunk-aligned and after 4687 * any data that is in the chunk containing 's'. 4688 */ 4689 static sector_t last_dev_address(sector_t s, struct geom *geo) 4690 { 4691 s = (s | geo->chunk_mask) + 1; 4692 s >>= geo->chunk_shift; 4693 s *= geo->near_copies; 4694 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4695 s *= geo->far_copies; 4696 s <<= geo->chunk_shift; 4697 return s; 4698 } 4699 4700 /* Calculate the first device-address that could contain 4701 * any block from the chunk that includes the array-address 's'. 4702 * This too will be the start of a chunk 4703 */ 4704 static sector_t first_dev_address(sector_t s, struct geom *geo) 4705 { 4706 s >>= geo->chunk_shift; 4707 s *= geo->near_copies; 4708 sector_div(s, geo->raid_disks); 4709 s *= geo->far_copies; 4710 s <<= geo->chunk_shift; 4711 return s; 4712 } 4713 4714 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4715 int *skipped) 4716 { 4717 /* We simply copy at most one chunk (smallest of old and new) 4718 * at a time, possibly less if that exceeds RESYNC_PAGES, 4719 * or we hit a bad block or something. 4720 * This might mean we pause for normal IO in the middle of 4721 * a chunk, but that is not a problem as mddev->reshape_position 4722 * can record any location. 4723 * 4724 * If we will want to write to a location that isn't 4725 * yet recorded as 'safe' (i.e. in metadata on disk) then 4726 * we need to flush all reshape requests and update the metadata. 4727 * 4728 * When reshaping forwards (e.g. to more devices), we interpret 4729 * 'safe' as the earliest block which might not have been copied 4730 * down yet. We divide this by previous stripe size and multiply 4731 * by previous stripe length to get lowest device offset that we 4732 * cannot write to yet. 4733 * We interpret 'sector_nr' as an address that we want to write to. 4734 * From this we use last_device_address() to find where we might 4735 * write to, and first_device_address on the 'safe' position. 4736 * If this 'next' write position is after the 'safe' position, 4737 * we must update the metadata to increase the 'safe' position. 4738 * 4739 * When reshaping backwards, we round in the opposite direction 4740 * and perform the reverse test: next write position must not be 4741 * less than current safe position. 4742 * 4743 * In all this the minimum difference in data offsets 4744 * (conf->offset_diff - always positive) allows a bit of slack, 4745 * so next can be after 'safe', but not by more than offset_diff 4746 * 4747 * We need to prepare all the bios here before we start any IO 4748 * to ensure the size we choose is acceptable to all devices. 4749 * The means one for each copy for write-out and an extra one for 4750 * read-in. 4751 * We store the read-in bio in ->master_bio and the others in 4752 * ->devs[x].bio and ->devs[x].repl_bio. 4753 */ 4754 struct r10conf *conf = mddev->private; 4755 struct r10bio *r10_bio; 4756 sector_t next, safe, last; 4757 int max_sectors; 4758 int nr_sectors; 4759 int s; 4760 struct md_rdev *rdev; 4761 int need_flush = 0; 4762 struct bio *blist; 4763 struct bio *bio, *read_bio; 4764 int sectors_done = 0; 4765 struct page **pages; 4766 4767 if (sector_nr == 0) { 4768 /* If restarting in the middle, skip the initial sectors */ 4769 if (mddev->reshape_backwards && 4770 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4771 sector_nr = (raid10_size(mddev, 0, 0) 4772 - conf->reshape_progress); 4773 } else if (!mddev->reshape_backwards && 4774 conf->reshape_progress > 0) 4775 sector_nr = conf->reshape_progress; 4776 if (sector_nr) { 4777 mddev->curr_resync_completed = sector_nr; 4778 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4779 *skipped = 1; 4780 return sector_nr; 4781 } 4782 } 4783 4784 /* We don't use sector_nr to track where we are up to 4785 * as that doesn't work well for ->reshape_backwards. 4786 * So just use ->reshape_progress. 4787 */ 4788 if (mddev->reshape_backwards) { 4789 /* 'next' is the earliest device address that we might 4790 * write to for this chunk in the new layout 4791 */ 4792 next = first_dev_address(conf->reshape_progress - 1, 4793 &conf->geo); 4794 4795 /* 'safe' is the last device address that we might read from 4796 * in the old layout after a restart 4797 */ 4798 safe = last_dev_address(conf->reshape_safe - 1, 4799 &conf->prev); 4800 4801 if (next + conf->offset_diff < safe) 4802 need_flush = 1; 4803 4804 last = conf->reshape_progress - 1; 4805 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4806 & conf->prev.chunk_mask); 4807 if (sector_nr + RESYNC_SECTORS < last) 4808 sector_nr = last + 1 - RESYNC_SECTORS; 4809 } else { 4810 /* 'next' is after the last device address that we 4811 * might write to for this chunk in the new layout 4812 */ 4813 next = last_dev_address(conf->reshape_progress, &conf->geo); 4814 4815 /* 'safe' is the earliest device address that we might 4816 * read from in the old layout after a restart 4817 */ 4818 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4819 4820 /* Need to update metadata if 'next' might be beyond 'safe' 4821 * as that would possibly corrupt data 4822 */ 4823 if (next > safe + conf->offset_diff) 4824 need_flush = 1; 4825 4826 sector_nr = conf->reshape_progress; 4827 last = sector_nr | (conf->geo.chunk_mask 4828 & conf->prev.chunk_mask); 4829 4830 if (sector_nr + RESYNC_SECTORS <= last) 4831 last = sector_nr + RESYNC_SECTORS - 1; 4832 } 4833 4834 if (need_flush || 4835 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4836 /* Need to update reshape_position in metadata */ 4837 wait_barrier(conf, false); 4838 mddev->reshape_position = conf->reshape_progress; 4839 if (mddev->reshape_backwards) 4840 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4841 - conf->reshape_progress; 4842 else 4843 mddev->curr_resync_completed = conf->reshape_progress; 4844 conf->reshape_checkpoint = jiffies; 4845 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4846 md_wakeup_thread(mddev->thread); 4847 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4848 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4849 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4850 allow_barrier(conf); 4851 return sectors_done; 4852 } 4853 conf->reshape_safe = mddev->reshape_position; 4854 allow_barrier(conf); 4855 } 4856 4857 raise_barrier(conf, 0); 4858 read_more: 4859 /* Now schedule reads for blocks from sector_nr to last */ 4860 r10_bio = raid10_alloc_init_r10buf(conf); 4861 r10_bio->state = 0; 4862 raise_barrier(conf, 1); 4863 atomic_set(&r10_bio->remaining, 0); 4864 r10_bio->mddev = mddev; 4865 r10_bio->sector = sector_nr; 4866 set_bit(R10BIO_IsReshape, &r10_bio->state); 4867 r10_bio->sectors = last - sector_nr + 1; 4868 rdev = read_balance(conf, r10_bio, &max_sectors); 4869 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4870 4871 if (!rdev) { 4872 /* Cannot read from here, so need to record bad blocks 4873 * on all the target devices. 4874 */ 4875 // FIXME 4876 mempool_free(r10_bio, &conf->r10buf_pool); 4877 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4878 return sectors_done; 4879 } 4880 4881 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4882 GFP_KERNEL, &mddev->bio_set); 4883 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4884 + rdev->data_offset); 4885 read_bio->bi_private = r10_bio; 4886 read_bio->bi_end_io = end_reshape_read; 4887 r10_bio->master_bio = read_bio; 4888 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4889 4890 /* 4891 * Broadcast RESYNC message to other nodes, so all nodes would not 4892 * write to the region to avoid conflict. 4893 */ 4894 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4895 struct mdp_superblock_1 *sb = NULL; 4896 int sb_reshape_pos = 0; 4897 4898 conf->cluster_sync_low = sector_nr; 4899 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4900 sb = page_address(rdev->sb_page); 4901 if (sb) { 4902 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4903 /* 4904 * Set cluster_sync_low again if next address for array 4905 * reshape is less than cluster_sync_low. Since we can't 4906 * update cluster_sync_low until it has finished reshape. 4907 */ 4908 if (sb_reshape_pos < conf->cluster_sync_low) 4909 conf->cluster_sync_low = sb_reshape_pos; 4910 } 4911 4912 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4913 conf->cluster_sync_high); 4914 } 4915 4916 /* Now find the locations in the new layout */ 4917 __raid10_find_phys(&conf->geo, r10_bio); 4918 4919 blist = read_bio; 4920 read_bio->bi_next = NULL; 4921 4922 rcu_read_lock(); 4923 for (s = 0; s < conf->copies*2; s++) { 4924 struct bio *b; 4925 int d = r10_bio->devs[s/2].devnum; 4926 struct md_rdev *rdev2; 4927 if (s&1) { 4928 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4929 b = r10_bio->devs[s/2].repl_bio; 4930 } else { 4931 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4932 b = r10_bio->devs[s/2].bio; 4933 } 4934 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4935 continue; 4936 4937 bio_set_dev(b, rdev2->bdev); 4938 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4939 rdev2->new_data_offset; 4940 b->bi_end_io = end_reshape_write; 4941 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4942 b->bi_next = blist; 4943 blist = b; 4944 } 4945 4946 /* Now add as many pages as possible to all of these bios. */ 4947 4948 nr_sectors = 0; 4949 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4950 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4951 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4952 int len = (max_sectors - s) << 9; 4953 if (len > PAGE_SIZE) 4954 len = PAGE_SIZE; 4955 for (bio = blist; bio ; bio = bio->bi_next) { 4956 /* 4957 * won't fail because the vec table is big enough 4958 * to hold all these pages 4959 */ 4960 bio_add_page(bio, page, len, 0); 4961 } 4962 sector_nr += len >> 9; 4963 nr_sectors += len >> 9; 4964 } 4965 rcu_read_unlock(); 4966 r10_bio->sectors = nr_sectors; 4967 4968 /* Now submit the read */ 4969 md_sync_acct_bio(read_bio, r10_bio->sectors); 4970 atomic_inc(&r10_bio->remaining); 4971 read_bio->bi_next = NULL; 4972 submit_bio_noacct(read_bio); 4973 sectors_done += nr_sectors; 4974 if (sector_nr <= last) 4975 goto read_more; 4976 4977 lower_barrier(conf); 4978 4979 /* Now that we have done the whole section we can 4980 * update reshape_progress 4981 */ 4982 if (mddev->reshape_backwards) 4983 conf->reshape_progress -= sectors_done; 4984 else 4985 conf->reshape_progress += sectors_done; 4986 4987 return sectors_done; 4988 } 4989 4990 static void end_reshape_request(struct r10bio *r10_bio); 4991 static int handle_reshape_read_error(struct mddev *mddev, 4992 struct r10bio *r10_bio); 4993 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4994 { 4995 /* Reshape read completed. Hopefully we have a block 4996 * to write out. 4997 * If we got a read error then we do sync 1-page reads from 4998 * elsewhere until we find the data - or give up. 4999 */ 5000 struct r10conf *conf = mddev->private; 5001 int s; 5002 5003 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 5004 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 5005 /* Reshape has been aborted */ 5006 md_done_sync(mddev, r10_bio->sectors, 0); 5007 return; 5008 } 5009 5010 /* We definitely have the data in the pages, schedule the 5011 * writes. 5012 */ 5013 atomic_set(&r10_bio->remaining, 1); 5014 for (s = 0; s < conf->copies*2; s++) { 5015 struct bio *b; 5016 int d = r10_bio->devs[s/2].devnum; 5017 struct md_rdev *rdev; 5018 rcu_read_lock(); 5019 if (s&1) { 5020 rdev = rcu_dereference(conf->mirrors[d].replacement); 5021 b = r10_bio->devs[s/2].repl_bio; 5022 } else { 5023 rdev = rcu_dereference(conf->mirrors[d].rdev); 5024 b = r10_bio->devs[s/2].bio; 5025 } 5026 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5027 rcu_read_unlock(); 5028 continue; 5029 } 5030 atomic_inc(&rdev->nr_pending); 5031 rcu_read_unlock(); 5032 md_sync_acct_bio(b, r10_bio->sectors); 5033 atomic_inc(&r10_bio->remaining); 5034 b->bi_next = NULL; 5035 submit_bio_noacct(b); 5036 } 5037 end_reshape_request(r10_bio); 5038 } 5039 5040 static void end_reshape(struct r10conf *conf) 5041 { 5042 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5043 return; 5044 5045 spin_lock_irq(&conf->device_lock); 5046 conf->prev = conf->geo; 5047 md_finish_reshape(conf->mddev); 5048 smp_wmb(); 5049 conf->reshape_progress = MaxSector; 5050 conf->reshape_safe = MaxSector; 5051 spin_unlock_irq(&conf->device_lock); 5052 5053 if (conf->mddev->queue) 5054 raid10_set_io_opt(conf); 5055 conf->fullsync = 0; 5056 } 5057 5058 static void raid10_update_reshape_pos(struct mddev *mddev) 5059 { 5060 struct r10conf *conf = mddev->private; 5061 sector_t lo, hi; 5062 5063 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5064 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5065 || mddev->reshape_position == MaxSector) 5066 conf->reshape_progress = mddev->reshape_position; 5067 else 5068 WARN_ON_ONCE(1); 5069 } 5070 5071 static int handle_reshape_read_error(struct mddev *mddev, 5072 struct r10bio *r10_bio) 5073 { 5074 /* Use sync reads to get the blocks from somewhere else */ 5075 int sectors = r10_bio->sectors; 5076 struct r10conf *conf = mddev->private; 5077 struct r10bio *r10b; 5078 int slot = 0; 5079 int idx = 0; 5080 struct page **pages; 5081 5082 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5083 if (!r10b) { 5084 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5085 return -ENOMEM; 5086 } 5087 5088 /* reshape IOs share pages from .devs[0].bio */ 5089 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5090 5091 r10b->sector = r10_bio->sector; 5092 __raid10_find_phys(&conf->prev, r10b); 5093 5094 while (sectors) { 5095 int s = sectors; 5096 int success = 0; 5097 int first_slot = slot; 5098 5099 if (s > (PAGE_SIZE >> 9)) 5100 s = PAGE_SIZE >> 9; 5101 5102 rcu_read_lock(); 5103 while (!success) { 5104 int d = r10b->devs[slot].devnum; 5105 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5106 sector_t addr; 5107 if (rdev == NULL || 5108 test_bit(Faulty, &rdev->flags) || 5109 !test_bit(In_sync, &rdev->flags)) 5110 goto failed; 5111 5112 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5113 atomic_inc(&rdev->nr_pending); 5114 rcu_read_unlock(); 5115 success = sync_page_io(rdev, 5116 addr, 5117 s << 9, 5118 pages[idx], 5119 REQ_OP_READ, 0, false); 5120 rdev_dec_pending(rdev, mddev); 5121 rcu_read_lock(); 5122 if (success) 5123 break; 5124 failed: 5125 slot++; 5126 if (slot >= conf->copies) 5127 slot = 0; 5128 if (slot == first_slot) 5129 break; 5130 } 5131 rcu_read_unlock(); 5132 if (!success) { 5133 /* couldn't read this block, must give up */ 5134 set_bit(MD_RECOVERY_INTR, 5135 &mddev->recovery); 5136 kfree(r10b); 5137 return -EIO; 5138 } 5139 sectors -= s; 5140 idx++; 5141 } 5142 kfree(r10b); 5143 return 0; 5144 } 5145 5146 static void end_reshape_write(struct bio *bio) 5147 { 5148 struct r10bio *r10_bio = get_resync_r10bio(bio); 5149 struct mddev *mddev = r10_bio->mddev; 5150 struct r10conf *conf = mddev->private; 5151 int d; 5152 int slot; 5153 int repl; 5154 struct md_rdev *rdev = NULL; 5155 5156 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5157 if (repl) 5158 rdev = conf->mirrors[d].replacement; 5159 if (!rdev) { 5160 smp_mb(); 5161 rdev = conf->mirrors[d].rdev; 5162 } 5163 5164 if (bio->bi_status) { 5165 /* FIXME should record badblock */ 5166 md_error(mddev, rdev); 5167 } 5168 5169 rdev_dec_pending(rdev, mddev); 5170 end_reshape_request(r10_bio); 5171 } 5172 5173 static void end_reshape_request(struct r10bio *r10_bio) 5174 { 5175 if (!atomic_dec_and_test(&r10_bio->remaining)) 5176 return; 5177 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5178 bio_put(r10_bio->master_bio); 5179 put_buf(r10_bio); 5180 } 5181 5182 static void raid10_finish_reshape(struct mddev *mddev) 5183 { 5184 struct r10conf *conf = mddev->private; 5185 5186 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5187 return; 5188 5189 if (mddev->delta_disks > 0) { 5190 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5191 mddev->recovery_cp = mddev->resync_max_sectors; 5192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5193 } 5194 mddev->resync_max_sectors = mddev->array_sectors; 5195 } else { 5196 int d; 5197 rcu_read_lock(); 5198 for (d = conf->geo.raid_disks ; 5199 d < conf->geo.raid_disks - mddev->delta_disks; 5200 d++) { 5201 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5202 if (rdev) 5203 clear_bit(In_sync, &rdev->flags); 5204 rdev = rcu_dereference(conf->mirrors[d].replacement); 5205 if (rdev) 5206 clear_bit(In_sync, &rdev->flags); 5207 } 5208 rcu_read_unlock(); 5209 } 5210 mddev->layout = mddev->new_layout; 5211 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5212 mddev->reshape_position = MaxSector; 5213 mddev->delta_disks = 0; 5214 mddev->reshape_backwards = 0; 5215 } 5216 5217 static struct md_personality raid10_personality = 5218 { 5219 .name = "raid10", 5220 .level = 10, 5221 .owner = THIS_MODULE, 5222 .make_request = raid10_make_request, 5223 .run = raid10_run, 5224 .free = raid10_free, 5225 .status = raid10_status, 5226 .error_handler = raid10_error, 5227 .hot_add_disk = raid10_add_disk, 5228 .hot_remove_disk= raid10_remove_disk, 5229 .spare_active = raid10_spare_active, 5230 .sync_request = raid10_sync_request, 5231 .quiesce = raid10_quiesce, 5232 .size = raid10_size, 5233 .resize = raid10_resize, 5234 .takeover = raid10_takeover, 5235 .check_reshape = raid10_check_reshape, 5236 .start_reshape = raid10_start_reshape, 5237 .finish_reshape = raid10_finish_reshape, 5238 .update_reshape_pos = raid10_update_reshape_pos, 5239 }; 5240 5241 static int __init raid_init(void) 5242 { 5243 return register_md_personality(&raid10_personality); 5244 } 5245 5246 static void raid_exit(void) 5247 { 5248 unregister_md_personality(&raid10_personality); 5249 } 5250 5251 module_init(raid_init); 5252 module_exit(raid_exit); 5253 MODULE_LICENSE("GPL"); 5254 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5255 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5256 MODULE_ALIAS("md-raid10"); 5257 MODULE_ALIAS("md-level-10"); 5258