xref: /openbmc/linux/drivers/md/raid10.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/md_p.h>
29 #include <trace/events/block.h>
30 #include "md.h"
31 #include "raid10.h"
32 #include "raid0.h"
33 #include "md-bitmap.h"
34 
35 /*
36  * RAID10 provides a combination of RAID0 and RAID1 functionality.
37  * The layout of data is defined by
38  *    chunk_size
39  *    raid_disks
40  *    near_copies (stored in low byte of layout)
41  *    far_copies (stored in second byte of layout)
42  *    far_offset (stored in bit 16 of layout )
43  *    use_far_sets (stored in bit 17 of layout )
44  *    use_far_sets_bugfixed (stored in bit 18 of layout )
45  *
46  * The data to be stored is divided into chunks using chunksize.  Each device
47  * is divided into far_copies sections.   In each section, chunks are laid out
48  * in a style similar to raid0, but near_copies copies of each chunk is stored
49  * (each on a different drive).  The starting device for each section is offset
50  * near_copies from the starting device of the previous section.  Thus there
51  * are (near_copies * far_copies) of each chunk, and each is on a different
52  * drive.  near_copies and far_copies must be at least one, and their product
53  * is at most raid_disks.
54  *
55  * If far_offset is true, then the far_copies are handled a bit differently.
56  * The copies are still in different stripes, but instead of being very far
57  * apart on disk, there are adjacent stripes.
58  *
59  * The far and offset algorithms are handled slightly differently if
60  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
61  * sets that are (near_copies * far_copies) in size.  The far copied stripes
62  * are still shifted by 'near_copies' devices, but this shifting stays confined
63  * to the set rather than the entire array.  This is done to improve the number
64  * of device combinations that can fail without causing the array to fail.
65  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
66  * on a device):
67  *    A B C D    A B C D E
68  *      ...         ...
69  *    D A B C    E A B C D
70  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
71  *    [A B] [C D]    [A B] [C D E]
72  *    |...| |...|    |...| | ... |
73  *    [B A] [D C]    [B A] [E C D]
74  */
75 
76 /*
77  * Number of guaranteed r10bios in case of extreme VM load:
78  */
79 #define	NR_RAID10_BIOS 256
80 
81 /* when we get a read error on a read-only array, we redirect to another
82  * device without failing the first device, or trying to over-write to
83  * correct the read error.  To keep track of bad blocks on a per-bio
84  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85  */
86 #define IO_BLOCKED ((struct bio *)1)
87 /* When we successfully write to a known bad-block, we need to remove the
88  * bad-block marking which must be done from process context.  So we record
89  * the success by setting devs[n].bio to IO_MADE_GOOD
90  */
91 #define IO_MADE_GOOD ((struct bio *)2)
92 
93 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 
95 /* When there are this many requests queued to be written by
96  * the raid10 thread, we become 'congested' to provide back-pressure
97  * for writeback.
98  */
99 static int max_queued_requests = 1024;
100 
101 static void allow_barrier(struct r10conf *conf);
102 static void lower_barrier(struct r10conf *conf);
103 static int _enough(struct r10conf *conf, int previous, int ignore);
104 static int enough(struct r10conf *conf, int ignore);
105 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
106 				int *skipped);
107 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
108 static void end_reshape_write(struct bio *bio);
109 static void end_reshape(struct r10conf *conf);
110 
111 #define raid10_log(md, fmt, args...)				\
112 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 
114 #include "raid1-10.c"
115 
116 /*
117  * for resync bio, r10bio pointer can be retrieved from the per-bio
118  * 'struct resync_pages'.
119  */
120 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
121 {
122 	return get_resync_pages(bio)->raid_bio;
123 }
124 
125 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
126 {
127 	struct r10conf *conf = data;
128 	int size = offsetof(struct r10bio, devs[conf->copies]);
129 
130 	/* allocate a r10bio with room for raid_disks entries in the
131 	 * bios array */
132 	return kzalloc(size, gfp_flags);
133 }
134 
135 static void r10bio_pool_free(void *r10_bio, void *data)
136 {
137 	kfree(r10_bio);
138 }
139 
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 /* amount of memory to reserve for resync requests */
142 #define RESYNC_WINDOW (1024*1024)
143 /* maximum number of concurrent requests, memory permitting */
144 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
145 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
146 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
147 
148 /*
149  * When performing a resync, we need to read and compare, so
150  * we need as many pages are there are copies.
151  * When performing a recovery, we need 2 bios, one for read,
152  * one for write (we recover only one drive per r10buf)
153  *
154  */
155 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
156 {
157 	struct r10conf *conf = data;
158 	struct r10bio *r10_bio;
159 	struct bio *bio;
160 	int j;
161 	int nalloc, nalloc_rp;
162 	struct resync_pages *rps;
163 
164 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
165 	if (!r10_bio)
166 		return NULL;
167 
168 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
169 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
170 		nalloc = conf->copies; /* resync */
171 	else
172 		nalloc = 2; /* recovery */
173 
174 	/* allocate once for all bios */
175 	if (!conf->have_replacement)
176 		nalloc_rp = nalloc;
177 	else
178 		nalloc_rp = nalloc * 2;
179 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
180 	if (!rps)
181 		goto out_free_r10bio;
182 
183 	/*
184 	 * Allocate bios.
185 	 */
186 	for (j = nalloc ; j-- ; ) {
187 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
188 		if (!bio)
189 			goto out_free_bio;
190 		r10_bio->devs[j].bio = bio;
191 		if (!conf->have_replacement)
192 			continue;
193 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
194 		if (!bio)
195 			goto out_free_bio;
196 		r10_bio->devs[j].repl_bio = bio;
197 	}
198 	/*
199 	 * Allocate RESYNC_PAGES data pages and attach them
200 	 * where needed.
201 	 */
202 	for (j = 0; j < nalloc; j++) {
203 		struct bio *rbio = r10_bio->devs[j].repl_bio;
204 		struct resync_pages *rp, *rp_repl;
205 
206 		rp = &rps[j];
207 		if (rbio)
208 			rp_repl = &rps[nalloc + j];
209 
210 		bio = r10_bio->devs[j].bio;
211 
212 		if (!j || test_bit(MD_RECOVERY_SYNC,
213 				   &conf->mddev->recovery)) {
214 			if (resync_alloc_pages(rp, gfp_flags))
215 				goto out_free_pages;
216 		} else {
217 			memcpy(rp, &rps[0], sizeof(*rp));
218 			resync_get_all_pages(rp);
219 		}
220 
221 		rp->raid_bio = r10_bio;
222 		bio->bi_private = rp;
223 		if (rbio) {
224 			memcpy(rp_repl, rp, sizeof(*rp));
225 			rbio->bi_private = rp_repl;
226 		}
227 	}
228 
229 	return r10_bio;
230 
231 out_free_pages:
232 	while (--j >= 0)
233 		resync_free_pages(&rps[j * 2]);
234 
235 	j = 0;
236 out_free_bio:
237 	for ( ; j < nalloc; j++) {
238 		if (r10_bio->devs[j].bio)
239 			bio_put(r10_bio->devs[j].bio);
240 		if (r10_bio->devs[j].repl_bio)
241 			bio_put(r10_bio->devs[j].repl_bio);
242 	}
243 	kfree(rps);
244 out_free_r10bio:
245 	r10bio_pool_free(r10_bio, conf);
246 	return NULL;
247 }
248 
249 static void r10buf_pool_free(void *__r10_bio, void *data)
250 {
251 	struct r10conf *conf = data;
252 	struct r10bio *r10bio = __r10_bio;
253 	int j;
254 	struct resync_pages *rp = NULL;
255 
256 	for (j = conf->copies; j--; ) {
257 		struct bio *bio = r10bio->devs[j].bio;
258 
259 		if (bio) {
260 			rp = get_resync_pages(bio);
261 			resync_free_pages(rp);
262 			bio_put(bio);
263 		}
264 
265 		bio = r10bio->devs[j].repl_bio;
266 		if (bio)
267 			bio_put(bio);
268 	}
269 
270 	/* resync pages array stored in the 1st bio's .bi_private */
271 	kfree(rp);
272 
273 	r10bio_pool_free(r10bio, conf);
274 }
275 
276 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
277 {
278 	int i;
279 
280 	for (i = 0; i < conf->copies; i++) {
281 		struct bio **bio = & r10_bio->devs[i].bio;
282 		if (!BIO_SPECIAL(*bio))
283 			bio_put(*bio);
284 		*bio = NULL;
285 		bio = &r10_bio->devs[i].repl_bio;
286 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
287 			bio_put(*bio);
288 		*bio = NULL;
289 	}
290 }
291 
292 static void free_r10bio(struct r10bio *r10_bio)
293 {
294 	struct r10conf *conf = r10_bio->mddev->private;
295 
296 	put_all_bios(conf, r10_bio);
297 	mempool_free(r10_bio, &conf->r10bio_pool);
298 }
299 
300 static void put_buf(struct r10bio *r10_bio)
301 {
302 	struct r10conf *conf = r10_bio->mddev->private;
303 
304 	mempool_free(r10_bio, &conf->r10buf_pool);
305 
306 	lower_barrier(conf);
307 }
308 
309 static void reschedule_retry(struct r10bio *r10_bio)
310 {
311 	unsigned long flags;
312 	struct mddev *mddev = r10_bio->mddev;
313 	struct r10conf *conf = mddev->private;
314 
315 	spin_lock_irqsave(&conf->device_lock, flags);
316 	list_add(&r10_bio->retry_list, &conf->retry_list);
317 	conf->nr_queued ++;
318 	spin_unlock_irqrestore(&conf->device_lock, flags);
319 
320 	/* wake up frozen array... */
321 	wake_up(&conf->wait_barrier);
322 
323 	md_wakeup_thread(mddev->thread);
324 }
325 
326 /*
327  * raid_end_bio_io() is called when we have finished servicing a mirrored
328  * operation and are ready to return a success/failure code to the buffer
329  * cache layer.
330  */
331 static void raid_end_bio_io(struct r10bio *r10_bio)
332 {
333 	struct bio *bio = r10_bio->master_bio;
334 	struct r10conf *conf = r10_bio->mddev->private;
335 
336 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
337 		bio->bi_status = BLK_STS_IOERR;
338 
339 	bio_endio(bio);
340 	/*
341 	 * Wake up any possible resync thread that waits for the device
342 	 * to go idle.
343 	 */
344 	allow_barrier(conf);
345 
346 	free_r10bio(r10_bio);
347 }
348 
349 /*
350  * Update disk head position estimator based on IRQ completion info.
351  */
352 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
353 {
354 	struct r10conf *conf = r10_bio->mddev->private;
355 
356 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
357 		r10_bio->devs[slot].addr + (r10_bio->sectors);
358 }
359 
360 /*
361  * Find the disk number which triggered given bio
362  */
363 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
364 			 struct bio *bio, int *slotp, int *replp)
365 {
366 	int slot;
367 	int repl = 0;
368 
369 	for (slot = 0; slot < conf->copies; slot++) {
370 		if (r10_bio->devs[slot].bio == bio)
371 			break;
372 		if (r10_bio->devs[slot].repl_bio == bio) {
373 			repl = 1;
374 			break;
375 		}
376 	}
377 
378 	BUG_ON(slot == conf->copies);
379 	update_head_pos(slot, r10_bio);
380 
381 	if (slotp)
382 		*slotp = slot;
383 	if (replp)
384 		*replp = repl;
385 	return r10_bio->devs[slot].devnum;
386 }
387 
388 static void raid10_end_read_request(struct bio *bio)
389 {
390 	int uptodate = !bio->bi_status;
391 	struct r10bio *r10_bio = bio->bi_private;
392 	int slot;
393 	struct md_rdev *rdev;
394 	struct r10conf *conf = r10_bio->mddev->private;
395 
396 	slot = r10_bio->read_slot;
397 	rdev = r10_bio->devs[slot].rdev;
398 	/*
399 	 * this branch is our 'one mirror IO has finished' event handler:
400 	 */
401 	update_head_pos(slot, r10_bio);
402 
403 	if (uptodate) {
404 		/*
405 		 * Set R10BIO_Uptodate in our master bio, so that
406 		 * we will return a good error code to the higher
407 		 * levels even if IO on some other mirrored buffer fails.
408 		 *
409 		 * The 'master' represents the composite IO operation to
410 		 * user-side. So if something waits for IO, then it will
411 		 * wait for the 'master' bio.
412 		 */
413 		set_bit(R10BIO_Uptodate, &r10_bio->state);
414 	} else {
415 		/* If all other devices that store this block have
416 		 * failed, we want to return the error upwards rather
417 		 * than fail the last device.  Here we redefine
418 		 * "uptodate" to mean "Don't want to retry"
419 		 */
420 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
421 			     rdev->raid_disk))
422 			uptodate = 1;
423 	}
424 	if (uptodate) {
425 		raid_end_bio_io(r10_bio);
426 		rdev_dec_pending(rdev, conf->mddev);
427 	} else {
428 		/*
429 		 * oops, read error - keep the refcount on the rdev
430 		 */
431 		char b[BDEVNAME_SIZE];
432 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
433 				   mdname(conf->mddev),
434 				   bdevname(rdev->bdev, b),
435 				   (unsigned long long)r10_bio->sector);
436 		set_bit(R10BIO_ReadError, &r10_bio->state);
437 		reschedule_retry(r10_bio);
438 	}
439 }
440 
441 static void close_write(struct r10bio *r10_bio)
442 {
443 	/* clear the bitmap if all writes complete successfully */
444 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
445 			   r10_bio->sectors,
446 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
447 			   0);
448 	md_write_end(r10_bio->mddev);
449 }
450 
451 static void one_write_done(struct r10bio *r10_bio)
452 {
453 	if (atomic_dec_and_test(&r10_bio->remaining)) {
454 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
455 			reschedule_retry(r10_bio);
456 		else {
457 			close_write(r10_bio);
458 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
459 				reschedule_retry(r10_bio);
460 			else
461 				raid_end_bio_io(r10_bio);
462 		}
463 	}
464 }
465 
466 static void raid10_end_write_request(struct bio *bio)
467 {
468 	struct r10bio *r10_bio = bio->bi_private;
469 	int dev;
470 	int dec_rdev = 1;
471 	struct r10conf *conf = r10_bio->mddev->private;
472 	int slot, repl;
473 	struct md_rdev *rdev = NULL;
474 	struct bio *to_put = NULL;
475 	bool discard_error;
476 
477 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
478 
479 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
480 
481 	if (repl)
482 		rdev = conf->mirrors[dev].replacement;
483 	if (!rdev) {
484 		smp_rmb();
485 		repl = 0;
486 		rdev = conf->mirrors[dev].rdev;
487 	}
488 	/*
489 	 * this branch is our 'one mirror IO has finished' event handler:
490 	 */
491 	if (bio->bi_status && !discard_error) {
492 		if (repl)
493 			/* Never record new bad blocks to replacement,
494 			 * just fail it.
495 			 */
496 			md_error(rdev->mddev, rdev);
497 		else {
498 			set_bit(WriteErrorSeen,	&rdev->flags);
499 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
500 				set_bit(MD_RECOVERY_NEEDED,
501 					&rdev->mddev->recovery);
502 
503 			dec_rdev = 0;
504 			if (test_bit(FailFast, &rdev->flags) &&
505 			    (bio->bi_opf & MD_FAILFAST)) {
506 				md_error(rdev->mddev, rdev);
507 				if (!test_bit(Faulty, &rdev->flags))
508 					/* This is the only remaining device,
509 					 * We need to retry the write without
510 					 * FailFast
511 					 */
512 					set_bit(R10BIO_WriteError, &r10_bio->state);
513 				else {
514 					r10_bio->devs[slot].bio = NULL;
515 					to_put = bio;
516 					dec_rdev = 1;
517 				}
518 			} else
519 				set_bit(R10BIO_WriteError, &r10_bio->state);
520 		}
521 	} else {
522 		/*
523 		 * Set R10BIO_Uptodate in our master bio, so that
524 		 * we will return a good error code for to the higher
525 		 * levels even if IO on some other mirrored buffer fails.
526 		 *
527 		 * The 'master' represents the composite IO operation to
528 		 * user-side. So if something waits for IO, then it will
529 		 * wait for the 'master' bio.
530 		 */
531 		sector_t first_bad;
532 		int bad_sectors;
533 
534 		/*
535 		 * Do not set R10BIO_Uptodate if the current device is
536 		 * rebuilding or Faulty. This is because we cannot use
537 		 * such device for properly reading the data back (we could
538 		 * potentially use it, if the current write would have felt
539 		 * before rdev->recovery_offset, but for simplicity we don't
540 		 * check this here.
541 		 */
542 		if (test_bit(In_sync, &rdev->flags) &&
543 		    !test_bit(Faulty, &rdev->flags))
544 			set_bit(R10BIO_Uptodate, &r10_bio->state);
545 
546 		/* Maybe we can clear some bad blocks. */
547 		if (is_badblock(rdev,
548 				r10_bio->devs[slot].addr,
549 				r10_bio->sectors,
550 				&first_bad, &bad_sectors) && !discard_error) {
551 			bio_put(bio);
552 			if (repl)
553 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
554 			else
555 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
556 			dec_rdev = 0;
557 			set_bit(R10BIO_MadeGood, &r10_bio->state);
558 		}
559 	}
560 
561 	/*
562 	 *
563 	 * Let's see if all mirrored write operations have finished
564 	 * already.
565 	 */
566 	one_write_done(r10_bio);
567 	if (dec_rdev)
568 		rdev_dec_pending(rdev, conf->mddev);
569 	if (to_put)
570 		bio_put(to_put);
571 }
572 
573 /*
574  * RAID10 layout manager
575  * As well as the chunksize and raid_disks count, there are two
576  * parameters: near_copies and far_copies.
577  * near_copies * far_copies must be <= raid_disks.
578  * Normally one of these will be 1.
579  * If both are 1, we get raid0.
580  * If near_copies == raid_disks, we get raid1.
581  *
582  * Chunks are laid out in raid0 style with near_copies copies of the
583  * first chunk, followed by near_copies copies of the next chunk and
584  * so on.
585  * If far_copies > 1, then after 1/far_copies of the array has been assigned
586  * as described above, we start again with a device offset of near_copies.
587  * So we effectively have another copy of the whole array further down all
588  * the drives, but with blocks on different drives.
589  * With this layout, and block is never stored twice on the one device.
590  *
591  * raid10_find_phys finds the sector offset of a given virtual sector
592  * on each device that it is on.
593  *
594  * raid10_find_virt does the reverse mapping, from a device and a
595  * sector offset to a virtual address
596  */
597 
598 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
599 {
600 	int n,f;
601 	sector_t sector;
602 	sector_t chunk;
603 	sector_t stripe;
604 	int dev;
605 	int slot = 0;
606 	int last_far_set_start, last_far_set_size;
607 
608 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
609 	last_far_set_start *= geo->far_set_size;
610 
611 	last_far_set_size = geo->far_set_size;
612 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
613 
614 	/* now calculate first sector/dev */
615 	chunk = r10bio->sector >> geo->chunk_shift;
616 	sector = r10bio->sector & geo->chunk_mask;
617 
618 	chunk *= geo->near_copies;
619 	stripe = chunk;
620 	dev = sector_div(stripe, geo->raid_disks);
621 	if (geo->far_offset)
622 		stripe *= geo->far_copies;
623 
624 	sector += stripe << geo->chunk_shift;
625 
626 	/* and calculate all the others */
627 	for (n = 0; n < geo->near_copies; n++) {
628 		int d = dev;
629 		int set;
630 		sector_t s = sector;
631 		r10bio->devs[slot].devnum = d;
632 		r10bio->devs[slot].addr = s;
633 		slot++;
634 
635 		for (f = 1; f < geo->far_copies; f++) {
636 			set = d / geo->far_set_size;
637 			d += geo->near_copies;
638 
639 			if ((geo->raid_disks % geo->far_set_size) &&
640 			    (d > last_far_set_start)) {
641 				d -= last_far_set_start;
642 				d %= last_far_set_size;
643 				d += last_far_set_start;
644 			} else {
645 				d %= geo->far_set_size;
646 				d += geo->far_set_size * set;
647 			}
648 			s += geo->stride;
649 			r10bio->devs[slot].devnum = d;
650 			r10bio->devs[slot].addr = s;
651 			slot++;
652 		}
653 		dev++;
654 		if (dev >= geo->raid_disks) {
655 			dev = 0;
656 			sector += (geo->chunk_mask + 1);
657 		}
658 	}
659 }
660 
661 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
662 {
663 	struct geom *geo = &conf->geo;
664 
665 	if (conf->reshape_progress != MaxSector &&
666 	    ((r10bio->sector >= conf->reshape_progress) !=
667 	     conf->mddev->reshape_backwards)) {
668 		set_bit(R10BIO_Previous, &r10bio->state);
669 		geo = &conf->prev;
670 	} else
671 		clear_bit(R10BIO_Previous, &r10bio->state);
672 
673 	__raid10_find_phys(geo, r10bio);
674 }
675 
676 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
677 {
678 	sector_t offset, chunk, vchunk;
679 	/* Never use conf->prev as this is only called during resync
680 	 * or recovery, so reshape isn't happening
681 	 */
682 	struct geom *geo = &conf->geo;
683 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
684 	int far_set_size = geo->far_set_size;
685 	int last_far_set_start;
686 
687 	if (geo->raid_disks % geo->far_set_size) {
688 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
689 		last_far_set_start *= geo->far_set_size;
690 
691 		if (dev >= last_far_set_start) {
692 			far_set_size = geo->far_set_size;
693 			far_set_size += (geo->raid_disks % geo->far_set_size);
694 			far_set_start = last_far_set_start;
695 		}
696 	}
697 
698 	offset = sector & geo->chunk_mask;
699 	if (geo->far_offset) {
700 		int fc;
701 		chunk = sector >> geo->chunk_shift;
702 		fc = sector_div(chunk, geo->far_copies);
703 		dev -= fc * geo->near_copies;
704 		if (dev < far_set_start)
705 			dev += far_set_size;
706 	} else {
707 		while (sector >= geo->stride) {
708 			sector -= geo->stride;
709 			if (dev < (geo->near_copies + far_set_start))
710 				dev += far_set_size - geo->near_copies;
711 			else
712 				dev -= geo->near_copies;
713 		}
714 		chunk = sector >> geo->chunk_shift;
715 	}
716 	vchunk = chunk * geo->raid_disks + dev;
717 	sector_div(vchunk, geo->near_copies);
718 	return (vchunk << geo->chunk_shift) + offset;
719 }
720 
721 /*
722  * This routine returns the disk from which the requested read should
723  * be done. There is a per-array 'next expected sequential IO' sector
724  * number - if this matches on the next IO then we use the last disk.
725  * There is also a per-disk 'last know head position' sector that is
726  * maintained from IRQ contexts, both the normal and the resync IO
727  * completion handlers update this position correctly. If there is no
728  * perfect sequential match then we pick the disk whose head is closest.
729  *
730  * If there are 2 mirrors in the same 2 devices, performance degrades
731  * because position is mirror, not device based.
732  *
733  * The rdev for the device selected will have nr_pending incremented.
734  */
735 
736 /*
737  * FIXME: possibly should rethink readbalancing and do it differently
738  * depending on near_copies / far_copies geometry.
739  */
740 static struct md_rdev *read_balance(struct r10conf *conf,
741 				    struct r10bio *r10_bio,
742 				    int *max_sectors)
743 {
744 	const sector_t this_sector = r10_bio->sector;
745 	int disk, slot;
746 	int sectors = r10_bio->sectors;
747 	int best_good_sectors;
748 	sector_t new_distance, best_dist;
749 	struct md_rdev *best_rdev, *rdev = NULL;
750 	int do_balance;
751 	int best_slot;
752 	struct geom *geo = &conf->geo;
753 
754 	raid10_find_phys(conf, r10_bio);
755 	rcu_read_lock();
756 	best_slot = -1;
757 	best_rdev = NULL;
758 	best_dist = MaxSector;
759 	best_good_sectors = 0;
760 	do_balance = 1;
761 	clear_bit(R10BIO_FailFast, &r10_bio->state);
762 	/*
763 	 * Check if we can balance. We can balance on the whole
764 	 * device if no resync is going on (recovery is ok), or below
765 	 * the resync window. We take the first readable disk when
766 	 * above the resync window.
767 	 */
768 	if ((conf->mddev->recovery_cp < MaxSector
769 	     && (this_sector + sectors >= conf->next_resync)) ||
770 	    (mddev_is_clustered(conf->mddev) &&
771 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
772 					    this_sector + sectors)))
773 		do_balance = 0;
774 
775 	for (slot = 0; slot < conf->copies ; slot++) {
776 		sector_t first_bad;
777 		int bad_sectors;
778 		sector_t dev_sector;
779 
780 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
781 			continue;
782 		disk = r10_bio->devs[slot].devnum;
783 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
784 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
785 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
786 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
787 		if (rdev == NULL ||
788 		    test_bit(Faulty, &rdev->flags))
789 			continue;
790 		if (!test_bit(In_sync, &rdev->flags) &&
791 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
792 			continue;
793 
794 		dev_sector = r10_bio->devs[slot].addr;
795 		if (is_badblock(rdev, dev_sector, sectors,
796 				&first_bad, &bad_sectors)) {
797 			if (best_dist < MaxSector)
798 				/* Already have a better slot */
799 				continue;
800 			if (first_bad <= dev_sector) {
801 				/* Cannot read here.  If this is the
802 				 * 'primary' device, then we must not read
803 				 * beyond 'bad_sectors' from another device.
804 				 */
805 				bad_sectors -= (dev_sector - first_bad);
806 				if (!do_balance && sectors > bad_sectors)
807 					sectors = bad_sectors;
808 				if (best_good_sectors > sectors)
809 					best_good_sectors = sectors;
810 			} else {
811 				sector_t good_sectors =
812 					first_bad - dev_sector;
813 				if (good_sectors > best_good_sectors) {
814 					best_good_sectors = good_sectors;
815 					best_slot = slot;
816 					best_rdev = rdev;
817 				}
818 				if (!do_balance)
819 					/* Must read from here */
820 					break;
821 			}
822 			continue;
823 		} else
824 			best_good_sectors = sectors;
825 
826 		if (!do_balance)
827 			break;
828 
829 		if (best_slot >= 0)
830 			/* At least 2 disks to choose from so failfast is OK */
831 			set_bit(R10BIO_FailFast, &r10_bio->state);
832 		/* This optimisation is debatable, and completely destroys
833 		 * sequential read speed for 'far copies' arrays.  So only
834 		 * keep it for 'near' arrays, and review those later.
835 		 */
836 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
837 			new_distance = 0;
838 
839 		/* for far > 1 always use the lowest address */
840 		else if (geo->far_copies > 1)
841 			new_distance = r10_bio->devs[slot].addr;
842 		else
843 			new_distance = abs(r10_bio->devs[slot].addr -
844 					   conf->mirrors[disk].head_position);
845 		if (new_distance < best_dist) {
846 			best_dist = new_distance;
847 			best_slot = slot;
848 			best_rdev = rdev;
849 		}
850 	}
851 	if (slot >= conf->copies) {
852 		slot = best_slot;
853 		rdev = best_rdev;
854 	}
855 
856 	if (slot >= 0) {
857 		atomic_inc(&rdev->nr_pending);
858 		r10_bio->read_slot = slot;
859 	} else
860 		rdev = NULL;
861 	rcu_read_unlock();
862 	*max_sectors = best_good_sectors;
863 
864 	return rdev;
865 }
866 
867 static int raid10_congested(struct mddev *mddev, int bits)
868 {
869 	struct r10conf *conf = mddev->private;
870 	int i, ret = 0;
871 
872 	if ((bits & (1 << WB_async_congested)) &&
873 	    conf->pending_count >= max_queued_requests)
874 		return 1;
875 
876 	rcu_read_lock();
877 	for (i = 0;
878 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
879 		     && ret == 0;
880 	     i++) {
881 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
882 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
883 			struct request_queue *q = bdev_get_queue(rdev->bdev);
884 
885 			ret |= bdi_congested(q->backing_dev_info, bits);
886 		}
887 	}
888 	rcu_read_unlock();
889 	return ret;
890 }
891 
892 static void flush_pending_writes(struct r10conf *conf)
893 {
894 	/* Any writes that have been queued but are awaiting
895 	 * bitmap updates get flushed here.
896 	 */
897 	spin_lock_irq(&conf->device_lock);
898 
899 	if (conf->pending_bio_list.head) {
900 		struct blk_plug plug;
901 		struct bio *bio;
902 
903 		bio = bio_list_get(&conf->pending_bio_list);
904 		conf->pending_count = 0;
905 		spin_unlock_irq(&conf->device_lock);
906 
907 		/*
908 		 * As this is called in a wait_event() loop (see freeze_array),
909 		 * current->state might be TASK_UNINTERRUPTIBLE which will
910 		 * cause a warning when we prepare to wait again.  As it is
911 		 * rare that this path is taken, it is perfectly safe to force
912 		 * us to go around the wait_event() loop again, so the warning
913 		 * is a false-positive. Silence the warning by resetting
914 		 * thread state
915 		 */
916 		__set_current_state(TASK_RUNNING);
917 
918 		blk_start_plug(&plug);
919 		/* flush any pending bitmap writes to disk
920 		 * before proceeding w/ I/O */
921 		md_bitmap_unplug(conf->mddev->bitmap);
922 		wake_up(&conf->wait_barrier);
923 
924 		while (bio) { /* submit pending writes */
925 			struct bio *next = bio->bi_next;
926 			struct md_rdev *rdev = (void*)bio->bi_disk;
927 			bio->bi_next = NULL;
928 			bio_set_dev(bio, rdev->bdev);
929 			if (test_bit(Faulty, &rdev->flags)) {
930 				bio_io_error(bio);
931 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
932 					    !blk_queue_discard(bio->bi_disk->queue)))
933 				/* Just ignore it */
934 				bio_endio(bio);
935 			else
936 				generic_make_request(bio);
937 			bio = next;
938 		}
939 		blk_finish_plug(&plug);
940 	} else
941 		spin_unlock_irq(&conf->device_lock);
942 }
943 
944 /* Barriers....
945  * Sometimes we need to suspend IO while we do something else,
946  * either some resync/recovery, or reconfigure the array.
947  * To do this we raise a 'barrier'.
948  * The 'barrier' is a counter that can be raised multiple times
949  * to count how many activities are happening which preclude
950  * normal IO.
951  * We can only raise the barrier if there is no pending IO.
952  * i.e. if nr_pending == 0.
953  * We choose only to raise the barrier if no-one is waiting for the
954  * barrier to go down.  This means that as soon as an IO request
955  * is ready, no other operations which require a barrier will start
956  * until the IO request has had a chance.
957  *
958  * So: regular IO calls 'wait_barrier'.  When that returns there
959  *    is no backgroup IO happening,  It must arrange to call
960  *    allow_barrier when it has finished its IO.
961  * backgroup IO calls must call raise_barrier.  Once that returns
962  *    there is no normal IO happeing.  It must arrange to call
963  *    lower_barrier when the particular background IO completes.
964  */
965 
966 static void raise_barrier(struct r10conf *conf, int force)
967 {
968 	BUG_ON(force && !conf->barrier);
969 	spin_lock_irq(&conf->resync_lock);
970 
971 	/* Wait until no block IO is waiting (unless 'force') */
972 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
973 			    conf->resync_lock);
974 
975 	/* block any new IO from starting */
976 	conf->barrier++;
977 
978 	/* Now wait for all pending IO to complete */
979 	wait_event_lock_irq(conf->wait_barrier,
980 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
981 			    conf->resync_lock);
982 
983 	spin_unlock_irq(&conf->resync_lock);
984 }
985 
986 static void lower_barrier(struct r10conf *conf)
987 {
988 	unsigned long flags;
989 	spin_lock_irqsave(&conf->resync_lock, flags);
990 	conf->barrier--;
991 	spin_unlock_irqrestore(&conf->resync_lock, flags);
992 	wake_up(&conf->wait_barrier);
993 }
994 
995 static void wait_barrier(struct r10conf *conf)
996 {
997 	spin_lock_irq(&conf->resync_lock);
998 	if (conf->barrier) {
999 		conf->nr_waiting++;
1000 		/* Wait for the barrier to drop.
1001 		 * However if there are already pending
1002 		 * requests (preventing the barrier from
1003 		 * rising completely), and the
1004 		 * pre-process bio queue isn't empty,
1005 		 * then don't wait, as we need to empty
1006 		 * that queue to get the nr_pending
1007 		 * count down.
1008 		 */
1009 		raid10_log(conf->mddev, "wait barrier");
1010 		wait_event_lock_irq(conf->wait_barrier,
1011 				    !conf->barrier ||
1012 				    (atomic_read(&conf->nr_pending) &&
1013 				     current->bio_list &&
1014 				     (!bio_list_empty(&current->bio_list[0]) ||
1015 				      !bio_list_empty(&current->bio_list[1]))),
1016 				    conf->resync_lock);
1017 		conf->nr_waiting--;
1018 		if (!conf->nr_waiting)
1019 			wake_up(&conf->wait_barrier);
1020 	}
1021 	atomic_inc(&conf->nr_pending);
1022 	spin_unlock_irq(&conf->resync_lock);
1023 }
1024 
1025 static void allow_barrier(struct r10conf *conf)
1026 {
1027 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1028 			(conf->array_freeze_pending))
1029 		wake_up(&conf->wait_barrier);
1030 }
1031 
1032 static void freeze_array(struct r10conf *conf, int extra)
1033 {
1034 	/* stop syncio and normal IO and wait for everything to
1035 	 * go quiet.
1036 	 * We increment barrier and nr_waiting, and then
1037 	 * wait until nr_pending match nr_queued+extra
1038 	 * This is called in the context of one normal IO request
1039 	 * that has failed. Thus any sync request that might be pending
1040 	 * will be blocked by nr_pending, and we need to wait for
1041 	 * pending IO requests to complete or be queued for re-try.
1042 	 * Thus the number queued (nr_queued) plus this request (extra)
1043 	 * must match the number of pending IOs (nr_pending) before
1044 	 * we continue.
1045 	 */
1046 	spin_lock_irq(&conf->resync_lock);
1047 	conf->array_freeze_pending++;
1048 	conf->barrier++;
1049 	conf->nr_waiting++;
1050 	wait_event_lock_irq_cmd(conf->wait_barrier,
1051 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1052 				conf->resync_lock,
1053 				flush_pending_writes(conf));
1054 
1055 	conf->array_freeze_pending--;
1056 	spin_unlock_irq(&conf->resync_lock);
1057 }
1058 
1059 static void unfreeze_array(struct r10conf *conf)
1060 {
1061 	/* reverse the effect of the freeze */
1062 	spin_lock_irq(&conf->resync_lock);
1063 	conf->barrier--;
1064 	conf->nr_waiting--;
1065 	wake_up(&conf->wait_barrier);
1066 	spin_unlock_irq(&conf->resync_lock);
1067 }
1068 
1069 static sector_t choose_data_offset(struct r10bio *r10_bio,
1070 				   struct md_rdev *rdev)
1071 {
1072 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1073 	    test_bit(R10BIO_Previous, &r10_bio->state))
1074 		return rdev->data_offset;
1075 	else
1076 		return rdev->new_data_offset;
1077 }
1078 
1079 struct raid10_plug_cb {
1080 	struct blk_plug_cb	cb;
1081 	struct bio_list		pending;
1082 	int			pending_cnt;
1083 };
1084 
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 {
1087 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1088 						   cb);
1089 	struct mddev *mddev = plug->cb.data;
1090 	struct r10conf *conf = mddev->private;
1091 	struct bio *bio;
1092 
1093 	if (from_schedule || current->bio_list) {
1094 		spin_lock_irq(&conf->device_lock);
1095 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1096 		conf->pending_count += plug->pending_cnt;
1097 		spin_unlock_irq(&conf->device_lock);
1098 		wake_up(&conf->wait_barrier);
1099 		md_wakeup_thread(mddev->thread);
1100 		kfree(plug);
1101 		return;
1102 	}
1103 
1104 	/* we aren't scheduling, so we can do the write-out directly. */
1105 	bio = bio_list_get(&plug->pending);
1106 	md_bitmap_unplug(mddev->bitmap);
1107 	wake_up(&conf->wait_barrier);
1108 
1109 	while (bio) { /* submit pending writes */
1110 		struct bio *next = bio->bi_next;
1111 		struct md_rdev *rdev = (void*)bio->bi_disk;
1112 		bio->bi_next = NULL;
1113 		bio_set_dev(bio, rdev->bdev);
1114 		if (test_bit(Faulty, &rdev->flags)) {
1115 			bio_io_error(bio);
1116 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1117 				    !blk_queue_discard(bio->bi_disk->queue)))
1118 			/* Just ignore it */
1119 			bio_endio(bio);
1120 		else
1121 			generic_make_request(bio);
1122 		bio = next;
1123 	}
1124 	kfree(plug);
1125 }
1126 
1127 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1128 				struct r10bio *r10_bio)
1129 {
1130 	struct r10conf *conf = mddev->private;
1131 	struct bio *read_bio;
1132 	const int op = bio_op(bio);
1133 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1134 	int max_sectors;
1135 	sector_t sectors;
1136 	struct md_rdev *rdev;
1137 	char b[BDEVNAME_SIZE];
1138 	int slot = r10_bio->read_slot;
1139 	struct md_rdev *err_rdev = NULL;
1140 	gfp_t gfp = GFP_NOIO;
1141 
1142 	if (r10_bio->devs[slot].rdev) {
1143 		/*
1144 		 * This is an error retry, but we cannot
1145 		 * safely dereference the rdev in the r10_bio,
1146 		 * we must use the one in conf.
1147 		 * If it has already been disconnected (unlikely)
1148 		 * we lose the device name in error messages.
1149 		 */
1150 		int disk;
1151 		/*
1152 		 * As we are blocking raid10, it is a little safer to
1153 		 * use __GFP_HIGH.
1154 		 */
1155 		gfp = GFP_NOIO | __GFP_HIGH;
1156 
1157 		rcu_read_lock();
1158 		disk = r10_bio->devs[slot].devnum;
1159 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1160 		if (err_rdev)
1161 			bdevname(err_rdev->bdev, b);
1162 		else {
1163 			strcpy(b, "???");
1164 			/* This never gets dereferenced */
1165 			err_rdev = r10_bio->devs[slot].rdev;
1166 		}
1167 		rcu_read_unlock();
1168 	}
1169 	/*
1170 	 * Register the new request and wait if the reconstruction
1171 	 * thread has put up a bar for new requests.
1172 	 * Continue immediately if no resync is active currently.
1173 	 */
1174 	wait_barrier(conf);
1175 
1176 	sectors = r10_bio->sectors;
1177 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1178 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1179 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1180 		/*
1181 		 * IO spans the reshape position.  Need to wait for reshape to
1182 		 * pass
1183 		 */
1184 		raid10_log(conf->mddev, "wait reshape");
1185 		allow_barrier(conf);
1186 		wait_event(conf->wait_barrier,
1187 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1188 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1189 			   sectors);
1190 		wait_barrier(conf);
1191 	}
1192 
1193 	rdev = read_balance(conf, r10_bio, &max_sectors);
1194 	if (!rdev) {
1195 		if (err_rdev) {
1196 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1197 					    mdname(mddev), b,
1198 					    (unsigned long long)r10_bio->sector);
1199 		}
1200 		raid_end_bio_io(r10_bio);
1201 		return;
1202 	}
1203 	if (err_rdev)
1204 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1205 				   mdname(mddev),
1206 				   bdevname(rdev->bdev, b),
1207 				   (unsigned long long)r10_bio->sector);
1208 	if (max_sectors < bio_sectors(bio)) {
1209 		struct bio *split = bio_split(bio, max_sectors,
1210 					      gfp, &conf->bio_split);
1211 		bio_chain(split, bio);
1212 		generic_make_request(bio);
1213 		bio = split;
1214 		r10_bio->master_bio = bio;
1215 		r10_bio->sectors = max_sectors;
1216 	}
1217 	slot = r10_bio->read_slot;
1218 
1219 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1220 
1221 	r10_bio->devs[slot].bio = read_bio;
1222 	r10_bio->devs[slot].rdev = rdev;
1223 
1224 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1225 		choose_data_offset(r10_bio, rdev);
1226 	bio_set_dev(read_bio, rdev->bdev);
1227 	read_bio->bi_end_io = raid10_end_read_request;
1228 	bio_set_op_attrs(read_bio, op, do_sync);
1229 	if (test_bit(FailFast, &rdev->flags) &&
1230 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1231 	        read_bio->bi_opf |= MD_FAILFAST;
1232 	read_bio->bi_private = r10_bio;
1233 
1234 	if (mddev->gendisk)
1235 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1236 	                              read_bio, disk_devt(mddev->gendisk),
1237 	                              r10_bio->sector);
1238 	generic_make_request(read_bio);
1239 	return;
1240 }
1241 
1242 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1243 				  struct bio *bio, bool replacement,
1244 				  int n_copy)
1245 {
1246 	const int op = bio_op(bio);
1247 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1248 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1249 	unsigned long flags;
1250 	struct blk_plug_cb *cb;
1251 	struct raid10_plug_cb *plug = NULL;
1252 	struct r10conf *conf = mddev->private;
1253 	struct md_rdev *rdev;
1254 	int devnum = r10_bio->devs[n_copy].devnum;
1255 	struct bio *mbio;
1256 
1257 	if (replacement) {
1258 		rdev = conf->mirrors[devnum].replacement;
1259 		if (rdev == NULL) {
1260 			/* Replacement just got moved to main 'rdev' */
1261 			smp_mb();
1262 			rdev = conf->mirrors[devnum].rdev;
1263 		}
1264 	} else
1265 		rdev = conf->mirrors[devnum].rdev;
1266 
1267 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1268 	if (replacement)
1269 		r10_bio->devs[n_copy].repl_bio = mbio;
1270 	else
1271 		r10_bio->devs[n_copy].bio = mbio;
1272 
1273 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1274 				   choose_data_offset(r10_bio, rdev));
1275 	bio_set_dev(mbio, rdev->bdev);
1276 	mbio->bi_end_io	= raid10_end_write_request;
1277 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1278 	if (!replacement && test_bit(FailFast,
1279 				     &conf->mirrors[devnum].rdev->flags)
1280 			 && enough(conf, devnum))
1281 		mbio->bi_opf |= MD_FAILFAST;
1282 	mbio->bi_private = r10_bio;
1283 
1284 	if (conf->mddev->gendisk)
1285 		trace_block_bio_remap(mbio->bi_disk->queue,
1286 				      mbio, disk_devt(conf->mddev->gendisk),
1287 				      r10_bio->sector);
1288 	/* flush_pending_writes() needs access to the rdev so...*/
1289 	mbio->bi_disk = (void *)rdev;
1290 
1291 	atomic_inc(&r10_bio->remaining);
1292 
1293 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1294 	if (cb)
1295 		plug = container_of(cb, struct raid10_plug_cb, cb);
1296 	else
1297 		plug = NULL;
1298 	if (plug) {
1299 		bio_list_add(&plug->pending, mbio);
1300 		plug->pending_cnt++;
1301 	} else {
1302 		spin_lock_irqsave(&conf->device_lock, flags);
1303 		bio_list_add(&conf->pending_bio_list, mbio);
1304 		conf->pending_count++;
1305 		spin_unlock_irqrestore(&conf->device_lock, flags);
1306 		md_wakeup_thread(mddev->thread);
1307 	}
1308 }
1309 
1310 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1311 				 struct r10bio *r10_bio)
1312 {
1313 	struct r10conf *conf = mddev->private;
1314 	int i;
1315 	struct md_rdev *blocked_rdev;
1316 	sector_t sectors;
1317 	int max_sectors;
1318 
1319 	if ((mddev_is_clustered(mddev) &&
1320 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1321 					    bio->bi_iter.bi_sector,
1322 					    bio_end_sector(bio)))) {
1323 		DEFINE_WAIT(w);
1324 		for (;;) {
1325 			prepare_to_wait(&conf->wait_barrier,
1326 					&w, TASK_IDLE);
1327 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1328 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1329 				break;
1330 			schedule();
1331 		}
1332 		finish_wait(&conf->wait_barrier, &w);
1333 	}
1334 
1335 	/*
1336 	 * Register the new request and wait if the reconstruction
1337 	 * thread has put up a bar for new requests.
1338 	 * Continue immediately if no resync is active currently.
1339 	 */
1340 	wait_barrier(conf);
1341 
1342 	sectors = r10_bio->sectors;
1343 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1344 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1345 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1346 		/*
1347 		 * IO spans the reshape position.  Need to wait for reshape to
1348 		 * pass
1349 		 */
1350 		raid10_log(conf->mddev, "wait reshape");
1351 		allow_barrier(conf);
1352 		wait_event(conf->wait_barrier,
1353 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1354 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1355 			   sectors);
1356 		wait_barrier(conf);
1357 	}
1358 
1359 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1360 	    (mddev->reshape_backwards
1361 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1362 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1363 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1364 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1365 		/* Need to update reshape_position in metadata */
1366 		mddev->reshape_position = conf->reshape_progress;
1367 		set_mask_bits(&mddev->sb_flags, 0,
1368 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1369 		md_wakeup_thread(mddev->thread);
1370 		raid10_log(conf->mddev, "wait reshape metadata");
1371 		wait_event(mddev->sb_wait,
1372 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1373 
1374 		conf->reshape_safe = mddev->reshape_position;
1375 	}
1376 
1377 	if (conf->pending_count >= max_queued_requests) {
1378 		md_wakeup_thread(mddev->thread);
1379 		raid10_log(mddev, "wait queued");
1380 		wait_event(conf->wait_barrier,
1381 			   conf->pending_count < max_queued_requests);
1382 	}
1383 	/* first select target devices under rcu_lock and
1384 	 * inc refcount on their rdev.  Record them by setting
1385 	 * bios[x] to bio
1386 	 * If there are known/acknowledged bad blocks on any device
1387 	 * on which we have seen a write error, we want to avoid
1388 	 * writing to those blocks.  This potentially requires several
1389 	 * writes to write around the bad blocks.  Each set of writes
1390 	 * gets its own r10_bio with a set of bios attached.
1391 	 */
1392 
1393 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1394 	raid10_find_phys(conf, r10_bio);
1395 retry_write:
1396 	blocked_rdev = NULL;
1397 	rcu_read_lock();
1398 	max_sectors = r10_bio->sectors;
1399 
1400 	for (i = 0;  i < conf->copies; i++) {
1401 		int d = r10_bio->devs[i].devnum;
1402 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1403 		struct md_rdev *rrdev = rcu_dereference(
1404 			conf->mirrors[d].replacement);
1405 		if (rdev == rrdev)
1406 			rrdev = NULL;
1407 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1408 			atomic_inc(&rdev->nr_pending);
1409 			blocked_rdev = rdev;
1410 			break;
1411 		}
1412 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1413 			atomic_inc(&rrdev->nr_pending);
1414 			blocked_rdev = rrdev;
1415 			break;
1416 		}
1417 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1418 			rdev = NULL;
1419 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1420 			rrdev = NULL;
1421 
1422 		r10_bio->devs[i].bio = NULL;
1423 		r10_bio->devs[i].repl_bio = NULL;
1424 
1425 		if (!rdev && !rrdev) {
1426 			set_bit(R10BIO_Degraded, &r10_bio->state);
1427 			continue;
1428 		}
1429 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1430 			sector_t first_bad;
1431 			sector_t dev_sector = r10_bio->devs[i].addr;
1432 			int bad_sectors;
1433 			int is_bad;
1434 
1435 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1436 					     &first_bad, &bad_sectors);
1437 			if (is_bad < 0) {
1438 				/* Mustn't write here until the bad block
1439 				 * is acknowledged
1440 				 */
1441 				atomic_inc(&rdev->nr_pending);
1442 				set_bit(BlockedBadBlocks, &rdev->flags);
1443 				blocked_rdev = rdev;
1444 				break;
1445 			}
1446 			if (is_bad && first_bad <= dev_sector) {
1447 				/* Cannot write here at all */
1448 				bad_sectors -= (dev_sector - first_bad);
1449 				if (bad_sectors < max_sectors)
1450 					/* Mustn't write more than bad_sectors
1451 					 * to other devices yet
1452 					 */
1453 					max_sectors = bad_sectors;
1454 				/* We don't set R10BIO_Degraded as that
1455 				 * only applies if the disk is missing,
1456 				 * so it might be re-added, and we want to
1457 				 * know to recover this chunk.
1458 				 * In this case the device is here, and the
1459 				 * fact that this chunk is not in-sync is
1460 				 * recorded in the bad block log.
1461 				 */
1462 				continue;
1463 			}
1464 			if (is_bad) {
1465 				int good_sectors = first_bad - dev_sector;
1466 				if (good_sectors < max_sectors)
1467 					max_sectors = good_sectors;
1468 			}
1469 		}
1470 		if (rdev) {
1471 			r10_bio->devs[i].bio = bio;
1472 			atomic_inc(&rdev->nr_pending);
1473 		}
1474 		if (rrdev) {
1475 			r10_bio->devs[i].repl_bio = bio;
1476 			atomic_inc(&rrdev->nr_pending);
1477 		}
1478 	}
1479 	rcu_read_unlock();
1480 
1481 	if (unlikely(blocked_rdev)) {
1482 		/* Have to wait for this device to get unblocked, then retry */
1483 		int j;
1484 		int d;
1485 
1486 		for (j = 0; j < i; j++) {
1487 			if (r10_bio->devs[j].bio) {
1488 				d = r10_bio->devs[j].devnum;
1489 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1490 			}
1491 			if (r10_bio->devs[j].repl_bio) {
1492 				struct md_rdev *rdev;
1493 				d = r10_bio->devs[j].devnum;
1494 				rdev = conf->mirrors[d].replacement;
1495 				if (!rdev) {
1496 					/* Race with remove_disk */
1497 					smp_mb();
1498 					rdev = conf->mirrors[d].rdev;
1499 				}
1500 				rdev_dec_pending(rdev, mddev);
1501 			}
1502 		}
1503 		allow_barrier(conf);
1504 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1505 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1506 		wait_barrier(conf);
1507 		goto retry_write;
1508 	}
1509 
1510 	if (max_sectors < r10_bio->sectors)
1511 		r10_bio->sectors = max_sectors;
1512 
1513 	if (r10_bio->sectors < bio_sectors(bio)) {
1514 		struct bio *split = bio_split(bio, r10_bio->sectors,
1515 					      GFP_NOIO, &conf->bio_split);
1516 		bio_chain(split, bio);
1517 		generic_make_request(bio);
1518 		bio = split;
1519 		r10_bio->master_bio = bio;
1520 	}
1521 
1522 	atomic_set(&r10_bio->remaining, 1);
1523 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1524 
1525 	for (i = 0; i < conf->copies; i++) {
1526 		if (r10_bio->devs[i].bio)
1527 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1528 		if (r10_bio->devs[i].repl_bio)
1529 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1530 	}
1531 	one_write_done(r10_bio);
1532 }
1533 
1534 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1535 {
1536 	struct r10conf *conf = mddev->private;
1537 	struct r10bio *r10_bio;
1538 
1539 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1540 
1541 	r10_bio->master_bio = bio;
1542 	r10_bio->sectors = sectors;
1543 
1544 	r10_bio->mddev = mddev;
1545 	r10_bio->sector = bio->bi_iter.bi_sector;
1546 	r10_bio->state = 0;
1547 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1548 
1549 	if (bio_data_dir(bio) == READ)
1550 		raid10_read_request(mddev, bio, r10_bio);
1551 	else
1552 		raid10_write_request(mddev, bio, r10_bio);
1553 }
1554 
1555 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 	struct r10conf *conf = mddev->private;
1558 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1559 	int chunk_sects = chunk_mask + 1;
1560 	int sectors = bio_sectors(bio);
1561 
1562 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1563 		md_flush_request(mddev, bio);
1564 		return true;
1565 	}
1566 
1567 	if (!md_write_start(mddev, bio))
1568 		return false;
1569 
1570 	/*
1571 	 * If this request crosses a chunk boundary, we need to split
1572 	 * it.
1573 	 */
1574 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1575 		     sectors > chunk_sects
1576 		     && (conf->geo.near_copies < conf->geo.raid_disks
1577 			 || conf->prev.near_copies <
1578 			 conf->prev.raid_disks)))
1579 		sectors = chunk_sects -
1580 			(bio->bi_iter.bi_sector &
1581 			 (chunk_sects - 1));
1582 	__make_request(mddev, bio, sectors);
1583 
1584 	/* In case raid10d snuck in to freeze_array */
1585 	wake_up(&conf->wait_barrier);
1586 	return true;
1587 }
1588 
1589 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1590 {
1591 	struct r10conf *conf = mddev->private;
1592 	int i;
1593 
1594 	if (conf->geo.near_copies < conf->geo.raid_disks)
1595 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1596 	if (conf->geo.near_copies > 1)
1597 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1598 	if (conf->geo.far_copies > 1) {
1599 		if (conf->geo.far_offset)
1600 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1601 		else
1602 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1603 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1604 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1605 	}
1606 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1607 					conf->geo.raid_disks - mddev->degraded);
1608 	rcu_read_lock();
1609 	for (i = 0; i < conf->geo.raid_disks; i++) {
1610 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1611 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1612 	}
1613 	rcu_read_unlock();
1614 	seq_printf(seq, "]");
1615 }
1616 
1617 /* check if there are enough drives for
1618  * every block to appear on atleast one.
1619  * Don't consider the device numbered 'ignore'
1620  * as we might be about to remove it.
1621  */
1622 static int _enough(struct r10conf *conf, int previous, int ignore)
1623 {
1624 	int first = 0;
1625 	int has_enough = 0;
1626 	int disks, ncopies;
1627 	if (previous) {
1628 		disks = conf->prev.raid_disks;
1629 		ncopies = conf->prev.near_copies;
1630 	} else {
1631 		disks = conf->geo.raid_disks;
1632 		ncopies = conf->geo.near_copies;
1633 	}
1634 
1635 	rcu_read_lock();
1636 	do {
1637 		int n = conf->copies;
1638 		int cnt = 0;
1639 		int this = first;
1640 		while (n--) {
1641 			struct md_rdev *rdev;
1642 			if (this != ignore &&
1643 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1644 			    test_bit(In_sync, &rdev->flags))
1645 				cnt++;
1646 			this = (this+1) % disks;
1647 		}
1648 		if (cnt == 0)
1649 			goto out;
1650 		first = (first + ncopies) % disks;
1651 	} while (first != 0);
1652 	has_enough = 1;
1653 out:
1654 	rcu_read_unlock();
1655 	return has_enough;
1656 }
1657 
1658 static int enough(struct r10conf *conf, int ignore)
1659 {
1660 	/* when calling 'enough', both 'prev' and 'geo' must
1661 	 * be stable.
1662 	 * This is ensured if ->reconfig_mutex or ->device_lock
1663 	 * is held.
1664 	 */
1665 	return _enough(conf, 0, ignore) &&
1666 		_enough(conf, 1, ignore);
1667 }
1668 
1669 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671 	char b[BDEVNAME_SIZE];
1672 	struct r10conf *conf = mddev->private;
1673 	unsigned long flags;
1674 
1675 	/*
1676 	 * If it is not operational, then we have already marked it as dead
1677 	 * else if it is the last working disks, ignore the error, let the
1678 	 * next level up know.
1679 	 * else mark the drive as failed
1680 	 */
1681 	spin_lock_irqsave(&conf->device_lock, flags);
1682 	if (test_bit(In_sync, &rdev->flags)
1683 	    && !enough(conf, rdev->raid_disk)) {
1684 		/*
1685 		 * Don't fail the drive, just return an IO error.
1686 		 */
1687 		spin_unlock_irqrestore(&conf->device_lock, flags);
1688 		return;
1689 	}
1690 	if (test_and_clear_bit(In_sync, &rdev->flags))
1691 		mddev->degraded++;
1692 	/*
1693 	 * If recovery is running, make sure it aborts.
1694 	 */
1695 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1696 	set_bit(Blocked, &rdev->flags);
1697 	set_bit(Faulty, &rdev->flags);
1698 	set_mask_bits(&mddev->sb_flags, 0,
1699 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1700 	spin_unlock_irqrestore(&conf->device_lock, flags);
1701 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1702 		"md/raid10:%s: Operation continuing on %d devices.\n",
1703 		mdname(mddev), bdevname(rdev->bdev, b),
1704 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1705 }
1706 
1707 static void print_conf(struct r10conf *conf)
1708 {
1709 	int i;
1710 	struct md_rdev *rdev;
1711 
1712 	pr_debug("RAID10 conf printout:\n");
1713 	if (!conf) {
1714 		pr_debug("(!conf)\n");
1715 		return;
1716 	}
1717 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1718 		 conf->geo.raid_disks);
1719 
1720 	/* This is only called with ->reconfix_mutex held, so
1721 	 * rcu protection of rdev is not needed */
1722 	for (i = 0; i < conf->geo.raid_disks; i++) {
1723 		char b[BDEVNAME_SIZE];
1724 		rdev = conf->mirrors[i].rdev;
1725 		if (rdev)
1726 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1727 				 i, !test_bit(In_sync, &rdev->flags),
1728 				 !test_bit(Faulty, &rdev->flags),
1729 				 bdevname(rdev->bdev,b));
1730 	}
1731 }
1732 
1733 static void close_sync(struct r10conf *conf)
1734 {
1735 	wait_barrier(conf);
1736 	allow_barrier(conf);
1737 
1738 	mempool_exit(&conf->r10buf_pool);
1739 }
1740 
1741 static int raid10_spare_active(struct mddev *mddev)
1742 {
1743 	int i;
1744 	struct r10conf *conf = mddev->private;
1745 	struct raid10_info *tmp;
1746 	int count = 0;
1747 	unsigned long flags;
1748 
1749 	/*
1750 	 * Find all non-in_sync disks within the RAID10 configuration
1751 	 * and mark them in_sync
1752 	 */
1753 	for (i = 0; i < conf->geo.raid_disks; i++) {
1754 		tmp = conf->mirrors + i;
1755 		if (tmp->replacement
1756 		    && tmp->replacement->recovery_offset == MaxSector
1757 		    && !test_bit(Faulty, &tmp->replacement->flags)
1758 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1759 			/* Replacement has just become active */
1760 			if (!tmp->rdev
1761 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1762 				count++;
1763 			if (tmp->rdev) {
1764 				/* Replaced device not technically faulty,
1765 				 * but we need to be sure it gets removed
1766 				 * and never re-added.
1767 				 */
1768 				set_bit(Faulty, &tmp->rdev->flags);
1769 				sysfs_notify_dirent_safe(
1770 					tmp->rdev->sysfs_state);
1771 			}
1772 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1773 		} else if (tmp->rdev
1774 			   && tmp->rdev->recovery_offset == MaxSector
1775 			   && !test_bit(Faulty, &tmp->rdev->flags)
1776 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1777 			count++;
1778 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1779 		}
1780 	}
1781 	spin_lock_irqsave(&conf->device_lock, flags);
1782 	mddev->degraded -= count;
1783 	spin_unlock_irqrestore(&conf->device_lock, flags);
1784 
1785 	print_conf(conf);
1786 	return count;
1787 }
1788 
1789 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1790 {
1791 	struct r10conf *conf = mddev->private;
1792 	int err = -EEXIST;
1793 	int mirror;
1794 	int first = 0;
1795 	int last = conf->geo.raid_disks - 1;
1796 
1797 	if (mddev->recovery_cp < MaxSector)
1798 		/* only hot-add to in-sync arrays, as recovery is
1799 		 * very different from resync
1800 		 */
1801 		return -EBUSY;
1802 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1803 		return -EINVAL;
1804 
1805 	if (md_integrity_add_rdev(rdev, mddev))
1806 		return -ENXIO;
1807 
1808 	if (rdev->raid_disk >= 0)
1809 		first = last = rdev->raid_disk;
1810 
1811 	if (rdev->saved_raid_disk >= first &&
1812 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1813 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814 		mirror = rdev->saved_raid_disk;
1815 	else
1816 		mirror = first;
1817 	for ( ; mirror <= last ; mirror++) {
1818 		struct raid10_info *p = &conf->mirrors[mirror];
1819 		if (p->recovery_disabled == mddev->recovery_disabled)
1820 			continue;
1821 		if (p->rdev) {
1822 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823 			    p->replacement != NULL)
1824 				continue;
1825 			clear_bit(In_sync, &rdev->flags);
1826 			set_bit(Replacement, &rdev->flags);
1827 			rdev->raid_disk = mirror;
1828 			err = 0;
1829 			if (mddev->gendisk)
1830 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1831 						  rdev->data_offset << 9);
1832 			conf->fullsync = 1;
1833 			rcu_assign_pointer(p->replacement, rdev);
1834 			break;
1835 		}
1836 
1837 		if (mddev->gendisk)
1838 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1839 					  rdev->data_offset << 9);
1840 
1841 		p->head_position = 0;
1842 		p->recovery_disabled = mddev->recovery_disabled - 1;
1843 		rdev->raid_disk = mirror;
1844 		err = 0;
1845 		if (rdev->saved_raid_disk != mirror)
1846 			conf->fullsync = 1;
1847 		rcu_assign_pointer(p->rdev, rdev);
1848 		break;
1849 	}
1850 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1851 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1852 
1853 	print_conf(conf);
1854 	return err;
1855 }
1856 
1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1858 {
1859 	struct r10conf *conf = mddev->private;
1860 	int err = 0;
1861 	int number = rdev->raid_disk;
1862 	struct md_rdev **rdevp;
1863 	struct raid10_info *p = conf->mirrors + number;
1864 
1865 	print_conf(conf);
1866 	if (rdev == p->rdev)
1867 		rdevp = &p->rdev;
1868 	else if (rdev == p->replacement)
1869 		rdevp = &p->replacement;
1870 	else
1871 		return 0;
1872 
1873 	if (test_bit(In_sync, &rdev->flags) ||
1874 	    atomic_read(&rdev->nr_pending)) {
1875 		err = -EBUSY;
1876 		goto abort;
1877 	}
1878 	/* Only remove non-faulty devices if recovery
1879 	 * is not possible.
1880 	 */
1881 	if (!test_bit(Faulty, &rdev->flags) &&
1882 	    mddev->recovery_disabled != p->recovery_disabled &&
1883 	    (!p->replacement || p->replacement == rdev) &&
1884 	    number < conf->geo.raid_disks &&
1885 	    enough(conf, -1)) {
1886 		err = -EBUSY;
1887 		goto abort;
1888 	}
1889 	*rdevp = NULL;
1890 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1891 		synchronize_rcu();
1892 		if (atomic_read(&rdev->nr_pending)) {
1893 			/* lost the race, try later */
1894 			err = -EBUSY;
1895 			*rdevp = rdev;
1896 			goto abort;
1897 		}
1898 	}
1899 	if (p->replacement) {
1900 		/* We must have just cleared 'rdev' */
1901 		p->rdev = p->replacement;
1902 		clear_bit(Replacement, &p->replacement->flags);
1903 		smp_mb(); /* Make sure other CPUs may see both as identical
1904 			   * but will never see neither -- if they are careful.
1905 			   */
1906 		p->replacement = NULL;
1907 	}
1908 
1909 	clear_bit(WantReplacement, &rdev->flags);
1910 	err = md_integrity_register(mddev);
1911 
1912 abort:
1913 
1914 	print_conf(conf);
1915 	return err;
1916 }
1917 
1918 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1919 {
1920 	struct r10conf *conf = r10_bio->mddev->private;
1921 
1922 	if (!bio->bi_status)
1923 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1924 	else
1925 		/* The write handler will notice the lack of
1926 		 * R10BIO_Uptodate and record any errors etc
1927 		 */
1928 		atomic_add(r10_bio->sectors,
1929 			   &conf->mirrors[d].rdev->corrected_errors);
1930 
1931 	/* for reconstruct, we always reschedule after a read.
1932 	 * for resync, only after all reads
1933 	 */
1934 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1935 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1936 	    atomic_dec_and_test(&r10_bio->remaining)) {
1937 		/* we have read all the blocks,
1938 		 * do the comparison in process context in raid10d
1939 		 */
1940 		reschedule_retry(r10_bio);
1941 	}
1942 }
1943 
1944 static void end_sync_read(struct bio *bio)
1945 {
1946 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1947 	struct r10conf *conf = r10_bio->mddev->private;
1948 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1949 
1950 	__end_sync_read(r10_bio, bio, d);
1951 }
1952 
1953 static void end_reshape_read(struct bio *bio)
1954 {
1955 	/* reshape read bio isn't allocated from r10buf_pool */
1956 	struct r10bio *r10_bio = bio->bi_private;
1957 
1958 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1959 }
1960 
1961 static void end_sync_request(struct r10bio *r10_bio)
1962 {
1963 	struct mddev *mddev = r10_bio->mddev;
1964 
1965 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1966 		if (r10_bio->master_bio == NULL) {
1967 			/* the primary of several recovery bios */
1968 			sector_t s = r10_bio->sectors;
1969 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1970 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1971 				reschedule_retry(r10_bio);
1972 			else
1973 				put_buf(r10_bio);
1974 			md_done_sync(mddev, s, 1);
1975 			break;
1976 		} else {
1977 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1978 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1979 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1980 				reschedule_retry(r10_bio);
1981 			else
1982 				put_buf(r10_bio);
1983 			r10_bio = r10_bio2;
1984 		}
1985 	}
1986 }
1987 
1988 static void end_sync_write(struct bio *bio)
1989 {
1990 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1991 	struct mddev *mddev = r10_bio->mddev;
1992 	struct r10conf *conf = mddev->private;
1993 	int d;
1994 	sector_t first_bad;
1995 	int bad_sectors;
1996 	int slot;
1997 	int repl;
1998 	struct md_rdev *rdev = NULL;
1999 
2000 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2001 	if (repl)
2002 		rdev = conf->mirrors[d].replacement;
2003 	else
2004 		rdev = conf->mirrors[d].rdev;
2005 
2006 	if (bio->bi_status) {
2007 		if (repl)
2008 			md_error(mddev, rdev);
2009 		else {
2010 			set_bit(WriteErrorSeen, &rdev->flags);
2011 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2012 				set_bit(MD_RECOVERY_NEEDED,
2013 					&rdev->mddev->recovery);
2014 			set_bit(R10BIO_WriteError, &r10_bio->state);
2015 		}
2016 	} else if (is_badblock(rdev,
2017 			     r10_bio->devs[slot].addr,
2018 			     r10_bio->sectors,
2019 			     &first_bad, &bad_sectors))
2020 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2021 
2022 	rdev_dec_pending(rdev, mddev);
2023 
2024 	end_sync_request(r10_bio);
2025 }
2026 
2027 /*
2028  * Note: sync and recover and handled very differently for raid10
2029  * This code is for resync.
2030  * For resync, we read through virtual addresses and read all blocks.
2031  * If there is any error, we schedule a write.  The lowest numbered
2032  * drive is authoritative.
2033  * However requests come for physical address, so we need to map.
2034  * For every physical address there are raid_disks/copies virtual addresses,
2035  * which is always are least one, but is not necessarly an integer.
2036  * This means that a physical address can span multiple chunks, so we may
2037  * have to submit multiple io requests for a single sync request.
2038  */
2039 /*
2040  * We check if all blocks are in-sync and only write to blocks that
2041  * aren't in sync
2042  */
2043 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2044 {
2045 	struct r10conf *conf = mddev->private;
2046 	int i, first;
2047 	struct bio *tbio, *fbio;
2048 	int vcnt;
2049 	struct page **tpages, **fpages;
2050 
2051 	atomic_set(&r10_bio->remaining, 1);
2052 
2053 	/* find the first device with a block */
2054 	for (i=0; i<conf->copies; i++)
2055 		if (!r10_bio->devs[i].bio->bi_status)
2056 			break;
2057 
2058 	if (i == conf->copies)
2059 		goto done;
2060 
2061 	first = i;
2062 	fbio = r10_bio->devs[i].bio;
2063 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2064 	fbio->bi_iter.bi_idx = 0;
2065 	fpages = get_resync_pages(fbio)->pages;
2066 
2067 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2068 	/* now find blocks with errors */
2069 	for (i=0 ; i < conf->copies ; i++) {
2070 		int  j, d;
2071 		struct md_rdev *rdev;
2072 		struct resync_pages *rp;
2073 
2074 		tbio = r10_bio->devs[i].bio;
2075 
2076 		if (tbio->bi_end_io != end_sync_read)
2077 			continue;
2078 		if (i == first)
2079 			continue;
2080 
2081 		tpages = get_resync_pages(tbio)->pages;
2082 		d = r10_bio->devs[i].devnum;
2083 		rdev = conf->mirrors[d].rdev;
2084 		if (!r10_bio->devs[i].bio->bi_status) {
2085 			/* We know that the bi_io_vec layout is the same for
2086 			 * both 'first' and 'i', so we just compare them.
2087 			 * All vec entries are PAGE_SIZE;
2088 			 */
2089 			int sectors = r10_bio->sectors;
2090 			for (j = 0; j < vcnt; j++) {
2091 				int len = PAGE_SIZE;
2092 				if (sectors < (len / 512))
2093 					len = sectors * 512;
2094 				if (memcmp(page_address(fpages[j]),
2095 					   page_address(tpages[j]),
2096 					   len))
2097 					break;
2098 				sectors -= len/512;
2099 			}
2100 			if (j == vcnt)
2101 				continue;
2102 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2103 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2104 				/* Don't fix anything. */
2105 				continue;
2106 		} else if (test_bit(FailFast, &rdev->flags)) {
2107 			/* Just give up on this device */
2108 			md_error(rdev->mddev, rdev);
2109 			continue;
2110 		}
2111 		/* Ok, we need to write this bio, either to correct an
2112 		 * inconsistency or to correct an unreadable block.
2113 		 * First we need to fixup bv_offset, bv_len and
2114 		 * bi_vecs, as the read request might have corrupted these
2115 		 */
2116 		rp = get_resync_pages(tbio);
2117 		bio_reset(tbio);
2118 
2119 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2120 
2121 		rp->raid_bio = r10_bio;
2122 		tbio->bi_private = rp;
2123 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2124 		tbio->bi_end_io = end_sync_write;
2125 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2126 
2127 		bio_copy_data(tbio, fbio);
2128 
2129 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130 		atomic_inc(&r10_bio->remaining);
2131 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132 
2133 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2134 			tbio->bi_opf |= MD_FAILFAST;
2135 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2136 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2137 		generic_make_request(tbio);
2138 	}
2139 
2140 	/* Now write out to any replacement devices
2141 	 * that are active
2142 	 */
2143 	for (i = 0; i < conf->copies; i++) {
2144 		int d;
2145 
2146 		tbio = r10_bio->devs[i].repl_bio;
2147 		if (!tbio || !tbio->bi_end_io)
2148 			continue;
2149 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2150 		    && r10_bio->devs[i].bio != fbio)
2151 			bio_copy_data(tbio, fbio);
2152 		d = r10_bio->devs[i].devnum;
2153 		atomic_inc(&r10_bio->remaining);
2154 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2155 			     bio_sectors(tbio));
2156 		generic_make_request(tbio);
2157 	}
2158 
2159 done:
2160 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2161 		md_done_sync(mddev, r10_bio->sectors, 1);
2162 		put_buf(r10_bio);
2163 	}
2164 }
2165 
2166 /*
2167  * Now for the recovery code.
2168  * Recovery happens across physical sectors.
2169  * We recover all non-is_sync drives by finding the virtual address of
2170  * each, and then choose a working drive that also has that virt address.
2171  * There is a separate r10_bio for each non-in_sync drive.
2172  * Only the first two slots are in use. The first for reading,
2173  * The second for writing.
2174  *
2175  */
2176 static void fix_recovery_read_error(struct r10bio *r10_bio)
2177 {
2178 	/* We got a read error during recovery.
2179 	 * We repeat the read in smaller page-sized sections.
2180 	 * If a read succeeds, write it to the new device or record
2181 	 * a bad block if we cannot.
2182 	 * If a read fails, record a bad block on both old and
2183 	 * new devices.
2184 	 */
2185 	struct mddev *mddev = r10_bio->mddev;
2186 	struct r10conf *conf = mddev->private;
2187 	struct bio *bio = r10_bio->devs[0].bio;
2188 	sector_t sect = 0;
2189 	int sectors = r10_bio->sectors;
2190 	int idx = 0;
2191 	int dr = r10_bio->devs[0].devnum;
2192 	int dw = r10_bio->devs[1].devnum;
2193 	struct page **pages = get_resync_pages(bio)->pages;
2194 
2195 	while (sectors) {
2196 		int s = sectors;
2197 		struct md_rdev *rdev;
2198 		sector_t addr;
2199 		int ok;
2200 
2201 		if (s > (PAGE_SIZE>>9))
2202 			s = PAGE_SIZE >> 9;
2203 
2204 		rdev = conf->mirrors[dr].rdev;
2205 		addr = r10_bio->devs[0].addr + sect,
2206 		ok = sync_page_io(rdev,
2207 				  addr,
2208 				  s << 9,
2209 				  pages[idx],
2210 				  REQ_OP_READ, 0, false);
2211 		if (ok) {
2212 			rdev = conf->mirrors[dw].rdev;
2213 			addr = r10_bio->devs[1].addr + sect;
2214 			ok = sync_page_io(rdev,
2215 					  addr,
2216 					  s << 9,
2217 					  pages[idx],
2218 					  REQ_OP_WRITE, 0, false);
2219 			if (!ok) {
2220 				set_bit(WriteErrorSeen, &rdev->flags);
2221 				if (!test_and_set_bit(WantReplacement,
2222 						      &rdev->flags))
2223 					set_bit(MD_RECOVERY_NEEDED,
2224 						&rdev->mddev->recovery);
2225 			}
2226 		}
2227 		if (!ok) {
2228 			/* We don't worry if we cannot set a bad block -
2229 			 * it really is bad so there is no loss in not
2230 			 * recording it yet
2231 			 */
2232 			rdev_set_badblocks(rdev, addr, s, 0);
2233 
2234 			if (rdev != conf->mirrors[dw].rdev) {
2235 				/* need bad block on destination too */
2236 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237 				addr = r10_bio->devs[1].addr + sect;
2238 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239 				if (!ok) {
2240 					/* just abort the recovery */
2241 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2242 						  mdname(mddev));
2243 
2244 					conf->mirrors[dw].recovery_disabled
2245 						= mddev->recovery_disabled;
2246 					set_bit(MD_RECOVERY_INTR,
2247 						&mddev->recovery);
2248 					break;
2249 				}
2250 			}
2251 		}
2252 
2253 		sectors -= s;
2254 		sect += s;
2255 		idx++;
2256 	}
2257 }
2258 
2259 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2260 {
2261 	struct r10conf *conf = mddev->private;
2262 	int d;
2263 	struct bio *wbio, *wbio2;
2264 
2265 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2266 		fix_recovery_read_error(r10_bio);
2267 		end_sync_request(r10_bio);
2268 		return;
2269 	}
2270 
2271 	/*
2272 	 * share the pages with the first bio
2273 	 * and submit the write request
2274 	 */
2275 	d = r10_bio->devs[1].devnum;
2276 	wbio = r10_bio->devs[1].bio;
2277 	wbio2 = r10_bio->devs[1].repl_bio;
2278 	/* Need to test wbio2->bi_end_io before we call
2279 	 * generic_make_request as if the former is NULL,
2280 	 * the latter is free to free wbio2.
2281 	 */
2282 	if (wbio2 && !wbio2->bi_end_io)
2283 		wbio2 = NULL;
2284 	if (wbio->bi_end_io) {
2285 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2286 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2287 		generic_make_request(wbio);
2288 	}
2289 	if (wbio2) {
2290 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2291 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2292 			     bio_sectors(wbio2));
2293 		generic_make_request(wbio2);
2294 	}
2295 }
2296 
2297 /*
2298  * Used by fix_read_error() to decay the per rdev read_errors.
2299  * We halve the read error count for every hour that has elapsed
2300  * since the last recorded read error.
2301  *
2302  */
2303 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2304 {
2305 	long cur_time_mon;
2306 	unsigned long hours_since_last;
2307 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2308 
2309 	cur_time_mon = ktime_get_seconds();
2310 
2311 	if (rdev->last_read_error == 0) {
2312 		/* first time we've seen a read error */
2313 		rdev->last_read_error = cur_time_mon;
2314 		return;
2315 	}
2316 
2317 	hours_since_last = (long)(cur_time_mon -
2318 			    rdev->last_read_error) / 3600;
2319 
2320 	rdev->last_read_error = cur_time_mon;
2321 
2322 	/*
2323 	 * if hours_since_last is > the number of bits in read_errors
2324 	 * just set read errors to 0. We do this to avoid
2325 	 * overflowing the shift of read_errors by hours_since_last.
2326 	 */
2327 	if (hours_since_last >= 8 * sizeof(read_errors))
2328 		atomic_set(&rdev->read_errors, 0);
2329 	else
2330 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2331 }
2332 
2333 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2334 			    int sectors, struct page *page, int rw)
2335 {
2336 	sector_t first_bad;
2337 	int bad_sectors;
2338 
2339 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2340 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2341 		return -1;
2342 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2343 		/* success */
2344 		return 1;
2345 	if (rw == WRITE) {
2346 		set_bit(WriteErrorSeen, &rdev->flags);
2347 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2348 			set_bit(MD_RECOVERY_NEEDED,
2349 				&rdev->mddev->recovery);
2350 	}
2351 	/* need to record an error - either for the block or the device */
2352 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2353 		md_error(rdev->mddev, rdev);
2354 	return 0;
2355 }
2356 
2357 /*
2358  * This is a kernel thread which:
2359  *
2360  *	1.	Retries failed read operations on working mirrors.
2361  *	2.	Updates the raid superblock when problems encounter.
2362  *	3.	Performs writes following reads for array synchronising.
2363  */
2364 
2365 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2366 {
2367 	int sect = 0; /* Offset from r10_bio->sector */
2368 	int sectors = r10_bio->sectors;
2369 	struct md_rdev *rdev;
2370 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2371 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2372 
2373 	/* still own a reference to this rdev, so it cannot
2374 	 * have been cleared recently.
2375 	 */
2376 	rdev = conf->mirrors[d].rdev;
2377 
2378 	if (test_bit(Faulty, &rdev->flags))
2379 		/* drive has already been failed, just ignore any
2380 		   more fix_read_error() attempts */
2381 		return;
2382 
2383 	check_decay_read_errors(mddev, rdev);
2384 	atomic_inc(&rdev->read_errors);
2385 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2386 		char b[BDEVNAME_SIZE];
2387 		bdevname(rdev->bdev, b);
2388 
2389 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2390 			  mdname(mddev), b,
2391 			  atomic_read(&rdev->read_errors), max_read_errors);
2392 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2393 			  mdname(mddev), b);
2394 		md_error(mddev, rdev);
2395 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2396 		return;
2397 	}
2398 
2399 	while(sectors) {
2400 		int s = sectors;
2401 		int sl = r10_bio->read_slot;
2402 		int success = 0;
2403 		int start;
2404 
2405 		if (s > (PAGE_SIZE>>9))
2406 			s = PAGE_SIZE >> 9;
2407 
2408 		rcu_read_lock();
2409 		do {
2410 			sector_t first_bad;
2411 			int bad_sectors;
2412 
2413 			d = r10_bio->devs[sl].devnum;
2414 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2415 			if (rdev &&
2416 			    test_bit(In_sync, &rdev->flags) &&
2417 			    !test_bit(Faulty, &rdev->flags) &&
2418 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2419 					&first_bad, &bad_sectors) == 0) {
2420 				atomic_inc(&rdev->nr_pending);
2421 				rcu_read_unlock();
2422 				success = sync_page_io(rdev,
2423 						       r10_bio->devs[sl].addr +
2424 						       sect,
2425 						       s<<9,
2426 						       conf->tmppage,
2427 						       REQ_OP_READ, 0, false);
2428 				rdev_dec_pending(rdev, mddev);
2429 				rcu_read_lock();
2430 				if (success)
2431 					break;
2432 			}
2433 			sl++;
2434 			if (sl == conf->copies)
2435 				sl = 0;
2436 		} while (!success && sl != r10_bio->read_slot);
2437 		rcu_read_unlock();
2438 
2439 		if (!success) {
2440 			/* Cannot read from anywhere, just mark the block
2441 			 * as bad on the first device to discourage future
2442 			 * reads.
2443 			 */
2444 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445 			rdev = conf->mirrors[dn].rdev;
2446 
2447 			if (!rdev_set_badblocks(
2448 				    rdev,
2449 				    r10_bio->devs[r10_bio->read_slot].addr
2450 				    + sect,
2451 				    s, 0)) {
2452 				md_error(mddev, rdev);
2453 				r10_bio->devs[r10_bio->read_slot].bio
2454 					= IO_BLOCKED;
2455 			}
2456 			break;
2457 		}
2458 
2459 		start = sl;
2460 		/* write it back and re-read */
2461 		rcu_read_lock();
2462 		while (sl != r10_bio->read_slot) {
2463 			char b[BDEVNAME_SIZE];
2464 
2465 			if (sl==0)
2466 				sl = conf->copies;
2467 			sl--;
2468 			d = r10_bio->devs[sl].devnum;
2469 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2470 			if (!rdev ||
2471 			    test_bit(Faulty, &rdev->flags) ||
2472 			    !test_bit(In_sync, &rdev->flags))
2473 				continue;
2474 
2475 			atomic_inc(&rdev->nr_pending);
2476 			rcu_read_unlock();
2477 			if (r10_sync_page_io(rdev,
2478 					     r10_bio->devs[sl].addr +
2479 					     sect,
2480 					     s, conf->tmppage, WRITE)
2481 			    == 0) {
2482 				/* Well, this device is dead */
2483 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2484 					  mdname(mddev), s,
2485 					  (unsigned long long)(
2486 						  sect +
2487 						  choose_data_offset(r10_bio,
2488 								     rdev)),
2489 					  bdevname(rdev->bdev, b));
2490 				pr_notice("md/raid10:%s: %s: failing drive\n",
2491 					  mdname(mddev),
2492 					  bdevname(rdev->bdev, b));
2493 			}
2494 			rdev_dec_pending(rdev, mddev);
2495 			rcu_read_lock();
2496 		}
2497 		sl = start;
2498 		while (sl != r10_bio->read_slot) {
2499 			char b[BDEVNAME_SIZE];
2500 
2501 			if (sl==0)
2502 				sl = conf->copies;
2503 			sl--;
2504 			d = r10_bio->devs[sl].devnum;
2505 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2506 			if (!rdev ||
2507 			    test_bit(Faulty, &rdev->flags) ||
2508 			    !test_bit(In_sync, &rdev->flags))
2509 				continue;
2510 
2511 			atomic_inc(&rdev->nr_pending);
2512 			rcu_read_unlock();
2513 			switch (r10_sync_page_io(rdev,
2514 					     r10_bio->devs[sl].addr +
2515 					     sect,
2516 					     s, conf->tmppage,
2517 						 READ)) {
2518 			case 0:
2519 				/* Well, this device is dead */
2520 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2521 				       mdname(mddev), s,
2522 				       (unsigned long long)(
2523 					       sect +
2524 					       choose_data_offset(r10_bio, rdev)),
2525 				       bdevname(rdev->bdev, b));
2526 				pr_notice("md/raid10:%s: %s: failing drive\n",
2527 				       mdname(mddev),
2528 				       bdevname(rdev->bdev, b));
2529 				break;
2530 			case 1:
2531 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2532 				       mdname(mddev), s,
2533 				       (unsigned long long)(
2534 					       sect +
2535 					       choose_data_offset(r10_bio, rdev)),
2536 				       bdevname(rdev->bdev, b));
2537 				atomic_add(s, &rdev->corrected_errors);
2538 			}
2539 
2540 			rdev_dec_pending(rdev, mddev);
2541 			rcu_read_lock();
2542 		}
2543 		rcu_read_unlock();
2544 
2545 		sectors -= s;
2546 		sect += s;
2547 	}
2548 }
2549 
2550 static int narrow_write_error(struct r10bio *r10_bio, int i)
2551 {
2552 	struct bio *bio = r10_bio->master_bio;
2553 	struct mddev *mddev = r10_bio->mddev;
2554 	struct r10conf *conf = mddev->private;
2555 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2556 	/* bio has the data to be written to slot 'i' where
2557 	 * we just recently had a write error.
2558 	 * We repeatedly clone the bio and trim down to one block,
2559 	 * then try the write.  Where the write fails we record
2560 	 * a bad block.
2561 	 * It is conceivable that the bio doesn't exactly align with
2562 	 * blocks.  We must handle this.
2563 	 *
2564 	 * We currently own a reference to the rdev.
2565 	 */
2566 
2567 	int block_sectors;
2568 	sector_t sector;
2569 	int sectors;
2570 	int sect_to_write = r10_bio->sectors;
2571 	int ok = 1;
2572 
2573 	if (rdev->badblocks.shift < 0)
2574 		return 0;
2575 
2576 	block_sectors = roundup(1 << rdev->badblocks.shift,
2577 				bdev_logical_block_size(rdev->bdev) >> 9);
2578 	sector = r10_bio->sector;
2579 	sectors = ((r10_bio->sector + block_sectors)
2580 		   & ~(sector_t)(block_sectors - 1))
2581 		- sector;
2582 
2583 	while (sect_to_write) {
2584 		struct bio *wbio;
2585 		sector_t wsector;
2586 		if (sectors > sect_to_write)
2587 			sectors = sect_to_write;
2588 		/* Write at 'sector' for 'sectors' */
2589 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2590 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2591 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2592 		wbio->bi_iter.bi_sector = wsector +
2593 				   choose_data_offset(r10_bio, rdev);
2594 		bio_set_dev(wbio, rdev->bdev);
2595 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2596 
2597 		if (submit_bio_wait(wbio) < 0)
2598 			/* Failure! */
2599 			ok = rdev_set_badblocks(rdev, wsector,
2600 						sectors, 0)
2601 				&& ok;
2602 
2603 		bio_put(wbio);
2604 		sect_to_write -= sectors;
2605 		sector += sectors;
2606 		sectors = block_sectors;
2607 	}
2608 	return ok;
2609 }
2610 
2611 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2612 {
2613 	int slot = r10_bio->read_slot;
2614 	struct bio *bio;
2615 	struct r10conf *conf = mddev->private;
2616 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2617 
2618 	/* we got a read error. Maybe the drive is bad.  Maybe just
2619 	 * the block and we can fix it.
2620 	 * We freeze all other IO, and try reading the block from
2621 	 * other devices.  When we find one, we re-write
2622 	 * and check it that fixes the read error.
2623 	 * This is all done synchronously while the array is
2624 	 * frozen.
2625 	 */
2626 	bio = r10_bio->devs[slot].bio;
2627 	bio_put(bio);
2628 	r10_bio->devs[slot].bio = NULL;
2629 
2630 	if (mddev->ro)
2631 		r10_bio->devs[slot].bio = IO_BLOCKED;
2632 	else if (!test_bit(FailFast, &rdev->flags)) {
2633 		freeze_array(conf, 1);
2634 		fix_read_error(conf, mddev, r10_bio);
2635 		unfreeze_array(conf);
2636 	} else
2637 		md_error(mddev, rdev);
2638 
2639 	rdev_dec_pending(rdev, mddev);
2640 	allow_barrier(conf);
2641 	r10_bio->state = 0;
2642 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2643 }
2644 
2645 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2646 {
2647 	/* Some sort of write request has finished and it
2648 	 * succeeded in writing where we thought there was a
2649 	 * bad block.  So forget the bad block.
2650 	 * Or possibly if failed and we need to record
2651 	 * a bad block.
2652 	 */
2653 	int m;
2654 	struct md_rdev *rdev;
2655 
2656 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2657 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2658 		for (m = 0; m < conf->copies; m++) {
2659 			int dev = r10_bio->devs[m].devnum;
2660 			rdev = conf->mirrors[dev].rdev;
2661 			if (r10_bio->devs[m].bio == NULL ||
2662 				r10_bio->devs[m].bio->bi_end_io == NULL)
2663 				continue;
2664 			if (!r10_bio->devs[m].bio->bi_status) {
2665 				rdev_clear_badblocks(
2666 					rdev,
2667 					r10_bio->devs[m].addr,
2668 					r10_bio->sectors, 0);
2669 			} else {
2670 				if (!rdev_set_badblocks(
2671 					    rdev,
2672 					    r10_bio->devs[m].addr,
2673 					    r10_bio->sectors, 0))
2674 					md_error(conf->mddev, rdev);
2675 			}
2676 			rdev = conf->mirrors[dev].replacement;
2677 			if (r10_bio->devs[m].repl_bio == NULL ||
2678 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2679 				continue;
2680 
2681 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2682 				rdev_clear_badblocks(
2683 					rdev,
2684 					r10_bio->devs[m].addr,
2685 					r10_bio->sectors, 0);
2686 			} else {
2687 				if (!rdev_set_badblocks(
2688 					    rdev,
2689 					    r10_bio->devs[m].addr,
2690 					    r10_bio->sectors, 0))
2691 					md_error(conf->mddev, rdev);
2692 			}
2693 		}
2694 		put_buf(r10_bio);
2695 	} else {
2696 		bool fail = false;
2697 		for (m = 0; m < conf->copies; m++) {
2698 			int dev = r10_bio->devs[m].devnum;
2699 			struct bio *bio = r10_bio->devs[m].bio;
2700 			rdev = conf->mirrors[dev].rdev;
2701 			if (bio == IO_MADE_GOOD) {
2702 				rdev_clear_badblocks(
2703 					rdev,
2704 					r10_bio->devs[m].addr,
2705 					r10_bio->sectors, 0);
2706 				rdev_dec_pending(rdev, conf->mddev);
2707 			} else if (bio != NULL && bio->bi_status) {
2708 				fail = true;
2709 				if (!narrow_write_error(r10_bio, m)) {
2710 					md_error(conf->mddev, rdev);
2711 					set_bit(R10BIO_Degraded,
2712 						&r10_bio->state);
2713 				}
2714 				rdev_dec_pending(rdev, conf->mddev);
2715 			}
2716 			bio = r10_bio->devs[m].repl_bio;
2717 			rdev = conf->mirrors[dev].replacement;
2718 			if (rdev && bio == IO_MADE_GOOD) {
2719 				rdev_clear_badblocks(
2720 					rdev,
2721 					r10_bio->devs[m].addr,
2722 					r10_bio->sectors, 0);
2723 				rdev_dec_pending(rdev, conf->mddev);
2724 			}
2725 		}
2726 		if (fail) {
2727 			spin_lock_irq(&conf->device_lock);
2728 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2729 			conf->nr_queued++;
2730 			spin_unlock_irq(&conf->device_lock);
2731 			/*
2732 			 * In case freeze_array() is waiting for condition
2733 			 * nr_pending == nr_queued + extra to be true.
2734 			 */
2735 			wake_up(&conf->wait_barrier);
2736 			md_wakeup_thread(conf->mddev->thread);
2737 		} else {
2738 			if (test_bit(R10BIO_WriteError,
2739 				     &r10_bio->state))
2740 				close_write(r10_bio);
2741 			raid_end_bio_io(r10_bio);
2742 		}
2743 	}
2744 }
2745 
2746 static void raid10d(struct md_thread *thread)
2747 {
2748 	struct mddev *mddev = thread->mddev;
2749 	struct r10bio *r10_bio;
2750 	unsigned long flags;
2751 	struct r10conf *conf = mddev->private;
2752 	struct list_head *head = &conf->retry_list;
2753 	struct blk_plug plug;
2754 
2755 	md_check_recovery(mddev);
2756 
2757 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2758 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2759 		LIST_HEAD(tmp);
2760 		spin_lock_irqsave(&conf->device_lock, flags);
2761 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2762 			while (!list_empty(&conf->bio_end_io_list)) {
2763 				list_move(conf->bio_end_io_list.prev, &tmp);
2764 				conf->nr_queued--;
2765 			}
2766 		}
2767 		spin_unlock_irqrestore(&conf->device_lock, flags);
2768 		while (!list_empty(&tmp)) {
2769 			r10_bio = list_first_entry(&tmp, struct r10bio,
2770 						   retry_list);
2771 			list_del(&r10_bio->retry_list);
2772 			if (mddev->degraded)
2773 				set_bit(R10BIO_Degraded, &r10_bio->state);
2774 
2775 			if (test_bit(R10BIO_WriteError,
2776 				     &r10_bio->state))
2777 				close_write(r10_bio);
2778 			raid_end_bio_io(r10_bio);
2779 		}
2780 	}
2781 
2782 	blk_start_plug(&plug);
2783 	for (;;) {
2784 
2785 		flush_pending_writes(conf);
2786 
2787 		spin_lock_irqsave(&conf->device_lock, flags);
2788 		if (list_empty(head)) {
2789 			spin_unlock_irqrestore(&conf->device_lock, flags);
2790 			break;
2791 		}
2792 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2793 		list_del(head->prev);
2794 		conf->nr_queued--;
2795 		spin_unlock_irqrestore(&conf->device_lock, flags);
2796 
2797 		mddev = r10_bio->mddev;
2798 		conf = mddev->private;
2799 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2800 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2801 			handle_write_completed(conf, r10_bio);
2802 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2803 			reshape_request_write(mddev, r10_bio);
2804 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2805 			sync_request_write(mddev, r10_bio);
2806 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2807 			recovery_request_write(mddev, r10_bio);
2808 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2809 			handle_read_error(mddev, r10_bio);
2810 		else
2811 			WARN_ON_ONCE(1);
2812 
2813 		cond_resched();
2814 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2815 			md_check_recovery(mddev);
2816 	}
2817 	blk_finish_plug(&plug);
2818 }
2819 
2820 static int init_resync(struct r10conf *conf)
2821 {
2822 	int ret, buffs, i;
2823 
2824 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2825 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2826 	conf->have_replacement = 0;
2827 	for (i = 0; i < conf->geo.raid_disks; i++)
2828 		if (conf->mirrors[i].replacement)
2829 			conf->have_replacement = 1;
2830 	ret = mempool_init(&conf->r10buf_pool, buffs,
2831 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2832 	if (ret)
2833 		return ret;
2834 	conf->next_resync = 0;
2835 	return 0;
2836 }
2837 
2838 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2839 {
2840 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2841 	struct rsync_pages *rp;
2842 	struct bio *bio;
2843 	int nalloc;
2844 	int i;
2845 
2846 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2847 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2848 		nalloc = conf->copies; /* resync */
2849 	else
2850 		nalloc = 2; /* recovery */
2851 
2852 	for (i = 0; i < nalloc; i++) {
2853 		bio = r10bio->devs[i].bio;
2854 		rp = bio->bi_private;
2855 		bio_reset(bio);
2856 		bio->bi_private = rp;
2857 		bio = r10bio->devs[i].repl_bio;
2858 		if (bio) {
2859 			rp = bio->bi_private;
2860 			bio_reset(bio);
2861 			bio->bi_private = rp;
2862 		}
2863 	}
2864 	return r10bio;
2865 }
2866 
2867 /*
2868  * Set cluster_sync_high since we need other nodes to add the
2869  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2870  */
2871 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2872 {
2873 	sector_t window_size;
2874 	int extra_chunk, chunks;
2875 
2876 	/*
2877 	 * First, here we define "stripe" as a unit which across
2878 	 * all member devices one time, so we get chunks by use
2879 	 * raid_disks / near_copies. Otherwise, if near_copies is
2880 	 * close to raid_disks, then resync window could increases
2881 	 * linearly with the increase of raid_disks, which means
2882 	 * we will suspend a really large IO window while it is not
2883 	 * necessary. If raid_disks is not divisible by near_copies,
2884 	 * an extra chunk is needed to ensure the whole "stripe" is
2885 	 * covered.
2886 	 */
2887 
2888 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2889 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2890 		extra_chunk = 0;
2891 	else
2892 		extra_chunk = 1;
2893 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2894 
2895 	/*
2896 	 * At least use a 32M window to align with raid1's resync window
2897 	 */
2898 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2899 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2900 
2901 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2902 }
2903 
2904 /*
2905  * perform a "sync" on one "block"
2906  *
2907  * We need to make sure that no normal I/O request - particularly write
2908  * requests - conflict with active sync requests.
2909  *
2910  * This is achieved by tracking pending requests and a 'barrier' concept
2911  * that can be installed to exclude normal IO requests.
2912  *
2913  * Resync and recovery are handled very differently.
2914  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2915  *
2916  * For resync, we iterate over virtual addresses, read all copies,
2917  * and update if there are differences.  If only one copy is live,
2918  * skip it.
2919  * For recovery, we iterate over physical addresses, read a good
2920  * value for each non-in_sync drive, and over-write.
2921  *
2922  * So, for recovery we may have several outstanding complex requests for a
2923  * given address, one for each out-of-sync device.  We model this by allocating
2924  * a number of r10_bio structures, one for each out-of-sync device.
2925  * As we setup these structures, we collect all bio's together into a list
2926  * which we then process collectively to add pages, and then process again
2927  * to pass to generic_make_request.
2928  *
2929  * The r10_bio structures are linked using a borrowed master_bio pointer.
2930  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2931  * has its remaining count decremented to 0, the whole complex operation
2932  * is complete.
2933  *
2934  */
2935 
2936 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2937 			     int *skipped)
2938 {
2939 	struct r10conf *conf = mddev->private;
2940 	struct r10bio *r10_bio;
2941 	struct bio *biolist = NULL, *bio;
2942 	sector_t max_sector, nr_sectors;
2943 	int i;
2944 	int max_sync;
2945 	sector_t sync_blocks;
2946 	sector_t sectors_skipped = 0;
2947 	int chunks_skipped = 0;
2948 	sector_t chunk_mask = conf->geo.chunk_mask;
2949 	int page_idx = 0;
2950 
2951 	if (!mempool_initialized(&conf->r10buf_pool))
2952 		if (init_resync(conf))
2953 			return 0;
2954 
2955 	/*
2956 	 * Allow skipping a full rebuild for incremental assembly
2957 	 * of a clean array, like RAID1 does.
2958 	 */
2959 	if (mddev->bitmap == NULL &&
2960 	    mddev->recovery_cp == MaxSector &&
2961 	    mddev->reshape_position == MaxSector &&
2962 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2963 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2964 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2965 	    conf->fullsync == 0) {
2966 		*skipped = 1;
2967 		return mddev->dev_sectors - sector_nr;
2968 	}
2969 
2970  skipped:
2971 	max_sector = mddev->dev_sectors;
2972 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2973 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2974 		max_sector = mddev->resync_max_sectors;
2975 	if (sector_nr >= max_sector) {
2976 		conf->cluster_sync_low = 0;
2977 		conf->cluster_sync_high = 0;
2978 
2979 		/* If we aborted, we need to abort the
2980 		 * sync on the 'current' bitmap chucks (there can
2981 		 * be several when recovering multiple devices).
2982 		 * as we may have started syncing it but not finished.
2983 		 * We can find the current address in
2984 		 * mddev->curr_resync, but for recovery,
2985 		 * we need to convert that to several
2986 		 * virtual addresses.
2987 		 */
2988 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2989 			end_reshape(conf);
2990 			close_sync(conf);
2991 			return 0;
2992 		}
2993 
2994 		if (mddev->curr_resync < max_sector) { /* aborted */
2995 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2996 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2997 						   &sync_blocks, 1);
2998 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2999 				sector_t sect =
3000 					raid10_find_virt(conf, mddev->curr_resync, i);
3001 				md_bitmap_end_sync(mddev->bitmap, sect,
3002 						   &sync_blocks, 1);
3003 			}
3004 		} else {
3005 			/* completed sync */
3006 			if ((!mddev->bitmap || conf->fullsync)
3007 			    && conf->have_replacement
3008 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3009 				/* Completed a full sync so the replacements
3010 				 * are now fully recovered.
3011 				 */
3012 				rcu_read_lock();
3013 				for (i = 0; i < conf->geo.raid_disks; i++) {
3014 					struct md_rdev *rdev =
3015 						rcu_dereference(conf->mirrors[i].replacement);
3016 					if (rdev)
3017 						rdev->recovery_offset = MaxSector;
3018 				}
3019 				rcu_read_unlock();
3020 			}
3021 			conf->fullsync = 0;
3022 		}
3023 		md_bitmap_close_sync(mddev->bitmap);
3024 		close_sync(conf);
3025 		*skipped = 1;
3026 		return sectors_skipped;
3027 	}
3028 
3029 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3030 		return reshape_request(mddev, sector_nr, skipped);
3031 
3032 	if (chunks_skipped >= conf->geo.raid_disks) {
3033 		/* if there has been nothing to do on any drive,
3034 		 * then there is nothing to do at all..
3035 		 */
3036 		*skipped = 1;
3037 		return (max_sector - sector_nr) + sectors_skipped;
3038 	}
3039 
3040 	if (max_sector > mddev->resync_max)
3041 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3042 
3043 	/* make sure whole request will fit in a chunk - if chunks
3044 	 * are meaningful
3045 	 */
3046 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3047 	    max_sector > (sector_nr | chunk_mask))
3048 		max_sector = (sector_nr | chunk_mask) + 1;
3049 
3050 	/*
3051 	 * If there is non-resync activity waiting for a turn, then let it
3052 	 * though before starting on this new sync request.
3053 	 */
3054 	if (conf->nr_waiting)
3055 		schedule_timeout_uninterruptible(1);
3056 
3057 	/* Again, very different code for resync and recovery.
3058 	 * Both must result in an r10bio with a list of bios that
3059 	 * have bi_end_io, bi_sector, bi_disk set,
3060 	 * and bi_private set to the r10bio.
3061 	 * For recovery, we may actually create several r10bios
3062 	 * with 2 bios in each, that correspond to the bios in the main one.
3063 	 * In this case, the subordinate r10bios link back through a
3064 	 * borrowed master_bio pointer, and the counter in the master
3065 	 * includes a ref from each subordinate.
3066 	 */
3067 	/* First, we decide what to do and set ->bi_end_io
3068 	 * To end_sync_read if we want to read, and
3069 	 * end_sync_write if we will want to write.
3070 	 */
3071 
3072 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3073 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3074 		/* recovery... the complicated one */
3075 		int j;
3076 		r10_bio = NULL;
3077 
3078 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3079 			int still_degraded;
3080 			struct r10bio *rb2;
3081 			sector_t sect;
3082 			int must_sync;
3083 			int any_working;
3084 			int need_recover = 0;
3085 			int need_replace = 0;
3086 			struct raid10_info *mirror = &conf->mirrors[i];
3087 			struct md_rdev *mrdev, *mreplace;
3088 
3089 			rcu_read_lock();
3090 			mrdev = rcu_dereference(mirror->rdev);
3091 			mreplace = rcu_dereference(mirror->replacement);
3092 
3093 			if (mrdev != NULL &&
3094 			    !test_bit(Faulty, &mrdev->flags) &&
3095 			    !test_bit(In_sync, &mrdev->flags))
3096 				need_recover = 1;
3097 			if (mreplace != NULL &&
3098 			    !test_bit(Faulty, &mreplace->flags))
3099 				need_replace = 1;
3100 
3101 			if (!need_recover && !need_replace) {
3102 				rcu_read_unlock();
3103 				continue;
3104 			}
3105 
3106 			still_degraded = 0;
3107 			/* want to reconstruct this device */
3108 			rb2 = r10_bio;
3109 			sect = raid10_find_virt(conf, sector_nr, i);
3110 			if (sect >= mddev->resync_max_sectors) {
3111 				/* last stripe is not complete - don't
3112 				 * try to recover this sector.
3113 				 */
3114 				rcu_read_unlock();
3115 				continue;
3116 			}
3117 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3118 				mreplace = NULL;
3119 			/* Unless we are doing a full sync, or a replacement
3120 			 * we only need to recover the block if it is set in
3121 			 * the bitmap
3122 			 */
3123 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3124 							 &sync_blocks, 1);
3125 			if (sync_blocks < max_sync)
3126 				max_sync = sync_blocks;
3127 			if (!must_sync &&
3128 			    mreplace == NULL &&
3129 			    !conf->fullsync) {
3130 				/* yep, skip the sync_blocks here, but don't assume
3131 				 * that there will never be anything to do here
3132 				 */
3133 				chunks_skipped = -1;
3134 				rcu_read_unlock();
3135 				continue;
3136 			}
3137 			atomic_inc(&mrdev->nr_pending);
3138 			if (mreplace)
3139 				atomic_inc(&mreplace->nr_pending);
3140 			rcu_read_unlock();
3141 
3142 			r10_bio = raid10_alloc_init_r10buf(conf);
3143 			r10_bio->state = 0;
3144 			raise_barrier(conf, rb2 != NULL);
3145 			atomic_set(&r10_bio->remaining, 0);
3146 
3147 			r10_bio->master_bio = (struct bio*)rb2;
3148 			if (rb2)
3149 				atomic_inc(&rb2->remaining);
3150 			r10_bio->mddev = mddev;
3151 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3152 			r10_bio->sector = sect;
3153 
3154 			raid10_find_phys(conf, r10_bio);
3155 
3156 			/* Need to check if the array will still be
3157 			 * degraded
3158 			 */
3159 			rcu_read_lock();
3160 			for (j = 0; j < conf->geo.raid_disks; j++) {
3161 				struct md_rdev *rdev = rcu_dereference(
3162 					conf->mirrors[j].rdev);
3163 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3164 					still_degraded = 1;
3165 					break;
3166 				}
3167 			}
3168 
3169 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3170 							 &sync_blocks, still_degraded);
3171 
3172 			any_working = 0;
3173 			for (j=0; j<conf->copies;j++) {
3174 				int k;
3175 				int d = r10_bio->devs[j].devnum;
3176 				sector_t from_addr, to_addr;
3177 				struct md_rdev *rdev =
3178 					rcu_dereference(conf->mirrors[d].rdev);
3179 				sector_t sector, first_bad;
3180 				int bad_sectors;
3181 				if (!rdev ||
3182 				    !test_bit(In_sync, &rdev->flags))
3183 					continue;
3184 				/* This is where we read from */
3185 				any_working = 1;
3186 				sector = r10_bio->devs[j].addr;
3187 
3188 				if (is_badblock(rdev, sector, max_sync,
3189 						&first_bad, &bad_sectors)) {
3190 					if (first_bad > sector)
3191 						max_sync = first_bad - sector;
3192 					else {
3193 						bad_sectors -= (sector
3194 								- first_bad);
3195 						if (max_sync > bad_sectors)
3196 							max_sync = bad_sectors;
3197 						continue;
3198 					}
3199 				}
3200 				bio = r10_bio->devs[0].bio;
3201 				bio->bi_next = biolist;
3202 				biolist = bio;
3203 				bio->bi_end_io = end_sync_read;
3204 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3205 				if (test_bit(FailFast, &rdev->flags))
3206 					bio->bi_opf |= MD_FAILFAST;
3207 				from_addr = r10_bio->devs[j].addr;
3208 				bio->bi_iter.bi_sector = from_addr +
3209 					rdev->data_offset;
3210 				bio_set_dev(bio, rdev->bdev);
3211 				atomic_inc(&rdev->nr_pending);
3212 				/* and we write to 'i' (if not in_sync) */
3213 
3214 				for (k=0; k<conf->copies; k++)
3215 					if (r10_bio->devs[k].devnum == i)
3216 						break;
3217 				BUG_ON(k == conf->copies);
3218 				to_addr = r10_bio->devs[k].addr;
3219 				r10_bio->devs[0].devnum = d;
3220 				r10_bio->devs[0].addr = from_addr;
3221 				r10_bio->devs[1].devnum = i;
3222 				r10_bio->devs[1].addr = to_addr;
3223 
3224 				if (need_recover) {
3225 					bio = r10_bio->devs[1].bio;
3226 					bio->bi_next = biolist;
3227 					biolist = bio;
3228 					bio->bi_end_io = end_sync_write;
3229 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3230 					bio->bi_iter.bi_sector = to_addr
3231 						+ mrdev->data_offset;
3232 					bio_set_dev(bio, mrdev->bdev);
3233 					atomic_inc(&r10_bio->remaining);
3234 				} else
3235 					r10_bio->devs[1].bio->bi_end_io = NULL;
3236 
3237 				/* and maybe write to replacement */
3238 				bio = r10_bio->devs[1].repl_bio;
3239 				if (bio)
3240 					bio->bi_end_io = NULL;
3241 				/* Note: if need_replace, then bio
3242 				 * cannot be NULL as r10buf_pool_alloc will
3243 				 * have allocated it.
3244 				 */
3245 				if (!need_replace)
3246 					break;
3247 				bio->bi_next = biolist;
3248 				biolist = bio;
3249 				bio->bi_end_io = end_sync_write;
3250 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3251 				bio->bi_iter.bi_sector = to_addr +
3252 					mreplace->data_offset;
3253 				bio_set_dev(bio, mreplace->bdev);
3254 				atomic_inc(&r10_bio->remaining);
3255 				break;
3256 			}
3257 			rcu_read_unlock();
3258 			if (j == conf->copies) {
3259 				/* Cannot recover, so abort the recovery or
3260 				 * record a bad block */
3261 				if (any_working) {
3262 					/* problem is that there are bad blocks
3263 					 * on other device(s)
3264 					 */
3265 					int k;
3266 					for (k = 0; k < conf->copies; k++)
3267 						if (r10_bio->devs[k].devnum == i)
3268 							break;
3269 					if (!test_bit(In_sync,
3270 						      &mrdev->flags)
3271 					    && !rdev_set_badblocks(
3272 						    mrdev,
3273 						    r10_bio->devs[k].addr,
3274 						    max_sync, 0))
3275 						any_working = 0;
3276 					if (mreplace &&
3277 					    !rdev_set_badblocks(
3278 						    mreplace,
3279 						    r10_bio->devs[k].addr,
3280 						    max_sync, 0))
3281 						any_working = 0;
3282 				}
3283 				if (!any_working)  {
3284 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3285 							      &mddev->recovery))
3286 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3287 						       mdname(mddev));
3288 					mirror->recovery_disabled
3289 						= mddev->recovery_disabled;
3290 				}
3291 				put_buf(r10_bio);
3292 				if (rb2)
3293 					atomic_dec(&rb2->remaining);
3294 				r10_bio = rb2;
3295 				rdev_dec_pending(mrdev, mddev);
3296 				if (mreplace)
3297 					rdev_dec_pending(mreplace, mddev);
3298 				break;
3299 			}
3300 			rdev_dec_pending(mrdev, mddev);
3301 			if (mreplace)
3302 				rdev_dec_pending(mreplace, mddev);
3303 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3304 				/* Only want this if there is elsewhere to
3305 				 * read from. 'j' is currently the first
3306 				 * readable copy.
3307 				 */
3308 				int targets = 1;
3309 				for (; j < conf->copies; j++) {
3310 					int d = r10_bio->devs[j].devnum;
3311 					if (conf->mirrors[d].rdev &&
3312 					    test_bit(In_sync,
3313 						      &conf->mirrors[d].rdev->flags))
3314 						targets++;
3315 				}
3316 				if (targets == 1)
3317 					r10_bio->devs[0].bio->bi_opf
3318 						&= ~MD_FAILFAST;
3319 			}
3320 		}
3321 		if (biolist == NULL) {
3322 			while (r10_bio) {
3323 				struct r10bio *rb2 = r10_bio;
3324 				r10_bio = (struct r10bio*) rb2->master_bio;
3325 				rb2->master_bio = NULL;
3326 				put_buf(rb2);
3327 			}
3328 			goto giveup;
3329 		}
3330 	} else {
3331 		/* resync. Schedule a read for every block at this virt offset */
3332 		int count = 0;
3333 
3334 		/*
3335 		 * Since curr_resync_completed could probably not update in
3336 		 * time, and we will set cluster_sync_low based on it.
3337 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3338 		 * safety reason, which ensures curr_resync_completed is
3339 		 * updated in bitmap_cond_end_sync.
3340 		 */
3341 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3342 					mddev_is_clustered(mddev) &&
3343 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3344 
3345 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3346 					  &sync_blocks, mddev->degraded) &&
3347 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3348 						 &mddev->recovery)) {
3349 			/* We can skip this block */
3350 			*skipped = 1;
3351 			return sync_blocks + sectors_skipped;
3352 		}
3353 		if (sync_blocks < max_sync)
3354 			max_sync = sync_blocks;
3355 		r10_bio = raid10_alloc_init_r10buf(conf);
3356 		r10_bio->state = 0;
3357 
3358 		r10_bio->mddev = mddev;
3359 		atomic_set(&r10_bio->remaining, 0);
3360 		raise_barrier(conf, 0);
3361 		conf->next_resync = sector_nr;
3362 
3363 		r10_bio->master_bio = NULL;
3364 		r10_bio->sector = sector_nr;
3365 		set_bit(R10BIO_IsSync, &r10_bio->state);
3366 		raid10_find_phys(conf, r10_bio);
3367 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3368 
3369 		for (i = 0; i < conf->copies; i++) {
3370 			int d = r10_bio->devs[i].devnum;
3371 			sector_t first_bad, sector;
3372 			int bad_sectors;
3373 			struct md_rdev *rdev;
3374 
3375 			if (r10_bio->devs[i].repl_bio)
3376 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3377 
3378 			bio = r10_bio->devs[i].bio;
3379 			bio->bi_status = BLK_STS_IOERR;
3380 			rcu_read_lock();
3381 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3382 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3383 				rcu_read_unlock();
3384 				continue;
3385 			}
3386 			sector = r10_bio->devs[i].addr;
3387 			if (is_badblock(rdev, sector, max_sync,
3388 					&first_bad, &bad_sectors)) {
3389 				if (first_bad > sector)
3390 					max_sync = first_bad - sector;
3391 				else {
3392 					bad_sectors -= (sector - first_bad);
3393 					if (max_sync > bad_sectors)
3394 						max_sync = bad_sectors;
3395 					rcu_read_unlock();
3396 					continue;
3397 				}
3398 			}
3399 			atomic_inc(&rdev->nr_pending);
3400 			atomic_inc(&r10_bio->remaining);
3401 			bio->bi_next = biolist;
3402 			biolist = bio;
3403 			bio->bi_end_io = end_sync_read;
3404 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3405 			if (test_bit(FailFast, &rdev->flags))
3406 				bio->bi_opf |= MD_FAILFAST;
3407 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3408 			bio_set_dev(bio, rdev->bdev);
3409 			count++;
3410 
3411 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3412 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3413 				rcu_read_unlock();
3414 				continue;
3415 			}
3416 			atomic_inc(&rdev->nr_pending);
3417 
3418 			/* Need to set up for writing to the replacement */
3419 			bio = r10_bio->devs[i].repl_bio;
3420 			bio->bi_status = BLK_STS_IOERR;
3421 
3422 			sector = r10_bio->devs[i].addr;
3423 			bio->bi_next = biolist;
3424 			biolist = bio;
3425 			bio->bi_end_io = end_sync_write;
3426 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3427 			if (test_bit(FailFast, &rdev->flags))
3428 				bio->bi_opf |= MD_FAILFAST;
3429 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3430 			bio_set_dev(bio, rdev->bdev);
3431 			count++;
3432 			rcu_read_unlock();
3433 		}
3434 
3435 		if (count < 2) {
3436 			for (i=0; i<conf->copies; i++) {
3437 				int d = r10_bio->devs[i].devnum;
3438 				if (r10_bio->devs[i].bio->bi_end_io)
3439 					rdev_dec_pending(conf->mirrors[d].rdev,
3440 							 mddev);
3441 				if (r10_bio->devs[i].repl_bio &&
3442 				    r10_bio->devs[i].repl_bio->bi_end_io)
3443 					rdev_dec_pending(
3444 						conf->mirrors[d].replacement,
3445 						mddev);
3446 			}
3447 			put_buf(r10_bio);
3448 			biolist = NULL;
3449 			goto giveup;
3450 		}
3451 	}
3452 
3453 	nr_sectors = 0;
3454 	if (sector_nr + max_sync < max_sector)
3455 		max_sector = sector_nr + max_sync;
3456 	do {
3457 		struct page *page;
3458 		int len = PAGE_SIZE;
3459 		if (sector_nr + (len>>9) > max_sector)
3460 			len = (max_sector - sector_nr) << 9;
3461 		if (len == 0)
3462 			break;
3463 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3464 			struct resync_pages *rp = get_resync_pages(bio);
3465 			page = resync_fetch_page(rp, page_idx);
3466 			/*
3467 			 * won't fail because the vec table is big enough
3468 			 * to hold all these pages
3469 			 */
3470 			bio_add_page(bio, page, len, 0);
3471 		}
3472 		nr_sectors += len>>9;
3473 		sector_nr += len>>9;
3474 	} while (++page_idx < RESYNC_PAGES);
3475 	r10_bio->sectors = nr_sectors;
3476 
3477 	if (mddev_is_clustered(mddev) &&
3478 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3479 		/* It is resync not recovery */
3480 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3481 			conf->cluster_sync_low = mddev->curr_resync_completed;
3482 			raid10_set_cluster_sync_high(conf);
3483 			/* Send resync message */
3484 			md_cluster_ops->resync_info_update(mddev,
3485 						conf->cluster_sync_low,
3486 						conf->cluster_sync_high);
3487 		}
3488 	} else if (mddev_is_clustered(mddev)) {
3489 		/* This is recovery not resync */
3490 		sector_t sect_va1, sect_va2;
3491 		bool broadcast_msg = false;
3492 
3493 		for (i = 0; i < conf->geo.raid_disks; i++) {
3494 			/*
3495 			 * sector_nr is a device address for recovery, so we
3496 			 * need translate it to array address before compare
3497 			 * with cluster_sync_high.
3498 			 */
3499 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3500 
3501 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3502 				broadcast_msg = true;
3503 				/*
3504 				 * curr_resync_completed is similar as
3505 				 * sector_nr, so make the translation too.
3506 				 */
3507 				sect_va2 = raid10_find_virt(conf,
3508 					mddev->curr_resync_completed, i);
3509 
3510 				if (conf->cluster_sync_low == 0 ||
3511 				    conf->cluster_sync_low > sect_va2)
3512 					conf->cluster_sync_low = sect_va2;
3513 			}
3514 		}
3515 		if (broadcast_msg) {
3516 			raid10_set_cluster_sync_high(conf);
3517 			md_cluster_ops->resync_info_update(mddev,
3518 						conf->cluster_sync_low,
3519 						conf->cluster_sync_high);
3520 		}
3521 	}
3522 
3523 	while (biolist) {
3524 		bio = biolist;
3525 		biolist = biolist->bi_next;
3526 
3527 		bio->bi_next = NULL;
3528 		r10_bio = get_resync_r10bio(bio);
3529 		r10_bio->sectors = nr_sectors;
3530 
3531 		if (bio->bi_end_io == end_sync_read) {
3532 			md_sync_acct_bio(bio, nr_sectors);
3533 			bio->bi_status = 0;
3534 			generic_make_request(bio);
3535 		}
3536 	}
3537 
3538 	if (sectors_skipped)
3539 		/* pretend they weren't skipped, it makes
3540 		 * no important difference in this case
3541 		 */
3542 		md_done_sync(mddev, sectors_skipped, 1);
3543 
3544 	return sectors_skipped + nr_sectors;
3545  giveup:
3546 	/* There is nowhere to write, so all non-sync
3547 	 * drives must be failed or in resync, all drives
3548 	 * have a bad block, so try the next chunk...
3549 	 */
3550 	if (sector_nr + max_sync < max_sector)
3551 		max_sector = sector_nr + max_sync;
3552 
3553 	sectors_skipped += (max_sector - sector_nr);
3554 	chunks_skipped ++;
3555 	sector_nr = max_sector;
3556 	goto skipped;
3557 }
3558 
3559 static sector_t
3560 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3561 {
3562 	sector_t size;
3563 	struct r10conf *conf = mddev->private;
3564 
3565 	if (!raid_disks)
3566 		raid_disks = min(conf->geo.raid_disks,
3567 				 conf->prev.raid_disks);
3568 	if (!sectors)
3569 		sectors = conf->dev_sectors;
3570 
3571 	size = sectors >> conf->geo.chunk_shift;
3572 	sector_div(size, conf->geo.far_copies);
3573 	size = size * raid_disks;
3574 	sector_div(size, conf->geo.near_copies);
3575 
3576 	return size << conf->geo.chunk_shift;
3577 }
3578 
3579 static void calc_sectors(struct r10conf *conf, sector_t size)
3580 {
3581 	/* Calculate the number of sectors-per-device that will
3582 	 * actually be used, and set conf->dev_sectors and
3583 	 * conf->stride
3584 	 */
3585 
3586 	size = size >> conf->geo.chunk_shift;
3587 	sector_div(size, conf->geo.far_copies);
3588 	size = size * conf->geo.raid_disks;
3589 	sector_div(size, conf->geo.near_copies);
3590 	/* 'size' is now the number of chunks in the array */
3591 	/* calculate "used chunks per device" */
3592 	size = size * conf->copies;
3593 
3594 	/* We need to round up when dividing by raid_disks to
3595 	 * get the stride size.
3596 	 */
3597 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3598 
3599 	conf->dev_sectors = size << conf->geo.chunk_shift;
3600 
3601 	if (conf->geo.far_offset)
3602 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3603 	else {
3604 		sector_div(size, conf->geo.far_copies);
3605 		conf->geo.stride = size << conf->geo.chunk_shift;
3606 	}
3607 }
3608 
3609 enum geo_type {geo_new, geo_old, geo_start};
3610 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3611 {
3612 	int nc, fc, fo;
3613 	int layout, chunk, disks;
3614 	switch (new) {
3615 	case geo_old:
3616 		layout = mddev->layout;
3617 		chunk = mddev->chunk_sectors;
3618 		disks = mddev->raid_disks - mddev->delta_disks;
3619 		break;
3620 	case geo_new:
3621 		layout = mddev->new_layout;
3622 		chunk = mddev->new_chunk_sectors;
3623 		disks = mddev->raid_disks;
3624 		break;
3625 	default: /* avoid 'may be unused' warnings */
3626 	case geo_start: /* new when starting reshape - raid_disks not
3627 			 * updated yet. */
3628 		layout = mddev->new_layout;
3629 		chunk = mddev->new_chunk_sectors;
3630 		disks = mddev->raid_disks + mddev->delta_disks;
3631 		break;
3632 	}
3633 	if (layout >> 19)
3634 		return -1;
3635 	if (chunk < (PAGE_SIZE >> 9) ||
3636 	    !is_power_of_2(chunk))
3637 		return -2;
3638 	nc = layout & 255;
3639 	fc = (layout >> 8) & 255;
3640 	fo = layout & (1<<16);
3641 	geo->raid_disks = disks;
3642 	geo->near_copies = nc;
3643 	geo->far_copies = fc;
3644 	geo->far_offset = fo;
3645 	switch (layout >> 17) {
3646 	case 0:	/* original layout.  simple but not always optimal */
3647 		geo->far_set_size = disks;
3648 		break;
3649 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3650 		 * actually using this, but leave code here just in case.*/
3651 		geo->far_set_size = disks/fc;
3652 		WARN(geo->far_set_size < fc,
3653 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3654 		break;
3655 	case 2: /* "improved" layout fixed to match documentation */
3656 		geo->far_set_size = fc * nc;
3657 		break;
3658 	default: /* Not a valid layout */
3659 		return -1;
3660 	}
3661 	geo->chunk_mask = chunk - 1;
3662 	geo->chunk_shift = ffz(~chunk);
3663 	return nc*fc;
3664 }
3665 
3666 static struct r10conf *setup_conf(struct mddev *mddev)
3667 {
3668 	struct r10conf *conf = NULL;
3669 	int err = -EINVAL;
3670 	struct geom geo;
3671 	int copies;
3672 
3673 	copies = setup_geo(&geo, mddev, geo_new);
3674 
3675 	if (copies == -2) {
3676 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3677 			mdname(mddev), PAGE_SIZE);
3678 		goto out;
3679 	}
3680 
3681 	if (copies < 2 || copies > mddev->raid_disks) {
3682 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3683 			mdname(mddev), mddev->new_layout);
3684 		goto out;
3685 	}
3686 
3687 	err = -ENOMEM;
3688 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3689 	if (!conf)
3690 		goto out;
3691 
3692 	/* FIXME calc properly */
3693 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3694 				sizeof(struct raid10_info),
3695 				GFP_KERNEL);
3696 	if (!conf->mirrors)
3697 		goto out;
3698 
3699 	conf->tmppage = alloc_page(GFP_KERNEL);
3700 	if (!conf->tmppage)
3701 		goto out;
3702 
3703 	conf->geo = geo;
3704 	conf->copies = copies;
3705 	err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3706 			   r10bio_pool_free, conf);
3707 	if (err)
3708 		goto out;
3709 
3710 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3711 	if (err)
3712 		goto out;
3713 
3714 	calc_sectors(conf, mddev->dev_sectors);
3715 	if (mddev->reshape_position == MaxSector) {
3716 		conf->prev = conf->geo;
3717 		conf->reshape_progress = MaxSector;
3718 	} else {
3719 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3720 			err = -EINVAL;
3721 			goto out;
3722 		}
3723 		conf->reshape_progress = mddev->reshape_position;
3724 		if (conf->prev.far_offset)
3725 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3726 		else
3727 			/* far_copies must be 1 */
3728 			conf->prev.stride = conf->dev_sectors;
3729 	}
3730 	conf->reshape_safe = conf->reshape_progress;
3731 	spin_lock_init(&conf->device_lock);
3732 	INIT_LIST_HEAD(&conf->retry_list);
3733 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3734 
3735 	spin_lock_init(&conf->resync_lock);
3736 	init_waitqueue_head(&conf->wait_barrier);
3737 	atomic_set(&conf->nr_pending, 0);
3738 
3739 	err = -ENOMEM;
3740 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3741 	if (!conf->thread)
3742 		goto out;
3743 
3744 	conf->mddev = mddev;
3745 	return conf;
3746 
3747  out:
3748 	if (conf) {
3749 		mempool_exit(&conf->r10bio_pool);
3750 		kfree(conf->mirrors);
3751 		safe_put_page(conf->tmppage);
3752 		bioset_exit(&conf->bio_split);
3753 		kfree(conf);
3754 	}
3755 	return ERR_PTR(err);
3756 }
3757 
3758 static int raid10_run(struct mddev *mddev)
3759 {
3760 	struct r10conf *conf;
3761 	int i, disk_idx, chunk_size;
3762 	struct raid10_info *disk;
3763 	struct md_rdev *rdev;
3764 	sector_t size;
3765 	sector_t min_offset_diff = 0;
3766 	int first = 1;
3767 	bool discard_supported = false;
3768 
3769 	if (mddev_init_writes_pending(mddev) < 0)
3770 		return -ENOMEM;
3771 
3772 	if (mddev->private == NULL) {
3773 		conf = setup_conf(mddev);
3774 		if (IS_ERR(conf))
3775 			return PTR_ERR(conf);
3776 		mddev->private = conf;
3777 	}
3778 	conf = mddev->private;
3779 	if (!conf)
3780 		goto out;
3781 
3782 	if (mddev_is_clustered(conf->mddev)) {
3783 		int fc, fo;
3784 
3785 		fc = (mddev->layout >> 8) & 255;
3786 		fo = mddev->layout & (1<<16);
3787 		if (fc > 1 || fo > 0) {
3788 			pr_err("only near layout is supported by clustered"
3789 				" raid10\n");
3790 			goto out_free_conf;
3791 		}
3792 	}
3793 
3794 	mddev->thread = conf->thread;
3795 	conf->thread = NULL;
3796 
3797 	chunk_size = mddev->chunk_sectors << 9;
3798 	if (mddev->queue) {
3799 		blk_queue_max_discard_sectors(mddev->queue,
3800 					      mddev->chunk_sectors);
3801 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3802 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3803 		blk_queue_io_min(mddev->queue, chunk_size);
3804 		if (conf->geo.raid_disks % conf->geo.near_copies)
3805 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3806 		else
3807 			blk_queue_io_opt(mddev->queue, chunk_size *
3808 					 (conf->geo.raid_disks / conf->geo.near_copies));
3809 	}
3810 
3811 	rdev_for_each(rdev, mddev) {
3812 		long long diff;
3813 
3814 		disk_idx = rdev->raid_disk;
3815 		if (disk_idx < 0)
3816 			continue;
3817 		if (disk_idx >= conf->geo.raid_disks &&
3818 		    disk_idx >= conf->prev.raid_disks)
3819 			continue;
3820 		disk = conf->mirrors + disk_idx;
3821 
3822 		if (test_bit(Replacement, &rdev->flags)) {
3823 			if (disk->replacement)
3824 				goto out_free_conf;
3825 			disk->replacement = rdev;
3826 		} else {
3827 			if (disk->rdev)
3828 				goto out_free_conf;
3829 			disk->rdev = rdev;
3830 		}
3831 		diff = (rdev->new_data_offset - rdev->data_offset);
3832 		if (!mddev->reshape_backwards)
3833 			diff = -diff;
3834 		if (diff < 0)
3835 			diff = 0;
3836 		if (first || diff < min_offset_diff)
3837 			min_offset_diff = diff;
3838 
3839 		if (mddev->gendisk)
3840 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3841 					  rdev->data_offset << 9);
3842 
3843 		disk->head_position = 0;
3844 
3845 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3846 			discard_supported = true;
3847 		first = 0;
3848 	}
3849 
3850 	if (mddev->queue) {
3851 		if (discard_supported)
3852 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3853 						mddev->queue);
3854 		else
3855 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3856 						  mddev->queue);
3857 	}
3858 	/* need to check that every block has at least one working mirror */
3859 	if (!enough(conf, -1)) {
3860 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3861 		       mdname(mddev));
3862 		goto out_free_conf;
3863 	}
3864 
3865 	if (conf->reshape_progress != MaxSector) {
3866 		/* must ensure that shape change is supported */
3867 		if (conf->geo.far_copies != 1 &&
3868 		    conf->geo.far_offset == 0)
3869 			goto out_free_conf;
3870 		if (conf->prev.far_copies != 1 &&
3871 		    conf->prev.far_offset == 0)
3872 			goto out_free_conf;
3873 	}
3874 
3875 	mddev->degraded = 0;
3876 	for (i = 0;
3877 	     i < conf->geo.raid_disks
3878 		     || i < conf->prev.raid_disks;
3879 	     i++) {
3880 
3881 		disk = conf->mirrors + i;
3882 
3883 		if (!disk->rdev && disk->replacement) {
3884 			/* The replacement is all we have - use it */
3885 			disk->rdev = disk->replacement;
3886 			disk->replacement = NULL;
3887 			clear_bit(Replacement, &disk->rdev->flags);
3888 		}
3889 
3890 		if (!disk->rdev ||
3891 		    !test_bit(In_sync, &disk->rdev->flags)) {
3892 			disk->head_position = 0;
3893 			mddev->degraded++;
3894 			if (disk->rdev &&
3895 			    disk->rdev->saved_raid_disk < 0)
3896 				conf->fullsync = 1;
3897 		}
3898 
3899 		if (disk->replacement &&
3900 		    !test_bit(In_sync, &disk->replacement->flags) &&
3901 		    disk->replacement->saved_raid_disk < 0) {
3902 			conf->fullsync = 1;
3903 		}
3904 
3905 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3906 	}
3907 
3908 	if (mddev->recovery_cp != MaxSector)
3909 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3910 			  mdname(mddev));
3911 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3912 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3913 		conf->geo.raid_disks);
3914 	/*
3915 	 * Ok, everything is just fine now
3916 	 */
3917 	mddev->dev_sectors = conf->dev_sectors;
3918 	size = raid10_size(mddev, 0, 0);
3919 	md_set_array_sectors(mddev, size);
3920 	mddev->resync_max_sectors = size;
3921 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3922 
3923 	if (mddev->queue) {
3924 		int stripe = conf->geo.raid_disks *
3925 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3926 
3927 		/* Calculate max read-ahead size.
3928 		 * We need to readahead at least twice a whole stripe....
3929 		 * maybe...
3930 		 */
3931 		stripe /= conf->geo.near_copies;
3932 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3933 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3934 	}
3935 
3936 	if (md_integrity_register(mddev))
3937 		goto out_free_conf;
3938 
3939 	if (conf->reshape_progress != MaxSector) {
3940 		unsigned long before_length, after_length;
3941 
3942 		before_length = ((1 << conf->prev.chunk_shift) *
3943 				 conf->prev.far_copies);
3944 		after_length = ((1 << conf->geo.chunk_shift) *
3945 				conf->geo.far_copies);
3946 
3947 		if (max(before_length, after_length) > min_offset_diff) {
3948 			/* This cannot work */
3949 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3950 			goto out_free_conf;
3951 		}
3952 		conf->offset_diff = min_offset_diff;
3953 
3954 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3955 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3956 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3957 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3958 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3959 							"reshape");
3960 	}
3961 
3962 	return 0;
3963 
3964 out_free_conf:
3965 	md_unregister_thread(&mddev->thread);
3966 	mempool_exit(&conf->r10bio_pool);
3967 	safe_put_page(conf->tmppage);
3968 	kfree(conf->mirrors);
3969 	kfree(conf);
3970 	mddev->private = NULL;
3971 out:
3972 	return -EIO;
3973 }
3974 
3975 static void raid10_free(struct mddev *mddev, void *priv)
3976 {
3977 	struct r10conf *conf = priv;
3978 
3979 	mempool_exit(&conf->r10bio_pool);
3980 	safe_put_page(conf->tmppage);
3981 	kfree(conf->mirrors);
3982 	kfree(conf->mirrors_old);
3983 	kfree(conf->mirrors_new);
3984 	bioset_exit(&conf->bio_split);
3985 	kfree(conf);
3986 }
3987 
3988 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3989 {
3990 	struct r10conf *conf = mddev->private;
3991 
3992 	if (quiesce)
3993 		raise_barrier(conf, 0);
3994 	else
3995 		lower_barrier(conf);
3996 }
3997 
3998 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3999 {
4000 	/* Resize of 'far' arrays is not supported.
4001 	 * For 'near' and 'offset' arrays we can set the
4002 	 * number of sectors used to be an appropriate multiple
4003 	 * of the chunk size.
4004 	 * For 'offset', this is far_copies*chunksize.
4005 	 * For 'near' the multiplier is the LCM of
4006 	 * near_copies and raid_disks.
4007 	 * So if far_copies > 1 && !far_offset, fail.
4008 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4009 	 * multiply by chunk_size.  Then round to this number.
4010 	 * This is mostly done by raid10_size()
4011 	 */
4012 	struct r10conf *conf = mddev->private;
4013 	sector_t oldsize, size;
4014 
4015 	if (mddev->reshape_position != MaxSector)
4016 		return -EBUSY;
4017 
4018 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4019 		return -EINVAL;
4020 
4021 	oldsize = raid10_size(mddev, 0, 0);
4022 	size = raid10_size(mddev, sectors, 0);
4023 	if (mddev->external_size &&
4024 	    mddev->array_sectors > size)
4025 		return -EINVAL;
4026 	if (mddev->bitmap) {
4027 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4028 		if (ret)
4029 			return ret;
4030 	}
4031 	md_set_array_sectors(mddev, size);
4032 	if (sectors > mddev->dev_sectors &&
4033 	    mddev->recovery_cp > oldsize) {
4034 		mddev->recovery_cp = oldsize;
4035 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4036 	}
4037 	calc_sectors(conf, sectors);
4038 	mddev->dev_sectors = conf->dev_sectors;
4039 	mddev->resync_max_sectors = size;
4040 	return 0;
4041 }
4042 
4043 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4044 {
4045 	struct md_rdev *rdev;
4046 	struct r10conf *conf;
4047 
4048 	if (mddev->degraded > 0) {
4049 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4050 			mdname(mddev));
4051 		return ERR_PTR(-EINVAL);
4052 	}
4053 	sector_div(size, devs);
4054 
4055 	/* Set new parameters */
4056 	mddev->new_level = 10;
4057 	/* new layout: far_copies = 1, near_copies = 2 */
4058 	mddev->new_layout = (1<<8) + 2;
4059 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4060 	mddev->delta_disks = mddev->raid_disks;
4061 	mddev->raid_disks *= 2;
4062 	/* make sure it will be not marked as dirty */
4063 	mddev->recovery_cp = MaxSector;
4064 	mddev->dev_sectors = size;
4065 
4066 	conf = setup_conf(mddev);
4067 	if (!IS_ERR(conf)) {
4068 		rdev_for_each(rdev, mddev)
4069 			if (rdev->raid_disk >= 0) {
4070 				rdev->new_raid_disk = rdev->raid_disk * 2;
4071 				rdev->sectors = size;
4072 			}
4073 		conf->barrier = 1;
4074 	}
4075 
4076 	return conf;
4077 }
4078 
4079 static void *raid10_takeover(struct mddev *mddev)
4080 {
4081 	struct r0conf *raid0_conf;
4082 
4083 	/* raid10 can take over:
4084 	 *  raid0 - providing it has only two drives
4085 	 */
4086 	if (mddev->level == 0) {
4087 		/* for raid0 takeover only one zone is supported */
4088 		raid0_conf = mddev->private;
4089 		if (raid0_conf->nr_strip_zones > 1) {
4090 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4091 				mdname(mddev));
4092 			return ERR_PTR(-EINVAL);
4093 		}
4094 		return raid10_takeover_raid0(mddev,
4095 			raid0_conf->strip_zone->zone_end,
4096 			raid0_conf->strip_zone->nb_dev);
4097 	}
4098 	return ERR_PTR(-EINVAL);
4099 }
4100 
4101 static int raid10_check_reshape(struct mddev *mddev)
4102 {
4103 	/* Called when there is a request to change
4104 	 * - layout (to ->new_layout)
4105 	 * - chunk size (to ->new_chunk_sectors)
4106 	 * - raid_disks (by delta_disks)
4107 	 * or when trying to restart a reshape that was ongoing.
4108 	 *
4109 	 * We need to validate the request and possibly allocate
4110 	 * space if that might be an issue later.
4111 	 *
4112 	 * Currently we reject any reshape of a 'far' mode array,
4113 	 * allow chunk size to change if new is generally acceptable,
4114 	 * allow raid_disks to increase, and allow
4115 	 * a switch between 'near' mode and 'offset' mode.
4116 	 */
4117 	struct r10conf *conf = mddev->private;
4118 	struct geom geo;
4119 
4120 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4121 		return -EINVAL;
4122 
4123 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4124 		/* mustn't change number of copies */
4125 		return -EINVAL;
4126 	if (geo.far_copies > 1 && !geo.far_offset)
4127 		/* Cannot switch to 'far' mode */
4128 		return -EINVAL;
4129 
4130 	if (mddev->array_sectors & geo.chunk_mask)
4131 			/* not factor of array size */
4132 			return -EINVAL;
4133 
4134 	if (!enough(conf, -1))
4135 		return -EINVAL;
4136 
4137 	kfree(conf->mirrors_new);
4138 	conf->mirrors_new = NULL;
4139 	if (mddev->delta_disks > 0) {
4140 		/* allocate new 'mirrors' list */
4141 		conf->mirrors_new =
4142 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4143 				sizeof(struct raid10_info),
4144 				GFP_KERNEL);
4145 		if (!conf->mirrors_new)
4146 			return -ENOMEM;
4147 	}
4148 	return 0;
4149 }
4150 
4151 /*
4152  * Need to check if array has failed when deciding whether to:
4153  *  - start an array
4154  *  - remove non-faulty devices
4155  *  - add a spare
4156  *  - allow a reshape
4157  * This determination is simple when no reshape is happening.
4158  * However if there is a reshape, we need to carefully check
4159  * both the before and after sections.
4160  * This is because some failed devices may only affect one
4161  * of the two sections, and some non-in_sync devices may
4162  * be insync in the section most affected by failed devices.
4163  */
4164 static int calc_degraded(struct r10conf *conf)
4165 {
4166 	int degraded, degraded2;
4167 	int i;
4168 
4169 	rcu_read_lock();
4170 	degraded = 0;
4171 	/* 'prev' section first */
4172 	for (i = 0; i < conf->prev.raid_disks; i++) {
4173 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4174 		if (!rdev || test_bit(Faulty, &rdev->flags))
4175 			degraded++;
4176 		else if (!test_bit(In_sync, &rdev->flags))
4177 			/* When we can reduce the number of devices in
4178 			 * an array, this might not contribute to
4179 			 * 'degraded'.  It does now.
4180 			 */
4181 			degraded++;
4182 	}
4183 	rcu_read_unlock();
4184 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4185 		return degraded;
4186 	rcu_read_lock();
4187 	degraded2 = 0;
4188 	for (i = 0; i < conf->geo.raid_disks; i++) {
4189 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4190 		if (!rdev || test_bit(Faulty, &rdev->flags))
4191 			degraded2++;
4192 		else if (!test_bit(In_sync, &rdev->flags)) {
4193 			/* If reshape is increasing the number of devices,
4194 			 * this section has already been recovered, so
4195 			 * it doesn't contribute to degraded.
4196 			 * else it does.
4197 			 */
4198 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4199 				degraded2++;
4200 		}
4201 	}
4202 	rcu_read_unlock();
4203 	if (degraded2 > degraded)
4204 		return degraded2;
4205 	return degraded;
4206 }
4207 
4208 static int raid10_start_reshape(struct mddev *mddev)
4209 {
4210 	/* A 'reshape' has been requested. This commits
4211 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4212 	 * This also checks if there are enough spares and adds them
4213 	 * to the array.
4214 	 * We currently require enough spares to make the final
4215 	 * array non-degraded.  We also require that the difference
4216 	 * between old and new data_offset - on each device - is
4217 	 * enough that we never risk over-writing.
4218 	 */
4219 
4220 	unsigned long before_length, after_length;
4221 	sector_t min_offset_diff = 0;
4222 	int first = 1;
4223 	struct geom new;
4224 	struct r10conf *conf = mddev->private;
4225 	struct md_rdev *rdev;
4226 	int spares = 0;
4227 	int ret;
4228 
4229 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4230 		return -EBUSY;
4231 
4232 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4233 		return -EINVAL;
4234 
4235 	before_length = ((1 << conf->prev.chunk_shift) *
4236 			 conf->prev.far_copies);
4237 	after_length = ((1 << conf->geo.chunk_shift) *
4238 			conf->geo.far_copies);
4239 
4240 	rdev_for_each(rdev, mddev) {
4241 		if (!test_bit(In_sync, &rdev->flags)
4242 		    && !test_bit(Faulty, &rdev->flags))
4243 			spares++;
4244 		if (rdev->raid_disk >= 0) {
4245 			long long diff = (rdev->new_data_offset
4246 					  - rdev->data_offset);
4247 			if (!mddev->reshape_backwards)
4248 				diff = -diff;
4249 			if (diff < 0)
4250 				diff = 0;
4251 			if (first || diff < min_offset_diff)
4252 				min_offset_diff = diff;
4253 			first = 0;
4254 		}
4255 	}
4256 
4257 	if (max(before_length, after_length) > min_offset_diff)
4258 		return -EINVAL;
4259 
4260 	if (spares < mddev->delta_disks)
4261 		return -EINVAL;
4262 
4263 	conf->offset_diff = min_offset_diff;
4264 	spin_lock_irq(&conf->device_lock);
4265 	if (conf->mirrors_new) {
4266 		memcpy(conf->mirrors_new, conf->mirrors,
4267 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4268 		smp_mb();
4269 		kfree(conf->mirrors_old);
4270 		conf->mirrors_old = conf->mirrors;
4271 		conf->mirrors = conf->mirrors_new;
4272 		conf->mirrors_new = NULL;
4273 	}
4274 	setup_geo(&conf->geo, mddev, geo_start);
4275 	smp_mb();
4276 	if (mddev->reshape_backwards) {
4277 		sector_t size = raid10_size(mddev, 0, 0);
4278 		if (size < mddev->array_sectors) {
4279 			spin_unlock_irq(&conf->device_lock);
4280 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4281 				mdname(mddev));
4282 			return -EINVAL;
4283 		}
4284 		mddev->resync_max_sectors = size;
4285 		conf->reshape_progress = size;
4286 	} else
4287 		conf->reshape_progress = 0;
4288 	conf->reshape_safe = conf->reshape_progress;
4289 	spin_unlock_irq(&conf->device_lock);
4290 
4291 	if (mddev->delta_disks && mddev->bitmap) {
4292 		struct mdp_superblock_1 *sb = NULL;
4293 		sector_t oldsize, newsize;
4294 
4295 		oldsize = raid10_size(mddev, 0, 0);
4296 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4297 
4298 		if (!mddev_is_clustered(mddev)) {
4299 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4300 			if (ret)
4301 				goto abort;
4302 			else
4303 				goto out;
4304 		}
4305 
4306 		rdev_for_each(rdev, mddev) {
4307 			if (rdev->raid_disk > -1 &&
4308 			    !test_bit(Faulty, &rdev->flags))
4309 				sb = page_address(rdev->sb_page);
4310 		}
4311 
4312 		/*
4313 		 * some node is already performing reshape, and no need to
4314 		 * call md_bitmap_resize again since it should be called when
4315 		 * receiving BITMAP_RESIZE msg
4316 		 */
4317 		if ((sb && (le32_to_cpu(sb->feature_map) &
4318 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4319 			goto out;
4320 
4321 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4322 		if (ret)
4323 			goto abort;
4324 
4325 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4326 		if (ret) {
4327 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4328 			goto abort;
4329 		}
4330 	}
4331 out:
4332 	if (mddev->delta_disks > 0) {
4333 		rdev_for_each(rdev, mddev)
4334 			if (rdev->raid_disk < 0 &&
4335 			    !test_bit(Faulty, &rdev->flags)) {
4336 				if (raid10_add_disk(mddev, rdev) == 0) {
4337 					if (rdev->raid_disk >=
4338 					    conf->prev.raid_disks)
4339 						set_bit(In_sync, &rdev->flags);
4340 					else
4341 						rdev->recovery_offset = 0;
4342 
4343 					if (sysfs_link_rdev(mddev, rdev))
4344 						/* Failure here  is OK */;
4345 				}
4346 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4347 				   && !test_bit(Faulty, &rdev->flags)) {
4348 				/* This is a spare that was manually added */
4349 				set_bit(In_sync, &rdev->flags);
4350 			}
4351 	}
4352 	/* When a reshape changes the number of devices,
4353 	 * ->degraded is measured against the larger of the
4354 	 * pre and  post numbers.
4355 	 */
4356 	spin_lock_irq(&conf->device_lock);
4357 	mddev->degraded = calc_degraded(conf);
4358 	spin_unlock_irq(&conf->device_lock);
4359 	mddev->raid_disks = conf->geo.raid_disks;
4360 	mddev->reshape_position = conf->reshape_progress;
4361 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4362 
4363 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4364 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4365 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4366 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4367 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4368 
4369 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4370 						"reshape");
4371 	if (!mddev->sync_thread) {
4372 		ret = -EAGAIN;
4373 		goto abort;
4374 	}
4375 	conf->reshape_checkpoint = jiffies;
4376 	md_wakeup_thread(mddev->sync_thread);
4377 	md_new_event(mddev);
4378 	return 0;
4379 
4380 abort:
4381 	mddev->recovery = 0;
4382 	spin_lock_irq(&conf->device_lock);
4383 	conf->geo = conf->prev;
4384 	mddev->raid_disks = conf->geo.raid_disks;
4385 	rdev_for_each(rdev, mddev)
4386 		rdev->new_data_offset = rdev->data_offset;
4387 	smp_wmb();
4388 	conf->reshape_progress = MaxSector;
4389 	conf->reshape_safe = MaxSector;
4390 	mddev->reshape_position = MaxSector;
4391 	spin_unlock_irq(&conf->device_lock);
4392 	return ret;
4393 }
4394 
4395 /* Calculate the last device-address that could contain
4396  * any block from the chunk that includes the array-address 's'
4397  * and report the next address.
4398  * i.e. the address returned will be chunk-aligned and after
4399  * any data that is in the chunk containing 's'.
4400  */
4401 static sector_t last_dev_address(sector_t s, struct geom *geo)
4402 {
4403 	s = (s | geo->chunk_mask) + 1;
4404 	s >>= geo->chunk_shift;
4405 	s *= geo->near_copies;
4406 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4407 	s *= geo->far_copies;
4408 	s <<= geo->chunk_shift;
4409 	return s;
4410 }
4411 
4412 /* Calculate the first device-address that could contain
4413  * any block from the chunk that includes the array-address 's'.
4414  * This too will be the start of a chunk
4415  */
4416 static sector_t first_dev_address(sector_t s, struct geom *geo)
4417 {
4418 	s >>= geo->chunk_shift;
4419 	s *= geo->near_copies;
4420 	sector_div(s, geo->raid_disks);
4421 	s *= geo->far_copies;
4422 	s <<= geo->chunk_shift;
4423 	return s;
4424 }
4425 
4426 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4427 				int *skipped)
4428 {
4429 	/* We simply copy at most one chunk (smallest of old and new)
4430 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4431 	 * or we hit a bad block or something.
4432 	 * This might mean we pause for normal IO in the middle of
4433 	 * a chunk, but that is not a problem as mddev->reshape_position
4434 	 * can record any location.
4435 	 *
4436 	 * If we will want to write to a location that isn't
4437 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4438 	 * we need to flush all reshape requests and update the metadata.
4439 	 *
4440 	 * When reshaping forwards (e.g. to more devices), we interpret
4441 	 * 'safe' as the earliest block which might not have been copied
4442 	 * down yet.  We divide this by previous stripe size and multiply
4443 	 * by previous stripe length to get lowest device offset that we
4444 	 * cannot write to yet.
4445 	 * We interpret 'sector_nr' as an address that we want to write to.
4446 	 * From this we use last_device_address() to find where we might
4447 	 * write to, and first_device_address on the  'safe' position.
4448 	 * If this 'next' write position is after the 'safe' position,
4449 	 * we must update the metadata to increase the 'safe' position.
4450 	 *
4451 	 * When reshaping backwards, we round in the opposite direction
4452 	 * and perform the reverse test:  next write position must not be
4453 	 * less than current safe position.
4454 	 *
4455 	 * In all this the minimum difference in data offsets
4456 	 * (conf->offset_diff - always positive) allows a bit of slack,
4457 	 * so next can be after 'safe', but not by more than offset_diff
4458 	 *
4459 	 * We need to prepare all the bios here before we start any IO
4460 	 * to ensure the size we choose is acceptable to all devices.
4461 	 * The means one for each copy for write-out and an extra one for
4462 	 * read-in.
4463 	 * We store the read-in bio in ->master_bio and the others in
4464 	 * ->devs[x].bio and ->devs[x].repl_bio.
4465 	 */
4466 	struct r10conf *conf = mddev->private;
4467 	struct r10bio *r10_bio;
4468 	sector_t next, safe, last;
4469 	int max_sectors;
4470 	int nr_sectors;
4471 	int s;
4472 	struct md_rdev *rdev;
4473 	int need_flush = 0;
4474 	struct bio *blist;
4475 	struct bio *bio, *read_bio;
4476 	int sectors_done = 0;
4477 	struct page **pages;
4478 
4479 	if (sector_nr == 0) {
4480 		/* If restarting in the middle, skip the initial sectors */
4481 		if (mddev->reshape_backwards &&
4482 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4483 			sector_nr = (raid10_size(mddev, 0, 0)
4484 				     - conf->reshape_progress);
4485 		} else if (!mddev->reshape_backwards &&
4486 			   conf->reshape_progress > 0)
4487 			sector_nr = conf->reshape_progress;
4488 		if (sector_nr) {
4489 			mddev->curr_resync_completed = sector_nr;
4490 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4491 			*skipped = 1;
4492 			return sector_nr;
4493 		}
4494 	}
4495 
4496 	/* We don't use sector_nr to track where we are up to
4497 	 * as that doesn't work well for ->reshape_backwards.
4498 	 * So just use ->reshape_progress.
4499 	 */
4500 	if (mddev->reshape_backwards) {
4501 		/* 'next' is the earliest device address that we might
4502 		 * write to for this chunk in the new layout
4503 		 */
4504 		next = first_dev_address(conf->reshape_progress - 1,
4505 					 &conf->geo);
4506 
4507 		/* 'safe' is the last device address that we might read from
4508 		 * in the old layout after a restart
4509 		 */
4510 		safe = last_dev_address(conf->reshape_safe - 1,
4511 					&conf->prev);
4512 
4513 		if (next + conf->offset_diff < safe)
4514 			need_flush = 1;
4515 
4516 		last = conf->reshape_progress - 1;
4517 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4518 					       & conf->prev.chunk_mask);
4519 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4520 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4521 	} else {
4522 		/* 'next' is after the last device address that we
4523 		 * might write to for this chunk in the new layout
4524 		 */
4525 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4526 
4527 		/* 'safe' is the earliest device address that we might
4528 		 * read from in the old layout after a restart
4529 		 */
4530 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4531 
4532 		/* Need to update metadata if 'next' might be beyond 'safe'
4533 		 * as that would possibly corrupt data
4534 		 */
4535 		if (next > safe + conf->offset_diff)
4536 			need_flush = 1;
4537 
4538 		sector_nr = conf->reshape_progress;
4539 		last  = sector_nr | (conf->geo.chunk_mask
4540 				     & conf->prev.chunk_mask);
4541 
4542 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4543 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4544 	}
4545 
4546 	if (need_flush ||
4547 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4548 		/* Need to update reshape_position in metadata */
4549 		wait_barrier(conf);
4550 		mddev->reshape_position = conf->reshape_progress;
4551 		if (mddev->reshape_backwards)
4552 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4553 				- conf->reshape_progress;
4554 		else
4555 			mddev->curr_resync_completed = conf->reshape_progress;
4556 		conf->reshape_checkpoint = jiffies;
4557 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4558 		md_wakeup_thread(mddev->thread);
4559 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4560 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4561 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4562 			allow_barrier(conf);
4563 			return sectors_done;
4564 		}
4565 		conf->reshape_safe = mddev->reshape_position;
4566 		allow_barrier(conf);
4567 	}
4568 
4569 	raise_barrier(conf, 0);
4570 read_more:
4571 	/* Now schedule reads for blocks from sector_nr to last */
4572 	r10_bio = raid10_alloc_init_r10buf(conf);
4573 	r10_bio->state = 0;
4574 	raise_barrier(conf, 1);
4575 	atomic_set(&r10_bio->remaining, 0);
4576 	r10_bio->mddev = mddev;
4577 	r10_bio->sector = sector_nr;
4578 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4579 	r10_bio->sectors = last - sector_nr + 1;
4580 	rdev = read_balance(conf, r10_bio, &max_sectors);
4581 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4582 
4583 	if (!rdev) {
4584 		/* Cannot read from here, so need to record bad blocks
4585 		 * on all the target devices.
4586 		 */
4587 		// FIXME
4588 		mempool_free(r10_bio, &conf->r10buf_pool);
4589 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4590 		return sectors_done;
4591 	}
4592 
4593 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4594 
4595 	bio_set_dev(read_bio, rdev->bdev);
4596 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4597 			       + rdev->data_offset);
4598 	read_bio->bi_private = r10_bio;
4599 	read_bio->bi_end_io = end_reshape_read;
4600 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4601 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4602 	read_bio->bi_status = 0;
4603 	read_bio->bi_vcnt = 0;
4604 	read_bio->bi_iter.bi_size = 0;
4605 	r10_bio->master_bio = read_bio;
4606 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4607 
4608 	/*
4609 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4610 	 * write to the region to avoid conflict.
4611 	*/
4612 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4613 		struct mdp_superblock_1 *sb = NULL;
4614 		int sb_reshape_pos = 0;
4615 
4616 		conf->cluster_sync_low = sector_nr;
4617 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4618 		sb = page_address(rdev->sb_page);
4619 		if (sb) {
4620 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4621 			/*
4622 			 * Set cluster_sync_low again if next address for array
4623 			 * reshape is less than cluster_sync_low. Since we can't
4624 			 * update cluster_sync_low until it has finished reshape.
4625 			 */
4626 			if (sb_reshape_pos < conf->cluster_sync_low)
4627 				conf->cluster_sync_low = sb_reshape_pos;
4628 		}
4629 
4630 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4631 							  conf->cluster_sync_high);
4632 	}
4633 
4634 	/* Now find the locations in the new layout */
4635 	__raid10_find_phys(&conf->geo, r10_bio);
4636 
4637 	blist = read_bio;
4638 	read_bio->bi_next = NULL;
4639 
4640 	rcu_read_lock();
4641 	for (s = 0; s < conf->copies*2; s++) {
4642 		struct bio *b;
4643 		int d = r10_bio->devs[s/2].devnum;
4644 		struct md_rdev *rdev2;
4645 		if (s&1) {
4646 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4647 			b = r10_bio->devs[s/2].repl_bio;
4648 		} else {
4649 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4650 			b = r10_bio->devs[s/2].bio;
4651 		}
4652 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4653 			continue;
4654 
4655 		bio_set_dev(b, rdev2->bdev);
4656 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4657 			rdev2->new_data_offset;
4658 		b->bi_end_io = end_reshape_write;
4659 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4660 		b->bi_next = blist;
4661 		blist = b;
4662 	}
4663 
4664 	/* Now add as many pages as possible to all of these bios. */
4665 
4666 	nr_sectors = 0;
4667 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4668 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4669 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4670 		int len = (max_sectors - s) << 9;
4671 		if (len > PAGE_SIZE)
4672 			len = PAGE_SIZE;
4673 		for (bio = blist; bio ; bio = bio->bi_next) {
4674 			/*
4675 			 * won't fail because the vec table is big enough
4676 			 * to hold all these pages
4677 			 */
4678 			bio_add_page(bio, page, len, 0);
4679 		}
4680 		sector_nr += len >> 9;
4681 		nr_sectors += len >> 9;
4682 	}
4683 	rcu_read_unlock();
4684 	r10_bio->sectors = nr_sectors;
4685 
4686 	/* Now submit the read */
4687 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4688 	atomic_inc(&r10_bio->remaining);
4689 	read_bio->bi_next = NULL;
4690 	generic_make_request(read_bio);
4691 	sector_nr += nr_sectors;
4692 	sectors_done += nr_sectors;
4693 	if (sector_nr <= last)
4694 		goto read_more;
4695 
4696 	lower_barrier(conf);
4697 
4698 	/* Now that we have done the whole section we can
4699 	 * update reshape_progress
4700 	 */
4701 	if (mddev->reshape_backwards)
4702 		conf->reshape_progress -= sectors_done;
4703 	else
4704 		conf->reshape_progress += sectors_done;
4705 
4706 	return sectors_done;
4707 }
4708 
4709 static void end_reshape_request(struct r10bio *r10_bio);
4710 static int handle_reshape_read_error(struct mddev *mddev,
4711 				     struct r10bio *r10_bio);
4712 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4713 {
4714 	/* Reshape read completed.  Hopefully we have a block
4715 	 * to write out.
4716 	 * If we got a read error then we do sync 1-page reads from
4717 	 * elsewhere until we find the data - or give up.
4718 	 */
4719 	struct r10conf *conf = mddev->private;
4720 	int s;
4721 
4722 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4723 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4724 			/* Reshape has been aborted */
4725 			md_done_sync(mddev, r10_bio->sectors, 0);
4726 			return;
4727 		}
4728 
4729 	/* We definitely have the data in the pages, schedule the
4730 	 * writes.
4731 	 */
4732 	atomic_set(&r10_bio->remaining, 1);
4733 	for (s = 0; s < conf->copies*2; s++) {
4734 		struct bio *b;
4735 		int d = r10_bio->devs[s/2].devnum;
4736 		struct md_rdev *rdev;
4737 		rcu_read_lock();
4738 		if (s&1) {
4739 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4740 			b = r10_bio->devs[s/2].repl_bio;
4741 		} else {
4742 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4743 			b = r10_bio->devs[s/2].bio;
4744 		}
4745 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4746 			rcu_read_unlock();
4747 			continue;
4748 		}
4749 		atomic_inc(&rdev->nr_pending);
4750 		rcu_read_unlock();
4751 		md_sync_acct_bio(b, r10_bio->sectors);
4752 		atomic_inc(&r10_bio->remaining);
4753 		b->bi_next = NULL;
4754 		generic_make_request(b);
4755 	}
4756 	end_reshape_request(r10_bio);
4757 }
4758 
4759 static void end_reshape(struct r10conf *conf)
4760 {
4761 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4762 		return;
4763 
4764 	spin_lock_irq(&conf->device_lock);
4765 	conf->prev = conf->geo;
4766 	md_finish_reshape(conf->mddev);
4767 	smp_wmb();
4768 	conf->reshape_progress = MaxSector;
4769 	conf->reshape_safe = MaxSector;
4770 	spin_unlock_irq(&conf->device_lock);
4771 
4772 	/* read-ahead size must cover two whole stripes, which is
4773 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4774 	 */
4775 	if (conf->mddev->queue) {
4776 		int stripe = conf->geo.raid_disks *
4777 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4778 		stripe /= conf->geo.near_copies;
4779 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4780 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4781 	}
4782 	conf->fullsync = 0;
4783 }
4784 
4785 static void raid10_update_reshape_pos(struct mddev *mddev)
4786 {
4787 	struct r10conf *conf = mddev->private;
4788 	sector_t lo, hi;
4789 
4790 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4791 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4792 	    || mddev->reshape_position == MaxSector)
4793 		conf->reshape_progress = mddev->reshape_position;
4794 	else
4795 		WARN_ON_ONCE(1);
4796 }
4797 
4798 static int handle_reshape_read_error(struct mddev *mddev,
4799 				     struct r10bio *r10_bio)
4800 {
4801 	/* Use sync reads to get the blocks from somewhere else */
4802 	int sectors = r10_bio->sectors;
4803 	struct r10conf *conf = mddev->private;
4804 	struct r10bio *r10b;
4805 	int slot = 0;
4806 	int idx = 0;
4807 	struct page **pages;
4808 
4809 	r10b = kmalloc(sizeof(*r10b) +
4810 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4811 	if (!r10b) {
4812 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4813 		return -ENOMEM;
4814 	}
4815 
4816 	/* reshape IOs share pages from .devs[0].bio */
4817 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4818 
4819 	r10b->sector = r10_bio->sector;
4820 	__raid10_find_phys(&conf->prev, r10b);
4821 
4822 	while (sectors) {
4823 		int s = sectors;
4824 		int success = 0;
4825 		int first_slot = slot;
4826 
4827 		if (s > (PAGE_SIZE >> 9))
4828 			s = PAGE_SIZE >> 9;
4829 
4830 		rcu_read_lock();
4831 		while (!success) {
4832 			int d = r10b->devs[slot].devnum;
4833 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4834 			sector_t addr;
4835 			if (rdev == NULL ||
4836 			    test_bit(Faulty, &rdev->flags) ||
4837 			    !test_bit(In_sync, &rdev->flags))
4838 				goto failed;
4839 
4840 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4841 			atomic_inc(&rdev->nr_pending);
4842 			rcu_read_unlock();
4843 			success = sync_page_io(rdev,
4844 					       addr,
4845 					       s << 9,
4846 					       pages[idx],
4847 					       REQ_OP_READ, 0, false);
4848 			rdev_dec_pending(rdev, mddev);
4849 			rcu_read_lock();
4850 			if (success)
4851 				break;
4852 		failed:
4853 			slot++;
4854 			if (slot >= conf->copies)
4855 				slot = 0;
4856 			if (slot == first_slot)
4857 				break;
4858 		}
4859 		rcu_read_unlock();
4860 		if (!success) {
4861 			/* couldn't read this block, must give up */
4862 			set_bit(MD_RECOVERY_INTR,
4863 				&mddev->recovery);
4864 			kfree(r10b);
4865 			return -EIO;
4866 		}
4867 		sectors -= s;
4868 		idx++;
4869 	}
4870 	kfree(r10b);
4871 	return 0;
4872 }
4873 
4874 static void end_reshape_write(struct bio *bio)
4875 {
4876 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4877 	struct mddev *mddev = r10_bio->mddev;
4878 	struct r10conf *conf = mddev->private;
4879 	int d;
4880 	int slot;
4881 	int repl;
4882 	struct md_rdev *rdev = NULL;
4883 
4884 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4885 	if (repl)
4886 		rdev = conf->mirrors[d].replacement;
4887 	if (!rdev) {
4888 		smp_mb();
4889 		rdev = conf->mirrors[d].rdev;
4890 	}
4891 
4892 	if (bio->bi_status) {
4893 		/* FIXME should record badblock */
4894 		md_error(mddev, rdev);
4895 	}
4896 
4897 	rdev_dec_pending(rdev, mddev);
4898 	end_reshape_request(r10_bio);
4899 }
4900 
4901 static void end_reshape_request(struct r10bio *r10_bio)
4902 {
4903 	if (!atomic_dec_and_test(&r10_bio->remaining))
4904 		return;
4905 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4906 	bio_put(r10_bio->master_bio);
4907 	put_buf(r10_bio);
4908 }
4909 
4910 static void raid10_finish_reshape(struct mddev *mddev)
4911 {
4912 	struct r10conf *conf = mddev->private;
4913 
4914 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4915 		return;
4916 
4917 	if (mddev->delta_disks > 0) {
4918 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4919 			mddev->recovery_cp = mddev->resync_max_sectors;
4920 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4921 		}
4922 		mddev->resync_max_sectors = mddev->array_sectors;
4923 	} else {
4924 		int d;
4925 		rcu_read_lock();
4926 		for (d = conf->geo.raid_disks ;
4927 		     d < conf->geo.raid_disks - mddev->delta_disks;
4928 		     d++) {
4929 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4930 			if (rdev)
4931 				clear_bit(In_sync, &rdev->flags);
4932 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4933 			if (rdev)
4934 				clear_bit(In_sync, &rdev->flags);
4935 		}
4936 		rcu_read_unlock();
4937 	}
4938 	mddev->layout = mddev->new_layout;
4939 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4940 	mddev->reshape_position = MaxSector;
4941 	mddev->delta_disks = 0;
4942 	mddev->reshape_backwards = 0;
4943 }
4944 
4945 static struct md_personality raid10_personality =
4946 {
4947 	.name		= "raid10",
4948 	.level		= 10,
4949 	.owner		= THIS_MODULE,
4950 	.make_request	= raid10_make_request,
4951 	.run		= raid10_run,
4952 	.free		= raid10_free,
4953 	.status		= raid10_status,
4954 	.error_handler	= raid10_error,
4955 	.hot_add_disk	= raid10_add_disk,
4956 	.hot_remove_disk= raid10_remove_disk,
4957 	.spare_active	= raid10_spare_active,
4958 	.sync_request	= raid10_sync_request,
4959 	.quiesce	= raid10_quiesce,
4960 	.size		= raid10_size,
4961 	.resize		= raid10_resize,
4962 	.takeover	= raid10_takeover,
4963 	.check_reshape	= raid10_check_reshape,
4964 	.start_reshape	= raid10_start_reshape,
4965 	.finish_reshape	= raid10_finish_reshape,
4966 	.update_reshape_pos = raid10_update_reshape_pos,
4967 	.congested	= raid10_congested,
4968 };
4969 
4970 static int __init raid_init(void)
4971 {
4972 	return register_md_personality(&raid10_personality);
4973 }
4974 
4975 static void raid_exit(void)
4976 {
4977 	unregister_md_personality(&raid10_personality);
4978 }
4979 
4980 module_init(raid_init);
4981 module_exit(raid_exit);
4982 MODULE_LICENSE("GPL");
4983 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4984 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4985 MODULE_ALIAS("md-raid10");
4986 MODULE_ALIAS("md-level-10");
4987 
4988 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4989