1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/net.h> 49 #define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \ 50 / (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16))) 51 52 #include "hfi.h" 53 #include "mad.h" 54 #include "trace.h" 55 #include "qp.h" 56 57 /* the reset value from the FM is supposed to be 0xffff, handle both */ 58 #define OPA_LINK_WIDTH_RESET_OLD 0x0fff 59 #define OPA_LINK_WIDTH_RESET 0xffff 60 61 static int reply(struct ib_mad_hdr *smp) 62 { 63 /* 64 * The verbs framework will handle the directed/LID route 65 * packet changes. 66 */ 67 smp->method = IB_MGMT_METHOD_GET_RESP; 68 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) 69 smp->status |= IB_SMP_DIRECTION; 70 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY; 71 } 72 73 static inline void clear_opa_smp_data(struct opa_smp *smp) 74 { 75 void *data = opa_get_smp_data(smp); 76 size_t size = opa_get_smp_data_size(smp); 77 78 memset(data, 0, size); 79 } 80 81 void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port) 82 { 83 struct ib_event event; 84 85 event.event = IB_EVENT_PKEY_CHANGE; 86 event.device = &dd->verbs_dev.rdi.ibdev; 87 event.element.port_num = port; 88 ib_dispatch_event(&event); 89 } 90 91 static void send_trap(struct hfi1_ibport *ibp, void *data, unsigned len) 92 { 93 struct ib_mad_send_buf *send_buf; 94 struct ib_mad_agent *agent; 95 struct opa_smp *smp; 96 int ret; 97 unsigned long flags; 98 unsigned long timeout; 99 int pkey_idx; 100 u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp; 101 102 agent = ibp->rvp.send_agent; 103 if (!agent) 104 return; 105 106 /* o14-3.2.1 */ 107 if (ppd_from_ibp(ibp)->lstate != IB_PORT_ACTIVE) 108 return; 109 110 /* o14-2 */ 111 if (ibp->rvp.trap_timeout && time_before(jiffies, 112 ibp->rvp.trap_timeout)) 113 return; 114 115 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 116 if (pkey_idx < 0) { 117 pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n", 118 __func__, hfi1_get_pkey(ibp, 1)); 119 pkey_idx = 1; 120 } 121 122 send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0, 123 IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, 124 GFP_ATOMIC, IB_MGMT_BASE_VERSION); 125 if (IS_ERR(send_buf)) 126 return; 127 128 smp = send_buf->mad; 129 smp->base_version = OPA_MGMT_BASE_VERSION; 130 smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED; 131 smp->class_version = OPA_SMI_CLASS_VERSION; 132 smp->method = IB_MGMT_METHOD_TRAP; 133 ibp->rvp.tid++; 134 smp->tid = cpu_to_be64(ibp->rvp.tid); 135 smp->attr_id = IB_SMP_ATTR_NOTICE; 136 /* o14-1: smp->mkey = 0; */ 137 memcpy(smp->route.lid.data, data, len); 138 139 spin_lock_irqsave(&ibp->rvp.lock, flags); 140 if (!ibp->rvp.sm_ah) { 141 if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) { 142 struct ib_ah *ah; 143 144 ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid); 145 if (IS_ERR(ah)) { 146 ret = PTR_ERR(ah); 147 } else { 148 send_buf->ah = ah; 149 ibp->rvp.sm_ah = ibah_to_rvtah(ah); 150 ret = 0; 151 } 152 } else { 153 ret = -EINVAL; 154 } 155 } else { 156 send_buf->ah = &ibp->rvp.sm_ah->ibah; 157 ret = 0; 158 } 159 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 160 161 if (!ret) 162 ret = ib_post_send_mad(send_buf, NULL); 163 if (!ret) { 164 /* 4.096 usec. */ 165 timeout = (4096 * (1UL << ibp->rvp.subnet_timeout)) / 1000; 166 ibp->rvp.trap_timeout = jiffies + usecs_to_jiffies(timeout); 167 } else { 168 ib_free_send_mad(send_buf); 169 ibp->rvp.trap_timeout = 0; 170 } 171 } 172 173 /* 174 * Send a bad [PQ]_Key trap (ch. 14.3.8). 175 */ 176 void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl, 177 u32 qp1, u32 qp2, u16 lid1, u16 lid2) 178 { 179 struct opa_mad_notice_attr data; 180 u32 lid = ppd_from_ibp(ibp)->lid; 181 u32 _lid1 = lid1; 182 u32 _lid2 = lid2; 183 184 memset(&data, 0, sizeof(data)); 185 186 if (trap_num == OPA_TRAP_BAD_P_KEY) 187 ibp->rvp.pkey_violations++; 188 else 189 ibp->rvp.qkey_violations++; 190 ibp->rvp.n_pkt_drops++; 191 192 /* Send violation trap */ 193 data.generic_type = IB_NOTICE_TYPE_SECURITY; 194 data.prod_type_lsb = IB_NOTICE_PROD_CA; 195 data.trap_num = trap_num; 196 data.issuer_lid = cpu_to_be32(lid); 197 data.ntc_257_258.lid1 = cpu_to_be32(_lid1); 198 data.ntc_257_258.lid2 = cpu_to_be32(_lid2); 199 data.ntc_257_258.key = cpu_to_be32(key); 200 data.ntc_257_258.sl = sl << 3; 201 data.ntc_257_258.qp1 = cpu_to_be32(qp1); 202 data.ntc_257_258.qp2 = cpu_to_be32(qp2); 203 204 send_trap(ibp, &data, sizeof(data)); 205 } 206 207 /* 208 * Send a bad M_Key trap (ch. 14.3.9). 209 */ 210 static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 211 __be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt) 212 { 213 struct opa_mad_notice_attr data; 214 u32 lid = ppd_from_ibp(ibp)->lid; 215 216 memset(&data, 0, sizeof(data)); 217 /* Send violation trap */ 218 data.generic_type = IB_NOTICE_TYPE_SECURITY; 219 data.prod_type_lsb = IB_NOTICE_PROD_CA; 220 data.trap_num = OPA_TRAP_BAD_M_KEY; 221 data.issuer_lid = cpu_to_be32(lid); 222 data.ntc_256.lid = data.issuer_lid; 223 data.ntc_256.method = mad->method; 224 data.ntc_256.attr_id = mad->attr_id; 225 data.ntc_256.attr_mod = mad->attr_mod; 226 data.ntc_256.mkey = mkey; 227 if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 228 data.ntc_256.dr_slid = dr_slid; 229 data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE; 230 if (hop_cnt > ARRAY_SIZE(data.ntc_256.dr_rtn_path)) { 231 data.ntc_256.dr_trunc_hop |= 232 IB_NOTICE_TRAP_DR_TRUNC; 233 hop_cnt = ARRAY_SIZE(data.ntc_256.dr_rtn_path); 234 } 235 data.ntc_256.dr_trunc_hop |= hop_cnt; 236 memcpy(data.ntc_256.dr_rtn_path, return_path, 237 hop_cnt); 238 } 239 240 send_trap(ibp, &data, sizeof(data)); 241 } 242 243 /* 244 * Send a Port Capability Mask Changed trap (ch. 14.3.11). 245 */ 246 void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num) 247 { 248 struct opa_mad_notice_attr data; 249 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 250 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 251 struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data; 252 u32 lid = ppd_from_ibp(ibp)->lid; 253 254 memset(&data, 0, sizeof(data)); 255 256 data.generic_type = IB_NOTICE_TYPE_INFO; 257 data.prod_type_lsb = IB_NOTICE_PROD_CA; 258 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 259 data.issuer_lid = cpu_to_be32(lid); 260 data.ntc_144.lid = data.issuer_lid; 261 data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 262 263 send_trap(ibp, &data, sizeof(data)); 264 } 265 266 /* 267 * Send a System Image GUID Changed trap (ch. 14.3.12). 268 */ 269 void hfi1_sys_guid_chg(struct hfi1_ibport *ibp) 270 { 271 struct opa_mad_notice_attr data; 272 u32 lid = ppd_from_ibp(ibp)->lid; 273 274 memset(&data, 0, sizeof(data)); 275 276 data.generic_type = IB_NOTICE_TYPE_INFO; 277 data.prod_type_lsb = IB_NOTICE_PROD_CA; 278 data.trap_num = OPA_TRAP_CHANGE_SYSGUID; 279 data.issuer_lid = cpu_to_be32(lid); 280 data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid; 281 data.ntc_145.lid = data.issuer_lid; 282 283 send_trap(ibp, &data, sizeof(data)); 284 } 285 286 /* 287 * Send a Node Description Changed trap (ch. 14.3.13). 288 */ 289 void hfi1_node_desc_chg(struct hfi1_ibport *ibp) 290 { 291 struct opa_mad_notice_attr data; 292 u32 lid = ppd_from_ibp(ibp)->lid; 293 294 memset(&data, 0, sizeof(data)); 295 296 data.generic_type = IB_NOTICE_TYPE_INFO; 297 data.prod_type_lsb = IB_NOTICE_PROD_CA; 298 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 299 data.issuer_lid = cpu_to_be32(lid); 300 data.ntc_144.lid = data.issuer_lid; 301 data.ntc_144.change_flags = 302 cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG); 303 304 send_trap(ibp, &data, sizeof(data)); 305 } 306 307 static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am, 308 u8 *data, struct ib_device *ibdev, 309 u8 port, u32 *resp_len) 310 { 311 struct opa_node_description *nd; 312 313 if (am) { 314 smp->status |= IB_SMP_INVALID_FIELD; 315 return reply((struct ib_mad_hdr *)smp); 316 } 317 318 nd = (struct opa_node_description *)data; 319 320 memcpy(nd->data, ibdev->node_desc, sizeof(nd->data)); 321 322 if (resp_len) 323 *resp_len += sizeof(*nd); 324 325 return reply((struct ib_mad_hdr *)smp); 326 } 327 328 static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data, 329 struct ib_device *ibdev, u8 port, 330 u32 *resp_len) 331 { 332 struct opa_node_info *ni; 333 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 334 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 335 336 ni = (struct opa_node_info *)data; 337 338 /* GUID 0 is illegal */ 339 if (am || pidx >= dd->num_pports || dd->pport[pidx].guid == 0) { 340 smp->status |= IB_SMP_INVALID_FIELD; 341 return reply((struct ib_mad_hdr *)smp); 342 } 343 344 ni->port_guid = cpu_to_be64(dd->pport[pidx].guid); 345 ni->base_version = OPA_MGMT_BASE_VERSION; 346 ni->class_version = OPA_SMI_CLASS_VERSION; 347 ni->node_type = 1; /* channel adapter */ 348 ni->num_ports = ibdev->phys_port_cnt; 349 /* This is already in network order */ 350 ni->system_image_guid = ib_hfi1_sys_image_guid; 351 /* Use first-port GUID as node */ 352 ni->node_guid = cpu_to_be64(dd->pport->guid); 353 ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 354 ni->device_id = cpu_to_be16(dd->pcidev->device); 355 ni->revision = cpu_to_be32(dd->minrev); 356 ni->local_port_num = port; 357 ni->vendor_id[0] = dd->oui1; 358 ni->vendor_id[1] = dd->oui2; 359 ni->vendor_id[2] = dd->oui3; 360 361 if (resp_len) 362 *resp_len += sizeof(*ni); 363 364 return reply((struct ib_mad_hdr *)smp); 365 } 366 367 static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev, 368 u8 port) 369 { 370 struct ib_node_info *nip = (struct ib_node_info *)&smp->data; 371 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 372 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 373 374 /* GUID 0 is illegal */ 375 if (smp->attr_mod || pidx >= dd->num_pports || 376 dd->pport[pidx].guid == 0) 377 smp->status |= IB_SMP_INVALID_FIELD; 378 else 379 nip->port_guid = cpu_to_be64(dd->pport[pidx].guid); 380 381 nip->base_version = OPA_MGMT_BASE_VERSION; 382 nip->class_version = OPA_SMI_CLASS_VERSION; 383 nip->node_type = 1; /* channel adapter */ 384 nip->num_ports = ibdev->phys_port_cnt; 385 /* This is already in network order */ 386 nip->sys_guid = ib_hfi1_sys_image_guid; 387 /* Use first-port GUID as node */ 388 nip->node_guid = cpu_to_be64(dd->pport->guid); 389 nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 390 nip->device_id = cpu_to_be16(dd->pcidev->device); 391 nip->revision = cpu_to_be32(dd->minrev); 392 nip->local_port_num = port; 393 nip->vendor_id[0] = dd->oui1; 394 nip->vendor_id[1] = dd->oui2; 395 nip->vendor_id[2] = dd->oui3; 396 397 return reply((struct ib_mad_hdr *)smp); 398 } 399 400 static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w) 401 { 402 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w); 403 } 404 405 static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w) 406 { 407 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w); 408 } 409 410 static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s) 411 { 412 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s); 413 } 414 415 static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 416 int mad_flags, __be64 mkey, __be32 dr_slid, 417 u8 return_path[], u8 hop_cnt) 418 { 419 int valid_mkey = 0; 420 int ret = 0; 421 422 /* Is the mkey in the process of expiring? */ 423 if (ibp->rvp.mkey_lease_timeout && 424 time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) { 425 /* Clear timeout and mkey protection field. */ 426 ibp->rvp.mkey_lease_timeout = 0; 427 ibp->rvp.mkeyprot = 0; 428 } 429 430 if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 || 431 ibp->rvp.mkey == mkey) 432 valid_mkey = 1; 433 434 /* Unset lease timeout on any valid Get/Set/TrapRepress */ 435 if (valid_mkey && ibp->rvp.mkey_lease_timeout && 436 (mad->method == IB_MGMT_METHOD_GET || 437 mad->method == IB_MGMT_METHOD_SET || 438 mad->method == IB_MGMT_METHOD_TRAP_REPRESS)) 439 ibp->rvp.mkey_lease_timeout = 0; 440 441 if (!valid_mkey) { 442 switch (mad->method) { 443 case IB_MGMT_METHOD_GET: 444 /* Bad mkey not a violation below level 2 */ 445 if (ibp->rvp.mkeyprot < 2) 446 break; 447 case IB_MGMT_METHOD_SET: 448 case IB_MGMT_METHOD_TRAP_REPRESS: 449 if (ibp->rvp.mkey_violations != 0xFFFF) 450 ++ibp->rvp.mkey_violations; 451 if (!ibp->rvp.mkey_lease_timeout && 452 ibp->rvp.mkey_lease_period) 453 ibp->rvp.mkey_lease_timeout = jiffies + 454 ibp->rvp.mkey_lease_period * HZ; 455 /* Generate a trap notice. */ 456 bad_mkey(ibp, mad, mkey, dr_slid, return_path, 457 hop_cnt); 458 ret = 1; 459 } 460 } 461 462 return ret; 463 } 464 465 /* 466 * The SMA caches reads from LCB registers in case the LCB is unavailable. 467 * (The LCB is unavailable in certain link states, for example.) 468 */ 469 struct lcb_datum { 470 u32 off; 471 u64 val; 472 }; 473 474 static struct lcb_datum lcb_cache[] = { 475 { DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 }, 476 }; 477 478 static int write_lcb_cache(u32 off, u64 val) 479 { 480 int i; 481 482 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 483 if (lcb_cache[i].off == off) { 484 lcb_cache[i].val = val; 485 return 0; 486 } 487 } 488 489 pr_warn("%s bad offset 0x%x\n", __func__, off); 490 return -1; 491 } 492 493 static int read_lcb_cache(u32 off, u64 *val) 494 { 495 int i; 496 497 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 498 if (lcb_cache[i].off == off) { 499 *val = lcb_cache[i].val; 500 return 0; 501 } 502 } 503 504 pr_warn("%s bad offset 0x%x\n", __func__, off); 505 return -1; 506 } 507 508 void read_ltp_rtt(struct hfi1_devdata *dd) 509 { 510 u64 reg; 511 512 if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, ®)) 513 dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__); 514 else 515 write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg); 516 } 517 518 static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 519 struct ib_device *ibdev, u8 port, 520 u32 *resp_len) 521 { 522 int i; 523 struct hfi1_devdata *dd; 524 struct hfi1_pportdata *ppd; 525 struct hfi1_ibport *ibp; 526 struct opa_port_info *pi = (struct opa_port_info *)data; 527 u8 mtu; 528 u8 credit_rate; 529 u8 is_beaconing_active; 530 u32 state; 531 u32 num_ports = OPA_AM_NPORT(am); 532 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 533 u32 buffer_units; 534 u64 tmp = 0; 535 536 if (num_ports != 1) { 537 smp->status |= IB_SMP_INVALID_FIELD; 538 return reply((struct ib_mad_hdr *)smp); 539 } 540 541 dd = dd_from_ibdev(ibdev); 542 /* IB numbers ports from 1, hw from 0 */ 543 ppd = dd->pport + (port - 1); 544 ibp = &ppd->ibport_data; 545 546 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 547 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 548 smp->status |= IB_SMP_INVALID_FIELD; 549 return reply((struct ib_mad_hdr *)smp); 550 } 551 552 pi->lid = cpu_to_be32(ppd->lid); 553 554 /* Only return the mkey if the protection field allows it. */ 555 if (!(smp->method == IB_MGMT_METHOD_GET && 556 ibp->rvp.mkey != smp->mkey && 557 ibp->rvp.mkeyprot == 1)) 558 pi->mkey = ibp->rvp.mkey; 559 560 pi->subnet_prefix = ibp->rvp.gid_prefix; 561 pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid); 562 pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 563 pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period); 564 pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp); 565 pi->sa_qp = cpu_to_be32(ppd->sa_qp); 566 567 pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled); 568 pi->link_width.supported = cpu_to_be16(ppd->link_width_supported); 569 pi->link_width.active = cpu_to_be16(ppd->link_width_active); 570 571 pi->link_width_downgrade.supported = 572 cpu_to_be16(ppd->link_width_downgrade_supported); 573 pi->link_width_downgrade.enabled = 574 cpu_to_be16(ppd->link_width_downgrade_enabled); 575 pi->link_width_downgrade.tx_active = 576 cpu_to_be16(ppd->link_width_downgrade_tx_active); 577 pi->link_width_downgrade.rx_active = 578 cpu_to_be16(ppd->link_width_downgrade_rx_active); 579 580 pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported); 581 pi->link_speed.active = cpu_to_be16(ppd->link_speed_active); 582 pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled); 583 584 state = driver_lstate(ppd); 585 586 if (start_of_sm_config && (state == IB_PORT_INIT)) 587 ppd->is_sm_config_started = 1; 588 589 pi->port_phys_conf = (ppd->port_type & 0xf); 590 591 pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 592 pi->port_states.ledenable_offlinereason |= 593 ppd->is_sm_config_started << 5; 594 /* 595 * This pairs with the memory barrier in hfi1_start_led_override to 596 * ensure that we read the correct state of LED beaconing represented 597 * by led_override_timer_active 598 */ 599 smp_rmb(); 600 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 601 pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6; 602 pi->port_states.ledenable_offlinereason |= 603 ppd->offline_disabled_reason; 604 605 pi->port_states.portphysstate_portstate = 606 (hfi1_ibphys_portstate(ppd) << 4) | state; 607 608 pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc; 609 610 memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu)); 611 for (i = 0; i < ppd->vls_supported; i++) { 612 mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU); 613 if ((i % 2) == 0) 614 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4); 615 else 616 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu; 617 } 618 /* don't forget VL 15 */ 619 mtu = mtu_to_enum(dd->vld[15].mtu, 2048); 620 pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu; 621 pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL; 622 pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS); 623 pi->partenforce_filterraw |= 624 (ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON); 625 if (ppd->part_enforce & HFI1_PART_ENFORCE_IN) 626 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN; 627 if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT) 628 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT; 629 pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations); 630 /* P_KeyViolations are counted by hardware. */ 631 pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations); 632 pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations); 633 634 pi->vl.cap = ppd->vls_supported; 635 pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit); 636 pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP); 637 pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP); 638 639 pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout; 640 641 pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 | 642 OPA_PORT_LINK_MODE_OPA << 5 | 643 OPA_PORT_LINK_MODE_OPA); 644 645 pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode); 646 647 pi->port_mode = cpu_to_be16( 648 ppd->is_active_optimize_enabled ? 649 OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0); 650 651 pi->port_packet_format.supported = 652 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 653 pi->port_packet_format.enabled = 654 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 655 656 /* flit_control.interleave is (OPA V1, version .76): 657 * bits use 658 * ---- --- 659 * 2 res 660 * 2 DistanceSupported 661 * 2 DistanceEnabled 662 * 5 MaxNextLevelTxEnabled 663 * 5 MaxNestLevelRxSupported 664 * 665 * HFI supports only "distance mode 1" (see OPA V1, version .76, 666 * section 9.6.2), so set DistanceSupported, DistanceEnabled 667 * to 0x1. 668 */ 669 pi->flit_control.interleave = cpu_to_be16(0x1400); 670 671 pi->link_down_reason = ppd->local_link_down_reason.sma; 672 pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma; 673 pi->port_error_action = cpu_to_be32(ppd->port_error_action); 674 pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096); 675 676 /* 32.768 usec. response time (guessing) */ 677 pi->resptimevalue = 3; 678 679 pi->local_port_num = port; 680 681 /* buffer info for FM */ 682 pi->overall_buffer_space = cpu_to_be16(dd->link_credits); 683 684 pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid); 685 pi->neigh_port_num = ppd->neighbor_port_number; 686 pi->port_neigh_mode = 687 (ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) | 688 (ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) | 689 (ppd->neighbor_fm_security ? 690 OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0); 691 692 /* HFIs shall always return VL15 credits to their 693 * neighbor in a timely manner, without any credit return pacing. 694 */ 695 credit_rate = 0; 696 buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC; 697 buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK; 698 buffer_units |= (credit_rate << 6) & 699 OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE; 700 buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT; 701 pi->buffer_units = cpu_to_be32(buffer_units); 702 703 pi->opa_cap_mask = cpu_to_be16(OPA_CAP_MASK3_IsSharedSpaceSupported); 704 705 /* HFI supports a replay buffer 128 LTPs in size */ 706 pi->replay_depth.buffer = 0x80; 707 /* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 708 read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp); 709 710 /* 711 * this counter is 16 bits wide, but the replay_depth.wire 712 * variable is only 8 bits 713 */ 714 if (tmp > 0xff) 715 tmp = 0xff; 716 pi->replay_depth.wire = tmp; 717 718 if (resp_len) 719 *resp_len += sizeof(struct opa_port_info); 720 721 return reply((struct ib_mad_hdr *)smp); 722 } 723 724 /** 725 * get_pkeys - return the PKEY table 726 * @dd: the hfi1_ib device 727 * @port: the IB port number 728 * @pkeys: the pkey table is placed here 729 */ 730 static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 731 { 732 struct hfi1_pportdata *ppd = dd->pport + port - 1; 733 734 memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys)); 735 736 return 0; 737 } 738 739 static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 740 struct ib_device *ibdev, u8 port, 741 u32 *resp_len) 742 { 743 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 744 u32 n_blocks_req = OPA_AM_NBLK(am); 745 u32 start_block = am & 0x7ff; 746 __be16 *p; 747 u16 *q; 748 int i; 749 u16 n_blocks_avail; 750 unsigned npkeys = hfi1_get_npkeys(dd); 751 size_t size; 752 753 if (n_blocks_req == 0) { 754 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 755 port, start_block, n_blocks_req); 756 smp->status |= IB_SMP_INVALID_FIELD; 757 return reply((struct ib_mad_hdr *)smp); 758 } 759 760 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 761 762 size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16); 763 764 if (start_block + n_blocks_req > n_blocks_avail || 765 n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 766 pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; " 767 "avail 0x%x; blk/smp 0x%lx\n", 768 start_block, n_blocks_req, n_blocks_avail, 769 OPA_NUM_PKEY_BLOCKS_PER_SMP); 770 smp->status |= IB_SMP_INVALID_FIELD; 771 return reply((struct ib_mad_hdr *)smp); 772 } 773 774 p = (__be16 *)data; 775 q = (u16 *)data; 776 /* get the real pkeys if we are requesting the first block */ 777 if (start_block == 0) { 778 get_pkeys(dd, port, q); 779 for (i = 0; i < npkeys; i++) 780 p[i] = cpu_to_be16(q[i]); 781 if (resp_len) 782 *resp_len += size; 783 } else { 784 smp->status |= IB_SMP_INVALID_FIELD; 785 } 786 return reply((struct ib_mad_hdr *)smp); 787 } 788 789 enum { 790 HFI_TRANSITION_DISALLOWED, 791 HFI_TRANSITION_IGNORED, 792 HFI_TRANSITION_ALLOWED, 793 HFI_TRANSITION_UNDEFINED, 794 }; 795 796 /* 797 * Use shortened names to improve readability of 798 * {logical,physical}_state_transitions 799 */ 800 enum { 801 __D = HFI_TRANSITION_DISALLOWED, 802 __I = HFI_TRANSITION_IGNORED, 803 __A = HFI_TRANSITION_ALLOWED, 804 __U = HFI_TRANSITION_UNDEFINED, 805 }; 806 807 /* 808 * IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are 809 * represented in physical_state_transitions. 810 */ 811 #define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1) 812 813 /* 814 * Within physical_state_transitions, rows represent "old" states, 815 * columns "new" states, and physical_state_transitions.allowed[old][new] 816 * indicates if the transition from old state to new state is legal (see 817 * OPAg1v1, Table 6-4). 818 */ 819 static const struct { 820 u8 allowed[__N_PHYSTATES][__N_PHYSTATES]; 821 } physical_state_transitions = { 822 { 823 /* 2 3 4 5 6 7 8 9 10 11 */ 824 /* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D }, 825 /* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A }, 826 /* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 827 /* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D }, 828 /* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 829 /* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D }, 830 /* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 831 /* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D }, 832 /*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 833 /*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I }, 834 } 835 }; 836 837 /* 838 * IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented 839 * logical_state_transitions 840 */ 841 842 #define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1) 843 844 /* 845 * Within logical_state_transitions rows represent "old" states, 846 * columns "new" states, and logical_state_transitions.allowed[old][new] 847 * indicates if the transition from old state to new state is legal (see 848 * OPAg1v1, Table 9-12). 849 */ 850 static const struct { 851 u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES]; 852 } logical_state_transitions = { 853 { 854 /* 1 2 3 4 5 */ 855 /* 1 */ { __I, __D, __D, __D, __U}, 856 /* 2 */ { __D, __I, __A, __D, __U}, 857 /* 3 */ { __D, __D, __I, __A, __U}, 858 /* 4 */ { __D, __D, __I, __I, __U}, 859 /* 5 */ { __U, __U, __U, __U, __U}, 860 } 861 }; 862 863 static int logical_transition_allowed(int old, int new) 864 { 865 if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER || 866 new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) { 867 pr_warn("invalid logical state(s) (old %d new %d)\n", 868 old, new); 869 return HFI_TRANSITION_UNDEFINED; 870 } 871 872 if (new == IB_PORT_NOP) 873 return HFI_TRANSITION_ALLOWED; /* always allowed */ 874 875 /* adjust states for indexing into logical_state_transitions */ 876 old -= IB_PORT_DOWN; 877 new -= IB_PORT_DOWN; 878 879 if (old < 0 || new < 0) 880 return HFI_TRANSITION_UNDEFINED; 881 return logical_state_transitions.allowed[old][new]; 882 } 883 884 static int physical_transition_allowed(int old, int new) 885 { 886 if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX || 887 new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) { 888 pr_warn("invalid physical state(s) (old %d new %d)\n", 889 old, new); 890 return HFI_TRANSITION_UNDEFINED; 891 } 892 893 if (new == IB_PORTPHYSSTATE_NOP) 894 return HFI_TRANSITION_ALLOWED; /* always allowed */ 895 896 /* adjust states for indexing into physical_state_transitions */ 897 old -= IB_PORTPHYSSTATE_POLLING; 898 new -= IB_PORTPHYSSTATE_POLLING; 899 900 if (old < 0 || new < 0) 901 return HFI_TRANSITION_UNDEFINED; 902 return physical_state_transitions.allowed[old][new]; 903 } 904 905 static int port_states_transition_allowed(struct hfi1_pportdata *ppd, 906 u32 logical_new, u32 physical_new) 907 { 908 u32 physical_old = driver_physical_state(ppd); 909 u32 logical_old = driver_logical_state(ppd); 910 int ret, logical_allowed, physical_allowed; 911 912 ret = logical_transition_allowed(logical_old, logical_new); 913 logical_allowed = ret; 914 915 if (ret == HFI_TRANSITION_DISALLOWED || 916 ret == HFI_TRANSITION_UNDEFINED) { 917 pr_warn("invalid logical state transition %s -> %s\n", 918 opa_lstate_name(logical_old), 919 opa_lstate_name(logical_new)); 920 return ret; 921 } 922 923 ret = physical_transition_allowed(physical_old, physical_new); 924 physical_allowed = ret; 925 926 if (ret == HFI_TRANSITION_DISALLOWED || 927 ret == HFI_TRANSITION_UNDEFINED) { 928 pr_warn("invalid physical state transition %s -> %s\n", 929 opa_pstate_name(physical_old), 930 opa_pstate_name(physical_new)); 931 return ret; 932 } 933 934 if (logical_allowed == HFI_TRANSITION_IGNORED && 935 physical_allowed == HFI_TRANSITION_IGNORED) 936 return HFI_TRANSITION_IGNORED; 937 938 /* 939 * A change request of Physical Port State from 940 * 'Offline' to 'Polling' should be ignored. 941 */ 942 if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) && 943 (physical_new == IB_PORTPHYSSTATE_POLLING)) 944 return HFI_TRANSITION_IGNORED; 945 946 /* 947 * Either physical_allowed or logical_allowed is 948 * HFI_TRANSITION_ALLOWED. 949 */ 950 return HFI_TRANSITION_ALLOWED; 951 } 952 953 static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp, 954 u32 logical_state, u32 phys_state, 955 int suppress_idle_sma) 956 { 957 struct hfi1_devdata *dd = ppd->dd; 958 u32 link_state; 959 int ret; 960 961 ret = port_states_transition_allowed(ppd, logical_state, phys_state); 962 if (ret == HFI_TRANSITION_DISALLOWED || 963 ret == HFI_TRANSITION_UNDEFINED) { 964 /* error message emitted above */ 965 smp->status |= IB_SMP_INVALID_FIELD; 966 return 0; 967 } 968 969 if (ret == HFI_TRANSITION_IGNORED) 970 return 0; 971 972 if ((phys_state != IB_PORTPHYSSTATE_NOP) && 973 !(logical_state == IB_PORT_DOWN || 974 logical_state == IB_PORT_NOP)){ 975 pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n", 976 logical_state, phys_state); 977 smp->status |= IB_SMP_INVALID_FIELD; 978 } 979 980 /* 981 * Logical state changes are summarized in OPAv1g1 spec., 982 * Table 9-12; physical state changes are summarized in 983 * OPAv1g1 spec., Table 6.4. 984 */ 985 switch (logical_state) { 986 case IB_PORT_NOP: 987 if (phys_state == IB_PORTPHYSSTATE_NOP) 988 break; 989 /* FALLTHROUGH */ 990 case IB_PORT_DOWN: 991 if (phys_state == IB_PORTPHYSSTATE_NOP) { 992 link_state = HLS_DN_DOWNDEF; 993 } else if (phys_state == IB_PORTPHYSSTATE_POLLING) { 994 link_state = HLS_DN_POLL; 995 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE, 996 0, OPA_LINKDOWN_REASON_FM_BOUNCE); 997 } else if (phys_state == IB_PORTPHYSSTATE_DISABLED) { 998 link_state = HLS_DN_DISABLE; 999 } else { 1000 pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n", 1001 phys_state); 1002 smp->status |= IB_SMP_INVALID_FIELD; 1003 break; 1004 } 1005 1006 if ((link_state == HLS_DN_POLL || 1007 link_state == HLS_DN_DOWNDEF)) { 1008 /* 1009 * Going to poll. No matter what the current state, 1010 * always move offline first, then tune and start the 1011 * link. This correctly handles a FM link bounce and 1012 * a link enable. Going offline is a no-op if already 1013 * offline. 1014 */ 1015 set_link_state(ppd, HLS_DN_OFFLINE); 1016 tune_serdes(ppd); 1017 start_link(ppd); 1018 } else { 1019 set_link_state(ppd, link_state); 1020 } 1021 if (link_state == HLS_DN_DISABLE && 1022 (ppd->offline_disabled_reason > 1023 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) || 1024 ppd->offline_disabled_reason == 1025 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 1026 ppd->offline_disabled_reason = 1027 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 1028 /* 1029 * Don't send a reply if the response would be sent 1030 * through the disabled port. 1031 */ 1032 if (link_state == HLS_DN_DISABLE && smp->hop_cnt) 1033 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 1034 break; 1035 case IB_PORT_ARMED: 1036 ret = set_link_state(ppd, HLS_UP_ARMED); 1037 if ((ret == 0) && (suppress_idle_sma == 0)) 1038 send_idle_sma(dd, SMA_IDLE_ARM); 1039 break; 1040 case IB_PORT_ACTIVE: 1041 if (ppd->neighbor_normal) { 1042 ret = set_link_state(ppd, HLS_UP_ACTIVE); 1043 if (ret == 0) 1044 send_idle_sma(dd, SMA_IDLE_ACTIVE); 1045 } else { 1046 pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n"); 1047 smp->status |= IB_SMP_INVALID_FIELD; 1048 } 1049 break; 1050 default: 1051 pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n", 1052 logical_state); 1053 smp->status |= IB_SMP_INVALID_FIELD; 1054 } 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * subn_set_opa_portinfo - set port information 1061 * @smp: the incoming SM packet 1062 * @ibdev: the infiniband device 1063 * @port: the port on the device 1064 * 1065 */ 1066 static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 1067 struct ib_device *ibdev, u8 port, 1068 u32 *resp_len) 1069 { 1070 struct opa_port_info *pi = (struct opa_port_info *)data; 1071 struct ib_event event; 1072 struct hfi1_devdata *dd; 1073 struct hfi1_pportdata *ppd; 1074 struct hfi1_ibport *ibp; 1075 u8 clientrereg; 1076 unsigned long flags; 1077 u32 smlid, opa_lid; /* tmp vars to hold LID values */ 1078 u16 lid; 1079 u8 ls_old, ls_new, ps_new; 1080 u8 vls; 1081 u8 msl; 1082 u8 crc_enabled; 1083 u16 lse, lwe, mtu; 1084 u32 num_ports = OPA_AM_NPORT(am); 1085 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1086 int ret, i, invalid = 0, call_set_mtu = 0; 1087 int call_link_downgrade_policy = 0; 1088 1089 if (num_ports != 1) { 1090 smp->status |= IB_SMP_INVALID_FIELD; 1091 return reply((struct ib_mad_hdr *)smp); 1092 } 1093 1094 opa_lid = be32_to_cpu(pi->lid); 1095 if (opa_lid & 0xFFFF0000) { 1096 pr_warn("OPA_PortInfo lid out of range: %X\n", opa_lid); 1097 smp->status |= IB_SMP_INVALID_FIELD; 1098 goto get_only; 1099 } 1100 1101 lid = (u16)(opa_lid & 0x0000FFFF); 1102 1103 smlid = be32_to_cpu(pi->sm_lid); 1104 if (smlid & 0xFFFF0000) { 1105 pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid); 1106 smp->status |= IB_SMP_INVALID_FIELD; 1107 goto get_only; 1108 } 1109 smlid &= 0x0000FFFF; 1110 1111 clientrereg = (pi->clientrereg_subnettimeout & 1112 OPA_PI_MASK_CLIENT_REREGISTER); 1113 1114 dd = dd_from_ibdev(ibdev); 1115 /* IB numbers ports from 1, hw from 0 */ 1116 ppd = dd->pport + (port - 1); 1117 ibp = &ppd->ibport_data; 1118 event.device = ibdev; 1119 event.element.port_num = port; 1120 1121 ls_old = driver_lstate(ppd); 1122 1123 ibp->rvp.mkey = pi->mkey; 1124 ibp->rvp.gid_prefix = pi->subnet_prefix; 1125 ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period); 1126 1127 /* Must be a valid unicast LID address. */ 1128 if ((lid == 0 && ls_old > IB_PORT_INIT) || 1129 lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1130 smp->status |= IB_SMP_INVALID_FIELD; 1131 pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n", 1132 lid); 1133 } else if (ppd->lid != lid || 1134 ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) { 1135 if (ppd->lid != lid) 1136 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT); 1137 if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) 1138 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT); 1139 hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC); 1140 event.event = IB_EVENT_LID_CHANGE; 1141 ib_dispatch_event(&event); 1142 } 1143 1144 msl = pi->smsl & OPA_PI_MASK_SMSL; 1145 if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON) 1146 ppd->linkinit_reason = 1147 (pi->partenforce_filterraw & 1148 OPA_PI_MASK_LINKINIT_REASON); 1149 /* enable/disable SW pkey checking as per FM control */ 1150 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_IN) 1151 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 1152 else 1153 ppd->part_enforce &= ~HFI1_PART_ENFORCE_IN; 1154 1155 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_OUT) 1156 ppd->part_enforce |= HFI1_PART_ENFORCE_OUT; 1157 else 1158 ppd->part_enforce &= ~HFI1_PART_ENFORCE_OUT; 1159 1160 /* Must be a valid unicast LID address. */ 1161 if ((smlid == 0 && ls_old > IB_PORT_INIT) || 1162 smlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1163 smp->status |= IB_SMP_INVALID_FIELD; 1164 pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid); 1165 } else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) { 1166 pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid); 1167 spin_lock_irqsave(&ibp->rvp.lock, flags); 1168 if (ibp->rvp.sm_ah) { 1169 if (smlid != ibp->rvp.sm_lid) 1170 ibp->rvp.sm_ah->attr.dlid = smlid; 1171 if (msl != ibp->rvp.sm_sl) 1172 ibp->rvp.sm_ah->attr.sl = msl; 1173 } 1174 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 1175 if (smlid != ibp->rvp.sm_lid) 1176 ibp->rvp.sm_lid = smlid; 1177 if (msl != ibp->rvp.sm_sl) 1178 ibp->rvp.sm_sl = msl; 1179 event.event = IB_EVENT_SM_CHANGE; 1180 ib_dispatch_event(&event); 1181 } 1182 1183 if (pi->link_down_reason == 0) { 1184 ppd->local_link_down_reason.sma = 0; 1185 ppd->local_link_down_reason.latest = 0; 1186 } 1187 1188 if (pi->neigh_link_down_reason == 0) { 1189 ppd->neigh_link_down_reason.sma = 0; 1190 ppd->neigh_link_down_reason.latest = 0; 1191 } 1192 1193 ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp); 1194 ppd->sa_qp = be32_to_cpu(pi->sa_qp); 1195 1196 ppd->port_error_action = be32_to_cpu(pi->port_error_action); 1197 lwe = be16_to_cpu(pi->link_width.enabled); 1198 if (lwe) { 1199 if (lwe == OPA_LINK_WIDTH_RESET || 1200 lwe == OPA_LINK_WIDTH_RESET_OLD) 1201 set_link_width_enabled(ppd, ppd->link_width_supported); 1202 else if ((lwe & ~ppd->link_width_supported) == 0) 1203 set_link_width_enabled(ppd, lwe); 1204 else 1205 smp->status |= IB_SMP_INVALID_FIELD; 1206 } 1207 lwe = be16_to_cpu(pi->link_width_downgrade.enabled); 1208 /* LWD.E is always applied - 0 means "disabled" */ 1209 if (lwe == OPA_LINK_WIDTH_RESET || 1210 lwe == OPA_LINK_WIDTH_RESET_OLD) { 1211 set_link_width_downgrade_enabled(ppd, 1212 ppd-> 1213 link_width_downgrade_supported 1214 ); 1215 } else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) { 1216 /* only set and apply if something changed */ 1217 if (lwe != ppd->link_width_downgrade_enabled) { 1218 set_link_width_downgrade_enabled(ppd, lwe); 1219 call_link_downgrade_policy = 1; 1220 } 1221 } else { 1222 smp->status |= IB_SMP_INVALID_FIELD; 1223 } 1224 lse = be16_to_cpu(pi->link_speed.enabled); 1225 if (lse) { 1226 if (lse & be16_to_cpu(pi->link_speed.supported)) 1227 set_link_speed_enabled(ppd, lse); 1228 else 1229 smp->status |= IB_SMP_INVALID_FIELD; 1230 } 1231 1232 ibp->rvp.mkeyprot = 1233 (pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6; 1234 ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF; 1235 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT, 1236 ibp->rvp.vl_high_limit); 1237 1238 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 1239 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 1240 smp->status |= IB_SMP_INVALID_FIELD; 1241 return reply((struct ib_mad_hdr *)smp); 1242 } 1243 for (i = 0; i < ppd->vls_supported; i++) { 1244 if ((i % 2) == 0) 1245 mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >> 1246 4) & 0xF); 1247 else 1248 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] & 1249 0xF); 1250 if (mtu == 0xffff) { 1251 pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n", 1252 mtu, 1253 (pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF); 1254 smp->status |= IB_SMP_INVALID_FIELD; 1255 mtu = hfi1_max_mtu; /* use a valid MTU */ 1256 } 1257 if (dd->vld[i].mtu != mtu) { 1258 dd_dev_info(dd, 1259 "MTU change on vl %d from %d to %d\n", 1260 i, dd->vld[i].mtu, mtu); 1261 dd->vld[i].mtu = mtu; 1262 call_set_mtu++; 1263 } 1264 } 1265 /* As per OPAV1 spec: VL15 must support and be configured 1266 * for operation with a 2048 or larger MTU. 1267 */ 1268 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF); 1269 if (mtu < 2048 || mtu == 0xffff) 1270 mtu = 2048; 1271 if (dd->vld[15].mtu != mtu) { 1272 dd_dev_info(dd, 1273 "MTU change on vl 15 from %d to %d\n", 1274 dd->vld[15].mtu, mtu); 1275 dd->vld[15].mtu = mtu; 1276 call_set_mtu++; 1277 } 1278 if (call_set_mtu) 1279 set_mtu(ppd); 1280 1281 /* Set operational VLs */ 1282 vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL; 1283 if (vls) { 1284 if (vls > ppd->vls_supported) { 1285 pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n", 1286 pi->operational_vls); 1287 smp->status |= IB_SMP_INVALID_FIELD; 1288 } else { 1289 if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS, 1290 vls) == -EINVAL) 1291 smp->status |= IB_SMP_INVALID_FIELD; 1292 } 1293 } 1294 1295 if (pi->mkey_violations == 0) 1296 ibp->rvp.mkey_violations = 0; 1297 1298 if (pi->pkey_violations == 0) 1299 ibp->rvp.pkey_violations = 0; 1300 1301 if (pi->qkey_violations == 0) 1302 ibp->rvp.qkey_violations = 0; 1303 1304 ibp->rvp.subnet_timeout = 1305 pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT; 1306 1307 crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode); 1308 crc_enabled >>= 4; 1309 crc_enabled &= 0xf; 1310 1311 if (crc_enabled != 0) 1312 ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled); 1313 1314 ppd->is_active_optimize_enabled = 1315 !!(be16_to_cpu(pi->port_mode) 1316 & OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE); 1317 1318 ls_new = pi->port_states.portphysstate_portstate & 1319 OPA_PI_MASK_PORT_STATE; 1320 ps_new = (pi->port_states.portphysstate_portstate & 1321 OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4; 1322 1323 if (ls_old == IB_PORT_INIT) { 1324 if (start_of_sm_config) { 1325 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1326 ppd->is_sm_config_started = 1; 1327 } else if (ls_new == IB_PORT_ARMED) { 1328 if (ppd->is_sm_config_started == 0) 1329 invalid = 1; 1330 } 1331 } 1332 1333 /* Handle CLIENT_REREGISTER event b/c SM asked us for it */ 1334 if (clientrereg) { 1335 event.event = IB_EVENT_CLIENT_REREGISTER; 1336 ib_dispatch_event(&event); 1337 } 1338 1339 /* 1340 * Do the port state change now that the other link parameters 1341 * have been set. 1342 * Changing the port physical state only makes sense if the link 1343 * is down or is being set to down. 1344 */ 1345 1346 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1347 if (ret) 1348 return ret; 1349 1350 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1351 1352 /* restore re-reg bit per o14-12.2.1 */ 1353 pi->clientrereg_subnettimeout |= clientrereg; 1354 1355 /* 1356 * Apply the new link downgrade policy. This may result in a link 1357 * bounce. Do this after everything else so things are settled. 1358 * Possible problem: if setting the port state above fails, then 1359 * the policy change is not applied. 1360 */ 1361 if (call_link_downgrade_policy) 1362 apply_link_downgrade_policy(ppd, 0); 1363 1364 return ret; 1365 1366 get_only: 1367 return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1368 } 1369 1370 /** 1371 * set_pkeys - set the PKEY table for ctxt 0 1372 * @dd: the hfi1_ib device 1373 * @port: the IB port number 1374 * @pkeys: the PKEY table 1375 */ 1376 static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 1377 { 1378 struct hfi1_pportdata *ppd; 1379 int i; 1380 int changed = 0; 1381 int update_includes_mgmt_partition = 0; 1382 1383 /* 1384 * IB port one/two always maps to context zero/one, 1385 * always a kernel context, no locking needed 1386 * If we get here with ppd setup, no need to check 1387 * that rcd is valid. 1388 */ 1389 ppd = dd->pport + (port - 1); 1390 /* 1391 * If the update does not include the management pkey, don't do it. 1392 */ 1393 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1394 if (pkeys[i] == LIM_MGMT_P_KEY) { 1395 update_includes_mgmt_partition = 1; 1396 break; 1397 } 1398 } 1399 1400 if (!update_includes_mgmt_partition) 1401 return 1; 1402 1403 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1404 u16 key = pkeys[i]; 1405 u16 okey = ppd->pkeys[i]; 1406 1407 if (key == okey) 1408 continue; 1409 /* 1410 * Don't update pkeys[2], if an HFI port without MgmtAllowed 1411 * by neighbor is a switch. 1412 */ 1413 if (i == 2 && !ppd->mgmt_allowed && ppd->neighbor_type == 1) 1414 continue; 1415 /* 1416 * The SM gives us the complete PKey table. We have 1417 * to ensure that we put the PKeys in the matching 1418 * slots. 1419 */ 1420 ppd->pkeys[i] = key; 1421 changed = 1; 1422 } 1423 1424 if (changed) { 1425 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 1426 hfi1_event_pkey_change(dd, port); 1427 } 1428 1429 return 0; 1430 } 1431 1432 static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 1433 struct ib_device *ibdev, u8 port, 1434 u32 *resp_len) 1435 { 1436 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1437 u32 n_blocks_sent = OPA_AM_NBLK(am); 1438 u32 start_block = am & 0x7ff; 1439 u16 *p = (u16 *)data; 1440 __be16 *q = (__be16 *)data; 1441 int i; 1442 u16 n_blocks_avail; 1443 unsigned npkeys = hfi1_get_npkeys(dd); 1444 1445 if (n_blocks_sent == 0) { 1446 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 1447 port, start_block, n_blocks_sent); 1448 smp->status |= IB_SMP_INVALID_FIELD; 1449 return reply((struct ib_mad_hdr *)smp); 1450 } 1451 1452 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 1453 1454 if (start_block + n_blocks_sent > n_blocks_avail || 1455 n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 1456 pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n", 1457 start_block, n_blocks_sent, n_blocks_avail, 1458 OPA_NUM_PKEY_BLOCKS_PER_SMP); 1459 smp->status |= IB_SMP_INVALID_FIELD; 1460 return reply((struct ib_mad_hdr *)smp); 1461 } 1462 1463 for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++) 1464 p[i] = be16_to_cpu(q[i]); 1465 1466 if (start_block == 0 && set_pkeys(dd, port, p) != 0) { 1467 smp->status |= IB_SMP_INVALID_FIELD; 1468 return reply((struct ib_mad_hdr *)smp); 1469 } 1470 1471 return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len); 1472 } 1473 1474 static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1475 { 1476 u64 *val = data; 1477 1478 *val++ = read_csr(dd, SEND_SC2VLT0); 1479 *val++ = read_csr(dd, SEND_SC2VLT1); 1480 *val++ = read_csr(dd, SEND_SC2VLT2); 1481 *val++ = read_csr(dd, SEND_SC2VLT3); 1482 return 0; 1483 } 1484 1485 #define ILLEGAL_VL 12 1486 /* 1487 * filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except 1488 * for SC15, which must map to VL15). If we don't remap things this 1489 * way it is possible for VL15 counters to increment when we try to 1490 * send on a SC which is mapped to an invalid VL. 1491 */ 1492 static void filter_sc2vlt(void *data) 1493 { 1494 int i; 1495 u8 *pd = data; 1496 1497 for (i = 0; i < OPA_MAX_SCS; i++) { 1498 if (i == 15) 1499 continue; 1500 if ((pd[i] & 0x1f) == 0xf) 1501 pd[i] = ILLEGAL_VL; 1502 } 1503 } 1504 1505 static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1506 { 1507 u64 *val = data; 1508 1509 filter_sc2vlt(data); 1510 1511 write_csr(dd, SEND_SC2VLT0, *val++); 1512 write_csr(dd, SEND_SC2VLT1, *val++); 1513 write_csr(dd, SEND_SC2VLT2, *val++); 1514 write_csr(dd, SEND_SC2VLT3, *val++); 1515 write_seqlock_irq(&dd->sc2vl_lock); 1516 memcpy(dd->sc2vl, data, sizeof(dd->sc2vl)); 1517 write_sequnlock_irq(&dd->sc2vl_lock); 1518 return 0; 1519 } 1520 1521 static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1522 struct ib_device *ibdev, u8 port, 1523 u32 *resp_len) 1524 { 1525 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1526 u8 *p = data; 1527 size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */ 1528 unsigned i; 1529 1530 if (am) { 1531 smp->status |= IB_SMP_INVALID_FIELD; 1532 return reply((struct ib_mad_hdr *)smp); 1533 } 1534 1535 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) 1536 *p++ = ibp->sl_to_sc[i]; 1537 1538 if (resp_len) 1539 *resp_len += size; 1540 1541 return reply((struct ib_mad_hdr *)smp); 1542 } 1543 1544 static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1545 struct ib_device *ibdev, u8 port, 1546 u32 *resp_len) 1547 { 1548 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1549 u8 *p = data; 1550 int i; 1551 u8 sc; 1552 1553 if (am) { 1554 smp->status |= IB_SMP_INVALID_FIELD; 1555 return reply((struct ib_mad_hdr *)smp); 1556 } 1557 1558 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) { 1559 sc = *p++; 1560 if (ibp->sl_to_sc[i] != sc) { 1561 ibp->sl_to_sc[i] = sc; 1562 1563 /* Put all stale qps into error state */ 1564 hfi1_error_port_qps(ibp, i); 1565 } 1566 } 1567 1568 return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len); 1569 } 1570 1571 static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1572 struct ib_device *ibdev, u8 port, 1573 u32 *resp_len) 1574 { 1575 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1576 u8 *p = data; 1577 size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */ 1578 unsigned i; 1579 1580 if (am) { 1581 smp->status |= IB_SMP_INVALID_FIELD; 1582 return reply((struct ib_mad_hdr *)smp); 1583 } 1584 1585 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1586 *p++ = ibp->sc_to_sl[i]; 1587 1588 if (resp_len) 1589 *resp_len += size; 1590 1591 return reply((struct ib_mad_hdr *)smp); 1592 } 1593 1594 static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1595 struct ib_device *ibdev, u8 port, 1596 u32 *resp_len) 1597 { 1598 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1599 u8 *p = data; 1600 int i; 1601 1602 if (am) { 1603 smp->status |= IB_SMP_INVALID_FIELD; 1604 return reply((struct ib_mad_hdr *)smp); 1605 } 1606 1607 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1608 ibp->sc_to_sl[i] = *p++; 1609 1610 return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len); 1611 } 1612 1613 static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1614 struct ib_device *ibdev, u8 port, 1615 u32 *resp_len) 1616 { 1617 u32 n_blocks = OPA_AM_NBLK(am); 1618 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1619 void *vp = (void *)data; 1620 size_t size = 4 * sizeof(u64); 1621 1622 if (n_blocks != 1) { 1623 smp->status |= IB_SMP_INVALID_FIELD; 1624 return reply((struct ib_mad_hdr *)smp); 1625 } 1626 1627 get_sc2vlt_tables(dd, vp); 1628 1629 if (resp_len) 1630 *resp_len += size; 1631 1632 return reply((struct ib_mad_hdr *)smp); 1633 } 1634 1635 static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1636 struct ib_device *ibdev, u8 port, 1637 u32 *resp_len) 1638 { 1639 u32 n_blocks = OPA_AM_NBLK(am); 1640 int async_update = OPA_AM_ASYNC(am); 1641 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1642 void *vp = (void *)data; 1643 struct hfi1_pportdata *ppd; 1644 int lstate; 1645 1646 if (n_blocks != 1 || async_update) { 1647 smp->status |= IB_SMP_INVALID_FIELD; 1648 return reply((struct ib_mad_hdr *)smp); 1649 } 1650 1651 /* IB numbers ports from 1, hw from 0 */ 1652 ppd = dd->pport + (port - 1); 1653 lstate = driver_lstate(ppd); 1654 /* 1655 * it's known that async_update is 0 by this point, but include 1656 * the explicit check for clarity 1657 */ 1658 if (!async_update && 1659 (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) { 1660 smp->status |= IB_SMP_INVALID_FIELD; 1661 return reply((struct ib_mad_hdr *)smp); 1662 } 1663 1664 set_sc2vlt_tables(dd, vp); 1665 1666 return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len); 1667 } 1668 1669 static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1670 struct ib_device *ibdev, u8 port, 1671 u32 *resp_len) 1672 { 1673 u32 n_blocks = OPA_AM_NPORT(am); 1674 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1675 struct hfi1_pportdata *ppd; 1676 void *vp = (void *)data; 1677 int size; 1678 1679 if (n_blocks != 1) { 1680 smp->status |= IB_SMP_INVALID_FIELD; 1681 return reply((struct ib_mad_hdr *)smp); 1682 } 1683 1684 ppd = dd->pport + (port - 1); 1685 1686 size = fm_get_table(ppd, FM_TBL_SC2VLNT, vp); 1687 1688 if (resp_len) 1689 *resp_len += size; 1690 1691 return reply((struct ib_mad_hdr *)smp); 1692 } 1693 1694 static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1695 struct ib_device *ibdev, u8 port, 1696 u32 *resp_len) 1697 { 1698 u32 n_blocks = OPA_AM_NPORT(am); 1699 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1700 struct hfi1_pportdata *ppd; 1701 void *vp = (void *)data; 1702 int lstate; 1703 1704 if (n_blocks != 1) { 1705 smp->status |= IB_SMP_INVALID_FIELD; 1706 return reply((struct ib_mad_hdr *)smp); 1707 } 1708 1709 /* IB numbers ports from 1, hw from 0 */ 1710 ppd = dd->pport + (port - 1); 1711 lstate = driver_lstate(ppd); 1712 if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) { 1713 smp->status |= IB_SMP_INVALID_FIELD; 1714 return reply((struct ib_mad_hdr *)smp); 1715 } 1716 1717 ppd = dd->pport + (port - 1); 1718 1719 fm_set_table(ppd, FM_TBL_SC2VLNT, vp); 1720 1721 return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 1722 resp_len); 1723 } 1724 1725 static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1726 struct ib_device *ibdev, u8 port, 1727 u32 *resp_len) 1728 { 1729 u32 nports = OPA_AM_NPORT(am); 1730 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1731 u32 lstate; 1732 struct hfi1_ibport *ibp; 1733 struct hfi1_pportdata *ppd; 1734 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1735 1736 if (nports != 1) { 1737 smp->status |= IB_SMP_INVALID_FIELD; 1738 return reply((struct ib_mad_hdr *)smp); 1739 } 1740 1741 ibp = to_iport(ibdev, port); 1742 ppd = ppd_from_ibp(ibp); 1743 1744 lstate = driver_lstate(ppd); 1745 1746 if (start_of_sm_config && (lstate == IB_PORT_INIT)) 1747 ppd->is_sm_config_started = 1; 1748 1749 psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 1750 psi->port_states.ledenable_offlinereason |= 1751 ppd->is_sm_config_started << 5; 1752 psi->port_states.ledenable_offlinereason |= 1753 ppd->offline_disabled_reason; 1754 1755 psi->port_states.portphysstate_portstate = 1756 (hfi1_ibphys_portstate(ppd) << 4) | (lstate & 0xf); 1757 psi->link_width_downgrade_tx_active = 1758 cpu_to_be16(ppd->link_width_downgrade_tx_active); 1759 psi->link_width_downgrade_rx_active = 1760 cpu_to_be16(ppd->link_width_downgrade_rx_active); 1761 if (resp_len) 1762 *resp_len += sizeof(struct opa_port_state_info); 1763 1764 return reply((struct ib_mad_hdr *)smp); 1765 } 1766 1767 static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1768 struct ib_device *ibdev, u8 port, 1769 u32 *resp_len) 1770 { 1771 u32 nports = OPA_AM_NPORT(am); 1772 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1773 u32 ls_old; 1774 u8 ls_new, ps_new; 1775 struct hfi1_ibport *ibp; 1776 struct hfi1_pportdata *ppd; 1777 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1778 int ret, invalid = 0; 1779 1780 if (nports != 1) { 1781 smp->status |= IB_SMP_INVALID_FIELD; 1782 return reply((struct ib_mad_hdr *)smp); 1783 } 1784 1785 ibp = to_iport(ibdev, port); 1786 ppd = ppd_from_ibp(ibp); 1787 1788 ls_old = driver_lstate(ppd); 1789 1790 ls_new = port_states_to_logical_state(&psi->port_states); 1791 ps_new = port_states_to_phys_state(&psi->port_states); 1792 1793 if (ls_old == IB_PORT_INIT) { 1794 if (start_of_sm_config) { 1795 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1796 ppd->is_sm_config_started = 1; 1797 } else if (ls_new == IB_PORT_ARMED) { 1798 if (ppd->is_sm_config_started == 0) 1799 invalid = 1; 1800 } 1801 } 1802 1803 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1804 if (ret) 1805 return ret; 1806 1807 if (invalid) 1808 smp->status |= IB_SMP_INVALID_FIELD; 1809 1810 return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len); 1811 } 1812 1813 static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data, 1814 struct ib_device *ibdev, u8 port, 1815 u32 *resp_len) 1816 { 1817 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1818 u32 addr = OPA_AM_CI_ADDR(am); 1819 u32 len = OPA_AM_CI_LEN(am) + 1; 1820 int ret; 1821 1822 if (dd->pport->port_type != PORT_TYPE_QSFP) { 1823 smp->status |= IB_SMP_INVALID_FIELD; 1824 return reply((struct ib_mad_hdr *)smp); 1825 } 1826 1827 #define __CI_PAGE_SIZE BIT(7) /* 128 bytes */ 1828 #define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1) 1829 #define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK) 1830 1831 /* 1832 * check that addr is within spec, and 1833 * addr and (addr + len - 1) are on the same "page" 1834 */ 1835 if (addr >= 4096 || 1836 (__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) { 1837 smp->status |= IB_SMP_INVALID_FIELD; 1838 return reply((struct ib_mad_hdr *)smp); 1839 } 1840 1841 ret = get_cable_info(dd, port, addr, len, data); 1842 1843 if (ret == -ENODEV) { 1844 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1845 return reply((struct ib_mad_hdr *)smp); 1846 } 1847 1848 /* The address range for the CableInfo SMA query is wider than the 1849 * memory available on the QSFP cable. We want to return a valid 1850 * response, albeit zeroed out, for address ranges beyond available 1851 * memory but that are within the CableInfo query spec 1852 */ 1853 if (ret < 0 && ret != -ERANGE) { 1854 smp->status |= IB_SMP_INVALID_FIELD; 1855 return reply((struct ib_mad_hdr *)smp); 1856 } 1857 1858 if (resp_len) 1859 *resp_len += len; 1860 1861 return reply((struct ib_mad_hdr *)smp); 1862 } 1863 1864 static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1865 struct ib_device *ibdev, u8 port, u32 *resp_len) 1866 { 1867 u32 num_ports = OPA_AM_NPORT(am); 1868 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1869 struct hfi1_pportdata *ppd; 1870 struct buffer_control *p = (struct buffer_control *)data; 1871 int size; 1872 1873 if (num_ports != 1) { 1874 smp->status |= IB_SMP_INVALID_FIELD; 1875 return reply((struct ib_mad_hdr *)smp); 1876 } 1877 1878 ppd = dd->pport + (port - 1); 1879 size = fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p); 1880 trace_bct_get(dd, p); 1881 if (resp_len) 1882 *resp_len += size; 1883 1884 return reply((struct ib_mad_hdr *)smp); 1885 } 1886 1887 static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1888 struct ib_device *ibdev, u8 port, u32 *resp_len) 1889 { 1890 u32 num_ports = OPA_AM_NPORT(am); 1891 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1892 struct hfi1_pportdata *ppd; 1893 struct buffer_control *p = (struct buffer_control *)data; 1894 1895 if (num_ports != 1) { 1896 smp->status |= IB_SMP_INVALID_FIELD; 1897 return reply((struct ib_mad_hdr *)smp); 1898 } 1899 ppd = dd->pport + (port - 1); 1900 trace_bct_set(dd, p); 1901 if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) { 1902 smp->status |= IB_SMP_INVALID_FIELD; 1903 return reply((struct ib_mad_hdr *)smp); 1904 } 1905 1906 return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len); 1907 } 1908 1909 static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1910 struct ib_device *ibdev, u8 port, 1911 u32 *resp_len) 1912 { 1913 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1914 u32 num_ports = OPA_AM_NPORT(am); 1915 u8 section = (am & 0x00ff0000) >> 16; 1916 u8 *p = data; 1917 int size = 0; 1918 1919 if (num_ports != 1) { 1920 smp->status |= IB_SMP_INVALID_FIELD; 1921 return reply((struct ib_mad_hdr *)smp); 1922 } 1923 1924 switch (section) { 1925 case OPA_VLARB_LOW_ELEMENTS: 1926 size = fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p); 1927 break; 1928 case OPA_VLARB_HIGH_ELEMENTS: 1929 size = fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1930 break; 1931 case OPA_VLARB_PREEMPT_ELEMENTS: 1932 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p); 1933 break; 1934 case OPA_VLARB_PREEMPT_MATRIX: 1935 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p); 1936 break; 1937 default: 1938 pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n", 1939 be32_to_cpu(smp->attr_mod)); 1940 smp->status |= IB_SMP_INVALID_FIELD; 1941 break; 1942 } 1943 1944 if (size > 0 && resp_len) 1945 *resp_len += size; 1946 1947 return reply((struct ib_mad_hdr *)smp); 1948 } 1949 1950 static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1951 struct ib_device *ibdev, u8 port, 1952 u32 *resp_len) 1953 { 1954 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1955 u32 num_ports = OPA_AM_NPORT(am); 1956 u8 section = (am & 0x00ff0000) >> 16; 1957 u8 *p = data; 1958 1959 if (num_ports != 1) { 1960 smp->status |= IB_SMP_INVALID_FIELD; 1961 return reply((struct ib_mad_hdr *)smp); 1962 } 1963 1964 switch (section) { 1965 case OPA_VLARB_LOW_ELEMENTS: 1966 (void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p); 1967 break; 1968 case OPA_VLARB_HIGH_ELEMENTS: 1969 (void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1970 break; 1971 /* 1972 * neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX 1973 * can be changed from the default values 1974 */ 1975 case OPA_VLARB_PREEMPT_ELEMENTS: 1976 /* FALLTHROUGH */ 1977 case OPA_VLARB_PREEMPT_MATRIX: 1978 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1979 break; 1980 default: 1981 pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n", 1982 be32_to_cpu(smp->attr_mod)); 1983 smp->status |= IB_SMP_INVALID_FIELD; 1984 break; 1985 } 1986 1987 return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len); 1988 } 1989 1990 struct opa_pma_mad { 1991 struct ib_mad_hdr mad_hdr; 1992 u8 data[2024]; 1993 } __packed; 1994 1995 struct opa_class_port_info { 1996 u8 base_version; 1997 u8 class_version; 1998 __be16 cap_mask; 1999 __be32 cap_mask2_resp_time; 2000 2001 u8 redirect_gid[16]; 2002 __be32 redirect_tc_fl; 2003 __be32 redirect_lid; 2004 __be32 redirect_sl_qp; 2005 __be32 redirect_qkey; 2006 2007 u8 trap_gid[16]; 2008 __be32 trap_tc_fl; 2009 __be32 trap_lid; 2010 __be32 trap_hl_qp; 2011 __be32 trap_qkey; 2012 2013 __be16 trap_pkey; 2014 __be16 redirect_pkey; 2015 2016 u8 trap_sl_rsvd; 2017 u8 reserved[3]; 2018 } __packed; 2019 2020 struct opa_port_status_req { 2021 __u8 port_num; 2022 __u8 reserved[3]; 2023 __be32 vl_select_mask; 2024 }; 2025 2026 #define VL_MASK_ALL 0x000080ff 2027 2028 struct opa_port_status_rsp { 2029 __u8 port_num; 2030 __u8 reserved[3]; 2031 __be32 vl_select_mask; 2032 2033 /* Data counters */ 2034 __be64 port_xmit_data; 2035 __be64 port_rcv_data; 2036 __be64 port_xmit_pkts; 2037 __be64 port_rcv_pkts; 2038 __be64 port_multicast_xmit_pkts; 2039 __be64 port_multicast_rcv_pkts; 2040 __be64 port_xmit_wait; 2041 __be64 sw_port_congestion; 2042 __be64 port_rcv_fecn; 2043 __be64 port_rcv_becn; 2044 __be64 port_xmit_time_cong; 2045 __be64 port_xmit_wasted_bw; 2046 __be64 port_xmit_wait_data; 2047 __be64 port_rcv_bubble; 2048 __be64 port_mark_fecn; 2049 /* Error counters */ 2050 __be64 port_rcv_constraint_errors; 2051 __be64 port_rcv_switch_relay_errors; 2052 __be64 port_xmit_discards; 2053 __be64 port_xmit_constraint_errors; 2054 __be64 port_rcv_remote_physical_errors; 2055 __be64 local_link_integrity_errors; 2056 __be64 port_rcv_errors; 2057 __be64 excessive_buffer_overruns; 2058 __be64 fm_config_errors; 2059 __be32 link_error_recovery; 2060 __be32 link_downed; 2061 u8 uncorrectable_errors; 2062 2063 u8 link_quality_indicator; /* 5res, 3bit */ 2064 u8 res2[6]; 2065 struct _vls_pctrs { 2066 /* per-VL Data counters */ 2067 __be64 port_vl_xmit_data; 2068 __be64 port_vl_rcv_data; 2069 __be64 port_vl_xmit_pkts; 2070 __be64 port_vl_rcv_pkts; 2071 __be64 port_vl_xmit_wait; 2072 __be64 sw_port_vl_congestion; 2073 __be64 port_vl_rcv_fecn; 2074 __be64 port_vl_rcv_becn; 2075 __be64 port_xmit_time_cong; 2076 __be64 port_vl_xmit_wasted_bw; 2077 __be64 port_vl_xmit_wait_data; 2078 __be64 port_vl_rcv_bubble; 2079 __be64 port_vl_mark_fecn; 2080 __be64 port_vl_xmit_discards; 2081 } vls[0]; /* real array size defined by # bits set in vl_select_mask */ 2082 }; 2083 2084 enum counter_selects { 2085 CS_PORT_XMIT_DATA = (1 << 31), 2086 CS_PORT_RCV_DATA = (1 << 30), 2087 CS_PORT_XMIT_PKTS = (1 << 29), 2088 CS_PORT_RCV_PKTS = (1 << 28), 2089 CS_PORT_MCAST_XMIT_PKTS = (1 << 27), 2090 CS_PORT_MCAST_RCV_PKTS = (1 << 26), 2091 CS_PORT_XMIT_WAIT = (1 << 25), 2092 CS_SW_PORT_CONGESTION = (1 << 24), 2093 CS_PORT_RCV_FECN = (1 << 23), 2094 CS_PORT_RCV_BECN = (1 << 22), 2095 CS_PORT_XMIT_TIME_CONG = (1 << 21), 2096 CS_PORT_XMIT_WASTED_BW = (1 << 20), 2097 CS_PORT_XMIT_WAIT_DATA = (1 << 19), 2098 CS_PORT_RCV_BUBBLE = (1 << 18), 2099 CS_PORT_MARK_FECN = (1 << 17), 2100 CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16), 2101 CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15), 2102 CS_PORT_XMIT_DISCARDS = (1 << 14), 2103 CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13), 2104 CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12), 2105 CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11), 2106 CS_PORT_RCV_ERRORS = (1 << 10), 2107 CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9), 2108 CS_FM_CONFIG_ERRORS = (1 << 8), 2109 CS_LINK_ERROR_RECOVERY = (1 << 7), 2110 CS_LINK_DOWNED = (1 << 6), 2111 CS_UNCORRECTABLE_ERRORS = (1 << 5), 2112 }; 2113 2114 struct opa_clear_port_status { 2115 __be64 port_select_mask[4]; 2116 __be32 counter_select_mask; 2117 }; 2118 2119 struct opa_aggregate { 2120 __be16 attr_id; 2121 __be16 err_reqlength; /* 1 bit, 8 res, 7 bit */ 2122 __be32 attr_mod; 2123 u8 data[0]; 2124 }; 2125 2126 #define MSK_LLI 0x000000f0 2127 #define MSK_LLI_SFT 4 2128 #define MSK_LER 0x0000000f 2129 #define MSK_LER_SFT 0 2130 #define ADD_LLI 8 2131 #define ADD_LER 2 2132 2133 /* Request contains first three fields, response contains those plus the rest */ 2134 struct opa_port_data_counters_msg { 2135 __be64 port_select_mask[4]; 2136 __be32 vl_select_mask; 2137 __be32 resolution; 2138 2139 /* Response fields follow */ 2140 struct _port_dctrs { 2141 u8 port_number; 2142 u8 reserved2[3]; 2143 __be32 link_quality_indicator; /* 29res, 3bit */ 2144 2145 /* Data counters */ 2146 __be64 port_xmit_data; 2147 __be64 port_rcv_data; 2148 __be64 port_xmit_pkts; 2149 __be64 port_rcv_pkts; 2150 __be64 port_multicast_xmit_pkts; 2151 __be64 port_multicast_rcv_pkts; 2152 __be64 port_xmit_wait; 2153 __be64 sw_port_congestion; 2154 __be64 port_rcv_fecn; 2155 __be64 port_rcv_becn; 2156 __be64 port_xmit_time_cong; 2157 __be64 port_xmit_wasted_bw; 2158 __be64 port_xmit_wait_data; 2159 __be64 port_rcv_bubble; 2160 __be64 port_mark_fecn; 2161 2162 __be64 port_error_counter_summary; 2163 /* Sum of error counts/port */ 2164 2165 struct _vls_dctrs { 2166 /* per-VL Data counters */ 2167 __be64 port_vl_xmit_data; 2168 __be64 port_vl_rcv_data; 2169 __be64 port_vl_xmit_pkts; 2170 __be64 port_vl_rcv_pkts; 2171 __be64 port_vl_xmit_wait; 2172 __be64 sw_port_vl_congestion; 2173 __be64 port_vl_rcv_fecn; 2174 __be64 port_vl_rcv_becn; 2175 __be64 port_xmit_time_cong; 2176 __be64 port_vl_xmit_wasted_bw; 2177 __be64 port_vl_xmit_wait_data; 2178 __be64 port_vl_rcv_bubble; 2179 __be64 port_vl_mark_fecn; 2180 } vls[0]; 2181 /* array size defined by #bits set in vl_select_mask*/ 2182 } port[1]; /* array size defined by #ports in attribute modifier */ 2183 }; 2184 2185 struct opa_port_error_counters64_msg { 2186 /* 2187 * Request contains first two fields, response contains the 2188 * whole magilla 2189 */ 2190 __be64 port_select_mask[4]; 2191 __be32 vl_select_mask; 2192 2193 /* Response-only fields follow */ 2194 __be32 reserved1; 2195 struct _port_ectrs { 2196 u8 port_number; 2197 u8 reserved2[7]; 2198 __be64 port_rcv_constraint_errors; 2199 __be64 port_rcv_switch_relay_errors; 2200 __be64 port_xmit_discards; 2201 __be64 port_xmit_constraint_errors; 2202 __be64 port_rcv_remote_physical_errors; 2203 __be64 local_link_integrity_errors; 2204 __be64 port_rcv_errors; 2205 __be64 excessive_buffer_overruns; 2206 __be64 fm_config_errors; 2207 __be32 link_error_recovery; 2208 __be32 link_downed; 2209 u8 uncorrectable_errors; 2210 u8 reserved3[7]; 2211 struct _vls_ectrs { 2212 __be64 port_vl_xmit_discards; 2213 } vls[0]; 2214 /* array size defined by #bits set in vl_select_mask */ 2215 } port[1]; /* array size defined by #ports in attribute modifier */ 2216 }; 2217 2218 struct opa_port_error_info_msg { 2219 __be64 port_select_mask[4]; 2220 __be32 error_info_select_mask; 2221 __be32 reserved1; 2222 struct _port_ei { 2223 u8 port_number; 2224 u8 reserved2[7]; 2225 2226 /* PortRcvErrorInfo */ 2227 struct { 2228 u8 status_and_code; 2229 union { 2230 u8 raw[17]; 2231 struct { 2232 /* EI1to12 format */ 2233 u8 packet_flit1[8]; 2234 u8 packet_flit2[8]; 2235 u8 remaining_flit_bits12; 2236 } ei1to12; 2237 struct { 2238 u8 packet_bytes[8]; 2239 u8 remaining_flit_bits; 2240 } ei13; 2241 } ei; 2242 u8 reserved3[6]; 2243 } __packed port_rcv_ei; 2244 2245 /* ExcessiveBufferOverrunInfo */ 2246 struct { 2247 u8 status_and_sc; 2248 u8 reserved4[7]; 2249 } __packed excessive_buffer_overrun_ei; 2250 2251 /* PortXmitConstraintErrorInfo */ 2252 struct { 2253 u8 status; 2254 u8 reserved5; 2255 __be16 pkey; 2256 __be32 slid; 2257 } __packed port_xmit_constraint_ei; 2258 2259 /* PortRcvConstraintErrorInfo */ 2260 struct { 2261 u8 status; 2262 u8 reserved6; 2263 __be16 pkey; 2264 __be32 slid; 2265 } __packed port_rcv_constraint_ei; 2266 2267 /* PortRcvSwitchRelayErrorInfo */ 2268 struct { 2269 u8 status_and_code; 2270 u8 reserved7[3]; 2271 __u32 error_info; 2272 } __packed port_rcv_switch_relay_ei; 2273 2274 /* UncorrectableErrorInfo */ 2275 struct { 2276 u8 status_and_code; 2277 u8 reserved8; 2278 } __packed uncorrectable_ei; 2279 2280 /* FMConfigErrorInfo */ 2281 struct { 2282 u8 status_and_code; 2283 u8 error_info; 2284 } __packed fm_config_ei; 2285 __u32 reserved9; 2286 } port[1]; /* actual array size defined by #ports in attr modifier */ 2287 }; 2288 2289 /* opa_port_error_info_msg error_info_select_mask bit definitions */ 2290 enum error_info_selects { 2291 ES_PORT_RCV_ERROR_INFO = (1 << 31), 2292 ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30), 2293 ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29), 2294 ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28), 2295 ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27), 2296 ES_UNCORRECTABLE_ERROR_INFO = (1 << 26), 2297 ES_FM_CONFIG_ERROR_INFO = (1 << 25) 2298 }; 2299 2300 static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp, 2301 struct ib_device *ibdev, u32 *resp_len) 2302 { 2303 struct opa_class_port_info *p = 2304 (struct opa_class_port_info *)pmp->data; 2305 2306 memset(pmp->data, 0, sizeof(pmp->data)); 2307 2308 if (pmp->mad_hdr.attr_mod != 0) 2309 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2310 2311 p->base_version = OPA_MGMT_BASE_VERSION; 2312 p->class_version = OPA_SMI_CLASS_VERSION; 2313 /* 2314 * Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec. 2315 */ 2316 p->cap_mask2_resp_time = cpu_to_be32(18); 2317 2318 if (resp_len) 2319 *resp_len += sizeof(*p); 2320 2321 return reply((struct ib_mad_hdr *)pmp); 2322 } 2323 2324 static void a0_portstatus(struct hfi1_pportdata *ppd, 2325 struct opa_port_status_rsp *rsp, u32 vl_select_mask) 2326 { 2327 if (!is_bx(ppd->dd)) { 2328 unsigned long vl; 2329 u64 sum_vl_xmit_wait = 0; 2330 u32 vl_all_mask = VL_MASK_ALL; 2331 2332 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2333 8 * sizeof(vl_all_mask)) { 2334 u64 tmp = sum_vl_xmit_wait + 2335 read_port_cntr(ppd, C_TX_WAIT_VL, 2336 idx_from_vl(vl)); 2337 if (tmp < sum_vl_xmit_wait) { 2338 /* we wrapped */ 2339 sum_vl_xmit_wait = (u64)~0; 2340 break; 2341 } 2342 sum_vl_xmit_wait = tmp; 2343 } 2344 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2345 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2346 } 2347 } 2348 2349 static int pma_get_opa_portstatus(struct opa_pma_mad *pmp, 2350 struct ib_device *ibdev, 2351 u8 port, u32 *resp_len) 2352 { 2353 struct opa_port_status_req *req = 2354 (struct opa_port_status_req *)pmp->data; 2355 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2356 struct opa_port_status_rsp *rsp; 2357 u32 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2358 unsigned long vl; 2359 size_t response_data_size; 2360 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2361 u8 port_num = req->port_num; 2362 u8 num_vls = hweight32(vl_select_mask); 2363 struct _vls_pctrs *vlinfo; 2364 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2365 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2366 int vfi; 2367 u64 tmp, tmp2; 2368 2369 response_data_size = sizeof(struct opa_port_status_rsp) + 2370 num_vls * sizeof(struct _vls_pctrs); 2371 if (response_data_size > sizeof(pmp->data)) { 2372 pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE; 2373 return reply((struct ib_mad_hdr *)pmp); 2374 } 2375 2376 if (nports != 1 || (port_num && port_num != port) || 2377 num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) { 2378 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2379 return reply((struct ib_mad_hdr *)pmp); 2380 } 2381 2382 memset(pmp->data, 0, sizeof(pmp->data)); 2383 2384 rsp = (struct opa_port_status_rsp *)pmp->data; 2385 if (port_num) 2386 rsp->port_num = port_num; 2387 else 2388 rsp->port_num = port; 2389 2390 rsp->port_rcv_constraint_errors = 2391 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2392 CNTR_INVALID_VL)); 2393 2394 hfi1_read_link_quality(dd, &rsp->link_quality_indicator); 2395 2396 rsp->vl_select_mask = cpu_to_be32(vl_select_mask); 2397 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2398 CNTR_INVALID_VL)); 2399 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2400 CNTR_INVALID_VL)); 2401 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2402 CNTR_INVALID_VL)); 2403 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2404 CNTR_INVALID_VL)); 2405 rsp->port_multicast_xmit_pkts = 2406 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2407 CNTR_INVALID_VL)); 2408 rsp->port_multicast_rcv_pkts = 2409 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2410 CNTR_INVALID_VL)); 2411 rsp->port_xmit_wait = 2412 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2413 rsp->port_rcv_fecn = 2414 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2415 rsp->port_rcv_becn = 2416 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2417 rsp->port_xmit_discards = 2418 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2419 CNTR_INVALID_VL)); 2420 rsp->port_xmit_constraint_errors = 2421 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2422 CNTR_INVALID_VL)); 2423 rsp->port_rcv_remote_physical_errors = 2424 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2425 CNTR_INVALID_VL)); 2426 rsp->local_link_integrity_errors = 2427 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY, 2428 CNTR_INVALID_VL)); 2429 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2430 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2431 CNTR_INVALID_VL); 2432 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2433 /* overflow/wrapped */ 2434 rsp->link_error_recovery = cpu_to_be32(~0); 2435 } else { 2436 rsp->link_error_recovery = cpu_to_be32(tmp2); 2437 } 2438 rsp->port_rcv_errors = 2439 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2440 rsp->excessive_buffer_overruns = 2441 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2442 rsp->fm_config_errors = 2443 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2444 CNTR_INVALID_VL)); 2445 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2446 CNTR_INVALID_VL)); 2447 2448 /* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */ 2449 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2450 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2451 2452 vlinfo = &rsp->vls[0]; 2453 vfi = 0; 2454 /* The vl_select_mask has been checked above, and we know 2455 * that it contains only entries which represent valid VLs. 2456 * So in the for_each_set_bit() loop below, we don't need 2457 * any additional checks for vl. 2458 */ 2459 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2460 8 * sizeof(vl_select_mask)) { 2461 memset(vlinfo, 0, sizeof(*vlinfo)); 2462 2463 tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl)); 2464 rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp); 2465 2466 rsp->vls[vfi].port_vl_rcv_pkts = 2467 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2468 idx_from_vl(vl))); 2469 2470 rsp->vls[vfi].port_vl_xmit_data = 2471 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2472 idx_from_vl(vl))); 2473 2474 rsp->vls[vfi].port_vl_xmit_pkts = 2475 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2476 idx_from_vl(vl))); 2477 2478 rsp->vls[vfi].port_vl_xmit_wait = 2479 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2480 idx_from_vl(vl))); 2481 2482 rsp->vls[vfi].port_vl_rcv_fecn = 2483 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2484 idx_from_vl(vl))); 2485 2486 rsp->vls[vfi].port_vl_rcv_becn = 2487 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2488 idx_from_vl(vl))); 2489 2490 rsp->vls[vfi].port_vl_xmit_discards = 2491 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL, 2492 idx_from_vl(vl))); 2493 vlinfo++; 2494 vfi++; 2495 } 2496 2497 a0_portstatus(ppd, rsp, vl_select_mask); 2498 2499 if (resp_len) 2500 *resp_len += response_data_size; 2501 2502 return reply((struct ib_mad_hdr *)pmp); 2503 } 2504 2505 static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port, 2506 u8 res_lli, u8 res_ler) 2507 { 2508 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2509 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2510 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2511 u64 error_counter_summary = 0, tmp; 2512 2513 error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2514 CNTR_INVALID_VL); 2515 /* port_rcv_switch_relay_errors is 0 for HFIs */ 2516 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD, 2517 CNTR_INVALID_VL); 2518 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2519 CNTR_INVALID_VL); 2520 error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2521 CNTR_INVALID_VL); 2522 /* local link integrity must be right-shifted by the lli resolution */ 2523 error_counter_summary += (read_dev_cntr(dd, C_DC_RX_REPLAY, 2524 CNTR_INVALID_VL) >> res_lli); 2525 /* link error recovery must b right-shifted by the ler resolution */ 2526 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2527 tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); 2528 error_counter_summary += (tmp >> res_ler); 2529 error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR, 2530 CNTR_INVALID_VL); 2531 error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 2532 error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2533 CNTR_INVALID_VL); 2534 /* ppd->link_downed is a 32-bit value */ 2535 error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN, 2536 CNTR_INVALID_VL); 2537 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2538 /* this is an 8-bit quantity */ 2539 error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff; 2540 2541 return error_counter_summary; 2542 } 2543 2544 static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp, 2545 u32 vl_select_mask) 2546 { 2547 if (!is_bx(ppd->dd)) { 2548 unsigned long vl; 2549 u64 sum_vl_xmit_wait = 0; 2550 u32 vl_all_mask = VL_MASK_ALL; 2551 2552 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2553 8 * sizeof(vl_all_mask)) { 2554 u64 tmp = sum_vl_xmit_wait + 2555 read_port_cntr(ppd, C_TX_WAIT_VL, 2556 idx_from_vl(vl)); 2557 if (tmp < sum_vl_xmit_wait) { 2558 /* we wrapped */ 2559 sum_vl_xmit_wait = (u64)~0; 2560 break; 2561 } 2562 sum_vl_xmit_wait = tmp; 2563 } 2564 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2565 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2566 } 2567 } 2568 2569 static void pma_get_opa_port_dctrs(struct ib_device *ibdev, 2570 struct _port_dctrs *rsp) 2571 { 2572 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2573 2574 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2575 CNTR_INVALID_VL)); 2576 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2577 CNTR_INVALID_VL)); 2578 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2579 CNTR_INVALID_VL)); 2580 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2581 CNTR_INVALID_VL)); 2582 rsp->port_multicast_xmit_pkts = 2583 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2584 CNTR_INVALID_VL)); 2585 rsp->port_multicast_rcv_pkts = 2586 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2587 CNTR_INVALID_VL)); 2588 } 2589 2590 static int pma_get_opa_datacounters(struct opa_pma_mad *pmp, 2591 struct ib_device *ibdev, 2592 u8 port, u32 *resp_len) 2593 { 2594 struct opa_port_data_counters_msg *req = 2595 (struct opa_port_data_counters_msg *)pmp->data; 2596 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2597 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2598 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2599 struct _port_dctrs *rsp; 2600 struct _vls_dctrs *vlinfo; 2601 size_t response_data_size; 2602 u32 num_ports; 2603 u8 num_pslm; 2604 u8 lq, num_vls; 2605 u8 res_lli, res_ler; 2606 u64 port_mask; 2607 u8 port_num; 2608 unsigned long vl; 2609 u32 vl_select_mask; 2610 int vfi; 2611 2612 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2613 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2614 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2615 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2616 res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT; 2617 res_lli = res_lli ? res_lli + ADD_LLI : 0; 2618 res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT; 2619 res_ler = res_ler ? res_ler + ADD_LER : 0; 2620 2621 if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) { 2622 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2623 return reply((struct ib_mad_hdr *)pmp); 2624 } 2625 2626 /* Sanity check */ 2627 response_data_size = sizeof(struct opa_port_data_counters_msg) + 2628 num_vls * sizeof(struct _vls_dctrs); 2629 2630 if (response_data_size > sizeof(pmp->data)) { 2631 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2632 return reply((struct ib_mad_hdr *)pmp); 2633 } 2634 2635 /* 2636 * The bit set in the mask needs to be consistent with the 2637 * port the request came in on. 2638 */ 2639 port_mask = be64_to_cpu(req->port_select_mask[3]); 2640 port_num = find_first_bit((unsigned long *)&port_mask, 2641 sizeof(port_mask) * 8); 2642 2643 if (port_num != port) { 2644 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2645 return reply((struct ib_mad_hdr *)pmp); 2646 } 2647 2648 rsp = &req->port[0]; 2649 memset(rsp, 0, sizeof(*rsp)); 2650 2651 rsp->port_number = port; 2652 /* 2653 * Note that link_quality_indicator is a 32 bit quantity in 2654 * 'datacounters' queries (as opposed to 'portinfo' queries, 2655 * where it's a byte). 2656 */ 2657 hfi1_read_link_quality(dd, &lq); 2658 rsp->link_quality_indicator = cpu_to_be32((u32)lq); 2659 pma_get_opa_port_dctrs(ibdev, rsp); 2660 2661 rsp->port_xmit_wait = 2662 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2663 rsp->port_rcv_fecn = 2664 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2665 rsp->port_rcv_becn = 2666 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2667 rsp->port_error_counter_summary = 2668 cpu_to_be64(get_error_counter_summary(ibdev, port, 2669 res_lli, res_ler)); 2670 2671 vlinfo = &rsp->vls[0]; 2672 vfi = 0; 2673 /* The vl_select_mask has been checked above, and we know 2674 * that it contains only entries which represent valid VLs. 2675 * So in the for_each_set_bit() loop below, we don't need 2676 * any additional checks for vl. 2677 */ 2678 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2679 8 * sizeof(req->vl_select_mask)) { 2680 memset(vlinfo, 0, sizeof(*vlinfo)); 2681 2682 rsp->vls[vfi].port_vl_xmit_data = 2683 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2684 idx_from_vl(vl))); 2685 2686 rsp->vls[vfi].port_vl_rcv_data = 2687 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL, 2688 idx_from_vl(vl))); 2689 2690 rsp->vls[vfi].port_vl_xmit_pkts = 2691 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2692 idx_from_vl(vl))); 2693 2694 rsp->vls[vfi].port_vl_rcv_pkts = 2695 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2696 idx_from_vl(vl))); 2697 2698 rsp->vls[vfi].port_vl_xmit_wait = 2699 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2700 idx_from_vl(vl))); 2701 2702 rsp->vls[vfi].port_vl_rcv_fecn = 2703 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2704 idx_from_vl(vl))); 2705 rsp->vls[vfi].port_vl_rcv_becn = 2706 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2707 idx_from_vl(vl))); 2708 2709 /* rsp->port_vl_xmit_time_cong is 0 for HFIs */ 2710 /* rsp->port_vl_xmit_wasted_bw ??? */ 2711 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? 2712 * does this differ from rsp->vls[vfi].port_vl_xmit_wait 2713 */ 2714 /*rsp->vls[vfi].port_vl_mark_fecn = 2715 * cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT 2716 * + offset)); 2717 */ 2718 vlinfo++; 2719 vfi++; 2720 } 2721 2722 a0_datacounters(ppd, rsp, vl_select_mask); 2723 2724 if (resp_len) 2725 *resp_len += response_data_size; 2726 2727 return reply((struct ib_mad_hdr *)pmp); 2728 } 2729 2730 static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp, 2731 struct ib_device *ibdev, u8 port) 2732 { 2733 struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *) 2734 pmp->data; 2735 struct _port_dctrs rsp; 2736 2737 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2738 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2739 goto bail; 2740 } 2741 2742 memset(&rsp, 0, sizeof(rsp)); 2743 pma_get_opa_port_dctrs(ibdev, &rsp); 2744 2745 p->port_xmit_data = rsp.port_xmit_data; 2746 p->port_rcv_data = rsp.port_rcv_data; 2747 p->port_xmit_packets = rsp.port_xmit_pkts; 2748 p->port_rcv_packets = rsp.port_rcv_pkts; 2749 p->port_unicast_xmit_packets = 0; 2750 p->port_unicast_rcv_packets = 0; 2751 p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts; 2752 p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts; 2753 2754 bail: 2755 return reply((struct ib_mad_hdr *)pmp); 2756 } 2757 2758 static void pma_get_opa_port_ectrs(struct ib_device *ibdev, 2759 struct _port_ectrs *rsp, u8 port) 2760 { 2761 u64 tmp, tmp2; 2762 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2763 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2764 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2765 2766 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2767 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2768 CNTR_INVALID_VL); 2769 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2770 /* overflow/wrapped */ 2771 rsp->link_error_recovery = cpu_to_be32(~0); 2772 } else { 2773 rsp->link_error_recovery = cpu_to_be32(tmp2); 2774 } 2775 2776 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2777 CNTR_INVALID_VL)); 2778 rsp->port_rcv_errors = 2779 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2780 rsp->port_rcv_remote_physical_errors = 2781 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2782 CNTR_INVALID_VL)); 2783 rsp->port_rcv_switch_relay_errors = 0; 2784 rsp->port_xmit_discards = 2785 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2786 CNTR_INVALID_VL)); 2787 rsp->port_xmit_constraint_errors = 2788 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2789 CNTR_INVALID_VL)); 2790 rsp->port_rcv_constraint_errors = 2791 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2792 CNTR_INVALID_VL)); 2793 rsp->local_link_integrity_errors = 2794 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY, 2795 CNTR_INVALID_VL)); 2796 rsp->excessive_buffer_overruns = 2797 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2798 } 2799 2800 static int pma_get_opa_porterrors(struct opa_pma_mad *pmp, 2801 struct ib_device *ibdev, 2802 u8 port, u32 *resp_len) 2803 { 2804 size_t response_data_size; 2805 struct _port_ectrs *rsp; 2806 u8 port_num; 2807 struct opa_port_error_counters64_msg *req; 2808 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2809 u32 num_ports; 2810 u8 num_pslm; 2811 u8 num_vls; 2812 struct hfi1_ibport *ibp; 2813 struct hfi1_pportdata *ppd; 2814 struct _vls_ectrs *vlinfo; 2815 unsigned long vl; 2816 u64 port_mask, tmp; 2817 u32 vl_select_mask; 2818 int vfi; 2819 2820 req = (struct opa_port_error_counters64_msg *)pmp->data; 2821 2822 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2823 2824 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2825 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2826 2827 if (num_ports != 1 || num_ports != num_pslm) { 2828 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2829 return reply((struct ib_mad_hdr *)pmp); 2830 } 2831 2832 response_data_size = sizeof(struct opa_port_error_counters64_msg) + 2833 num_vls * sizeof(struct _vls_ectrs); 2834 2835 if (response_data_size > sizeof(pmp->data)) { 2836 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2837 return reply((struct ib_mad_hdr *)pmp); 2838 } 2839 /* 2840 * The bit set in the mask needs to be consistent with the 2841 * port the request came in on. 2842 */ 2843 port_mask = be64_to_cpu(req->port_select_mask[3]); 2844 port_num = find_first_bit((unsigned long *)&port_mask, 2845 sizeof(port_mask) * 8); 2846 2847 if (port_num != port) { 2848 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2849 return reply((struct ib_mad_hdr *)pmp); 2850 } 2851 2852 rsp = &req->port[0]; 2853 2854 ibp = to_iport(ibdev, port_num); 2855 ppd = ppd_from_ibp(ibp); 2856 2857 memset(rsp, 0, sizeof(*rsp)); 2858 rsp->port_number = port_num; 2859 2860 pma_get_opa_port_ectrs(ibdev, rsp, port_num); 2861 2862 rsp->port_rcv_remote_physical_errors = 2863 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2864 CNTR_INVALID_VL)); 2865 rsp->fm_config_errors = 2866 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2867 CNTR_INVALID_VL)); 2868 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2869 2870 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2871 rsp->port_rcv_errors = 2872 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2873 vlinfo = &rsp->vls[0]; 2874 vfi = 0; 2875 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2876 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2877 8 * sizeof(req->vl_select_mask)) { 2878 memset(vlinfo, 0, sizeof(*vlinfo)); 2879 rsp->vls[vfi].port_vl_xmit_discards = 2880 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL, 2881 idx_from_vl(vl))); 2882 vlinfo += 1; 2883 vfi++; 2884 } 2885 2886 if (resp_len) 2887 *resp_len += response_data_size; 2888 2889 return reply((struct ib_mad_hdr *)pmp); 2890 } 2891 2892 static int pma_get_ib_portcounters(struct ib_pma_mad *pmp, 2893 struct ib_device *ibdev, u8 port) 2894 { 2895 struct ib_pma_portcounters *p = (struct ib_pma_portcounters *) 2896 pmp->data; 2897 struct _port_ectrs rsp; 2898 u64 temp_link_overrun_errors; 2899 u64 temp_64; 2900 u32 temp_32; 2901 2902 memset(&rsp, 0, sizeof(rsp)); 2903 pma_get_opa_port_ectrs(ibdev, &rsp, port); 2904 2905 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2906 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2907 goto bail; 2908 } 2909 2910 p->symbol_error_counter = 0; /* N/A for OPA */ 2911 2912 temp_32 = be32_to_cpu(rsp.link_error_recovery); 2913 if (temp_32 > 0xFFUL) 2914 p->link_error_recovery_counter = 0xFF; 2915 else 2916 p->link_error_recovery_counter = (u8)temp_32; 2917 2918 temp_32 = be32_to_cpu(rsp.link_downed); 2919 if (temp_32 > 0xFFUL) 2920 p->link_downed_counter = 0xFF; 2921 else 2922 p->link_downed_counter = (u8)temp_32; 2923 2924 temp_64 = be64_to_cpu(rsp.port_rcv_errors); 2925 if (temp_64 > 0xFFFFUL) 2926 p->port_rcv_errors = cpu_to_be16(0xFFFF); 2927 else 2928 p->port_rcv_errors = cpu_to_be16((u16)temp_64); 2929 2930 temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors); 2931 if (temp_64 > 0xFFFFUL) 2932 p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF); 2933 else 2934 p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64); 2935 2936 temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors); 2937 p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64); 2938 2939 temp_64 = be64_to_cpu(rsp.port_xmit_discards); 2940 if (temp_64 > 0xFFFFUL) 2941 p->port_xmit_discards = cpu_to_be16(0xFFFF); 2942 else 2943 p->port_xmit_discards = cpu_to_be16((u16)temp_64); 2944 2945 temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors); 2946 if (temp_64 > 0xFFUL) 2947 p->port_xmit_constraint_errors = 0xFF; 2948 else 2949 p->port_xmit_constraint_errors = (u8)temp_64; 2950 2951 temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors); 2952 if (temp_64 > 0xFFUL) 2953 p->port_rcv_constraint_errors = 0xFFUL; 2954 else 2955 p->port_rcv_constraint_errors = (u8)temp_64; 2956 2957 /* LocalLink: 7:4, BufferOverrun: 3:0 */ 2958 temp_64 = be64_to_cpu(rsp.local_link_integrity_errors); 2959 if (temp_64 > 0xFUL) 2960 temp_64 = 0xFUL; 2961 2962 temp_link_overrun_errors = temp_64 << 4; 2963 2964 temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns); 2965 if (temp_64 > 0xFUL) 2966 temp_64 = 0xFUL; 2967 temp_link_overrun_errors |= temp_64; 2968 2969 p->link_overrun_errors = (u8)temp_link_overrun_errors; 2970 2971 p->vl15_dropped = 0; /* N/A for OPA */ 2972 2973 bail: 2974 return reply((struct ib_mad_hdr *)pmp); 2975 } 2976 2977 static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp, 2978 struct ib_device *ibdev, 2979 u8 port, u32 *resp_len) 2980 { 2981 size_t response_data_size; 2982 struct _port_ei *rsp; 2983 struct opa_port_error_info_msg *req; 2984 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2985 u64 port_mask; 2986 u32 num_ports; 2987 u8 port_num; 2988 u8 num_pslm; 2989 u64 reg; 2990 2991 req = (struct opa_port_error_info_msg *)pmp->data; 2992 rsp = &req->port[0]; 2993 2994 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 2995 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2996 2997 memset(rsp, 0, sizeof(*rsp)); 2998 2999 if (num_ports != 1 || num_ports != num_pslm) { 3000 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3001 return reply((struct ib_mad_hdr *)pmp); 3002 } 3003 3004 /* Sanity check */ 3005 response_data_size = sizeof(struct opa_port_error_info_msg); 3006 3007 if (response_data_size > sizeof(pmp->data)) { 3008 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3009 return reply((struct ib_mad_hdr *)pmp); 3010 } 3011 3012 /* 3013 * The bit set in the mask needs to be consistent with the port 3014 * the request came in on. 3015 */ 3016 port_mask = be64_to_cpu(req->port_select_mask[3]); 3017 port_num = find_first_bit((unsigned long *)&port_mask, 3018 sizeof(port_mask) * 8); 3019 3020 if (port_num != port) { 3021 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3022 return reply((struct ib_mad_hdr *)pmp); 3023 } 3024 3025 /* PortRcvErrorInfo */ 3026 rsp->port_rcv_ei.status_and_code = 3027 dd->err_info_rcvport.status_and_code; 3028 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1, 3029 &dd->err_info_rcvport.packet_flit1, sizeof(u64)); 3030 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2, 3031 &dd->err_info_rcvport.packet_flit2, sizeof(u64)); 3032 3033 /* ExcessiverBufferOverrunInfo */ 3034 reg = read_csr(dd, RCV_ERR_INFO); 3035 if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) { 3036 /* 3037 * if the RcvExcessBufferOverrun bit is set, save SC of 3038 * first pkt that encountered an excess buffer overrun 3039 */ 3040 u8 tmp = (u8)reg; 3041 3042 tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK; 3043 tmp <<= 2; 3044 rsp->excessive_buffer_overrun_ei.status_and_sc = tmp; 3045 /* set the status bit */ 3046 rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80; 3047 } 3048 3049 rsp->port_xmit_constraint_ei.status = 3050 dd->err_info_xmit_constraint.status; 3051 rsp->port_xmit_constraint_ei.pkey = 3052 cpu_to_be16(dd->err_info_xmit_constraint.pkey); 3053 rsp->port_xmit_constraint_ei.slid = 3054 cpu_to_be32(dd->err_info_xmit_constraint.slid); 3055 3056 rsp->port_rcv_constraint_ei.status = 3057 dd->err_info_rcv_constraint.status; 3058 rsp->port_rcv_constraint_ei.pkey = 3059 cpu_to_be16(dd->err_info_rcv_constraint.pkey); 3060 rsp->port_rcv_constraint_ei.slid = 3061 cpu_to_be32(dd->err_info_rcv_constraint.slid); 3062 3063 /* UncorrectableErrorInfo */ 3064 rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable; 3065 3066 /* FMConfigErrorInfo */ 3067 rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig; 3068 3069 if (resp_len) 3070 *resp_len += response_data_size; 3071 3072 return reply((struct ib_mad_hdr *)pmp); 3073 } 3074 3075 static int pma_set_opa_portstatus(struct opa_pma_mad *pmp, 3076 struct ib_device *ibdev, 3077 u8 port, u32 *resp_len) 3078 { 3079 struct opa_clear_port_status *req = 3080 (struct opa_clear_port_status *)pmp->data; 3081 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3082 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3083 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3084 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 3085 u64 portn = be64_to_cpu(req->port_select_mask[3]); 3086 u32 counter_select = be32_to_cpu(req->counter_select_mask); 3087 u32 vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */ 3088 unsigned long vl; 3089 3090 if ((nports != 1) || (portn != 1 << port)) { 3091 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3092 return reply((struct ib_mad_hdr *)pmp); 3093 } 3094 /* 3095 * only counters returned by pma_get_opa_portstatus() are 3096 * handled, so when pma_get_opa_portstatus() gets a fix, 3097 * the corresponding change should be made here as well. 3098 */ 3099 3100 if (counter_select & CS_PORT_XMIT_DATA) 3101 write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0); 3102 3103 if (counter_select & CS_PORT_RCV_DATA) 3104 write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0); 3105 3106 if (counter_select & CS_PORT_XMIT_PKTS) 3107 write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3108 3109 if (counter_select & CS_PORT_RCV_PKTS) 3110 write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0); 3111 3112 if (counter_select & CS_PORT_MCAST_XMIT_PKTS) 3113 write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3114 3115 if (counter_select & CS_PORT_MCAST_RCV_PKTS) 3116 write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0); 3117 3118 if (counter_select & CS_PORT_XMIT_WAIT) 3119 write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0); 3120 3121 /* ignore cs_sw_portCongestion for HFIs */ 3122 3123 if (counter_select & CS_PORT_RCV_FECN) 3124 write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0); 3125 3126 if (counter_select & CS_PORT_RCV_BECN) 3127 write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0); 3128 3129 /* ignore cs_port_xmit_time_cong for HFIs */ 3130 /* ignore cs_port_xmit_wasted_bw for now */ 3131 /* ignore cs_port_xmit_wait_data for now */ 3132 if (counter_select & CS_PORT_RCV_BUBBLE) 3133 write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0); 3134 3135 /* Only applicable for switch */ 3136 /* if (counter_select & CS_PORT_MARK_FECN) 3137 * write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0); 3138 */ 3139 3140 if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS) 3141 write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0); 3142 3143 /* ignore cs_port_rcv_switch_relay_errors for HFIs */ 3144 if (counter_select & CS_PORT_XMIT_DISCARDS) 3145 write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0); 3146 3147 if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS) 3148 write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0); 3149 3150 if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS) 3151 write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0); 3152 3153 if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS) 3154 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3155 3156 if (counter_select & CS_LINK_ERROR_RECOVERY) { 3157 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3158 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 3159 CNTR_INVALID_VL, 0); 3160 } 3161 3162 if (counter_select & CS_PORT_RCV_ERRORS) 3163 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3164 3165 if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) { 3166 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3167 dd->rcv_ovfl_cnt = 0; 3168 } 3169 3170 if (counter_select & CS_FM_CONFIG_ERRORS) 3171 write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0); 3172 3173 if (counter_select & CS_LINK_DOWNED) 3174 write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0); 3175 3176 if (counter_select & CS_UNCORRECTABLE_ERRORS) 3177 write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0); 3178 3179 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 3180 8 * sizeof(vl_select_mask)) { 3181 if (counter_select & CS_PORT_XMIT_DATA) 3182 write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0); 3183 3184 if (counter_select & CS_PORT_RCV_DATA) 3185 write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0); 3186 3187 if (counter_select & CS_PORT_XMIT_PKTS) 3188 write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0); 3189 3190 if (counter_select & CS_PORT_RCV_PKTS) 3191 write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0); 3192 3193 if (counter_select & CS_PORT_XMIT_WAIT) 3194 write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0); 3195 3196 /* sw_port_vl_congestion is 0 for HFIs */ 3197 if (counter_select & CS_PORT_RCV_FECN) 3198 write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0); 3199 3200 if (counter_select & CS_PORT_RCV_BECN) 3201 write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0); 3202 3203 /* port_vl_xmit_time_cong is 0 for HFIs */ 3204 /* port_vl_xmit_wasted_bw ??? */ 3205 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */ 3206 if (counter_select & CS_PORT_RCV_BUBBLE) 3207 write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0); 3208 3209 /* if (counter_select & CS_PORT_MARK_FECN) 3210 * write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0); 3211 */ 3212 if (counter_select & C_SW_XMIT_DSCD_VL) 3213 write_port_cntr(ppd, C_SW_XMIT_DSCD_VL, 3214 idx_from_vl(vl), 0); 3215 } 3216 3217 if (resp_len) 3218 *resp_len += sizeof(*req); 3219 3220 return reply((struct ib_mad_hdr *)pmp); 3221 } 3222 3223 static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp, 3224 struct ib_device *ibdev, 3225 u8 port, u32 *resp_len) 3226 { 3227 struct _port_ei *rsp; 3228 struct opa_port_error_info_msg *req; 3229 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3230 u64 port_mask; 3231 u32 num_ports; 3232 u8 port_num; 3233 u8 num_pslm; 3234 u32 error_info_select; 3235 3236 req = (struct opa_port_error_info_msg *)pmp->data; 3237 rsp = &req->port[0]; 3238 3239 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 3240 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 3241 3242 memset(rsp, 0, sizeof(*rsp)); 3243 3244 if (num_ports != 1 || num_ports != num_pslm) { 3245 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3246 return reply((struct ib_mad_hdr *)pmp); 3247 } 3248 3249 /* 3250 * The bit set in the mask needs to be consistent with the port 3251 * the request came in on. 3252 */ 3253 port_mask = be64_to_cpu(req->port_select_mask[3]); 3254 port_num = find_first_bit((unsigned long *)&port_mask, 3255 sizeof(port_mask) * 8); 3256 3257 if (port_num != port) { 3258 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3259 return reply((struct ib_mad_hdr *)pmp); 3260 } 3261 3262 error_info_select = be32_to_cpu(req->error_info_select_mask); 3263 3264 /* PortRcvErrorInfo */ 3265 if (error_info_select & ES_PORT_RCV_ERROR_INFO) 3266 /* turn off status bit */ 3267 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3268 3269 /* ExcessiverBufferOverrunInfo */ 3270 if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO) 3271 /* 3272 * status bit is essentially kept in the h/w - bit 5 of 3273 * RCV_ERR_INFO 3274 */ 3275 write_csr(dd, RCV_ERR_INFO, 3276 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 3277 3278 if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO) 3279 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3280 3281 if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO) 3282 dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK; 3283 3284 /* UncorrectableErrorInfo */ 3285 if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO) 3286 /* turn off status bit */ 3287 dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK; 3288 3289 /* FMConfigErrorInfo */ 3290 if (error_info_select & ES_FM_CONFIG_ERROR_INFO) 3291 /* turn off status bit */ 3292 dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK; 3293 3294 if (resp_len) 3295 *resp_len += sizeof(*req); 3296 3297 return reply((struct ib_mad_hdr *)pmp); 3298 } 3299 3300 struct opa_congestion_info_attr { 3301 __be16 congestion_info; 3302 u8 control_table_cap; /* Multiple of 64 entry unit CCTs */ 3303 u8 congestion_log_length; 3304 } __packed; 3305 3306 static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data, 3307 struct ib_device *ibdev, u8 port, 3308 u32 *resp_len) 3309 { 3310 struct opa_congestion_info_attr *p = 3311 (struct opa_congestion_info_attr *)data; 3312 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3313 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3314 3315 p->congestion_info = 0; 3316 p->control_table_cap = ppd->cc_max_table_entries; 3317 p->congestion_log_length = OPA_CONG_LOG_ELEMS; 3318 3319 if (resp_len) 3320 *resp_len += sizeof(*p); 3321 3322 return reply((struct ib_mad_hdr *)smp); 3323 } 3324 3325 static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am, 3326 u8 *data, struct ib_device *ibdev, 3327 u8 port, u32 *resp_len) 3328 { 3329 int i; 3330 struct opa_congestion_setting_attr *p = 3331 (struct opa_congestion_setting_attr *)data; 3332 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3333 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3334 struct opa_congestion_setting_entry_shadow *entries; 3335 struct cc_state *cc_state; 3336 3337 rcu_read_lock(); 3338 3339 cc_state = get_cc_state(ppd); 3340 3341 if (!cc_state) { 3342 rcu_read_unlock(); 3343 return reply((struct ib_mad_hdr *)smp); 3344 } 3345 3346 entries = cc_state->cong_setting.entries; 3347 p->port_control = cpu_to_be16(cc_state->cong_setting.port_control); 3348 p->control_map = cpu_to_be32(cc_state->cong_setting.control_map); 3349 for (i = 0; i < OPA_MAX_SLS; i++) { 3350 p->entries[i].ccti_increase = entries[i].ccti_increase; 3351 p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer); 3352 p->entries[i].trigger_threshold = 3353 entries[i].trigger_threshold; 3354 p->entries[i].ccti_min = entries[i].ccti_min; 3355 } 3356 3357 rcu_read_unlock(); 3358 3359 if (resp_len) 3360 *resp_len += sizeof(*p); 3361 3362 return reply((struct ib_mad_hdr *)smp); 3363 } 3364 3365 /* 3366 * Apply congestion control information stored in the ppd to the 3367 * active structure. 3368 */ 3369 static void apply_cc_state(struct hfi1_pportdata *ppd) 3370 { 3371 struct cc_state *old_cc_state, *new_cc_state; 3372 3373 new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL); 3374 if (!new_cc_state) 3375 return; 3376 3377 /* 3378 * Hold the lock for updating *and* to prevent ppd information 3379 * from changing during the update. 3380 */ 3381 spin_lock(&ppd->cc_state_lock); 3382 3383 old_cc_state = get_cc_state_protected(ppd); 3384 if (!old_cc_state) { 3385 /* never active, or shutting down */ 3386 spin_unlock(&ppd->cc_state_lock); 3387 kfree(new_cc_state); 3388 return; 3389 } 3390 3391 *new_cc_state = *old_cc_state; 3392 3393 new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1; 3394 memcpy(new_cc_state->cct.entries, ppd->ccti_entries, 3395 ppd->total_cct_entry * sizeof(struct ib_cc_table_entry)); 3396 3397 new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED; 3398 new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map; 3399 memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries, 3400 OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry)); 3401 3402 rcu_assign_pointer(ppd->cc_state, new_cc_state); 3403 3404 spin_unlock(&ppd->cc_state_lock); 3405 3406 kfree_rcu(old_cc_state, rcu); 3407 } 3408 3409 static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data, 3410 struct ib_device *ibdev, u8 port, 3411 u32 *resp_len) 3412 { 3413 struct opa_congestion_setting_attr *p = 3414 (struct opa_congestion_setting_attr *)data; 3415 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3416 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3417 struct opa_congestion_setting_entry_shadow *entries; 3418 int i; 3419 3420 /* 3421 * Save details from packet into the ppd. Hold the cc_state_lock so 3422 * our information is consistent with anyone trying to apply the state. 3423 */ 3424 spin_lock(&ppd->cc_state_lock); 3425 ppd->cc_sl_control_map = be32_to_cpu(p->control_map); 3426 3427 entries = ppd->congestion_entries; 3428 for (i = 0; i < OPA_MAX_SLS; i++) { 3429 entries[i].ccti_increase = p->entries[i].ccti_increase; 3430 entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer); 3431 entries[i].trigger_threshold = 3432 p->entries[i].trigger_threshold; 3433 entries[i].ccti_min = p->entries[i].ccti_min; 3434 } 3435 spin_unlock(&ppd->cc_state_lock); 3436 3437 /* now apply the information */ 3438 apply_cc_state(ppd); 3439 3440 return __subn_get_opa_cong_setting(smp, am, data, ibdev, port, 3441 resp_len); 3442 } 3443 3444 static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am, 3445 u8 *data, struct ib_device *ibdev, 3446 u8 port, u32 *resp_len) 3447 { 3448 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3449 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3450 struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data; 3451 s64 ts; 3452 int i; 3453 3454 if (am != 0) { 3455 smp->status |= IB_SMP_INVALID_FIELD; 3456 return reply((struct ib_mad_hdr *)smp); 3457 } 3458 3459 spin_lock_irq(&ppd->cc_log_lock); 3460 3461 cong_log->log_type = OPA_CC_LOG_TYPE_HFI; 3462 cong_log->congestion_flags = 0; 3463 cong_log->threshold_event_counter = 3464 cpu_to_be16(ppd->threshold_event_counter); 3465 memcpy(cong_log->threshold_cong_event_map, 3466 ppd->threshold_cong_event_map, 3467 sizeof(cong_log->threshold_cong_event_map)); 3468 /* keep timestamp in units of 1.024 usec */ 3469 ts = ktime_to_ns(ktime_get()) / 1024; 3470 cong_log->current_time_stamp = cpu_to_be32(ts); 3471 for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) { 3472 struct opa_hfi1_cong_log_event_internal *cce = 3473 &ppd->cc_events[ppd->cc_mad_idx++]; 3474 if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS) 3475 ppd->cc_mad_idx = 0; 3476 /* 3477 * Entries which are older than twice the time 3478 * required to wrap the counter are supposed to 3479 * be zeroed (CA10-49 IBTA, release 1.2.1, V1). 3480 */ 3481 if ((u64)(ts - cce->timestamp) > (2 * UINT_MAX)) 3482 continue; 3483 memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3); 3484 memcpy(cong_log->events[i].remote_qp_number_cn_entry, 3485 &cce->rqpn, 3); 3486 cong_log->events[i].sl_svc_type_cn_entry = 3487 ((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7); 3488 cong_log->events[i].remote_lid_cn_entry = 3489 cpu_to_be32(cce->rlid); 3490 cong_log->events[i].timestamp_cn_entry = 3491 cpu_to_be32(cce->timestamp); 3492 } 3493 3494 /* 3495 * Reset threshold_cong_event_map, and threshold_event_counter 3496 * to 0 when log is read. 3497 */ 3498 memset(ppd->threshold_cong_event_map, 0x0, 3499 sizeof(ppd->threshold_cong_event_map)); 3500 ppd->threshold_event_counter = 0; 3501 3502 spin_unlock_irq(&ppd->cc_log_lock); 3503 3504 if (resp_len) 3505 *resp_len += sizeof(struct opa_hfi1_cong_log); 3506 3507 return reply((struct ib_mad_hdr *)smp); 3508 } 3509 3510 static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3511 struct ib_device *ibdev, u8 port, 3512 u32 *resp_len) 3513 { 3514 struct ib_cc_table_attr *cc_table_attr = 3515 (struct ib_cc_table_attr *)data; 3516 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3517 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3518 u32 start_block = OPA_AM_START_BLK(am); 3519 u32 n_blocks = OPA_AM_NBLK(am); 3520 struct ib_cc_table_entry_shadow *entries; 3521 int i, j; 3522 u32 sentry, eentry; 3523 struct cc_state *cc_state; 3524 3525 /* sanity check n_blocks, start_block */ 3526 if (n_blocks == 0 || 3527 start_block + n_blocks > ppd->cc_max_table_entries) { 3528 smp->status |= IB_SMP_INVALID_FIELD; 3529 return reply((struct ib_mad_hdr *)smp); 3530 } 3531 3532 rcu_read_lock(); 3533 3534 cc_state = get_cc_state(ppd); 3535 3536 if (!cc_state) { 3537 rcu_read_unlock(); 3538 return reply((struct ib_mad_hdr *)smp); 3539 } 3540 3541 sentry = start_block * IB_CCT_ENTRIES; 3542 eentry = sentry + (IB_CCT_ENTRIES * n_blocks); 3543 3544 cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit); 3545 3546 entries = cc_state->cct.entries; 3547 3548 /* return n_blocks, though the last block may not be full */ 3549 for (j = 0, i = sentry; i < eentry; j++, i++) 3550 cc_table_attr->ccti_entries[j].entry = 3551 cpu_to_be16(entries[i].entry); 3552 3553 rcu_read_unlock(); 3554 3555 if (resp_len) 3556 *resp_len += sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1); 3557 3558 return reply((struct ib_mad_hdr *)smp); 3559 } 3560 3561 static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3562 struct ib_device *ibdev, u8 port, 3563 u32 *resp_len) 3564 { 3565 struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data; 3566 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3567 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3568 u32 start_block = OPA_AM_START_BLK(am); 3569 u32 n_blocks = OPA_AM_NBLK(am); 3570 struct ib_cc_table_entry_shadow *entries; 3571 int i, j; 3572 u32 sentry, eentry; 3573 u16 ccti_limit; 3574 3575 /* sanity check n_blocks, start_block */ 3576 if (n_blocks == 0 || 3577 start_block + n_blocks > ppd->cc_max_table_entries) { 3578 smp->status |= IB_SMP_INVALID_FIELD; 3579 return reply((struct ib_mad_hdr *)smp); 3580 } 3581 3582 sentry = start_block * IB_CCT_ENTRIES; 3583 eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) + 3584 (be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1; 3585 3586 /* sanity check ccti_limit */ 3587 ccti_limit = be16_to_cpu(p->ccti_limit); 3588 if (ccti_limit + 1 > eentry) { 3589 smp->status |= IB_SMP_INVALID_FIELD; 3590 return reply((struct ib_mad_hdr *)smp); 3591 } 3592 3593 /* 3594 * Save details from packet into the ppd. Hold the cc_state_lock so 3595 * our information is consistent with anyone trying to apply the state. 3596 */ 3597 spin_lock(&ppd->cc_state_lock); 3598 ppd->total_cct_entry = ccti_limit + 1; 3599 entries = ppd->ccti_entries; 3600 for (j = 0, i = sentry; i < eentry; j++, i++) 3601 entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry); 3602 spin_unlock(&ppd->cc_state_lock); 3603 3604 /* now apply the information */ 3605 apply_cc_state(ppd); 3606 3607 return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len); 3608 } 3609 3610 struct opa_led_info { 3611 __be32 rsvd_led_mask; 3612 __be32 rsvd; 3613 }; 3614 3615 #define OPA_LED_SHIFT 31 3616 #define OPA_LED_MASK BIT(OPA_LED_SHIFT) 3617 3618 static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3619 struct ib_device *ibdev, u8 port, 3620 u32 *resp_len) 3621 { 3622 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3623 struct hfi1_pportdata *ppd = dd->pport; 3624 struct opa_led_info *p = (struct opa_led_info *)data; 3625 u32 nport = OPA_AM_NPORT(am); 3626 u32 is_beaconing_active; 3627 3628 if (nport != 1) { 3629 smp->status |= IB_SMP_INVALID_FIELD; 3630 return reply((struct ib_mad_hdr *)smp); 3631 } 3632 3633 /* 3634 * This pairs with the memory barrier in hfi1_start_led_override to 3635 * ensure that we read the correct state of LED beaconing represented 3636 * by led_override_timer_active 3637 */ 3638 smp_rmb(); 3639 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 3640 p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT); 3641 3642 if (resp_len) 3643 *resp_len += sizeof(struct opa_led_info); 3644 3645 return reply((struct ib_mad_hdr *)smp); 3646 } 3647 3648 static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3649 struct ib_device *ibdev, u8 port, 3650 u32 *resp_len) 3651 { 3652 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3653 struct opa_led_info *p = (struct opa_led_info *)data; 3654 u32 nport = OPA_AM_NPORT(am); 3655 int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK); 3656 3657 if (nport != 1) { 3658 smp->status |= IB_SMP_INVALID_FIELD; 3659 return reply((struct ib_mad_hdr *)smp); 3660 } 3661 3662 if (on) 3663 hfi1_start_led_override(dd->pport, 2000, 1500); 3664 else 3665 shutdown_led_override(dd->pport); 3666 3667 return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len); 3668 } 3669 3670 static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3671 u8 *data, struct ib_device *ibdev, u8 port, 3672 u32 *resp_len) 3673 { 3674 int ret; 3675 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3676 3677 switch (attr_id) { 3678 case IB_SMP_ATTR_NODE_DESC: 3679 ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port, 3680 resp_len); 3681 break; 3682 case IB_SMP_ATTR_NODE_INFO: 3683 ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port, 3684 resp_len); 3685 break; 3686 case IB_SMP_ATTR_PORT_INFO: 3687 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, 3688 resp_len); 3689 break; 3690 case IB_SMP_ATTR_PKEY_TABLE: 3691 ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port, 3692 resp_len); 3693 break; 3694 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3695 ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, 3696 resp_len); 3697 break; 3698 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3699 ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, 3700 resp_len); 3701 break; 3702 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3703 ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, 3704 resp_len); 3705 break; 3706 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3707 ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3708 resp_len); 3709 break; 3710 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3711 ret = __subn_get_opa_psi(smp, am, data, ibdev, port, 3712 resp_len); 3713 break; 3714 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3715 ret = __subn_get_opa_bct(smp, am, data, ibdev, port, 3716 resp_len); 3717 break; 3718 case OPA_ATTRIB_ID_CABLE_INFO: 3719 ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port, 3720 resp_len); 3721 break; 3722 case IB_SMP_ATTR_VL_ARB_TABLE: 3723 ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port, 3724 resp_len); 3725 break; 3726 case OPA_ATTRIB_ID_CONGESTION_INFO: 3727 ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port, 3728 resp_len); 3729 break; 3730 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3731 ret = __subn_get_opa_cong_setting(smp, am, data, ibdev, 3732 port, resp_len); 3733 break; 3734 case OPA_ATTRIB_ID_HFI_CONGESTION_LOG: 3735 ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev, 3736 port, resp_len); 3737 break; 3738 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3739 ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port, 3740 resp_len); 3741 break; 3742 case IB_SMP_ATTR_LED_INFO: 3743 ret = __subn_get_opa_led_info(smp, am, data, ibdev, port, 3744 resp_len); 3745 break; 3746 case IB_SMP_ATTR_SM_INFO: 3747 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3748 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3749 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3750 return IB_MAD_RESULT_SUCCESS; 3751 /* FALLTHROUGH */ 3752 default: 3753 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3754 ret = reply((struct ib_mad_hdr *)smp); 3755 break; 3756 } 3757 return ret; 3758 } 3759 3760 static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3761 u8 *data, struct ib_device *ibdev, u8 port, 3762 u32 *resp_len) 3763 { 3764 int ret; 3765 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3766 3767 switch (attr_id) { 3768 case IB_SMP_ATTR_PORT_INFO: 3769 ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port, 3770 resp_len); 3771 break; 3772 case IB_SMP_ATTR_PKEY_TABLE: 3773 ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port, 3774 resp_len); 3775 break; 3776 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3777 ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port, 3778 resp_len); 3779 break; 3780 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3781 ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port, 3782 resp_len); 3783 break; 3784 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3785 ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port, 3786 resp_len); 3787 break; 3788 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3789 ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3790 resp_len); 3791 break; 3792 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3793 ret = __subn_set_opa_psi(smp, am, data, ibdev, port, 3794 resp_len); 3795 break; 3796 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3797 ret = __subn_set_opa_bct(smp, am, data, ibdev, port, 3798 resp_len); 3799 break; 3800 case IB_SMP_ATTR_VL_ARB_TABLE: 3801 ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port, 3802 resp_len); 3803 break; 3804 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3805 ret = __subn_set_opa_cong_setting(smp, am, data, ibdev, 3806 port, resp_len); 3807 break; 3808 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3809 ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port, 3810 resp_len); 3811 break; 3812 case IB_SMP_ATTR_LED_INFO: 3813 ret = __subn_set_opa_led_info(smp, am, data, ibdev, port, 3814 resp_len); 3815 break; 3816 case IB_SMP_ATTR_SM_INFO: 3817 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3818 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3819 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3820 return IB_MAD_RESULT_SUCCESS; 3821 /* FALLTHROUGH */ 3822 default: 3823 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3824 ret = reply((struct ib_mad_hdr *)smp); 3825 break; 3826 } 3827 return ret; 3828 } 3829 3830 static inline void set_aggr_error(struct opa_aggregate *ag) 3831 { 3832 ag->err_reqlength |= cpu_to_be16(0x8000); 3833 } 3834 3835 static int subn_get_opa_aggregate(struct opa_smp *smp, 3836 struct ib_device *ibdev, u8 port, 3837 u32 *resp_len) 3838 { 3839 int i; 3840 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3841 u8 *next_smp = opa_get_smp_data(smp); 3842 3843 if (num_attr < 1 || num_attr > 117) { 3844 smp->status |= IB_SMP_INVALID_FIELD; 3845 return reply((struct ib_mad_hdr *)smp); 3846 } 3847 3848 for (i = 0; i < num_attr; i++) { 3849 struct opa_aggregate *agg; 3850 size_t agg_data_len; 3851 size_t agg_size; 3852 u32 am; 3853 3854 agg = (struct opa_aggregate *)next_smp; 3855 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3856 agg_size = sizeof(*agg) + agg_data_len; 3857 am = be32_to_cpu(agg->attr_mod); 3858 3859 *resp_len += agg_size; 3860 3861 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3862 smp->status |= IB_SMP_INVALID_FIELD; 3863 return reply((struct ib_mad_hdr *)smp); 3864 } 3865 3866 /* zero the payload for this segment */ 3867 memset(next_smp + sizeof(*agg), 0, agg_data_len); 3868 3869 (void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data, 3870 ibdev, port, NULL); 3871 if (smp->status & ~IB_SMP_DIRECTION) { 3872 set_aggr_error(agg); 3873 return reply((struct ib_mad_hdr *)smp); 3874 } 3875 next_smp += agg_size; 3876 } 3877 3878 return reply((struct ib_mad_hdr *)smp); 3879 } 3880 3881 static int subn_set_opa_aggregate(struct opa_smp *smp, 3882 struct ib_device *ibdev, u8 port, 3883 u32 *resp_len) 3884 { 3885 int i; 3886 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3887 u8 *next_smp = opa_get_smp_data(smp); 3888 3889 if (num_attr < 1 || num_attr > 117) { 3890 smp->status |= IB_SMP_INVALID_FIELD; 3891 return reply((struct ib_mad_hdr *)smp); 3892 } 3893 3894 for (i = 0; i < num_attr; i++) { 3895 struct opa_aggregate *agg; 3896 size_t agg_data_len; 3897 size_t agg_size; 3898 u32 am; 3899 3900 agg = (struct opa_aggregate *)next_smp; 3901 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3902 agg_size = sizeof(*agg) + agg_data_len; 3903 am = be32_to_cpu(agg->attr_mod); 3904 3905 *resp_len += agg_size; 3906 3907 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3908 smp->status |= IB_SMP_INVALID_FIELD; 3909 return reply((struct ib_mad_hdr *)smp); 3910 } 3911 3912 (void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data, 3913 ibdev, port, NULL); 3914 if (smp->status & ~IB_SMP_DIRECTION) { 3915 set_aggr_error(agg); 3916 return reply((struct ib_mad_hdr *)smp); 3917 } 3918 next_smp += agg_size; 3919 } 3920 3921 return reply((struct ib_mad_hdr *)smp); 3922 } 3923 3924 /* 3925 * OPAv1 specifies that, on the transition to link up, these counters 3926 * are cleared: 3927 * PortRcvErrors [*] 3928 * LinkErrorRecovery 3929 * LocalLinkIntegrityErrors 3930 * ExcessiveBufferOverruns [*] 3931 * 3932 * [*] Error info associated with these counters is retained, but the 3933 * error info status is reset to 0. 3934 */ 3935 void clear_linkup_counters(struct hfi1_devdata *dd) 3936 { 3937 /* PortRcvErrors */ 3938 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3939 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3940 /* LinkErrorRecovery */ 3941 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3942 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0); 3943 /* LocalLinkIntegrityErrors */ 3944 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3945 /* ExcessiveBufferOverruns */ 3946 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3947 dd->rcv_ovfl_cnt = 0; 3948 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3949 } 3950 3951 /* 3952 * is_local_mad() returns 1 if 'mad' is sent from, and destined to the 3953 * local node, 0 otherwise. 3954 */ 3955 static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad, 3956 const struct ib_wc *in_wc) 3957 { 3958 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3959 const struct opa_smp *smp = (const struct opa_smp *)mad; 3960 3961 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 3962 return (smp->hop_cnt == 0 && 3963 smp->route.dr.dr_slid == OPA_LID_PERMISSIVE && 3964 smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE); 3965 } 3966 3967 return (in_wc->slid == ppd->lid); 3968 } 3969 3970 /* 3971 * opa_local_smp_check() should only be called on MADs for which 3972 * is_local_mad() returns true. It applies the SMP checks that are 3973 * specific to SMPs which are sent from, and destined to this node. 3974 * opa_local_smp_check() returns 0 if the SMP passes its checks, 1 3975 * otherwise. 3976 * 3977 * SMPs which arrive from other nodes are instead checked by 3978 * opa_smp_check(). 3979 */ 3980 static int opa_local_smp_check(struct hfi1_ibport *ibp, 3981 const struct ib_wc *in_wc) 3982 { 3983 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3984 u16 slid = in_wc->slid; 3985 u16 pkey; 3986 3987 if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys)) 3988 return 1; 3989 3990 pkey = ppd->pkeys[in_wc->pkey_index]; 3991 /* 3992 * We need to do the "node-local" checks specified in OPAv1, 3993 * rev 0.90, section 9.10.26, which are: 3994 * - pkey is 0x7fff, or 0xffff 3995 * - Source QPN == 0 || Destination QPN == 0 3996 * - the MAD header's management class is either 3997 * IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or 3998 * IB_MGMT_CLASS_SUBN_LID_ROUTED 3999 * - SLID != 0 4000 * 4001 * However, we know (and so don't need to check again) that, 4002 * for local SMPs, the MAD stack passes MADs with: 4003 * - Source QPN of 0 4004 * - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4005 * - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or 4006 * our own port's lid 4007 * 4008 */ 4009 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 4010 return 0; 4011 ingress_pkey_table_fail(ppd, pkey, slid); 4012 return 1; 4013 } 4014 4015 static int process_subn_opa(struct ib_device *ibdev, int mad_flags, 4016 u8 port, const struct opa_mad *in_mad, 4017 struct opa_mad *out_mad, 4018 u32 *resp_len) 4019 { 4020 struct opa_smp *smp = (struct opa_smp *)out_mad; 4021 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4022 u8 *data; 4023 u32 am; 4024 __be16 attr_id; 4025 int ret; 4026 4027 *out_mad = *in_mad; 4028 data = opa_get_smp_data(smp); 4029 4030 am = be32_to_cpu(smp->attr_mod); 4031 attr_id = smp->attr_id; 4032 if (smp->class_version != OPA_SMI_CLASS_VERSION) { 4033 smp->status |= IB_SMP_UNSUP_VERSION; 4034 ret = reply((struct ib_mad_hdr *)smp); 4035 return ret; 4036 } 4037 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey, 4038 smp->route.dr.dr_slid, smp->route.dr.return_path, 4039 smp->hop_cnt); 4040 if (ret) { 4041 u32 port_num = be32_to_cpu(smp->attr_mod); 4042 4043 /* 4044 * If this is a get/set portinfo, we already check the 4045 * M_Key if the MAD is for another port and the M_Key 4046 * is OK on the receiving port. This check is needed 4047 * to increment the error counters when the M_Key 4048 * fails to match on *both* ports. 4049 */ 4050 if (attr_id == IB_SMP_ATTR_PORT_INFO && 4051 (smp->method == IB_MGMT_METHOD_GET || 4052 smp->method == IB_MGMT_METHOD_SET) && 4053 port_num && port_num <= ibdev->phys_port_cnt && 4054 port != port_num) 4055 (void)check_mkey(to_iport(ibdev, port_num), 4056 (struct ib_mad_hdr *)smp, 0, 4057 smp->mkey, smp->route.dr.dr_slid, 4058 smp->route.dr.return_path, 4059 smp->hop_cnt); 4060 ret = IB_MAD_RESULT_FAILURE; 4061 return ret; 4062 } 4063 4064 *resp_len = opa_get_smp_header_size(smp); 4065 4066 switch (smp->method) { 4067 case IB_MGMT_METHOD_GET: 4068 switch (attr_id) { 4069 default: 4070 clear_opa_smp_data(smp); 4071 ret = subn_get_opa_sma(attr_id, smp, am, data, 4072 ibdev, port, resp_len); 4073 break; 4074 case OPA_ATTRIB_ID_AGGREGATE: 4075 ret = subn_get_opa_aggregate(smp, ibdev, port, 4076 resp_len); 4077 break; 4078 } 4079 break; 4080 case IB_MGMT_METHOD_SET: 4081 switch (attr_id) { 4082 default: 4083 ret = subn_set_opa_sma(attr_id, smp, am, data, 4084 ibdev, port, resp_len); 4085 break; 4086 case OPA_ATTRIB_ID_AGGREGATE: 4087 ret = subn_set_opa_aggregate(smp, ibdev, port, 4088 resp_len); 4089 break; 4090 } 4091 break; 4092 case IB_MGMT_METHOD_TRAP: 4093 case IB_MGMT_METHOD_REPORT: 4094 case IB_MGMT_METHOD_REPORT_RESP: 4095 case IB_MGMT_METHOD_GET_RESP: 4096 /* 4097 * The ib_mad module will call us to process responses 4098 * before checking for other consumers. 4099 * Just tell the caller to process it normally. 4100 */ 4101 ret = IB_MAD_RESULT_SUCCESS; 4102 break; 4103 default: 4104 smp->status |= IB_SMP_UNSUP_METHOD; 4105 ret = reply((struct ib_mad_hdr *)smp); 4106 break; 4107 } 4108 4109 return ret; 4110 } 4111 4112 static int process_subn(struct ib_device *ibdev, int mad_flags, 4113 u8 port, const struct ib_mad *in_mad, 4114 struct ib_mad *out_mad) 4115 { 4116 struct ib_smp *smp = (struct ib_smp *)out_mad; 4117 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4118 int ret; 4119 4120 *out_mad = *in_mad; 4121 if (smp->class_version != 1) { 4122 smp->status |= IB_SMP_UNSUP_VERSION; 4123 ret = reply((struct ib_mad_hdr *)smp); 4124 return ret; 4125 } 4126 4127 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, 4128 smp->mkey, (__force __be32)smp->dr_slid, 4129 smp->return_path, smp->hop_cnt); 4130 if (ret) { 4131 u32 port_num = be32_to_cpu(smp->attr_mod); 4132 4133 /* 4134 * If this is a get/set portinfo, we already check the 4135 * M_Key if the MAD is for another port and the M_Key 4136 * is OK on the receiving port. This check is needed 4137 * to increment the error counters when the M_Key 4138 * fails to match on *both* ports. 4139 */ 4140 if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO && 4141 (smp->method == IB_MGMT_METHOD_GET || 4142 smp->method == IB_MGMT_METHOD_SET) && 4143 port_num && port_num <= ibdev->phys_port_cnt && 4144 port != port_num) 4145 (void)check_mkey(to_iport(ibdev, port_num), 4146 (struct ib_mad_hdr *)smp, 0, 4147 smp->mkey, 4148 (__force __be32)smp->dr_slid, 4149 smp->return_path, smp->hop_cnt); 4150 ret = IB_MAD_RESULT_FAILURE; 4151 return ret; 4152 } 4153 4154 switch (smp->method) { 4155 case IB_MGMT_METHOD_GET: 4156 switch (smp->attr_id) { 4157 case IB_SMP_ATTR_NODE_INFO: 4158 ret = subn_get_nodeinfo(smp, ibdev, port); 4159 break; 4160 default: 4161 smp->status |= IB_SMP_UNSUP_METH_ATTR; 4162 ret = reply((struct ib_mad_hdr *)smp); 4163 break; 4164 } 4165 break; 4166 } 4167 4168 return ret; 4169 } 4170 4171 static int process_perf(struct ib_device *ibdev, u8 port, 4172 const struct ib_mad *in_mad, 4173 struct ib_mad *out_mad) 4174 { 4175 struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad; 4176 struct ib_class_port_info *cpi = (struct ib_class_port_info *) 4177 &pmp->data; 4178 int ret = IB_MAD_RESULT_FAILURE; 4179 4180 *out_mad = *in_mad; 4181 if (pmp->mad_hdr.class_version != 1) { 4182 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4183 ret = reply((struct ib_mad_hdr *)pmp); 4184 return ret; 4185 } 4186 4187 switch (pmp->mad_hdr.method) { 4188 case IB_MGMT_METHOD_GET: 4189 switch (pmp->mad_hdr.attr_id) { 4190 case IB_PMA_PORT_COUNTERS: 4191 ret = pma_get_ib_portcounters(pmp, ibdev, port); 4192 break; 4193 case IB_PMA_PORT_COUNTERS_EXT: 4194 ret = pma_get_ib_portcounters_ext(pmp, ibdev, port); 4195 break; 4196 case IB_PMA_CLASS_PORT_INFO: 4197 cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH; 4198 ret = reply((struct ib_mad_hdr *)pmp); 4199 break; 4200 default: 4201 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4202 ret = reply((struct ib_mad_hdr *)pmp); 4203 break; 4204 } 4205 break; 4206 4207 case IB_MGMT_METHOD_SET: 4208 if (pmp->mad_hdr.attr_id) { 4209 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4210 ret = reply((struct ib_mad_hdr *)pmp); 4211 } 4212 break; 4213 4214 case IB_MGMT_METHOD_TRAP: 4215 case IB_MGMT_METHOD_GET_RESP: 4216 /* 4217 * The ib_mad module will call us to process responses 4218 * before checking for other consumers. 4219 * Just tell the caller to process it normally. 4220 */ 4221 ret = IB_MAD_RESULT_SUCCESS; 4222 break; 4223 4224 default: 4225 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4226 ret = reply((struct ib_mad_hdr *)pmp); 4227 break; 4228 } 4229 4230 return ret; 4231 } 4232 4233 static int process_perf_opa(struct ib_device *ibdev, u8 port, 4234 const struct opa_mad *in_mad, 4235 struct opa_mad *out_mad, u32 *resp_len) 4236 { 4237 struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad; 4238 int ret; 4239 4240 *out_mad = *in_mad; 4241 4242 if (pmp->mad_hdr.class_version != OPA_SMI_CLASS_VERSION) { 4243 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4244 return reply((struct ib_mad_hdr *)pmp); 4245 } 4246 4247 *resp_len = sizeof(pmp->mad_hdr); 4248 4249 switch (pmp->mad_hdr.method) { 4250 case IB_MGMT_METHOD_GET: 4251 switch (pmp->mad_hdr.attr_id) { 4252 case IB_PMA_CLASS_PORT_INFO: 4253 ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len); 4254 break; 4255 case OPA_PM_ATTRIB_ID_PORT_STATUS: 4256 ret = pma_get_opa_portstatus(pmp, ibdev, port, 4257 resp_len); 4258 break; 4259 case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS: 4260 ret = pma_get_opa_datacounters(pmp, ibdev, port, 4261 resp_len); 4262 break; 4263 case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS: 4264 ret = pma_get_opa_porterrors(pmp, ibdev, port, 4265 resp_len); 4266 break; 4267 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4268 ret = pma_get_opa_errorinfo(pmp, ibdev, port, 4269 resp_len); 4270 break; 4271 default: 4272 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4273 ret = reply((struct ib_mad_hdr *)pmp); 4274 break; 4275 } 4276 break; 4277 4278 case IB_MGMT_METHOD_SET: 4279 switch (pmp->mad_hdr.attr_id) { 4280 case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS: 4281 ret = pma_set_opa_portstatus(pmp, ibdev, port, 4282 resp_len); 4283 break; 4284 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4285 ret = pma_set_opa_errorinfo(pmp, ibdev, port, 4286 resp_len); 4287 break; 4288 default: 4289 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4290 ret = reply((struct ib_mad_hdr *)pmp); 4291 break; 4292 } 4293 break; 4294 4295 case IB_MGMT_METHOD_TRAP: 4296 case IB_MGMT_METHOD_GET_RESP: 4297 /* 4298 * The ib_mad module will call us to process responses 4299 * before checking for other consumers. 4300 * Just tell the caller to process it normally. 4301 */ 4302 ret = IB_MAD_RESULT_SUCCESS; 4303 break; 4304 4305 default: 4306 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4307 ret = reply((struct ib_mad_hdr *)pmp); 4308 break; 4309 } 4310 4311 return ret; 4312 } 4313 4314 static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags, 4315 u8 port, const struct ib_wc *in_wc, 4316 const struct ib_grh *in_grh, 4317 const struct opa_mad *in_mad, 4318 struct opa_mad *out_mad, size_t *out_mad_size, 4319 u16 *out_mad_pkey_index) 4320 { 4321 int ret; 4322 int pkey_idx; 4323 u32 resp_len = 0; 4324 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4325 4326 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 4327 if (pkey_idx < 0) { 4328 pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n", 4329 hfi1_get_pkey(ibp, 1)); 4330 pkey_idx = 1; 4331 } 4332 *out_mad_pkey_index = (u16)pkey_idx; 4333 4334 switch (in_mad->mad_hdr.mgmt_class) { 4335 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4336 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4337 if (is_local_mad(ibp, in_mad, in_wc)) { 4338 ret = opa_local_smp_check(ibp, in_wc); 4339 if (ret) 4340 return IB_MAD_RESULT_FAILURE; 4341 } 4342 ret = process_subn_opa(ibdev, mad_flags, port, in_mad, 4343 out_mad, &resp_len); 4344 goto bail; 4345 case IB_MGMT_CLASS_PERF_MGMT: 4346 ret = process_perf_opa(ibdev, port, in_mad, out_mad, 4347 &resp_len); 4348 goto bail; 4349 4350 default: 4351 ret = IB_MAD_RESULT_SUCCESS; 4352 } 4353 4354 bail: 4355 if (ret & IB_MAD_RESULT_REPLY) 4356 *out_mad_size = round_up(resp_len, 8); 4357 else if (ret & IB_MAD_RESULT_SUCCESS) 4358 *out_mad_size = in_wc->byte_len - sizeof(struct ib_grh); 4359 4360 return ret; 4361 } 4362 4363 static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4364 const struct ib_wc *in_wc, 4365 const struct ib_grh *in_grh, 4366 const struct ib_mad *in_mad, 4367 struct ib_mad *out_mad) 4368 { 4369 int ret; 4370 4371 switch (in_mad->mad_hdr.mgmt_class) { 4372 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4373 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4374 ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad); 4375 break; 4376 case IB_MGMT_CLASS_PERF_MGMT: 4377 ret = process_perf(ibdev, port, in_mad, out_mad); 4378 break; 4379 default: 4380 ret = IB_MAD_RESULT_SUCCESS; 4381 break; 4382 } 4383 4384 return ret; 4385 } 4386 4387 /** 4388 * hfi1_process_mad - process an incoming MAD packet 4389 * @ibdev: the infiniband device this packet came in on 4390 * @mad_flags: MAD flags 4391 * @port: the port number this packet came in on 4392 * @in_wc: the work completion entry for this packet 4393 * @in_grh: the global route header for this packet 4394 * @in_mad: the incoming MAD 4395 * @out_mad: any outgoing MAD reply 4396 * 4397 * Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not 4398 * interested in processing. 4399 * 4400 * Note that the verbs framework has already done the MAD sanity checks, 4401 * and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4402 * MADs. 4403 * 4404 * This is called by the ib_mad module. 4405 */ 4406 int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4407 const struct ib_wc *in_wc, const struct ib_grh *in_grh, 4408 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 4409 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 4410 u16 *out_mad_pkey_index) 4411 { 4412 switch (in_mad->base_version) { 4413 case OPA_MGMT_BASE_VERSION: 4414 if (unlikely(in_mad_size != sizeof(struct opa_mad))) { 4415 dev_err(ibdev->dma_device, "invalid in_mad_size\n"); 4416 return IB_MAD_RESULT_FAILURE; 4417 } 4418 return hfi1_process_opa_mad(ibdev, mad_flags, port, 4419 in_wc, in_grh, 4420 (struct opa_mad *)in_mad, 4421 (struct opa_mad *)out_mad, 4422 out_mad_size, 4423 out_mad_pkey_index); 4424 case IB_MGMT_BASE_VERSION: 4425 return hfi1_process_ib_mad(ibdev, mad_flags, port, 4426 in_wc, in_grh, 4427 (const struct ib_mad *)in_mad, 4428 (struct ib_mad *)out_mad); 4429 default: 4430 break; 4431 } 4432 4433 return IB_MAD_RESULT_FAILURE; 4434 } 4435