1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/net.h> 49 #define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \ 50 / (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16))) 51 52 #include "hfi.h" 53 #include "mad.h" 54 #include "trace.h" 55 #include "qp.h" 56 57 /* the reset value from the FM is supposed to be 0xffff, handle both */ 58 #define OPA_LINK_WIDTH_RESET_OLD 0x0fff 59 #define OPA_LINK_WIDTH_RESET 0xffff 60 61 static int reply(struct ib_mad_hdr *smp) 62 { 63 /* 64 * The verbs framework will handle the directed/LID route 65 * packet changes. 66 */ 67 smp->method = IB_MGMT_METHOD_GET_RESP; 68 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) 69 smp->status |= IB_SMP_DIRECTION; 70 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY; 71 } 72 73 static inline void clear_opa_smp_data(struct opa_smp *smp) 74 { 75 void *data = opa_get_smp_data(smp); 76 size_t size = opa_get_smp_data_size(smp); 77 78 memset(data, 0, size); 79 } 80 81 void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port) 82 { 83 struct ib_event event; 84 85 event.event = IB_EVENT_PKEY_CHANGE; 86 event.device = &dd->verbs_dev.rdi.ibdev; 87 event.element.port_num = port; 88 ib_dispatch_event(&event); 89 } 90 91 static void send_trap(struct hfi1_ibport *ibp, void *data, unsigned len) 92 { 93 struct ib_mad_send_buf *send_buf; 94 struct ib_mad_agent *agent; 95 struct opa_smp *smp; 96 int ret; 97 unsigned long flags; 98 unsigned long timeout; 99 int pkey_idx; 100 u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp; 101 102 agent = ibp->rvp.send_agent; 103 if (!agent) 104 return; 105 106 /* o14-3.2.1 */ 107 if (ppd_from_ibp(ibp)->lstate != IB_PORT_ACTIVE) 108 return; 109 110 /* o14-2 */ 111 if (ibp->rvp.trap_timeout && time_before(jiffies, 112 ibp->rvp.trap_timeout)) 113 return; 114 115 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 116 if (pkey_idx < 0) { 117 pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n", 118 __func__, hfi1_get_pkey(ibp, 1)); 119 pkey_idx = 1; 120 } 121 122 send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0, 123 IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, 124 GFP_ATOMIC, IB_MGMT_BASE_VERSION); 125 if (IS_ERR(send_buf)) 126 return; 127 128 smp = send_buf->mad; 129 smp->base_version = OPA_MGMT_BASE_VERSION; 130 smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED; 131 smp->class_version = OPA_SMI_CLASS_VERSION; 132 smp->method = IB_MGMT_METHOD_TRAP; 133 ibp->rvp.tid++; 134 smp->tid = cpu_to_be64(ibp->rvp.tid); 135 smp->attr_id = IB_SMP_ATTR_NOTICE; 136 /* o14-1: smp->mkey = 0; */ 137 memcpy(smp->route.lid.data, data, len); 138 139 spin_lock_irqsave(&ibp->rvp.lock, flags); 140 if (!ibp->rvp.sm_ah) { 141 if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) { 142 struct ib_ah *ah; 143 144 ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid); 145 if (IS_ERR(ah)) { 146 ret = PTR_ERR(ah); 147 } else { 148 send_buf->ah = ah; 149 ibp->rvp.sm_ah = ibah_to_rvtah(ah); 150 ret = 0; 151 } 152 } else { 153 ret = -EINVAL; 154 } 155 } else { 156 send_buf->ah = &ibp->rvp.sm_ah->ibah; 157 ret = 0; 158 } 159 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 160 161 if (!ret) 162 ret = ib_post_send_mad(send_buf, NULL); 163 if (!ret) { 164 /* 4.096 usec. */ 165 timeout = (4096 * (1UL << ibp->rvp.subnet_timeout)) / 1000; 166 ibp->rvp.trap_timeout = jiffies + usecs_to_jiffies(timeout); 167 } else { 168 ib_free_send_mad(send_buf); 169 ibp->rvp.trap_timeout = 0; 170 } 171 } 172 173 /* 174 * Send a bad [PQ]_Key trap (ch. 14.3.8). 175 */ 176 void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl, 177 u32 qp1, u32 qp2, u16 lid1, u16 lid2) 178 { 179 struct opa_mad_notice_attr data; 180 u32 lid = ppd_from_ibp(ibp)->lid; 181 u32 _lid1 = lid1; 182 u32 _lid2 = lid2; 183 184 memset(&data, 0, sizeof(data)); 185 186 if (trap_num == OPA_TRAP_BAD_P_KEY) 187 ibp->rvp.pkey_violations++; 188 else 189 ibp->rvp.qkey_violations++; 190 ibp->rvp.n_pkt_drops++; 191 192 /* Send violation trap */ 193 data.generic_type = IB_NOTICE_TYPE_SECURITY; 194 data.prod_type_lsb = IB_NOTICE_PROD_CA; 195 data.trap_num = trap_num; 196 data.issuer_lid = cpu_to_be32(lid); 197 data.ntc_257_258.lid1 = cpu_to_be32(_lid1); 198 data.ntc_257_258.lid2 = cpu_to_be32(_lid2); 199 data.ntc_257_258.key = cpu_to_be32(key); 200 data.ntc_257_258.sl = sl << 3; 201 data.ntc_257_258.qp1 = cpu_to_be32(qp1); 202 data.ntc_257_258.qp2 = cpu_to_be32(qp2); 203 204 send_trap(ibp, &data, sizeof(data)); 205 } 206 207 /* 208 * Send a bad M_Key trap (ch. 14.3.9). 209 */ 210 static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 211 __be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt) 212 { 213 struct opa_mad_notice_attr data; 214 u32 lid = ppd_from_ibp(ibp)->lid; 215 216 memset(&data, 0, sizeof(data)); 217 /* Send violation trap */ 218 data.generic_type = IB_NOTICE_TYPE_SECURITY; 219 data.prod_type_lsb = IB_NOTICE_PROD_CA; 220 data.trap_num = OPA_TRAP_BAD_M_KEY; 221 data.issuer_lid = cpu_to_be32(lid); 222 data.ntc_256.lid = data.issuer_lid; 223 data.ntc_256.method = mad->method; 224 data.ntc_256.attr_id = mad->attr_id; 225 data.ntc_256.attr_mod = mad->attr_mod; 226 data.ntc_256.mkey = mkey; 227 if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 228 data.ntc_256.dr_slid = dr_slid; 229 data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE; 230 if (hop_cnt > ARRAY_SIZE(data.ntc_256.dr_rtn_path)) { 231 data.ntc_256.dr_trunc_hop |= 232 IB_NOTICE_TRAP_DR_TRUNC; 233 hop_cnt = ARRAY_SIZE(data.ntc_256.dr_rtn_path); 234 } 235 data.ntc_256.dr_trunc_hop |= hop_cnt; 236 memcpy(data.ntc_256.dr_rtn_path, return_path, 237 hop_cnt); 238 } 239 240 send_trap(ibp, &data, sizeof(data)); 241 } 242 243 /* 244 * Send a Port Capability Mask Changed trap (ch. 14.3.11). 245 */ 246 void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num) 247 { 248 struct opa_mad_notice_attr data; 249 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 250 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 251 struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data; 252 u32 lid = ppd_from_ibp(ibp)->lid; 253 254 memset(&data, 0, sizeof(data)); 255 256 data.generic_type = IB_NOTICE_TYPE_INFO; 257 data.prod_type_lsb = IB_NOTICE_PROD_CA; 258 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 259 data.issuer_lid = cpu_to_be32(lid); 260 data.ntc_144.lid = data.issuer_lid; 261 data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 262 263 send_trap(ibp, &data, sizeof(data)); 264 } 265 266 /* 267 * Send a System Image GUID Changed trap (ch. 14.3.12). 268 */ 269 void hfi1_sys_guid_chg(struct hfi1_ibport *ibp) 270 { 271 struct opa_mad_notice_attr data; 272 u32 lid = ppd_from_ibp(ibp)->lid; 273 274 memset(&data, 0, sizeof(data)); 275 276 data.generic_type = IB_NOTICE_TYPE_INFO; 277 data.prod_type_lsb = IB_NOTICE_PROD_CA; 278 data.trap_num = OPA_TRAP_CHANGE_SYSGUID; 279 data.issuer_lid = cpu_to_be32(lid); 280 data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid; 281 data.ntc_145.lid = data.issuer_lid; 282 283 send_trap(ibp, &data, sizeof(data)); 284 } 285 286 /* 287 * Send a Node Description Changed trap (ch. 14.3.13). 288 */ 289 void hfi1_node_desc_chg(struct hfi1_ibport *ibp) 290 { 291 struct opa_mad_notice_attr data; 292 u32 lid = ppd_from_ibp(ibp)->lid; 293 294 memset(&data, 0, sizeof(data)); 295 296 data.generic_type = IB_NOTICE_TYPE_INFO; 297 data.prod_type_lsb = IB_NOTICE_PROD_CA; 298 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 299 data.issuer_lid = cpu_to_be32(lid); 300 data.ntc_144.lid = data.issuer_lid; 301 data.ntc_144.change_flags = 302 cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG); 303 304 send_trap(ibp, &data, sizeof(data)); 305 } 306 307 static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am, 308 u8 *data, struct ib_device *ibdev, 309 u8 port, u32 *resp_len) 310 { 311 struct opa_node_description *nd; 312 313 if (am) { 314 smp->status |= IB_SMP_INVALID_FIELD; 315 return reply((struct ib_mad_hdr *)smp); 316 } 317 318 nd = (struct opa_node_description *)data; 319 320 memcpy(nd->data, ibdev->node_desc, sizeof(nd->data)); 321 322 if (resp_len) 323 *resp_len += sizeof(*nd); 324 325 return reply((struct ib_mad_hdr *)smp); 326 } 327 328 static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data, 329 struct ib_device *ibdev, u8 port, 330 u32 *resp_len) 331 { 332 struct opa_node_info *ni; 333 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 334 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 335 336 ni = (struct opa_node_info *)data; 337 338 /* GUID 0 is illegal */ 339 if (am || pidx >= dd->num_pports || dd->pport[pidx].guid == 0) { 340 smp->status |= IB_SMP_INVALID_FIELD; 341 return reply((struct ib_mad_hdr *)smp); 342 } 343 344 ni->port_guid = cpu_to_be64(dd->pport[pidx].guid); 345 ni->base_version = OPA_MGMT_BASE_VERSION; 346 ni->class_version = OPA_SMI_CLASS_VERSION; 347 ni->node_type = 1; /* channel adapter */ 348 ni->num_ports = ibdev->phys_port_cnt; 349 /* This is already in network order */ 350 ni->system_image_guid = ib_hfi1_sys_image_guid; 351 /* Use first-port GUID as node */ 352 ni->node_guid = cpu_to_be64(dd->pport->guid); 353 ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 354 ni->device_id = cpu_to_be16(dd->pcidev->device); 355 ni->revision = cpu_to_be32(dd->minrev); 356 ni->local_port_num = port; 357 ni->vendor_id[0] = dd->oui1; 358 ni->vendor_id[1] = dd->oui2; 359 ni->vendor_id[2] = dd->oui3; 360 361 if (resp_len) 362 *resp_len += sizeof(*ni); 363 364 return reply((struct ib_mad_hdr *)smp); 365 } 366 367 static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev, 368 u8 port) 369 { 370 struct ib_node_info *nip = (struct ib_node_info *)&smp->data; 371 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 372 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 373 374 /* GUID 0 is illegal */ 375 if (smp->attr_mod || pidx >= dd->num_pports || 376 dd->pport[pidx].guid == 0) 377 smp->status |= IB_SMP_INVALID_FIELD; 378 else 379 nip->port_guid = cpu_to_be64(dd->pport[pidx].guid); 380 381 nip->base_version = OPA_MGMT_BASE_VERSION; 382 nip->class_version = OPA_SMI_CLASS_VERSION; 383 nip->node_type = 1; /* channel adapter */ 384 nip->num_ports = ibdev->phys_port_cnt; 385 /* This is already in network order */ 386 nip->sys_guid = ib_hfi1_sys_image_guid; 387 /* Use first-port GUID as node */ 388 nip->node_guid = cpu_to_be64(dd->pport->guid); 389 nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 390 nip->device_id = cpu_to_be16(dd->pcidev->device); 391 nip->revision = cpu_to_be32(dd->minrev); 392 nip->local_port_num = port; 393 nip->vendor_id[0] = dd->oui1; 394 nip->vendor_id[1] = dd->oui2; 395 nip->vendor_id[2] = dd->oui3; 396 397 return reply((struct ib_mad_hdr *)smp); 398 } 399 400 static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w) 401 { 402 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w); 403 } 404 405 static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w) 406 { 407 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w); 408 } 409 410 static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s) 411 { 412 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s); 413 } 414 415 static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 416 int mad_flags, __be64 mkey, __be32 dr_slid, 417 u8 return_path[], u8 hop_cnt) 418 { 419 int valid_mkey = 0; 420 int ret = 0; 421 422 /* Is the mkey in the process of expiring? */ 423 if (ibp->rvp.mkey_lease_timeout && 424 time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) { 425 /* Clear timeout and mkey protection field. */ 426 ibp->rvp.mkey_lease_timeout = 0; 427 ibp->rvp.mkeyprot = 0; 428 } 429 430 if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 || 431 ibp->rvp.mkey == mkey) 432 valid_mkey = 1; 433 434 /* Unset lease timeout on any valid Get/Set/TrapRepress */ 435 if (valid_mkey && ibp->rvp.mkey_lease_timeout && 436 (mad->method == IB_MGMT_METHOD_GET || 437 mad->method == IB_MGMT_METHOD_SET || 438 mad->method == IB_MGMT_METHOD_TRAP_REPRESS)) 439 ibp->rvp.mkey_lease_timeout = 0; 440 441 if (!valid_mkey) { 442 switch (mad->method) { 443 case IB_MGMT_METHOD_GET: 444 /* Bad mkey not a violation below level 2 */ 445 if (ibp->rvp.mkeyprot < 2) 446 break; 447 case IB_MGMT_METHOD_SET: 448 case IB_MGMT_METHOD_TRAP_REPRESS: 449 if (ibp->rvp.mkey_violations != 0xFFFF) 450 ++ibp->rvp.mkey_violations; 451 if (!ibp->rvp.mkey_lease_timeout && 452 ibp->rvp.mkey_lease_period) 453 ibp->rvp.mkey_lease_timeout = jiffies + 454 ibp->rvp.mkey_lease_period * HZ; 455 /* Generate a trap notice. */ 456 bad_mkey(ibp, mad, mkey, dr_slid, return_path, 457 hop_cnt); 458 ret = 1; 459 } 460 } 461 462 return ret; 463 } 464 465 /* 466 * The SMA caches reads from LCB registers in case the LCB is unavailable. 467 * (The LCB is unavailable in certain link states, for example.) 468 */ 469 struct lcb_datum { 470 u32 off; 471 u64 val; 472 }; 473 474 static struct lcb_datum lcb_cache[] = { 475 { DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 }, 476 }; 477 478 static int write_lcb_cache(u32 off, u64 val) 479 { 480 int i; 481 482 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 483 if (lcb_cache[i].off == off) { 484 lcb_cache[i].val = val; 485 return 0; 486 } 487 } 488 489 pr_warn("%s bad offset 0x%x\n", __func__, off); 490 return -1; 491 } 492 493 static int read_lcb_cache(u32 off, u64 *val) 494 { 495 int i; 496 497 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 498 if (lcb_cache[i].off == off) { 499 *val = lcb_cache[i].val; 500 return 0; 501 } 502 } 503 504 pr_warn("%s bad offset 0x%x\n", __func__, off); 505 return -1; 506 } 507 508 void read_ltp_rtt(struct hfi1_devdata *dd) 509 { 510 u64 reg; 511 512 if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, ®)) 513 dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__); 514 else 515 write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg); 516 } 517 518 static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 519 struct ib_device *ibdev, u8 port, 520 u32 *resp_len) 521 { 522 int i; 523 struct hfi1_devdata *dd; 524 struct hfi1_pportdata *ppd; 525 struct hfi1_ibport *ibp; 526 struct opa_port_info *pi = (struct opa_port_info *)data; 527 u8 mtu; 528 u8 credit_rate; 529 u8 is_beaconing_active; 530 u32 state; 531 u32 num_ports = OPA_AM_NPORT(am); 532 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 533 u32 buffer_units; 534 u64 tmp = 0; 535 536 if (num_ports != 1) { 537 smp->status |= IB_SMP_INVALID_FIELD; 538 return reply((struct ib_mad_hdr *)smp); 539 } 540 541 dd = dd_from_ibdev(ibdev); 542 /* IB numbers ports from 1, hw from 0 */ 543 ppd = dd->pport + (port - 1); 544 ibp = &ppd->ibport_data; 545 546 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 547 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 548 smp->status |= IB_SMP_INVALID_FIELD; 549 return reply((struct ib_mad_hdr *)smp); 550 } 551 552 pi->lid = cpu_to_be32(ppd->lid); 553 554 /* Only return the mkey if the protection field allows it. */ 555 if (!(smp->method == IB_MGMT_METHOD_GET && 556 ibp->rvp.mkey != smp->mkey && 557 ibp->rvp.mkeyprot == 1)) 558 pi->mkey = ibp->rvp.mkey; 559 560 pi->subnet_prefix = ibp->rvp.gid_prefix; 561 pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid); 562 pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 563 pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period); 564 pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp); 565 pi->sa_qp = cpu_to_be32(ppd->sa_qp); 566 567 pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled); 568 pi->link_width.supported = cpu_to_be16(ppd->link_width_supported); 569 pi->link_width.active = cpu_to_be16(ppd->link_width_active); 570 571 pi->link_width_downgrade.supported = 572 cpu_to_be16(ppd->link_width_downgrade_supported); 573 pi->link_width_downgrade.enabled = 574 cpu_to_be16(ppd->link_width_downgrade_enabled); 575 pi->link_width_downgrade.tx_active = 576 cpu_to_be16(ppd->link_width_downgrade_tx_active); 577 pi->link_width_downgrade.rx_active = 578 cpu_to_be16(ppd->link_width_downgrade_rx_active); 579 580 pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported); 581 pi->link_speed.active = cpu_to_be16(ppd->link_speed_active); 582 pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled); 583 584 state = driver_lstate(ppd); 585 586 if (start_of_sm_config && (state == IB_PORT_INIT)) 587 ppd->is_sm_config_started = 1; 588 589 pi->port_phys_conf = (ppd->port_type & 0xf); 590 591 #if PI_LED_ENABLE_SUP 592 pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 593 pi->port_states.ledenable_offlinereason |= 594 ppd->is_sm_config_started << 5; 595 /* 596 * This pairs with the memory barrier in hfi1_start_led_override to 597 * ensure that we read the correct state of LED beaconing represented 598 * by led_override_timer_active 599 */ 600 smp_rmb(); 601 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 602 pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6; 603 pi->port_states.ledenable_offlinereason |= 604 ppd->offline_disabled_reason; 605 #else 606 pi->port_states.offline_reason = ppd->neighbor_normal << 4; 607 pi->port_states.offline_reason |= ppd->is_sm_config_started << 5; 608 pi->port_states.offline_reason |= ppd->offline_disabled_reason; 609 #endif /* PI_LED_ENABLE_SUP */ 610 611 pi->port_states.portphysstate_portstate = 612 (hfi1_ibphys_portstate(ppd) << 4) | state; 613 614 pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc; 615 616 memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu)); 617 for (i = 0; i < ppd->vls_supported; i++) { 618 mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU); 619 if ((i % 2) == 0) 620 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4); 621 else 622 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu; 623 } 624 /* don't forget VL 15 */ 625 mtu = mtu_to_enum(dd->vld[15].mtu, 2048); 626 pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu; 627 pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL; 628 pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS); 629 pi->partenforce_filterraw |= 630 (ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON); 631 if (ppd->part_enforce & HFI1_PART_ENFORCE_IN) 632 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN; 633 if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT) 634 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT; 635 pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations); 636 /* P_KeyViolations are counted by hardware. */ 637 pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations); 638 pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations); 639 640 pi->vl.cap = ppd->vls_supported; 641 pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit); 642 pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP); 643 pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP); 644 645 pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout; 646 647 pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 | 648 OPA_PORT_LINK_MODE_OPA << 5 | 649 OPA_PORT_LINK_MODE_OPA); 650 651 pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode); 652 653 pi->port_mode = cpu_to_be16( 654 ppd->is_active_optimize_enabled ? 655 OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0); 656 657 pi->port_packet_format.supported = 658 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 659 pi->port_packet_format.enabled = 660 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 661 662 /* flit_control.interleave is (OPA V1, version .76): 663 * bits use 664 * ---- --- 665 * 2 res 666 * 2 DistanceSupported 667 * 2 DistanceEnabled 668 * 5 MaxNextLevelTxEnabled 669 * 5 MaxNestLevelRxSupported 670 * 671 * HFI supports only "distance mode 1" (see OPA V1, version .76, 672 * section 9.6.2), so set DistanceSupported, DistanceEnabled 673 * to 0x1. 674 */ 675 pi->flit_control.interleave = cpu_to_be16(0x1400); 676 677 pi->link_down_reason = ppd->local_link_down_reason.sma; 678 pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma; 679 pi->port_error_action = cpu_to_be32(ppd->port_error_action); 680 pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096); 681 682 /* 32.768 usec. response time (guessing) */ 683 pi->resptimevalue = 3; 684 685 pi->local_port_num = port; 686 687 /* buffer info for FM */ 688 pi->overall_buffer_space = cpu_to_be16(dd->link_credits); 689 690 pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid); 691 pi->neigh_port_num = ppd->neighbor_port_number; 692 pi->port_neigh_mode = 693 (ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) | 694 (ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) | 695 (ppd->neighbor_fm_security ? 696 OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0); 697 698 /* HFIs shall always return VL15 credits to their 699 * neighbor in a timely manner, without any credit return pacing. 700 */ 701 credit_rate = 0; 702 buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC; 703 buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK; 704 buffer_units |= (credit_rate << 6) & 705 OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE; 706 buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT; 707 pi->buffer_units = cpu_to_be32(buffer_units); 708 709 pi->opa_cap_mask = cpu_to_be16(OPA_CAP_MASK3_IsSharedSpaceSupported); 710 711 /* HFI supports a replay buffer 128 LTPs in size */ 712 pi->replay_depth.buffer = 0x80; 713 /* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 714 read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp); 715 716 /* 717 * this counter is 16 bits wide, but the replay_depth.wire 718 * variable is only 8 bits 719 */ 720 if (tmp > 0xff) 721 tmp = 0xff; 722 pi->replay_depth.wire = tmp; 723 724 if (resp_len) 725 *resp_len += sizeof(struct opa_port_info); 726 727 return reply((struct ib_mad_hdr *)smp); 728 } 729 730 /** 731 * get_pkeys - return the PKEY table 732 * @dd: the hfi1_ib device 733 * @port: the IB port number 734 * @pkeys: the pkey table is placed here 735 */ 736 static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 737 { 738 struct hfi1_pportdata *ppd = dd->pport + port - 1; 739 740 memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys)); 741 742 return 0; 743 } 744 745 static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 746 struct ib_device *ibdev, u8 port, 747 u32 *resp_len) 748 { 749 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 750 u32 n_blocks_req = OPA_AM_NBLK(am); 751 u32 start_block = am & 0x7ff; 752 __be16 *p; 753 u16 *q; 754 int i; 755 u16 n_blocks_avail; 756 unsigned npkeys = hfi1_get_npkeys(dd); 757 size_t size; 758 759 if (n_blocks_req == 0) { 760 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 761 port, start_block, n_blocks_req); 762 smp->status |= IB_SMP_INVALID_FIELD; 763 return reply((struct ib_mad_hdr *)smp); 764 } 765 766 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 767 768 size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16); 769 770 if (start_block + n_blocks_req > n_blocks_avail || 771 n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 772 pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; " 773 "avail 0x%x; blk/smp 0x%lx\n", 774 start_block, n_blocks_req, n_blocks_avail, 775 OPA_NUM_PKEY_BLOCKS_PER_SMP); 776 smp->status |= IB_SMP_INVALID_FIELD; 777 return reply((struct ib_mad_hdr *)smp); 778 } 779 780 p = (__be16 *)data; 781 q = (u16 *)data; 782 /* get the real pkeys if we are requesting the first block */ 783 if (start_block == 0) { 784 get_pkeys(dd, port, q); 785 for (i = 0; i < npkeys; i++) 786 p[i] = cpu_to_be16(q[i]); 787 if (resp_len) 788 *resp_len += size; 789 } else { 790 smp->status |= IB_SMP_INVALID_FIELD; 791 } 792 return reply((struct ib_mad_hdr *)smp); 793 } 794 795 enum { 796 HFI_TRANSITION_DISALLOWED, 797 HFI_TRANSITION_IGNORED, 798 HFI_TRANSITION_ALLOWED, 799 HFI_TRANSITION_UNDEFINED, 800 }; 801 802 /* 803 * Use shortened names to improve readability of 804 * {logical,physical}_state_transitions 805 */ 806 enum { 807 __D = HFI_TRANSITION_DISALLOWED, 808 __I = HFI_TRANSITION_IGNORED, 809 __A = HFI_TRANSITION_ALLOWED, 810 __U = HFI_TRANSITION_UNDEFINED, 811 }; 812 813 /* 814 * IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are 815 * represented in physical_state_transitions. 816 */ 817 #define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1) 818 819 /* 820 * Within physical_state_transitions, rows represent "old" states, 821 * columns "new" states, and physical_state_transitions.allowed[old][new] 822 * indicates if the transition from old state to new state is legal (see 823 * OPAg1v1, Table 6-4). 824 */ 825 static const struct { 826 u8 allowed[__N_PHYSTATES][__N_PHYSTATES]; 827 } physical_state_transitions = { 828 { 829 /* 2 3 4 5 6 7 8 9 10 11 */ 830 /* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D }, 831 /* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A }, 832 /* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 833 /* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D }, 834 /* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 835 /* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D }, 836 /* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 837 /* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D }, 838 /*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 839 /*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I }, 840 } 841 }; 842 843 /* 844 * IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented 845 * logical_state_transitions 846 */ 847 848 #define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1) 849 850 /* 851 * Within logical_state_transitions rows represent "old" states, 852 * columns "new" states, and logical_state_transitions.allowed[old][new] 853 * indicates if the transition from old state to new state is legal (see 854 * OPAg1v1, Table 9-12). 855 */ 856 static const struct { 857 u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES]; 858 } logical_state_transitions = { 859 { 860 /* 1 2 3 4 5 */ 861 /* 1 */ { __I, __D, __D, __D, __U}, 862 /* 2 */ { __D, __I, __A, __D, __U}, 863 /* 3 */ { __D, __D, __I, __A, __U}, 864 /* 4 */ { __D, __D, __I, __I, __U}, 865 /* 5 */ { __U, __U, __U, __U, __U}, 866 } 867 }; 868 869 static int logical_transition_allowed(int old, int new) 870 { 871 if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER || 872 new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) { 873 pr_warn("invalid logical state(s) (old %d new %d)\n", 874 old, new); 875 return HFI_TRANSITION_UNDEFINED; 876 } 877 878 if (new == IB_PORT_NOP) 879 return HFI_TRANSITION_ALLOWED; /* always allowed */ 880 881 /* adjust states for indexing into logical_state_transitions */ 882 old -= IB_PORT_DOWN; 883 new -= IB_PORT_DOWN; 884 885 if (old < 0 || new < 0) 886 return HFI_TRANSITION_UNDEFINED; 887 return logical_state_transitions.allowed[old][new]; 888 } 889 890 static int physical_transition_allowed(int old, int new) 891 { 892 if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX || 893 new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) { 894 pr_warn("invalid physical state(s) (old %d new %d)\n", 895 old, new); 896 return HFI_TRANSITION_UNDEFINED; 897 } 898 899 if (new == IB_PORTPHYSSTATE_NOP) 900 return HFI_TRANSITION_ALLOWED; /* always allowed */ 901 902 /* adjust states for indexing into physical_state_transitions */ 903 old -= IB_PORTPHYSSTATE_POLLING; 904 new -= IB_PORTPHYSSTATE_POLLING; 905 906 if (old < 0 || new < 0) 907 return HFI_TRANSITION_UNDEFINED; 908 return physical_state_transitions.allowed[old][new]; 909 } 910 911 static int port_states_transition_allowed(struct hfi1_pportdata *ppd, 912 u32 logical_new, u32 physical_new) 913 { 914 u32 physical_old = driver_physical_state(ppd); 915 u32 logical_old = driver_logical_state(ppd); 916 int ret, logical_allowed, physical_allowed; 917 918 ret = logical_transition_allowed(logical_old, logical_new); 919 logical_allowed = ret; 920 921 if (ret == HFI_TRANSITION_DISALLOWED || 922 ret == HFI_TRANSITION_UNDEFINED) { 923 pr_warn("invalid logical state transition %s -> %s\n", 924 opa_lstate_name(logical_old), 925 opa_lstate_name(logical_new)); 926 return ret; 927 } 928 929 ret = physical_transition_allowed(physical_old, physical_new); 930 physical_allowed = ret; 931 932 if (ret == HFI_TRANSITION_DISALLOWED || 933 ret == HFI_TRANSITION_UNDEFINED) { 934 pr_warn("invalid physical state transition %s -> %s\n", 935 opa_pstate_name(physical_old), 936 opa_pstate_name(physical_new)); 937 return ret; 938 } 939 940 if (logical_allowed == HFI_TRANSITION_IGNORED && 941 physical_allowed == HFI_TRANSITION_IGNORED) 942 return HFI_TRANSITION_IGNORED; 943 944 /* 945 * A change request of Physical Port State from 946 * 'Offline' to 'Polling' should be ignored. 947 */ 948 if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) && 949 (physical_new == IB_PORTPHYSSTATE_POLLING)) 950 return HFI_TRANSITION_IGNORED; 951 952 /* 953 * Either physical_allowed or logical_allowed is 954 * HFI_TRANSITION_ALLOWED. 955 */ 956 return HFI_TRANSITION_ALLOWED; 957 } 958 959 static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp, 960 u32 logical_state, u32 phys_state, 961 int suppress_idle_sma) 962 { 963 struct hfi1_devdata *dd = ppd->dd; 964 u32 link_state; 965 int ret; 966 967 ret = port_states_transition_allowed(ppd, logical_state, phys_state); 968 if (ret == HFI_TRANSITION_DISALLOWED || 969 ret == HFI_TRANSITION_UNDEFINED) { 970 /* error message emitted above */ 971 smp->status |= IB_SMP_INVALID_FIELD; 972 return 0; 973 } 974 975 if (ret == HFI_TRANSITION_IGNORED) 976 return 0; 977 978 if ((phys_state != IB_PORTPHYSSTATE_NOP) && 979 !(logical_state == IB_PORT_DOWN || 980 logical_state == IB_PORT_NOP)){ 981 pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n", 982 logical_state, phys_state); 983 smp->status |= IB_SMP_INVALID_FIELD; 984 } 985 986 /* 987 * Logical state changes are summarized in OPAv1g1 spec., 988 * Table 9-12; physical state changes are summarized in 989 * OPAv1g1 spec., Table 6.4. 990 */ 991 switch (logical_state) { 992 case IB_PORT_NOP: 993 if (phys_state == IB_PORTPHYSSTATE_NOP) 994 break; 995 /* FALLTHROUGH */ 996 case IB_PORT_DOWN: 997 if (phys_state == IB_PORTPHYSSTATE_NOP) { 998 link_state = HLS_DN_DOWNDEF; 999 } else if (phys_state == IB_PORTPHYSSTATE_POLLING) { 1000 link_state = HLS_DN_POLL; 1001 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE, 1002 0, OPA_LINKDOWN_REASON_FM_BOUNCE); 1003 } else if (phys_state == IB_PORTPHYSSTATE_DISABLED) { 1004 link_state = HLS_DN_DISABLE; 1005 } else { 1006 pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n", 1007 phys_state); 1008 smp->status |= IB_SMP_INVALID_FIELD; 1009 break; 1010 } 1011 1012 if ((link_state == HLS_DN_POLL || 1013 link_state == HLS_DN_DOWNDEF)) { 1014 /* 1015 * Going to poll. No matter what the current state, 1016 * always move offline first, then tune and start the 1017 * link. This correctly handles a FM link bounce and 1018 * a link enable. Going offline is a no-op if already 1019 * offline. 1020 */ 1021 set_link_state(ppd, HLS_DN_OFFLINE); 1022 tune_serdes(ppd); 1023 start_link(ppd); 1024 } else { 1025 set_link_state(ppd, link_state); 1026 } 1027 if (link_state == HLS_DN_DISABLE && 1028 (ppd->offline_disabled_reason > 1029 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) || 1030 ppd->offline_disabled_reason == 1031 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 1032 ppd->offline_disabled_reason = 1033 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 1034 /* 1035 * Don't send a reply if the response would be sent 1036 * through the disabled port. 1037 */ 1038 if (link_state == HLS_DN_DISABLE && smp->hop_cnt) 1039 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 1040 break; 1041 case IB_PORT_ARMED: 1042 ret = set_link_state(ppd, HLS_UP_ARMED); 1043 if ((ret == 0) && (suppress_idle_sma == 0)) 1044 send_idle_sma(dd, SMA_IDLE_ARM); 1045 break; 1046 case IB_PORT_ACTIVE: 1047 if (ppd->neighbor_normal) { 1048 ret = set_link_state(ppd, HLS_UP_ACTIVE); 1049 if (ret == 0) 1050 send_idle_sma(dd, SMA_IDLE_ACTIVE); 1051 } else { 1052 pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n"); 1053 smp->status |= IB_SMP_INVALID_FIELD; 1054 } 1055 break; 1056 default: 1057 pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n", 1058 logical_state); 1059 smp->status |= IB_SMP_INVALID_FIELD; 1060 } 1061 1062 return 0; 1063 } 1064 1065 /** 1066 * subn_set_opa_portinfo - set port information 1067 * @smp: the incoming SM packet 1068 * @ibdev: the infiniband device 1069 * @port: the port on the device 1070 * 1071 */ 1072 static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 1073 struct ib_device *ibdev, u8 port, 1074 u32 *resp_len) 1075 { 1076 struct opa_port_info *pi = (struct opa_port_info *)data; 1077 struct ib_event event; 1078 struct hfi1_devdata *dd; 1079 struct hfi1_pportdata *ppd; 1080 struct hfi1_ibport *ibp; 1081 u8 clientrereg; 1082 unsigned long flags; 1083 u32 smlid, opa_lid; /* tmp vars to hold LID values */ 1084 u16 lid; 1085 u8 ls_old, ls_new, ps_new; 1086 u8 vls; 1087 u8 msl; 1088 u8 crc_enabled; 1089 u16 lse, lwe, mtu; 1090 u32 num_ports = OPA_AM_NPORT(am); 1091 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1092 int ret, i, invalid = 0, call_set_mtu = 0; 1093 int call_link_downgrade_policy = 0; 1094 1095 if (num_ports != 1) { 1096 smp->status |= IB_SMP_INVALID_FIELD; 1097 return reply((struct ib_mad_hdr *)smp); 1098 } 1099 1100 opa_lid = be32_to_cpu(pi->lid); 1101 if (opa_lid & 0xFFFF0000) { 1102 pr_warn("OPA_PortInfo lid out of range: %X\n", opa_lid); 1103 smp->status |= IB_SMP_INVALID_FIELD; 1104 goto get_only; 1105 } 1106 1107 lid = (u16)(opa_lid & 0x0000FFFF); 1108 1109 smlid = be32_to_cpu(pi->sm_lid); 1110 if (smlid & 0xFFFF0000) { 1111 pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid); 1112 smp->status |= IB_SMP_INVALID_FIELD; 1113 goto get_only; 1114 } 1115 smlid &= 0x0000FFFF; 1116 1117 clientrereg = (pi->clientrereg_subnettimeout & 1118 OPA_PI_MASK_CLIENT_REREGISTER); 1119 1120 dd = dd_from_ibdev(ibdev); 1121 /* IB numbers ports from 1, hw from 0 */ 1122 ppd = dd->pport + (port - 1); 1123 ibp = &ppd->ibport_data; 1124 event.device = ibdev; 1125 event.element.port_num = port; 1126 1127 ls_old = driver_lstate(ppd); 1128 1129 ibp->rvp.mkey = pi->mkey; 1130 ibp->rvp.gid_prefix = pi->subnet_prefix; 1131 ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period); 1132 1133 /* Must be a valid unicast LID address. */ 1134 if ((lid == 0 && ls_old > IB_PORT_INIT) || 1135 lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1136 smp->status |= IB_SMP_INVALID_FIELD; 1137 pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n", 1138 lid); 1139 } else if (ppd->lid != lid || 1140 ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) { 1141 if (ppd->lid != lid) 1142 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT); 1143 if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) 1144 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT); 1145 hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC); 1146 event.event = IB_EVENT_LID_CHANGE; 1147 ib_dispatch_event(&event); 1148 } 1149 1150 msl = pi->smsl & OPA_PI_MASK_SMSL; 1151 if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON) 1152 ppd->linkinit_reason = 1153 (pi->partenforce_filterraw & 1154 OPA_PI_MASK_LINKINIT_REASON); 1155 /* enable/disable SW pkey checking as per FM control */ 1156 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_IN) 1157 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 1158 else 1159 ppd->part_enforce &= ~HFI1_PART_ENFORCE_IN; 1160 1161 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_OUT) 1162 ppd->part_enforce |= HFI1_PART_ENFORCE_OUT; 1163 else 1164 ppd->part_enforce &= ~HFI1_PART_ENFORCE_OUT; 1165 1166 /* Must be a valid unicast LID address. */ 1167 if ((smlid == 0 && ls_old > IB_PORT_INIT) || 1168 smlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1169 smp->status |= IB_SMP_INVALID_FIELD; 1170 pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid); 1171 } else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) { 1172 pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid); 1173 spin_lock_irqsave(&ibp->rvp.lock, flags); 1174 if (ibp->rvp.sm_ah) { 1175 if (smlid != ibp->rvp.sm_lid) 1176 ibp->rvp.sm_ah->attr.dlid = smlid; 1177 if (msl != ibp->rvp.sm_sl) 1178 ibp->rvp.sm_ah->attr.sl = msl; 1179 } 1180 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 1181 if (smlid != ibp->rvp.sm_lid) 1182 ibp->rvp.sm_lid = smlid; 1183 if (msl != ibp->rvp.sm_sl) 1184 ibp->rvp.sm_sl = msl; 1185 event.event = IB_EVENT_SM_CHANGE; 1186 ib_dispatch_event(&event); 1187 } 1188 1189 if (pi->link_down_reason == 0) { 1190 ppd->local_link_down_reason.sma = 0; 1191 ppd->local_link_down_reason.latest = 0; 1192 } 1193 1194 if (pi->neigh_link_down_reason == 0) { 1195 ppd->neigh_link_down_reason.sma = 0; 1196 ppd->neigh_link_down_reason.latest = 0; 1197 } 1198 1199 ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp); 1200 ppd->sa_qp = be32_to_cpu(pi->sa_qp); 1201 1202 ppd->port_error_action = be32_to_cpu(pi->port_error_action); 1203 lwe = be16_to_cpu(pi->link_width.enabled); 1204 if (lwe) { 1205 if (lwe == OPA_LINK_WIDTH_RESET || 1206 lwe == OPA_LINK_WIDTH_RESET_OLD) 1207 set_link_width_enabled(ppd, ppd->link_width_supported); 1208 else if ((lwe & ~ppd->link_width_supported) == 0) 1209 set_link_width_enabled(ppd, lwe); 1210 else 1211 smp->status |= IB_SMP_INVALID_FIELD; 1212 } 1213 lwe = be16_to_cpu(pi->link_width_downgrade.enabled); 1214 /* LWD.E is always applied - 0 means "disabled" */ 1215 if (lwe == OPA_LINK_WIDTH_RESET || 1216 lwe == OPA_LINK_WIDTH_RESET_OLD) { 1217 set_link_width_downgrade_enabled(ppd, 1218 ppd-> 1219 link_width_downgrade_supported 1220 ); 1221 } else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) { 1222 /* only set and apply if something changed */ 1223 if (lwe != ppd->link_width_downgrade_enabled) { 1224 set_link_width_downgrade_enabled(ppd, lwe); 1225 call_link_downgrade_policy = 1; 1226 } 1227 } else { 1228 smp->status |= IB_SMP_INVALID_FIELD; 1229 } 1230 lse = be16_to_cpu(pi->link_speed.enabled); 1231 if (lse) { 1232 if (lse & be16_to_cpu(pi->link_speed.supported)) 1233 set_link_speed_enabled(ppd, lse); 1234 else 1235 smp->status |= IB_SMP_INVALID_FIELD; 1236 } 1237 1238 ibp->rvp.mkeyprot = 1239 (pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6; 1240 ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF; 1241 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT, 1242 ibp->rvp.vl_high_limit); 1243 1244 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 1245 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 1246 smp->status |= IB_SMP_INVALID_FIELD; 1247 return reply((struct ib_mad_hdr *)smp); 1248 } 1249 for (i = 0; i < ppd->vls_supported; i++) { 1250 if ((i % 2) == 0) 1251 mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >> 1252 4) & 0xF); 1253 else 1254 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] & 1255 0xF); 1256 if (mtu == 0xffff) { 1257 pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n", 1258 mtu, 1259 (pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF); 1260 smp->status |= IB_SMP_INVALID_FIELD; 1261 mtu = hfi1_max_mtu; /* use a valid MTU */ 1262 } 1263 if (dd->vld[i].mtu != mtu) { 1264 dd_dev_info(dd, 1265 "MTU change on vl %d from %d to %d\n", 1266 i, dd->vld[i].mtu, mtu); 1267 dd->vld[i].mtu = mtu; 1268 call_set_mtu++; 1269 } 1270 } 1271 /* As per OPAV1 spec: VL15 must support and be configured 1272 * for operation with a 2048 or larger MTU. 1273 */ 1274 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF); 1275 if (mtu < 2048 || mtu == 0xffff) 1276 mtu = 2048; 1277 if (dd->vld[15].mtu != mtu) { 1278 dd_dev_info(dd, 1279 "MTU change on vl 15 from %d to %d\n", 1280 dd->vld[15].mtu, mtu); 1281 dd->vld[15].mtu = mtu; 1282 call_set_mtu++; 1283 } 1284 if (call_set_mtu) 1285 set_mtu(ppd); 1286 1287 /* Set operational VLs */ 1288 vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL; 1289 if (vls) { 1290 if (vls > ppd->vls_supported) { 1291 pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n", 1292 pi->operational_vls); 1293 smp->status |= IB_SMP_INVALID_FIELD; 1294 } else { 1295 if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS, 1296 vls) == -EINVAL) 1297 smp->status |= IB_SMP_INVALID_FIELD; 1298 } 1299 } 1300 1301 if (pi->mkey_violations == 0) 1302 ibp->rvp.mkey_violations = 0; 1303 1304 if (pi->pkey_violations == 0) 1305 ibp->rvp.pkey_violations = 0; 1306 1307 if (pi->qkey_violations == 0) 1308 ibp->rvp.qkey_violations = 0; 1309 1310 ibp->rvp.subnet_timeout = 1311 pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT; 1312 1313 crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode); 1314 crc_enabled >>= 4; 1315 crc_enabled &= 0xf; 1316 1317 if (crc_enabled != 0) 1318 ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled); 1319 1320 ppd->is_active_optimize_enabled = 1321 !!(be16_to_cpu(pi->port_mode) 1322 & OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE); 1323 1324 ls_new = pi->port_states.portphysstate_portstate & 1325 OPA_PI_MASK_PORT_STATE; 1326 ps_new = (pi->port_states.portphysstate_portstate & 1327 OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4; 1328 1329 if (ls_old == IB_PORT_INIT) { 1330 if (start_of_sm_config) { 1331 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1332 ppd->is_sm_config_started = 1; 1333 } else if (ls_new == IB_PORT_ARMED) { 1334 if (ppd->is_sm_config_started == 0) 1335 invalid = 1; 1336 } 1337 } 1338 1339 /* Handle CLIENT_REREGISTER event b/c SM asked us for it */ 1340 if (clientrereg) { 1341 event.event = IB_EVENT_CLIENT_REREGISTER; 1342 ib_dispatch_event(&event); 1343 } 1344 1345 /* 1346 * Do the port state change now that the other link parameters 1347 * have been set. 1348 * Changing the port physical state only makes sense if the link 1349 * is down or is being set to down. 1350 */ 1351 1352 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1353 if (ret) 1354 return ret; 1355 1356 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1357 1358 /* restore re-reg bit per o14-12.2.1 */ 1359 pi->clientrereg_subnettimeout |= clientrereg; 1360 1361 /* 1362 * Apply the new link downgrade policy. This may result in a link 1363 * bounce. Do this after everything else so things are settled. 1364 * Possible problem: if setting the port state above fails, then 1365 * the policy change is not applied. 1366 */ 1367 if (call_link_downgrade_policy) 1368 apply_link_downgrade_policy(ppd, 0); 1369 1370 return ret; 1371 1372 get_only: 1373 return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1374 } 1375 1376 /** 1377 * set_pkeys - set the PKEY table for ctxt 0 1378 * @dd: the hfi1_ib device 1379 * @port: the IB port number 1380 * @pkeys: the PKEY table 1381 */ 1382 static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 1383 { 1384 struct hfi1_pportdata *ppd; 1385 int i; 1386 int changed = 0; 1387 int update_includes_mgmt_partition = 0; 1388 1389 /* 1390 * IB port one/two always maps to context zero/one, 1391 * always a kernel context, no locking needed 1392 * If we get here with ppd setup, no need to check 1393 * that rcd is valid. 1394 */ 1395 ppd = dd->pport + (port - 1); 1396 /* 1397 * If the update does not include the management pkey, don't do it. 1398 */ 1399 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1400 if (pkeys[i] == LIM_MGMT_P_KEY) { 1401 update_includes_mgmt_partition = 1; 1402 break; 1403 } 1404 } 1405 1406 if (!update_includes_mgmt_partition) 1407 return 1; 1408 1409 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1410 u16 key = pkeys[i]; 1411 u16 okey = ppd->pkeys[i]; 1412 1413 if (key == okey) 1414 continue; 1415 /* 1416 * Don't update pkeys[2], if an HFI port without MgmtAllowed 1417 * by neighbor is a switch. 1418 */ 1419 if (i == 2 && !ppd->mgmt_allowed && ppd->neighbor_type == 1) 1420 continue; 1421 /* 1422 * The SM gives us the complete PKey table. We have 1423 * to ensure that we put the PKeys in the matching 1424 * slots. 1425 */ 1426 ppd->pkeys[i] = key; 1427 changed = 1; 1428 } 1429 1430 if (changed) { 1431 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 1432 hfi1_event_pkey_change(dd, port); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 1439 struct ib_device *ibdev, u8 port, 1440 u32 *resp_len) 1441 { 1442 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1443 u32 n_blocks_sent = OPA_AM_NBLK(am); 1444 u32 start_block = am & 0x7ff; 1445 u16 *p = (u16 *)data; 1446 __be16 *q = (__be16 *)data; 1447 int i; 1448 u16 n_blocks_avail; 1449 unsigned npkeys = hfi1_get_npkeys(dd); 1450 1451 if (n_blocks_sent == 0) { 1452 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 1453 port, start_block, n_blocks_sent); 1454 smp->status |= IB_SMP_INVALID_FIELD; 1455 return reply((struct ib_mad_hdr *)smp); 1456 } 1457 1458 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 1459 1460 if (start_block + n_blocks_sent > n_blocks_avail || 1461 n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 1462 pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n", 1463 start_block, n_blocks_sent, n_blocks_avail, 1464 OPA_NUM_PKEY_BLOCKS_PER_SMP); 1465 smp->status |= IB_SMP_INVALID_FIELD; 1466 return reply((struct ib_mad_hdr *)smp); 1467 } 1468 1469 for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++) 1470 p[i] = be16_to_cpu(q[i]); 1471 1472 if (start_block == 0 && set_pkeys(dd, port, p) != 0) { 1473 smp->status |= IB_SMP_INVALID_FIELD; 1474 return reply((struct ib_mad_hdr *)smp); 1475 } 1476 1477 return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len); 1478 } 1479 1480 static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1481 { 1482 u64 *val = data; 1483 1484 *val++ = read_csr(dd, SEND_SC2VLT0); 1485 *val++ = read_csr(dd, SEND_SC2VLT1); 1486 *val++ = read_csr(dd, SEND_SC2VLT2); 1487 *val++ = read_csr(dd, SEND_SC2VLT3); 1488 return 0; 1489 } 1490 1491 #define ILLEGAL_VL 12 1492 /* 1493 * filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except 1494 * for SC15, which must map to VL15). If we don't remap things this 1495 * way it is possible for VL15 counters to increment when we try to 1496 * send on a SC which is mapped to an invalid VL. 1497 */ 1498 static void filter_sc2vlt(void *data) 1499 { 1500 int i; 1501 u8 *pd = data; 1502 1503 for (i = 0; i < OPA_MAX_SCS; i++) { 1504 if (i == 15) 1505 continue; 1506 if ((pd[i] & 0x1f) == 0xf) 1507 pd[i] = ILLEGAL_VL; 1508 } 1509 } 1510 1511 static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1512 { 1513 u64 *val = data; 1514 1515 filter_sc2vlt(data); 1516 1517 write_csr(dd, SEND_SC2VLT0, *val++); 1518 write_csr(dd, SEND_SC2VLT1, *val++); 1519 write_csr(dd, SEND_SC2VLT2, *val++); 1520 write_csr(dd, SEND_SC2VLT3, *val++); 1521 write_seqlock_irq(&dd->sc2vl_lock); 1522 memcpy(dd->sc2vl, data, sizeof(dd->sc2vl)); 1523 write_sequnlock_irq(&dd->sc2vl_lock); 1524 return 0; 1525 } 1526 1527 static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1528 struct ib_device *ibdev, u8 port, 1529 u32 *resp_len) 1530 { 1531 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1532 u8 *p = data; 1533 size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */ 1534 unsigned i; 1535 1536 if (am) { 1537 smp->status |= IB_SMP_INVALID_FIELD; 1538 return reply((struct ib_mad_hdr *)smp); 1539 } 1540 1541 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) 1542 *p++ = ibp->sl_to_sc[i]; 1543 1544 if (resp_len) 1545 *resp_len += size; 1546 1547 return reply((struct ib_mad_hdr *)smp); 1548 } 1549 1550 static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1551 struct ib_device *ibdev, u8 port, 1552 u32 *resp_len) 1553 { 1554 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1555 u8 *p = data; 1556 int i; 1557 u8 sc; 1558 1559 if (am) { 1560 smp->status |= IB_SMP_INVALID_FIELD; 1561 return reply((struct ib_mad_hdr *)smp); 1562 } 1563 1564 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) { 1565 sc = *p++; 1566 if (ibp->sl_to_sc[i] != sc) { 1567 ibp->sl_to_sc[i] = sc; 1568 1569 /* Put all stale qps into error state */ 1570 hfi1_error_port_qps(ibp, i); 1571 } 1572 } 1573 1574 return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len); 1575 } 1576 1577 static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1578 struct ib_device *ibdev, u8 port, 1579 u32 *resp_len) 1580 { 1581 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1582 u8 *p = data; 1583 size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */ 1584 unsigned i; 1585 1586 if (am) { 1587 smp->status |= IB_SMP_INVALID_FIELD; 1588 return reply((struct ib_mad_hdr *)smp); 1589 } 1590 1591 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1592 *p++ = ibp->sc_to_sl[i]; 1593 1594 if (resp_len) 1595 *resp_len += size; 1596 1597 return reply((struct ib_mad_hdr *)smp); 1598 } 1599 1600 static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1601 struct ib_device *ibdev, u8 port, 1602 u32 *resp_len) 1603 { 1604 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1605 u8 *p = data; 1606 int i; 1607 1608 if (am) { 1609 smp->status |= IB_SMP_INVALID_FIELD; 1610 return reply((struct ib_mad_hdr *)smp); 1611 } 1612 1613 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1614 ibp->sc_to_sl[i] = *p++; 1615 1616 return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len); 1617 } 1618 1619 static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1620 struct ib_device *ibdev, u8 port, 1621 u32 *resp_len) 1622 { 1623 u32 n_blocks = OPA_AM_NBLK(am); 1624 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1625 void *vp = (void *)data; 1626 size_t size = 4 * sizeof(u64); 1627 1628 if (n_blocks != 1) { 1629 smp->status |= IB_SMP_INVALID_FIELD; 1630 return reply((struct ib_mad_hdr *)smp); 1631 } 1632 1633 get_sc2vlt_tables(dd, vp); 1634 1635 if (resp_len) 1636 *resp_len += size; 1637 1638 return reply((struct ib_mad_hdr *)smp); 1639 } 1640 1641 static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1642 struct ib_device *ibdev, u8 port, 1643 u32 *resp_len) 1644 { 1645 u32 n_blocks = OPA_AM_NBLK(am); 1646 int async_update = OPA_AM_ASYNC(am); 1647 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1648 void *vp = (void *)data; 1649 struct hfi1_pportdata *ppd; 1650 int lstate; 1651 1652 if (n_blocks != 1 || async_update) { 1653 smp->status |= IB_SMP_INVALID_FIELD; 1654 return reply((struct ib_mad_hdr *)smp); 1655 } 1656 1657 /* IB numbers ports from 1, hw from 0 */ 1658 ppd = dd->pport + (port - 1); 1659 lstate = driver_lstate(ppd); 1660 /* 1661 * it's known that async_update is 0 by this point, but include 1662 * the explicit check for clarity 1663 */ 1664 if (!async_update && 1665 (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) { 1666 smp->status |= IB_SMP_INVALID_FIELD; 1667 return reply((struct ib_mad_hdr *)smp); 1668 } 1669 1670 set_sc2vlt_tables(dd, vp); 1671 1672 return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len); 1673 } 1674 1675 static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1676 struct ib_device *ibdev, u8 port, 1677 u32 *resp_len) 1678 { 1679 u32 n_blocks = OPA_AM_NPORT(am); 1680 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1681 struct hfi1_pportdata *ppd; 1682 void *vp = (void *)data; 1683 int size; 1684 1685 if (n_blocks != 1) { 1686 smp->status |= IB_SMP_INVALID_FIELD; 1687 return reply((struct ib_mad_hdr *)smp); 1688 } 1689 1690 ppd = dd->pport + (port - 1); 1691 1692 size = fm_get_table(ppd, FM_TBL_SC2VLNT, vp); 1693 1694 if (resp_len) 1695 *resp_len += size; 1696 1697 return reply((struct ib_mad_hdr *)smp); 1698 } 1699 1700 static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1701 struct ib_device *ibdev, u8 port, 1702 u32 *resp_len) 1703 { 1704 u32 n_blocks = OPA_AM_NPORT(am); 1705 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1706 struct hfi1_pportdata *ppd; 1707 void *vp = (void *)data; 1708 int lstate; 1709 1710 if (n_blocks != 1) { 1711 smp->status |= IB_SMP_INVALID_FIELD; 1712 return reply((struct ib_mad_hdr *)smp); 1713 } 1714 1715 /* IB numbers ports from 1, hw from 0 */ 1716 ppd = dd->pport + (port - 1); 1717 lstate = driver_lstate(ppd); 1718 if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) { 1719 smp->status |= IB_SMP_INVALID_FIELD; 1720 return reply((struct ib_mad_hdr *)smp); 1721 } 1722 1723 ppd = dd->pport + (port - 1); 1724 1725 fm_set_table(ppd, FM_TBL_SC2VLNT, vp); 1726 1727 return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 1728 resp_len); 1729 } 1730 1731 static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1732 struct ib_device *ibdev, u8 port, 1733 u32 *resp_len) 1734 { 1735 u32 nports = OPA_AM_NPORT(am); 1736 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1737 u32 lstate; 1738 struct hfi1_ibport *ibp; 1739 struct hfi1_pportdata *ppd; 1740 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1741 1742 if (nports != 1) { 1743 smp->status |= IB_SMP_INVALID_FIELD; 1744 return reply((struct ib_mad_hdr *)smp); 1745 } 1746 1747 ibp = to_iport(ibdev, port); 1748 ppd = ppd_from_ibp(ibp); 1749 1750 lstate = driver_lstate(ppd); 1751 1752 if (start_of_sm_config && (lstate == IB_PORT_INIT)) 1753 ppd->is_sm_config_started = 1; 1754 1755 #if PI_LED_ENABLE_SUP 1756 psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 1757 psi->port_states.ledenable_offlinereason |= 1758 ppd->is_sm_config_started << 5; 1759 psi->port_states.ledenable_offlinereason |= 1760 ppd->offline_disabled_reason; 1761 #else 1762 psi->port_states.offline_reason = ppd->neighbor_normal << 4; 1763 psi->port_states.offline_reason |= ppd->is_sm_config_started << 5; 1764 psi->port_states.offline_reason |= ppd->offline_disabled_reason; 1765 #endif /* PI_LED_ENABLE_SUP */ 1766 1767 psi->port_states.portphysstate_portstate = 1768 (hfi1_ibphys_portstate(ppd) << 4) | (lstate & 0xf); 1769 psi->link_width_downgrade_tx_active = 1770 cpu_to_be16(ppd->link_width_downgrade_tx_active); 1771 psi->link_width_downgrade_rx_active = 1772 cpu_to_be16(ppd->link_width_downgrade_rx_active); 1773 if (resp_len) 1774 *resp_len += sizeof(struct opa_port_state_info); 1775 1776 return reply((struct ib_mad_hdr *)smp); 1777 } 1778 1779 static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1780 struct ib_device *ibdev, u8 port, 1781 u32 *resp_len) 1782 { 1783 u32 nports = OPA_AM_NPORT(am); 1784 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1785 u32 ls_old; 1786 u8 ls_new, ps_new; 1787 struct hfi1_ibport *ibp; 1788 struct hfi1_pportdata *ppd; 1789 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1790 int ret, invalid = 0; 1791 1792 if (nports != 1) { 1793 smp->status |= IB_SMP_INVALID_FIELD; 1794 return reply((struct ib_mad_hdr *)smp); 1795 } 1796 1797 ibp = to_iport(ibdev, port); 1798 ppd = ppd_from_ibp(ibp); 1799 1800 ls_old = driver_lstate(ppd); 1801 1802 ls_new = port_states_to_logical_state(&psi->port_states); 1803 ps_new = port_states_to_phys_state(&psi->port_states); 1804 1805 if (ls_old == IB_PORT_INIT) { 1806 if (start_of_sm_config) { 1807 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1808 ppd->is_sm_config_started = 1; 1809 } else if (ls_new == IB_PORT_ARMED) { 1810 if (ppd->is_sm_config_started == 0) 1811 invalid = 1; 1812 } 1813 } 1814 1815 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1816 if (ret) 1817 return ret; 1818 1819 if (invalid) 1820 smp->status |= IB_SMP_INVALID_FIELD; 1821 1822 return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len); 1823 } 1824 1825 static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data, 1826 struct ib_device *ibdev, u8 port, 1827 u32 *resp_len) 1828 { 1829 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1830 u32 addr = OPA_AM_CI_ADDR(am); 1831 u32 len = OPA_AM_CI_LEN(am) + 1; 1832 int ret; 1833 1834 #define __CI_PAGE_SIZE BIT(7) /* 128 bytes */ 1835 #define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1) 1836 #define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK) 1837 1838 /* 1839 * check that addr is within spec, and 1840 * addr and (addr + len - 1) are on the same "page" 1841 */ 1842 if (addr >= 4096 || 1843 (__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) { 1844 smp->status |= IB_SMP_INVALID_FIELD; 1845 return reply((struct ib_mad_hdr *)smp); 1846 } 1847 1848 ret = get_cable_info(dd, port, addr, len, data); 1849 1850 if (ret == -ENODEV) { 1851 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1852 return reply((struct ib_mad_hdr *)smp); 1853 } 1854 1855 /* The address range for the CableInfo SMA query is wider than the 1856 * memory available on the QSFP cable. We want to return a valid 1857 * response, albeit zeroed out, for address ranges beyond available 1858 * memory but that are within the CableInfo query spec 1859 */ 1860 if (ret < 0 && ret != -ERANGE) { 1861 smp->status |= IB_SMP_INVALID_FIELD; 1862 return reply((struct ib_mad_hdr *)smp); 1863 } 1864 1865 if (resp_len) 1866 *resp_len += len; 1867 1868 return reply((struct ib_mad_hdr *)smp); 1869 } 1870 1871 static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1872 struct ib_device *ibdev, u8 port, u32 *resp_len) 1873 { 1874 u32 num_ports = OPA_AM_NPORT(am); 1875 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1876 struct hfi1_pportdata *ppd; 1877 struct buffer_control *p = (struct buffer_control *)data; 1878 int size; 1879 1880 if (num_ports != 1) { 1881 smp->status |= IB_SMP_INVALID_FIELD; 1882 return reply((struct ib_mad_hdr *)smp); 1883 } 1884 1885 ppd = dd->pport + (port - 1); 1886 size = fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p); 1887 trace_bct_get(dd, p); 1888 if (resp_len) 1889 *resp_len += size; 1890 1891 return reply((struct ib_mad_hdr *)smp); 1892 } 1893 1894 static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1895 struct ib_device *ibdev, u8 port, u32 *resp_len) 1896 { 1897 u32 num_ports = OPA_AM_NPORT(am); 1898 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1899 struct hfi1_pportdata *ppd; 1900 struct buffer_control *p = (struct buffer_control *)data; 1901 1902 if (num_ports != 1) { 1903 smp->status |= IB_SMP_INVALID_FIELD; 1904 return reply((struct ib_mad_hdr *)smp); 1905 } 1906 ppd = dd->pport + (port - 1); 1907 trace_bct_set(dd, p); 1908 if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) { 1909 smp->status |= IB_SMP_INVALID_FIELD; 1910 return reply((struct ib_mad_hdr *)smp); 1911 } 1912 1913 return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len); 1914 } 1915 1916 static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1917 struct ib_device *ibdev, u8 port, 1918 u32 *resp_len) 1919 { 1920 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1921 u32 num_ports = OPA_AM_NPORT(am); 1922 u8 section = (am & 0x00ff0000) >> 16; 1923 u8 *p = data; 1924 int size = 0; 1925 1926 if (num_ports != 1) { 1927 smp->status |= IB_SMP_INVALID_FIELD; 1928 return reply((struct ib_mad_hdr *)smp); 1929 } 1930 1931 switch (section) { 1932 case OPA_VLARB_LOW_ELEMENTS: 1933 size = fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p); 1934 break; 1935 case OPA_VLARB_HIGH_ELEMENTS: 1936 size = fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1937 break; 1938 case OPA_VLARB_PREEMPT_ELEMENTS: 1939 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p); 1940 break; 1941 case OPA_VLARB_PREEMPT_MATRIX: 1942 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p); 1943 break; 1944 default: 1945 pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n", 1946 be32_to_cpu(smp->attr_mod)); 1947 smp->status |= IB_SMP_INVALID_FIELD; 1948 break; 1949 } 1950 1951 if (size > 0 && resp_len) 1952 *resp_len += size; 1953 1954 return reply((struct ib_mad_hdr *)smp); 1955 } 1956 1957 static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1958 struct ib_device *ibdev, u8 port, 1959 u32 *resp_len) 1960 { 1961 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1962 u32 num_ports = OPA_AM_NPORT(am); 1963 u8 section = (am & 0x00ff0000) >> 16; 1964 u8 *p = data; 1965 1966 if (num_ports != 1) { 1967 smp->status |= IB_SMP_INVALID_FIELD; 1968 return reply((struct ib_mad_hdr *)smp); 1969 } 1970 1971 switch (section) { 1972 case OPA_VLARB_LOW_ELEMENTS: 1973 (void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p); 1974 break; 1975 case OPA_VLARB_HIGH_ELEMENTS: 1976 (void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1977 break; 1978 /* 1979 * neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX 1980 * can be changed from the default values 1981 */ 1982 case OPA_VLARB_PREEMPT_ELEMENTS: 1983 /* FALLTHROUGH */ 1984 case OPA_VLARB_PREEMPT_MATRIX: 1985 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1986 break; 1987 default: 1988 pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n", 1989 be32_to_cpu(smp->attr_mod)); 1990 smp->status |= IB_SMP_INVALID_FIELD; 1991 break; 1992 } 1993 1994 return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len); 1995 } 1996 1997 struct opa_pma_mad { 1998 struct ib_mad_hdr mad_hdr; 1999 u8 data[2024]; 2000 } __packed; 2001 2002 struct opa_class_port_info { 2003 u8 base_version; 2004 u8 class_version; 2005 __be16 cap_mask; 2006 __be32 cap_mask2_resp_time; 2007 2008 u8 redirect_gid[16]; 2009 __be32 redirect_tc_fl; 2010 __be32 redirect_lid; 2011 __be32 redirect_sl_qp; 2012 __be32 redirect_qkey; 2013 2014 u8 trap_gid[16]; 2015 __be32 trap_tc_fl; 2016 __be32 trap_lid; 2017 __be32 trap_hl_qp; 2018 __be32 trap_qkey; 2019 2020 __be16 trap_pkey; 2021 __be16 redirect_pkey; 2022 2023 u8 trap_sl_rsvd; 2024 u8 reserved[3]; 2025 } __packed; 2026 2027 struct opa_port_status_req { 2028 __u8 port_num; 2029 __u8 reserved[3]; 2030 __be32 vl_select_mask; 2031 }; 2032 2033 #define VL_MASK_ALL 0x000080ff 2034 2035 struct opa_port_status_rsp { 2036 __u8 port_num; 2037 __u8 reserved[3]; 2038 __be32 vl_select_mask; 2039 2040 /* Data counters */ 2041 __be64 port_xmit_data; 2042 __be64 port_rcv_data; 2043 __be64 port_xmit_pkts; 2044 __be64 port_rcv_pkts; 2045 __be64 port_multicast_xmit_pkts; 2046 __be64 port_multicast_rcv_pkts; 2047 __be64 port_xmit_wait; 2048 __be64 sw_port_congestion; 2049 __be64 port_rcv_fecn; 2050 __be64 port_rcv_becn; 2051 __be64 port_xmit_time_cong; 2052 __be64 port_xmit_wasted_bw; 2053 __be64 port_xmit_wait_data; 2054 __be64 port_rcv_bubble; 2055 __be64 port_mark_fecn; 2056 /* Error counters */ 2057 __be64 port_rcv_constraint_errors; 2058 __be64 port_rcv_switch_relay_errors; 2059 __be64 port_xmit_discards; 2060 __be64 port_xmit_constraint_errors; 2061 __be64 port_rcv_remote_physical_errors; 2062 __be64 local_link_integrity_errors; 2063 __be64 port_rcv_errors; 2064 __be64 excessive_buffer_overruns; 2065 __be64 fm_config_errors; 2066 __be32 link_error_recovery; 2067 __be32 link_downed; 2068 u8 uncorrectable_errors; 2069 2070 u8 link_quality_indicator; /* 5res, 3bit */ 2071 u8 res2[6]; 2072 struct _vls_pctrs { 2073 /* per-VL Data counters */ 2074 __be64 port_vl_xmit_data; 2075 __be64 port_vl_rcv_data; 2076 __be64 port_vl_xmit_pkts; 2077 __be64 port_vl_rcv_pkts; 2078 __be64 port_vl_xmit_wait; 2079 __be64 sw_port_vl_congestion; 2080 __be64 port_vl_rcv_fecn; 2081 __be64 port_vl_rcv_becn; 2082 __be64 port_xmit_time_cong; 2083 __be64 port_vl_xmit_wasted_bw; 2084 __be64 port_vl_xmit_wait_data; 2085 __be64 port_vl_rcv_bubble; 2086 __be64 port_vl_mark_fecn; 2087 __be64 port_vl_xmit_discards; 2088 } vls[0]; /* real array size defined by # bits set in vl_select_mask */ 2089 }; 2090 2091 enum counter_selects { 2092 CS_PORT_XMIT_DATA = (1 << 31), 2093 CS_PORT_RCV_DATA = (1 << 30), 2094 CS_PORT_XMIT_PKTS = (1 << 29), 2095 CS_PORT_RCV_PKTS = (1 << 28), 2096 CS_PORT_MCAST_XMIT_PKTS = (1 << 27), 2097 CS_PORT_MCAST_RCV_PKTS = (1 << 26), 2098 CS_PORT_XMIT_WAIT = (1 << 25), 2099 CS_SW_PORT_CONGESTION = (1 << 24), 2100 CS_PORT_RCV_FECN = (1 << 23), 2101 CS_PORT_RCV_BECN = (1 << 22), 2102 CS_PORT_XMIT_TIME_CONG = (1 << 21), 2103 CS_PORT_XMIT_WASTED_BW = (1 << 20), 2104 CS_PORT_XMIT_WAIT_DATA = (1 << 19), 2105 CS_PORT_RCV_BUBBLE = (1 << 18), 2106 CS_PORT_MARK_FECN = (1 << 17), 2107 CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16), 2108 CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15), 2109 CS_PORT_XMIT_DISCARDS = (1 << 14), 2110 CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13), 2111 CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12), 2112 CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11), 2113 CS_PORT_RCV_ERRORS = (1 << 10), 2114 CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9), 2115 CS_FM_CONFIG_ERRORS = (1 << 8), 2116 CS_LINK_ERROR_RECOVERY = (1 << 7), 2117 CS_LINK_DOWNED = (1 << 6), 2118 CS_UNCORRECTABLE_ERRORS = (1 << 5), 2119 }; 2120 2121 struct opa_clear_port_status { 2122 __be64 port_select_mask[4]; 2123 __be32 counter_select_mask; 2124 }; 2125 2126 struct opa_aggregate { 2127 __be16 attr_id; 2128 __be16 err_reqlength; /* 1 bit, 8 res, 7 bit */ 2129 __be32 attr_mod; 2130 u8 data[0]; 2131 }; 2132 2133 #define MSK_LLI 0x000000f0 2134 #define MSK_LLI_SFT 4 2135 #define MSK_LER 0x0000000f 2136 #define MSK_LER_SFT 0 2137 #define ADD_LLI 8 2138 #define ADD_LER 2 2139 2140 /* Request contains first three fields, response contains those plus the rest */ 2141 struct opa_port_data_counters_msg { 2142 __be64 port_select_mask[4]; 2143 __be32 vl_select_mask; 2144 __be32 resolution; 2145 2146 /* Response fields follow */ 2147 struct _port_dctrs { 2148 u8 port_number; 2149 u8 reserved2[3]; 2150 __be32 link_quality_indicator; /* 29res, 3bit */ 2151 2152 /* Data counters */ 2153 __be64 port_xmit_data; 2154 __be64 port_rcv_data; 2155 __be64 port_xmit_pkts; 2156 __be64 port_rcv_pkts; 2157 __be64 port_multicast_xmit_pkts; 2158 __be64 port_multicast_rcv_pkts; 2159 __be64 port_xmit_wait; 2160 __be64 sw_port_congestion; 2161 __be64 port_rcv_fecn; 2162 __be64 port_rcv_becn; 2163 __be64 port_xmit_time_cong; 2164 __be64 port_xmit_wasted_bw; 2165 __be64 port_xmit_wait_data; 2166 __be64 port_rcv_bubble; 2167 __be64 port_mark_fecn; 2168 2169 __be64 port_error_counter_summary; 2170 /* Sum of error counts/port */ 2171 2172 struct _vls_dctrs { 2173 /* per-VL Data counters */ 2174 __be64 port_vl_xmit_data; 2175 __be64 port_vl_rcv_data; 2176 __be64 port_vl_xmit_pkts; 2177 __be64 port_vl_rcv_pkts; 2178 __be64 port_vl_xmit_wait; 2179 __be64 sw_port_vl_congestion; 2180 __be64 port_vl_rcv_fecn; 2181 __be64 port_vl_rcv_becn; 2182 __be64 port_xmit_time_cong; 2183 __be64 port_vl_xmit_wasted_bw; 2184 __be64 port_vl_xmit_wait_data; 2185 __be64 port_vl_rcv_bubble; 2186 __be64 port_vl_mark_fecn; 2187 } vls[0]; 2188 /* array size defined by #bits set in vl_select_mask*/ 2189 } port[1]; /* array size defined by #ports in attribute modifier */ 2190 }; 2191 2192 struct opa_port_error_counters64_msg { 2193 /* 2194 * Request contains first two fields, response contains the 2195 * whole magilla 2196 */ 2197 __be64 port_select_mask[4]; 2198 __be32 vl_select_mask; 2199 2200 /* Response-only fields follow */ 2201 __be32 reserved1; 2202 struct _port_ectrs { 2203 u8 port_number; 2204 u8 reserved2[7]; 2205 __be64 port_rcv_constraint_errors; 2206 __be64 port_rcv_switch_relay_errors; 2207 __be64 port_xmit_discards; 2208 __be64 port_xmit_constraint_errors; 2209 __be64 port_rcv_remote_physical_errors; 2210 __be64 local_link_integrity_errors; 2211 __be64 port_rcv_errors; 2212 __be64 excessive_buffer_overruns; 2213 __be64 fm_config_errors; 2214 __be32 link_error_recovery; 2215 __be32 link_downed; 2216 u8 uncorrectable_errors; 2217 u8 reserved3[7]; 2218 struct _vls_ectrs { 2219 __be64 port_vl_xmit_discards; 2220 } vls[0]; 2221 /* array size defined by #bits set in vl_select_mask */ 2222 } port[1]; /* array size defined by #ports in attribute modifier */ 2223 }; 2224 2225 struct opa_port_error_info_msg { 2226 __be64 port_select_mask[4]; 2227 __be32 error_info_select_mask; 2228 __be32 reserved1; 2229 struct _port_ei { 2230 u8 port_number; 2231 u8 reserved2[7]; 2232 2233 /* PortRcvErrorInfo */ 2234 struct { 2235 u8 status_and_code; 2236 union { 2237 u8 raw[17]; 2238 struct { 2239 /* EI1to12 format */ 2240 u8 packet_flit1[8]; 2241 u8 packet_flit2[8]; 2242 u8 remaining_flit_bits12; 2243 } ei1to12; 2244 struct { 2245 u8 packet_bytes[8]; 2246 u8 remaining_flit_bits; 2247 } ei13; 2248 } ei; 2249 u8 reserved3[6]; 2250 } __packed port_rcv_ei; 2251 2252 /* ExcessiveBufferOverrunInfo */ 2253 struct { 2254 u8 status_and_sc; 2255 u8 reserved4[7]; 2256 } __packed excessive_buffer_overrun_ei; 2257 2258 /* PortXmitConstraintErrorInfo */ 2259 struct { 2260 u8 status; 2261 u8 reserved5; 2262 __be16 pkey; 2263 __be32 slid; 2264 } __packed port_xmit_constraint_ei; 2265 2266 /* PortRcvConstraintErrorInfo */ 2267 struct { 2268 u8 status; 2269 u8 reserved6; 2270 __be16 pkey; 2271 __be32 slid; 2272 } __packed port_rcv_constraint_ei; 2273 2274 /* PortRcvSwitchRelayErrorInfo */ 2275 struct { 2276 u8 status_and_code; 2277 u8 reserved7[3]; 2278 __u32 error_info; 2279 } __packed port_rcv_switch_relay_ei; 2280 2281 /* UncorrectableErrorInfo */ 2282 struct { 2283 u8 status_and_code; 2284 u8 reserved8; 2285 } __packed uncorrectable_ei; 2286 2287 /* FMConfigErrorInfo */ 2288 struct { 2289 u8 status_and_code; 2290 u8 error_info; 2291 } __packed fm_config_ei; 2292 __u32 reserved9; 2293 } port[1]; /* actual array size defined by #ports in attr modifier */ 2294 }; 2295 2296 /* opa_port_error_info_msg error_info_select_mask bit definitions */ 2297 enum error_info_selects { 2298 ES_PORT_RCV_ERROR_INFO = (1 << 31), 2299 ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30), 2300 ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29), 2301 ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28), 2302 ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27), 2303 ES_UNCORRECTABLE_ERROR_INFO = (1 << 26), 2304 ES_FM_CONFIG_ERROR_INFO = (1 << 25) 2305 }; 2306 2307 static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp, 2308 struct ib_device *ibdev, u32 *resp_len) 2309 { 2310 struct opa_class_port_info *p = 2311 (struct opa_class_port_info *)pmp->data; 2312 2313 memset(pmp->data, 0, sizeof(pmp->data)); 2314 2315 if (pmp->mad_hdr.attr_mod != 0) 2316 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2317 2318 p->base_version = OPA_MGMT_BASE_VERSION; 2319 p->class_version = OPA_SMI_CLASS_VERSION; 2320 /* 2321 * Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec. 2322 */ 2323 p->cap_mask2_resp_time = cpu_to_be32(18); 2324 2325 if (resp_len) 2326 *resp_len += sizeof(*p); 2327 2328 return reply((struct ib_mad_hdr *)pmp); 2329 } 2330 2331 static void a0_portstatus(struct hfi1_pportdata *ppd, 2332 struct opa_port_status_rsp *rsp, u32 vl_select_mask) 2333 { 2334 if (!is_bx(ppd->dd)) { 2335 unsigned long vl; 2336 u64 sum_vl_xmit_wait = 0; 2337 u32 vl_all_mask = VL_MASK_ALL; 2338 2339 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2340 8 * sizeof(vl_all_mask)) { 2341 u64 tmp = sum_vl_xmit_wait + 2342 read_port_cntr(ppd, C_TX_WAIT_VL, 2343 idx_from_vl(vl)); 2344 if (tmp < sum_vl_xmit_wait) { 2345 /* we wrapped */ 2346 sum_vl_xmit_wait = (u64)~0; 2347 break; 2348 } 2349 sum_vl_xmit_wait = tmp; 2350 } 2351 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2352 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2353 } 2354 } 2355 2356 static int pma_get_opa_portstatus(struct opa_pma_mad *pmp, 2357 struct ib_device *ibdev, 2358 u8 port, u32 *resp_len) 2359 { 2360 struct opa_port_status_req *req = 2361 (struct opa_port_status_req *)pmp->data; 2362 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2363 struct opa_port_status_rsp *rsp; 2364 u32 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2365 unsigned long vl; 2366 size_t response_data_size; 2367 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2368 u8 port_num = req->port_num; 2369 u8 num_vls = hweight32(vl_select_mask); 2370 struct _vls_pctrs *vlinfo; 2371 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2372 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2373 int vfi; 2374 u64 tmp, tmp2; 2375 2376 response_data_size = sizeof(struct opa_port_status_rsp) + 2377 num_vls * sizeof(struct _vls_pctrs); 2378 if (response_data_size > sizeof(pmp->data)) { 2379 pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE; 2380 return reply((struct ib_mad_hdr *)pmp); 2381 } 2382 2383 if (nports != 1 || (port_num && port_num != port) || 2384 num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) { 2385 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2386 return reply((struct ib_mad_hdr *)pmp); 2387 } 2388 2389 memset(pmp->data, 0, sizeof(pmp->data)); 2390 2391 rsp = (struct opa_port_status_rsp *)pmp->data; 2392 if (port_num) 2393 rsp->port_num = port_num; 2394 else 2395 rsp->port_num = port; 2396 2397 rsp->port_rcv_constraint_errors = 2398 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2399 CNTR_INVALID_VL)); 2400 2401 hfi1_read_link_quality(dd, &rsp->link_quality_indicator); 2402 2403 rsp->vl_select_mask = cpu_to_be32(vl_select_mask); 2404 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2405 CNTR_INVALID_VL)); 2406 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2407 CNTR_INVALID_VL)); 2408 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2409 CNTR_INVALID_VL)); 2410 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2411 CNTR_INVALID_VL)); 2412 rsp->port_multicast_xmit_pkts = 2413 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2414 CNTR_INVALID_VL)); 2415 rsp->port_multicast_rcv_pkts = 2416 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2417 CNTR_INVALID_VL)); 2418 rsp->port_xmit_wait = 2419 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2420 rsp->port_rcv_fecn = 2421 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2422 rsp->port_rcv_becn = 2423 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2424 rsp->port_xmit_discards = 2425 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2426 CNTR_INVALID_VL)); 2427 rsp->port_xmit_constraint_errors = 2428 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2429 CNTR_INVALID_VL)); 2430 rsp->port_rcv_remote_physical_errors = 2431 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2432 CNTR_INVALID_VL)); 2433 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2434 tmp2 = tmp + read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2435 if (tmp2 < tmp) { 2436 /* overflow/wrapped */ 2437 rsp->local_link_integrity_errors = cpu_to_be64(~0); 2438 } else { 2439 rsp->local_link_integrity_errors = cpu_to_be64(tmp2); 2440 } 2441 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2442 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2443 CNTR_INVALID_VL); 2444 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2445 /* overflow/wrapped */ 2446 rsp->link_error_recovery = cpu_to_be32(~0); 2447 } else { 2448 rsp->link_error_recovery = cpu_to_be32(tmp2); 2449 } 2450 rsp->port_rcv_errors = 2451 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2452 rsp->excessive_buffer_overruns = 2453 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2454 rsp->fm_config_errors = 2455 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2456 CNTR_INVALID_VL)); 2457 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2458 CNTR_INVALID_VL)); 2459 2460 /* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */ 2461 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2462 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2463 2464 vlinfo = &rsp->vls[0]; 2465 vfi = 0; 2466 /* The vl_select_mask has been checked above, and we know 2467 * that it contains only entries which represent valid VLs. 2468 * So in the for_each_set_bit() loop below, we don't need 2469 * any additional checks for vl. 2470 */ 2471 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2472 8 * sizeof(vl_select_mask)) { 2473 memset(vlinfo, 0, sizeof(*vlinfo)); 2474 2475 tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl)); 2476 rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp); 2477 2478 rsp->vls[vfi].port_vl_rcv_pkts = 2479 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2480 idx_from_vl(vl))); 2481 2482 rsp->vls[vfi].port_vl_xmit_data = 2483 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2484 idx_from_vl(vl))); 2485 2486 rsp->vls[vfi].port_vl_xmit_pkts = 2487 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2488 idx_from_vl(vl))); 2489 2490 rsp->vls[vfi].port_vl_xmit_wait = 2491 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2492 idx_from_vl(vl))); 2493 2494 rsp->vls[vfi].port_vl_rcv_fecn = 2495 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2496 idx_from_vl(vl))); 2497 2498 rsp->vls[vfi].port_vl_rcv_becn = 2499 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2500 idx_from_vl(vl))); 2501 2502 vlinfo++; 2503 vfi++; 2504 } 2505 2506 a0_portstatus(ppd, rsp, vl_select_mask); 2507 2508 if (resp_len) 2509 *resp_len += response_data_size; 2510 2511 return reply((struct ib_mad_hdr *)pmp); 2512 } 2513 2514 static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port, 2515 u8 res_lli, u8 res_ler) 2516 { 2517 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2518 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2519 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2520 u64 error_counter_summary = 0, tmp; 2521 2522 error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2523 CNTR_INVALID_VL); 2524 /* port_rcv_switch_relay_errors is 0 for HFIs */ 2525 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD, 2526 CNTR_INVALID_VL); 2527 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2528 CNTR_INVALID_VL); 2529 error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2530 CNTR_INVALID_VL); 2531 /* local link integrity must be right-shifted by the lli resolution */ 2532 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2533 tmp += read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2534 error_counter_summary += (tmp >> res_lli); 2535 /* link error recovery must b right-shifted by the ler resolution */ 2536 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2537 tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); 2538 error_counter_summary += (tmp >> res_ler); 2539 error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR, 2540 CNTR_INVALID_VL); 2541 error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 2542 error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2543 CNTR_INVALID_VL); 2544 /* ppd->link_downed is a 32-bit value */ 2545 error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN, 2546 CNTR_INVALID_VL); 2547 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2548 /* this is an 8-bit quantity */ 2549 error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff; 2550 2551 return error_counter_summary; 2552 } 2553 2554 static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp, 2555 u32 vl_select_mask) 2556 { 2557 if (!is_bx(ppd->dd)) { 2558 unsigned long vl; 2559 u64 sum_vl_xmit_wait = 0; 2560 u32 vl_all_mask = VL_MASK_ALL; 2561 2562 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2563 8 * sizeof(vl_all_mask)) { 2564 u64 tmp = sum_vl_xmit_wait + 2565 read_port_cntr(ppd, C_TX_WAIT_VL, 2566 idx_from_vl(vl)); 2567 if (tmp < sum_vl_xmit_wait) { 2568 /* we wrapped */ 2569 sum_vl_xmit_wait = (u64)~0; 2570 break; 2571 } 2572 sum_vl_xmit_wait = tmp; 2573 } 2574 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2575 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2576 } 2577 } 2578 2579 static void pma_get_opa_port_dctrs(struct ib_device *ibdev, 2580 struct _port_dctrs *rsp) 2581 { 2582 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2583 2584 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2585 CNTR_INVALID_VL)); 2586 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2587 CNTR_INVALID_VL)); 2588 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2589 CNTR_INVALID_VL)); 2590 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2591 CNTR_INVALID_VL)); 2592 rsp->port_multicast_xmit_pkts = 2593 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2594 CNTR_INVALID_VL)); 2595 rsp->port_multicast_rcv_pkts = 2596 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2597 CNTR_INVALID_VL)); 2598 } 2599 2600 static int pma_get_opa_datacounters(struct opa_pma_mad *pmp, 2601 struct ib_device *ibdev, 2602 u8 port, u32 *resp_len) 2603 { 2604 struct opa_port_data_counters_msg *req = 2605 (struct opa_port_data_counters_msg *)pmp->data; 2606 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2607 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2608 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2609 struct _port_dctrs *rsp; 2610 struct _vls_dctrs *vlinfo; 2611 size_t response_data_size; 2612 u32 num_ports; 2613 u8 num_pslm; 2614 u8 lq, num_vls; 2615 u8 res_lli, res_ler; 2616 u64 port_mask; 2617 unsigned long port_num; 2618 unsigned long vl; 2619 u32 vl_select_mask; 2620 int vfi; 2621 2622 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2623 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2624 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2625 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2626 res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT; 2627 res_lli = res_lli ? res_lli + ADD_LLI : 0; 2628 res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT; 2629 res_ler = res_ler ? res_ler + ADD_LER : 0; 2630 2631 if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) { 2632 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2633 return reply((struct ib_mad_hdr *)pmp); 2634 } 2635 2636 /* Sanity check */ 2637 response_data_size = sizeof(struct opa_port_data_counters_msg) + 2638 num_vls * sizeof(struct _vls_dctrs); 2639 2640 if (response_data_size > sizeof(pmp->data)) { 2641 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2642 return reply((struct ib_mad_hdr *)pmp); 2643 } 2644 2645 /* 2646 * The bit set in the mask needs to be consistent with the 2647 * port the request came in on. 2648 */ 2649 port_mask = be64_to_cpu(req->port_select_mask[3]); 2650 port_num = find_first_bit((unsigned long *)&port_mask, 2651 sizeof(port_mask)); 2652 2653 if ((u8)port_num != port) { 2654 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2655 return reply((struct ib_mad_hdr *)pmp); 2656 } 2657 2658 rsp = &req->port[0]; 2659 memset(rsp, 0, sizeof(*rsp)); 2660 2661 rsp->port_number = port; 2662 /* 2663 * Note that link_quality_indicator is a 32 bit quantity in 2664 * 'datacounters' queries (as opposed to 'portinfo' queries, 2665 * where it's a byte). 2666 */ 2667 hfi1_read_link_quality(dd, &lq); 2668 rsp->link_quality_indicator = cpu_to_be32((u32)lq); 2669 pma_get_opa_port_dctrs(ibdev, rsp); 2670 2671 rsp->port_xmit_wait = 2672 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2673 rsp->port_rcv_fecn = 2674 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2675 rsp->port_rcv_becn = 2676 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2677 rsp->port_error_counter_summary = 2678 cpu_to_be64(get_error_counter_summary(ibdev, port, 2679 res_lli, res_ler)); 2680 2681 vlinfo = &rsp->vls[0]; 2682 vfi = 0; 2683 /* The vl_select_mask has been checked above, and we know 2684 * that it contains only entries which represent valid VLs. 2685 * So in the for_each_set_bit() loop below, we don't need 2686 * any additional checks for vl. 2687 */ 2688 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2689 8 * sizeof(req->vl_select_mask)) { 2690 memset(vlinfo, 0, sizeof(*vlinfo)); 2691 2692 rsp->vls[vfi].port_vl_xmit_data = 2693 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2694 idx_from_vl(vl))); 2695 2696 rsp->vls[vfi].port_vl_rcv_data = 2697 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL, 2698 idx_from_vl(vl))); 2699 2700 rsp->vls[vfi].port_vl_xmit_pkts = 2701 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2702 idx_from_vl(vl))); 2703 2704 rsp->vls[vfi].port_vl_rcv_pkts = 2705 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2706 idx_from_vl(vl))); 2707 2708 rsp->vls[vfi].port_vl_xmit_wait = 2709 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2710 idx_from_vl(vl))); 2711 2712 rsp->vls[vfi].port_vl_rcv_fecn = 2713 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2714 idx_from_vl(vl))); 2715 rsp->vls[vfi].port_vl_rcv_becn = 2716 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2717 idx_from_vl(vl))); 2718 2719 /* rsp->port_vl_xmit_time_cong is 0 for HFIs */ 2720 /* rsp->port_vl_xmit_wasted_bw ??? */ 2721 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? 2722 * does this differ from rsp->vls[vfi].port_vl_xmit_wait 2723 */ 2724 /*rsp->vls[vfi].port_vl_mark_fecn = 2725 * cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT 2726 * + offset)); 2727 */ 2728 vlinfo++; 2729 vfi++; 2730 } 2731 2732 a0_datacounters(ppd, rsp, vl_select_mask); 2733 2734 if (resp_len) 2735 *resp_len += response_data_size; 2736 2737 return reply((struct ib_mad_hdr *)pmp); 2738 } 2739 2740 static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp, 2741 struct ib_device *ibdev, u8 port) 2742 { 2743 struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *) 2744 pmp->data; 2745 struct _port_dctrs rsp; 2746 2747 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2748 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2749 goto bail; 2750 } 2751 2752 memset(&rsp, 0, sizeof(rsp)); 2753 pma_get_opa_port_dctrs(ibdev, &rsp); 2754 2755 p->port_xmit_data = rsp.port_xmit_data; 2756 p->port_rcv_data = rsp.port_rcv_data; 2757 p->port_xmit_packets = rsp.port_xmit_pkts; 2758 p->port_rcv_packets = rsp.port_rcv_pkts; 2759 p->port_unicast_xmit_packets = 0; 2760 p->port_unicast_rcv_packets = 0; 2761 p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts; 2762 p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts; 2763 2764 bail: 2765 return reply((struct ib_mad_hdr *)pmp); 2766 } 2767 2768 static void pma_get_opa_port_ectrs(struct ib_device *ibdev, 2769 struct _port_ectrs *rsp, u8 port) 2770 { 2771 u64 tmp, tmp2; 2772 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2773 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2774 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2775 2776 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2777 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2778 CNTR_INVALID_VL); 2779 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2780 /* overflow/wrapped */ 2781 rsp->link_error_recovery = cpu_to_be32(~0); 2782 } else { 2783 rsp->link_error_recovery = cpu_to_be32(tmp2); 2784 } 2785 2786 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2787 CNTR_INVALID_VL)); 2788 rsp->port_rcv_errors = 2789 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2790 rsp->port_rcv_remote_physical_errors = 2791 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2792 CNTR_INVALID_VL)); 2793 rsp->port_rcv_switch_relay_errors = 0; 2794 rsp->port_xmit_discards = 2795 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2796 CNTR_INVALID_VL)); 2797 rsp->port_xmit_constraint_errors = 2798 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2799 CNTR_INVALID_VL)); 2800 rsp->port_rcv_constraint_errors = 2801 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2802 CNTR_INVALID_VL)); 2803 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2804 tmp2 = tmp + read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2805 if (tmp2 < tmp) { 2806 /* overflow/wrapped */ 2807 rsp->local_link_integrity_errors = cpu_to_be64(~0); 2808 } else { 2809 rsp->local_link_integrity_errors = cpu_to_be64(tmp2); 2810 } 2811 rsp->excessive_buffer_overruns = 2812 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2813 } 2814 2815 static int pma_get_opa_porterrors(struct opa_pma_mad *pmp, 2816 struct ib_device *ibdev, 2817 u8 port, u32 *resp_len) 2818 { 2819 size_t response_data_size; 2820 struct _port_ectrs *rsp; 2821 u8 port_num; 2822 struct opa_port_error_counters64_msg *req; 2823 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2824 u32 num_ports; 2825 u8 num_pslm; 2826 u8 num_vls; 2827 struct hfi1_ibport *ibp; 2828 struct hfi1_pportdata *ppd; 2829 struct _vls_ectrs *vlinfo; 2830 unsigned long vl; 2831 u64 port_mask, tmp; 2832 u32 vl_select_mask; 2833 int vfi; 2834 2835 req = (struct opa_port_error_counters64_msg *)pmp->data; 2836 2837 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2838 2839 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2840 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2841 2842 if (num_ports != 1 || num_ports != num_pslm) { 2843 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2844 return reply((struct ib_mad_hdr *)pmp); 2845 } 2846 2847 response_data_size = sizeof(struct opa_port_error_counters64_msg) + 2848 num_vls * sizeof(struct _vls_ectrs); 2849 2850 if (response_data_size > sizeof(pmp->data)) { 2851 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2852 return reply((struct ib_mad_hdr *)pmp); 2853 } 2854 /* 2855 * The bit set in the mask needs to be consistent with the 2856 * port the request came in on. 2857 */ 2858 port_mask = be64_to_cpu(req->port_select_mask[3]); 2859 port_num = find_first_bit((unsigned long *)&port_mask, 2860 sizeof(port_mask)); 2861 2862 if (port_num != port) { 2863 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2864 return reply((struct ib_mad_hdr *)pmp); 2865 } 2866 2867 rsp = &req->port[0]; 2868 2869 ibp = to_iport(ibdev, port_num); 2870 ppd = ppd_from_ibp(ibp); 2871 2872 memset(rsp, 0, sizeof(*rsp)); 2873 rsp->port_number = port_num; 2874 2875 pma_get_opa_port_ectrs(ibdev, rsp, port_num); 2876 2877 rsp->port_rcv_remote_physical_errors = 2878 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2879 CNTR_INVALID_VL)); 2880 rsp->fm_config_errors = 2881 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2882 CNTR_INVALID_VL)); 2883 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2884 2885 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2886 2887 vlinfo = &rsp->vls[0]; 2888 vfi = 0; 2889 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2890 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2891 8 * sizeof(req->vl_select_mask)) { 2892 memset(vlinfo, 0, sizeof(*vlinfo)); 2893 /* vlinfo->vls[vfi].port_vl_xmit_discards ??? */ 2894 vlinfo += 1; 2895 vfi++; 2896 } 2897 2898 if (resp_len) 2899 *resp_len += response_data_size; 2900 2901 return reply((struct ib_mad_hdr *)pmp); 2902 } 2903 2904 static int pma_get_ib_portcounters(struct ib_pma_mad *pmp, 2905 struct ib_device *ibdev, u8 port) 2906 { 2907 struct ib_pma_portcounters *p = (struct ib_pma_portcounters *) 2908 pmp->data; 2909 struct _port_ectrs rsp; 2910 u64 temp_link_overrun_errors; 2911 u64 temp_64; 2912 u32 temp_32; 2913 2914 memset(&rsp, 0, sizeof(rsp)); 2915 pma_get_opa_port_ectrs(ibdev, &rsp, port); 2916 2917 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2918 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2919 goto bail; 2920 } 2921 2922 p->symbol_error_counter = 0; /* N/A for OPA */ 2923 2924 temp_32 = be32_to_cpu(rsp.link_error_recovery); 2925 if (temp_32 > 0xFFUL) 2926 p->link_error_recovery_counter = 0xFF; 2927 else 2928 p->link_error_recovery_counter = (u8)temp_32; 2929 2930 temp_32 = be32_to_cpu(rsp.link_downed); 2931 if (temp_32 > 0xFFUL) 2932 p->link_downed_counter = 0xFF; 2933 else 2934 p->link_downed_counter = (u8)temp_32; 2935 2936 temp_64 = be64_to_cpu(rsp.port_rcv_errors); 2937 if (temp_64 > 0xFFFFUL) 2938 p->port_rcv_errors = cpu_to_be16(0xFFFF); 2939 else 2940 p->port_rcv_errors = cpu_to_be16((u16)temp_64); 2941 2942 temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors); 2943 if (temp_64 > 0xFFFFUL) 2944 p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF); 2945 else 2946 p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64); 2947 2948 temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors); 2949 p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64); 2950 2951 temp_64 = be64_to_cpu(rsp.port_xmit_discards); 2952 if (temp_64 > 0xFFFFUL) 2953 p->port_xmit_discards = cpu_to_be16(0xFFFF); 2954 else 2955 p->port_xmit_discards = cpu_to_be16((u16)temp_64); 2956 2957 temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors); 2958 if (temp_64 > 0xFFUL) 2959 p->port_xmit_constraint_errors = 0xFF; 2960 else 2961 p->port_xmit_constraint_errors = (u8)temp_64; 2962 2963 temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors); 2964 if (temp_64 > 0xFFUL) 2965 p->port_rcv_constraint_errors = 0xFFUL; 2966 else 2967 p->port_rcv_constraint_errors = (u8)temp_64; 2968 2969 /* LocalLink: 7:4, BufferOverrun: 3:0 */ 2970 temp_64 = be64_to_cpu(rsp.local_link_integrity_errors); 2971 if (temp_64 > 0xFUL) 2972 temp_64 = 0xFUL; 2973 2974 temp_link_overrun_errors = temp_64 << 4; 2975 2976 temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns); 2977 if (temp_64 > 0xFUL) 2978 temp_64 = 0xFUL; 2979 temp_link_overrun_errors |= temp_64; 2980 2981 p->link_overrun_errors = (u8)temp_link_overrun_errors; 2982 2983 p->vl15_dropped = 0; /* N/A for OPA */ 2984 2985 bail: 2986 return reply((struct ib_mad_hdr *)pmp); 2987 } 2988 2989 static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp, 2990 struct ib_device *ibdev, 2991 u8 port, u32 *resp_len) 2992 { 2993 size_t response_data_size; 2994 struct _port_ei *rsp; 2995 struct opa_port_error_info_msg *req; 2996 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2997 u64 port_mask; 2998 u32 num_ports; 2999 u8 port_num; 3000 u8 num_pslm; 3001 u64 reg; 3002 3003 req = (struct opa_port_error_info_msg *)pmp->data; 3004 rsp = &req->port[0]; 3005 3006 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 3007 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 3008 3009 memset(rsp, 0, sizeof(*rsp)); 3010 3011 if (num_ports != 1 || num_ports != num_pslm) { 3012 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3013 return reply((struct ib_mad_hdr *)pmp); 3014 } 3015 3016 /* Sanity check */ 3017 response_data_size = sizeof(struct opa_port_error_info_msg); 3018 3019 if (response_data_size > sizeof(pmp->data)) { 3020 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3021 return reply((struct ib_mad_hdr *)pmp); 3022 } 3023 3024 /* 3025 * The bit set in the mask needs to be consistent with the port 3026 * the request came in on. 3027 */ 3028 port_mask = be64_to_cpu(req->port_select_mask[3]); 3029 port_num = find_first_bit((unsigned long *)&port_mask, 3030 sizeof(port_mask)); 3031 3032 if (port_num != port) { 3033 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3034 return reply((struct ib_mad_hdr *)pmp); 3035 } 3036 3037 /* PortRcvErrorInfo */ 3038 rsp->port_rcv_ei.status_and_code = 3039 dd->err_info_rcvport.status_and_code; 3040 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1, 3041 &dd->err_info_rcvport.packet_flit1, sizeof(u64)); 3042 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2, 3043 &dd->err_info_rcvport.packet_flit2, sizeof(u64)); 3044 3045 /* ExcessiverBufferOverrunInfo */ 3046 reg = read_csr(dd, RCV_ERR_INFO); 3047 if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) { 3048 /* 3049 * if the RcvExcessBufferOverrun bit is set, save SC of 3050 * first pkt that encountered an excess buffer overrun 3051 */ 3052 u8 tmp = (u8)reg; 3053 3054 tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK; 3055 tmp <<= 2; 3056 rsp->excessive_buffer_overrun_ei.status_and_sc = tmp; 3057 /* set the status bit */ 3058 rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80; 3059 } 3060 3061 rsp->port_xmit_constraint_ei.status = 3062 dd->err_info_xmit_constraint.status; 3063 rsp->port_xmit_constraint_ei.pkey = 3064 cpu_to_be16(dd->err_info_xmit_constraint.pkey); 3065 rsp->port_xmit_constraint_ei.slid = 3066 cpu_to_be32(dd->err_info_xmit_constraint.slid); 3067 3068 rsp->port_rcv_constraint_ei.status = 3069 dd->err_info_rcv_constraint.status; 3070 rsp->port_rcv_constraint_ei.pkey = 3071 cpu_to_be16(dd->err_info_rcv_constraint.pkey); 3072 rsp->port_rcv_constraint_ei.slid = 3073 cpu_to_be32(dd->err_info_rcv_constraint.slid); 3074 3075 /* UncorrectableErrorInfo */ 3076 rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable; 3077 3078 /* FMConfigErrorInfo */ 3079 rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig; 3080 3081 if (resp_len) 3082 *resp_len += response_data_size; 3083 3084 return reply((struct ib_mad_hdr *)pmp); 3085 } 3086 3087 static int pma_set_opa_portstatus(struct opa_pma_mad *pmp, 3088 struct ib_device *ibdev, 3089 u8 port, u32 *resp_len) 3090 { 3091 struct opa_clear_port_status *req = 3092 (struct opa_clear_port_status *)pmp->data; 3093 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3094 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3095 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3096 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 3097 u64 portn = be64_to_cpu(req->port_select_mask[3]); 3098 u32 counter_select = be32_to_cpu(req->counter_select_mask); 3099 u32 vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */ 3100 unsigned long vl; 3101 3102 if ((nports != 1) || (portn != 1 << port)) { 3103 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3104 return reply((struct ib_mad_hdr *)pmp); 3105 } 3106 /* 3107 * only counters returned by pma_get_opa_portstatus() are 3108 * handled, so when pma_get_opa_portstatus() gets a fix, 3109 * the corresponding change should be made here as well. 3110 */ 3111 3112 if (counter_select & CS_PORT_XMIT_DATA) 3113 write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0); 3114 3115 if (counter_select & CS_PORT_RCV_DATA) 3116 write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0); 3117 3118 if (counter_select & CS_PORT_XMIT_PKTS) 3119 write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3120 3121 if (counter_select & CS_PORT_RCV_PKTS) 3122 write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0); 3123 3124 if (counter_select & CS_PORT_MCAST_XMIT_PKTS) 3125 write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3126 3127 if (counter_select & CS_PORT_MCAST_RCV_PKTS) 3128 write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0); 3129 3130 if (counter_select & CS_PORT_XMIT_WAIT) 3131 write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0); 3132 3133 /* ignore cs_sw_portCongestion for HFIs */ 3134 3135 if (counter_select & CS_PORT_RCV_FECN) 3136 write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0); 3137 3138 if (counter_select & CS_PORT_RCV_BECN) 3139 write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0); 3140 3141 /* ignore cs_port_xmit_time_cong for HFIs */ 3142 /* ignore cs_port_xmit_wasted_bw for now */ 3143 /* ignore cs_port_xmit_wait_data for now */ 3144 if (counter_select & CS_PORT_RCV_BUBBLE) 3145 write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0); 3146 3147 /* Only applicable for switch */ 3148 /* if (counter_select & CS_PORT_MARK_FECN) 3149 * write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0); 3150 */ 3151 3152 if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS) 3153 write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0); 3154 3155 /* ignore cs_port_rcv_switch_relay_errors for HFIs */ 3156 if (counter_select & CS_PORT_XMIT_DISCARDS) 3157 write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0); 3158 3159 if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS) 3160 write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0); 3161 3162 if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS) 3163 write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0); 3164 3165 if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS) { 3166 write_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL, 0); 3167 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3168 } 3169 3170 if (counter_select & CS_LINK_ERROR_RECOVERY) { 3171 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3172 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 3173 CNTR_INVALID_VL, 0); 3174 } 3175 3176 if (counter_select & CS_PORT_RCV_ERRORS) 3177 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3178 3179 if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) { 3180 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3181 dd->rcv_ovfl_cnt = 0; 3182 } 3183 3184 if (counter_select & CS_FM_CONFIG_ERRORS) 3185 write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0); 3186 3187 if (counter_select & CS_LINK_DOWNED) 3188 write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0); 3189 3190 if (counter_select & CS_UNCORRECTABLE_ERRORS) 3191 write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0); 3192 3193 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 3194 8 * sizeof(vl_select_mask)) { 3195 if (counter_select & CS_PORT_XMIT_DATA) 3196 write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0); 3197 3198 if (counter_select & CS_PORT_RCV_DATA) 3199 write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0); 3200 3201 if (counter_select & CS_PORT_XMIT_PKTS) 3202 write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0); 3203 3204 if (counter_select & CS_PORT_RCV_PKTS) 3205 write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0); 3206 3207 if (counter_select & CS_PORT_XMIT_WAIT) 3208 write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0); 3209 3210 /* sw_port_vl_congestion is 0 for HFIs */ 3211 if (counter_select & CS_PORT_RCV_FECN) 3212 write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0); 3213 3214 if (counter_select & CS_PORT_RCV_BECN) 3215 write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0); 3216 3217 /* port_vl_xmit_time_cong is 0 for HFIs */ 3218 /* port_vl_xmit_wasted_bw ??? */ 3219 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */ 3220 if (counter_select & CS_PORT_RCV_BUBBLE) 3221 write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0); 3222 3223 /* if (counter_select & CS_PORT_MARK_FECN) 3224 * write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0); 3225 */ 3226 /* port_vl_xmit_discards ??? */ 3227 } 3228 3229 if (resp_len) 3230 *resp_len += sizeof(*req); 3231 3232 return reply((struct ib_mad_hdr *)pmp); 3233 } 3234 3235 static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp, 3236 struct ib_device *ibdev, 3237 u8 port, u32 *resp_len) 3238 { 3239 struct _port_ei *rsp; 3240 struct opa_port_error_info_msg *req; 3241 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3242 u64 port_mask; 3243 u32 num_ports; 3244 u8 port_num; 3245 u8 num_pslm; 3246 u32 error_info_select; 3247 3248 req = (struct opa_port_error_info_msg *)pmp->data; 3249 rsp = &req->port[0]; 3250 3251 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 3252 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 3253 3254 memset(rsp, 0, sizeof(*rsp)); 3255 3256 if (num_ports != 1 || num_ports != num_pslm) { 3257 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3258 return reply((struct ib_mad_hdr *)pmp); 3259 } 3260 3261 /* 3262 * The bit set in the mask needs to be consistent with the port 3263 * the request came in on. 3264 */ 3265 port_mask = be64_to_cpu(req->port_select_mask[3]); 3266 port_num = find_first_bit((unsigned long *)&port_mask, 3267 sizeof(port_mask)); 3268 3269 if (port_num != port) { 3270 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3271 return reply((struct ib_mad_hdr *)pmp); 3272 } 3273 3274 error_info_select = be32_to_cpu(req->error_info_select_mask); 3275 3276 /* PortRcvErrorInfo */ 3277 if (error_info_select & ES_PORT_RCV_ERROR_INFO) 3278 /* turn off status bit */ 3279 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3280 3281 /* ExcessiverBufferOverrunInfo */ 3282 if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO) 3283 /* 3284 * status bit is essentially kept in the h/w - bit 5 of 3285 * RCV_ERR_INFO 3286 */ 3287 write_csr(dd, RCV_ERR_INFO, 3288 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 3289 3290 if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO) 3291 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3292 3293 if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO) 3294 dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK; 3295 3296 /* UncorrectableErrorInfo */ 3297 if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO) 3298 /* turn off status bit */ 3299 dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK; 3300 3301 /* FMConfigErrorInfo */ 3302 if (error_info_select & ES_FM_CONFIG_ERROR_INFO) 3303 /* turn off status bit */ 3304 dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK; 3305 3306 if (resp_len) 3307 *resp_len += sizeof(*req); 3308 3309 return reply((struct ib_mad_hdr *)pmp); 3310 } 3311 3312 struct opa_congestion_info_attr { 3313 __be16 congestion_info; 3314 u8 control_table_cap; /* Multiple of 64 entry unit CCTs */ 3315 u8 congestion_log_length; 3316 } __packed; 3317 3318 static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data, 3319 struct ib_device *ibdev, u8 port, 3320 u32 *resp_len) 3321 { 3322 struct opa_congestion_info_attr *p = 3323 (struct opa_congestion_info_attr *)data; 3324 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3325 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3326 3327 p->congestion_info = 0; 3328 p->control_table_cap = ppd->cc_max_table_entries; 3329 p->congestion_log_length = OPA_CONG_LOG_ELEMS; 3330 3331 if (resp_len) 3332 *resp_len += sizeof(*p); 3333 3334 return reply((struct ib_mad_hdr *)smp); 3335 } 3336 3337 static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am, 3338 u8 *data, struct ib_device *ibdev, 3339 u8 port, u32 *resp_len) 3340 { 3341 int i; 3342 struct opa_congestion_setting_attr *p = 3343 (struct opa_congestion_setting_attr *)data; 3344 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3345 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3346 struct opa_congestion_setting_entry_shadow *entries; 3347 struct cc_state *cc_state; 3348 3349 rcu_read_lock(); 3350 3351 cc_state = get_cc_state(ppd); 3352 3353 if (!cc_state) { 3354 rcu_read_unlock(); 3355 return reply((struct ib_mad_hdr *)smp); 3356 } 3357 3358 entries = cc_state->cong_setting.entries; 3359 p->port_control = cpu_to_be16(cc_state->cong_setting.port_control); 3360 p->control_map = cpu_to_be32(cc_state->cong_setting.control_map); 3361 for (i = 0; i < OPA_MAX_SLS; i++) { 3362 p->entries[i].ccti_increase = entries[i].ccti_increase; 3363 p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer); 3364 p->entries[i].trigger_threshold = 3365 entries[i].trigger_threshold; 3366 p->entries[i].ccti_min = entries[i].ccti_min; 3367 } 3368 3369 rcu_read_unlock(); 3370 3371 if (resp_len) 3372 *resp_len += sizeof(*p); 3373 3374 return reply((struct ib_mad_hdr *)smp); 3375 } 3376 3377 /* 3378 * Apply congestion control information stored in the ppd to the 3379 * active structure. 3380 */ 3381 static void apply_cc_state(struct hfi1_pportdata *ppd) 3382 { 3383 struct cc_state *old_cc_state, *new_cc_state; 3384 3385 new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL); 3386 if (!new_cc_state) 3387 return; 3388 3389 /* 3390 * Hold the lock for updating *and* to prevent ppd information 3391 * from changing during the update. 3392 */ 3393 spin_lock(&ppd->cc_state_lock); 3394 3395 old_cc_state = get_cc_state(ppd); 3396 if (!old_cc_state) { 3397 /* never active, or shutting down */ 3398 spin_unlock(&ppd->cc_state_lock); 3399 kfree(new_cc_state); 3400 return; 3401 } 3402 3403 *new_cc_state = *old_cc_state; 3404 3405 new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1; 3406 memcpy(new_cc_state->cct.entries, ppd->ccti_entries, 3407 ppd->total_cct_entry * sizeof(struct ib_cc_table_entry)); 3408 3409 new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED; 3410 new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map; 3411 memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries, 3412 OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry)); 3413 3414 rcu_assign_pointer(ppd->cc_state, new_cc_state); 3415 3416 spin_unlock(&ppd->cc_state_lock); 3417 3418 call_rcu(&old_cc_state->rcu, cc_state_reclaim); 3419 } 3420 3421 static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data, 3422 struct ib_device *ibdev, u8 port, 3423 u32 *resp_len) 3424 { 3425 struct opa_congestion_setting_attr *p = 3426 (struct opa_congestion_setting_attr *)data; 3427 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3428 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3429 struct opa_congestion_setting_entry_shadow *entries; 3430 int i; 3431 3432 /* 3433 * Save details from packet into the ppd. Hold the cc_state_lock so 3434 * our information is consistent with anyone trying to apply the state. 3435 */ 3436 spin_lock(&ppd->cc_state_lock); 3437 ppd->cc_sl_control_map = be32_to_cpu(p->control_map); 3438 3439 entries = ppd->congestion_entries; 3440 for (i = 0; i < OPA_MAX_SLS; i++) { 3441 entries[i].ccti_increase = p->entries[i].ccti_increase; 3442 entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer); 3443 entries[i].trigger_threshold = 3444 p->entries[i].trigger_threshold; 3445 entries[i].ccti_min = p->entries[i].ccti_min; 3446 } 3447 spin_unlock(&ppd->cc_state_lock); 3448 3449 /* now apply the information */ 3450 apply_cc_state(ppd); 3451 3452 return __subn_get_opa_cong_setting(smp, am, data, ibdev, port, 3453 resp_len); 3454 } 3455 3456 static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am, 3457 u8 *data, struct ib_device *ibdev, 3458 u8 port, u32 *resp_len) 3459 { 3460 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3461 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3462 struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data; 3463 s64 ts; 3464 int i; 3465 3466 if (am != 0) { 3467 smp->status |= IB_SMP_INVALID_FIELD; 3468 return reply((struct ib_mad_hdr *)smp); 3469 } 3470 3471 spin_lock_irq(&ppd->cc_log_lock); 3472 3473 cong_log->log_type = OPA_CC_LOG_TYPE_HFI; 3474 cong_log->congestion_flags = 0; 3475 cong_log->threshold_event_counter = 3476 cpu_to_be16(ppd->threshold_event_counter); 3477 memcpy(cong_log->threshold_cong_event_map, 3478 ppd->threshold_cong_event_map, 3479 sizeof(cong_log->threshold_cong_event_map)); 3480 /* keep timestamp in units of 1.024 usec */ 3481 ts = ktime_to_ns(ktime_get()) / 1024; 3482 cong_log->current_time_stamp = cpu_to_be32(ts); 3483 for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) { 3484 struct opa_hfi1_cong_log_event_internal *cce = 3485 &ppd->cc_events[ppd->cc_mad_idx++]; 3486 if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS) 3487 ppd->cc_mad_idx = 0; 3488 /* 3489 * Entries which are older than twice the time 3490 * required to wrap the counter are supposed to 3491 * be zeroed (CA10-49 IBTA, release 1.2.1, V1). 3492 */ 3493 if ((u64)(ts - cce->timestamp) > (2 * UINT_MAX)) 3494 continue; 3495 memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3); 3496 memcpy(cong_log->events[i].remote_qp_number_cn_entry, 3497 &cce->rqpn, 3); 3498 cong_log->events[i].sl_svc_type_cn_entry = 3499 ((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7); 3500 cong_log->events[i].remote_lid_cn_entry = 3501 cpu_to_be32(cce->rlid); 3502 cong_log->events[i].timestamp_cn_entry = 3503 cpu_to_be32(cce->timestamp); 3504 } 3505 3506 /* 3507 * Reset threshold_cong_event_map, and threshold_event_counter 3508 * to 0 when log is read. 3509 */ 3510 memset(ppd->threshold_cong_event_map, 0x0, 3511 sizeof(ppd->threshold_cong_event_map)); 3512 ppd->threshold_event_counter = 0; 3513 3514 spin_unlock_irq(&ppd->cc_log_lock); 3515 3516 if (resp_len) 3517 *resp_len += sizeof(struct opa_hfi1_cong_log); 3518 3519 return reply((struct ib_mad_hdr *)smp); 3520 } 3521 3522 static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3523 struct ib_device *ibdev, u8 port, 3524 u32 *resp_len) 3525 { 3526 struct ib_cc_table_attr *cc_table_attr = 3527 (struct ib_cc_table_attr *)data; 3528 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3529 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3530 u32 start_block = OPA_AM_START_BLK(am); 3531 u32 n_blocks = OPA_AM_NBLK(am); 3532 struct ib_cc_table_entry_shadow *entries; 3533 int i, j; 3534 u32 sentry, eentry; 3535 struct cc_state *cc_state; 3536 3537 /* sanity check n_blocks, start_block */ 3538 if (n_blocks == 0 || 3539 start_block + n_blocks > ppd->cc_max_table_entries) { 3540 smp->status |= IB_SMP_INVALID_FIELD; 3541 return reply((struct ib_mad_hdr *)smp); 3542 } 3543 3544 rcu_read_lock(); 3545 3546 cc_state = get_cc_state(ppd); 3547 3548 if (!cc_state) { 3549 rcu_read_unlock(); 3550 return reply((struct ib_mad_hdr *)smp); 3551 } 3552 3553 sentry = start_block * IB_CCT_ENTRIES; 3554 eentry = sentry + (IB_CCT_ENTRIES * n_blocks); 3555 3556 cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit); 3557 3558 entries = cc_state->cct.entries; 3559 3560 /* return n_blocks, though the last block may not be full */ 3561 for (j = 0, i = sentry; i < eentry; j++, i++) 3562 cc_table_attr->ccti_entries[j].entry = 3563 cpu_to_be16(entries[i].entry); 3564 3565 rcu_read_unlock(); 3566 3567 if (resp_len) 3568 *resp_len += sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1); 3569 3570 return reply((struct ib_mad_hdr *)smp); 3571 } 3572 3573 void cc_state_reclaim(struct rcu_head *rcu) 3574 { 3575 struct cc_state *cc_state = container_of(rcu, struct cc_state, rcu); 3576 3577 kfree(cc_state); 3578 } 3579 3580 static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3581 struct ib_device *ibdev, u8 port, 3582 u32 *resp_len) 3583 { 3584 struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data; 3585 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3586 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3587 u32 start_block = OPA_AM_START_BLK(am); 3588 u32 n_blocks = OPA_AM_NBLK(am); 3589 struct ib_cc_table_entry_shadow *entries; 3590 int i, j; 3591 u32 sentry, eentry; 3592 u16 ccti_limit; 3593 3594 /* sanity check n_blocks, start_block */ 3595 if (n_blocks == 0 || 3596 start_block + n_blocks > ppd->cc_max_table_entries) { 3597 smp->status |= IB_SMP_INVALID_FIELD; 3598 return reply((struct ib_mad_hdr *)smp); 3599 } 3600 3601 sentry = start_block * IB_CCT_ENTRIES; 3602 eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) + 3603 (be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1; 3604 3605 /* sanity check ccti_limit */ 3606 ccti_limit = be16_to_cpu(p->ccti_limit); 3607 if (ccti_limit + 1 > eentry) { 3608 smp->status |= IB_SMP_INVALID_FIELD; 3609 return reply((struct ib_mad_hdr *)smp); 3610 } 3611 3612 /* 3613 * Save details from packet into the ppd. Hold the cc_state_lock so 3614 * our information is consistent with anyone trying to apply the state. 3615 */ 3616 spin_lock(&ppd->cc_state_lock); 3617 ppd->total_cct_entry = ccti_limit + 1; 3618 entries = ppd->ccti_entries; 3619 for (j = 0, i = sentry; i < eentry; j++, i++) 3620 entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry); 3621 spin_unlock(&ppd->cc_state_lock); 3622 3623 /* now apply the information */ 3624 apply_cc_state(ppd); 3625 3626 return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len); 3627 } 3628 3629 struct opa_led_info { 3630 __be32 rsvd_led_mask; 3631 __be32 rsvd; 3632 }; 3633 3634 #define OPA_LED_SHIFT 31 3635 #define OPA_LED_MASK BIT(OPA_LED_SHIFT) 3636 3637 static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3638 struct ib_device *ibdev, u8 port, 3639 u32 *resp_len) 3640 { 3641 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3642 struct hfi1_pportdata *ppd = dd->pport; 3643 struct opa_led_info *p = (struct opa_led_info *)data; 3644 u32 nport = OPA_AM_NPORT(am); 3645 u32 is_beaconing_active; 3646 3647 if (nport != 1) { 3648 smp->status |= IB_SMP_INVALID_FIELD; 3649 return reply((struct ib_mad_hdr *)smp); 3650 } 3651 3652 /* 3653 * This pairs with the memory barrier in hfi1_start_led_override to 3654 * ensure that we read the correct state of LED beaconing represented 3655 * by led_override_timer_active 3656 */ 3657 smp_rmb(); 3658 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 3659 p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT); 3660 3661 if (resp_len) 3662 *resp_len += sizeof(struct opa_led_info); 3663 3664 return reply((struct ib_mad_hdr *)smp); 3665 } 3666 3667 static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3668 struct ib_device *ibdev, u8 port, 3669 u32 *resp_len) 3670 { 3671 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3672 struct opa_led_info *p = (struct opa_led_info *)data; 3673 u32 nport = OPA_AM_NPORT(am); 3674 int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK); 3675 3676 if (nport != 1) { 3677 smp->status |= IB_SMP_INVALID_FIELD; 3678 return reply((struct ib_mad_hdr *)smp); 3679 } 3680 3681 if (on) 3682 hfi1_start_led_override(dd->pport, 2000, 1500); 3683 else 3684 shutdown_led_override(dd->pport); 3685 3686 return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len); 3687 } 3688 3689 static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3690 u8 *data, struct ib_device *ibdev, u8 port, 3691 u32 *resp_len) 3692 { 3693 int ret; 3694 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3695 3696 switch (attr_id) { 3697 case IB_SMP_ATTR_NODE_DESC: 3698 ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port, 3699 resp_len); 3700 break; 3701 case IB_SMP_ATTR_NODE_INFO: 3702 ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port, 3703 resp_len); 3704 break; 3705 case IB_SMP_ATTR_PORT_INFO: 3706 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, 3707 resp_len); 3708 break; 3709 case IB_SMP_ATTR_PKEY_TABLE: 3710 ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port, 3711 resp_len); 3712 break; 3713 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3714 ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, 3715 resp_len); 3716 break; 3717 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3718 ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, 3719 resp_len); 3720 break; 3721 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3722 ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, 3723 resp_len); 3724 break; 3725 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3726 ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3727 resp_len); 3728 break; 3729 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3730 ret = __subn_get_opa_psi(smp, am, data, ibdev, port, 3731 resp_len); 3732 break; 3733 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3734 ret = __subn_get_opa_bct(smp, am, data, ibdev, port, 3735 resp_len); 3736 break; 3737 case OPA_ATTRIB_ID_CABLE_INFO: 3738 ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port, 3739 resp_len); 3740 break; 3741 case IB_SMP_ATTR_VL_ARB_TABLE: 3742 ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port, 3743 resp_len); 3744 break; 3745 case OPA_ATTRIB_ID_CONGESTION_INFO: 3746 ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port, 3747 resp_len); 3748 break; 3749 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3750 ret = __subn_get_opa_cong_setting(smp, am, data, ibdev, 3751 port, resp_len); 3752 break; 3753 case OPA_ATTRIB_ID_HFI_CONGESTION_LOG: 3754 ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev, 3755 port, resp_len); 3756 break; 3757 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3758 ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port, 3759 resp_len); 3760 break; 3761 case IB_SMP_ATTR_LED_INFO: 3762 ret = __subn_get_opa_led_info(smp, am, data, ibdev, port, 3763 resp_len); 3764 break; 3765 case IB_SMP_ATTR_SM_INFO: 3766 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3767 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3768 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3769 return IB_MAD_RESULT_SUCCESS; 3770 /* FALLTHROUGH */ 3771 default: 3772 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3773 ret = reply((struct ib_mad_hdr *)smp); 3774 break; 3775 } 3776 return ret; 3777 } 3778 3779 static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3780 u8 *data, struct ib_device *ibdev, u8 port, 3781 u32 *resp_len) 3782 { 3783 int ret; 3784 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3785 3786 switch (attr_id) { 3787 case IB_SMP_ATTR_PORT_INFO: 3788 ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port, 3789 resp_len); 3790 break; 3791 case IB_SMP_ATTR_PKEY_TABLE: 3792 ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port, 3793 resp_len); 3794 break; 3795 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3796 ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port, 3797 resp_len); 3798 break; 3799 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3800 ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port, 3801 resp_len); 3802 break; 3803 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3804 ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port, 3805 resp_len); 3806 break; 3807 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3808 ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3809 resp_len); 3810 break; 3811 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3812 ret = __subn_set_opa_psi(smp, am, data, ibdev, port, 3813 resp_len); 3814 break; 3815 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3816 ret = __subn_set_opa_bct(smp, am, data, ibdev, port, 3817 resp_len); 3818 break; 3819 case IB_SMP_ATTR_VL_ARB_TABLE: 3820 ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port, 3821 resp_len); 3822 break; 3823 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3824 ret = __subn_set_opa_cong_setting(smp, am, data, ibdev, 3825 port, resp_len); 3826 break; 3827 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3828 ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port, 3829 resp_len); 3830 break; 3831 case IB_SMP_ATTR_LED_INFO: 3832 ret = __subn_set_opa_led_info(smp, am, data, ibdev, port, 3833 resp_len); 3834 break; 3835 case IB_SMP_ATTR_SM_INFO: 3836 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3837 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3838 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3839 return IB_MAD_RESULT_SUCCESS; 3840 /* FALLTHROUGH */ 3841 default: 3842 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3843 ret = reply((struct ib_mad_hdr *)smp); 3844 break; 3845 } 3846 return ret; 3847 } 3848 3849 static inline void set_aggr_error(struct opa_aggregate *ag) 3850 { 3851 ag->err_reqlength |= cpu_to_be16(0x8000); 3852 } 3853 3854 static int subn_get_opa_aggregate(struct opa_smp *smp, 3855 struct ib_device *ibdev, u8 port, 3856 u32 *resp_len) 3857 { 3858 int i; 3859 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3860 u8 *next_smp = opa_get_smp_data(smp); 3861 3862 if (num_attr < 1 || num_attr > 117) { 3863 smp->status |= IB_SMP_INVALID_FIELD; 3864 return reply((struct ib_mad_hdr *)smp); 3865 } 3866 3867 for (i = 0; i < num_attr; i++) { 3868 struct opa_aggregate *agg; 3869 size_t agg_data_len; 3870 size_t agg_size; 3871 u32 am; 3872 3873 agg = (struct opa_aggregate *)next_smp; 3874 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3875 agg_size = sizeof(*agg) + agg_data_len; 3876 am = be32_to_cpu(agg->attr_mod); 3877 3878 *resp_len += agg_size; 3879 3880 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3881 smp->status |= IB_SMP_INVALID_FIELD; 3882 return reply((struct ib_mad_hdr *)smp); 3883 } 3884 3885 /* zero the payload for this segment */ 3886 memset(next_smp + sizeof(*agg), 0, agg_data_len); 3887 3888 (void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data, 3889 ibdev, port, NULL); 3890 if (smp->status & ~IB_SMP_DIRECTION) { 3891 set_aggr_error(agg); 3892 return reply((struct ib_mad_hdr *)smp); 3893 } 3894 next_smp += agg_size; 3895 } 3896 3897 return reply((struct ib_mad_hdr *)smp); 3898 } 3899 3900 static int subn_set_opa_aggregate(struct opa_smp *smp, 3901 struct ib_device *ibdev, u8 port, 3902 u32 *resp_len) 3903 { 3904 int i; 3905 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3906 u8 *next_smp = opa_get_smp_data(smp); 3907 3908 if (num_attr < 1 || num_attr > 117) { 3909 smp->status |= IB_SMP_INVALID_FIELD; 3910 return reply((struct ib_mad_hdr *)smp); 3911 } 3912 3913 for (i = 0; i < num_attr; i++) { 3914 struct opa_aggregate *agg; 3915 size_t agg_data_len; 3916 size_t agg_size; 3917 u32 am; 3918 3919 agg = (struct opa_aggregate *)next_smp; 3920 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3921 agg_size = sizeof(*agg) + agg_data_len; 3922 am = be32_to_cpu(agg->attr_mod); 3923 3924 *resp_len += agg_size; 3925 3926 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3927 smp->status |= IB_SMP_INVALID_FIELD; 3928 return reply((struct ib_mad_hdr *)smp); 3929 } 3930 3931 (void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data, 3932 ibdev, port, NULL); 3933 if (smp->status & ~IB_SMP_DIRECTION) { 3934 set_aggr_error(agg); 3935 return reply((struct ib_mad_hdr *)smp); 3936 } 3937 next_smp += agg_size; 3938 } 3939 3940 return reply((struct ib_mad_hdr *)smp); 3941 } 3942 3943 /* 3944 * OPAv1 specifies that, on the transition to link up, these counters 3945 * are cleared: 3946 * PortRcvErrors [*] 3947 * LinkErrorRecovery 3948 * LocalLinkIntegrityErrors 3949 * ExcessiveBufferOverruns [*] 3950 * 3951 * [*] Error info associated with these counters is retained, but the 3952 * error info status is reset to 0. 3953 */ 3954 void clear_linkup_counters(struct hfi1_devdata *dd) 3955 { 3956 /* PortRcvErrors */ 3957 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3958 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3959 /* LinkErrorRecovery */ 3960 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3961 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0); 3962 /* LocalLinkIntegrityErrors */ 3963 write_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL, 0); 3964 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3965 /* ExcessiveBufferOverruns */ 3966 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3967 dd->rcv_ovfl_cnt = 0; 3968 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3969 } 3970 3971 /* 3972 * is_local_mad() returns 1 if 'mad' is sent from, and destined to the 3973 * local node, 0 otherwise. 3974 */ 3975 static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad, 3976 const struct ib_wc *in_wc) 3977 { 3978 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3979 const struct opa_smp *smp = (const struct opa_smp *)mad; 3980 3981 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 3982 return (smp->hop_cnt == 0 && 3983 smp->route.dr.dr_slid == OPA_LID_PERMISSIVE && 3984 smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE); 3985 } 3986 3987 return (in_wc->slid == ppd->lid); 3988 } 3989 3990 /* 3991 * opa_local_smp_check() should only be called on MADs for which 3992 * is_local_mad() returns true. It applies the SMP checks that are 3993 * specific to SMPs which are sent from, and destined to this node. 3994 * opa_local_smp_check() returns 0 if the SMP passes its checks, 1 3995 * otherwise. 3996 * 3997 * SMPs which arrive from other nodes are instead checked by 3998 * opa_smp_check(). 3999 */ 4000 static int opa_local_smp_check(struct hfi1_ibport *ibp, 4001 const struct ib_wc *in_wc) 4002 { 4003 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 4004 u16 slid = in_wc->slid; 4005 u16 pkey; 4006 4007 if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys)) 4008 return 1; 4009 4010 pkey = ppd->pkeys[in_wc->pkey_index]; 4011 /* 4012 * We need to do the "node-local" checks specified in OPAv1, 4013 * rev 0.90, section 9.10.26, which are: 4014 * - pkey is 0x7fff, or 0xffff 4015 * - Source QPN == 0 || Destination QPN == 0 4016 * - the MAD header's management class is either 4017 * IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or 4018 * IB_MGMT_CLASS_SUBN_LID_ROUTED 4019 * - SLID != 0 4020 * 4021 * However, we know (and so don't need to check again) that, 4022 * for local SMPs, the MAD stack passes MADs with: 4023 * - Source QPN of 0 4024 * - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4025 * - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or 4026 * our own port's lid 4027 * 4028 */ 4029 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 4030 return 0; 4031 ingress_pkey_table_fail(ppd, pkey, slid); 4032 return 1; 4033 } 4034 4035 static int process_subn_opa(struct ib_device *ibdev, int mad_flags, 4036 u8 port, const struct opa_mad *in_mad, 4037 struct opa_mad *out_mad, 4038 u32 *resp_len) 4039 { 4040 struct opa_smp *smp = (struct opa_smp *)out_mad; 4041 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4042 u8 *data; 4043 u32 am; 4044 __be16 attr_id; 4045 int ret; 4046 4047 *out_mad = *in_mad; 4048 data = opa_get_smp_data(smp); 4049 4050 am = be32_to_cpu(smp->attr_mod); 4051 attr_id = smp->attr_id; 4052 if (smp->class_version != OPA_SMI_CLASS_VERSION) { 4053 smp->status |= IB_SMP_UNSUP_VERSION; 4054 ret = reply((struct ib_mad_hdr *)smp); 4055 return ret; 4056 } 4057 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey, 4058 smp->route.dr.dr_slid, smp->route.dr.return_path, 4059 smp->hop_cnt); 4060 if (ret) { 4061 u32 port_num = be32_to_cpu(smp->attr_mod); 4062 4063 /* 4064 * If this is a get/set portinfo, we already check the 4065 * M_Key if the MAD is for another port and the M_Key 4066 * is OK on the receiving port. This check is needed 4067 * to increment the error counters when the M_Key 4068 * fails to match on *both* ports. 4069 */ 4070 if (attr_id == IB_SMP_ATTR_PORT_INFO && 4071 (smp->method == IB_MGMT_METHOD_GET || 4072 smp->method == IB_MGMT_METHOD_SET) && 4073 port_num && port_num <= ibdev->phys_port_cnt && 4074 port != port_num) 4075 (void)check_mkey(to_iport(ibdev, port_num), 4076 (struct ib_mad_hdr *)smp, 0, 4077 smp->mkey, smp->route.dr.dr_slid, 4078 smp->route.dr.return_path, 4079 smp->hop_cnt); 4080 ret = IB_MAD_RESULT_FAILURE; 4081 return ret; 4082 } 4083 4084 *resp_len = opa_get_smp_header_size(smp); 4085 4086 switch (smp->method) { 4087 case IB_MGMT_METHOD_GET: 4088 switch (attr_id) { 4089 default: 4090 clear_opa_smp_data(smp); 4091 ret = subn_get_opa_sma(attr_id, smp, am, data, 4092 ibdev, port, resp_len); 4093 break; 4094 case OPA_ATTRIB_ID_AGGREGATE: 4095 ret = subn_get_opa_aggregate(smp, ibdev, port, 4096 resp_len); 4097 break; 4098 } 4099 break; 4100 case IB_MGMT_METHOD_SET: 4101 switch (attr_id) { 4102 default: 4103 ret = subn_set_opa_sma(attr_id, smp, am, data, 4104 ibdev, port, resp_len); 4105 break; 4106 case OPA_ATTRIB_ID_AGGREGATE: 4107 ret = subn_set_opa_aggregate(smp, ibdev, port, 4108 resp_len); 4109 break; 4110 } 4111 break; 4112 case IB_MGMT_METHOD_TRAP: 4113 case IB_MGMT_METHOD_REPORT: 4114 case IB_MGMT_METHOD_REPORT_RESP: 4115 case IB_MGMT_METHOD_GET_RESP: 4116 /* 4117 * The ib_mad module will call us to process responses 4118 * before checking for other consumers. 4119 * Just tell the caller to process it normally. 4120 */ 4121 ret = IB_MAD_RESULT_SUCCESS; 4122 break; 4123 default: 4124 smp->status |= IB_SMP_UNSUP_METHOD; 4125 ret = reply((struct ib_mad_hdr *)smp); 4126 break; 4127 } 4128 4129 return ret; 4130 } 4131 4132 static int process_subn(struct ib_device *ibdev, int mad_flags, 4133 u8 port, const struct ib_mad *in_mad, 4134 struct ib_mad *out_mad) 4135 { 4136 struct ib_smp *smp = (struct ib_smp *)out_mad; 4137 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4138 int ret; 4139 4140 *out_mad = *in_mad; 4141 if (smp->class_version != 1) { 4142 smp->status |= IB_SMP_UNSUP_VERSION; 4143 ret = reply((struct ib_mad_hdr *)smp); 4144 return ret; 4145 } 4146 4147 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, 4148 smp->mkey, (__force __be32)smp->dr_slid, 4149 smp->return_path, smp->hop_cnt); 4150 if (ret) { 4151 u32 port_num = be32_to_cpu(smp->attr_mod); 4152 4153 /* 4154 * If this is a get/set portinfo, we already check the 4155 * M_Key if the MAD is for another port and the M_Key 4156 * is OK on the receiving port. This check is needed 4157 * to increment the error counters when the M_Key 4158 * fails to match on *both* ports. 4159 */ 4160 if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO && 4161 (smp->method == IB_MGMT_METHOD_GET || 4162 smp->method == IB_MGMT_METHOD_SET) && 4163 port_num && port_num <= ibdev->phys_port_cnt && 4164 port != port_num) 4165 (void)check_mkey(to_iport(ibdev, port_num), 4166 (struct ib_mad_hdr *)smp, 0, 4167 smp->mkey, 4168 (__force __be32)smp->dr_slid, 4169 smp->return_path, smp->hop_cnt); 4170 ret = IB_MAD_RESULT_FAILURE; 4171 return ret; 4172 } 4173 4174 switch (smp->method) { 4175 case IB_MGMT_METHOD_GET: 4176 switch (smp->attr_id) { 4177 case IB_SMP_ATTR_NODE_INFO: 4178 ret = subn_get_nodeinfo(smp, ibdev, port); 4179 break; 4180 default: 4181 smp->status |= IB_SMP_UNSUP_METH_ATTR; 4182 ret = reply((struct ib_mad_hdr *)smp); 4183 break; 4184 } 4185 break; 4186 } 4187 4188 return ret; 4189 } 4190 4191 static int process_perf(struct ib_device *ibdev, u8 port, 4192 const struct ib_mad *in_mad, 4193 struct ib_mad *out_mad) 4194 { 4195 struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad; 4196 struct ib_class_port_info *cpi = (struct ib_class_port_info *) 4197 &pmp->data; 4198 int ret = IB_MAD_RESULT_FAILURE; 4199 4200 *out_mad = *in_mad; 4201 if (pmp->mad_hdr.class_version != 1) { 4202 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4203 ret = reply((struct ib_mad_hdr *)pmp); 4204 return ret; 4205 } 4206 4207 switch (pmp->mad_hdr.method) { 4208 case IB_MGMT_METHOD_GET: 4209 switch (pmp->mad_hdr.attr_id) { 4210 case IB_PMA_PORT_COUNTERS: 4211 ret = pma_get_ib_portcounters(pmp, ibdev, port); 4212 break; 4213 case IB_PMA_PORT_COUNTERS_EXT: 4214 ret = pma_get_ib_portcounters_ext(pmp, ibdev, port); 4215 break; 4216 case IB_PMA_CLASS_PORT_INFO: 4217 cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH; 4218 ret = reply((struct ib_mad_hdr *)pmp); 4219 break; 4220 default: 4221 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4222 ret = reply((struct ib_mad_hdr *)pmp); 4223 break; 4224 } 4225 break; 4226 4227 case IB_MGMT_METHOD_SET: 4228 if (pmp->mad_hdr.attr_id) { 4229 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4230 ret = reply((struct ib_mad_hdr *)pmp); 4231 } 4232 break; 4233 4234 case IB_MGMT_METHOD_TRAP: 4235 case IB_MGMT_METHOD_GET_RESP: 4236 /* 4237 * The ib_mad module will call us to process responses 4238 * before checking for other consumers. 4239 * Just tell the caller to process it normally. 4240 */ 4241 ret = IB_MAD_RESULT_SUCCESS; 4242 break; 4243 4244 default: 4245 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4246 ret = reply((struct ib_mad_hdr *)pmp); 4247 break; 4248 } 4249 4250 return ret; 4251 } 4252 4253 static int process_perf_opa(struct ib_device *ibdev, u8 port, 4254 const struct opa_mad *in_mad, 4255 struct opa_mad *out_mad, u32 *resp_len) 4256 { 4257 struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad; 4258 int ret; 4259 4260 *out_mad = *in_mad; 4261 4262 if (pmp->mad_hdr.class_version != OPA_SMI_CLASS_VERSION) { 4263 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4264 return reply((struct ib_mad_hdr *)pmp); 4265 } 4266 4267 *resp_len = sizeof(pmp->mad_hdr); 4268 4269 switch (pmp->mad_hdr.method) { 4270 case IB_MGMT_METHOD_GET: 4271 switch (pmp->mad_hdr.attr_id) { 4272 case IB_PMA_CLASS_PORT_INFO: 4273 ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len); 4274 break; 4275 case OPA_PM_ATTRIB_ID_PORT_STATUS: 4276 ret = pma_get_opa_portstatus(pmp, ibdev, port, 4277 resp_len); 4278 break; 4279 case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS: 4280 ret = pma_get_opa_datacounters(pmp, ibdev, port, 4281 resp_len); 4282 break; 4283 case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS: 4284 ret = pma_get_opa_porterrors(pmp, ibdev, port, 4285 resp_len); 4286 break; 4287 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4288 ret = pma_get_opa_errorinfo(pmp, ibdev, port, 4289 resp_len); 4290 break; 4291 default: 4292 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4293 ret = reply((struct ib_mad_hdr *)pmp); 4294 break; 4295 } 4296 break; 4297 4298 case IB_MGMT_METHOD_SET: 4299 switch (pmp->mad_hdr.attr_id) { 4300 case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS: 4301 ret = pma_set_opa_portstatus(pmp, ibdev, port, 4302 resp_len); 4303 break; 4304 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4305 ret = pma_set_opa_errorinfo(pmp, ibdev, port, 4306 resp_len); 4307 break; 4308 default: 4309 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4310 ret = reply((struct ib_mad_hdr *)pmp); 4311 break; 4312 } 4313 break; 4314 4315 case IB_MGMT_METHOD_TRAP: 4316 case IB_MGMT_METHOD_GET_RESP: 4317 /* 4318 * The ib_mad module will call us to process responses 4319 * before checking for other consumers. 4320 * Just tell the caller to process it normally. 4321 */ 4322 ret = IB_MAD_RESULT_SUCCESS; 4323 break; 4324 4325 default: 4326 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4327 ret = reply((struct ib_mad_hdr *)pmp); 4328 break; 4329 } 4330 4331 return ret; 4332 } 4333 4334 static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags, 4335 u8 port, const struct ib_wc *in_wc, 4336 const struct ib_grh *in_grh, 4337 const struct opa_mad *in_mad, 4338 struct opa_mad *out_mad, size_t *out_mad_size, 4339 u16 *out_mad_pkey_index) 4340 { 4341 int ret; 4342 int pkey_idx; 4343 u32 resp_len = 0; 4344 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4345 4346 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 4347 if (pkey_idx < 0) { 4348 pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n", 4349 hfi1_get_pkey(ibp, 1)); 4350 pkey_idx = 1; 4351 } 4352 *out_mad_pkey_index = (u16)pkey_idx; 4353 4354 switch (in_mad->mad_hdr.mgmt_class) { 4355 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4356 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4357 if (is_local_mad(ibp, in_mad, in_wc)) { 4358 ret = opa_local_smp_check(ibp, in_wc); 4359 if (ret) 4360 return IB_MAD_RESULT_FAILURE; 4361 } 4362 ret = process_subn_opa(ibdev, mad_flags, port, in_mad, 4363 out_mad, &resp_len); 4364 goto bail; 4365 case IB_MGMT_CLASS_PERF_MGMT: 4366 ret = process_perf_opa(ibdev, port, in_mad, out_mad, 4367 &resp_len); 4368 goto bail; 4369 4370 default: 4371 ret = IB_MAD_RESULT_SUCCESS; 4372 } 4373 4374 bail: 4375 if (ret & IB_MAD_RESULT_REPLY) 4376 *out_mad_size = round_up(resp_len, 8); 4377 else if (ret & IB_MAD_RESULT_SUCCESS) 4378 *out_mad_size = in_wc->byte_len - sizeof(struct ib_grh); 4379 4380 return ret; 4381 } 4382 4383 static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4384 const struct ib_wc *in_wc, 4385 const struct ib_grh *in_grh, 4386 const struct ib_mad *in_mad, 4387 struct ib_mad *out_mad) 4388 { 4389 int ret; 4390 4391 switch (in_mad->mad_hdr.mgmt_class) { 4392 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4393 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4394 ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad); 4395 break; 4396 case IB_MGMT_CLASS_PERF_MGMT: 4397 ret = process_perf(ibdev, port, in_mad, out_mad); 4398 break; 4399 default: 4400 ret = IB_MAD_RESULT_SUCCESS; 4401 break; 4402 } 4403 4404 return ret; 4405 } 4406 4407 /** 4408 * hfi1_process_mad - process an incoming MAD packet 4409 * @ibdev: the infiniband device this packet came in on 4410 * @mad_flags: MAD flags 4411 * @port: the port number this packet came in on 4412 * @in_wc: the work completion entry for this packet 4413 * @in_grh: the global route header for this packet 4414 * @in_mad: the incoming MAD 4415 * @out_mad: any outgoing MAD reply 4416 * 4417 * Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not 4418 * interested in processing. 4419 * 4420 * Note that the verbs framework has already done the MAD sanity checks, 4421 * and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4422 * MADs. 4423 * 4424 * This is called by the ib_mad module. 4425 */ 4426 int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4427 const struct ib_wc *in_wc, const struct ib_grh *in_grh, 4428 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 4429 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 4430 u16 *out_mad_pkey_index) 4431 { 4432 switch (in_mad->base_version) { 4433 case OPA_MGMT_BASE_VERSION: 4434 if (unlikely(in_mad_size != sizeof(struct opa_mad))) { 4435 dev_err(ibdev->dma_device, "invalid in_mad_size\n"); 4436 return IB_MAD_RESULT_FAILURE; 4437 } 4438 return hfi1_process_opa_mad(ibdev, mad_flags, port, 4439 in_wc, in_grh, 4440 (struct opa_mad *)in_mad, 4441 (struct opa_mad *)out_mad, 4442 out_mad_size, 4443 out_mad_pkey_index); 4444 case IB_MGMT_BASE_VERSION: 4445 return hfi1_process_ib_mad(ibdev, mad_flags, port, 4446 in_wc, in_grh, 4447 (const struct ib_mad *)in_mad, 4448 (struct ib_mad *)out_mad); 4449 default: 4450 break; 4451 } 4452 4453 return IB_MAD_RESULT_FAILURE; 4454 } 4455