1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/net.h> 49 #define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \ 50 / (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16))) 51 52 #include "hfi.h" 53 #include "mad.h" 54 #include "trace.h" 55 #include "qp.h" 56 57 /* the reset value from the FM is supposed to be 0xffff, handle both */ 58 #define OPA_LINK_WIDTH_RESET_OLD 0x0fff 59 #define OPA_LINK_WIDTH_RESET 0xffff 60 61 static int reply(struct ib_mad_hdr *smp) 62 { 63 /* 64 * The verbs framework will handle the directed/LID route 65 * packet changes. 66 */ 67 smp->method = IB_MGMT_METHOD_GET_RESP; 68 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) 69 smp->status |= IB_SMP_DIRECTION; 70 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY; 71 } 72 73 static inline void clear_opa_smp_data(struct opa_smp *smp) 74 { 75 void *data = opa_get_smp_data(smp); 76 size_t size = opa_get_smp_data_size(smp); 77 78 memset(data, 0, size); 79 } 80 81 static void send_trap(struct hfi1_ibport *ibp, void *data, unsigned len) 82 { 83 struct ib_mad_send_buf *send_buf; 84 struct ib_mad_agent *agent; 85 struct opa_smp *smp; 86 int ret; 87 unsigned long flags; 88 unsigned long timeout; 89 int pkey_idx; 90 u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp; 91 92 agent = ibp->rvp.send_agent; 93 if (!agent) 94 return; 95 96 /* o14-3.2.1 */ 97 if (ppd_from_ibp(ibp)->lstate != IB_PORT_ACTIVE) 98 return; 99 100 /* o14-2 */ 101 if (ibp->rvp.trap_timeout && time_before(jiffies, 102 ibp->rvp.trap_timeout)) 103 return; 104 105 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 106 if (pkey_idx < 0) { 107 pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n", 108 __func__, hfi1_get_pkey(ibp, 1)); 109 pkey_idx = 1; 110 } 111 112 send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0, 113 IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, 114 GFP_ATOMIC, IB_MGMT_BASE_VERSION); 115 if (IS_ERR(send_buf)) 116 return; 117 118 smp = send_buf->mad; 119 smp->base_version = OPA_MGMT_BASE_VERSION; 120 smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED; 121 smp->class_version = OPA_SMI_CLASS_VERSION; 122 smp->method = IB_MGMT_METHOD_TRAP; 123 ibp->rvp.tid++; 124 smp->tid = cpu_to_be64(ibp->rvp.tid); 125 smp->attr_id = IB_SMP_ATTR_NOTICE; 126 /* o14-1: smp->mkey = 0; */ 127 memcpy(smp->route.lid.data, data, len); 128 129 spin_lock_irqsave(&ibp->rvp.lock, flags); 130 if (!ibp->rvp.sm_ah) { 131 if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) { 132 struct ib_ah *ah; 133 134 ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid); 135 if (IS_ERR(ah)) { 136 ret = PTR_ERR(ah); 137 } else { 138 send_buf->ah = ah; 139 ibp->rvp.sm_ah = ibah_to_rvtah(ah); 140 ret = 0; 141 } 142 } else { 143 ret = -EINVAL; 144 } 145 } else { 146 send_buf->ah = &ibp->rvp.sm_ah->ibah; 147 ret = 0; 148 } 149 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 150 151 if (!ret) 152 ret = ib_post_send_mad(send_buf, NULL); 153 if (!ret) { 154 /* 4.096 usec. */ 155 timeout = (4096 * (1UL << ibp->rvp.subnet_timeout)) / 1000; 156 ibp->rvp.trap_timeout = jiffies + usecs_to_jiffies(timeout); 157 } else { 158 ib_free_send_mad(send_buf); 159 ibp->rvp.trap_timeout = 0; 160 } 161 } 162 163 /* 164 * Send a bad [PQ]_Key trap (ch. 14.3.8). 165 */ 166 void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl, 167 u32 qp1, u32 qp2, u16 lid1, u16 lid2) 168 { 169 struct opa_mad_notice_attr data; 170 u32 lid = ppd_from_ibp(ibp)->lid; 171 u32 _lid1 = lid1; 172 u32 _lid2 = lid2; 173 174 memset(&data, 0, sizeof(data)); 175 176 if (trap_num == OPA_TRAP_BAD_P_KEY) 177 ibp->rvp.pkey_violations++; 178 else 179 ibp->rvp.qkey_violations++; 180 ibp->rvp.n_pkt_drops++; 181 182 /* Send violation trap */ 183 data.generic_type = IB_NOTICE_TYPE_SECURITY; 184 data.prod_type_lsb = IB_NOTICE_PROD_CA; 185 data.trap_num = trap_num; 186 data.issuer_lid = cpu_to_be32(lid); 187 data.ntc_257_258.lid1 = cpu_to_be32(_lid1); 188 data.ntc_257_258.lid2 = cpu_to_be32(_lid2); 189 data.ntc_257_258.key = cpu_to_be32(key); 190 data.ntc_257_258.sl = sl << 3; 191 data.ntc_257_258.qp1 = cpu_to_be32(qp1); 192 data.ntc_257_258.qp2 = cpu_to_be32(qp2); 193 194 send_trap(ibp, &data, sizeof(data)); 195 } 196 197 /* 198 * Send a bad M_Key trap (ch. 14.3.9). 199 */ 200 static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 201 __be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt) 202 { 203 struct opa_mad_notice_attr data; 204 u32 lid = ppd_from_ibp(ibp)->lid; 205 206 memset(&data, 0, sizeof(data)); 207 /* Send violation trap */ 208 data.generic_type = IB_NOTICE_TYPE_SECURITY; 209 data.prod_type_lsb = IB_NOTICE_PROD_CA; 210 data.trap_num = OPA_TRAP_BAD_M_KEY; 211 data.issuer_lid = cpu_to_be32(lid); 212 data.ntc_256.lid = data.issuer_lid; 213 data.ntc_256.method = mad->method; 214 data.ntc_256.attr_id = mad->attr_id; 215 data.ntc_256.attr_mod = mad->attr_mod; 216 data.ntc_256.mkey = mkey; 217 if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 218 data.ntc_256.dr_slid = dr_slid; 219 data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE; 220 if (hop_cnt > ARRAY_SIZE(data.ntc_256.dr_rtn_path)) { 221 data.ntc_256.dr_trunc_hop |= 222 IB_NOTICE_TRAP_DR_TRUNC; 223 hop_cnt = ARRAY_SIZE(data.ntc_256.dr_rtn_path); 224 } 225 data.ntc_256.dr_trunc_hop |= hop_cnt; 226 memcpy(data.ntc_256.dr_rtn_path, return_path, 227 hop_cnt); 228 } 229 230 send_trap(ibp, &data, sizeof(data)); 231 } 232 233 /* 234 * Send a Port Capability Mask Changed trap (ch. 14.3.11). 235 */ 236 void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num) 237 { 238 struct opa_mad_notice_attr data; 239 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 240 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 241 struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data; 242 u32 lid = ppd_from_ibp(ibp)->lid; 243 244 memset(&data, 0, sizeof(data)); 245 246 data.generic_type = IB_NOTICE_TYPE_INFO; 247 data.prod_type_lsb = IB_NOTICE_PROD_CA; 248 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 249 data.issuer_lid = cpu_to_be32(lid); 250 data.ntc_144.lid = data.issuer_lid; 251 data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 252 253 send_trap(ibp, &data, sizeof(data)); 254 } 255 256 /* 257 * Send a System Image GUID Changed trap (ch. 14.3.12). 258 */ 259 void hfi1_sys_guid_chg(struct hfi1_ibport *ibp) 260 { 261 struct opa_mad_notice_attr data; 262 u32 lid = ppd_from_ibp(ibp)->lid; 263 264 memset(&data, 0, sizeof(data)); 265 266 data.generic_type = IB_NOTICE_TYPE_INFO; 267 data.prod_type_lsb = IB_NOTICE_PROD_CA; 268 data.trap_num = OPA_TRAP_CHANGE_SYSGUID; 269 data.issuer_lid = cpu_to_be32(lid); 270 data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid; 271 data.ntc_145.lid = data.issuer_lid; 272 273 send_trap(ibp, &data, sizeof(data)); 274 } 275 276 /* 277 * Send a Node Description Changed trap (ch. 14.3.13). 278 */ 279 void hfi1_node_desc_chg(struct hfi1_ibport *ibp) 280 { 281 struct opa_mad_notice_attr data; 282 u32 lid = ppd_from_ibp(ibp)->lid; 283 284 memset(&data, 0, sizeof(data)); 285 286 data.generic_type = IB_NOTICE_TYPE_INFO; 287 data.prod_type_lsb = IB_NOTICE_PROD_CA; 288 data.trap_num = OPA_TRAP_CHANGE_CAPABILITY; 289 data.issuer_lid = cpu_to_be32(lid); 290 data.ntc_144.lid = data.issuer_lid; 291 data.ntc_144.change_flags = 292 cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG); 293 294 send_trap(ibp, &data, sizeof(data)); 295 } 296 297 static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am, 298 u8 *data, struct ib_device *ibdev, 299 u8 port, u32 *resp_len) 300 { 301 struct opa_node_description *nd; 302 303 if (am) { 304 smp->status |= IB_SMP_INVALID_FIELD; 305 return reply((struct ib_mad_hdr *)smp); 306 } 307 308 nd = (struct opa_node_description *)data; 309 310 memcpy(nd->data, ibdev->node_desc, sizeof(nd->data)); 311 312 if (resp_len) 313 *resp_len += sizeof(*nd); 314 315 return reply((struct ib_mad_hdr *)smp); 316 } 317 318 static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data, 319 struct ib_device *ibdev, u8 port, 320 u32 *resp_len) 321 { 322 struct opa_node_info *ni; 323 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 324 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 325 326 ni = (struct opa_node_info *)data; 327 328 /* GUID 0 is illegal */ 329 if (am || pidx >= dd->num_pports || dd->pport[pidx].guid == 0) { 330 smp->status |= IB_SMP_INVALID_FIELD; 331 return reply((struct ib_mad_hdr *)smp); 332 } 333 334 ni->port_guid = cpu_to_be64(dd->pport[pidx].guid); 335 ni->base_version = OPA_MGMT_BASE_VERSION; 336 ni->class_version = OPA_SMI_CLASS_VERSION; 337 ni->node_type = 1; /* channel adapter */ 338 ni->num_ports = ibdev->phys_port_cnt; 339 /* This is already in network order */ 340 ni->system_image_guid = ib_hfi1_sys_image_guid; 341 /* Use first-port GUID as node */ 342 ni->node_guid = cpu_to_be64(dd->pport->guid); 343 ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 344 ni->device_id = cpu_to_be16(dd->pcidev->device); 345 ni->revision = cpu_to_be32(dd->minrev); 346 ni->local_port_num = port; 347 ni->vendor_id[0] = dd->oui1; 348 ni->vendor_id[1] = dd->oui2; 349 ni->vendor_id[2] = dd->oui3; 350 351 if (resp_len) 352 *resp_len += sizeof(*ni); 353 354 return reply((struct ib_mad_hdr *)smp); 355 } 356 357 static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev, 358 u8 port) 359 { 360 struct ib_node_info *nip = (struct ib_node_info *)&smp->data; 361 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 362 unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ 363 364 /* GUID 0 is illegal */ 365 if (smp->attr_mod || pidx >= dd->num_pports || 366 dd->pport[pidx].guid == 0) 367 smp->status |= IB_SMP_INVALID_FIELD; 368 else 369 nip->port_guid = cpu_to_be64(dd->pport[pidx].guid); 370 371 nip->base_version = OPA_MGMT_BASE_VERSION; 372 nip->class_version = OPA_SMI_CLASS_VERSION; 373 nip->node_type = 1; /* channel adapter */ 374 nip->num_ports = ibdev->phys_port_cnt; 375 /* This is already in network order */ 376 nip->sys_guid = ib_hfi1_sys_image_guid; 377 /* Use first-port GUID as node */ 378 nip->node_guid = cpu_to_be64(dd->pport->guid); 379 nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); 380 nip->device_id = cpu_to_be16(dd->pcidev->device); 381 nip->revision = cpu_to_be32(dd->minrev); 382 nip->local_port_num = port; 383 nip->vendor_id[0] = dd->oui1; 384 nip->vendor_id[1] = dd->oui2; 385 nip->vendor_id[2] = dd->oui3; 386 387 return reply((struct ib_mad_hdr *)smp); 388 } 389 390 static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w) 391 { 392 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w); 393 } 394 395 static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w) 396 { 397 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w); 398 } 399 400 static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s) 401 { 402 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s); 403 } 404 405 static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, 406 int mad_flags, __be64 mkey, __be32 dr_slid, 407 u8 return_path[], u8 hop_cnt) 408 { 409 int valid_mkey = 0; 410 int ret = 0; 411 412 /* Is the mkey in the process of expiring? */ 413 if (ibp->rvp.mkey_lease_timeout && 414 time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) { 415 /* Clear timeout and mkey protection field. */ 416 ibp->rvp.mkey_lease_timeout = 0; 417 ibp->rvp.mkeyprot = 0; 418 } 419 420 if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 || 421 ibp->rvp.mkey == mkey) 422 valid_mkey = 1; 423 424 /* Unset lease timeout on any valid Get/Set/TrapRepress */ 425 if (valid_mkey && ibp->rvp.mkey_lease_timeout && 426 (mad->method == IB_MGMT_METHOD_GET || 427 mad->method == IB_MGMT_METHOD_SET || 428 mad->method == IB_MGMT_METHOD_TRAP_REPRESS)) 429 ibp->rvp.mkey_lease_timeout = 0; 430 431 if (!valid_mkey) { 432 switch (mad->method) { 433 case IB_MGMT_METHOD_GET: 434 /* Bad mkey not a violation below level 2 */ 435 if (ibp->rvp.mkeyprot < 2) 436 break; 437 case IB_MGMT_METHOD_SET: 438 case IB_MGMT_METHOD_TRAP_REPRESS: 439 if (ibp->rvp.mkey_violations != 0xFFFF) 440 ++ibp->rvp.mkey_violations; 441 if (!ibp->rvp.mkey_lease_timeout && 442 ibp->rvp.mkey_lease_period) 443 ibp->rvp.mkey_lease_timeout = jiffies + 444 ibp->rvp.mkey_lease_period * HZ; 445 /* Generate a trap notice. */ 446 bad_mkey(ibp, mad, mkey, dr_slid, return_path, 447 hop_cnt); 448 ret = 1; 449 } 450 } 451 452 return ret; 453 } 454 455 /* 456 * The SMA caches reads from LCB registers in case the LCB is unavailable. 457 * (The LCB is unavailable in certain link states, for example.) 458 */ 459 struct lcb_datum { 460 u32 off; 461 u64 val; 462 }; 463 464 static struct lcb_datum lcb_cache[] = { 465 { DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 }, 466 }; 467 468 static int write_lcb_cache(u32 off, u64 val) 469 { 470 int i; 471 472 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 473 if (lcb_cache[i].off == off) { 474 lcb_cache[i].val = val; 475 return 0; 476 } 477 } 478 479 pr_warn("%s bad offset 0x%x\n", __func__, off); 480 return -1; 481 } 482 483 static int read_lcb_cache(u32 off, u64 *val) 484 { 485 int i; 486 487 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 488 if (lcb_cache[i].off == off) { 489 *val = lcb_cache[i].val; 490 return 0; 491 } 492 } 493 494 pr_warn("%s bad offset 0x%x\n", __func__, off); 495 return -1; 496 } 497 498 void read_ltp_rtt(struct hfi1_devdata *dd) 499 { 500 u64 reg; 501 502 if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, ®)) 503 dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__); 504 else 505 write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg); 506 } 507 508 static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 509 struct ib_device *ibdev, u8 port, 510 u32 *resp_len) 511 { 512 int i; 513 struct hfi1_devdata *dd; 514 struct hfi1_pportdata *ppd; 515 struct hfi1_ibport *ibp; 516 struct opa_port_info *pi = (struct opa_port_info *)data; 517 u8 mtu; 518 u8 credit_rate; 519 u8 is_beaconing_active; 520 u32 state; 521 u32 num_ports = OPA_AM_NPORT(am); 522 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 523 u32 buffer_units; 524 u64 tmp = 0; 525 526 if (num_ports != 1) { 527 smp->status |= IB_SMP_INVALID_FIELD; 528 return reply((struct ib_mad_hdr *)smp); 529 } 530 531 dd = dd_from_ibdev(ibdev); 532 /* IB numbers ports from 1, hw from 0 */ 533 ppd = dd->pport + (port - 1); 534 ibp = &ppd->ibport_data; 535 536 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 537 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 538 smp->status |= IB_SMP_INVALID_FIELD; 539 return reply((struct ib_mad_hdr *)smp); 540 } 541 542 pi->lid = cpu_to_be32(ppd->lid); 543 544 /* Only return the mkey if the protection field allows it. */ 545 if (!(smp->method == IB_MGMT_METHOD_GET && 546 ibp->rvp.mkey != smp->mkey && 547 ibp->rvp.mkeyprot == 1)) 548 pi->mkey = ibp->rvp.mkey; 549 550 pi->subnet_prefix = ibp->rvp.gid_prefix; 551 pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid); 552 pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); 553 pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period); 554 pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp); 555 pi->sa_qp = cpu_to_be32(ppd->sa_qp); 556 557 pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled); 558 pi->link_width.supported = cpu_to_be16(ppd->link_width_supported); 559 pi->link_width.active = cpu_to_be16(ppd->link_width_active); 560 561 pi->link_width_downgrade.supported = 562 cpu_to_be16(ppd->link_width_downgrade_supported); 563 pi->link_width_downgrade.enabled = 564 cpu_to_be16(ppd->link_width_downgrade_enabled); 565 pi->link_width_downgrade.tx_active = 566 cpu_to_be16(ppd->link_width_downgrade_tx_active); 567 pi->link_width_downgrade.rx_active = 568 cpu_to_be16(ppd->link_width_downgrade_rx_active); 569 570 pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported); 571 pi->link_speed.active = cpu_to_be16(ppd->link_speed_active); 572 pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled); 573 574 state = driver_lstate(ppd); 575 576 if (start_of_sm_config && (state == IB_PORT_INIT)) 577 ppd->is_sm_config_started = 1; 578 579 pi->port_phys_conf = (ppd->port_type & 0xf); 580 581 #if PI_LED_ENABLE_SUP 582 pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 583 pi->port_states.ledenable_offlinereason |= 584 ppd->is_sm_config_started << 5; 585 /* 586 * This pairs with the memory barrier in hfi1_start_led_override to 587 * ensure that we read the correct state of LED beaconing represented 588 * by led_override_timer_active 589 */ 590 smp_rmb(); 591 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 592 pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6; 593 pi->port_states.ledenable_offlinereason |= 594 ppd->offline_disabled_reason; 595 #else 596 pi->port_states.offline_reason = ppd->neighbor_normal << 4; 597 pi->port_states.offline_reason |= ppd->is_sm_config_started << 5; 598 pi->port_states.offline_reason |= ppd->offline_disabled_reason; 599 #endif /* PI_LED_ENABLE_SUP */ 600 601 pi->port_states.portphysstate_portstate = 602 (hfi1_ibphys_portstate(ppd) << 4) | state; 603 604 pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc; 605 606 memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu)); 607 for (i = 0; i < ppd->vls_supported; i++) { 608 mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU); 609 if ((i % 2) == 0) 610 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4); 611 else 612 pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu; 613 } 614 /* don't forget VL 15 */ 615 mtu = mtu_to_enum(dd->vld[15].mtu, 2048); 616 pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu; 617 pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL; 618 pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS); 619 pi->partenforce_filterraw |= 620 (ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON); 621 if (ppd->part_enforce & HFI1_PART_ENFORCE_IN) 622 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN; 623 if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT) 624 pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT; 625 pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations); 626 /* P_KeyViolations are counted by hardware. */ 627 pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations); 628 pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations); 629 630 pi->vl.cap = ppd->vls_supported; 631 pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit); 632 pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP); 633 pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP); 634 635 pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout; 636 637 pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 | 638 OPA_PORT_LINK_MODE_OPA << 5 | 639 OPA_PORT_LINK_MODE_OPA); 640 641 pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode); 642 643 pi->port_mode = cpu_to_be16( 644 ppd->is_active_optimize_enabled ? 645 OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0); 646 647 pi->port_packet_format.supported = 648 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 649 pi->port_packet_format.enabled = 650 cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B); 651 652 /* flit_control.interleave is (OPA V1, version .76): 653 * bits use 654 * ---- --- 655 * 2 res 656 * 2 DistanceSupported 657 * 2 DistanceEnabled 658 * 5 MaxNextLevelTxEnabled 659 * 5 MaxNestLevelRxSupported 660 * 661 * HFI supports only "distance mode 1" (see OPA V1, version .76, 662 * section 9.6.2), so set DistanceSupported, DistanceEnabled 663 * to 0x1. 664 */ 665 pi->flit_control.interleave = cpu_to_be16(0x1400); 666 667 pi->link_down_reason = ppd->local_link_down_reason.sma; 668 pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma; 669 pi->port_error_action = cpu_to_be32(ppd->port_error_action); 670 pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096); 671 672 /* 32.768 usec. response time (guessing) */ 673 pi->resptimevalue = 3; 674 675 pi->local_port_num = port; 676 677 /* buffer info for FM */ 678 pi->overall_buffer_space = cpu_to_be16(dd->link_credits); 679 680 pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid); 681 pi->neigh_port_num = ppd->neighbor_port_number; 682 pi->port_neigh_mode = 683 (ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) | 684 (ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) | 685 (ppd->neighbor_fm_security ? 686 OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0); 687 688 /* HFIs shall always return VL15 credits to their 689 * neighbor in a timely manner, without any credit return pacing. 690 */ 691 credit_rate = 0; 692 buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC; 693 buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK; 694 buffer_units |= (credit_rate << 6) & 695 OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE; 696 buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT; 697 pi->buffer_units = cpu_to_be32(buffer_units); 698 699 pi->opa_cap_mask = cpu_to_be16(OPA_CAP_MASK3_IsSharedSpaceSupported); 700 701 /* HFI supports a replay buffer 128 LTPs in size */ 702 pi->replay_depth.buffer = 0x80; 703 /* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 704 read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp); 705 706 /* 707 * this counter is 16 bits wide, but the replay_depth.wire 708 * variable is only 8 bits 709 */ 710 if (tmp > 0xff) 711 tmp = 0xff; 712 pi->replay_depth.wire = tmp; 713 714 if (resp_len) 715 *resp_len += sizeof(struct opa_port_info); 716 717 return reply((struct ib_mad_hdr *)smp); 718 } 719 720 /** 721 * get_pkeys - return the PKEY table 722 * @dd: the hfi1_ib device 723 * @port: the IB port number 724 * @pkeys: the pkey table is placed here 725 */ 726 static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 727 { 728 struct hfi1_pportdata *ppd = dd->pport + port - 1; 729 730 memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys)); 731 732 return 0; 733 } 734 735 static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 736 struct ib_device *ibdev, u8 port, 737 u32 *resp_len) 738 { 739 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 740 u32 n_blocks_req = OPA_AM_NBLK(am); 741 u32 start_block = am & 0x7ff; 742 __be16 *p; 743 u16 *q; 744 int i; 745 u16 n_blocks_avail; 746 unsigned npkeys = hfi1_get_npkeys(dd); 747 size_t size; 748 749 if (n_blocks_req == 0) { 750 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 751 port, start_block, n_blocks_req); 752 smp->status |= IB_SMP_INVALID_FIELD; 753 return reply((struct ib_mad_hdr *)smp); 754 } 755 756 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 757 758 size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16); 759 760 if (start_block + n_blocks_req > n_blocks_avail || 761 n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 762 pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; " 763 "avail 0x%x; blk/smp 0x%lx\n", 764 start_block, n_blocks_req, n_blocks_avail, 765 OPA_NUM_PKEY_BLOCKS_PER_SMP); 766 smp->status |= IB_SMP_INVALID_FIELD; 767 return reply((struct ib_mad_hdr *)smp); 768 } 769 770 p = (__be16 *)data; 771 q = (u16 *)data; 772 /* get the real pkeys if we are requesting the first block */ 773 if (start_block == 0) { 774 get_pkeys(dd, port, q); 775 for (i = 0; i < npkeys; i++) 776 p[i] = cpu_to_be16(q[i]); 777 if (resp_len) 778 *resp_len += size; 779 } else { 780 smp->status |= IB_SMP_INVALID_FIELD; 781 } 782 return reply((struct ib_mad_hdr *)smp); 783 } 784 785 enum { 786 HFI_TRANSITION_DISALLOWED, 787 HFI_TRANSITION_IGNORED, 788 HFI_TRANSITION_ALLOWED, 789 HFI_TRANSITION_UNDEFINED, 790 }; 791 792 /* 793 * Use shortened names to improve readability of 794 * {logical,physical}_state_transitions 795 */ 796 enum { 797 __D = HFI_TRANSITION_DISALLOWED, 798 __I = HFI_TRANSITION_IGNORED, 799 __A = HFI_TRANSITION_ALLOWED, 800 __U = HFI_TRANSITION_UNDEFINED, 801 }; 802 803 /* 804 * IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are 805 * represented in physical_state_transitions. 806 */ 807 #define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1) 808 809 /* 810 * Within physical_state_transitions, rows represent "old" states, 811 * columns "new" states, and physical_state_transitions.allowed[old][new] 812 * indicates if the transition from old state to new state is legal (see 813 * OPAg1v1, Table 6-4). 814 */ 815 static const struct { 816 u8 allowed[__N_PHYSTATES][__N_PHYSTATES]; 817 } physical_state_transitions = { 818 { 819 /* 2 3 4 5 6 7 8 9 10 11 */ 820 /* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D }, 821 /* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A }, 822 /* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 823 /* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D }, 824 /* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 825 /* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D }, 826 /* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 827 /* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D }, 828 /*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, 829 /*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I }, 830 } 831 }; 832 833 /* 834 * IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented 835 * logical_state_transitions 836 */ 837 838 #define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1) 839 840 /* 841 * Within logical_state_transitions rows represent "old" states, 842 * columns "new" states, and logical_state_transitions.allowed[old][new] 843 * indicates if the transition from old state to new state is legal (see 844 * OPAg1v1, Table 9-12). 845 */ 846 static const struct { 847 u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES]; 848 } logical_state_transitions = { 849 { 850 /* 1 2 3 4 5 */ 851 /* 1 */ { __I, __D, __D, __D, __U}, 852 /* 2 */ { __D, __I, __A, __D, __U}, 853 /* 3 */ { __D, __D, __I, __A, __U}, 854 /* 4 */ { __D, __D, __I, __I, __U}, 855 /* 5 */ { __U, __U, __U, __U, __U}, 856 } 857 }; 858 859 static int logical_transition_allowed(int old, int new) 860 { 861 if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER || 862 new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) { 863 pr_warn("invalid logical state(s) (old %d new %d)\n", 864 old, new); 865 return HFI_TRANSITION_UNDEFINED; 866 } 867 868 if (new == IB_PORT_NOP) 869 return HFI_TRANSITION_ALLOWED; /* always allowed */ 870 871 /* adjust states for indexing into logical_state_transitions */ 872 old -= IB_PORT_DOWN; 873 new -= IB_PORT_DOWN; 874 875 if (old < 0 || new < 0) 876 return HFI_TRANSITION_UNDEFINED; 877 return logical_state_transitions.allowed[old][new]; 878 } 879 880 static int physical_transition_allowed(int old, int new) 881 { 882 if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX || 883 new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) { 884 pr_warn("invalid physical state(s) (old %d new %d)\n", 885 old, new); 886 return HFI_TRANSITION_UNDEFINED; 887 } 888 889 if (new == IB_PORTPHYSSTATE_NOP) 890 return HFI_TRANSITION_ALLOWED; /* always allowed */ 891 892 /* adjust states for indexing into physical_state_transitions */ 893 old -= IB_PORTPHYSSTATE_POLLING; 894 new -= IB_PORTPHYSSTATE_POLLING; 895 896 if (old < 0 || new < 0) 897 return HFI_TRANSITION_UNDEFINED; 898 return physical_state_transitions.allowed[old][new]; 899 } 900 901 static int port_states_transition_allowed(struct hfi1_pportdata *ppd, 902 u32 logical_new, u32 physical_new) 903 { 904 u32 physical_old = driver_physical_state(ppd); 905 u32 logical_old = driver_logical_state(ppd); 906 int ret, logical_allowed, physical_allowed; 907 908 ret = logical_transition_allowed(logical_old, logical_new); 909 logical_allowed = ret; 910 911 if (ret == HFI_TRANSITION_DISALLOWED || 912 ret == HFI_TRANSITION_UNDEFINED) { 913 pr_warn("invalid logical state transition %s -> %s\n", 914 opa_lstate_name(logical_old), 915 opa_lstate_name(logical_new)); 916 return ret; 917 } 918 919 ret = physical_transition_allowed(physical_old, physical_new); 920 physical_allowed = ret; 921 922 if (ret == HFI_TRANSITION_DISALLOWED || 923 ret == HFI_TRANSITION_UNDEFINED) { 924 pr_warn("invalid physical state transition %s -> %s\n", 925 opa_pstate_name(physical_old), 926 opa_pstate_name(physical_new)); 927 return ret; 928 } 929 930 if (logical_allowed == HFI_TRANSITION_IGNORED && 931 physical_allowed == HFI_TRANSITION_IGNORED) 932 return HFI_TRANSITION_IGNORED; 933 934 /* 935 * A change request of Physical Port State from 936 * 'Offline' to 'Polling' should be ignored. 937 */ 938 if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) && 939 (physical_new == IB_PORTPHYSSTATE_POLLING)) 940 return HFI_TRANSITION_IGNORED; 941 942 /* 943 * Either physical_allowed or logical_allowed is 944 * HFI_TRANSITION_ALLOWED. 945 */ 946 return HFI_TRANSITION_ALLOWED; 947 } 948 949 static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp, 950 u32 logical_state, u32 phys_state, 951 int suppress_idle_sma) 952 { 953 struct hfi1_devdata *dd = ppd->dd; 954 u32 link_state; 955 int ret; 956 957 ret = port_states_transition_allowed(ppd, logical_state, phys_state); 958 if (ret == HFI_TRANSITION_DISALLOWED || 959 ret == HFI_TRANSITION_UNDEFINED) { 960 /* error message emitted above */ 961 smp->status |= IB_SMP_INVALID_FIELD; 962 return 0; 963 } 964 965 if (ret == HFI_TRANSITION_IGNORED) 966 return 0; 967 968 if ((phys_state != IB_PORTPHYSSTATE_NOP) && 969 !(logical_state == IB_PORT_DOWN || 970 logical_state == IB_PORT_NOP)){ 971 pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n", 972 logical_state, phys_state); 973 smp->status |= IB_SMP_INVALID_FIELD; 974 } 975 976 /* 977 * Logical state changes are summarized in OPAv1g1 spec., 978 * Table 9-12; physical state changes are summarized in 979 * OPAv1g1 spec., Table 6.4. 980 */ 981 switch (logical_state) { 982 case IB_PORT_NOP: 983 if (phys_state == IB_PORTPHYSSTATE_NOP) 984 break; 985 /* FALLTHROUGH */ 986 case IB_PORT_DOWN: 987 if (phys_state == IB_PORTPHYSSTATE_NOP) { 988 link_state = HLS_DN_DOWNDEF; 989 } else if (phys_state == IB_PORTPHYSSTATE_POLLING) { 990 link_state = HLS_DN_POLL; 991 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE, 992 0, OPA_LINKDOWN_REASON_FM_BOUNCE); 993 } else if (phys_state == IB_PORTPHYSSTATE_DISABLED) { 994 link_state = HLS_DN_DISABLE; 995 } else { 996 pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n", 997 phys_state); 998 smp->status |= IB_SMP_INVALID_FIELD; 999 break; 1000 } 1001 1002 if ((link_state == HLS_DN_POLL || 1003 link_state == HLS_DN_DOWNDEF)) { 1004 /* 1005 * Going to poll. No matter what the current state, 1006 * always move offline first, then tune and start the 1007 * link. This correctly handles a FM link bounce and 1008 * a link enable. Going offline is a no-op if already 1009 * offline. 1010 */ 1011 set_link_state(ppd, HLS_DN_OFFLINE); 1012 tune_serdes(ppd); 1013 start_link(ppd); 1014 } else { 1015 set_link_state(ppd, link_state); 1016 } 1017 if (link_state == HLS_DN_DISABLE && 1018 (ppd->offline_disabled_reason > 1019 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) || 1020 ppd->offline_disabled_reason == 1021 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 1022 ppd->offline_disabled_reason = 1023 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 1024 /* 1025 * Don't send a reply if the response would be sent 1026 * through the disabled port. 1027 */ 1028 if (link_state == HLS_DN_DISABLE && smp->hop_cnt) 1029 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 1030 break; 1031 case IB_PORT_ARMED: 1032 ret = set_link_state(ppd, HLS_UP_ARMED); 1033 if ((ret == 0) && (suppress_idle_sma == 0)) 1034 send_idle_sma(dd, SMA_IDLE_ARM); 1035 break; 1036 case IB_PORT_ACTIVE: 1037 if (ppd->neighbor_normal) { 1038 ret = set_link_state(ppd, HLS_UP_ACTIVE); 1039 if (ret == 0) 1040 send_idle_sma(dd, SMA_IDLE_ACTIVE); 1041 } else { 1042 pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n"); 1043 smp->status |= IB_SMP_INVALID_FIELD; 1044 } 1045 break; 1046 default: 1047 pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n", 1048 logical_state); 1049 smp->status |= IB_SMP_INVALID_FIELD; 1050 } 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * subn_set_opa_portinfo - set port information 1057 * @smp: the incoming SM packet 1058 * @ibdev: the infiniband device 1059 * @port: the port on the device 1060 * 1061 */ 1062 static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, 1063 struct ib_device *ibdev, u8 port, 1064 u32 *resp_len) 1065 { 1066 struct opa_port_info *pi = (struct opa_port_info *)data; 1067 struct ib_event event; 1068 struct hfi1_devdata *dd; 1069 struct hfi1_pportdata *ppd; 1070 struct hfi1_ibport *ibp; 1071 u8 clientrereg; 1072 unsigned long flags; 1073 u32 smlid, opa_lid; /* tmp vars to hold LID values */ 1074 u16 lid; 1075 u8 ls_old, ls_new, ps_new; 1076 u8 vls; 1077 u8 msl; 1078 u8 crc_enabled; 1079 u16 lse, lwe, mtu; 1080 u32 num_ports = OPA_AM_NPORT(am); 1081 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1082 int ret, i, invalid = 0, call_set_mtu = 0; 1083 int call_link_downgrade_policy = 0; 1084 1085 if (num_ports != 1) { 1086 smp->status |= IB_SMP_INVALID_FIELD; 1087 return reply((struct ib_mad_hdr *)smp); 1088 } 1089 1090 opa_lid = be32_to_cpu(pi->lid); 1091 if (opa_lid & 0xFFFF0000) { 1092 pr_warn("OPA_PortInfo lid out of range: %X\n", opa_lid); 1093 smp->status |= IB_SMP_INVALID_FIELD; 1094 goto get_only; 1095 } 1096 1097 lid = (u16)(opa_lid & 0x0000FFFF); 1098 1099 smlid = be32_to_cpu(pi->sm_lid); 1100 if (smlid & 0xFFFF0000) { 1101 pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid); 1102 smp->status |= IB_SMP_INVALID_FIELD; 1103 goto get_only; 1104 } 1105 smlid &= 0x0000FFFF; 1106 1107 clientrereg = (pi->clientrereg_subnettimeout & 1108 OPA_PI_MASK_CLIENT_REREGISTER); 1109 1110 dd = dd_from_ibdev(ibdev); 1111 /* IB numbers ports from 1, hw from 0 */ 1112 ppd = dd->pport + (port - 1); 1113 ibp = &ppd->ibport_data; 1114 event.device = ibdev; 1115 event.element.port_num = port; 1116 1117 ls_old = driver_lstate(ppd); 1118 1119 ibp->rvp.mkey = pi->mkey; 1120 ibp->rvp.gid_prefix = pi->subnet_prefix; 1121 ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period); 1122 1123 /* Must be a valid unicast LID address. */ 1124 if ((lid == 0 && ls_old > IB_PORT_INIT) || 1125 lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1126 smp->status |= IB_SMP_INVALID_FIELD; 1127 pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n", 1128 lid); 1129 } else if (ppd->lid != lid || 1130 ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) { 1131 if (ppd->lid != lid) 1132 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT); 1133 if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) 1134 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT); 1135 hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC); 1136 event.event = IB_EVENT_LID_CHANGE; 1137 ib_dispatch_event(&event); 1138 } 1139 1140 msl = pi->smsl & OPA_PI_MASK_SMSL; 1141 if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON) 1142 ppd->linkinit_reason = 1143 (pi->partenforce_filterraw & 1144 OPA_PI_MASK_LINKINIT_REASON); 1145 /* enable/disable SW pkey checking as per FM control */ 1146 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_IN) 1147 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 1148 else 1149 ppd->part_enforce &= ~HFI1_PART_ENFORCE_IN; 1150 1151 if (pi->partenforce_filterraw & OPA_PI_MASK_PARTITION_ENFORCE_OUT) 1152 ppd->part_enforce |= HFI1_PART_ENFORCE_OUT; 1153 else 1154 ppd->part_enforce &= ~HFI1_PART_ENFORCE_OUT; 1155 1156 /* Must be a valid unicast LID address. */ 1157 if ((smlid == 0 && ls_old > IB_PORT_INIT) || 1158 smlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { 1159 smp->status |= IB_SMP_INVALID_FIELD; 1160 pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid); 1161 } else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) { 1162 pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid); 1163 spin_lock_irqsave(&ibp->rvp.lock, flags); 1164 if (ibp->rvp.sm_ah) { 1165 if (smlid != ibp->rvp.sm_lid) 1166 ibp->rvp.sm_ah->attr.dlid = smlid; 1167 if (msl != ibp->rvp.sm_sl) 1168 ibp->rvp.sm_ah->attr.sl = msl; 1169 } 1170 spin_unlock_irqrestore(&ibp->rvp.lock, flags); 1171 if (smlid != ibp->rvp.sm_lid) 1172 ibp->rvp.sm_lid = smlid; 1173 if (msl != ibp->rvp.sm_sl) 1174 ibp->rvp.sm_sl = msl; 1175 event.event = IB_EVENT_SM_CHANGE; 1176 ib_dispatch_event(&event); 1177 } 1178 1179 if (pi->link_down_reason == 0) { 1180 ppd->local_link_down_reason.sma = 0; 1181 ppd->local_link_down_reason.latest = 0; 1182 } 1183 1184 if (pi->neigh_link_down_reason == 0) { 1185 ppd->neigh_link_down_reason.sma = 0; 1186 ppd->neigh_link_down_reason.latest = 0; 1187 } 1188 1189 ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp); 1190 ppd->sa_qp = be32_to_cpu(pi->sa_qp); 1191 1192 ppd->port_error_action = be32_to_cpu(pi->port_error_action); 1193 lwe = be16_to_cpu(pi->link_width.enabled); 1194 if (lwe) { 1195 if (lwe == OPA_LINK_WIDTH_RESET || 1196 lwe == OPA_LINK_WIDTH_RESET_OLD) 1197 set_link_width_enabled(ppd, ppd->link_width_supported); 1198 else if ((lwe & ~ppd->link_width_supported) == 0) 1199 set_link_width_enabled(ppd, lwe); 1200 else 1201 smp->status |= IB_SMP_INVALID_FIELD; 1202 } 1203 lwe = be16_to_cpu(pi->link_width_downgrade.enabled); 1204 /* LWD.E is always applied - 0 means "disabled" */ 1205 if (lwe == OPA_LINK_WIDTH_RESET || 1206 lwe == OPA_LINK_WIDTH_RESET_OLD) { 1207 set_link_width_downgrade_enabled(ppd, 1208 ppd-> 1209 link_width_downgrade_supported 1210 ); 1211 } else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) { 1212 /* only set and apply if something changed */ 1213 if (lwe != ppd->link_width_downgrade_enabled) { 1214 set_link_width_downgrade_enabled(ppd, lwe); 1215 call_link_downgrade_policy = 1; 1216 } 1217 } else { 1218 smp->status |= IB_SMP_INVALID_FIELD; 1219 } 1220 lse = be16_to_cpu(pi->link_speed.enabled); 1221 if (lse) { 1222 if (lse & be16_to_cpu(pi->link_speed.supported)) 1223 set_link_speed_enabled(ppd, lse); 1224 else 1225 smp->status |= IB_SMP_INVALID_FIELD; 1226 } 1227 1228 ibp->rvp.mkeyprot = 1229 (pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6; 1230 ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF; 1231 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT, 1232 ibp->rvp.vl_high_limit); 1233 1234 if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || 1235 ppd->vls_supported > ARRAY_SIZE(dd->vld)) { 1236 smp->status |= IB_SMP_INVALID_FIELD; 1237 return reply((struct ib_mad_hdr *)smp); 1238 } 1239 for (i = 0; i < ppd->vls_supported; i++) { 1240 if ((i % 2) == 0) 1241 mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >> 1242 4) & 0xF); 1243 else 1244 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] & 1245 0xF); 1246 if (mtu == 0xffff) { 1247 pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n", 1248 mtu, 1249 (pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF); 1250 smp->status |= IB_SMP_INVALID_FIELD; 1251 mtu = hfi1_max_mtu; /* use a valid MTU */ 1252 } 1253 if (dd->vld[i].mtu != mtu) { 1254 dd_dev_info(dd, 1255 "MTU change on vl %d from %d to %d\n", 1256 i, dd->vld[i].mtu, mtu); 1257 dd->vld[i].mtu = mtu; 1258 call_set_mtu++; 1259 } 1260 } 1261 /* As per OPAV1 spec: VL15 must support and be configured 1262 * for operation with a 2048 or larger MTU. 1263 */ 1264 mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF); 1265 if (mtu < 2048 || mtu == 0xffff) 1266 mtu = 2048; 1267 if (dd->vld[15].mtu != mtu) { 1268 dd_dev_info(dd, 1269 "MTU change on vl 15 from %d to %d\n", 1270 dd->vld[15].mtu, mtu); 1271 dd->vld[15].mtu = mtu; 1272 call_set_mtu++; 1273 } 1274 if (call_set_mtu) 1275 set_mtu(ppd); 1276 1277 /* Set operational VLs */ 1278 vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL; 1279 if (vls) { 1280 if (vls > ppd->vls_supported) { 1281 pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n", 1282 pi->operational_vls); 1283 smp->status |= IB_SMP_INVALID_FIELD; 1284 } else { 1285 if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS, 1286 vls) == -EINVAL) 1287 smp->status |= IB_SMP_INVALID_FIELD; 1288 } 1289 } 1290 1291 if (pi->mkey_violations == 0) 1292 ibp->rvp.mkey_violations = 0; 1293 1294 if (pi->pkey_violations == 0) 1295 ibp->rvp.pkey_violations = 0; 1296 1297 if (pi->qkey_violations == 0) 1298 ibp->rvp.qkey_violations = 0; 1299 1300 ibp->rvp.subnet_timeout = 1301 pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT; 1302 1303 crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode); 1304 crc_enabled >>= 4; 1305 crc_enabled &= 0xf; 1306 1307 if (crc_enabled != 0) 1308 ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled); 1309 1310 ppd->is_active_optimize_enabled = 1311 !!(be16_to_cpu(pi->port_mode) 1312 & OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE); 1313 1314 ls_new = pi->port_states.portphysstate_portstate & 1315 OPA_PI_MASK_PORT_STATE; 1316 ps_new = (pi->port_states.portphysstate_portstate & 1317 OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4; 1318 1319 if (ls_old == IB_PORT_INIT) { 1320 if (start_of_sm_config) { 1321 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1322 ppd->is_sm_config_started = 1; 1323 } else if (ls_new == IB_PORT_ARMED) { 1324 if (ppd->is_sm_config_started == 0) 1325 invalid = 1; 1326 } 1327 } 1328 1329 /* Handle CLIENT_REREGISTER event b/c SM asked us for it */ 1330 if (clientrereg) { 1331 event.event = IB_EVENT_CLIENT_REREGISTER; 1332 ib_dispatch_event(&event); 1333 } 1334 1335 /* 1336 * Do the port state change now that the other link parameters 1337 * have been set. 1338 * Changing the port physical state only makes sense if the link 1339 * is down or is being set to down. 1340 */ 1341 1342 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1343 if (ret) 1344 return ret; 1345 1346 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1347 1348 /* restore re-reg bit per o14-12.2.1 */ 1349 pi->clientrereg_subnettimeout |= clientrereg; 1350 1351 /* 1352 * Apply the new link downgrade policy. This may result in a link 1353 * bounce. Do this after everything else so things are settled. 1354 * Possible problem: if setting the port state above fails, then 1355 * the policy change is not applied. 1356 */ 1357 if (call_link_downgrade_policy) 1358 apply_link_downgrade_policy(ppd, 0); 1359 1360 return ret; 1361 1362 get_only: 1363 return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len); 1364 } 1365 1366 /** 1367 * set_pkeys - set the PKEY table for ctxt 0 1368 * @dd: the hfi1_ib device 1369 * @port: the IB port number 1370 * @pkeys: the PKEY table 1371 */ 1372 static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) 1373 { 1374 struct hfi1_pportdata *ppd; 1375 int i; 1376 int changed = 0; 1377 int update_includes_mgmt_partition = 0; 1378 1379 /* 1380 * IB port one/two always maps to context zero/one, 1381 * always a kernel context, no locking needed 1382 * If we get here with ppd setup, no need to check 1383 * that rcd is valid. 1384 */ 1385 ppd = dd->pport + (port - 1); 1386 /* 1387 * If the update does not include the management pkey, don't do it. 1388 */ 1389 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1390 if (pkeys[i] == LIM_MGMT_P_KEY) { 1391 update_includes_mgmt_partition = 1; 1392 break; 1393 } 1394 } 1395 1396 if (!update_includes_mgmt_partition) 1397 return 1; 1398 1399 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 1400 u16 key = pkeys[i]; 1401 u16 okey = ppd->pkeys[i]; 1402 1403 if (key == okey) 1404 continue; 1405 /* 1406 * Don't update pkeys[2], if an HFI port without MgmtAllowed 1407 * by neighbor is a switch. 1408 */ 1409 if (i == 2 && !ppd->mgmt_allowed && ppd->neighbor_type == 1) 1410 continue; 1411 /* 1412 * The SM gives us the complete PKey table. We have 1413 * to ensure that we put the PKeys in the matching 1414 * slots. 1415 */ 1416 ppd->pkeys[i] = key; 1417 changed = 1; 1418 } 1419 1420 if (changed) { 1421 struct ib_event event; 1422 1423 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 1424 1425 event.event = IB_EVENT_PKEY_CHANGE; 1426 event.device = &dd->verbs_dev.rdi.ibdev; 1427 event.element.port_num = port; 1428 ib_dispatch_event(&event); 1429 } 1430 return 0; 1431 } 1432 1433 static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, 1434 struct ib_device *ibdev, u8 port, 1435 u32 *resp_len) 1436 { 1437 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1438 u32 n_blocks_sent = OPA_AM_NBLK(am); 1439 u32 start_block = am & 0x7ff; 1440 u16 *p = (u16 *)data; 1441 __be16 *q = (__be16 *)data; 1442 int i; 1443 u16 n_blocks_avail; 1444 unsigned npkeys = hfi1_get_npkeys(dd); 1445 1446 if (n_blocks_sent == 0) { 1447 pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", 1448 port, start_block, n_blocks_sent); 1449 smp->status |= IB_SMP_INVALID_FIELD; 1450 return reply((struct ib_mad_hdr *)smp); 1451 } 1452 1453 n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; 1454 1455 if (start_block + n_blocks_sent > n_blocks_avail || 1456 n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) { 1457 pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n", 1458 start_block, n_blocks_sent, n_blocks_avail, 1459 OPA_NUM_PKEY_BLOCKS_PER_SMP); 1460 smp->status |= IB_SMP_INVALID_FIELD; 1461 return reply((struct ib_mad_hdr *)smp); 1462 } 1463 1464 for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++) 1465 p[i] = be16_to_cpu(q[i]); 1466 1467 if (start_block == 0 && set_pkeys(dd, port, p) != 0) { 1468 smp->status |= IB_SMP_INVALID_FIELD; 1469 return reply((struct ib_mad_hdr *)smp); 1470 } 1471 1472 return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len); 1473 } 1474 1475 static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1476 { 1477 u64 *val = data; 1478 1479 *val++ = read_csr(dd, SEND_SC2VLT0); 1480 *val++ = read_csr(dd, SEND_SC2VLT1); 1481 *val++ = read_csr(dd, SEND_SC2VLT2); 1482 *val++ = read_csr(dd, SEND_SC2VLT3); 1483 return 0; 1484 } 1485 1486 #define ILLEGAL_VL 12 1487 /* 1488 * filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except 1489 * for SC15, which must map to VL15). If we don't remap things this 1490 * way it is possible for VL15 counters to increment when we try to 1491 * send on a SC which is mapped to an invalid VL. 1492 */ 1493 static void filter_sc2vlt(void *data) 1494 { 1495 int i; 1496 u8 *pd = data; 1497 1498 for (i = 0; i < OPA_MAX_SCS; i++) { 1499 if (i == 15) 1500 continue; 1501 if ((pd[i] & 0x1f) == 0xf) 1502 pd[i] = ILLEGAL_VL; 1503 } 1504 } 1505 1506 static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data) 1507 { 1508 u64 *val = data; 1509 1510 filter_sc2vlt(data); 1511 1512 write_csr(dd, SEND_SC2VLT0, *val++); 1513 write_csr(dd, SEND_SC2VLT1, *val++); 1514 write_csr(dd, SEND_SC2VLT2, *val++); 1515 write_csr(dd, SEND_SC2VLT3, *val++); 1516 write_seqlock_irq(&dd->sc2vl_lock); 1517 memcpy(dd->sc2vl, data, sizeof(dd->sc2vl)); 1518 write_sequnlock_irq(&dd->sc2vl_lock); 1519 return 0; 1520 } 1521 1522 static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1523 struct ib_device *ibdev, u8 port, 1524 u32 *resp_len) 1525 { 1526 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1527 u8 *p = data; 1528 size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */ 1529 unsigned i; 1530 1531 if (am) { 1532 smp->status |= IB_SMP_INVALID_FIELD; 1533 return reply((struct ib_mad_hdr *)smp); 1534 } 1535 1536 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) 1537 *p++ = ibp->sl_to_sc[i]; 1538 1539 if (resp_len) 1540 *resp_len += size; 1541 1542 return reply((struct ib_mad_hdr *)smp); 1543 } 1544 1545 static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, 1546 struct ib_device *ibdev, u8 port, 1547 u32 *resp_len) 1548 { 1549 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1550 u8 *p = data; 1551 int i; 1552 u8 sc; 1553 1554 if (am) { 1555 smp->status |= IB_SMP_INVALID_FIELD; 1556 return reply((struct ib_mad_hdr *)smp); 1557 } 1558 1559 for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) { 1560 sc = *p++; 1561 if (ibp->sl_to_sc[i] != sc) { 1562 ibp->sl_to_sc[i] = sc; 1563 1564 /* Put all stale qps into error state */ 1565 hfi1_error_port_qps(ibp, i); 1566 } 1567 } 1568 1569 return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len); 1570 } 1571 1572 static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1573 struct ib_device *ibdev, u8 port, 1574 u32 *resp_len) 1575 { 1576 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1577 u8 *p = data; 1578 size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */ 1579 unsigned i; 1580 1581 if (am) { 1582 smp->status |= IB_SMP_INVALID_FIELD; 1583 return reply((struct ib_mad_hdr *)smp); 1584 } 1585 1586 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1587 *p++ = ibp->sc_to_sl[i]; 1588 1589 if (resp_len) 1590 *resp_len += size; 1591 1592 return reply((struct ib_mad_hdr *)smp); 1593 } 1594 1595 static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, 1596 struct ib_device *ibdev, u8 port, 1597 u32 *resp_len) 1598 { 1599 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1600 u8 *p = data; 1601 int i; 1602 1603 if (am) { 1604 smp->status |= IB_SMP_INVALID_FIELD; 1605 return reply((struct ib_mad_hdr *)smp); 1606 } 1607 1608 for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) 1609 ibp->sc_to_sl[i] = *p++; 1610 1611 return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len); 1612 } 1613 1614 static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1615 struct ib_device *ibdev, u8 port, 1616 u32 *resp_len) 1617 { 1618 u32 n_blocks = OPA_AM_NBLK(am); 1619 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1620 void *vp = (void *)data; 1621 size_t size = 4 * sizeof(u64); 1622 1623 if (n_blocks != 1) { 1624 smp->status |= IB_SMP_INVALID_FIELD; 1625 return reply((struct ib_mad_hdr *)smp); 1626 } 1627 1628 get_sc2vlt_tables(dd, vp); 1629 1630 if (resp_len) 1631 *resp_len += size; 1632 1633 return reply((struct ib_mad_hdr *)smp); 1634 } 1635 1636 static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, 1637 struct ib_device *ibdev, u8 port, 1638 u32 *resp_len) 1639 { 1640 u32 n_blocks = OPA_AM_NBLK(am); 1641 int async_update = OPA_AM_ASYNC(am); 1642 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1643 void *vp = (void *)data; 1644 struct hfi1_pportdata *ppd; 1645 int lstate; 1646 1647 if (n_blocks != 1 || async_update) { 1648 smp->status |= IB_SMP_INVALID_FIELD; 1649 return reply((struct ib_mad_hdr *)smp); 1650 } 1651 1652 /* IB numbers ports from 1, hw from 0 */ 1653 ppd = dd->pport + (port - 1); 1654 lstate = driver_lstate(ppd); 1655 /* 1656 * it's known that async_update is 0 by this point, but include 1657 * the explicit check for clarity 1658 */ 1659 if (!async_update && 1660 (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) { 1661 smp->status |= IB_SMP_INVALID_FIELD; 1662 return reply((struct ib_mad_hdr *)smp); 1663 } 1664 1665 set_sc2vlt_tables(dd, vp); 1666 1667 return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len); 1668 } 1669 1670 static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1671 struct ib_device *ibdev, u8 port, 1672 u32 *resp_len) 1673 { 1674 u32 n_blocks = OPA_AM_NPORT(am); 1675 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1676 struct hfi1_pportdata *ppd; 1677 void *vp = (void *)data; 1678 int size; 1679 1680 if (n_blocks != 1) { 1681 smp->status |= IB_SMP_INVALID_FIELD; 1682 return reply((struct ib_mad_hdr *)smp); 1683 } 1684 1685 ppd = dd->pport + (port - 1); 1686 1687 size = fm_get_table(ppd, FM_TBL_SC2VLNT, vp); 1688 1689 if (resp_len) 1690 *resp_len += size; 1691 1692 return reply((struct ib_mad_hdr *)smp); 1693 } 1694 1695 static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, 1696 struct ib_device *ibdev, u8 port, 1697 u32 *resp_len) 1698 { 1699 u32 n_blocks = OPA_AM_NPORT(am); 1700 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1701 struct hfi1_pportdata *ppd; 1702 void *vp = (void *)data; 1703 int lstate; 1704 1705 if (n_blocks != 1) { 1706 smp->status |= IB_SMP_INVALID_FIELD; 1707 return reply((struct ib_mad_hdr *)smp); 1708 } 1709 1710 /* IB numbers ports from 1, hw from 0 */ 1711 ppd = dd->pport + (port - 1); 1712 lstate = driver_lstate(ppd); 1713 if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) { 1714 smp->status |= IB_SMP_INVALID_FIELD; 1715 return reply((struct ib_mad_hdr *)smp); 1716 } 1717 1718 ppd = dd->pport + (port - 1); 1719 1720 fm_set_table(ppd, FM_TBL_SC2VLNT, vp); 1721 1722 return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 1723 resp_len); 1724 } 1725 1726 static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1727 struct ib_device *ibdev, u8 port, 1728 u32 *resp_len) 1729 { 1730 u32 nports = OPA_AM_NPORT(am); 1731 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1732 u32 lstate; 1733 struct hfi1_ibport *ibp; 1734 struct hfi1_pportdata *ppd; 1735 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1736 1737 if (nports != 1) { 1738 smp->status |= IB_SMP_INVALID_FIELD; 1739 return reply((struct ib_mad_hdr *)smp); 1740 } 1741 1742 ibp = to_iport(ibdev, port); 1743 ppd = ppd_from_ibp(ibp); 1744 1745 lstate = driver_lstate(ppd); 1746 1747 if (start_of_sm_config && (lstate == IB_PORT_INIT)) 1748 ppd->is_sm_config_started = 1; 1749 1750 #if PI_LED_ENABLE_SUP 1751 psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; 1752 psi->port_states.ledenable_offlinereason |= 1753 ppd->is_sm_config_started << 5; 1754 psi->port_states.ledenable_offlinereason |= 1755 ppd->offline_disabled_reason; 1756 #else 1757 psi->port_states.offline_reason = ppd->neighbor_normal << 4; 1758 psi->port_states.offline_reason |= ppd->is_sm_config_started << 5; 1759 psi->port_states.offline_reason |= ppd->offline_disabled_reason; 1760 #endif /* PI_LED_ENABLE_SUP */ 1761 1762 psi->port_states.portphysstate_portstate = 1763 (hfi1_ibphys_portstate(ppd) << 4) | (lstate & 0xf); 1764 psi->link_width_downgrade_tx_active = 1765 cpu_to_be16(ppd->link_width_downgrade_tx_active); 1766 psi->link_width_downgrade_rx_active = 1767 cpu_to_be16(ppd->link_width_downgrade_rx_active); 1768 if (resp_len) 1769 *resp_len += sizeof(struct opa_port_state_info); 1770 1771 return reply((struct ib_mad_hdr *)smp); 1772 } 1773 1774 static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data, 1775 struct ib_device *ibdev, u8 port, 1776 u32 *resp_len) 1777 { 1778 u32 nports = OPA_AM_NPORT(am); 1779 u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); 1780 u32 ls_old; 1781 u8 ls_new, ps_new; 1782 struct hfi1_ibport *ibp; 1783 struct hfi1_pportdata *ppd; 1784 struct opa_port_state_info *psi = (struct opa_port_state_info *)data; 1785 int ret, invalid = 0; 1786 1787 if (nports != 1) { 1788 smp->status |= IB_SMP_INVALID_FIELD; 1789 return reply((struct ib_mad_hdr *)smp); 1790 } 1791 1792 ibp = to_iport(ibdev, port); 1793 ppd = ppd_from_ibp(ibp); 1794 1795 ls_old = driver_lstate(ppd); 1796 1797 ls_new = port_states_to_logical_state(&psi->port_states); 1798 ps_new = port_states_to_phys_state(&psi->port_states); 1799 1800 if (ls_old == IB_PORT_INIT) { 1801 if (start_of_sm_config) { 1802 if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) 1803 ppd->is_sm_config_started = 1; 1804 } else if (ls_new == IB_PORT_ARMED) { 1805 if (ppd->is_sm_config_started == 0) 1806 invalid = 1; 1807 } 1808 } 1809 1810 ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); 1811 if (ret) 1812 return ret; 1813 1814 if (invalid) 1815 smp->status |= IB_SMP_INVALID_FIELD; 1816 1817 return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len); 1818 } 1819 1820 static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data, 1821 struct ib_device *ibdev, u8 port, 1822 u32 *resp_len) 1823 { 1824 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1825 u32 addr = OPA_AM_CI_ADDR(am); 1826 u32 len = OPA_AM_CI_LEN(am) + 1; 1827 int ret; 1828 1829 #define __CI_PAGE_SIZE BIT(7) /* 128 bytes */ 1830 #define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1) 1831 #define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK) 1832 1833 /* 1834 * check that addr is within spec, and 1835 * addr and (addr + len - 1) are on the same "page" 1836 */ 1837 if (addr >= 4096 || 1838 (__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) { 1839 smp->status |= IB_SMP_INVALID_FIELD; 1840 return reply((struct ib_mad_hdr *)smp); 1841 } 1842 1843 ret = get_cable_info(dd, port, addr, len, data); 1844 1845 if (ret == -ENODEV) { 1846 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1847 return reply((struct ib_mad_hdr *)smp); 1848 } 1849 1850 /* The address range for the CableInfo SMA query is wider than the 1851 * memory available on the QSFP cable. We want to return a valid 1852 * response, albeit zeroed out, for address ranges beyond available 1853 * memory but that are within the CableInfo query spec 1854 */ 1855 if (ret < 0 && ret != -ERANGE) { 1856 smp->status |= IB_SMP_INVALID_FIELD; 1857 return reply((struct ib_mad_hdr *)smp); 1858 } 1859 1860 if (resp_len) 1861 *resp_len += len; 1862 1863 return reply((struct ib_mad_hdr *)smp); 1864 } 1865 1866 static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1867 struct ib_device *ibdev, u8 port, u32 *resp_len) 1868 { 1869 u32 num_ports = OPA_AM_NPORT(am); 1870 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1871 struct hfi1_pportdata *ppd; 1872 struct buffer_control *p = (struct buffer_control *)data; 1873 int size; 1874 1875 if (num_ports != 1) { 1876 smp->status |= IB_SMP_INVALID_FIELD; 1877 return reply((struct ib_mad_hdr *)smp); 1878 } 1879 1880 ppd = dd->pport + (port - 1); 1881 size = fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p); 1882 trace_bct_get(dd, p); 1883 if (resp_len) 1884 *resp_len += size; 1885 1886 return reply((struct ib_mad_hdr *)smp); 1887 } 1888 1889 static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data, 1890 struct ib_device *ibdev, u8 port, u32 *resp_len) 1891 { 1892 u32 num_ports = OPA_AM_NPORT(am); 1893 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1894 struct hfi1_pportdata *ppd; 1895 struct buffer_control *p = (struct buffer_control *)data; 1896 1897 if (num_ports != 1) { 1898 smp->status |= IB_SMP_INVALID_FIELD; 1899 return reply((struct ib_mad_hdr *)smp); 1900 } 1901 ppd = dd->pport + (port - 1); 1902 trace_bct_set(dd, p); 1903 if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) { 1904 smp->status |= IB_SMP_INVALID_FIELD; 1905 return reply((struct ib_mad_hdr *)smp); 1906 } 1907 1908 return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len); 1909 } 1910 1911 static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1912 struct ib_device *ibdev, u8 port, 1913 u32 *resp_len) 1914 { 1915 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1916 u32 num_ports = OPA_AM_NPORT(am); 1917 u8 section = (am & 0x00ff0000) >> 16; 1918 u8 *p = data; 1919 int size = 0; 1920 1921 if (num_ports != 1) { 1922 smp->status |= IB_SMP_INVALID_FIELD; 1923 return reply((struct ib_mad_hdr *)smp); 1924 } 1925 1926 switch (section) { 1927 case OPA_VLARB_LOW_ELEMENTS: 1928 size = fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p); 1929 break; 1930 case OPA_VLARB_HIGH_ELEMENTS: 1931 size = fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1932 break; 1933 case OPA_VLARB_PREEMPT_ELEMENTS: 1934 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p); 1935 break; 1936 case OPA_VLARB_PREEMPT_MATRIX: 1937 size = fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p); 1938 break; 1939 default: 1940 pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n", 1941 be32_to_cpu(smp->attr_mod)); 1942 smp->status |= IB_SMP_INVALID_FIELD; 1943 break; 1944 } 1945 1946 if (size > 0 && resp_len) 1947 *resp_len += size; 1948 1949 return reply((struct ib_mad_hdr *)smp); 1950 } 1951 1952 static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, 1953 struct ib_device *ibdev, u8 port, 1954 u32 *resp_len) 1955 { 1956 struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); 1957 u32 num_ports = OPA_AM_NPORT(am); 1958 u8 section = (am & 0x00ff0000) >> 16; 1959 u8 *p = data; 1960 1961 if (num_ports != 1) { 1962 smp->status |= IB_SMP_INVALID_FIELD; 1963 return reply((struct ib_mad_hdr *)smp); 1964 } 1965 1966 switch (section) { 1967 case OPA_VLARB_LOW_ELEMENTS: 1968 (void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p); 1969 break; 1970 case OPA_VLARB_HIGH_ELEMENTS: 1971 (void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p); 1972 break; 1973 /* 1974 * neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX 1975 * can be changed from the default values 1976 */ 1977 case OPA_VLARB_PREEMPT_ELEMENTS: 1978 /* FALLTHROUGH */ 1979 case OPA_VLARB_PREEMPT_MATRIX: 1980 smp->status |= IB_SMP_UNSUP_METH_ATTR; 1981 break; 1982 default: 1983 pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n", 1984 be32_to_cpu(smp->attr_mod)); 1985 smp->status |= IB_SMP_INVALID_FIELD; 1986 break; 1987 } 1988 1989 return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len); 1990 } 1991 1992 struct opa_pma_mad { 1993 struct ib_mad_hdr mad_hdr; 1994 u8 data[2024]; 1995 } __packed; 1996 1997 struct opa_class_port_info { 1998 u8 base_version; 1999 u8 class_version; 2000 __be16 cap_mask; 2001 __be32 cap_mask2_resp_time; 2002 2003 u8 redirect_gid[16]; 2004 __be32 redirect_tc_fl; 2005 __be32 redirect_lid; 2006 __be32 redirect_sl_qp; 2007 __be32 redirect_qkey; 2008 2009 u8 trap_gid[16]; 2010 __be32 trap_tc_fl; 2011 __be32 trap_lid; 2012 __be32 trap_hl_qp; 2013 __be32 trap_qkey; 2014 2015 __be16 trap_pkey; 2016 __be16 redirect_pkey; 2017 2018 u8 trap_sl_rsvd; 2019 u8 reserved[3]; 2020 } __packed; 2021 2022 struct opa_port_status_req { 2023 __u8 port_num; 2024 __u8 reserved[3]; 2025 __be32 vl_select_mask; 2026 }; 2027 2028 #define VL_MASK_ALL 0x000080ff 2029 2030 struct opa_port_status_rsp { 2031 __u8 port_num; 2032 __u8 reserved[3]; 2033 __be32 vl_select_mask; 2034 2035 /* Data counters */ 2036 __be64 port_xmit_data; 2037 __be64 port_rcv_data; 2038 __be64 port_xmit_pkts; 2039 __be64 port_rcv_pkts; 2040 __be64 port_multicast_xmit_pkts; 2041 __be64 port_multicast_rcv_pkts; 2042 __be64 port_xmit_wait; 2043 __be64 sw_port_congestion; 2044 __be64 port_rcv_fecn; 2045 __be64 port_rcv_becn; 2046 __be64 port_xmit_time_cong; 2047 __be64 port_xmit_wasted_bw; 2048 __be64 port_xmit_wait_data; 2049 __be64 port_rcv_bubble; 2050 __be64 port_mark_fecn; 2051 /* Error counters */ 2052 __be64 port_rcv_constraint_errors; 2053 __be64 port_rcv_switch_relay_errors; 2054 __be64 port_xmit_discards; 2055 __be64 port_xmit_constraint_errors; 2056 __be64 port_rcv_remote_physical_errors; 2057 __be64 local_link_integrity_errors; 2058 __be64 port_rcv_errors; 2059 __be64 excessive_buffer_overruns; 2060 __be64 fm_config_errors; 2061 __be32 link_error_recovery; 2062 __be32 link_downed; 2063 u8 uncorrectable_errors; 2064 2065 u8 link_quality_indicator; /* 5res, 3bit */ 2066 u8 res2[6]; 2067 struct _vls_pctrs { 2068 /* per-VL Data counters */ 2069 __be64 port_vl_xmit_data; 2070 __be64 port_vl_rcv_data; 2071 __be64 port_vl_xmit_pkts; 2072 __be64 port_vl_rcv_pkts; 2073 __be64 port_vl_xmit_wait; 2074 __be64 sw_port_vl_congestion; 2075 __be64 port_vl_rcv_fecn; 2076 __be64 port_vl_rcv_becn; 2077 __be64 port_xmit_time_cong; 2078 __be64 port_vl_xmit_wasted_bw; 2079 __be64 port_vl_xmit_wait_data; 2080 __be64 port_vl_rcv_bubble; 2081 __be64 port_vl_mark_fecn; 2082 __be64 port_vl_xmit_discards; 2083 } vls[0]; /* real array size defined by # bits set in vl_select_mask */ 2084 }; 2085 2086 enum counter_selects { 2087 CS_PORT_XMIT_DATA = (1 << 31), 2088 CS_PORT_RCV_DATA = (1 << 30), 2089 CS_PORT_XMIT_PKTS = (1 << 29), 2090 CS_PORT_RCV_PKTS = (1 << 28), 2091 CS_PORT_MCAST_XMIT_PKTS = (1 << 27), 2092 CS_PORT_MCAST_RCV_PKTS = (1 << 26), 2093 CS_PORT_XMIT_WAIT = (1 << 25), 2094 CS_SW_PORT_CONGESTION = (1 << 24), 2095 CS_PORT_RCV_FECN = (1 << 23), 2096 CS_PORT_RCV_BECN = (1 << 22), 2097 CS_PORT_XMIT_TIME_CONG = (1 << 21), 2098 CS_PORT_XMIT_WASTED_BW = (1 << 20), 2099 CS_PORT_XMIT_WAIT_DATA = (1 << 19), 2100 CS_PORT_RCV_BUBBLE = (1 << 18), 2101 CS_PORT_MARK_FECN = (1 << 17), 2102 CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16), 2103 CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15), 2104 CS_PORT_XMIT_DISCARDS = (1 << 14), 2105 CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13), 2106 CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12), 2107 CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11), 2108 CS_PORT_RCV_ERRORS = (1 << 10), 2109 CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9), 2110 CS_FM_CONFIG_ERRORS = (1 << 8), 2111 CS_LINK_ERROR_RECOVERY = (1 << 7), 2112 CS_LINK_DOWNED = (1 << 6), 2113 CS_UNCORRECTABLE_ERRORS = (1 << 5), 2114 }; 2115 2116 struct opa_clear_port_status { 2117 __be64 port_select_mask[4]; 2118 __be32 counter_select_mask; 2119 }; 2120 2121 struct opa_aggregate { 2122 __be16 attr_id; 2123 __be16 err_reqlength; /* 1 bit, 8 res, 7 bit */ 2124 __be32 attr_mod; 2125 u8 data[0]; 2126 }; 2127 2128 #define MSK_LLI 0x000000f0 2129 #define MSK_LLI_SFT 4 2130 #define MSK_LER 0x0000000f 2131 #define MSK_LER_SFT 0 2132 #define ADD_LLI 8 2133 #define ADD_LER 2 2134 2135 /* Request contains first three fields, response contains those plus the rest */ 2136 struct opa_port_data_counters_msg { 2137 __be64 port_select_mask[4]; 2138 __be32 vl_select_mask; 2139 __be32 resolution; 2140 2141 /* Response fields follow */ 2142 struct _port_dctrs { 2143 u8 port_number; 2144 u8 reserved2[3]; 2145 __be32 link_quality_indicator; /* 29res, 3bit */ 2146 2147 /* Data counters */ 2148 __be64 port_xmit_data; 2149 __be64 port_rcv_data; 2150 __be64 port_xmit_pkts; 2151 __be64 port_rcv_pkts; 2152 __be64 port_multicast_xmit_pkts; 2153 __be64 port_multicast_rcv_pkts; 2154 __be64 port_xmit_wait; 2155 __be64 sw_port_congestion; 2156 __be64 port_rcv_fecn; 2157 __be64 port_rcv_becn; 2158 __be64 port_xmit_time_cong; 2159 __be64 port_xmit_wasted_bw; 2160 __be64 port_xmit_wait_data; 2161 __be64 port_rcv_bubble; 2162 __be64 port_mark_fecn; 2163 2164 __be64 port_error_counter_summary; 2165 /* Sum of error counts/port */ 2166 2167 struct _vls_dctrs { 2168 /* per-VL Data counters */ 2169 __be64 port_vl_xmit_data; 2170 __be64 port_vl_rcv_data; 2171 __be64 port_vl_xmit_pkts; 2172 __be64 port_vl_rcv_pkts; 2173 __be64 port_vl_xmit_wait; 2174 __be64 sw_port_vl_congestion; 2175 __be64 port_vl_rcv_fecn; 2176 __be64 port_vl_rcv_becn; 2177 __be64 port_xmit_time_cong; 2178 __be64 port_vl_xmit_wasted_bw; 2179 __be64 port_vl_xmit_wait_data; 2180 __be64 port_vl_rcv_bubble; 2181 __be64 port_vl_mark_fecn; 2182 } vls[0]; 2183 /* array size defined by #bits set in vl_select_mask*/ 2184 } port[1]; /* array size defined by #ports in attribute modifier */ 2185 }; 2186 2187 struct opa_port_error_counters64_msg { 2188 /* 2189 * Request contains first two fields, response contains the 2190 * whole magilla 2191 */ 2192 __be64 port_select_mask[4]; 2193 __be32 vl_select_mask; 2194 2195 /* Response-only fields follow */ 2196 __be32 reserved1; 2197 struct _port_ectrs { 2198 u8 port_number; 2199 u8 reserved2[7]; 2200 __be64 port_rcv_constraint_errors; 2201 __be64 port_rcv_switch_relay_errors; 2202 __be64 port_xmit_discards; 2203 __be64 port_xmit_constraint_errors; 2204 __be64 port_rcv_remote_physical_errors; 2205 __be64 local_link_integrity_errors; 2206 __be64 port_rcv_errors; 2207 __be64 excessive_buffer_overruns; 2208 __be64 fm_config_errors; 2209 __be32 link_error_recovery; 2210 __be32 link_downed; 2211 u8 uncorrectable_errors; 2212 u8 reserved3[7]; 2213 struct _vls_ectrs { 2214 __be64 port_vl_xmit_discards; 2215 } vls[0]; 2216 /* array size defined by #bits set in vl_select_mask */ 2217 } port[1]; /* array size defined by #ports in attribute modifier */ 2218 }; 2219 2220 struct opa_port_error_info_msg { 2221 __be64 port_select_mask[4]; 2222 __be32 error_info_select_mask; 2223 __be32 reserved1; 2224 struct _port_ei { 2225 u8 port_number; 2226 u8 reserved2[7]; 2227 2228 /* PortRcvErrorInfo */ 2229 struct { 2230 u8 status_and_code; 2231 union { 2232 u8 raw[17]; 2233 struct { 2234 /* EI1to12 format */ 2235 u8 packet_flit1[8]; 2236 u8 packet_flit2[8]; 2237 u8 remaining_flit_bits12; 2238 } ei1to12; 2239 struct { 2240 u8 packet_bytes[8]; 2241 u8 remaining_flit_bits; 2242 } ei13; 2243 } ei; 2244 u8 reserved3[6]; 2245 } __packed port_rcv_ei; 2246 2247 /* ExcessiveBufferOverrunInfo */ 2248 struct { 2249 u8 status_and_sc; 2250 u8 reserved4[7]; 2251 } __packed excessive_buffer_overrun_ei; 2252 2253 /* PortXmitConstraintErrorInfo */ 2254 struct { 2255 u8 status; 2256 u8 reserved5; 2257 __be16 pkey; 2258 __be32 slid; 2259 } __packed port_xmit_constraint_ei; 2260 2261 /* PortRcvConstraintErrorInfo */ 2262 struct { 2263 u8 status; 2264 u8 reserved6; 2265 __be16 pkey; 2266 __be32 slid; 2267 } __packed port_rcv_constraint_ei; 2268 2269 /* PortRcvSwitchRelayErrorInfo */ 2270 struct { 2271 u8 status_and_code; 2272 u8 reserved7[3]; 2273 __u32 error_info; 2274 } __packed port_rcv_switch_relay_ei; 2275 2276 /* UncorrectableErrorInfo */ 2277 struct { 2278 u8 status_and_code; 2279 u8 reserved8; 2280 } __packed uncorrectable_ei; 2281 2282 /* FMConfigErrorInfo */ 2283 struct { 2284 u8 status_and_code; 2285 u8 error_info; 2286 } __packed fm_config_ei; 2287 __u32 reserved9; 2288 } port[1]; /* actual array size defined by #ports in attr modifier */ 2289 }; 2290 2291 /* opa_port_error_info_msg error_info_select_mask bit definitions */ 2292 enum error_info_selects { 2293 ES_PORT_RCV_ERROR_INFO = (1 << 31), 2294 ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30), 2295 ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29), 2296 ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28), 2297 ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27), 2298 ES_UNCORRECTABLE_ERROR_INFO = (1 << 26), 2299 ES_FM_CONFIG_ERROR_INFO = (1 << 25) 2300 }; 2301 2302 static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp, 2303 struct ib_device *ibdev, u32 *resp_len) 2304 { 2305 struct opa_class_port_info *p = 2306 (struct opa_class_port_info *)pmp->data; 2307 2308 memset(pmp->data, 0, sizeof(pmp->data)); 2309 2310 if (pmp->mad_hdr.attr_mod != 0) 2311 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2312 2313 p->base_version = OPA_MGMT_BASE_VERSION; 2314 p->class_version = OPA_SMI_CLASS_VERSION; 2315 /* 2316 * Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec. 2317 */ 2318 p->cap_mask2_resp_time = cpu_to_be32(18); 2319 2320 if (resp_len) 2321 *resp_len += sizeof(*p); 2322 2323 return reply((struct ib_mad_hdr *)pmp); 2324 } 2325 2326 static void a0_portstatus(struct hfi1_pportdata *ppd, 2327 struct opa_port_status_rsp *rsp, u32 vl_select_mask) 2328 { 2329 if (!is_bx(ppd->dd)) { 2330 unsigned long vl; 2331 u64 sum_vl_xmit_wait = 0; 2332 u32 vl_all_mask = VL_MASK_ALL; 2333 2334 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2335 8 * sizeof(vl_all_mask)) { 2336 u64 tmp = sum_vl_xmit_wait + 2337 read_port_cntr(ppd, C_TX_WAIT_VL, 2338 idx_from_vl(vl)); 2339 if (tmp < sum_vl_xmit_wait) { 2340 /* we wrapped */ 2341 sum_vl_xmit_wait = (u64)~0; 2342 break; 2343 } 2344 sum_vl_xmit_wait = tmp; 2345 } 2346 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2347 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2348 } 2349 } 2350 2351 static int pma_get_opa_portstatus(struct opa_pma_mad *pmp, 2352 struct ib_device *ibdev, 2353 u8 port, u32 *resp_len) 2354 { 2355 struct opa_port_status_req *req = 2356 (struct opa_port_status_req *)pmp->data; 2357 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2358 struct opa_port_status_rsp *rsp; 2359 u32 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2360 unsigned long vl; 2361 size_t response_data_size; 2362 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2363 u8 port_num = req->port_num; 2364 u8 num_vls = hweight32(vl_select_mask); 2365 struct _vls_pctrs *vlinfo; 2366 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2367 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2368 int vfi; 2369 u64 tmp, tmp2; 2370 2371 response_data_size = sizeof(struct opa_port_status_rsp) + 2372 num_vls * sizeof(struct _vls_pctrs); 2373 if (response_data_size > sizeof(pmp->data)) { 2374 pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE; 2375 return reply((struct ib_mad_hdr *)pmp); 2376 } 2377 2378 if (nports != 1 || (port_num && port_num != port) || 2379 num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) { 2380 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2381 return reply((struct ib_mad_hdr *)pmp); 2382 } 2383 2384 memset(pmp->data, 0, sizeof(pmp->data)); 2385 2386 rsp = (struct opa_port_status_rsp *)pmp->data; 2387 if (port_num) 2388 rsp->port_num = port_num; 2389 else 2390 rsp->port_num = port; 2391 2392 rsp->port_rcv_constraint_errors = 2393 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2394 CNTR_INVALID_VL)); 2395 2396 hfi1_read_link_quality(dd, &rsp->link_quality_indicator); 2397 2398 rsp->vl_select_mask = cpu_to_be32(vl_select_mask); 2399 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2400 CNTR_INVALID_VL)); 2401 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2402 CNTR_INVALID_VL)); 2403 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2404 CNTR_INVALID_VL)); 2405 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2406 CNTR_INVALID_VL)); 2407 rsp->port_multicast_xmit_pkts = 2408 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2409 CNTR_INVALID_VL)); 2410 rsp->port_multicast_rcv_pkts = 2411 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2412 CNTR_INVALID_VL)); 2413 rsp->port_xmit_wait = 2414 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2415 rsp->port_rcv_fecn = 2416 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2417 rsp->port_rcv_becn = 2418 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2419 rsp->port_xmit_discards = 2420 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2421 CNTR_INVALID_VL)); 2422 rsp->port_xmit_constraint_errors = 2423 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2424 CNTR_INVALID_VL)); 2425 rsp->port_rcv_remote_physical_errors = 2426 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2427 CNTR_INVALID_VL)); 2428 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2429 tmp2 = tmp + read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2430 if (tmp2 < tmp) { 2431 /* overflow/wrapped */ 2432 rsp->local_link_integrity_errors = cpu_to_be64(~0); 2433 } else { 2434 rsp->local_link_integrity_errors = cpu_to_be64(tmp2); 2435 } 2436 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2437 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2438 CNTR_INVALID_VL); 2439 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2440 /* overflow/wrapped */ 2441 rsp->link_error_recovery = cpu_to_be32(~0); 2442 } else { 2443 rsp->link_error_recovery = cpu_to_be32(tmp2); 2444 } 2445 rsp->port_rcv_errors = 2446 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2447 rsp->excessive_buffer_overruns = 2448 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2449 rsp->fm_config_errors = 2450 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2451 CNTR_INVALID_VL)); 2452 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2453 CNTR_INVALID_VL)); 2454 2455 /* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */ 2456 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2457 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2458 2459 vlinfo = &rsp->vls[0]; 2460 vfi = 0; 2461 /* The vl_select_mask has been checked above, and we know 2462 * that it contains only entries which represent valid VLs. 2463 * So in the for_each_set_bit() loop below, we don't need 2464 * any additional checks for vl. 2465 */ 2466 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2467 8 * sizeof(vl_select_mask)) { 2468 memset(vlinfo, 0, sizeof(*vlinfo)); 2469 2470 tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl)); 2471 rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp); 2472 2473 rsp->vls[vfi].port_vl_rcv_pkts = 2474 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2475 idx_from_vl(vl))); 2476 2477 rsp->vls[vfi].port_vl_xmit_data = 2478 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2479 idx_from_vl(vl))); 2480 2481 rsp->vls[vfi].port_vl_xmit_pkts = 2482 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2483 idx_from_vl(vl))); 2484 2485 rsp->vls[vfi].port_vl_xmit_wait = 2486 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2487 idx_from_vl(vl))); 2488 2489 rsp->vls[vfi].port_vl_rcv_fecn = 2490 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2491 idx_from_vl(vl))); 2492 2493 rsp->vls[vfi].port_vl_rcv_becn = 2494 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2495 idx_from_vl(vl))); 2496 2497 vlinfo++; 2498 vfi++; 2499 } 2500 2501 a0_portstatus(ppd, rsp, vl_select_mask); 2502 2503 if (resp_len) 2504 *resp_len += response_data_size; 2505 2506 return reply((struct ib_mad_hdr *)pmp); 2507 } 2508 2509 static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port, 2510 u8 res_lli, u8 res_ler) 2511 { 2512 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2513 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2514 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2515 u64 error_counter_summary = 0, tmp; 2516 2517 error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2518 CNTR_INVALID_VL); 2519 /* port_rcv_switch_relay_errors is 0 for HFIs */ 2520 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD, 2521 CNTR_INVALID_VL); 2522 error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2523 CNTR_INVALID_VL); 2524 error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2525 CNTR_INVALID_VL); 2526 /* local link integrity must be right-shifted by the lli resolution */ 2527 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2528 tmp += read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2529 error_counter_summary += (tmp >> res_lli); 2530 /* link error recovery must b right-shifted by the ler resolution */ 2531 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2532 tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); 2533 error_counter_summary += (tmp >> res_ler); 2534 error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR, 2535 CNTR_INVALID_VL); 2536 error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 2537 error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2538 CNTR_INVALID_VL); 2539 /* ppd->link_downed is a 32-bit value */ 2540 error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN, 2541 CNTR_INVALID_VL); 2542 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2543 /* this is an 8-bit quantity */ 2544 error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff; 2545 2546 return error_counter_summary; 2547 } 2548 2549 static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp, 2550 u32 vl_select_mask) 2551 { 2552 if (!is_bx(ppd->dd)) { 2553 unsigned long vl; 2554 u64 sum_vl_xmit_wait = 0; 2555 u32 vl_all_mask = VL_MASK_ALL; 2556 2557 for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 2558 8 * sizeof(vl_all_mask)) { 2559 u64 tmp = sum_vl_xmit_wait + 2560 read_port_cntr(ppd, C_TX_WAIT_VL, 2561 idx_from_vl(vl)); 2562 if (tmp < sum_vl_xmit_wait) { 2563 /* we wrapped */ 2564 sum_vl_xmit_wait = (u64)~0; 2565 break; 2566 } 2567 sum_vl_xmit_wait = tmp; 2568 } 2569 if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) 2570 rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); 2571 } 2572 } 2573 2574 static void pma_get_opa_port_dctrs(struct ib_device *ibdev, 2575 struct _port_dctrs *rsp) 2576 { 2577 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2578 2579 rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, 2580 CNTR_INVALID_VL)); 2581 rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, 2582 CNTR_INVALID_VL)); 2583 rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, 2584 CNTR_INVALID_VL)); 2585 rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, 2586 CNTR_INVALID_VL)); 2587 rsp->port_multicast_xmit_pkts = 2588 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, 2589 CNTR_INVALID_VL)); 2590 rsp->port_multicast_rcv_pkts = 2591 cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, 2592 CNTR_INVALID_VL)); 2593 } 2594 2595 static int pma_get_opa_datacounters(struct opa_pma_mad *pmp, 2596 struct ib_device *ibdev, 2597 u8 port, u32 *resp_len) 2598 { 2599 struct opa_port_data_counters_msg *req = 2600 (struct opa_port_data_counters_msg *)pmp->data; 2601 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2602 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2603 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2604 struct _port_dctrs *rsp; 2605 struct _vls_dctrs *vlinfo; 2606 size_t response_data_size; 2607 u32 num_ports; 2608 u8 num_pslm; 2609 u8 lq, num_vls; 2610 u8 res_lli, res_ler; 2611 u64 port_mask; 2612 unsigned long port_num; 2613 unsigned long vl; 2614 u32 vl_select_mask; 2615 int vfi; 2616 2617 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2618 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2619 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2620 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2621 res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT; 2622 res_lli = res_lli ? res_lli + ADD_LLI : 0; 2623 res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT; 2624 res_ler = res_ler ? res_ler + ADD_LER : 0; 2625 2626 if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) { 2627 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2628 return reply((struct ib_mad_hdr *)pmp); 2629 } 2630 2631 /* Sanity check */ 2632 response_data_size = sizeof(struct opa_port_data_counters_msg) + 2633 num_vls * sizeof(struct _vls_dctrs); 2634 2635 if (response_data_size > sizeof(pmp->data)) { 2636 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2637 return reply((struct ib_mad_hdr *)pmp); 2638 } 2639 2640 /* 2641 * The bit set in the mask needs to be consistent with the 2642 * port the request came in on. 2643 */ 2644 port_mask = be64_to_cpu(req->port_select_mask[3]); 2645 port_num = find_first_bit((unsigned long *)&port_mask, 2646 sizeof(port_mask)); 2647 2648 if ((u8)port_num != port) { 2649 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2650 return reply((struct ib_mad_hdr *)pmp); 2651 } 2652 2653 rsp = &req->port[0]; 2654 memset(rsp, 0, sizeof(*rsp)); 2655 2656 rsp->port_number = port; 2657 /* 2658 * Note that link_quality_indicator is a 32 bit quantity in 2659 * 'datacounters' queries (as opposed to 'portinfo' queries, 2660 * where it's a byte). 2661 */ 2662 hfi1_read_link_quality(dd, &lq); 2663 rsp->link_quality_indicator = cpu_to_be32((u32)lq); 2664 pma_get_opa_port_dctrs(ibdev, rsp); 2665 2666 rsp->port_xmit_wait = 2667 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); 2668 rsp->port_rcv_fecn = 2669 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); 2670 rsp->port_rcv_becn = 2671 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); 2672 rsp->port_error_counter_summary = 2673 cpu_to_be64(get_error_counter_summary(ibdev, port, 2674 res_lli, res_ler)); 2675 2676 vlinfo = &rsp->vls[0]; 2677 vfi = 0; 2678 /* The vl_select_mask has been checked above, and we know 2679 * that it contains only entries which represent valid VLs. 2680 * So in the for_each_set_bit() loop below, we don't need 2681 * any additional checks for vl. 2682 */ 2683 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2684 8 * sizeof(req->vl_select_mask)) { 2685 memset(vlinfo, 0, sizeof(*vlinfo)); 2686 2687 rsp->vls[vfi].port_vl_xmit_data = 2688 cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, 2689 idx_from_vl(vl))); 2690 2691 rsp->vls[vfi].port_vl_rcv_data = 2692 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL, 2693 idx_from_vl(vl))); 2694 2695 rsp->vls[vfi].port_vl_xmit_pkts = 2696 cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, 2697 idx_from_vl(vl))); 2698 2699 rsp->vls[vfi].port_vl_rcv_pkts = 2700 cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, 2701 idx_from_vl(vl))); 2702 2703 rsp->vls[vfi].port_vl_xmit_wait = 2704 cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, 2705 idx_from_vl(vl))); 2706 2707 rsp->vls[vfi].port_vl_rcv_fecn = 2708 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, 2709 idx_from_vl(vl))); 2710 rsp->vls[vfi].port_vl_rcv_becn = 2711 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, 2712 idx_from_vl(vl))); 2713 2714 /* rsp->port_vl_xmit_time_cong is 0 for HFIs */ 2715 /* rsp->port_vl_xmit_wasted_bw ??? */ 2716 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? 2717 * does this differ from rsp->vls[vfi].port_vl_xmit_wait 2718 */ 2719 /*rsp->vls[vfi].port_vl_mark_fecn = 2720 * cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT 2721 * + offset)); 2722 */ 2723 vlinfo++; 2724 vfi++; 2725 } 2726 2727 a0_datacounters(ppd, rsp, vl_select_mask); 2728 2729 if (resp_len) 2730 *resp_len += response_data_size; 2731 2732 return reply((struct ib_mad_hdr *)pmp); 2733 } 2734 2735 static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp, 2736 struct ib_device *ibdev, u8 port) 2737 { 2738 struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *) 2739 pmp->data; 2740 struct _port_dctrs rsp; 2741 2742 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2743 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2744 goto bail; 2745 } 2746 2747 memset(&rsp, 0, sizeof(rsp)); 2748 pma_get_opa_port_dctrs(ibdev, &rsp); 2749 2750 p->port_xmit_data = rsp.port_xmit_data; 2751 p->port_rcv_data = rsp.port_rcv_data; 2752 p->port_xmit_packets = rsp.port_xmit_pkts; 2753 p->port_rcv_packets = rsp.port_rcv_pkts; 2754 p->port_unicast_xmit_packets = 0; 2755 p->port_unicast_rcv_packets = 0; 2756 p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts; 2757 p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts; 2758 2759 bail: 2760 return reply((struct ib_mad_hdr *)pmp); 2761 } 2762 2763 static void pma_get_opa_port_ectrs(struct ib_device *ibdev, 2764 struct _port_ectrs *rsp, u8 port) 2765 { 2766 u64 tmp, tmp2; 2767 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2768 struct hfi1_ibport *ibp = to_iport(ibdev, port); 2769 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2770 2771 tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); 2772 tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 2773 CNTR_INVALID_VL); 2774 if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { 2775 /* overflow/wrapped */ 2776 rsp->link_error_recovery = cpu_to_be32(~0); 2777 } else { 2778 rsp->link_error_recovery = cpu_to_be32(tmp2); 2779 } 2780 2781 rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, 2782 CNTR_INVALID_VL)); 2783 rsp->port_rcv_errors = 2784 cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); 2785 rsp->port_rcv_remote_physical_errors = 2786 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2787 CNTR_INVALID_VL)); 2788 rsp->port_rcv_switch_relay_errors = 0; 2789 rsp->port_xmit_discards = 2790 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, 2791 CNTR_INVALID_VL)); 2792 rsp->port_xmit_constraint_errors = 2793 cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, 2794 CNTR_INVALID_VL)); 2795 rsp->port_rcv_constraint_errors = 2796 cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, 2797 CNTR_INVALID_VL)); 2798 tmp = read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL); 2799 tmp2 = tmp + read_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL); 2800 if (tmp2 < tmp) { 2801 /* overflow/wrapped */ 2802 rsp->local_link_integrity_errors = cpu_to_be64(~0); 2803 } else { 2804 rsp->local_link_integrity_errors = cpu_to_be64(tmp2); 2805 } 2806 rsp->excessive_buffer_overruns = 2807 cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); 2808 } 2809 2810 static int pma_get_opa_porterrors(struct opa_pma_mad *pmp, 2811 struct ib_device *ibdev, 2812 u8 port, u32 *resp_len) 2813 { 2814 size_t response_data_size; 2815 struct _port_ectrs *rsp; 2816 u8 port_num; 2817 struct opa_port_error_counters64_msg *req; 2818 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2819 u32 num_ports; 2820 u8 num_pslm; 2821 u8 num_vls; 2822 struct hfi1_ibport *ibp; 2823 struct hfi1_pportdata *ppd; 2824 struct _vls_ectrs *vlinfo; 2825 unsigned long vl; 2826 u64 port_mask, tmp; 2827 u32 vl_select_mask; 2828 int vfi; 2829 2830 req = (struct opa_port_error_counters64_msg *)pmp->data; 2831 2832 num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 2833 2834 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 2835 num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); 2836 2837 if (num_ports != 1 || num_ports != num_pslm) { 2838 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2839 return reply((struct ib_mad_hdr *)pmp); 2840 } 2841 2842 response_data_size = sizeof(struct opa_port_error_counters64_msg) + 2843 num_vls * sizeof(struct _vls_ectrs); 2844 2845 if (response_data_size > sizeof(pmp->data)) { 2846 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2847 return reply((struct ib_mad_hdr *)pmp); 2848 } 2849 /* 2850 * The bit set in the mask needs to be consistent with the 2851 * port the request came in on. 2852 */ 2853 port_mask = be64_to_cpu(req->port_select_mask[3]); 2854 port_num = find_first_bit((unsigned long *)&port_mask, 2855 sizeof(port_mask)); 2856 2857 if (port_num != port) { 2858 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2859 return reply((struct ib_mad_hdr *)pmp); 2860 } 2861 2862 rsp = &req->port[0]; 2863 2864 ibp = to_iport(ibdev, port_num); 2865 ppd = ppd_from_ibp(ibp); 2866 2867 memset(rsp, 0, sizeof(*rsp)); 2868 rsp->port_number = port_num; 2869 2870 pma_get_opa_port_ectrs(ibdev, rsp, port_num); 2871 2872 rsp->port_rcv_remote_physical_errors = 2873 cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, 2874 CNTR_INVALID_VL)); 2875 rsp->fm_config_errors = 2876 cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, 2877 CNTR_INVALID_VL)); 2878 tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); 2879 2880 rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; 2881 2882 vlinfo = &rsp->vls[0]; 2883 vfi = 0; 2884 vl_select_mask = be32_to_cpu(req->vl_select_mask); 2885 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 2886 8 * sizeof(req->vl_select_mask)) { 2887 memset(vlinfo, 0, sizeof(*vlinfo)); 2888 /* vlinfo->vls[vfi].port_vl_xmit_discards ??? */ 2889 vlinfo += 1; 2890 vfi++; 2891 } 2892 2893 if (resp_len) 2894 *resp_len += response_data_size; 2895 2896 return reply((struct ib_mad_hdr *)pmp); 2897 } 2898 2899 static int pma_get_ib_portcounters(struct ib_pma_mad *pmp, 2900 struct ib_device *ibdev, u8 port) 2901 { 2902 struct ib_pma_portcounters *p = (struct ib_pma_portcounters *) 2903 pmp->data; 2904 struct _port_ectrs rsp; 2905 u64 temp_link_overrun_errors; 2906 u64 temp_64; 2907 u32 temp_32; 2908 2909 memset(&rsp, 0, sizeof(rsp)); 2910 pma_get_opa_port_ectrs(ibdev, &rsp, port); 2911 2912 if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { 2913 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 2914 goto bail; 2915 } 2916 2917 p->symbol_error_counter = 0; /* N/A for OPA */ 2918 2919 temp_32 = be32_to_cpu(rsp.link_error_recovery); 2920 if (temp_32 > 0xFFUL) 2921 p->link_error_recovery_counter = 0xFF; 2922 else 2923 p->link_error_recovery_counter = (u8)temp_32; 2924 2925 temp_32 = be32_to_cpu(rsp.link_downed); 2926 if (temp_32 > 0xFFUL) 2927 p->link_downed_counter = 0xFF; 2928 else 2929 p->link_downed_counter = (u8)temp_32; 2930 2931 temp_64 = be64_to_cpu(rsp.port_rcv_errors); 2932 if (temp_64 > 0xFFFFUL) 2933 p->port_rcv_errors = cpu_to_be16(0xFFFF); 2934 else 2935 p->port_rcv_errors = cpu_to_be16((u16)temp_64); 2936 2937 temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors); 2938 if (temp_64 > 0xFFFFUL) 2939 p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF); 2940 else 2941 p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64); 2942 2943 temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors); 2944 p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64); 2945 2946 temp_64 = be64_to_cpu(rsp.port_xmit_discards); 2947 if (temp_64 > 0xFFFFUL) 2948 p->port_xmit_discards = cpu_to_be16(0xFFFF); 2949 else 2950 p->port_xmit_discards = cpu_to_be16((u16)temp_64); 2951 2952 temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors); 2953 if (temp_64 > 0xFFUL) 2954 p->port_xmit_constraint_errors = 0xFF; 2955 else 2956 p->port_xmit_constraint_errors = (u8)temp_64; 2957 2958 temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors); 2959 if (temp_64 > 0xFFUL) 2960 p->port_rcv_constraint_errors = 0xFFUL; 2961 else 2962 p->port_rcv_constraint_errors = (u8)temp_64; 2963 2964 /* LocalLink: 7:4, BufferOverrun: 3:0 */ 2965 temp_64 = be64_to_cpu(rsp.local_link_integrity_errors); 2966 if (temp_64 > 0xFUL) 2967 temp_64 = 0xFUL; 2968 2969 temp_link_overrun_errors = temp_64 << 4; 2970 2971 temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns); 2972 if (temp_64 > 0xFUL) 2973 temp_64 = 0xFUL; 2974 temp_link_overrun_errors |= temp_64; 2975 2976 p->link_overrun_errors = (u8)temp_link_overrun_errors; 2977 2978 p->vl15_dropped = 0; /* N/A for OPA */ 2979 2980 bail: 2981 return reply((struct ib_mad_hdr *)pmp); 2982 } 2983 2984 static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp, 2985 struct ib_device *ibdev, 2986 u8 port, u32 *resp_len) 2987 { 2988 size_t response_data_size; 2989 struct _port_ei *rsp; 2990 struct opa_port_error_info_msg *req; 2991 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 2992 u64 port_mask; 2993 u32 num_ports; 2994 u8 port_num; 2995 u8 num_pslm; 2996 u64 reg; 2997 2998 req = (struct opa_port_error_info_msg *)pmp->data; 2999 rsp = &req->port[0]; 3000 3001 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 3002 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 3003 3004 memset(rsp, 0, sizeof(*rsp)); 3005 3006 if (num_ports != 1 || num_ports != num_pslm) { 3007 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3008 return reply((struct ib_mad_hdr *)pmp); 3009 } 3010 3011 /* Sanity check */ 3012 response_data_size = sizeof(struct opa_port_error_info_msg); 3013 3014 if (response_data_size > sizeof(pmp->data)) { 3015 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3016 return reply((struct ib_mad_hdr *)pmp); 3017 } 3018 3019 /* 3020 * The bit set in the mask needs to be consistent with the port 3021 * the request came in on. 3022 */ 3023 port_mask = be64_to_cpu(req->port_select_mask[3]); 3024 port_num = find_first_bit((unsigned long *)&port_mask, 3025 sizeof(port_mask)); 3026 3027 if (port_num != port) { 3028 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3029 return reply((struct ib_mad_hdr *)pmp); 3030 } 3031 3032 /* PortRcvErrorInfo */ 3033 rsp->port_rcv_ei.status_and_code = 3034 dd->err_info_rcvport.status_and_code; 3035 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1, 3036 &dd->err_info_rcvport.packet_flit1, sizeof(u64)); 3037 memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2, 3038 &dd->err_info_rcvport.packet_flit2, sizeof(u64)); 3039 3040 /* ExcessiverBufferOverrunInfo */ 3041 reg = read_csr(dd, RCV_ERR_INFO); 3042 if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) { 3043 /* 3044 * if the RcvExcessBufferOverrun bit is set, save SC of 3045 * first pkt that encountered an excess buffer overrun 3046 */ 3047 u8 tmp = (u8)reg; 3048 3049 tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK; 3050 tmp <<= 2; 3051 rsp->excessive_buffer_overrun_ei.status_and_sc = tmp; 3052 /* set the status bit */ 3053 rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80; 3054 } 3055 3056 rsp->port_xmit_constraint_ei.status = 3057 dd->err_info_xmit_constraint.status; 3058 rsp->port_xmit_constraint_ei.pkey = 3059 cpu_to_be16(dd->err_info_xmit_constraint.pkey); 3060 rsp->port_xmit_constraint_ei.slid = 3061 cpu_to_be32(dd->err_info_xmit_constraint.slid); 3062 3063 rsp->port_rcv_constraint_ei.status = 3064 dd->err_info_rcv_constraint.status; 3065 rsp->port_rcv_constraint_ei.pkey = 3066 cpu_to_be16(dd->err_info_rcv_constraint.pkey); 3067 rsp->port_rcv_constraint_ei.slid = 3068 cpu_to_be32(dd->err_info_rcv_constraint.slid); 3069 3070 /* UncorrectableErrorInfo */ 3071 rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable; 3072 3073 /* FMConfigErrorInfo */ 3074 rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig; 3075 3076 if (resp_len) 3077 *resp_len += response_data_size; 3078 3079 return reply((struct ib_mad_hdr *)pmp); 3080 } 3081 3082 static int pma_set_opa_portstatus(struct opa_pma_mad *pmp, 3083 struct ib_device *ibdev, 3084 u8 port, u32 *resp_len) 3085 { 3086 struct opa_clear_port_status *req = 3087 (struct opa_clear_port_status *)pmp->data; 3088 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3089 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3090 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3091 u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; 3092 u64 portn = be64_to_cpu(req->port_select_mask[3]); 3093 u32 counter_select = be32_to_cpu(req->counter_select_mask); 3094 u32 vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */ 3095 unsigned long vl; 3096 3097 if ((nports != 1) || (portn != 1 << port)) { 3098 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3099 return reply((struct ib_mad_hdr *)pmp); 3100 } 3101 /* 3102 * only counters returned by pma_get_opa_portstatus() are 3103 * handled, so when pma_get_opa_portstatus() gets a fix, 3104 * the corresponding change should be made here as well. 3105 */ 3106 3107 if (counter_select & CS_PORT_XMIT_DATA) 3108 write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0); 3109 3110 if (counter_select & CS_PORT_RCV_DATA) 3111 write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0); 3112 3113 if (counter_select & CS_PORT_XMIT_PKTS) 3114 write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3115 3116 if (counter_select & CS_PORT_RCV_PKTS) 3117 write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0); 3118 3119 if (counter_select & CS_PORT_MCAST_XMIT_PKTS) 3120 write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0); 3121 3122 if (counter_select & CS_PORT_MCAST_RCV_PKTS) 3123 write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0); 3124 3125 if (counter_select & CS_PORT_XMIT_WAIT) 3126 write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0); 3127 3128 /* ignore cs_sw_portCongestion for HFIs */ 3129 3130 if (counter_select & CS_PORT_RCV_FECN) 3131 write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0); 3132 3133 if (counter_select & CS_PORT_RCV_BECN) 3134 write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0); 3135 3136 /* ignore cs_port_xmit_time_cong for HFIs */ 3137 /* ignore cs_port_xmit_wasted_bw for now */ 3138 /* ignore cs_port_xmit_wait_data for now */ 3139 if (counter_select & CS_PORT_RCV_BUBBLE) 3140 write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0); 3141 3142 /* Only applicable for switch */ 3143 /* if (counter_select & CS_PORT_MARK_FECN) 3144 * write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0); 3145 */ 3146 3147 if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS) 3148 write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0); 3149 3150 /* ignore cs_port_rcv_switch_relay_errors for HFIs */ 3151 if (counter_select & CS_PORT_XMIT_DISCARDS) 3152 write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0); 3153 3154 if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS) 3155 write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0); 3156 3157 if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS) 3158 write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0); 3159 3160 if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS) { 3161 write_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL, 0); 3162 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3163 } 3164 3165 if (counter_select & CS_LINK_ERROR_RECOVERY) { 3166 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3167 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, 3168 CNTR_INVALID_VL, 0); 3169 } 3170 3171 if (counter_select & CS_PORT_RCV_ERRORS) 3172 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3173 3174 if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) { 3175 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3176 dd->rcv_ovfl_cnt = 0; 3177 } 3178 3179 if (counter_select & CS_FM_CONFIG_ERRORS) 3180 write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0); 3181 3182 if (counter_select & CS_LINK_DOWNED) 3183 write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0); 3184 3185 if (counter_select & CS_UNCORRECTABLE_ERRORS) 3186 write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0); 3187 3188 for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 3189 8 * sizeof(vl_select_mask)) { 3190 if (counter_select & CS_PORT_XMIT_DATA) 3191 write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0); 3192 3193 if (counter_select & CS_PORT_RCV_DATA) 3194 write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0); 3195 3196 if (counter_select & CS_PORT_XMIT_PKTS) 3197 write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0); 3198 3199 if (counter_select & CS_PORT_RCV_PKTS) 3200 write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0); 3201 3202 if (counter_select & CS_PORT_XMIT_WAIT) 3203 write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0); 3204 3205 /* sw_port_vl_congestion is 0 for HFIs */ 3206 if (counter_select & CS_PORT_RCV_FECN) 3207 write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0); 3208 3209 if (counter_select & CS_PORT_RCV_BECN) 3210 write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0); 3211 3212 /* port_vl_xmit_time_cong is 0 for HFIs */ 3213 /* port_vl_xmit_wasted_bw ??? */ 3214 /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */ 3215 if (counter_select & CS_PORT_RCV_BUBBLE) 3216 write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0); 3217 3218 /* if (counter_select & CS_PORT_MARK_FECN) 3219 * write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0); 3220 */ 3221 /* port_vl_xmit_discards ??? */ 3222 } 3223 3224 if (resp_len) 3225 *resp_len += sizeof(*req); 3226 3227 return reply((struct ib_mad_hdr *)pmp); 3228 } 3229 3230 static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp, 3231 struct ib_device *ibdev, 3232 u8 port, u32 *resp_len) 3233 { 3234 struct _port_ei *rsp; 3235 struct opa_port_error_info_msg *req; 3236 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3237 u64 port_mask; 3238 u32 num_ports; 3239 u8 port_num; 3240 u8 num_pslm; 3241 u32 error_info_select; 3242 3243 req = (struct opa_port_error_info_msg *)pmp->data; 3244 rsp = &req->port[0]; 3245 3246 num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); 3247 num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); 3248 3249 memset(rsp, 0, sizeof(*rsp)); 3250 3251 if (num_ports != 1 || num_ports != num_pslm) { 3252 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3253 return reply((struct ib_mad_hdr *)pmp); 3254 } 3255 3256 /* 3257 * The bit set in the mask needs to be consistent with the port 3258 * the request came in on. 3259 */ 3260 port_mask = be64_to_cpu(req->port_select_mask[3]); 3261 port_num = find_first_bit((unsigned long *)&port_mask, 3262 sizeof(port_mask)); 3263 3264 if (port_num != port) { 3265 pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; 3266 return reply((struct ib_mad_hdr *)pmp); 3267 } 3268 3269 error_info_select = be32_to_cpu(req->error_info_select_mask); 3270 3271 /* PortRcvErrorInfo */ 3272 if (error_info_select & ES_PORT_RCV_ERROR_INFO) 3273 /* turn off status bit */ 3274 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3275 3276 /* ExcessiverBufferOverrunInfo */ 3277 if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO) 3278 /* 3279 * status bit is essentially kept in the h/w - bit 5 of 3280 * RCV_ERR_INFO 3281 */ 3282 write_csr(dd, RCV_ERR_INFO, 3283 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 3284 3285 if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO) 3286 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3287 3288 if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO) 3289 dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK; 3290 3291 /* UncorrectableErrorInfo */ 3292 if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO) 3293 /* turn off status bit */ 3294 dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK; 3295 3296 /* FMConfigErrorInfo */ 3297 if (error_info_select & ES_FM_CONFIG_ERROR_INFO) 3298 /* turn off status bit */ 3299 dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK; 3300 3301 if (resp_len) 3302 *resp_len += sizeof(*req); 3303 3304 return reply((struct ib_mad_hdr *)pmp); 3305 } 3306 3307 struct opa_congestion_info_attr { 3308 __be16 congestion_info; 3309 u8 control_table_cap; /* Multiple of 64 entry unit CCTs */ 3310 u8 congestion_log_length; 3311 } __packed; 3312 3313 static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data, 3314 struct ib_device *ibdev, u8 port, 3315 u32 *resp_len) 3316 { 3317 struct opa_congestion_info_attr *p = 3318 (struct opa_congestion_info_attr *)data; 3319 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3320 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3321 3322 p->congestion_info = 0; 3323 p->control_table_cap = ppd->cc_max_table_entries; 3324 p->congestion_log_length = OPA_CONG_LOG_ELEMS; 3325 3326 if (resp_len) 3327 *resp_len += sizeof(*p); 3328 3329 return reply((struct ib_mad_hdr *)smp); 3330 } 3331 3332 static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am, 3333 u8 *data, struct ib_device *ibdev, 3334 u8 port, u32 *resp_len) 3335 { 3336 int i; 3337 struct opa_congestion_setting_attr *p = 3338 (struct opa_congestion_setting_attr *)data; 3339 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3340 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3341 struct opa_congestion_setting_entry_shadow *entries; 3342 struct cc_state *cc_state; 3343 3344 rcu_read_lock(); 3345 3346 cc_state = get_cc_state(ppd); 3347 3348 if (!cc_state) { 3349 rcu_read_unlock(); 3350 return reply((struct ib_mad_hdr *)smp); 3351 } 3352 3353 entries = cc_state->cong_setting.entries; 3354 p->port_control = cpu_to_be16(cc_state->cong_setting.port_control); 3355 p->control_map = cpu_to_be32(cc_state->cong_setting.control_map); 3356 for (i = 0; i < OPA_MAX_SLS; i++) { 3357 p->entries[i].ccti_increase = entries[i].ccti_increase; 3358 p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer); 3359 p->entries[i].trigger_threshold = 3360 entries[i].trigger_threshold; 3361 p->entries[i].ccti_min = entries[i].ccti_min; 3362 } 3363 3364 rcu_read_unlock(); 3365 3366 if (resp_len) 3367 *resp_len += sizeof(*p); 3368 3369 return reply((struct ib_mad_hdr *)smp); 3370 } 3371 3372 /* 3373 * Apply congestion control information stored in the ppd to the 3374 * active structure. 3375 */ 3376 static void apply_cc_state(struct hfi1_pportdata *ppd) 3377 { 3378 struct cc_state *old_cc_state, *new_cc_state; 3379 3380 new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL); 3381 if (!new_cc_state) 3382 return; 3383 3384 /* 3385 * Hold the lock for updating *and* to prevent ppd information 3386 * from changing during the update. 3387 */ 3388 spin_lock(&ppd->cc_state_lock); 3389 3390 old_cc_state = get_cc_state(ppd); 3391 if (!old_cc_state) { 3392 /* never active, or shutting down */ 3393 spin_unlock(&ppd->cc_state_lock); 3394 kfree(new_cc_state); 3395 return; 3396 } 3397 3398 *new_cc_state = *old_cc_state; 3399 3400 new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1; 3401 memcpy(new_cc_state->cct.entries, ppd->ccti_entries, 3402 ppd->total_cct_entry * sizeof(struct ib_cc_table_entry)); 3403 3404 new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED; 3405 new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map; 3406 memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries, 3407 OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry)); 3408 3409 rcu_assign_pointer(ppd->cc_state, new_cc_state); 3410 3411 spin_unlock(&ppd->cc_state_lock); 3412 3413 call_rcu(&old_cc_state->rcu, cc_state_reclaim); 3414 } 3415 3416 static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data, 3417 struct ib_device *ibdev, u8 port, 3418 u32 *resp_len) 3419 { 3420 struct opa_congestion_setting_attr *p = 3421 (struct opa_congestion_setting_attr *)data; 3422 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3423 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3424 struct opa_congestion_setting_entry_shadow *entries; 3425 int i; 3426 3427 /* 3428 * Save details from packet into the ppd. Hold the cc_state_lock so 3429 * our information is consistent with anyone trying to apply the state. 3430 */ 3431 spin_lock(&ppd->cc_state_lock); 3432 ppd->cc_sl_control_map = be32_to_cpu(p->control_map); 3433 3434 entries = ppd->congestion_entries; 3435 for (i = 0; i < OPA_MAX_SLS; i++) { 3436 entries[i].ccti_increase = p->entries[i].ccti_increase; 3437 entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer); 3438 entries[i].trigger_threshold = 3439 p->entries[i].trigger_threshold; 3440 entries[i].ccti_min = p->entries[i].ccti_min; 3441 } 3442 spin_unlock(&ppd->cc_state_lock); 3443 3444 /* now apply the information */ 3445 apply_cc_state(ppd); 3446 3447 return __subn_get_opa_cong_setting(smp, am, data, ibdev, port, 3448 resp_len); 3449 } 3450 3451 static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am, 3452 u8 *data, struct ib_device *ibdev, 3453 u8 port, u32 *resp_len) 3454 { 3455 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3456 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3457 struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data; 3458 s64 ts; 3459 int i; 3460 3461 if (am != 0) { 3462 smp->status |= IB_SMP_INVALID_FIELD; 3463 return reply((struct ib_mad_hdr *)smp); 3464 } 3465 3466 spin_lock_irq(&ppd->cc_log_lock); 3467 3468 cong_log->log_type = OPA_CC_LOG_TYPE_HFI; 3469 cong_log->congestion_flags = 0; 3470 cong_log->threshold_event_counter = 3471 cpu_to_be16(ppd->threshold_event_counter); 3472 memcpy(cong_log->threshold_cong_event_map, 3473 ppd->threshold_cong_event_map, 3474 sizeof(cong_log->threshold_cong_event_map)); 3475 /* keep timestamp in units of 1.024 usec */ 3476 ts = ktime_to_ns(ktime_get()) / 1024; 3477 cong_log->current_time_stamp = cpu_to_be32(ts); 3478 for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) { 3479 struct opa_hfi1_cong_log_event_internal *cce = 3480 &ppd->cc_events[ppd->cc_mad_idx++]; 3481 if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS) 3482 ppd->cc_mad_idx = 0; 3483 /* 3484 * Entries which are older than twice the time 3485 * required to wrap the counter are supposed to 3486 * be zeroed (CA10-49 IBTA, release 1.2.1, V1). 3487 */ 3488 if ((u64)(ts - cce->timestamp) > (2 * UINT_MAX)) 3489 continue; 3490 memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3); 3491 memcpy(cong_log->events[i].remote_qp_number_cn_entry, 3492 &cce->rqpn, 3); 3493 cong_log->events[i].sl_svc_type_cn_entry = 3494 ((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7); 3495 cong_log->events[i].remote_lid_cn_entry = 3496 cpu_to_be32(cce->rlid); 3497 cong_log->events[i].timestamp_cn_entry = 3498 cpu_to_be32(cce->timestamp); 3499 } 3500 3501 /* 3502 * Reset threshold_cong_event_map, and threshold_event_counter 3503 * to 0 when log is read. 3504 */ 3505 memset(ppd->threshold_cong_event_map, 0x0, 3506 sizeof(ppd->threshold_cong_event_map)); 3507 ppd->threshold_event_counter = 0; 3508 3509 spin_unlock_irq(&ppd->cc_log_lock); 3510 3511 if (resp_len) 3512 *resp_len += sizeof(struct opa_hfi1_cong_log); 3513 3514 return reply((struct ib_mad_hdr *)smp); 3515 } 3516 3517 static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3518 struct ib_device *ibdev, u8 port, 3519 u32 *resp_len) 3520 { 3521 struct ib_cc_table_attr *cc_table_attr = 3522 (struct ib_cc_table_attr *)data; 3523 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3524 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3525 u32 start_block = OPA_AM_START_BLK(am); 3526 u32 n_blocks = OPA_AM_NBLK(am); 3527 struct ib_cc_table_entry_shadow *entries; 3528 int i, j; 3529 u32 sentry, eentry; 3530 struct cc_state *cc_state; 3531 3532 /* sanity check n_blocks, start_block */ 3533 if (n_blocks == 0 || 3534 start_block + n_blocks > ppd->cc_max_table_entries) { 3535 smp->status |= IB_SMP_INVALID_FIELD; 3536 return reply((struct ib_mad_hdr *)smp); 3537 } 3538 3539 rcu_read_lock(); 3540 3541 cc_state = get_cc_state(ppd); 3542 3543 if (!cc_state) { 3544 rcu_read_unlock(); 3545 return reply((struct ib_mad_hdr *)smp); 3546 } 3547 3548 sentry = start_block * IB_CCT_ENTRIES; 3549 eentry = sentry + (IB_CCT_ENTRIES * n_blocks); 3550 3551 cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit); 3552 3553 entries = cc_state->cct.entries; 3554 3555 /* return n_blocks, though the last block may not be full */ 3556 for (j = 0, i = sentry; i < eentry; j++, i++) 3557 cc_table_attr->ccti_entries[j].entry = 3558 cpu_to_be16(entries[i].entry); 3559 3560 rcu_read_unlock(); 3561 3562 if (resp_len) 3563 *resp_len += sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1); 3564 3565 return reply((struct ib_mad_hdr *)smp); 3566 } 3567 3568 void cc_state_reclaim(struct rcu_head *rcu) 3569 { 3570 struct cc_state *cc_state = container_of(rcu, struct cc_state, rcu); 3571 3572 kfree(cc_state); 3573 } 3574 3575 static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, 3576 struct ib_device *ibdev, u8 port, 3577 u32 *resp_len) 3578 { 3579 struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data; 3580 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3581 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3582 u32 start_block = OPA_AM_START_BLK(am); 3583 u32 n_blocks = OPA_AM_NBLK(am); 3584 struct ib_cc_table_entry_shadow *entries; 3585 int i, j; 3586 u32 sentry, eentry; 3587 u16 ccti_limit; 3588 3589 /* sanity check n_blocks, start_block */ 3590 if (n_blocks == 0 || 3591 start_block + n_blocks > ppd->cc_max_table_entries) { 3592 smp->status |= IB_SMP_INVALID_FIELD; 3593 return reply((struct ib_mad_hdr *)smp); 3594 } 3595 3596 sentry = start_block * IB_CCT_ENTRIES; 3597 eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) + 3598 (be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1; 3599 3600 /* sanity check ccti_limit */ 3601 ccti_limit = be16_to_cpu(p->ccti_limit); 3602 if (ccti_limit + 1 > eentry) { 3603 smp->status |= IB_SMP_INVALID_FIELD; 3604 return reply((struct ib_mad_hdr *)smp); 3605 } 3606 3607 /* 3608 * Save details from packet into the ppd. Hold the cc_state_lock so 3609 * our information is consistent with anyone trying to apply the state. 3610 */ 3611 spin_lock(&ppd->cc_state_lock); 3612 ppd->total_cct_entry = ccti_limit + 1; 3613 entries = ppd->ccti_entries; 3614 for (j = 0, i = sentry; i < eentry; j++, i++) 3615 entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry); 3616 spin_unlock(&ppd->cc_state_lock); 3617 3618 /* now apply the information */ 3619 apply_cc_state(ppd); 3620 3621 return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len); 3622 } 3623 3624 struct opa_led_info { 3625 __be32 rsvd_led_mask; 3626 __be32 rsvd; 3627 }; 3628 3629 #define OPA_LED_SHIFT 31 3630 #define OPA_LED_MASK BIT(OPA_LED_SHIFT) 3631 3632 static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3633 struct ib_device *ibdev, u8 port, 3634 u32 *resp_len) 3635 { 3636 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3637 struct hfi1_pportdata *ppd = dd->pport; 3638 struct opa_led_info *p = (struct opa_led_info *)data; 3639 u32 nport = OPA_AM_NPORT(am); 3640 u32 is_beaconing_active; 3641 3642 if (nport != 1) { 3643 smp->status |= IB_SMP_INVALID_FIELD; 3644 return reply((struct ib_mad_hdr *)smp); 3645 } 3646 3647 /* 3648 * This pairs with the memory barrier in hfi1_start_led_override to 3649 * ensure that we read the correct state of LED beaconing represented 3650 * by led_override_timer_active 3651 */ 3652 smp_rmb(); 3653 is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); 3654 p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT); 3655 3656 if (resp_len) 3657 *resp_len += sizeof(struct opa_led_info); 3658 3659 return reply((struct ib_mad_hdr *)smp); 3660 } 3661 3662 static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, 3663 struct ib_device *ibdev, u8 port, 3664 u32 *resp_len) 3665 { 3666 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 3667 struct opa_led_info *p = (struct opa_led_info *)data; 3668 u32 nport = OPA_AM_NPORT(am); 3669 int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK); 3670 3671 if (nport != 1) { 3672 smp->status |= IB_SMP_INVALID_FIELD; 3673 return reply((struct ib_mad_hdr *)smp); 3674 } 3675 3676 if (on) 3677 hfi1_start_led_override(dd->pport, 2000, 1500); 3678 else 3679 shutdown_led_override(dd->pport); 3680 3681 return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len); 3682 } 3683 3684 static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3685 u8 *data, struct ib_device *ibdev, u8 port, 3686 u32 *resp_len) 3687 { 3688 int ret; 3689 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3690 3691 switch (attr_id) { 3692 case IB_SMP_ATTR_NODE_DESC: 3693 ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port, 3694 resp_len); 3695 break; 3696 case IB_SMP_ATTR_NODE_INFO: 3697 ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port, 3698 resp_len); 3699 break; 3700 case IB_SMP_ATTR_PORT_INFO: 3701 ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, 3702 resp_len); 3703 break; 3704 case IB_SMP_ATTR_PKEY_TABLE: 3705 ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port, 3706 resp_len); 3707 break; 3708 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3709 ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, 3710 resp_len); 3711 break; 3712 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3713 ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, 3714 resp_len); 3715 break; 3716 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3717 ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, 3718 resp_len); 3719 break; 3720 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3721 ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3722 resp_len); 3723 break; 3724 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3725 ret = __subn_get_opa_psi(smp, am, data, ibdev, port, 3726 resp_len); 3727 break; 3728 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3729 ret = __subn_get_opa_bct(smp, am, data, ibdev, port, 3730 resp_len); 3731 break; 3732 case OPA_ATTRIB_ID_CABLE_INFO: 3733 ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port, 3734 resp_len); 3735 break; 3736 case IB_SMP_ATTR_VL_ARB_TABLE: 3737 ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port, 3738 resp_len); 3739 break; 3740 case OPA_ATTRIB_ID_CONGESTION_INFO: 3741 ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port, 3742 resp_len); 3743 break; 3744 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3745 ret = __subn_get_opa_cong_setting(smp, am, data, ibdev, 3746 port, resp_len); 3747 break; 3748 case OPA_ATTRIB_ID_HFI_CONGESTION_LOG: 3749 ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev, 3750 port, resp_len); 3751 break; 3752 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3753 ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port, 3754 resp_len); 3755 break; 3756 case IB_SMP_ATTR_LED_INFO: 3757 ret = __subn_get_opa_led_info(smp, am, data, ibdev, port, 3758 resp_len); 3759 break; 3760 case IB_SMP_ATTR_SM_INFO: 3761 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3762 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3763 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3764 return IB_MAD_RESULT_SUCCESS; 3765 /* FALLTHROUGH */ 3766 default: 3767 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3768 ret = reply((struct ib_mad_hdr *)smp); 3769 break; 3770 } 3771 return ret; 3772 } 3773 3774 static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, 3775 u8 *data, struct ib_device *ibdev, u8 port, 3776 u32 *resp_len) 3777 { 3778 int ret; 3779 struct hfi1_ibport *ibp = to_iport(ibdev, port); 3780 3781 switch (attr_id) { 3782 case IB_SMP_ATTR_PORT_INFO: 3783 ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port, 3784 resp_len); 3785 break; 3786 case IB_SMP_ATTR_PKEY_TABLE: 3787 ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port, 3788 resp_len); 3789 break; 3790 case OPA_ATTRIB_ID_SL_TO_SC_MAP: 3791 ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port, 3792 resp_len); 3793 break; 3794 case OPA_ATTRIB_ID_SC_TO_SL_MAP: 3795 ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port, 3796 resp_len); 3797 break; 3798 case OPA_ATTRIB_ID_SC_TO_VLT_MAP: 3799 ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port, 3800 resp_len); 3801 break; 3802 case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: 3803 ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port, 3804 resp_len); 3805 break; 3806 case OPA_ATTRIB_ID_PORT_STATE_INFO: 3807 ret = __subn_set_opa_psi(smp, am, data, ibdev, port, 3808 resp_len); 3809 break; 3810 case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: 3811 ret = __subn_set_opa_bct(smp, am, data, ibdev, port, 3812 resp_len); 3813 break; 3814 case IB_SMP_ATTR_VL_ARB_TABLE: 3815 ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port, 3816 resp_len); 3817 break; 3818 case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: 3819 ret = __subn_set_opa_cong_setting(smp, am, data, ibdev, 3820 port, resp_len); 3821 break; 3822 case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: 3823 ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port, 3824 resp_len); 3825 break; 3826 case IB_SMP_ATTR_LED_INFO: 3827 ret = __subn_set_opa_led_info(smp, am, data, ibdev, port, 3828 resp_len); 3829 break; 3830 case IB_SMP_ATTR_SM_INFO: 3831 if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) 3832 return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; 3833 if (ibp->rvp.port_cap_flags & IB_PORT_SM) 3834 return IB_MAD_RESULT_SUCCESS; 3835 /* FALLTHROUGH */ 3836 default: 3837 smp->status |= IB_SMP_UNSUP_METH_ATTR; 3838 ret = reply((struct ib_mad_hdr *)smp); 3839 break; 3840 } 3841 return ret; 3842 } 3843 3844 static inline void set_aggr_error(struct opa_aggregate *ag) 3845 { 3846 ag->err_reqlength |= cpu_to_be16(0x8000); 3847 } 3848 3849 static int subn_get_opa_aggregate(struct opa_smp *smp, 3850 struct ib_device *ibdev, u8 port, 3851 u32 *resp_len) 3852 { 3853 int i; 3854 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3855 u8 *next_smp = opa_get_smp_data(smp); 3856 3857 if (num_attr < 1 || num_attr > 117) { 3858 smp->status |= IB_SMP_INVALID_FIELD; 3859 return reply((struct ib_mad_hdr *)smp); 3860 } 3861 3862 for (i = 0; i < num_attr; i++) { 3863 struct opa_aggregate *agg; 3864 size_t agg_data_len; 3865 size_t agg_size; 3866 u32 am; 3867 3868 agg = (struct opa_aggregate *)next_smp; 3869 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3870 agg_size = sizeof(*agg) + agg_data_len; 3871 am = be32_to_cpu(agg->attr_mod); 3872 3873 *resp_len += agg_size; 3874 3875 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3876 smp->status |= IB_SMP_INVALID_FIELD; 3877 return reply((struct ib_mad_hdr *)smp); 3878 } 3879 3880 /* zero the payload for this segment */ 3881 memset(next_smp + sizeof(*agg), 0, agg_data_len); 3882 3883 (void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data, 3884 ibdev, port, NULL); 3885 if (smp->status & ~IB_SMP_DIRECTION) { 3886 set_aggr_error(agg); 3887 return reply((struct ib_mad_hdr *)smp); 3888 } 3889 next_smp += agg_size; 3890 } 3891 3892 return reply((struct ib_mad_hdr *)smp); 3893 } 3894 3895 static int subn_set_opa_aggregate(struct opa_smp *smp, 3896 struct ib_device *ibdev, u8 port, 3897 u32 *resp_len) 3898 { 3899 int i; 3900 u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; 3901 u8 *next_smp = opa_get_smp_data(smp); 3902 3903 if (num_attr < 1 || num_attr > 117) { 3904 smp->status |= IB_SMP_INVALID_FIELD; 3905 return reply((struct ib_mad_hdr *)smp); 3906 } 3907 3908 for (i = 0; i < num_attr; i++) { 3909 struct opa_aggregate *agg; 3910 size_t agg_data_len; 3911 size_t agg_size; 3912 u32 am; 3913 3914 agg = (struct opa_aggregate *)next_smp; 3915 agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; 3916 agg_size = sizeof(*agg) + agg_data_len; 3917 am = be32_to_cpu(agg->attr_mod); 3918 3919 *resp_len += agg_size; 3920 3921 if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { 3922 smp->status |= IB_SMP_INVALID_FIELD; 3923 return reply((struct ib_mad_hdr *)smp); 3924 } 3925 3926 (void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data, 3927 ibdev, port, NULL); 3928 if (smp->status & ~IB_SMP_DIRECTION) { 3929 set_aggr_error(agg); 3930 return reply((struct ib_mad_hdr *)smp); 3931 } 3932 next_smp += agg_size; 3933 } 3934 3935 return reply((struct ib_mad_hdr *)smp); 3936 } 3937 3938 /* 3939 * OPAv1 specifies that, on the transition to link up, these counters 3940 * are cleared: 3941 * PortRcvErrors [*] 3942 * LinkErrorRecovery 3943 * LocalLinkIntegrityErrors 3944 * ExcessiveBufferOverruns [*] 3945 * 3946 * [*] Error info associated with these counters is retained, but the 3947 * error info status is reset to 0. 3948 */ 3949 void clear_linkup_counters(struct hfi1_devdata *dd) 3950 { 3951 /* PortRcvErrors */ 3952 write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); 3953 dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; 3954 /* LinkErrorRecovery */ 3955 write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); 3956 write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0); 3957 /* LocalLinkIntegrityErrors */ 3958 write_dev_cntr(dd, C_DC_TX_REPLAY, CNTR_INVALID_VL, 0); 3959 write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); 3960 /* ExcessiveBufferOverruns */ 3961 write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); 3962 dd->rcv_ovfl_cnt = 0; 3963 dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; 3964 } 3965 3966 /* 3967 * is_local_mad() returns 1 if 'mad' is sent from, and destined to the 3968 * local node, 0 otherwise. 3969 */ 3970 static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad, 3971 const struct ib_wc *in_wc) 3972 { 3973 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3974 const struct opa_smp *smp = (const struct opa_smp *)mad; 3975 3976 if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { 3977 return (smp->hop_cnt == 0 && 3978 smp->route.dr.dr_slid == OPA_LID_PERMISSIVE && 3979 smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE); 3980 } 3981 3982 return (in_wc->slid == ppd->lid); 3983 } 3984 3985 /* 3986 * opa_local_smp_check() should only be called on MADs for which 3987 * is_local_mad() returns true. It applies the SMP checks that are 3988 * specific to SMPs which are sent from, and destined to this node. 3989 * opa_local_smp_check() returns 0 if the SMP passes its checks, 1 3990 * otherwise. 3991 * 3992 * SMPs which arrive from other nodes are instead checked by 3993 * opa_smp_check(). 3994 */ 3995 static int opa_local_smp_check(struct hfi1_ibport *ibp, 3996 const struct ib_wc *in_wc) 3997 { 3998 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 3999 u16 slid = in_wc->slid; 4000 u16 pkey; 4001 4002 if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys)) 4003 return 1; 4004 4005 pkey = ppd->pkeys[in_wc->pkey_index]; 4006 /* 4007 * We need to do the "node-local" checks specified in OPAv1, 4008 * rev 0.90, section 9.10.26, which are: 4009 * - pkey is 0x7fff, or 0xffff 4010 * - Source QPN == 0 || Destination QPN == 0 4011 * - the MAD header's management class is either 4012 * IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or 4013 * IB_MGMT_CLASS_SUBN_LID_ROUTED 4014 * - SLID != 0 4015 * 4016 * However, we know (and so don't need to check again) that, 4017 * for local SMPs, the MAD stack passes MADs with: 4018 * - Source QPN of 0 4019 * - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4020 * - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or 4021 * our own port's lid 4022 * 4023 */ 4024 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 4025 return 0; 4026 ingress_pkey_table_fail(ppd, pkey, slid); 4027 return 1; 4028 } 4029 4030 static int process_subn_opa(struct ib_device *ibdev, int mad_flags, 4031 u8 port, const struct opa_mad *in_mad, 4032 struct opa_mad *out_mad, 4033 u32 *resp_len) 4034 { 4035 struct opa_smp *smp = (struct opa_smp *)out_mad; 4036 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4037 u8 *data; 4038 u32 am; 4039 __be16 attr_id; 4040 int ret; 4041 4042 *out_mad = *in_mad; 4043 data = opa_get_smp_data(smp); 4044 4045 am = be32_to_cpu(smp->attr_mod); 4046 attr_id = smp->attr_id; 4047 if (smp->class_version != OPA_SMI_CLASS_VERSION) { 4048 smp->status |= IB_SMP_UNSUP_VERSION; 4049 ret = reply((struct ib_mad_hdr *)smp); 4050 return ret; 4051 } 4052 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey, 4053 smp->route.dr.dr_slid, smp->route.dr.return_path, 4054 smp->hop_cnt); 4055 if (ret) { 4056 u32 port_num = be32_to_cpu(smp->attr_mod); 4057 4058 /* 4059 * If this is a get/set portinfo, we already check the 4060 * M_Key if the MAD is for another port and the M_Key 4061 * is OK on the receiving port. This check is needed 4062 * to increment the error counters when the M_Key 4063 * fails to match on *both* ports. 4064 */ 4065 if (attr_id == IB_SMP_ATTR_PORT_INFO && 4066 (smp->method == IB_MGMT_METHOD_GET || 4067 smp->method == IB_MGMT_METHOD_SET) && 4068 port_num && port_num <= ibdev->phys_port_cnt && 4069 port != port_num) 4070 (void)check_mkey(to_iport(ibdev, port_num), 4071 (struct ib_mad_hdr *)smp, 0, 4072 smp->mkey, smp->route.dr.dr_slid, 4073 smp->route.dr.return_path, 4074 smp->hop_cnt); 4075 ret = IB_MAD_RESULT_FAILURE; 4076 return ret; 4077 } 4078 4079 *resp_len = opa_get_smp_header_size(smp); 4080 4081 switch (smp->method) { 4082 case IB_MGMT_METHOD_GET: 4083 switch (attr_id) { 4084 default: 4085 clear_opa_smp_data(smp); 4086 ret = subn_get_opa_sma(attr_id, smp, am, data, 4087 ibdev, port, resp_len); 4088 break; 4089 case OPA_ATTRIB_ID_AGGREGATE: 4090 ret = subn_get_opa_aggregate(smp, ibdev, port, 4091 resp_len); 4092 break; 4093 } 4094 break; 4095 case IB_MGMT_METHOD_SET: 4096 switch (attr_id) { 4097 default: 4098 ret = subn_set_opa_sma(attr_id, smp, am, data, 4099 ibdev, port, resp_len); 4100 break; 4101 case OPA_ATTRIB_ID_AGGREGATE: 4102 ret = subn_set_opa_aggregate(smp, ibdev, port, 4103 resp_len); 4104 break; 4105 } 4106 break; 4107 case IB_MGMT_METHOD_TRAP: 4108 case IB_MGMT_METHOD_REPORT: 4109 case IB_MGMT_METHOD_REPORT_RESP: 4110 case IB_MGMT_METHOD_GET_RESP: 4111 /* 4112 * The ib_mad module will call us to process responses 4113 * before checking for other consumers. 4114 * Just tell the caller to process it normally. 4115 */ 4116 ret = IB_MAD_RESULT_SUCCESS; 4117 break; 4118 default: 4119 smp->status |= IB_SMP_UNSUP_METHOD; 4120 ret = reply((struct ib_mad_hdr *)smp); 4121 break; 4122 } 4123 4124 return ret; 4125 } 4126 4127 static int process_subn(struct ib_device *ibdev, int mad_flags, 4128 u8 port, const struct ib_mad *in_mad, 4129 struct ib_mad *out_mad) 4130 { 4131 struct ib_smp *smp = (struct ib_smp *)out_mad; 4132 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4133 int ret; 4134 4135 *out_mad = *in_mad; 4136 if (smp->class_version != 1) { 4137 smp->status |= IB_SMP_UNSUP_VERSION; 4138 ret = reply((struct ib_mad_hdr *)smp); 4139 return ret; 4140 } 4141 4142 ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, 4143 smp->mkey, (__force __be32)smp->dr_slid, 4144 smp->return_path, smp->hop_cnt); 4145 if (ret) { 4146 u32 port_num = be32_to_cpu(smp->attr_mod); 4147 4148 /* 4149 * If this is a get/set portinfo, we already check the 4150 * M_Key if the MAD is for another port and the M_Key 4151 * is OK on the receiving port. This check is needed 4152 * to increment the error counters when the M_Key 4153 * fails to match on *both* ports. 4154 */ 4155 if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO && 4156 (smp->method == IB_MGMT_METHOD_GET || 4157 smp->method == IB_MGMT_METHOD_SET) && 4158 port_num && port_num <= ibdev->phys_port_cnt && 4159 port != port_num) 4160 (void)check_mkey(to_iport(ibdev, port_num), 4161 (struct ib_mad_hdr *)smp, 0, 4162 smp->mkey, 4163 (__force __be32)smp->dr_slid, 4164 smp->return_path, smp->hop_cnt); 4165 ret = IB_MAD_RESULT_FAILURE; 4166 return ret; 4167 } 4168 4169 switch (smp->method) { 4170 case IB_MGMT_METHOD_GET: 4171 switch (smp->attr_id) { 4172 case IB_SMP_ATTR_NODE_INFO: 4173 ret = subn_get_nodeinfo(smp, ibdev, port); 4174 break; 4175 default: 4176 smp->status |= IB_SMP_UNSUP_METH_ATTR; 4177 ret = reply((struct ib_mad_hdr *)smp); 4178 break; 4179 } 4180 break; 4181 } 4182 4183 return ret; 4184 } 4185 4186 static int process_perf(struct ib_device *ibdev, u8 port, 4187 const struct ib_mad *in_mad, 4188 struct ib_mad *out_mad) 4189 { 4190 struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad; 4191 struct ib_class_port_info *cpi = (struct ib_class_port_info *) 4192 &pmp->data; 4193 int ret = IB_MAD_RESULT_FAILURE; 4194 4195 *out_mad = *in_mad; 4196 if (pmp->mad_hdr.class_version != 1) { 4197 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4198 ret = reply((struct ib_mad_hdr *)pmp); 4199 return ret; 4200 } 4201 4202 switch (pmp->mad_hdr.method) { 4203 case IB_MGMT_METHOD_GET: 4204 switch (pmp->mad_hdr.attr_id) { 4205 case IB_PMA_PORT_COUNTERS: 4206 ret = pma_get_ib_portcounters(pmp, ibdev, port); 4207 break; 4208 case IB_PMA_PORT_COUNTERS_EXT: 4209 ret = pma_get_ib_portcounters_ext(pmp, ibdev, port); 4210 break; 4211 case IB_PMA_CLASS_PORT_INFO: 4212 cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH; 4213 ret = reply((struct ib_mad_hdr *)pmp); 4214 break; 4215 default: 4216 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4217 ret = reply((struct ib_mad_hdr *)pmp); 4218 break; 4219 } 4220 break; 4221 4222 case IB_MGMT_METHOD_SET: 4223 if (pmp->mad_hdr.attr_id) { 4224 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4225 ret = reply((struct ib_mad_hdr *)pmp); 4226 } 4227 break; 4228 4229 case IB_MGMT_METHOD_TRAP: 4230 case IB_MGMT_METHOD_GET_RESP: 4231 /* 4232 * The ib_mad module will call us to process responses 4233 * before checking for other consumers. 4234 * Just tell the caller to process it normally. 4235 */ 4236 ret = IB_MAD_RESULT_SUCCESS; 4237 break; 4238 4239 default: 4240 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4241 ret = reply((struct ib_mad_hdr *)pmp); 4242 break; 4243 } 4244 4245 return ret; 4246 } 4247 4248 static int process_perf_opa(struct ib_device *ibdev, u8 port, 4249 const struct opa_mad *in_mad, 4250 struct opa_mad *out_mad, u32 *resp_len) 4251 { 4252 struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad; 4253 int ret; 4254 4255 *out_mad = *in_mad; 4256 4257 if (pmp->mad_hdr.class_version != OPA_SMI_CLASS_VERSION) { 4258 pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; 4259 return reply((struct ib_mad_hdr *)pmp); 4260 } 4261 4262 *resp_len = sizeof(pmp->mad_hdr); 4263 4264 switch (pmp->mad_hdr.method) { 4265 case IB_MGMT_METHOD_GET: 4266 switch (pmp->mad_hdr.attr_id) { 4267 case IB_PMA_CLASS_PORT_INFO: 4268 ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len); 4269 break; 4270 case OPA_PM_ATTRIB_ID_PORT_STATUS: 4271 ret = pma_get_opa_portstatus(pmp, ibdev, port, 4272 resp_len); 4273 break; 4274 case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS: 4275 ret = pma_get_opa_datacounters(pmp, ibdev, port, 4276 resp_len); 4277 break; 4278 case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS: 4279 ret = pma_get_opa_porterrors(pmp, ibdev, port, 4280 resp_len); 4281 break; 4282 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4283 ret = pma_get_opa_errorinfo(pmp, ibdev, port, 4284 resp_len); 4285 break; 4286 default: 4287 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4288 ret = reply((struct ib_mad_hdr *)pmp); 4289 break; 4290 } 4291 break; 4292 4293 case IB_MGMT_METHOD_SET: 4294 switch (pmp->mad_hdr.attr_id) { 4295 case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS: 4296 ret = pma_set_opa_portstatus(pmp, ibdev, port, 4297 resp_len); 4298 break; 4299 case OPA_PM_ATTRIB_ID_ERROR_INFO: 4300 ret = pma_set_opa_errorinfo(pmp, ibdev, port, 4301 resp_len); 4302 break; 4303 default: 4304 pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; 4305 ret = reply((struct ib_mad_hdr *)pmp); 4306 break; 4307 } 4308 break; 4309 4310 case IB_MGMT_METHOD_TRAP: 4311 case IB_MGMT_METHOD_GET_RESP: 4312 /* 4313 * The ib_mad module will call us to process responses 4314 * before checking for other consumers. 4315 * Just tell the caller to process it normally. 4316 */ 4317 ret = IB_MAD_RESULT_SUCCESS; 4318 break; 4319 4320 default: 4321 pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; 4322 ret = reply((struct ib_mad_hdr *)pmp); 4323 break; 4324 } 4325 4326 return ret; 4327 } 4328 4329 static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags, 4330 u8 port, const struct ib_wc *in_wc, 4331 const struct ib_grh *in_grh, 4332 const struct opa_mad *in_mad, 4333 struct opa_mad *out_mad, size_t *out_mad_size, 4334 u16 *out_mad_pkey_index) 4335 { 4336 int ret; 4337 int pkey_idx; 4338 u32 resp_len = 0; 4339 struct hfi1_ibport *ibp = to_iport(ibdev, port); 4340 4341 pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); 4342 if (pkey_idx < 0) { 4343 pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n", 4344 hfi1_get_pkey(ibp, 1)); 4345 pkey_idx = 1; 4346 } 4347 *out_mad_pkey_index = (u16)pkey_idx; 4348 4349 switch (in_mad->mad_hdr.mgmt_class) { 4350 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4351 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4352 if (is_local_mad(ibp, in_mad, in_wc)) { 4353 ret = opa_local_smp_check(ibp, in_wc); 4354 if (ret) 4355 return IB_MAD_RESULT_FAILURE; 4356 } 4357 ret = process_subn_opa(ibdev, mad_flags, port, in_mad, 4358 out_mad, &resp_len); 4359 goto bail; 4360 case IB_MGMT_CLASS_PERF_MGMT: 4361 ret = process_perf_opa(ibdev, port, in_mad, out_mad, 4362 &resp_len); 4363 goto bail; 4364 4365 default: 4366 ret = IB_MAD_RESULT_SUCCESS; 4367 } 4368 4369 bail: 4370 if (ret & IB_MAD_RESULT_REPLY) 4371 *out_mad_size = round_up(resp_len, 8); 4372 else if (ret & IB_MAD_RESULT_SUCCESS) 4373 *out_mad_size = in_wc->byte_len - sizeof(struct ib_grh); 4374 4375 return ret; 4376 } 4377 4378 static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4379 const struct ib_wc *in_wc, 4380 const struct ib_grh *in_grh, 4381 const struct ib_mad *in_mad, 4382 struct ib_mad *out_mad) 4383 { 4384 int ret; 4385 4386 switch (in_mad->mad_hdr.mgmt_class) { 4387 case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: 4388 case IB_MGMT_CLASS_SUBN_LID_ROUTED: 4389 ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad); 4390 break; 4391 case IB_MGMT_CLASS_PERF_MGMT: 4392 ret = process_perf(ibdev, port, in_mad, out_mad); 4393 break; 4394 default: 4395 ret = IB_MAD_RESULT_SUCCESS; 4396 break; 4397 } 4398 4399 return ret; 4400 } 4401 4402 /** 4403 * hfi1_process_mad - process an incoming MAD packet 4404 * @ibdev: the infiniband device this packet came in on 4405 * @mad_flags: MAD flags 4406 * @port: the port number this packet came in on 4407 * @in_wc: the work completion entry for this packet 4408 * @in_grh: the global route header for this packet 4409 * @in_mad: the incoming MAD 4410 * @out_mad: any outgoing MAD reply 4411 * 4412 * Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not 4413 * interested in processing. 4414 * 4415 * Note that the verbs framework has already done the MAD sanity checks, 4416 * and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE 4417 * MADs. 4418 * 4419 * This is called by the ib_mad module. 4420 */ 4421 int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port, 4422 const struct ib_wc *in_wc, const struct ib_grh *in_grh, 4423 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 4424 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 4425 u16 *out_mad_pkey_index) 4426 { 4427 switch (in_mad->base_version) { 4428 case OPA_MGMT_BASE_VERSION: 4429 if (unlikely(in_mad_size != sizeof(struct opa_mad))) { 4430 dev_err(ibdev->dma_device, "invalid in_mad_size\n"); 4431 return IB_MAD_RESULT_FAILURE; 4432 } 4433 return hfi1_process_opa_mad(ibdev, mad_flags, port, 4434 in_wc, in_grh, 4435 (struct opa_mad *)in_mad, 4436 (struct opa_mad *)out_mad, 4437 out_mad_size, 4438 out_mad_pkey_index); 4439 case IB_MGMT_BASE_VERSION: 4440 return hfi1_process_ib_mad(ibdev, mad_flags, port, 4441 in_wc, in_grh, 4442 (const struct ib_mad *)in_mad, 4443 (struct ib_mad *)out_mad); 4444 default: 4445 break; 4446 } 4447 4448 return IB_MAD_RESULT_FAILURE; 4449 } 4450