xref: /openbmc/linux/drivers/iio/proximity/srf04.c (revision 715f23b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SRF04: ultrasonic sensor for distance measuring by using GPIOs
4  *
5  * Copyright (c) 2017 Andreas Klinger <ak@it-klinger.de>
6  *
7  * For details about the device see:
8  * http://www.robot-electronics.co.uk/htm/srf04tech.htm
9  *
10  * the measurement cycle as timing diagram looks like:
11  *
12  *          +---+
13  * GPIO     |   |
14  * trig:  --+   +------------------------------------------------------
15  *          ^   ^
16  *          |<->|
17  *         udelay(trigger_pulse_us)
18  *
19  * ultra           +-+ +-+ +-+
20  * sonic           | | | | | |
21  * burst: ---------+ +-+ +-+ +-----------------------------------------
22  *                           .
23  * ultra                     .              +-+ +-+ +-+
24  * sonic                     .              | | | | | |
25  * echo:  ----------------------------------+ +-+ +-+ +----------------
26  *                           .                        .
27  *                           +------------------------+
28  * GPIO                      |                        |
29  * echo:  -------------------+                        +---------------
30  *                           ^                        ^
31  *                           interrupt                interrupt
32  *                           (ts_rising)              (ts_falling)
33  *                           |<---------------------->|
34  *                              pulse time measured
35  *                              --> one round trip of ultra sonic waves
36  */
37 #include <linux/err.h>
38 #include <linux/gpio/consumer.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43 #include <linux/platform_device.h>
44 #include <linux/property.h>
45 #include <linux/sched.h>
46 #include <linux/interrupt.h>
47 #include <linux/delay.h>
48 #include <linux/iio/iio.h>
49 #include <linux/iio/sysfs.h>
50 
51 struct srf04_cfg {
52 	unsigned long trigger_pulse_us;
53 };
54 
55 struct srf04_data {
56 	struct device		*dev;
57 	struct gpio_desc	*gpiod_trig;
58 	struct gpio_desc	*gpiod_echo;
59 	struct mutex		lock;
60 	int			irqnr;
61 	ktime_t			ts_rising;
62 	ktime_t			ts_falling;
63 	struct completion	rising;
64 	struct completion	falling;
65 	const struct srf04_cfg	*cfg;
66 };
67 
68 static const struct srf04_cfg srf04_cfg = {
69 	.trigger_pulse_us = 10,
70 };
71 
72 static const struct srf04_cfg mb_lv_cfg = {
73 	.trigger_pulse_us = 20,
74 };
75 
76 static irqreturn_t srf04_handle_irq(int irq, void *dev_id)
77 {
78 	struct iio_dev *indio_dev = dev_id;
79 	struct srf04_data *data = iio_priv(indio_dev);
80 	ktime_t now = ktime_get();
81 
82 	if (gpiod_get_value(data->gpiod_echo)) {
83 		data->ts_rising = now;
84 		complete(&data->rising);
85 	} else {
86 		data->ts_falling = now;
87 		complete(&data->falling);
88 	}
89 
90 	return IRQ_HANDLED;
91 }
92 
93 static int srf04_read(struct srf04_data *data)
94 {
95 	int ret;
96 	ktime_t ktime_dt;
97 	u64 dt_ns;
98 	u32 time_ns, distance_mm;
99 
100 	/*
101 	 * just one read-echo-cycle can take place at a time
102 	 * ==> lock against concurrent reading calls
103 	 */
104 	mutex_lock(&data->lock);
105 
106 	reinit_completion(&data->rising);
107 	reinit_completion(&data->falling);
108 
109 	gpiod_set_value(data->gpiod_trig, 1);
110 	udelay(data->cfg->trigger_pulse_us);
111 	gpiod_set_value(data->gpiod_trig, 0);
112 
113 	/* it should not take more than 20 ms until echo is rising */
114 	ret = wait_for_completion_killable_timeout(&data->rising, HZ/50);
115 	if (ret < 0) {
116 		mutex_unlock(&data->lock);
117 		return ret;
118 	} else if (ret == 0) {
119 		mutex_unlock(&data->lock);
120 		return -ETIMEDOUT;
121 	}
122 
123 	/* it cannot take more than 50 ms until echo is falling */
124 	ret = wait_for_completion_killable_timeout(&data->falling, HZ/20);
125 	if (ret < 0) {
126 		mutex_unlock(&data->lock);
127 		return ret;
128 	} else if (ret == 0) {
129 		mutex_unlock(&data->lock);
130 		return -ETIMEDOUT;
131 	}
132 
133 	ktime_dt = ktime_sub(data->ts_falling, data->ts_rising);
134 
135 	mutex_unlock(&data->lock);
136 
137 	dt_ns = ktime_to_ns(ktime_dt);
138 	/*
139 	 * measuring more than 6,45 meters is beyond the capabilities of
140 	 * the supported sensors
141 	 * ==> filter out invalid results for not measuring echos of
142 	 *     another us sensor
143 	 *
144 	 * formula:
145 	 *         distance     6,45 * 2 m
146 	 * time = ---------- = ------------ = 40438871 ns
147 	 *          speed         319 m/s
148 	 *
149 	 * using a minimum speed at -20 °C of 319 m/s
150 	 */
151 	if (dt_ns > 40438871)
152 		return -EIO;
153 
154 	time_ns = dt_ns;
155 
156 	/*
157 	 * the speed as function of the temperature is approximately:
158 	 *
159 	 * speed = 331,5 + 0,6 * Temp
160 	 *   with Temp in °C
161 	 *   and speed in m/s
162 	 *
163 	 * use 343,5 m/s as ultrasonic speed at 20 °C here in absence of the
164 	 * temperature
165 	 *
166 	 * therefore:
167 	 *             time     343,5     time * 106
168 	 * distance = ------ * ------- = ------------
169 	 *             10^6         2         617176
170 	 *   with time in ns
171 	 *   and distance in mm (one way)
172 	 *
173 	 * because we limit to 6,45 meters the multiplication with 106 just
174 	 * fits into 32 bit
175 	 */
176 	distance_mm = time_ns * 106 / 617176;
177 
178 	return distance_mm;
179 }
180 
181 static int srf04_read_raw(struct iio_dev *indio_dev,
182 			    struct iio_chan_spec const *channel, int *val,
183 			    int *val2, long info)
184 {
185 	struct srf04_data *data = iio_priv(indio_dev);
186 	int ret;
187 
188 	if (channel->type != IIO_DISTANCE)
189 		return -EINVAL;
190 
191 	switch (info) {
192 	case IIO_CHAN_INFO_RAW:
193 		ret = srf04_read(data);
194 		if (ret < 0)
195 			return ret;
196 		*val = ret;
197 		return IIO_VAL_INT;
198 	case IIO_CHAN_INFO_SCALE:
199 		/*
200 		 * theoretical maximum resolution is 3 mm
201 		 * 1 LSB is 1 mm
202 		 */
203 		*val = 0;
204 		*val2 = 1000;
205 		return IIO_VAL_INT_PLUS_MICRO;
206 	default:
207 		return -EINVAL;
208 	}
209 }
210 
211 static const struct iio_info srf04_iio_info = {
212 	.read_raw		= srf04_read_raw,
213 };
214 
215 static const struct iio_chan_spec srf04_chan_spec[] = {
216 	{
217 		.type = IIO_DISTANCE,
218 		.info_mask_separate =
219 				BIT(IIO_CHAN_INFO_RAW) |
220 				BIT(IIO_CHAN_INFO_SCALE),
221 	},
222 };
223 
224 static const struct of_device_id of_srf04_match[] = {
225 	{ .compatible = "devantech,srf04", .data = &srf04_cfg},
226 	{ .compatible = "maxbotix,mb1000", .data = &mb_lv_cfg},
227 	{ .compatible = "maxbotix,mb1010", .data = &mb_lv_cfg},
228 	{ .compatible = "maxbotix,mb1020", .data = &mb_lv_cfg},
229 	{ .compatible = "maxbotix,mb1030", .data = &mb_lv_cfg},
230 	{ .compatible = "maxbotix,mb1040", .data = &mb_lv_cfg},
231 	{},
232 };
233 
234 MODULE_DEVICE_TABLE(of, of_srf04_match);
235 
236 static int srf04_probe(struct platform_device *pdev)
237 {
238 	struct device *dev = &pdev->dev;
239 	struct srf04_data *data;
240 	struct iio_dev *indio_dev;
241 	int ret;
242 
243 	indio_dev = devm_iio_device_alloc(dev, sizeof(struct srf04_data));
244 	if (!indio_dev) {
245 		dev_err(dev, "failed to allocate IIO device\n");
246 		return -ENOMEM;
247 	}
248 
249 	data = iio_priv(indio_dev);
250 	data->dev = dev;
251 	data->cfg = of_match_device(of_srf04_match, dev)->data;
252 
253 	mutex_init(&data->lock);
254 	init_completion(&data->rising);
255 	init_completion(&data->falling);
256 
257 	data->gpiod_trig = devm_gpiod_get(dev, "trig", GPIOD_OUT_LOW);
258 	if (IS_ERR(data->gpiod_trig)) {
259 		dev_err(dev, "failed to get trig-gpios: err=%ld\n",
260 					PTR_ERR(data->gpiod_trig));
261 		return PTR_ERR(data->gpiod_trig);
262 	}
263 
264 	data->gpiod_echo = devm_gpiod_get(dev, "echo", GPIOD_IN);
265 	if (IS_ERR(data->gpiod_echo)) {
266 		dev_err(dev, "failed to get echo-gpios: err=%ld\n",
267 					PTR_ERR(data->gpiod_echo));
268 		return PTR_ERR(data->gpiod_echo);
269 	}
270 
271 	if (gpiod_cansleep(data->gpiod_echo)) {
272 		dev_err(data->dev, "cansleep-GPIOs not supported\n");
273 		return -ENODEV;
274 	}
275 
276 	data->irqnr = gpiod_to_irq(data->gpiod_echo);
277 	if (data->irqnr < 0) {
278 		dev_err(data->dev, "gpiod_to_irq: %d\n", data->irqnr);
279 		return data->irqnr;
280 	}
281 
282 	ret = devm_request_irq(dev, data->irqnr, srf04_handle_irq,
283 			IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
284 			pdev->name, indio_dev);
285 	if (ret < 0) {
286 		dev_err(data->dev, "request_irq: %d\n", ret);
287 		return ret;
288 	}
289 
290 	platform_set_drvdata(pdev, indio_dev);
291 
292 	indio_dev->name = "srf04";
293 	indio_dev->dev.parent = &pdev->dev;
294 	indio_dev->info = &srf04_iio_info;
295 	indio_dev->modes = INDIO_DIRECT_MODE;
296 	indio_dev->channels = srf04_chan_spec;
297 	indio_dev->num_channels = ARRAY_SIZE(srf04_chan_spec);
298 
299 	return devm_iio_device_register(dev, indio_dev);
300 }
301 
302 static struct platform_driver srf04_driver = {
303 	.probe		= srf04_probe,
304 	.driver		= {
305 		.name		= "srf04-gpio",
306 		.of_match_table	= of_srf04_match,
307 	},
308 };
309 
310 module_platform_driver(srf04_driver);
311 
312 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
313 MODULE_DESCRIPTION("SRF04 ultrasonic sensor for distance measuring using GPIOs");
314 MODULE_LICENSE("GPL");
315 MODULE_ALIAS("platform:srf04");
316