xref: /openbmc/linux/drivers/i2c/algos/i2c-algo-pca.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
3  *    Copyright (C) 2004 Arcom Control Systems
4  *    Copyright (C) 2008 Pengutronix
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/delay.h>
21 #include <linux/jiffies.h>
22 #include <linux/errno.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-algo-pca.h>
25 
26 #define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
27 				 printk(KERN_DEBUG fmt, ## args); } while (0)
28 #define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
29 				 printk(KERN_DEBUG fmt, ## args); } while (0)
30 #define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
31 				 printk(KERN_DEBUG fmt, ## args); } while (0)
32 
33 static int i2c_debug;
34 
35 #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
36 #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
37 
38 #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
39 #define pca_clock(adap) adap->i2c_clock
40 #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
41 #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
42 #define pca_wait(adap) adap->wait_for_completion(adap->data)
43 
44 static void pca_reset(struct i2c_algo_pca_data *adap)
45 {
46 	if (adap->chip == I2C_PCA_CHIP_9665) {
47 		/* Ignore the reset function from the module,
48 		 * we can use the parallel bus reset.
49 		 */
50 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
51 		pca_outw(adap, I2C_PCA_IND, 0xA5);
52 		pca_outw(adap, I2C_PCA_IND, 0x5A);
53 	} else {
54 		adap->reset_chip(adap->data);
55 	}
56 }
57 
58 /*
59  * Generate a start condition on the i2c bus.
60  *
61  * returns after the start condition has occurred
62  */
63 static int pca_start(struct i2c_algo_pca_data *adap)
64 {
65 	int sta = pca_get_con(adap);
66 	DEB2("=== START\n");
67 	sta |= I2C_PCA_CON_STA;
68 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
69 	pca_set_con(adap, sta);
70 	return pca_wait(adap);
71 }
72 
73 /*
74  * Generate a repeated start condition on the i2c bus
75  *
76  * return after the repeated start condition has occurred
77  */
78 static int pca_repeated_start(struct i2c_algo_pca_data *adap)
79 {
80 	int sta = pca_get_con(adap);
81 	DEB2("=== REPEATED START\n");
82 	sta |= I2C_PCA_CON_STA;
83 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
84 	pca_set_con(adap, sta);
85 	return pca_wait(adap);
86 }
87 
88 /*
89  * Generate a stop condition on the i2c bus
90  *
91  * returns after the stop condition has been generated
92  *
93  * STOPs do not generate an interrupt or set the SI flag, since the
94  * part returns the idle state (0xf8). Hence we don't need to
95  * pca_wait here.
96  */
97 static void pca_stop(struct i2c_algo_pca_data *adap)
98 {
99 	int sta = pca_get_con(adap);
100 	DEB2("=== STOP\n");
101 	sta |= I2C_PCA_CON_STO;
102 	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
103 	pca_set_con(adap, sta);
104 }
105 
106 /*
107  * Send the slave address and R/W bit
108  *
109  * returns after the address has been sent
110  */
111 static int pca_address(struct i2c_algo_pca_data *adap,
112 		       struct i2c_msg *msg)
113 {
114 	int sta = pca_get_con(adap);
115 	int addr = i2c_8bit_addr_from_msg(msg);
116 
117 	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
118 	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
119 
120 	pca_outw(adap, I2C_PCA_DAT, addr);
121 
122 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
123 	pca_set_con(adap, sta);
124 
125 	return pca_wait(adap);
126 }
127 
128 /*
129  * Transmit a byte.
130  *
131  * Returns after the byte has been transmitted
132  */
133 static int pca_tx_byte(struct i2c_algo_pca_data *adap,
134 		       __u8 b)
135 {
136 	int sta = pca_get_con(adap);
137 	DEB2("=== WRITE %#04x\n", b);
138 	pca_outw(adap, I2C_PCA_DAT, b);
139 
140 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
141 	pca_set_con(adap, sta);
142 
143 	return pca_wait(adap);
144 }
145 
146 /*
147  * Receive a byte
148  *
149  * returns immediately.
150  */
151 static void pca_rx_byte(struct i2c_algo_pca_data *adap,
152 			__u8 *b, int ack)
153 {
154 	*b = pca_inw(adap, I2C_PCA_DAT);
155 	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
156 }
157 
158 /*
159  * Setup ACK or NACK for next received byte and wait for it to arrive.
160  *
161  * Returns after next byte has arrived.
162  */
163 static int pca_rx_ack(struct i2c_algo_pca_data *adap,
164 		      int ack)
165 {
166 	int sta = pca_get_con(adap);
167 
168 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
169 
170 	if (ack)
171 		sta |= I2C_PCA_CON_AA;
172 
173 	pca_set_con(adap, sta);
174 	return pca_wait(adap);
175 }
176 
177 static int pca_xfer(struct i2c_adapter *i2c_adap,
178 		    struct i2c_msg *msgs,
179 		    int num)
180 {
181 	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
182 	struct i2c_msg *msg = NULL;
183 	int curmsg;
184 	int numbytes = 0;
185 	int state;
186 	int ret;
187 	int completed = 1;
188 	unsigned long timeout = jiffies + i2c_adap->timeout;
189 
190 	while ((state = pca_status(adap)) != 0xf8) {
191 		if (time_before(jiffies, timeout)) {
192 			msleep(10);
193 		} else {
194 			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
195 				"%#04x\n", state);
196 			return -EBUSY;
197 		}
198 	}
199 
200 	DEB1("{{{ XFER %d messages\n", num);
201 
202 	if (i2c_debug >= 2) {
203 		for (curmsg = 0; curmsg < num; curmsg++) {
204 			int addr, i;
205 			msg = &msgs[curmsg];
206 
207 			addr = (0x7f & msg->addr) ;
208 
209 			if (msg->flags & I2C_M_RD)
210 				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
211 				       curmsg, msg->len, addr, (addr << 1) | 1);
212 			else {
213 				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
214 				       curmsg, msg->len, addr, addr << 1,
215 				       msg->len == 0 ? "" : ", ");
216 				for (i = 0; i < msg->len; i++)
217 					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
218 				printk("]\n");
219 			}
220 		}
221 	}
222 
223 	curmsg = 0;
224 	ret = -EIO;
225 	while (curmsg < num) {
226 		state = pca_status(adap);
227 
228 		DEB3("STATE is 0x%02x\n", state);
229 		msg = &msgs[curmsg];
230 
231 		switch (state) {
232 		case 0xf8: /* On reset or stop the bus is idle */
233 			completed = pca_start(adap);
234 			break;
235 
236 		case 0x08: /* A START condition has been transmitted */
237 		case 0x10: /* A repeated start condition has been transmitted */
238 			completed = pca_address(adap, msg);
239 			break;
240 
241 		case 0x18: /* SLA+W has been transmitted; ACK has been received */
242 		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
243 			if (numbytes < msg->len) {
244 				completed = pca_tx_byte(adap,
245 							msg->buf[numbytes]);
246 				numbytes++;
247 				break;
248 			}
249 			curmsg++; numbytes = 0;
250 			if (curmsg == num)
251 				pca_stop(adap);
252 			else
253 				completed = pca_repeated_start(adap);
254 			break;
255 
256 		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
257 			DEB2("NOT ACK received after SLA+W\n");
258 			pca_stop(adap);
259 			ret = -ENXIO;
260 			goto out;
261 
262 		case 0x40: /* SLA+R has been transmitted; ACK has been received */
263 			completed = pca_rx_ack(adap, msg->len > 1);
264 			break;
265 
266 		case 0x50: /* Data bytes has been received; ACK has been returned */
267 			if (numbytes < msg->len) {
268 				pca_rx_byte(adap, &msg->buf[numbytes], 1);
269 				numbytes++;
270 				completed = pca_rx_ack(adap,
271 						       numbytes < msg->len - 1);
272 				break;
273 			}
274 			curmsg++; numbytes = 0;
275 			if (curmsg == num)
276 				pca_stop(adap);
277 			else
278 				completed = pca_repeated_start(adap);
279 			break;
280 
281 		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
282 			DEB2("NOT ACK received after SLA+R\n");
283 			pca_stop(adap);
284 			ret = -ENXIO;
285 			goto out;
286 
287 		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
288 			DEB2("NOT ACK received after data byte\n");
289 			pca_stop(adap);
290 			goto out;
291 
292 		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
293 			DEB2("Arbitration lost\n");
294 			/*
295 			 * The PCA9564 data sheet (2006-09-01) says "A
296 			 * START condition will be transmitted when the
297 			 * bus becomes free (STOP or SCL and SDA high)"
298 			 * when the STA bit is set (p. 11).
299 			 *
300 			 * In case this won't work, try pca_reset()
301 			 * instead.
302 			 */
303 			pca_start(adap);
304 			goto out;
305 
306 		case 0x58: /* Data byte has been received; NOT ACK has been returned */
307 			if (numbytes == msg->len - 1) {
308 				pca_rx_byte(adap, &msg->buf[numbytes], 0);
309 				curmsg++; numbytes = 0;
310 				if (curmsg == num)
311 					pca_stop(adap);
312 				else
313 					completed = pca_repeated_start(adap);
314 			} else {
315 				DEB2("NOT ACK sent after data byte received. "
316 				     "Not final byte. numbytes %d. len %d\n",
317 				     numbytes, msg->len);
318 				pca_stop(adap);
319 				goto out;
320 			}
321 			break;
322 		case 0x70: /* Bus error - SDA stuck low */
323 			DEB2("BUS ERROR - SDA Stuck low\n");
324 			pca_reset(adap);
325 			goto out;
326 		case 0x90: /* Bus error - SCL stuck low */
327 			DEB2("BUS ERROR - SCL Stuck low\n");
328 			pca_reset(adap);
329 			goto out;
330 		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
331 			DEB2("BUS ERROR - Illegal START or STOP\n");
332 			pca_reset(adap);
333 			goto out;
334 		default:
335 			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
336 			break;
337 		}
338 
339 		if (!completed)
340 			goto out;
341 	}
342 
343 	ret = curmsg;
344  out:
345 	DEB1("}}} transferred %d/%d messages. "
346 	     "status is %#04x. control is %#04x\n",
347 	     curmsg, num, pca_status(adap),
348 	     pca_get_con(adap));
349 	return ret;
350 }
351 
352 static u32 pca_func(struct i2c_adapter *adap)
353 {
354 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
355 }
356 
357 static const struct i2c_algorithm pca_algo = {
358 	.master_xfer	= pca_xfer,
359 	.functionality	= pca_func,
360 };
361 
362 static unsigned int pca_probe_chip(struct i2c_adapter *adap)
363 {
364 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
365 	/* The trick here is to check if there is an indirect register
366 	 * available. If there is one, we will read the value we first
367 	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
368 	 * we wrote on I2C_PCA_ADR
369 	 */
370 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
371 	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
372 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
373 	pca_outw(pca_data, I2C_PCA_IND, 0x00);
374 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
375 	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
376 		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
377 		pca_data->chip = I2C_PCA_CHIP_9665;
378 	} else {
379 		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
380 		pca_data->chip = I2C_PCA_CHIP_9564;
381 	}
382 	return pca_data->chip;
383 }
384 
385 static int pca_init(struct i2c_adapter *adap)
386 {
387 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
388 
389 	adap->algo = &pca_algo;
390 
391 	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
392 		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
393 		int clock;
394 
395 		if (pca_data->i2c_clock > 7) {
396 			switch (pca_data->i2c_clock) {
397 			case 330000:
398 				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
399 				break;
400 			case 288000:
401 				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
402 				break;
403 			case 217000:
404 				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
405 				break;
406 			case 146000:
407 				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
408 				break;
409 			case 88000:
410 				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
411 				break;
412 			case 59000:
413 				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
414 				break;
415 			case 44000:
416 				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
417 				break;
418 			case 36000:
419 				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
420 				break;
421 			default:
422 				printk(KERN_WARNING
423 					"%s: Invalid I2C clock speed selected."
424 					" Using default 59kHz.\n", adap->name);
425 			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
426 			}
427 		} else {
428 			printk(KERN_WARNING "%s: "
429 				"Choosing the clock frequency based on "
430 				"index is deprecated."
431 				" Use the nominal frequency.\n", adap->name);
432 		}
433 
434 		pca_reset(pca_data);
435 
436 		clock = pca_clock(pca_data);
437 		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
438 		     adap->name, freqs[clock]);
439 
440 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
441 	} else {
442 		int clock;
443 		int mode;
444 		int tlow, thi;
445 		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
446 		int min_tlow, min_thi;
447 		/* These values are the maximum raise and fall values allowed
448 		 * by the I2C operation mode (Standard, Fast or Fast+)
449 		 * They are used (added) below to calculate the clock dividers
450 		 * of PCA9665. Note that they are slightly different of the
451 		 * real maximum, to allow the change on mode exactly on the
452 		 * maximum clock rate for each mode
453 		 */
454 		int raise_fall_time;
455 
456 		if (pca_data->i2c_clock > 1265800) {
457 			printk(KERN_WARNING "%s: I2C clock speed too high."
458 				" Using 1265.8kHz.\n", adap->name);
459 			pca_data->i2c_clock = 1265800;
460 		}
461 
462 		if (pca_data->i2c_clock < 60300) {
463 			printk(KERN_WARNING "%s: I2C clock speed too low."
464 				" Using 60.3kHz.\n", adap->name);
465 			pca_data->i2c_clock = 60300;
466 		}
467 
468 		/* To avoid integer overflow, use clock/100 for calculations */
469 		clock = pca_clock(pca_data) / 100;
470 
471 		if (pca_data->i2c_clock > 1000000) {
472 			mode = I2C_PCA_MODE_TURBO;
473 			min_tlow = 14;
474 			min_thi  = 5;
475 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
476 		} else if (pca_data->i2c_clock > 400000) {
477 			mode = I2C_PCA_MODE_FASTP;
478 			min_tlow = 17;
479 			min_thi  = 9;
480 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
481 		} else if (pca_data->i2c_clock > 100000) {
482 			mode = I2C_PCA_MODE_FAST;
483 			min_tlow = 44;
484 			min_thi  = 20;
485 			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
486 		} else {
487 			mode = I2C_PCA_MODE_STD;
488 			min_tlow = 157;
489 			min_thi  = 134;
490 			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
491 		}
492 
493 		/* The minimum clock that respects the thi/tlow = 134/157 is
494 		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
495 		 * calculate the thi factor.
496 		 */
497 		if (clock < 648) {
498 			tlow = 255;
499 			thi = 1000000 - clock * raise_fall_time;
500 			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
501 		} else {
502 			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
503 			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
504 			thi = tlow * min_thi / min_tlow;
505 		}
506 
507 		pca_reset(pca_data);
508 
509 		printk(KERN_INFO
510 		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
511 
512 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
513 		pca_outw(pca_data, I2C_PCA_IND, mode);
514 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
515 		pca_outw(pca_data, I2C_PCA_IND, tlow);
516 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
517 		pca_outw(pca_data, I2C_PCA_IND, thi);
518 
519 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
520 	}
521 	udelay(500); /* 500 us for oscillator to stabilise */
522 
523 	return 0;
524 }
525 
526 /*
527  * registering functions to load algorithms at runtime
528  */
529 int i2c_pca_add_bus(struct i2c_adapter *adap)
530 {
531 	int rval;
532 
533 	rval = pca_init(adap);
534 	if (rval)
535 		return rval;
536 
537 	return i2c_add_adapter(adap);
538 }
539 EXPORT_SYMBOL(i2c_pca_add_bus);
540 
541 int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
542 {
543 	int rval;
544 
545 	rval = pca_init(adap);
546 	if (rval)
547 		return rval;
548 
549 	return i2c_add_numbered_adapter(adap);
550 }
551 EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
552 
553 MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
554 	"Wolfram Sang <w.sang@pengutronix.de>");
555 MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
556 MODULE_LICENSE("GPL");
557 
558 module_param(i2c_debug, int, 0);
559