xref: /openbmc/linux/drivers/i2c/algos/i2c-algo-pca.c (revision a6377d90)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
4  *    Copyright (C) 2004 Arcom Control Systems
5  *    Copyright (C) 2008 Pengutronix
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/delay.h>
12 #include <linux/jiffies.h>
13 #include <linux/errno.h>
14 #include <linux/i2c.h>
15 #include <linux/i2c-algo-pca.h>
16 
17 #define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
18 				 printk(KERN_DEBUG fmt, ## args); } while (0)
19 #define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
20 				 printk(KERN_DEBUG fmt, ## args); } while (0)
21 #define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
22 				 printk(KERN_DEBUG fmt, ## args); } while (0)
23 
24 static int i2c_debug;
25 
26 #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
27 #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
28 
29 #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
30 #define pca_clock(adap) adap->i2c_clock
31 #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
32 #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
33 #define pca_wait(adap) adap->wait_for_completion(adap->data)
34 
35 static void pca_reset(struct i2c_algo_pca_data *adap)
36 {
37 	if (adap->chip == I2C_PCA_CHIP_9665) {
38 		/* Ignore the reset function from the module,
39 		 * we can use the parallel bus reset.
40 		 */
41 		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
42 		pca_outw(adap, I2C_PCA_IND, 0xA5);
43 		pca_outw(adap, I2C_PCA_IND, 0x5A);
44 	} else {
45 		adap->reset_chip(adap->data);
46 	}
47 }
48 
49 /*
50  * Generate a start condition on the i2c bus.
51  *
52  * returns after the start condition has occurred
53  */
54 static int pca_start(struct i2c_algo_pca_data *adap)
55 {
56 	int sta = pca_get_con(adap);
57 	DEB2("=== START\n");
58 	sta |= I2C_PCA_CON_STA;
59 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
60 	pca_set_con(adap, sta);
61 	return pca_wait(adap);
62 }
63 
64 /*
65  * Generate a repeated start condition on the i2c bus
66  *
67  * return after the repeated start condition has occurred
68  */
69 static int pca_repeated_start(struct i2c_algo_pca_data *adap)
70 {
71 	int sta = pca_get_con(adap);
72 	DEB2("=== REPEATED START\n");
73 	sta |= I2C_PCA_CON_STA;
74 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
75 	pca_set_con(adap, sta);
76 	return pca_wait(adap);
77 }
78 
79 /*
80  * Generate a stop condition on the i2c bus
81  *
82  * returns after the stop condition has been generated
83  *
84  * STOPs do not generate an interrupt or set the SI flag, since the
85  * part returns the idle state (0xf8). Hence we don't need to
86  * pca_wait here.
87  */
88 static void pca_stop(struct i2c_algo_pca_data *adap)
89 {
90 	int sta = pca_get_con(adap);
91 	DEB2("=== STOP\n");
92 	sta |= I2C_PCA_CON_STO;
93 	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
94 	pca_set_con(adap, sta);
95 }
96 
97 /*
98  * Send the slave address and R/W bit
99  *
100  * returns after the address has been sent
101  */
102 static int pca_address(struct i2c_algo_pca_data *adap,
103 		       struct i2c_msg *msg)
104 {
105 	int sta = pca_get_con(adap);
106 	int addr = i2c_8bit_addr_from_msg(msg);
107 
108 	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
109 	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
110 
111 	pca_outw(adap, I2C_PCA_DAT, addr);
112 
113 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
114 	pca_set_con(adap, sta);
115 
116 	return pca_wait(adap);
117 }
118 
119 /*
120  * Transmit a byte.
121  *
122  * Returns after the byte has been transmitted
123  */
124 static int pca_tx_byte(struct i2c_algo_pca_data *adap,
125 		       __u8 b)
126 {
127 	int sta = pca_get_con(adap);
128 	DEB2("=== WRITE %#04x\n", b);
129 	pca_outw(adap, I2C_PCA_DAT, b);
130 
131 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
132 	pca_set_con(adap, sta);
133 
134 	return pca_wait(adap);
135 }
136 
137 /*
138  * Receive a byte
139  *
140  * returns immediately.
141  */
142 static void pca_rx_byte(struct i2c_algo_pca_data *adap,
143 			__u8 *b, int ack)
144 {
145 	*b = pca_inw(adap, I2C_PCA_DAT);
146 	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
147 }
148 
149 /*
150  * Setup ACK or NACK for next received byte and wait for it to arrive.
151  *
152  * Returns after next byte has arrived.
153  */
154 static int pca_rx_ack(struct i2c_algo_pca_data *adap,
155 		      int ack)
156 {
157 	int sta = pca_get_con(adap);
158 
159 	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
160 
161 	if (ack)
162 		sta |= I2C_PCA_CON_AA;
163 
164 	pca_set_con(adap, sta);
165 	return pca_wait(adap);
166 }
167 
168 static int pca_xfer(struct i2c_adapter *i2c_adap,
169 		    struct i2c_msg *msgs,
170 		    int num)
171 {
172 	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
173 	struct i2c_msg *msg = NULL;
174 	int curmsg;
175 	int numbytes = 0;
176 	int state;
177 	int ret;
178 	int completed = 1;
179 	unsigned long timeout = jiffies + i2c_adap->timeout;
180 
181 	while ((state = pca_status(adap)) != 0xf8) {
182 		if (time_before(jiffies, timeout)) {
183 			msleep(10);
184 		} else {
185 			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
186 				"%#04x\n", state);
187 			return -EBUSY;
188 		}
189 	}
190 
191 	DEB1("{{{ XFER %d messages\n", num);
192 
193 	if (i2c_debug >= 2) {
194 		for (curmsg = 0; curmsg < num; curmsg++) {
195 			int addr, i;
196 			msg = &msgs[curmsg];
197 
198 			addr = (0x7f & msg->addr) ;
199 
200 			if (msg->flags & I2C_M_RD)
201 				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
202 				       curmsg, msg->len, addr, (addr << 1) | 1);
203 			else {
204 				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
205 				       curmsg, msg->len, addr, addr << 1,
206 				       msg->len == 0 ? "" : ", ");
207 				for (i = 0; i < msg->len; i++)
208 					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
209 				printk("]\n");
210 			}
211 		}
212 	}
213 
214 	curmsg = 0;
215 	ret = -EIO;
216 	while (curmsg < num) {
217 		state = pca_status(adap);
218 
219 		DEB3("STATE is 0x%02x\n", state);
220 		msg = &msgs[curmsg];
221 
222 		switch (state) {
223 		case 0xf8: /* On reset or stop the bus is idle */
224 			completed = pca_start(adap);
225 			break;
226 
227 		case 0x08: /* A START condition has been transmitted */
228 		case 0x10: /* A repeated start condition has been transmitted */
229 			completed = pca_address(adap, msg);
230 			break;
231 
232 		case 0x18: /* SLA+W has been transmitted; ACK has been received */
233 		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
234 			if (numbytes < msg->len) {
235 				completed = pca_tx_byte(adap,
236 							msg->buf[numbytes]);
237 				numbytes++;
238 				break;
239 			}
240 			curmsg++; numbytes = 0;
241 			if (curmsg == num)
242 				pca_stop(adap);
243 			else
244 				completed = pca_repeated_start(adap);
245 			break;
246 
247 		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
248 			DEB2("NOT ACK received after SLA+W\n");
249 			pca_stop(adap);
250 			ret = -ENXIO;
251 			goto out;
252 
253 		case 0x40: /* SLA+R has been transmitted; ACK has been received */
254 			completed = pca_rx_ack(adap, msg->len > 1);
255 			break;
256 
257 		case 0x50: /* Data bytes has been received; ACK has been returned */
258 			if (numbytes < msg->len) {
259 				pca_rx_byte(adap, &msg->buf[numbytes], 1);
260 				numbytes++;
261 				completed = pca_rx_ack(adap,
262 						       numbytes < msg->len - 1);
263 				break;
264 			}
265 			curmsg++; numbytes = 0;
266 			if (curmsg == num)
267 				pca_stop(adap);
268 			else
269 				completed = pca_repeated_start(adap);
270 			break;
271 
272 		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
273 			DEB2("NOT ACK received after SLA+R\n");
274 			pca_stop(adap);
275 			ret = -ENXIO;
276 			goto out;
277 
278 		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
279 			DEB2("NOT ACK received after data byte\n");
280 			pca_stop(adap);
281 			goto out;
282 
283 		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
284 			DEB2("Arbitration lost\n");
285 			/*
286 			 * The PCA9564 data sheet (2006-09-01) says "A
287 			 * START condition will be transmitted when the
288 			 * bus becomes free (STOP or SCL and SDA high)"
289 			 * when the STA bit is set (p. 11).
290 			 *
291 			 * In case this won't work, try pca_reset()
292 			 * instead.
293 			 */
294 			pca_start(adap);
295 			goto out;
296 
297 		case 0x58: /* Data byte has been received; NOT ACK has been returned */
298 			if (numbytes == msg->len - 1) {
299 				pca_rx_byte(adap, &msg->buf[numbytes], 0);
300 				curmsg++; numbytes = 0;
301 				if (curmsg == num)
302 					pca_stop(adap);
303 				else
304 					completed = pca_repeated_start(adap);
305 			} else {
306 				DEB2("NOT ACK sent after data byte received. "
307 				     "Not final byte. numbytes %d. len %d\n",
308 				     numbytes, msg->len);
309 				pca_stop(adap);
310 				goto out;
311 			}
312 			break;
313 		case 0x70: /* Bus error - SDA stuck low */
314 			DEB2("BUS ERROR - SDA Stuck low\n");
315 			pca_reset(adap);
316 			goto out;
317 		case 0x90: /* Bus error - SCL stuck low */
318 			DEB2("BUS ERROR - SCL Stuck low\n");
319 			pca_reset(adap);
320 			goto out;
321 		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
322 			DEB2("BUS ERROR - Illegal START or STOP\n");
323 			pca_reset(adap);
324 			goto out;
325 		default:
326 			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
327 			break;
328 		}
329 
330 		if (!completed)
331 			goto out;
332 	}
333 
334 	ret = curmsg;
335  out:
336 	DEB1("}}} transferred %d/%d messages. "
337 	     "status is %#04x. control is %#04x\n",
338 	     curmsg, num, pca_status(adap),
339 	     pca_get_con(adap));
340 	return ret;
341 }
342 
343 static u32 pca_func(struct i2c_adapter *adap)
344 {
345 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
346 }
347 
348 static const struct i2c_algorithm pca_algo = {
349 	.master_xfer	= pca_xfer,
350 	.functionality	= pca_func,
351 };
352 
353 static unsigned int pca_probe_chip(struct i2c_adapter *adap)
354 {
355 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
356 	/* The trick here is to check if there is an indirect register
357 	 * available. If there is one, we will read the value we first
358 	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
359 	 * we wrote on I2C_PCA_ADR
360 	 */
361 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
362 	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
363 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
364 	pca_outw(pca_data, I2C_PCA_IND, 0x00);
365 	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
366 	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
367 		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
368 		pca_data->chip = I2C_PCA_CHIP_9665;
369 	} else {
370 		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
371 		pca_data->chip = I2C_PCA_CHIP_9564;
372 	}
373 	return pca_data->chip;
374 }
375 
376 static int pca_init(struct i2c_adapter *adap)
377 {
378 	struct i2c_algo_pca_data *pca_data = adap->algo_data;
379 
380 	adap->algo = &pca_algo;
381 
382 	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
383 		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
384 		int clock;
385 
386 		if (pca_data->i2c_clock > 7) {
387 			switch (pca_data->i2c_clock) {
388 			case 330000:
389 				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
390 				break;
391 			case 288000:
392 				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
393 				break;
394 			case 217000:
395 				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
396 				break;
397 			case 146000:
398 				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
399 				break;
400 			case 88000:
401 				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
402 				break;
403 			case 59000:
404 				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
405 				break;
406 			case 44000:
407 				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
408 				break;
409 			case 36000:
410 				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
411 				break;
412 			default:
413 				printk(KERN_WARNING
414 					"%s: Invalid I2C clock speed selected."
415 					" Using default 59kHz.\n", adap->name);
416 			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
417 			}
418 		} else {
419 			printk(KERN_WARNING "%s: "
420 				"Choosing the clock frequency based on "
421 				"index is deprecated."
422 				" Use the nominal frequency.\n", adap->name);
423 		}
424 
425 		pca_reset(pca_data);
426 
427 		clock = pca_clock(pca_data);
428 		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
429 		     adap->name, freqs[clock]);
430 
431 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
432 	} else {
433 		int clock;
434 		int mode;
435 		int tlow, thi;
436 		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
437 		int min_tlow, min_thi;
438 		/* These values are the maximum raise and fall values allowed
439 		 * by the I2C operation mode (Standard, Fast or Fast+)
440 		 * They are used (added) below to calculate the clock dividers
441 		 * of PCA9665. Note that they are slightly different of the
442 		 * real maximum, to allow the change on mode exactly on the
443 		 * maximum clock rate for each mode
444 		 */
445 		int raise_fall_time;
446 
447 		if (pca_data->i2c_clock > 1265800) {
448 			printk(KERN_WARNING "%s: I2C clock speed too high."
449 				" Using 1265.8kHz.\n", adap->name);
450 			pca_data->i2c_clock = 1265800;
451 		}
452 
453 		if (pca_data->i2c_clock < 60300) {
454 			printk(KERN_WARNING "%s: I2C clock speed too low."
455 				" Using 60.3kHz.\n", adap->name);
456 			pca_data->i2c_clock = 60300;
457 		}
458 
459 		/* To avoid integer overflow, use clock/100 for calculations */
460 		clock = pca_clock(pca_data) / 100;
461 
462 		if (pca_data->i2c_clock > 1000000) {
463 			mode = I2C_PCA_MODE_TURBO;
464 			min_tlow = 14;
465 			min_thi  = 5;
466 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
467 		} else if (pca_data->i2c_clock > 400000) {
468 			mode = I2C_PCA_MODE_FASTP;
469 			min_tlow = 17;
470 			min_thi  = 9;
471 			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
472 		} else if (pca_data->i2c_clock > 100000) {
473 			mode = I2C_PCA_MODE_FAST;
474 			min_tlow = 44;
475 			min_thi  = 20;
476 			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
477 		} else {
478 			mode = I2C_PCA_MODE_STD;
479 			min_tlow = 157;
480 			min_thi  = 134;
481 			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
482 		}
483 
484 		/* The minimum clock that respects the thi/tlow = 134/157 is
485 		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
486 		 * calculate the thi factor.
487 		 */
488 		if (clock < 648) {
489 			tlow = 255;
490 			thi = 1000000 - clock * raise_fall_time;
491 			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
492 		} else {
493 			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
494 			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
495 			thi = tlow * min_thi / min_tlow;
496 		}
497 
498 		pca_reset(pca_data);
499 
500 		printk(KERN_INFO
501 		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
502 
503 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
504 		pca_outw(pca_data, I2C_PCA_IND, mode);
505 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
506 		pca_outw(pca_data, I2C_PCA_IND, tlow);
507 		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
508 		pca_outw(pca_data, I2C_PCA_IND, thi);
509 
510 		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
511 	}
512 	udelay(500); /* 500 us for oscillator to stabilise */
513 
514 	return 0;
515 }
516 
517 /*
518  * registering functions to load algorithms at runtime
519  */
520 int i2c_pca_add_bus(struct i2c_adapter *adap)
521 {
522 	int rval;
523 
524 	rval = pca_init(adap);
525 	if (rval)
526 		return rval;
527 
528 	return i2c_add_adapter(adap);
529 }
530 EXPORT_SYMBOL(i2c_pca_add_bus);
531 
532 int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
533 {
534 	int rval;
535 
536 	rval = pca_init(adap);
537 	if (rval)
538 		return rval;
539 
540 	return i2c_add_numbered_adapter(adap);
541 }
542 EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
543 
544 MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
545 	"Wolfram Sang <w.sang@pengutronix.de>");
546 MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
547 MODULE_LICENSE("GPL");
548 
549 module_param(i2c_debug, int, 0);
550