xref: /openbmc/linux/drivers/hwmon/emc2103.c (revision 4800cd83)
1 /*
2     emc2103.c - Support for SMSC EMC2103
3     Copyright (c) 2010 SMSC
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19 
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/i2c.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/err.h>
28 #include <linux/mutex.h>
29 
30 /* Addresses scanned */
31 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
32 
33 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
34 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
35 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
36 
37 #define REG_CONF1		0x20
38 #define REG_TEMP_MAX_ALARM	0x24
39 #define REG_TEMP_MIN_ALARM	0x25
40 #define REG_FAN_CONF1		0x42
41 #define REG_FAN_TARGET_LO	0x4c
42 #define REG_FAN_TARGET_HI	0x4d
43 #define REG_FAN_TACH_HI		0x4e
44 #define REG_FAN_TACH_LO		0x4f
45 #define REG_PRODUCT_ID		0xfd
46 #define REG_MFG_ID		0xfe
47 
48 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
49 #define FAN_RPM_FACTOR		3932160
50 
51 /* 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
52  * in anti-parallel mode, and in this configuration both can be read
53  * independently (so we have 4 temperature inputs).  The device can't
54  * detect if it's connected in this mode, so we have to manually enable
55  * it.  Default is to leave the device in the state it's already in (-1).
56  * This parameter allows APD mode to be optionally forced on or off */
57 static int apd = -1;
58 module_param(apd, bool, 0);
59 MODULE_PARM_DESC(init, "Set to zero to disable anti-parallel diode mode");
60 
61 struct temperature {
62 	s8	degrees;
63 	u8	fraction;	/* 0-7 multiples of 0.125 */
64 };
65 
66 struct emc2103_data {
67 	struct device		*hwmon_dev;
68 	struct mutex		update_lock;
69 	bool			valid;		/* registers are valid */
70 	bool			fan_rpm_control;
71 	int			temp_count;	/* num of temp sensors */
72 	unsigned long		last_updated;	/* in jiffies */
73 	struct temperature	temp[4];	/* internal + 3 external */
74 	s8			temp_min[4];	/* no fractional part */
75 	s8			temp_max[4];    /* no fractional part */
76 	u8			temp_min_alarm;
77 	u8			temp_max_alarm;
78 	u8			fan_multiplier;
79 	u16			fan_tach;
80 	u16			fan_target;
81 };
82 
83 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
84 {
85 	int status = i2c_smbus_read_byte_data(client, i2c_reg);
86 	if (status < 0) {
87 		dev_warn(&client->dev, "reg 0x%02x, err %d\n",
88 			i2c_reg, status);
89 	} else {
90 		*output = status;
91 	}
92 	return status;
93 }
94 
95 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
96 			       struct temperature *temp)
97 {
98 	u8 degrees, fractional;
99 
100 	if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
101 		return;
102 
103 	if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
104 		return;
105 
106 	temp->degrees = degrees;
107 	temp->fraction = (fractional & 0xe0) >> 5;
108 }
109 
110 static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
111 			      u8 hi_addr, u8 lo_addr)
112 {
113 	u8 high_byte, lo_byte;
114 
115 	if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
116 		return;
117 
118 	if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
119 		return;
120 
121 	*output = ((u16)high_byte << 5) | (lo_byte >> 3);
122 }
123 
124 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
125 {
126 	u8 high_byte = (new_target & 0x1fe0) >> 5;
127 	u8 low_byte = (new_target & 0x001f) << 3;
128 	i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
129 	i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
130 }
131 
132 static void read_fan_config_from_i2c(struct i2c_client *client)
133 
134 {
135 	struct emc2103_data *data = i2c_get_clientdata(client);
136 	u8 conf1;
137 
138 	if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
139 		return;
140 
141 	data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
142 	data->fan_rpm_control = (conf1 & 0x80) != 0;
143 }
144 
145 static struct emc2103_data *emc2103_update_device(struct device *dev)
146 {
147 	struct i2c_client *client = to_i2c_client(dev);
148 	struct emc2103_data *data = i2c_get_clientdata(client);
149 
150 	mutex_lock(&data->update_lock);
151 
152 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
153 	    || !data->valid) {
154 		int i;
155 
156 		for (i = 0; i < data->temp_count; i++) {
157 			read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
158 			read_u8_from_i2c(client, REG_TEMP_MIN[i],
159 				&data->temp_min[i]);
160 			read_u8_from_i2c(client, REG_TEMP_MAX[i],
161 				&data->temp_max[i]);
162 		}
163 
164 		read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
165 			&data->temp_min_alarm);
166 		read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
167 			&data->temp_max_alarm);
168 
169 		read_fan_from_i2c(client, &data->fan_tach,
170 			REG_FAN_TACH_HI, REG_FAN_TACH_LO);
171 		read_fan_from_i2c(client, &data->fan_target,
172 			REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
173 		read_fan_config_from_i2c(client);
174 
175 		data->last_updated = jiffies;
176 		data->valid = true;
177 	}
178 
179 	mutex_unlock(&data->update_lock);
180 
181 	return data;
182 }
183 
184 static ssize_t
185 show_temp(struct device *dev, struct device_attribute *da, char *buf)
186 {
187 	int nr = to_sensor_dev_attr(da)->index;
188 	struct emc2103_data *data = emc2103_update_device(dev);
189 	int millidegrees = data->temp[nr].degrees * 1000
190 		+ data->temp[nr].fraction * 125;
191 	return sprintf(buf, "%d\n", millidegrees);
192 }
193 
194 static ssize_t
195 show_temp_min(struct device *dev, struct device_attribute *da, char *buf)
196 {
197 	int nr = to_sensor_dev_attr(da)->index;
198 	struct emc2103_data *data = emc2103_update_device(dev);
199 	int millidegrees = data->temp_min[nr] * 1000;
200 	return sprintf(buf, "%d\n", millidegrees);
201 }
202 
203 static ssize_t
204 show_temp_max(struct device *dev, struct device_attribute *da, char *buf)
205 {
206 	int nr = to_sensor_dev_attr(da)->index;
207 	struct emc2103_data *data = emc2103_update_device(dev);
208 	int millidegrees = data->temp_max[nr] * 1000;
209 	return sprintf(buf, "%d\n", millidegrees);
210 }
211 
212 static ssize_t
213 show_temp_fault(struct device *dev, struct device_attribute *da, char *buf)
214 {
215 	int nr = to_sensor_dev_attr(da)->index;
216 	struct emc2103_data *data = emc2103_update_device(dev);
217 	bool fault = (data->temp[nr].degrees == -128);
218 	return sprintf(buf, "%d\n", fault ? 1 : 0);
219 }
220 
221 static ssize_t
222 show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf)
223 {
224 	int nr = to_sensor_dev_attr(da)->index;
225 	struct emc2103_data *data = emc2103_update_device(dev);
226 	bool alarm = data->temp_min_alarm & (1 << nr);
227 	return sprintf(buf, "%d\n", alarm ? 1 : 0);
228 }
229 
230 static ssize_t
231 show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf)
232 {
233 	int nr = to_sensor_dev_attr(da)->index;
234 	struct emc2103_data *data = emc2103_update_device(dev);
235 	bool alarm = data->temp_max_alarm & (1 << nr);
236 	return sprintf(buf, "%d\n", alarm ? 1 : 0);
237 }
238 
239 static ssize_t set_temp_min(struct device *dev, struct device_attribute *da,
240 			    const char *buf, size_t count)
241 {
242 	int nr = to_sensor_dev_attr(da)->index;
243 	struct i2c_client *client = to_i2c_client(dev);
244 	struct emc2103_data *data = i2c_get_clientdata(client);
245 	long val;
246 
247 	int result = strict_strtol(buf, 10, &val);
248 	if (result < 0)
249 		return -EINVAL;
250 
251 	val = DIV_ROUND_CLOSEST(val, 1000);
252 	if ((val < -63) || (val > 127))
253 		return -EINVAL;
254 
255 	mutex_lock(&data->update_lock);
256 	data->temp_min[nr] = val;
257 	i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
258 	mutex_unlock(&data->update_lock);
259 
260 	return count;
261 }
262 
263 static ssize_t set_temp_max(struct device *dev, struct device_attribute *da,
264 			    const char *buf, size_t count)
265 {
266 	int nr = to_sensor_dev_attr(da)->index;
267 	struct i2c_client *client = to_i2c_client(dev);
268 	struct emc2103_data *data = i2c_get_clientdata(client);
269 	long val;
270 
271 	int result = strict_strtol(buf, 10, &val);
272 	if (result < 0)
273 		return -EINVAL;
274 
275 	val = DIV_ROUND_CLOSEST(val, 1000);
276 	if ((val < -63) || (val > 127))
277 		return -EINVAL;
278 
279 	mutex_lock(&data->update_lock);
280 	data->temp_max[nr] = val;
281 	i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
282 	mutex_unlock(&data->update_lock);
283 
284 	return count;
285 }
286 
287 static ssize_t
288 show_fan(struct device *dev, struct device_attribute *da, char *buf)
289 {
290 	struct emc2103_data *data = emc2103_update_device(dev);
291 	int rpm = 0;
292 	if (data->fan_tach != 0)
293 		rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
294 	return sprintf(buf, "%d\n", rpm);
295 }
296 
297 static ssize_t
298 show_fan_div(struct device *dev, struct device_attribute *da, char *buf)
299 {
300 	struct emc2103_data *data = emc2103_update_device(dev);
301 	int fan_div = 8 / data->fan_multiplier;
302 	return sprintf(buf, "%d\n", fan_div);
303 }
304 
305 /* Note: we also update the fan target here, because its value is
306    determined in part by the fan clock divider.  This follows the principle
307    of least surprise; the user doesn't expect the fan target to change just
308    because the divider changed. */
309 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
310 			   const char *buf, size_t count)
311 {
312 	struct emc2103_data *data = emc2103_update_device(dev);
313 	struct i2c_client *client = to_i2c_client(dev);
314 	int new_range_bits, old_div = 8 / data->fan_multiplier;
315 	long new_div;
316 
317 	int status = strict_strtol(buf, 10, &new_div);
318 	if (status < 0)
319 		return -EINVAL;
320 
321 	if (new_div == old_div) /* No change */
322 		return count;
323 
324 	switch (new_div) {
325 	case 1:
326 		new_range_bits = 3;
327 		break;
328 	case 2:
329 		new_range_bits = 2;
330 		break;
331 	case 4:
332 		new_range_bits = 1;
333 		break;
334 	case 8:
335 		new_range_bits = 0;
336 		break;
337 	default:
338 		return -EINVAL;
339 	}
340 
341 	mutex_lock(&data->update_lock);
342 
343 	status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
344 	if (status < 0) {
345 		dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
346 			REG_FAN_CONF1, status);
347 		mutex_unlock(&data->update_lock);
348 		return -EIO;
349 	}
350 	status &= 0x9F;
351 	status |= (new_range_bits << 5);
352 	i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
353 
354 	data->fan_multiplier = 8 / new_div;
355 
356 	/* update fan target if high byte is not disabled */
357 	if ((data->fan_target & 0x1fe0) != 0x1fe0) {
358 		u16 new_target = (data->fan_target * old_div) / new_div;
359 		data->fan_target = min(new_target, (u16)0x1fff);
360 		write_fan_target_to_i2c(client, data->fan_target);
361 	}
362 
363 	/* invalidate data to force re-read from hardware */
364 	data->valid = false;
365 
366 	mutex_unlock(&data->update_lock);
367 	return count;
368 }
369 
370 static ssize_t
371 show_fan_target(struct device *dev, struct device_attribute *da, char *buf)
372 {
373 	struct emc2103_data *data = emc2103_update_device(dev);
374 	int rpm = 0;
375 
376 	/* high byte of 0xff indicates disabled so return 0 */
377 	if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
378 		rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
379 			/ data->fan_target;
380 
381 	return sprintf(buf, "%d\n", rpm);
382 }
383 
384 static ssize_t set_fan_target(struct device *dev, struct device_attribute *da,
385 			      const char *buf, size_t count)
386 {
387 	struct emc2103_data *data = emc2103_update_device(dev);
388 	struct i2c_client *client = to_i2c_client(dev);
389 	long rpm_target;
390 
391 	int result = strict_strtol(buf, 10, &rpm_target);
392 	if (result < 0)
393 		return -EINVAL;
394 
395 	/* Datasheet states 16384 as maximum RPM target (table 3.2) */
396 	if ((rpm_target < 0) || (rpm_target > 16384))
397 		return -EINVAL;
398 
399 	mutex_lock(&data->update_lock);
400 
401 	if (rpm_target == 0)
402 		data->fan_target = 0x1fff;
403 	else
404 		data->fan_target = SENSORS_LIMIT(
405 			(FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
406 			0, 0x1fff);
407 
408 	write_fan_target_to_i2c(client, data->fan_target);
409 
410 	mutex_unlock(&data->update_lock);
411 	return count;
412 }
413 
414 static ssize_t
415 show_fan_fault(struct device *dev, struct device_attribute *da, char *buf)
416 {
417 	struct emc2103_data *data = emc2103_update_device(dev);
418 	bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
419 	return sprintf(buf, "%d\n", fault ? 1 : 0);
420 }
421 
422 static ssize_t
423 show_pwm_enable(struct device *dev, struct device_attribute *da, char *buf)
424 {
425 	struct emc2103_data *data = emc2103_update_device(dev);
426 	return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
427 }
428 
429 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *da,
430 			      const char *buf, size_t count)
431 {
432 	struct i2c_client *client = to_i2c_client(dev);
433 	struct emc2103_data *data = i2c_get_clientdata(client);
434 	long new_value;
435 	u8 conf_reg;
436 
437 	int result = strict_strtol(buf, 10, &new_value);
438 	if (result < 0)
439 		return -EINVAL;
440 
441 	mutex_lock(&data->update_lock);
442 	switch (new_value) {
443 	case 0:
444 		data->fan_rpm_control = false;
445 		break;
446 	case 3:
447 		data->fan_rpm_control = true;
448 		break;
449 	default:
450 		mutex_unlock(&data->update_lock);
451 		return -EINVAL;
452 	}
453 
454 	read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
455 
456 	if (data->fan_rpm_control)
457 		conf_reg |= 0x80;
458 	else
459 		conf_reg &= ~0x80;
460 
461 	i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
462 
463 	mutex_unlock(&data->update_lock);
464 	return count;
465 }
466 
467 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
468 static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min,
469 	set_temp_min, 0);
470 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
471 	set_temp_max, 0);
472 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0);
473 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm,
474 	NULL, 0);
475 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm,
476 	NULL, 0);
477 
478 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
479 static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min,
480 	set_temp_min, 1);
481 static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
482 	set_temp_max, 1);
483 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1);
484 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm,
485 	NULL, 1);
486 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm,
487 	NULL, 1);
488 
489 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
490 static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min,
491 	set_temp_min, 2);
492 static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
493 	set_temp_max, 2);
494 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2);
495 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm,
496 	NULL, 2);
497 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm,
498 	NULL, 2);
499 
500 static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
501 static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min,
502 	set_temp_min, 3);
503 static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
504 	set_temp_max, 3);
505 static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3);
506 static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm,
507 	NULL, 3);
508 static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm,
509 	NULL, 3);
510 
511 static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL);
512 static DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div);
513 static DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, show_fan_target,
514 	set_fan_target);
515 static DEVICE_ATTR(fan1_fault, S_IRUGO, show_fan_fault, NULL);
516 
517 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
518 	set_pwm_enable);
519 
520 /* sensors present on all models */
521 static struct attribute *emc2103_attributes[] = {
522 	&sensor_dev_attr_temp1_input.dev_attr.attr,
523 	&sensor_dev_attr_temp1_min.dev_attr.attr,
524 	&sensor_dev_attr_temp1_max.dev_attr.attr,
525 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
526 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
527 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
528 	&sensor_dev_attr_temp2_input.dev_attr.attr,
529 	&sensor_dev_attr_temp2_min.dev_attr.attr,
530 	&sensor_dev_attr_temp2_max.dev_attr.attr,
531 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
532 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
533 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
534 	&dev_attr_fan1_input.attr,
535 	&dev_attr_fan1_div.attr,
536 	&dev_attr_fan1_target.attr,
537 	&dev_attr_fan1_fault.attr,
538 	&dev_attr_pwm1_enable.attr,
539 	NULL
540 };
541 
542 /* extra temperature sensors only present on 2103-2 and 2103-4 */
543 static struct attribute *emc2103_attributes_temp3[] = {
544 	&sensor_dev_attr_temp3_input.dev_attr.attr,
545 	&sensor_dev_attr_temp3_min.dev_attr.attr,
546 	&sensor_dev_attr_temp3_max.dev_attr.attr,
547 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
548 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
549 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
550 	NULL
551 };
552 
553 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
554 static struct attribute *emc2103_attributes_temp4[] = {
555 	&sensor_dev_attr_temp4_input.dev_attr.attr,
556 	&sensor_dev_attr_temp4_min.dev_attr.attr,
557 	&sensor_dev_attr_temp4_max.dev_attr.attr,
558 	&sensor_dev_attr_temp4_fault.dev_attr.attr,
559 	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
560 	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
561 	NULL
562 };
563 
564 static const struct attribute_group emc2103_group = {
565 	.attrs = emc2103_attributes,
566 };
567 
568 static const struct attribute_group emc2103_temp3_group = {
569 	.attrs = emc2103_attributes_temp3,
570 };
571 
572 static const struct attribute_group emc2103_temp4_group = {
573 	.attrs = emc2103_attributes_temp4,
574 };
575 
576 static int
577 emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id)
578 {
579 	struct emc2103_data *data;
580 	int status;
581 
582 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
583 		return -EIO;
584 
585 	data = kzalloc(sizeof(struct emc2103_data), GFP_KERNEL);
586 	if (!data)
587 		return -ENOMEM;
588 
589 	i2c_set_clientdata(client, data);
590 	mutex_init(&data->update_lock);
591 
592 	/* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
593 	status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
594 	if (status == 0x24) {
595 		/* 2103-1 only has 1 external diode */
596 		data->temp_count = 2;
597 	} else {
598 		/* 2103-2 and 2103-4 have 3 or 4 external diodes */
599 		status = i2c_smbus_read_byte_data(client, REG_CONF1);
600 		if (status < 0) {
601 			dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
602 				status);
603 			goto exit_free;
604 		}
605 
606 		/* detect current state of hardware */
607 		data->temp_count = (status & 0x01) ? 4 : 3;
608 
609 		/* force APD state if module parameter is set */
610 		if (apd == 0) {
611 			/* force APD mode off */
612 			data->temp_count = 3;
613 			status &= ~(0x01);
614 			i2c_smbus_write_byte_data(client, REG_CONF1, status);
615 		} else if (apd == 1) {
616 			/* force APD mode on */
617 			data->temp_count = 4;
618 			status |= 0x01;
619 			i2c_smbus_write_byte_data(client, REG_CONF1, status);
620 		}
621 	}
622 
623 	/* Register sysfs hooks */
624 	status = sysfs_create_group(&client->dev.kobj, &emc2103_group);
625 	if (status)
626 		goto exit_free;
627 
628 	if (data->temp_count >= 3) {
629 		status = sysfs_create_group(&client->dev.kobj,
630 			&emc2103_temp3_group);
631 		if (status)
632 			goto exit_remove;
633 	}
634 
635 	if (data->temp_count == 4) {
636 		status = sysfs_create_group(&client->dev.kobj,
637 			&emc2103_temp4_group);
638 		if (status)
639 			goto exit_remove_temp3;
640 	}
641 
642 	data->hwmon_dev = hwmon_device_register(&client->dev);
643 	if (IS_ERR(data->hwmon_dev)) {
644 		status = PTR_ERR(data->hwmon_dev);
645 		goto exit_remove_temp4;
646 	}
647 
648 	dev_info(&client->dev, "%s: sensor '%s'\n",
649 		 dev_name(data->hwmon_dev), client->name);
650 
651 	return 0;
652 
653 exit_remove_temp4:
654 	if (data->temp_count == 4)
655 		sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
656 exit_remove_temp3:
657 	if (data->temp_count >= 3)
658 		sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
659 exit_remove:
660 	sysfs_remove_group(&client->dev.kobj, &emc2103_group);
661 exit_free:
662 	kfree(data);
663 	return status;
664 }
665 
666 static int emc2103_remove(struct i2c_client *client)
667 {
668 	struct emc2103_data *data = i2c_get_clientdata(client);
669 
670 	hwmon_device_unregister(data->hwmon_dev);
671 
672 	if (data->temp_count == 4)
673 		sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group);
674 
675 	if (data->temp_count >= 3)
676 		sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group);
677 
678 	sysfs_remove_group(&client->dev.kobj, &emc2103_group);
679 
680 	kfree(data);
681 	return 0;
682 }
683 
684 static const struct i2c_device_id emc2103_ids[] = {
685 	{ "emc2103", 0, },
686 	{ /* LIST END */ }
687 };
688 MODULE_DEVICE_TABLE(i2c, emc2103_ids);
689 
690 /* Return 0 if detection is successful, -ENODEV otherwise */
691 static int
692 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
693 {
694 	struct i2c_adapter *adapter = new_client->adapter;
695 	int manufacturer, product;
696 
697 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
698 		return -ENODEV;
699 
700 	manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
701 	if (manufacturer != 0x5D)
702 		return -ENODEV;
703 
704 	product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
705 	if ((product != 0x24) && (product != 0x26))
706 		return -ENODEV;
707 
708 	strlcpy(info->type, "emc2103", I2C_NAME_SIZE);
709 
710 	return 0;
711 }
712 
713 static struct i2c_driver emc2103_driver = {
714 	.class		= I2C_CLASS_HWMON,
715 	.driver = {
716 		.name	= "emc2103",
717 	},
718 	.probe		= emc2103_probe,
719 	.remove		= emc2103_remove,
720 	.id_table	= emc2103_ids,
721 	.detect		= emc2103_detect,
722 	.address_list	= normal_i2c,
723 };
724 
725 static int __init sensors_emc2103_init(void)
726 {
727 	return i2c_add_driver(&emc2103_driver);
728 }
729 
730 static void __exit sensors_emc2103_exit(void)
731 {
732 	i2c_del_driver(&emc2103_driver);
733 }
734 
735 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@smsc.com>");
736 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
737 MODULE_LICENSE("GPL");
738 
739 module_init(sensors_emc2103_init);
740 module_exit(sensors_emc2103_exit);
741