1 /* 2 * emc2103.c - Support for SMSC EMC2103 3 * Copyright (c) 2010 SMSC 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/jiffies.h> 24 #include <linux/i2c.h> 25 #include <linux/hwmon.h> 26 #include <linux/hwmon-sysfs.h> 27 #include <linux/err.h> 28 #include <linux/mutex.h> 29 30 /* Addresses scanned */ 31 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END }; 32 33 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 }; 34 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a }; 35 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 }; 36 37 #define REG_CONF1 0x20 38 #define REG_TEMP_MAX_ALARM 0x24 39 #define REG_TEMP_MIN_ALARM 0x25 40 #define REG_FAN_CONF1 0x42 41 #define REG_FAN_TARGET_LO 0x4c 42 #define REG_FAN_TARGET_HI 0x4d 43 #define REG_FAN_TACH_HI 0x4e 44 #define REG_FAN_TACH_LO 0x4f 45 #define REG_PRODUCT_ID 0xfd 46 #define REG_MFG_ID 0xfe 47 48 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */ 49 #define FAN_RPM_FACTOR 3932160 50 51 /* 52 * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes 53 * in anti-parallel mode, and in this configuration both can be read 54 * independently (so we have 4 temperature inputs). The device can't 55 * detect if it's connected in this mode, so we have to manually enable 56 * it. Default is to leave the device in the state it's already in (-1). 57 * This parameter allows APD mode to be optionally forced on or off 58 */ 59 static int apd = -1; 60 module_param(apd, bint, 0); 61 MODULE_PARM_DESC(apd, "Set to zero to disable anti-parallel diode mode"); 62 63 struct temperature { 64 s8 degrees; 65 u8 fraction; /* 0-7 multiples of 0.125 */ 66 }; 67 68 struct emc2103_data { 69 struct i2c_client *client; 70 const struct attribute_group *groups[4]; 71 struct mutex update_lock; 72 bool valid; /* registers are valid */ 73 bool fan_rpm_control; 74 int temp_count; /* num of temp sensors */ 75 unsigned long last_updated; /* in jiffies */ 76 struct temperature temp[4]; /* internal + 3 external */ 77 s8 temp_min[4]; /* no fractional part */ 78 s8 temp_max[4]; /* no fractional part */ 79 u8 temp_min_alarm; 80 u8 temp_max_alarm; 81 u8 fan_multiplier; 82 u16 fan_tach; 83 u16 fan_target; 84 }; 85 86 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output) 87 { 88 int status = i2c_smbus_read_byte_data(client, i2c_reg); 89 if (status < 0) { 90 dev_warn(&client->dev, "reg 0x%02x, err %d\n", 91 i2c_reg, status); 92 } else { 93 *output = status; 94 } 95 return status; 96 } 97 98 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg, 99 struct temperature *temp) 100 { 101 u8 degrees, fractional; 102 103 if (read_u8_from_i2c(client, i2c_reg, °rees) < 0) 104 return; 105 106 if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0) 107 return; 108 109 temp->degrees = degrees; 110 temp->fraction = (fractional & 0xe0) >> 5; 111 } 112 113 static void read_fan_from_i2c(struct i2c_client *client, u16 *output, 114 u8 hi_addr, u8 lo_addr) 115 { 116 u8 high_byte, lo_byte; 117 118 if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0) 119 return; 120 121 if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0) 122 return; 123 124 *output = ((u16)high_byte << 5) | (lo_byte >> 3); 125 } 126 127 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target) 128 { 129 u8 high_byte = (new_target & 0x1fe0) >> 5; 130 u8 low_byte = (new_target & 0x001f) << 3; 131 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte); 132 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte); 133 } 134 135 static void read_fan_config_from_i2c(struct i2c_client *client) 136 137 { 138 struct emc2103_data *data = i2c_get_clientdata(client); 139 u8 conf1; 140 141 if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0) 142 return; 143 144 data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5); 145 data->fan_rpm_control = (conf1 & 0x80) != 0; 146 } 147 148 static struct emc2103_data *emc2103_update_device(struct device *dev) 149 { 150 struct emc2103_data *data = dev_get_drvdata(dev); 151 struct i2c_client *client = data->client; 152 153 mutex_lock(&data->update_lock); 154 155 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 156 || !data->valid) { 157 int i; 158 159 for (i = 0; i < data->temp_count; i++) { 160 read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]); 161 read_u8_from_i2c(client, REG_TEMP_MIN[i], 162 &data->temp_min[i]); 163 read_u8_from_i2c(client, REG_TEMP_MAX[i], 164 &data->temp_max[i]); 165 } 166 167 read_u8_from_i2c(client, REG_TEMP_MIN_ALARM, 168 &data->temp_min_alarm); 169 read_u8_from_i2c(client, REG_TEMP_MAX_ALARM, 170 &data->temp_max_alarm); 171 172 read_fan_from_i2c(client, &data->fan_tach, 173 REG_FAN_TACH_HI, REG_FAN_TACH_LO); 174 read_fan_from_i2c(client, &data->fan_target, 175 REG_FAN_TARGET_HI, REG_FAN_TARGET_LO); 176 read_fan_config_from_i2c(client); 177 178 data->last_updated = jiffies; 179 data->valid = true; 180 } 181 182 mutex_unlock(&data->update_lock); 183 184 return data; 185 } 186 187 static ssize_t 188 temp_show(struct device *dev, struct device_attribute *da, char *buf) 189 { 190 int nr = to_sensor_dev_attr(da)->index; 191 struct emc2103_data *data = emc2103_update_device(dev); 192 int millidegrees = data->temp[nr].degrees * 1000 193 + data->temp[nr].fraction * 125; 194 return sprintf(buf, "%d\n", millidegrees); 195 } 196 197 static ssize_t 198 temp_min_show(struct device *dev, struct device_attribute *da, char *buf) 199 { 200 int nr = to_sensor_dev_attr(da)->index; 201 struct emc2103_data *data = emc2103_update_device(dev); 202 int millidegrees = data->temp_min[nr] * 1000; 203 return sprintf(buf, "%d\n", millidegrees); 204 } 205 206 static ssize_t 207 temp_max_show(struct device *dev, struct device_attribute *da, char *buf) 208 { 209 int nr = to_sensor_dev_attr(da)->index; 210 struct emc2103_data *data = emc2103_update_device(dev); 211 int millidegrees = data->temp_max[nr] * 1000; 212 return sprintf(buf, "%d\n", millidegrees); 213 } 214 215 static ssize_t 216 temp_fault_show(struct device *dev, struct device_attribute *da, char *buf) 217 { 218 int nr = to_sensor_dev_attr(da)->index; 219 struct emc2103_data *data = emc2103_update_device(dev); 220 bool fault = (data->temp[nr].degrees == -128); 221 return sprintf(buf, "%d\n", fault ? 1 : 0); 222 } 223 224 static ssize_t 225 temp_min_alarm_show(struct device *dev, struct device_attribute *da, 226 char *buf) 227 { 228 int nr = to_sensor_dev_attr(da)->index; 229 struct emc2103_data *data = emc2103_update_device(dev); 230 bool alarm = data->temp_min_alarm & (1 << nr); 231 return sprintf(buf, "%d\n", alarm ? 1 : 0); 232 } 233 234 static ssize_t 235 temp_max_alarm_show(struct device *dev, struct device_attribute *da, 236 char *buf) 237 { 238 int nr = to_sensor_dev_attr(da)->index; 239 struct emc2103_data *data = emc2103_update_device(dev); 240 bool alarm = data->temp_max_alarm & (1 << nr); 241 return sprintf(buf, "%d\n", alarm ? 1 : 0); 242 } 243 244 static ssize_t temp_min_store(struct device *dev, struct device_attribute *da, 245 const char *buf, size_t count) 246 { 247 int nr = to_sensor_dev_attr(da)->index; 248 struct emc2103_data *data = dev_get_drvdata(dev); 249 struct i2c_client *client = data->client; 250 long val; 251 252 int result = kstrtol(buf, 10, &val); 253 if (result < 0) 254 return result; 255 256 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000); 257 258 mutex_lock(&data->update_lock); 259 data->temp_min[nr] = val; 260 i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val); 261 mutex_unlock(&data->update_lock); 262 263 return count; 264 } 265 266 static ssize_t temp_max_store(struct device *dev, struct device_attribute *da, 267 const char *buf, size_t count) 268 { 269 int nr = to_sensor_dev_attr(da)->index; 270 struct emc2103_data *data = dev_get_drvdata(dev); 271 struct i2c_client *client = data->client; 272 long val; 273 274 int result = kstrtol(buf, 10, &val); 275 if (result < 0) 276 return result; 277 278 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000); 279 280 mutex_lock(&data->update_lock); 281 data->temp_max[nr] = val; 282 i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val); 283 mutex_unlock(&data->update_lock); 284 285 return count; 286 } 287 288 static ssize_t 289 fan1_input_show(struct device *dev, struct device_attribute *da, char *buf) 290 { 291 struct emc2103_data *data = emc2103_update_device(dev); 292 int rpm = 0; 293 if (data->fan_tach != 0) 294 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach; 295 return sprintf(buf, "%d\n", rpm); 296 } 297 298 static ssize_t 299 fan1_div_show(struct device *dev, struct device_attribute *da, char *buf) 300 { 301 struct emc2103_data *data = emc2103_update_device(dev); 302 int fan_div = 8 / data->fan_multiplier; 303 return sprintf(buf, "%d\n", fan_div); 304 } 305 306 /* 307 * Note: we also update the fan target here, because its value is 308 * determined in part by the fan clock divider. This follows the principle 309 * of least surprise; the user doesn't expect the fan target to change just 310 * because the divider changed. 311 */ 312 static ssize_t fan1_div_store(struct device *dev, struct device_attribute *da, 313 const char *buf, size_t count) 314 { 315 struct emc2103_data *data = emc2103_update_device(dev); 316 struct i2c_client *client = data->client; 317 int new_range_bits, old_div = 8 / data->fan_multiplier; 318 long new_div; 319 320 int status = kstrtol(buf, 10, &new_div); 321 if (status < 0) 322 return status; 323 324 if (new_div == old_div) /* No change */ 325 return count; 326 327 switch (new_div) { 328 case 1: 329 new_range_bits = 3; 330 break; 331 case 2: 332 new_range_bits = 2; 333 break; 334 case 4: 335 new_range_bits = 1; 336 break; 337 case 8: 338 new_range_bits = 0; 339 break; 340 default: 341 return -EINVAL; 342 } 343 344 mutex_lock(&data->update_lock); 345 346 status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1); 347 if (status < 0) { 348 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", 349 REG_FAN_CONF1, status); 350 mutex_unlock(&data->update_lock); 351 return status; 352 } 353 status &= 0x9F; 354 status |= (new_range_bits << 5); 355 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status); 356 357 data->fan_multiplier = 8 / new_div; 358 359 /* update fan target if high byte is not disabled */ 360 if ((data->fan_target & 0x1fe0) != 0x1fe0) { 361 u16 new_target = (data->fan_target * old_div) / new_div; 362 data->fan_target = min(new_target, (u16)0x1fff); 363 write_fan_target_to_i2c(client, data->fan_target); 364 } 365 366 /* invalidate data to force re-read from hardware */ 367 data->valid = false; 368 369 mutex_unlock(&data->update_lock); 370 return count; 371 } 372 373 static ssize_t 374 fan1_target_show(struct device *dev, struct device_attribute *da, char *buf) 375 { 376 struct emc2103_data *data = emc2103_update_device(dev); 377 int rpm = 0; 378 379 /* high byte of 0xff indicates disabled so return 0 */ 380 if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0)) 381 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) 382 / data->fan_target; 383 384 return sprintf(buf, "%d\n", rpm); 385 } 386 387 static ssize_t fan1_target_store(struct device *dev, 388 struct device_attribute *da, const char *buf, 389 size_t count) 390 { 391 struct emc2103_data *data = emc2103_update_device(dev); 392 struct i2c_client *client = data->client; 393 unsigned long rpm_target; 394 395 int result = kstrtoul(buf, 10, &rpm_target); 396 if (result < 0) 397 return result; 398 399 /* Datasheet states 16384 as maximum RPM target (table 3.2) */ 400 rpm_target = clamp_val(rpm_target, 0, 16384); 401 402 mutex_lock(&data->update_lock); 403 404 if (rpm_target == 0) 405 data->fan_target = 0x1fff; 406 else 407 data->fan_target = clamp_val( 408 (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target, 409 0, 0x1fff); 410 411 write_fan_target_to_i2c(client, data->fan_target); 412 413 mutex_unlock(&data->update_lock); 414 return count; 415 } 416 417 static ssize_t 418 fan1_fault_show(struct device *dev, struct device_attribute *da, char *buf) 419 { 420 struct emc2103_data *data = emc2103_update_device(dev); 421 bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0); 422 return sprintf(buf, "%d\n", fault ? 1 : 0); 423 } 424 425 static ssize_t 426 pwm1_enable_show(struct device *dev, struct device_attribute *da, char *buf) 427 { 428 struct emc2103_data *data = emc2103_update_device(dev); 429 return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0); 430 } 431 432 static ssize_t pwm1_enable_store(struct device *dev, 433 struct device_attribute *da, const char *buf, 434 size_t count) 435 { 436 struct emc2103_data *data = dev_get_drvdata(dev); 437 struct i2c_client *client = data->client; 438 long new_value; 439 u8 conf_reg; 440 441 int result = kstrtol(buf, 10, &new_value); 442 if (result < 0) 443 return result; 444 445 mutex_lock(&data->update_lock); 446 switch (new_value) { 447 case 0: 448 data->fan_rpm_control = false; 449 break; 450 case 3: 451 data->fan_rpm_control = true; 452 break; 453 default: 454 count = -EINVAL; 455 goto err; 456 } 457 458 result = read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg); 459 if (result) { 460 count = result; 461 goto err; 462 } 463 464 if (data->fan_rpm_control) 465 conf_reg |= 0x80; 466 else 467 conf_reg &= ~0x80; 468 469 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg); 470 err: 471 mutex_unlock(&data->update_lock); 472 return count; 473 } 474 475 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); 476 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); 477 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); 478 static SENSOR_DEVICE_ATTR_RO(temp1_fault, temp_fault, 0); 479 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, temp_min_alarm, 0); 480 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, temp_max_alarm, 0); 481 482 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); 483 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); 484 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); 485 static SENSOR_DEVICE_ATTR_RO(temp2_fault, temp_fault, 1); 486 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, temp_min_alarm, 1); 487 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, temp_max_alarm, 1); 488 489 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); 490 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); 491 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); 492 static SENSOR_DEVICE_ATTR_RO(temp3_fault, temp_fault, 2); 493 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, temp_min_alarm, 2); 494 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, temp_max_alarm, 2); 495 496 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3); 497 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3); 498 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3); 499 static SENSOR_DEVICE_ATTR_RO(temp4_fault, temp_fault, 3); 500 static SENSOR_DEVICE_ATTR_RO(temp4_min_alarm, temp_min_alarm, 3); 501 static SENSOR_DEVICE_ATTR_RO(temp4_max_alarm, temp_max_alarm, 3); 502 503 static DEVICE_ATTR_RO(fan1_input); 504 static DEVICE_ATTR_RW(fan1_div); 505 static DEVICE_ATTR_RW(fan1_target); 506 static DEVICE_ATTR_RO(fan1_fault); 507 508 static DEVICE_ATTR_RW(pwm1_enable); 509 510 /* sensors present on all models */ 511 static struct attribute *emc2103_attributes[] = { 512 &sensor_dev_attr_temp1_input.dev_attr.attr, 513 &sensor_dev_attr_temp1_min.dev_attr.attr, 514 &sensor_dev_attr_temp1_max.dev_attr.attr, 515 &sensor_dev_attr_temp1_fault.dev_attr.attr, 516 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 517 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 518 &sensor_dev_attr_temp2_input.dev_attr.attr, 519 &sensor_dev_attr_temp2_min.dev_attr.attr, 520 &sensor_dev_attr_temp2_max.dev_attr.attr, 521 &sensor_dev_attr_temp2_fault.dev_attr.attr, 522 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 523 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 524 &dev_attr_fan1_input.attr, 525 &dev_attr_fan1_div.attr, 526 &dev_attr_fan1_target.attr, 527 &dev_attr_fan1_fault.attr, 528 &dev_attr_pwm1_enable.attr, 529 NULL 530 }; 531 532 /* extra temperature sensors only present on 2103-2 and 2103-4 */ 533 static struct attribute *emc2103_attributes_temp3[] = { 534 &sensor_dev_attr_temp3_input.dev_attr.attr, 535 &sensor_dev_attr_temp3_min.dev_attr.attr, 536 &sensor_dev_attr_temp3_max.dev_attr.attr, 537 &sensor_dev_attr_temp3_fault.dev_attr.attr, 538 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 539 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 540 NULL 541 }; 542 543 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */ 544 static struct attribute *emc2103_attributes_temp4[] = { 545 &sensor_dev_attr_temp4_input.dev_attr.attr, 546 &sensor_dev_attr_temp4_min.dev_attr.attr, 547 &sensor_dev_attr_temp4_max.dev_attr.attr, 548 &sensor_dev_attr_temp4_fault.dev_attr.attr, 549 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, 550 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, 551 NULL 552 }; 553 554 static const struct attribute_group emc2103_group = { 555 .attrs = emc2103_attributes, 556 }; 557 558 static const struct attribute_group emc2103_temp3_group = { 559 .attrs = emc2103_attributes_temp3, 560 }; 561 562 static const struct attribute_group emc2103_temp4_group = { 563 .attrs = emc2103_attributes_temp4, 564 }; 565 566 static int 567 emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id) 568 { 569 struct emc2103_data *data; 570 struct device *hwmon_dev; 571 int status, idx = 0; 572 573 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 574 return -EIO; 575 576 data = devm_kzalloc(&client->dev, sizeof(struct emc2103_data), 577 GFP_KERNEL); 578 if (!data) 579 return -ENOMEM; 580 581 i2c_set_clientdata(client, data); 582 data->client = client; 583 mutex_init(&data->update_lock); 584 585 /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */ 586 status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID); 587 if (status == 0x24) { 588 /* 2103-1 only has 1 external diode */ 589 data->temp_count = 2; 590 } else { 591 /* 2103-2 and 2103-4 have 3 or 4 external diodes */ 592 status = i2c_smbus_read_byte_data(client, REG_CONF1); 593 if (status < 0) { 594 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1, 595 status); 596 return status; 597 } 598 599 /* detect current state of hardware */ 600 data->temp_count = (status & 0x01) ? 4 : 3; 601 602 /* force APD state if module parameter is set */ 603 if (apd == 0) { 604 /* force APD mode off */ 605 data->temp_count = 3; 606 status &= ~(0x01); 607 i2c_smbus_write_byte_data(client, REG_CONF1, status); 608 } else if (apd == 1) { 609 /* force APD mode on */ 610 data->temp_count = 4; 611 status |= 0x01; 612 i2c_smbus_write_byte_data(client, REG_CONF1, status); 613 } 614 } 615 616 /* sysfs hooks */ 617 data->groups[idx++] = &emc2103_group; 618 if (data->temp_count >= 3) 619 data->groups[idx++] = &emc2103_temp3_group; 620 if (data->temp_count == 4) 621 data->groups[idx++] = &emc2103_temp4_group; 622 623 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, 624 client->name, data, 625 data->groups); 626 if (IS_ERR(hwmon_dev)) 627 return PTR_ERR(hwmon_dev); 628 629 dev_info(&client->dev, "%s: sensor '%s'\n", 630 dev_name(hwmon_dev), client->name); 631 632 return 0; 633 } 634 635 static const struct i2c_device_id emc2103_ids[] = { 636 { "emc2103", 0, }, 637 { /* LIST END */ } 638 }; 639 MODULE_DEVICE_TABLE(i2c, emc2103_ids); 640 641 /* Return 0 if detection is successful, -ENODEV otherwise */ 642 static int 643 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info) 644 { 645 struct i2c_adapter *adapter = new_client->adapter; 646 int manufacturer, product; 647 648 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 649 return -ENODEV; 650 651 manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID); 652 if (manufacturer != 0x5D) 653 return -ENODEV; 654 655 product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID); 656 if ((product != 0x24) && (product != 0x26)) 657 return -ENODEV; 658 659 strlcpy(info->type, "emc2103", I2C_NAME_SIZE); 660 661 return 0; 662 } 663 664 static struct i2c_driver emc2103_driver = { 665 .class = I2C_CLASS_HWMON, 666 .driver = { 667 .name = "emc2103", 668 }, 669 .probe = emc2103_probe, 670 .id_table = emc2103_ids, 671 .detect = emc2103_detect, 672 .address_list = normal_i2c, 673 }; 674 675 module_i2c_driver(emc2103_driver); 676 677 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>"); 678 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver"); 679 MODULE_LICENSE("GPL"); 680