xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision 83b975b5)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/reset.h>
17 
18 #include "msm_drv.h"
19 #include "msm_fence.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gpu_perfcntr;
25 struct msm_gpu_state;
26 struct msm_file_private;
27 
28 struct msm_gpu_config {
29 	const char *ioname;
30 	unsigned int nr_rings;
31 };
32 
33 /* So far, with hardware that I've seen to date, we can have:
34  *  + zero, one, or two z180 2d cores
35  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
36  *    for the CP seems to implement some different PM4 packet types
37  *    but the basics of cmdstream submission are the same)
38  *
39  * Which means that the eventual complete "class" hierarchy, once
40  * support for all past and present hw is in place, becomes:
41  *  + msm_gpu
42  *    + adreno_gpu
43  *      + a3xx_gpu
44  *      + a2xx_gpu
45  *    + z180_gpu
46  */
47 struct msm_gpu_funcs {
48 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
49 			 uint32_t param, uint64_t *value, uint32_t *len);
50 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
51 			 uint32_t param, uint64_t value, uint32_t len);
52 	int (*hw_init)(struct msm_gpu *gpu);
53 	int (*pm_suspend)(struct msm_gpu *gpu);
54 	int (*pm_resume)(struct msm_gpu *gpu);
55 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
56 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
57 	irqreturn_t (*irq)(struct msm_gpu *irq);
58 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
59 	void (*recover)(struct msm_gpu *gpu);
60 	void (*destroy)(struct msm_gpu *gpu);
61 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
62 	/* show GPU status in debugfs: */
63 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
64 			struct drm_printer *p);
65 	/* for generation specific debugfs: */
66 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
67 #endif
68 	/* note: gpu_busy() can assume that we have been pm_resumed */
69 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
70 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
71 	int (*gpu_state_put)(struct msm_gpu_state *state);
72 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
73 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
74 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
75 			     bool suspended);
76 	struct msm_gem_address_space *(*create_address_space)
77 		(struct msm_gpu *gpu, struct platform_device *pdev);
78 	struct msm_gem_address_space *(*create_private_address_space)
79 		(struct msm_gpu *gpu);
80 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
81 };
82 
83 /* Additional state for iommu faults: */
84 struct msm_gpu_fault_info {
85 	u64 ttbr0;
86 	unsigned long iova;
87 	int flags;
88 	const char *type;
89 	const char *block;
90 };
91 
92 /**
93  * struct msm_gpu_devfreq - devfreq related state
94  */
95 struct msm_gpu_devfreq {
96 	/** devfreq: devfreq instance */
97 	struct devfreq *devfreq;
98 
99 	/** lock: lock for "suspended", "busy_cycles", and "time" */
100 	struct mutex lock;
101 
102 	/**
103 	 * idle_constraint:
104 	 *
105 	 * A PM QoS constraint to limit max freq while the GPU is idle.
106 	 */
107 	struct dev_pm_qos_request idle_freq;
108 
109 	/**
110 	 * boost_constraint:
111 	 *
112 	 * A PM QoS constraint to boost min freq for a period of time
113 	 * until the boost expires.
114 	 */
115 	struct dev_pm_qos_request boost_freq;
116 
117 	/**
118 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
119 	 * cycles since last sampling period.
120 	 */
121 	u64 busy_cycles;
122 
123 	/** time: Time of last sampling period. */
124 	ktime_t time;
125 
126 	/** idle_time: Time of last transition to idle: */
127 	ktime_t idle_time;
128 
129 	struct devfreq_dev_status average_status;
130 
131 	/**
132 	 * idle_work:
133 	 *
134 	 * Used to delay clamping to idle freq on active->idle transition.
135 	 */
136 	struct msm_hrtimer_work idle_work;
137 
138 	/**
139 	 * boost_work:
140 	 *
141 	 * Used to reset the boost_constraint after the boost period has
142 	 * elapsed
143 	 */
144 	struct msm_hrtimer_work boost_work;
145 
146 	/** suspended: tracks if we're suspended */
147 	bool suspended;
148 };
149 
150 struct msm_gpu {
151 	const char *name;
152 	struct drm_device *dev;
153 	struct platform_device *pdev;
154 	const struct msm_gpu_funcs *funcs;
155 
156 	struct adreno_smmu_priv adreno_smmu;
157 
158 	/* performance counters (hw & sw): */
159 	spinlock_t perf_lock;
160 	bool perfcntr_active;
161 	struct {
162 		bool active;
163 		ktime_t time;
164 	} last_sample;
165 	uint32_t totaltime, activetime;    /* sw counters */
166 	uint32_t last_cntrs[5];            /* hw counters */
167 	const struct msm_gpu_perfcntr *perfcntrs;
168 	uint32_t num_perfcntrs;
169 
170 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
171 	int nr_rings;
172 
173 	/**
174 	 * sysprof_active:
175 	 *
176 	 * The count of contexts that have enabled system profiling.
177 	 */
178 	refcount_t sysprof_active;
179 
180 	/**
181 	 * cur_ctx_seqno:
182 	 *
183 	 * The ctx->seqno value of the last context to submit rendering,
184 	 * and the one with current pgtables installed (for generations
185 	 * that support per-context pgtables).  Tracked by seqno rather
186 	 * than pointer value to avoid dangling pointers, and cases where
187 	 * a ctx can be freed and a new one created with the same address.
188 	 */
189 	int cur_ctx_seqno;
190 
191 	/**
192 	 * lock:
193 	 *
194 	 * General lock for serializing all the gpu things.
195 	 *
196 	 * TODO move to per-ring locking where feasible (ie. submit/retire
197 	 * path, etc)
198 	 */
199 	struct mutex lock;
200 
201 	/**
202 	 * active_submits:
203 	 *
204 	 * The number of submitted but not yet retired submits, used to
205 	 * determine transitions between active and idle.
206 	 *
207 	 * Protected by active_lock
208 	 */
209 	int active_submits;
210 
211 	/** lock: protects active_submits and idle/active transitions */
212 	struct mutex active_lock;
213 
214 	/* does gpu need hw_init? */
215 	bool needs_hw_init;
216 
217 	/**
218 	 * global_faults: number of GPU hangs not attributed to a particular
219 	 * address space
220 	 */
221 	int global_faults;
222 
223 	void __iomem *mmio;
224 	int irq;
225 
226 	struct msm_gem_address_space *aspace;
227 
228 	/* Power Control: */
229 	struct regulator *gpu_reg, *gpu_cx;
230 	struct clk_bulk_data *grp_clks;
231 	int nr_clocks;
232 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
233 	uint32_t fast_rate;
234 
235 	/* Hang and Inactivity Detection:
236 	 */
237 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
238 
239 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
240 	struct timer_list hangcheck_timer;
241 
242 	/* Fault info for most recent iova fault: */
243 	struct msm_gpu_fault_info fault_info;
244 
245 	/* work for handling GPU ioval faults: */
246 	struct kthread_work fault_work;
247 
248 	/* work for handling GPU recovery: */
249 	struct kthread_work recover_work;
250 
251 	/** retire_event: notified when submits are retired: */
252 	wait_queue_head_t retire_event;
253 
254 	/* work for handling active-list retiring: */
255 	struct kthread_work retire_work;
256 
257 	/* worker for retire/recover: */
258 	struct kthread_worker *worker;
259 
260 	struct drm_gem_object *memptrs_bo;
261 
262 	struct msm_gpu_devfreq devfreq;
263 
264 	uint32_t suspend_count;
265 
266 	struct msm_gpu_state *crashstate;
267 
268 	/* Enable clamping to idle freq when inactive: */
269 	bool clamp_to_idle;
270 
271 	/* True if the hardware supports expanded apriv (a650 and newer) */
272 	bool hw_apriv;
273 
274 	struct thermal_cooling_device *cooling;
275 
276 	/* To poll for cx gdsc collapse during gpu recovery */
277 	struct reset_control *cx_collapse;
278 };
279 
280 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
281 {
282 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
283 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
284 }
285 
286 /* It turns out that all targets use the same ringbuffer size */
287 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
288 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
289 
290 #define MSM_GPU_RB_CNTL_DEFAULT \
291 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
292 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
293 
294 static inline bool msm_gpu_active(struct msm_gpu *gpu)
295 {
296 	int i;
297 
298 	for (i = 0; i < gpu->nr_rings; i++) {
299 		struct msm_ringbuffer *ring = gpu->rb[i];
300 
301 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
302 			return true;
303 	}
304 
305 	return false;
306 }
307 
308 /* Perf-Counters:
309  * The select_reg and select_val are just there for the benefit of the child
310  * class that actually enables the perf counter..  but msm_gpu base class
311  * will handle sampling/displaying the counters.
312  */
313 
314 struct msm_gpu_perfcntr {
315 	uint32_t select_reg;
316 	uint32_t sample_reg;
317 	uint32_t select_val;
318 	const char *name;
319 };
320 
321 /*
322  * The number of priority levels provided by drm gpu scheduler.  The
323  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
324  * cases, so we don't use it (no need for kernel generated jobs).
325  */
326 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
327 
328 /**
329  * struct msm_file_private - per-drm_file context
330  *
331  * @queuelock:    synchronizes access to submitqueues list
332  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
333  * @queueid:      counter incremented each time a submitqueue is created,
334  *                used to assign &msm_gpu_submitqueue.id
335  * @aspace:       the per-process GPU address-space
336  * @ref:          reference count
337  * @seqno:        unique per process seqno
338  */
339 struct msm_file_private {
340 	rwlock_t queuelock;
341 	struct list_head submitqueues;
342 	int queueid;
343 	struct msm_gem_address_space *aspace;
344 	struct kref ref;
345 	int seqno;
346 
347 	/**
348 	 * sysprof:
349 	 *
350 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
351 	 * intended to be used by system profiling tools like Mesa's
352 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
353 	 *
354 	 * Setting a value of 1 will preserve performance counters across
355 	 * context switches.  Setting a value of 2 will in addition
356 	 * suppress suspend.  (Performance counters lose state across
357 	 * power collapse, which is undesirable for profiling in some
358 	 * cases.)
359 	 *
360 	 * The value automatically reverts to zero when the drm device
361 	 * file is closed.
362 	 */
363 	int sysprof;
364 
365 	/** comm: Overridden task comm, see MSM_PARAM_COMM */
366 	char *comm;
367 
368 	/** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */
369 	char *cmdline;
370 
371 	/**
372 	 * elapsed:
373 	 *
374 	 * The total (cumulative) elapsed time GPU was busy with rendering
375 	 * from this context in ns.
376 	 */
377 	uint64_t elapsed_ns;
378 
379 	/**
380 	 * cycles:
381 	 *
382 	 * The total (cumulative) GPU cycles elapsed attributed to this
383 	 * context.
384 	 */
385 	uint64_t cycles;
386 
387 	/**
388 	 * entities:
389 	 *
390 	 * Table of per-priority-level sched entities used by submitqueues
391 	 * associated with this &drm_file.  Because some userspace apps
392 	 * make assumptions about rendering from multiple gl contexts
393 	 * (of the same priority) within the process happening in FIFO
394 	 * order without requiring any fencing beyond MakeCurrent(), we
395 	 * create at most one &drm_sched_entity per-process per-priority-
396 	 * level.
397 	 */
398 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
399 };
400 
401 /**
402  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
403  *
404  * @gpu:        the gpu instance
405  * @prio:       the userspace priority level
406  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
407  * @sched_prio: [out] the gpu scheduler priority level which the userspace
408  *              priority maps to
409  *
410  * With drm/scheduler providing it's own level of prioritization, our total
411  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
412  * Each ring is associated with it's own scheduler instance.  However, our
413  * UABI is that lower numerical values are higher priority.  So mapping the
414  * single userspace priority level into ring_nr and sched_prio takes some
415  * care.  The userspace provided priority (when a submitqueue is created)
416  * is mapped to ring nr and scheduler priority as such:
417  *
418  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
419  *   sched_prio = NR_SCHED_PRIORITIES -
420  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
421  *
422  * This allows generations without preemption (nr_rings==1) to have some
423  * amount of prioritization, and provides more priority levels for gens
424  * that do have preemption.
425  */
426 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
427 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
428 {
429 	unsigned rn, sp;
430 
431 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
432 
433 	/* invert sched priority to map to higher-numeric-is-higher-
434 	 * priority convention
435 	 */
436 	sp = NR_SCHED_PRIORITIES - sp - 1;
437 
438 	if (rn >= gpu->nr_rings)
439 		return -EINVAL;
440 
441 	*ring_nr = rn;
442 	*sched_prio = sp;
443 
444 	return 0;
445 }
446 
447 /**
448  * struct msm_gpu_submitqueues - Userspace created context.
449  *
450  * A submitqueue is associated with a gl context or vk queue (or equiv)
451  * in userspace.
452  *
453  * @id:        userspace id for the submitqueue, unique within the drm_file
454  * @flags:     userspace flags for the submitqueue, specified at creation
455  *             (currently unusued)
456  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
457  *             by the submitqueue's priority
458  * @faults:    the number of GPU hangs associated with this submitqueue
459  * @last_fence: the sequence number of the last allocated fence (for error
460  *             checking)
461  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
462  *             which set of pgtables do submits jobs associated with the
463  *             submitqueue use)
464  * @node:      node in the context's list of submitqueues
465  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
466  *             seqno, protected by submitqueue lock
467  * @idr_lock:  for serializing access to fence_idr
468  * @lock:      submitqueue lock for serializing submits on a queue
469  * @ref:       reference count
470  * @entity:    the submit job-queue
471  */
472 struct msm_gpu_submitqueue {
473 	int id;
474 	u32 flags;
475 	u32 ring_nr;
476 	int faults;
477 	uint32_t last_fence;
478 	struct msm_file_private *ctx;
479 	struct list_head node;
480 	struct idr fence_idr;
481 	struct mutex idr_lock;
482 	struct mutex lock;
483 	struct kref ref;
484 	struct drm_sched_entity *entity;
485 };
486 
487 struct msm_gpu_state_bo {
488 	u64 iova;
489 	size_t size;
490 	void *data;
491 	bool encoded;
492 	char name[32];
493 };
494 
495 struct msm_gpu_state {
496 	struct kref ref;
497 	struct timespec64 time;
498 
499 	struct {
500 		u64 iova;
501 		u32 fence;
502 		u32 seqno;
503 		u32 rptr;
504 		u32 wptr;
505 		void *data;
506 		int data_size;
507 		bool encoded;
508 	} ring[MSM_GPU_MAX_RINGS];
509 
510 	int nr_registers;
511 	u32 *registers;
512 
513 	u32 rbbm_status;
514 
515 	char *comm;
516 	char *cmd;
517 
518 	struct msm_gpu_fault_info fault_info;
519 
520 	int nr_bos;
521 	struct msm_gpu_state_bo *bos;
522 };
523 
524 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
525 {
526 	msm_writel(data, gpu->mmio + (reg << 2));
527 }
528 
529 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
530 {
531 	return msm_readl(gpu->mmio + (reg << 2));
532 }
533 
534 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
535 {
536 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
537 }
538 
539 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
540 {
541 	u64 val;
542 
543 	/*
544 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
545 	 * not quad word aligned and 2) the GPU hardware designers have a bit
546 	 * of a history of putting registers where they fit, especially in
547 	 * spins. The longer a GPU family goes the higher the chance that
548 	 * we'll get burned.  We could do a series of validity checks if we
549 	 * wanted to, but really is a readq() that much better? Nah.
550 	 */
551 
552 	/*
553 	 * For some lo/hi registers (like perfcounters), the hi value is latched
554 	 * when the lo is read, so make sure to read the lo first to trigger
555 	 * that
556 	 */
557 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
558 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
559 
560 	return val;
561 }
562 
563 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
564 {
565 	/* Why not a writeq here? Read the screed above */
566 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
567 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
568 }
569 
570 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
571 int msm_gpu_pm_resume(struct msm_gpu *gpu);
572 
573 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
574 			 struct drm_printer *p);
575 
576 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
577 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
578 		u32 id);
579 int msm_submitqueue_create(struct drm_device *drm,
580 		struct msm_file_private *ctx,
581 		u32 prio, u32 flags, u32 *id);
582 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
583 		struct drm_msm_submitqueue_query *args);
584 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
585 void msm_submitqueue_close(struct msm_file_private *ctx);
586 
587 void msm_submitqueue_destroy(struct kref *kref);
588 
589 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
590 				 struct msm_gpu *gpu, int sysprof);
591 void __msm_file_private_destroy(struct kref *kref);
592 
593 static inline void msm_file_private_put(struct msm_file_private *ctx)
594 {
595 	kref_put(&ctx->ref, __msm_file_private_destroy);
596 }
597 
598 static inline struct msm_file_private *msm_file_private_get(
599 	struct msm_file_private *ctx)
600 {
601 	kref_get(&ctx->ref);
602 	return ctx;
603 }
604 
605 void msm_devfreq_init(struct msm_gpu *gpu);
606 void msm_devfreq_cleanup(struct msm_gpu *gpu);
607 void msm_devfreq_resume(struct msm_gpu *gpu);
608 void msm_devfreq_suspend(struct msm_gpu *gpu);
609 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
610 void msm_devfreq_active(struct msm_gpu *gpu);
611 void msm_devfreq_idle(struct msm_gpu *gpu);
612 
613 int msm_gpu_hw_init(struct msm_gpu *gpu);
614 
615 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
616 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
617 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
618 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
619 
620 void msm_gpu_retire(struct msm_gpu *gpu);
621 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
622 
623 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
624 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
625 		const char *name, struct msm_gpu_config *config);
626 
627 struct msm_gem_address_space *
628 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
629 
630 void msm_gpu_cleanup(struct msm_gpu *gpu);
631 
632 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
633 void __init adreno_register(void);
634 void __exit adreno_unregister(void);
635 
636 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
637 {
638 	if (queue)
639 		kref_put(&queue->ref, msm_submitqueue_destroy);
640 }
641 
642 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
643 {
644 	struct msm_gpu_state *state = NULL;
645 
646 	mutex_lock(&gpu->lock);
647 
648 	if (gpu->crashstate) {
649 		kref_get(&gpu->crashstate->ref);
650 		state = gpu->crashstate;
651 	}
652 
653 	mutex_unlock(&gpu->lock);
654 
655 	return state;
656 }
657 
658 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
659 {
660 	mutex_lock(&gpu->lock);
661 
662 	if (gpu->crashstate) {
663 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
664 			gpu->crashstate = NULL;
665 	}
666 
667 	mutex_unlock(&gpu->lock);
668 }
669 
670 /*
671  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
672  * support expanded privileges
673  */
674 #define check_apriv(gpu, flags) \
675 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
676 
677 
678 #endif /* __MSM_GPU_H__ */
679