/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2013 Red Hat * Author: Rob Clark */ #ifndef __MSM_GPU_H__ #define __MSM_GPU_H__ #include #include #include #include #include #include #include #include "msm_drv.h" #include "msm_fence.h" #include "msm_ringbuffer.h" #include "msm_gem.h" struct msm_gem_submit; struct msm_gpu_perfcntr; struct msm_gpu_state; struct msm_file_private; struct msm_gpu_config { const char *ioname; unsigned int nr_rings; }; /* So far, with hardware that I've seen to date, we can have: * + zero, one, or two z180 2d cores * + a3xx or a2xx 3d core, which share a common CP (the firmware * for the CP seems to implement some different PM4 packet types * but the basics of cmdstream submission are the same) * * Which means that the eventual complete "class" hierarchy, once * support for all past and present hw is in place, becomes: * + msm_gpu * + adreno_gpu * + a3xx_gpu * + a2xx_gpu * + z180_gpu */ struct msm_gpu_funcs { int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, uint32_t param, uint64_t *value, uint32_t *len); int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, uint32_t param, uint64_t value, uint32_t len); int (*hw_init)(struct msm_gpu *gpu); int (*pm_suspend)(struct msm_gpu *gpu); int (*pm_resume)(struct msm_gpu *gpu); void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); irqreturn_t (*irq)(struct msm_gpu *irq); struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); void (*recover)(struct msm_gpu *gpu); void (*destroy)(struct msm_gpu *gpu); #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) /* show GPU status in debugfs: */ void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, struct drm_printer *p); /* for generation specific debugfs: */ void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); #endif /* note: gpu_busy() can assume that we have been pm_resumed */ u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); int (*gpu_state_put)(struct msm_gpu_state *state); unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); /* note: gpu_set_freq() can assume that we have been pm_resumed */ void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, bool suspended); struct msm_gem_address_space *(*create_address_space) (struct msm_gpu *gpu, struct platform_device *pdev); struct msm_gem_address_space *(*create_private_address_space) (struct msm_gpu *gpu); uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); }; /* Additional state for iommu faults: */ struct msm_gpu_fault_info { u64 ttbr0; unsigned long iova; int flags; const char *type; const char *block; }; /** * struct msm_gpu_devfreq - devfreq related state */ struct msm_gpu_devfreq { /** devfreq: devfreq instance */ struct devfreq *devfreq; /** lock: lock for "suspended", "busy_cycles", and "time" */ struct mutex lock; /** * idle_constraint: * * A PM QoS constraint to limit max freq while the GPU is idle. */ struct dev_pm_qos_request idle_freq; /** * boost_constraint: * * A PM QoS constraint to boost min freq for a period of time * until the boost expires. */ struct dev_pm_qos_request boost_freq; /** * busy_cycles: Last busy counter value, for calculating elapsed busy * cycles since last sampling period. */ u64 busy_cycles; /** time: Time of last sampling period. */ ktime_t time; /** idle_time: Time of last transition to idle: */ ktime_t idle_time; struct devfreq_dev_status average_status; /** * idle_work: * * Used to delay clamping to idle freq on active->idle transition. */ struct msm_hrtimer_work idle_work; /** * boost_work: * * Used to reset the boost_constraint after the boost period has * elapsed */ struct msm_hrtimer_work boost_work; /** suspended: tracks if we're suspended */ bool suspended; }; struct msm_gpu { const char *name; struct drm_device *dev; struct platform_device *pdev; const struct msm_gpu_funcs *funcs; struct adreno_smmu_priv adreno_smmu; /* performance counters (hw & sw): */ spinlock_t perf_lock; bool perfcntr_active; struct { bool active; ktime_t time; } last_sample; uint32_t totaltime, activetime; /* sw counters */ uint32_t last_cntrs[5]; /* hw counters */ const struct msm_gpu_perfcntr *perfcntrs; uint32_t num_perfcntrs; struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; int nr_rings; /** * sysprof_active: * * The count of contexts that have enabled system profiling. */ refcount_t sysprof_active; /** * cur_ctx_seqno: * * The ctx->seqno value of the last context to submit rendering, * and the one with current pgtables installed (for generations * that support per-context pgtables). Tracked by seqno rather * than pointer value to avoid dangling pointers, and cases where * a ctx can be freed and a new one created with the same address. */ int cur_ctx_seqno; /** * lock: * * General lock for serializing all the gpu things. * * TODO move to per-ring locking where feasible (ie. submit/retire * path, etc) */ struct mutex lock; /** * active_submits: * * The number of submitted but not yet retired submits, used to * determine transitions between active and idle. * * Protected by active_lock */ int active_submits; /** lock: protects active_submits and idle/active transitions */ struct mutex active_lock; /* does gpu need hw_init? */ bool needs_hw_init; /** * global_faults: number of GPU hangs not attributed to a particular * address space */ int global_faults; void __iomem *mmio; int irq; struct msm_gem_address_space *aspace; /* Power Control: */ struct regulator *gpu_reg, *gpu_cx; struct clk_bulk_data *grp_clks; int nr_clocks; struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; uint32_t fast_rate; /* Hang and Inactivity Detection: */ #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ struct timer_list hangcheck_timer; /* Fault info for most recent iova fault: */ struct msm_gpu_fault_info fault_info; /* work for handling GPU ioval faults: */ struct kthread_work fault_work; /* work for handling GPU recovery: */ struct kthread_work recover_work; /** retire_event: notified when submits are retired: */ wait_queue_head_t retire_event; /* work for handling active-list retiring: */ struct kthread_work retire_work; /* worker for retire/recover: */ struct kthread_worker *worker; struct drm_gem_object *memptrs_bo; struct msm_gpu_devfreq devfreq; uint32_t suspend_count; struct msm_gpu_state *crashstate; /* Enable clamping to idle freq when inactive: */ bool clamp_to_idle; /* True if the hardware supports expanded apriv (a650 and newer) */ bool hw_apriv; struct thermal_cooling_device *cooling; /* To poll for cx gdsc collapse during gpu recovery */ struct reset_control *cx_collapse; }; static inline struct msm_gpu *dev_to_gpu(struct device *dev) { struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); } /* It turns out that all targets use the same ringbuffer size */ #define MSM_GPU_RINGBUFFER_SZ SZ_32K #define MSM_GPU_RINGBUFFER_BLKSIZE 32 #define MSM_GPU_RB_CNTL_DEFAULT \ (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) static inline bool msm_gpu_active(struct msm_gpu *gpu) { int i; for (i = 0; i < gpu->nr_rings; i++) { struct msm_ringbuffer *ring = gpu->rb[i]; if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) return true; } return false; } /* Perf-Counters: * The select_reg and select_val are just there for the benefit of the child * class that actually enables the perf counter.. but msm_gpu base class * will handle sampling/displaying the counters. */ struct msm_gpu_perfcntr { uint32_t select_reg; uint32_t sample_reg; uint32_t select_val; const char *name; }; /* * The number of priority levels provided by drm gpu scheduler. The * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some * cases, so we don't use it (no need for kernel generated jobs). */ #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) /** * struct msm_file_private - per-drm_file context * * @queuelock: synchronizes access to submitqueues list * @submitqueues: list of &msm_gpu_submitqueue created by userspace * @queueid: counter incremented each time a submitqueue is created, * used to assign &msm_gpu_submitqueue.id * @aspace: the per-process GPU address-space * @ref: reference count * @seqno: unique per process seqno */ struct msm_file_private { rwlock_t queuelock; struct list_head submitqueues; int queueid; struct msm_gem_address_space *aspace; struct kref ref; int seqno; /** * sysprof: * * The value of MSM_PARAM_SYSPROF set by userspace. This is * intended to be used by system profiling tools like Mesa's * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. * * Setting a value of 1 will preserve performance counters across * context switches. Setting a value of 2 will in addition * suppress suspend. (Performance counters lose state across * power collapse, which is undesirable for profiling in some * cases.) * * The value automatically reverts to zero when the drm device * file is closed. */ int sysprof; /** comm: Overridden task comm, see MSM_PARAM_COMM */ char *comm; /** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */ char *cmdline; /** * elapsed: * * The total (cumulative) elapsed time GPU was busy with rendering * from this context in ns. */ uint64_t elapsed_ns; /** * cycles: * * The total (cumulative) GPU cycles elapsed attributed to this * context. */ uint64_t cycles; /** * entities: * * Table of per-priority-level sched entities used by submitqueues * associated with this &drm_file. Because some userspace apps * make assumptions about rendering from multiple gl contexts * (of the same priority) within the process happening in FIFO * order without requiring any fencing beyond MakeCurrent(), we * create at most one &drm_sched_entity per-process per-priority- * level. */ struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; }; /** * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority * * @gpu: the gpu instance * @prio: the userspace priority level * @ring_nr: [out] the ringbuffer the userspace priority maps to * @sched_prio: [out] the gpu scheduler priority level which the userspace * priority maps to * * With drm/scheduler providing it's own level of prioritization, our total * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). * Each ring is associated with it's own scheduler instance. However, our * UABI is that lower numerical values are higher priority. So mapping the * single userspace priority level into ring_nr and sched_prio takes some * care. The userspace provided priority (when a submitqueue is created) * is mapped to ring nr and scheduler priority as such: * * ring_nr = userspace_prio / NR_SCHED_PRIORITIES * sched_prio = NR_SCHED_PRIORITIES - * (userspace_prio % NR_SCHED_PRIORITIES) - 1 * * This allows generations without preemption (nr_rings==1) to have some * amount of prioritization, and provides more priority levels for gens * that do have preemption. */ static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, unsigned *ring_nr, enum drm_sched_priority *sched_prio) { unsigned rn, sp; rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); /* invert sched priority to map to higher-numeric-is-higher- * priority convention */ sp = NR_SCHED_PRIORITIES - sp - 1; if (rn >= gpu->nr_rings) return -EINVAL; *ring_nr = rn; *sched_prio = sp; return 0; } /** * struct msm_gpu_submitqueues - Userspace created context. * * A submitqueue is associated with a gl context or vk queue (or equiv) * in userspace. * * @id: userspace id for the submitqueue, unique within the drm_file * @flags: userspace flags for the submitqueue, specified at creation * (currently unusued) * @ring_nr: the ringbuffer used by this submitqueue, which is determined * by the submitqueue's priority * @faults: the number of GPU hangs associated with this submitqueue * @last_fence: the sequence number of the last allocated fence (for error * checking) * @ctx: the per-drm_file context associated with the submitqueue (ie. * which set of pgtables do submits jobs associated with the * submitqueue use) * @node: node in the context's list of submitqueues * @fence_idr: maps fence-id to dma_fence for userspace visible fence * seqno, protected by submitqueue lock * @idr_lock: for serializing access to fence_idr * @lock: submitqueue lock for serializing submits on a queue * @ref: reference count * @entity: the submit job-queue */ struct msm_gpu_submitqueue { int id; u32 flags; u32 ring_nr; int faults; uint32_t last_fence; struct msm_file_private *ctx; struct list_head node; struct idr fence_idr; struct mutex idr_lock; struct mutex lock; struct kref ref; struct drm_sched_entity *entity; }; struct msm_gpu_state_bo { u64 iova; size_t size; void *data; bool encoded; char name[32]; }; struct msm_gpu_state { struct kref ref; struct timespec64 time; struct { u64 iova; u32 fence; u32 seqno; u32 rptr; u32 wptr; void *data; int data_size; bool encoded; } ring[MSM_GPU_MAX_RINGS]; int nr_registers; u32 *registers; u32 rbbm_status; char *comm; char *cmd; struct msm_gpu_fault_info fault_info; int nr_bos; struct msm_gpu_state_bo *bos; }; static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) { msm_writel(data, gpu->mmio + (reg << 2)); } static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) { return msm_readl(gpu->mmio + (reg << 2)); } static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) { msm_rmw(gpu->mmio + (reg << 2), mask, or); } static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) { u64 val; /* * Why not a readq here? Two reasons: 1) many of the LO registers are * not quad word aligned and 2) the GPU hardware designers have a bit * of a history of putting registers where they fit, especially in * spins. The longer a GPU family goes the higher the chance that * we'll get burned. We could do a series of validity checks if we * wanted to, but really is a readq() that much better? Nah. */ /* * For some lo/hi registers (like perfcounters), the hi value is latched * when the lo is read, so make sure to read the lo first to trigger * that */ val = (u64) msm_readl(gpu->mmio + (lo << 2)); val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); return val; } static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) { /* Why not a writeq here? Read the screed above */ msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); } int msm_gpu_pm_suspend(struct msm_gpu *gpu); int msm_gpu_pm_resume(struct msm_gpu *gpu); void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, struct drm_printer *p); int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, u32 id); int msm_submitqueue_create(struct drm_device *drm, struct msm_file_private *ctx, u32 prio, u32 flags, u32 *id); int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, struct drm_msm_submitqueue_query *args); int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); void msm_submitqueue_close(struct msm_file_private *ctx); void msm_submitqueue_destroy(struct kref *kref); int msm_file_private_set_sysprof(struct msm_file_private *ctx, struct msm_gpu *gpu, int sysprof); void __msm_file_private_destroy(struct kref *kref); static inline void msm_file_private_put(struct msm_file_private *ctx) { kref_put(&ctx->ref, __msm_file_private_destroy); } static inline struct msm_file_private *msm_file_private_get( struct msm_file_private *ctx) { kref_get(&ctx->ref); return ctx; } void msm_devfreq_init(struct msm_gpu *gpu); void msm_devfreq_cleanup(struct msm_gpu *gpu); void msm_devfreq_resume(struct msm_gpu *gpu); void msm_devfreq_suspend(struct msm_gpu *gpu); void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); void msm_devfreq_active(struct msm_gpu *gpu); void msm_devfreq_idle(struct msm_gpu *gpu); int msm_gpu_hw_init(struct msm_gpu *gpu); void msm_gpu_perfcntr_start(struct msm_gpu *gpu); void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); void msm_gpu_retire(struct msm_gpu *gpu); void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, const char *name, struct msm_gpu_config *config); struct msm_gem_address_space * msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); void msm_gpu_cleanup(struct msm_gpu *gpu); struct msm_gpu *adreno_load_gpu(struct drm_device *dev); void __init adreno_register(void); void __exit adreno_unregister(void); static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) { if (queue) kref_put(&queue->ref, msm_submitqueue_destroy); } static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) { struct msm_gpu_state *state = NULL; mutex_lock(&gpu->lock); if (gpu->crashstate) { kref_get(&gpu->crashstate->ref); state = gpu->crashstate; } mutex_unlock(&gpu->lock); return state; } static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) { mutex_lock(&gpu->lock); if (gpu->crashstate) { if (gpu->funcs->gpu_state_put(gpu->crashstate)) gpu->crashstate = NULL; } mutex_unlock(&gpu->lock); } /* * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can * support expanded privileges */ #define check_apriv(gpu, flags) \ (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) #endif /* __MSM_GPU_H__ */