xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
20 #include <linux/kthread.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include "msm_drv.h"
25 #include "dpu_kms.h"
26 #include <drm/drm_crtc.h>
27 #include <drm/drm_crtc_helper.h>
28 #include "dpu_hwio.h"
29 #include "dpu_hw_catalog.h"
30 #include "dpu_hw_intf.h"
31 #include "dpu_hw_ctl.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
45 		(p) ? (p)->parent->base.id : -1, \
46 		(p) ? (p)->intf_idx - INTF_0 : -1, \
47 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
48 		##__VA_ARGS__)
49 
50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
51 		(p) ? (p)->parent->base.id : -1, \
52 		(p) ? (p)->intf_idx - INTF_0 : -1, \
53 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
54 		##__VA_ARGS__)
55 
56 /*
57  * Two to anticipate panels that can do cmd/vid dynamic switching
58  * plan is to create all possible physical encoder types, and switch between
59  * them at runtime
60  */
61 #define NUM_PHYS_ENCODER_TYPES 2
62 
63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
64 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
65 
66 #define MAX_CHANNELS_PER_ENC 2
67 
68 #define IDLE_SHORT_TIMEOUT	1
69 
70 #define MAX_VDISPLAY_SPLIT 1080
71 
72 /**
73  * enum dpu_enc_rc_events - events for resource control state machine
74  * @DPU_ENC_RC_EVENT_KICKOFF:
75  *	This event happens at NORMAL priority.
76  *	Event that signals the start of the transfer. When this event is
77  *	received, enable MDP/DSI core clocks. Regardless of the previous
78  *	state, the resource should be in ON state at the end of this event.
79  * @DPU_ENC_RC_EVENT_FRAME_DONE:
80  *	This event happens at INTERRUPT level.
81  *	Event signals the end of the data transfer after the PP FRAME_DONE
82  *	event. At the end of this event, a delayed work is scheduled to go to
83  *	IDLE_PC state after IDLE_TIMEOUT time.
84  * @DPU_ENC_RC_EVENT_PRE_STOP:
85  *	This event happens at NORMAL priority.
86  *	This event, when received during the ON state, leave the RC STATE
87  *	in the PRE_OFF state. It should be followed by the STOP event as
88  *	part of encoder disable.
89  *	If received during IDLE or OFF states, it will do nothing.
90  * @DPU_ENC_RC_EVENT_STOP:
91  *	This event happens at NORMAL priority.
92  *	When this event is received, disable all the MDP/DSI core clocks, and
93  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
94  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
95  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
96  *	Resource state should be in OFF at the end of the event.
97  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
98  *	This event happens at NORMAL priority from a work item.
99  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
100  *	This would disable MDP/DSI core clocks and change the resource state
101  *	to IDLE.
102  */
103 enum dpu_enc_rc_events {
104 	DPU_ENC_RC_EVENT_KICKOFF = 1,
105 	DPU_ENC_RC_EVENT_FRAME_DONE,
106 	DPU_ENC_RC_EVENT_PRE_STOP,
107 	DPU_ENC_RC_EVENT_STOP,
108 	DPU_ENC_RC_EVENT_ENTER_IDLE
109 };
110 
111 /*
112  * enum dpu_enc_rc_states - states that the resource control maintains
113  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
114  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
115  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
116  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
117  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
118  */
119 enum dpu_enc_rc_states {
120 	DPU_ENC_RC_STATE_OFF,
121 	DPU_ENC_RC_STATE_PRE_OFF,
122 	DPU_ENC_RC_STATE_ON,
123 	DPU_ENC_RC_STATE_IDLE
124 };
125 
126 /**
127  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
128  *	encoders. Virtual encoder manages one "logical" display. Physical
129  *	encoders manage one intf block, tied to a specific panel/sub-panel.
130  *	Virtual encoder defers as much as possible to the physical encoders.
131  *	Virtual encoder registers itself with the DRM Framework as the encoder.
132  * @base:		drm_encoder base class for registration with DRM
133  * @enc_spin_lock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
134  * @bus_scaling_client:	Client handle to the bus scaling interface
135  * @num_phys_encs:	Actual number of physical encoders contained.
136  * @phys_encs:		Container of physical encoders managed.
137  * @cur_master:		Pointer to the current master in this mode. Optimization
138  *			Only valid after enable. Cleared as disable.
139  * @hw_pp		Handle to the pingpong blocks used for the display. No.
140  *			pingpong blocks can be different than num_phys_encs.
141  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
142  *			for partial update right-only cases, such as pingpong
143  *			split where virtual pingpong does not generate IRQs
144  * @crtc_vblank_cb:	Callback into the upper layer / CRTC for
145  *			notification of the VBLANK
146  * @crtc_vblank_cb_data:	Data from upper layer for VBLANK notification
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder create/destroy and
152 				access.
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout:		frame done timeout in Hz
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @vsync_event_timer:		vsync timer
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @vsync_event_work:		worker to handle vsync event for autorefresh
169  * @topology:                   topology of the display
170  * @mode_set_complete:          flag to indicate modeset completion
171  * @idle_timeout:		idle timeout duration in milliseconds
172  */
173 struct dpu_encoder_virt {
174 	struct drm_encoder base;
175 	spinlock_t enc_spinlock;
176 	uint32_t bus_scaling_client;
177 
178 	unsigned int num_phys_encs;
179 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
180 	struct dpu_encoder_phys *cur_master;
181 	struct dpu_encoder_phys *cur_slave;
182 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
183 
184 	bool intfs_swapped;
185 
186 	void (*crtc_vblank_cb)(void *);
187 	void *crtc_vblank_cb_data;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct kthread_delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 	bool mode_set_complete;
208 
209 	u32 idle_timeout;
210 };
211 
212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
213 static inline int _dpu_encoder_power_enable(struct dpu_encoder_virt *dpu_enc,
214 								bool enable)
215 {
216 	struct drm_encoder *drm_enc;
217 	struct msm_drm_private *priv;
218 	struct dpu_kms *dpu_kms;
219 
220 	if (!dpu_enc) {
221 		DPU_ERROR("invalid dpu enc\n");
222 		return -EINVAL;
223 	}
224 
225 	drm_enc = &dpu_enc->base;
226 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
227 		DPU_ERROR("drm device invalid\n");
228 		return -EINVAL;
229 	}
230 
231 	priv = drm_enc->dev->dev_private;
232 	if (!priv->kms) {
233 		DPU_ERROR("invalid kms\n");
234 		return -EINVAL;
235 	}
236 
237 	dpu_kms = to_dpu_kms(priv->kms);
238 
239 	if (enable)
240 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
241 	else
242 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
243 
244 	return 0;
245 }
246 
247 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
248 		enum dpu_intr_idx intr_idx)
249 {
250 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
251 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
252 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
253 
254 	if (phys_enc->parent_ops->handle_frame_done)
255 		phys_enc->parent_ops->handle_frame_done(
256 				phys_enc->parent, phys_enc,
257 				DPU_ENCODER_FRAME_EVENT_ERROR);
258 }
259 
260 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
261 		int32_t hw_id, struct dpu_encoder_wait_info *info);
262 
263 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
264 		enum dpu_intr_idx intr_idx,
265 		struct dpu_encoder_wait_info *wait_info)
266 {
267 	struct dpu_encoder_irq *irq;
268 	u32 irq_status;
269 	int ret;
270 
271 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
272 		DPU_ERROR("invalid params\n");
273 		return -EINVAL;
274 	}
275 	irq = &phys_enc->irq[intr_idx];
276 
277 	/* note: do master / slave checking outside */
278 
279 	/* return EWOULDBLOCK since we know the wait isn't necessary */
280 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
281 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
282 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
283 			  irq->irq_idx);
284 		return -EWOULDBLOCK;
285 	}
286 
287 	if (irq->irq_idx < 0) {
288 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
289 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
290 			      irq->name);
291 		return 0;
292 	}
293 
294 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
295 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
296 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
297 		      atomic_read(wait_info->atomic_cnt));
298 
299 	ret = dpu_encoder_helper_wait_event_timeout(
300 			DRMID(phys_enc->parent),
301 			irq->hw_idx,
302 			wait_info);
303 
304 	if (ret <= 0) {
305 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
306 				irq->irq_idx, true);
307 		if (irq_status) {
308 			unsigned long flags;
309 
310 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
311 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
312 				      DRMID(phys_enc->parent), intr_idx,
313 				      irq->hw_idx, irq->irq_idx,
314 				      phys_enc->hw_pp->idx - PINGPONG_0,
315 				      atomic_read(wait_info->atomic_cnt));
316 			local_irq_save(flags);
317 			irq->cb.func(phys_enc, irq->irq_idx);
318 			local_irq_restore(flags);
319 			ret = 0;
320 		} else {
321 			ret = -ETIMEDOUT;
322 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
323 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
324 				      DRMID(phys_enc->parent), intr_idx,
325 				      irq->hw_idx, irq->irq_idx,
326 				      phys_enc->hw_pp->idx - PINGPONG_0,
327 				      atomic_read(wait_info->atomic_cnt));
328 		}
329 	} else {
330 		ret = 0;
331 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
332 			intr_idx, irq->hw_idx, irq->irq_idx,
333 			phys_enc->hw_pp->idx - PINGPONG_0,
334 			atomic_read(wait_info->atomic_cnt));
335 	}
336 
337 	return ret;
338 }
339 
340 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
341 		enum dpu_intr_idx intr_idx)
342 {
343 	struct dpu_encoder_irq *irq;
344 	int ret = 0;
345 
346 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
347 		DPU_ERROR("invalid params\n");
348 		return -EINVAL;
349 	}
350 	irq = &phys_enc->irq[intr_idx];
351 
352 	if (irq->irq_idx >= 0) {
353 		DPU_DEBUG_PHYS(phys_enc,
354 				"skipping already registered irq %s type %d\n",
355 				irq->name, irq->intr_type);
356 		return 0;
357 	}
358 
359 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
360 			irq->intr_type, irq->hw_idx);
361 	if (irq->irq_idx < 0) {
362 		DPU_ERROR_PHYS(phys_enc,
363 			"failed to lookup IRQ index for %s type:%d\n",
364 			irq->name, irq->intr_type);
365 		return -EINVAL;
366 	}
367 
368 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
369 			&irq->cb);
370 	if (ret) {
371 		DPU_ERROR_PHYS(phys_enc,
372 			"failed to register IRQ callback for %s\n",
373 			irq->name);
374 		irq->irq_idx = -EINVAL;
375 		return ret;
376 	}
377 
378 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
379 	if (ret) {
380 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
381 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
382 			  irq->irq_idx);
383 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
384 				irq->irq_idx, &irq->cb);
385 		irq->irq_idx = -EINVAL;
386 		return ret;
387 	}
388 
389 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
390 				irq->hw_idx, irq->irq_idx);
391 
392 	return ret;
393 }
394 
395 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
396 		enum dpu_intr_idx intr_idx)
397 {
398 	struct dpu_encoder_irq *irq;
399 	int ret;
400 
401 	if (!phys_enc) {
402 		DPU_ERROR("invalid encoder\n");
403 		return -EINVAL;
404 	}
405 	irq = &phys_enc->irq[intr_idx];
406 
407 	/* silently skip irqs that weren't registered */
408 	if (irq->irq_idx < 0) {
409 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
410 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
411 			  irq->irq_idx);
412 		return 0;
413 	}
414 
415 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
416 	if (ret) {
417 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
418 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
419 			  irq->irq_idx, ret);
420 	}
421 
422 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
423 			&irq->cb);
424 	if (ret) {
425 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
426 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
427 			  irq->irq_idx, ret);
428 	}
429 
430 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
431 					     irq->hw_idx, irq->irq_idx);
432 
433 	irq->irq_idx = -EINVAL;
434 
435 	return 0;
436 }
437 
438 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
439 				  struct dpu_encoder_hw_resources *hw_res)
440 {
441 	struct dpu_encoder_virt *dpu_enc = NULL;
442 	int i = 0;
443 
444 	dpu_enc = to_dpu_encoder_virt(drm_enc);
445 	DPU_DEBUG_ENC(dpu_enc, "\n");
446 
447 	/* Query resources used by phys encs, expected to be without overlap */
448 	memset(hw_res, 0, sizeof(*hw_res));
449 
450 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
451 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
452 
453 		if (phys && phys->ops.get_hw_resources)
454 			phys->ops.get_hw_resources(phys, hw_res);
455 	}
456 }
457 
458 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
459 {
460 	struct dpu_encoder_virt *dpu_enc = NULL;
461 	int i = 0;
462 
463 	if (!drm_enc) {
464 		DPU_ERROR("invalid encoder\n");
465 		return;
466 	}
467 
468 	dpu_enc = to_dpu_encoder_virt(drm_enc);
469 	DPU_DEBUG_ENC(dpu_enc, "\n");
470 
471 	mutex_lock(&dpu_enc->enc_lock);
472 
473 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
474 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
475 
476 		if (phys && phys->ops.destroy) {
477 			phys->ops.destroy(phys);
478 			--dpu_enc->num_phys_encs;
479 			dpu_enc->phys_encs[i] = NULL;
480 		}
481 	}
482 
483 	if (dpu_enc->num_phys_encs)
484 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
485 				dpu_enc->num_phys_encs);
486 	dpu_enc->num_phys_encs = 0;
487 	mutex_unlock(&dpu_enc->enc_lock);
488 
489 	drm_encoder_cleanup(drm_enc);
490 	mutex_destroy(&dpu_enc->enc_lock);
491 }
492 
493 void dpu_encoder_helper_split_config(
494 		struct dpu_encoder_phys *phys_enc,
495 		enum dpu_intf interface)
496 {
497 	struct dpu_encoder_virt *dpu_enc;
498 	struct split_pipe_cfg cfg = { 0 };
499 	struct dpu_hw_mdp *hw_mdptop;
500 	struct msm_display_info *disp_info;
501 
502 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
503 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
504 		return;
505 	}
506 
507 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
508 	hw_mdptop = phys_enc->hw_mdptop;
509 	disp_info = &dpu_enc->disp_info;
510 
511 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
512 		return;
513 
514 	/**
515 	 * disable split modes since encoder will be operating in as the only
516 	 * encoder, either for the entire use case in the case of, for example,
517 	 * single DSI, or for this frame in the case of left/right only partial
518 	 * update.
519 	 */
520 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
521 		if (hw_mdptop->ops.setup_split_pipe)
522 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
523 		return;
524 	}
525 
526 	cfg.en = true;
527 	cfg.mode = phys_enc->intf_mode;
528 	cfg.intf = interface;
529 
530 	if (cfg.en && phys_enc->ops.needs_single_flush &&
531 			phys_enc->ops.needs_single_flush(phys_enc))
532 		cfg.split_flush_en = true;
533 
534 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
535 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
536 
537 		if (hw_mdptop->ops.setup_split_pipe)
538 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
539 	}
540 }
541 
542 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
543 		struct drm_display_mode *adj_mode)
544 {
545 	struct drm_display_mode *cur_mode;
546 
547 	if (!connector || !adj_mode)
548 		return;
549 
550 	list_for_each_entry(cur_mode, &connector->modes, head) {
551 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
552 			cur_mode->hdisplay == adj_mode->hdisplay &&
553 			cur_mode->vrefresh == adj_mode->vrefresh) {
554 			adj_mode->private = cur_mode->private;
555 			adj_mode->private_flags |= cur_mode->private_flags;
556 		}
557 	}
558 }
559 
560 static struct msm_display_topology dpu_encoder_get_topology(
561 			struct dpu_encoder_virt *dpu_enc,
562 			struct dpu_kms *dpu_kms,
563 			struct drm_display_mode *mode)
564 {
565 	struct msm_display_topology topology;
566 	int i, intf_count = 0;
567 
568 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
569 		if (dpu_enc->phys_encs[i])
570 			intf_count++;
571 
572 	/* User split topology for width > 1080 */
573 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
574 	topology.num_enc = 0;
575 	topology.num_intf = intf_count;
576 
577 	return topology;
578 }
579 static int dpu_encoder_virt_atomic_check(
580 		struct drm_encoder *drm_enc,
581 		struct drm_crtc_state *crtc_state,
582 		struct drm_connector_state *conn_state)
583 {
584 	struct dpu_encoder_virt *dpu_enc;
585 	struct msm_drm_private *priv;
586 	struct dpu_kms *dpu_kms;
587 	const struct drm_display_mode *mode;
588 	struct drm_display_mode *adj_mode;
589 	struct msm_display_topology topology;
590 	int i = 0;
591 	int ret = 0;
592 
593 	if (!drm_enc || !crtc_state || !conn_state) {
594 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
595 				drm_enc != 0, crtc_state != 0, conn_state != 0);
596 		return -EINVAL;
597 	}
598 
599 	dpu_enc = to_dpu_encoder_virt(drm_enc);
600 	DPU_DEBUG_ENC(dpu_enc, "\n");
601 
602 	priv = drm_enc->dev->dev_private;
603 	dpu_kms = to_dpu_kms(priv->kms);
604 	mode = &crtc_state->mode;
605 	adj_mode = &crtc_state->adjusted_mode;
606 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
607 
608 	/*
609 	 * display drivers may populate private fields of the drm display mode
610 	 * structure while registering possible modes of a connector with DRM.
611 	 * These private fields are not populated back while DRM invokes
612 	 * the mode_set callbacks. This module retrieves and populates the
613 	 * private fields of the given mode.
614 	 */
615 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
616 
617 	/* perform atomic check on the first physical encoder (master) */
618 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
619 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
620 
621 		if (phys && phys->ops.atomic_check)
622 			ret = phys->ops.atomic_check(phys, crtc_state,
623 					conn_state);
624 		else if (phys && phys->ops.mode_fixup)
625 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
626 				ret = -EINVAL;
627 
628 		if (ret) {
629 			DPU_ERROR_ENC(dpu_enc,
630 					"mode unsupported, phys idx %d\n", i);
631 			break;
632 		}
633 	}
634 
635 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
636 
637 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
638 	if (!ret) {
639 		/*
640 		 * Avoid reserving resources when mode set is pending. Topology
641 		 * info may not be available to complete reservation.
642 		 */
643 		if (drm_atomic_crtc_needs_modeset(crtc_state)
644 				&& dpu_enc->mode_set_complete) {
645 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
646 					     topology, true);
647 			dpu_enc->mode_set_complete = false;
648 		}
649 	}
650 
651 	if (!ret)
652 		drm_mode_set_crtcinfo(adj_mode, 0);
653 
654 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
655 			adj_mode->private_flags);
656 
657 	return ret;
658 }
659 
660 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
661 			struct msm_display_info *disp_info)
662 {
663 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
664 	struct msm_drm_private *priv;
665 	struct dpu_kms *dpu_kms;
666 	struct dpu_hw_mdp *hw_mdptop;
667 	struct drm_encoder *drm_enc;
668 	int i;
669 
670 	if (!dpu_enc || !disp_info) {
671 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
672 					dpu_enc != NULL, disp_info != NULL);
673 		return;
674 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
675 		DPU_ERROR("invalid num phys enc %d/%d\n",
676 				dpu_enc->num_phys_encs,
677 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
678 		return;
679 	}
680 
681 	drm_enc = &dpu_enc->base;
682 	/* this pointers are checked in virt_enable_helper */
683 	priv = drm_enc->dev->dev_private;
684 
685 	dpu_kms = to_dpu_kms(priv->kms);
686 	if (!dpu_kms) {
687 		DPU_ERROR("invalid dpu_kms\n");
688 		return;
689 	}
690 
691 	hw_mdptop = dpu_kms->hw_mdp;
692 	if (!hw_mdptop) {
693 		DPU_ERROR("invalid mdptop\n");
694 		return;
695 	}
696 
697 	if (hw_mdptop->ops.setup_vsync_source &&
698 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
699 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
700 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
701 
702 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
703 		if (disp_info->is_te_using_watchdog_timer)
704 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
705 		else
706 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
707 
708 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
709 	}
710 }
711 
712 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
713 {
714 	struct dpu_encoder_virt *dpu_enc;
715 	int i;
716 
717 	if (!drm_enc) {
718 		DPU_ERROR("invalid encoder\n");
719 		return;
720 	}
721 
722 	dpu_enc = to_dpu_encoder_virt(drm_enc);
723 
724 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
725 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
726 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
727 
728 		if (phys && phys->ops.irq_control)
729 			phys->ops.irq_control(phys, enable);
730 	}
731 
732 }
733 
734 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
735 		bool enable)
736 {
737 	struct msm_drm_private *priv;
738 	struct dpu_kms *dpu_kms;
739 	struct dpu_encoder_virt *dpu_enc;
740 
741 	dpu_enc = to_dpu_encoder_virt(drm_enc);
742 	priv = drm_enc->dev->dev_private;
743 	dpu_kms = to_dpu_kms(priv->kms);
744 
745 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
746 
747 	if (!dpu_enc->cur_master) {
748 		DPU_ERROR("encoder master not set\n");
749 		return;
750 	}
751 
752 	if (enable) {
753 		/* enable DPU core clks */
754 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
755 
756 		/* enable all the irq */
757 		_dpu_encoder_irq_control(drm_enc, true);
758 
759 	} else {
760 		/* disable all the irq */
761 		_dpu_encoder_irq_control(drm_enc, false);
762 
763 		/* disable DPU core clks */
764 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
765 	}
766 
767 }
768 
769 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
770 		u32 sw_event)
771 {
772 	struct dpu_encoder_virt *dpu_enc;
773 	struct msm_drm_private *priv;
774 	struct msm_drm_thread *disp_thread;
775 	bool is_vid_mode = false;
776 
777 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
778 			!drm_enc->crtc) {
779 		DPU_ERROR("invalid parameters\n");
780 		return -EINVAL;
781 	}
782 	dpu_enc = to_dpu_encoder_virt(drm_enc);
783 	priv = drm_enc->dev->dev_private;
784 	is_vid_mode = dpu_enc->disp_info.capabilities &
785 						MSM_DISPLAY_CAP_VID_MODE;
786 
787 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
788 		DPU_ERROR("invalid crtc index\n");
789 		return -EINVAL;
790 	}
791 	disp_thread = &priv->disp_thread[drm_enc->crtc->index];
792 
793 	/*
794 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
795 	 * events and return early for other events (ie wb display).
796 	 */
797 	if (!dpu_enc->idle_pc_supported &&
798 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
799 			sw_event != DPU_ENC_RC_EVENT_STOP &&
800 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
801 		return 0;
802 
803 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
804 			 dpu_enc->rc_state, "begin");
805 
806 	switch (sw_event) {
807 	case DPU_ENC_RC_EVENT_KICKOFF:
808 		/* cancel delayed off work, if any */
809 		if (kthread_cancel_delayed_work_sync(
810 				&dpu_enc->delayed_off_work))
811 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
812 					sw_event);
813 
814 		mutex_lock(&dpu_enc->rc_lock);
815 
816 		/* return if the resource control is already in ON state */
817 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
818 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
819 				      DRMID(drm_enc), sw_event);
820 			mutex_unlock(&dpu_enc->rc_lock);
821 			return 0;
822 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
823 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
824 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
825 				      DRMID(drm_enc), sw_event,
826 				      dpu_enc->rc_state);
827 			mutex_unlock(&dpu_enc->rc_lock);
828 			return -EINVAL;
829 		}
830 
831 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
832 			_dpu_encoder_irq_control(drm_enc, true);
833 		else
834 			_dpu_encoder_resource_control_helper(drm_enc, true);
835 
836 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
837 
838 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
839 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
840 				 "kickoff");
841 
842 		mutex_unlock(&dpu_enc->rc_lock);
843 		break;
844 
845 	case DPU_ENC_RC_EVENT_FRAME_DONE:
846 		/*
847 		 * mutex lock is not used as this event happens at interrupt
848 		 * context. And locking is not required as, the other events
849 		 * like KICKOFF and STOP does a wait-for-idle before executing
850 		 * the resource_control
851 		 */
852 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
853 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
854 				      DRMID(drm_enc), sw_event,
855 				      dpu_enc->rc_state);
856 			return -EINVAL;
857 		}
858 
859 		/*
860 		 * schedule off work item only when there are no
861 		 * frames pending
862 		 */
863 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
864 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
865 				      DRMID(drm_enc));
866 			return 0;
867 		}
868 
869 		kthread_queue_delayed_work(
870 			&disp_thread->worker,
871 			&dpu_enc->delayed_off_work,
872 			msecs_to_jiffies(dpu_enc->idle_timeout));
873 
874 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
875 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
876 				 "frame done");
877 		break;
878 
879 	case DPU_ENC_RC_EVENT_PRE_STOP:
880 		/* cancel delayed off work, if any */
881 		if (kthread_cancel_delayed_work_sync(
882 				&dpu_enc->delayed_off_work))
883 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
884 					sw_event);
885 
886 		mutex_lock(&dpu_enc->rc_lock);
887 
888 		if (is_vid_mode &&
889 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
890 			_dpu_encoder_irq_control(drm_enc, true);
891 		}
892 		/* skip if is already OFF or IDLE, resources are off already */
893 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
894 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
895 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
896 				      DRMID(drm_enc), sw_event,
897 				      dpu_enc->rc_state);
898 			mutex_unlock(&dpu_enc->rc_lock);
899 			return 0;
900 		}
901 
902 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
903 
904 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
905 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
906 				 "pre stop");
907 
908 		mutex_unlock(&dpu_enc->rc_lock);
909 		break;
910 
911 	case DPU_ENC_RC_EVENT_STOP:
912 		mutex_lock(&dpu_enc->rc_lock);
913 
914 		/* return if the resource control is already in OFF state */
915 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
916 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
917 				      DRMID(drm_enc), sw_event);
918 			mutex_unlock(&dpu_enc->rc_lock);
919 			return 0;
920 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
921 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
922 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
923 			mutex_unlock(&dpu_enc->rc_lock);
924 			return -EINVAL;
925 		}
926 
927 		/**
928 		 * expect to arrive here only if in either idle state or pre-off
929 		 * and in IDLE state the resources are already disabled
930 		 */
931 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
932 			_dpu_encoder_resource_control_helper(drm_enc, false);
933 
934 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
935 
936 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
937 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
938 				 "stop");
939 
940 		mutex_unlock(&dpu_enc->rc_lock);
941 		break;
942 
943 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
944 		mutex_lock(&dpu_enc->rc_lock);
945 
946 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
947 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
948 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
949 			mutex_unlock(&dpu_enc->rc_lock);
950 			return 0;
951 		}
952 
953 		/*
954 		 * if we are in ON but a frame was just kicked off,
955 		 * ignore the IDLE event, it's probably a stale timer event
956 		 */
957 		if (dpu_enc->frame_busy_mask[0]) {
958 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
959 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
960 			mutex_unlock(&dpu_enc->rc_lock);
961 			return 0;
962 		}
963 
964 		if (is_vid_mode)
965 			_dpu_encoder_irq_control(drm_enc, false);
966 		else
967 			_dpu_encoder_resource_control_helper(drm_enc, false);
968 
969 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
970 
971 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
972 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
973 				 "idle");
974 
975 		mutex_unlock(&dpu_enc->rc_lock);
976 		break;
977 
978 	default:
979 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
980 			  sw_event);
981 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
982 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
983 				 "error");
984 		break;
985 	}
986 
987 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
988 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
989 			 "end");
990 	return 0;
991 }
992 
993 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
994 				      struct drm_display_mode *mode,
995 				      struct drm_display_mode *adj_mode)
996 {
997 	struct dpu_encoder_virt *dpu_enc;
998 	struct msm_drm_private *priv;
999 	struct dpu_kms *dpu_kms;
1000 	struct list_head *connector_list;
1001 	struct drm_connector *conn = NULL, *conn_iter;
1002 	struct dpu_rm_hw_iter pp_iter, ctl_iter;
1003 	struct msm_display_topology topology;
1004 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
1005 	int i = 0, ret;
1006 
1007 	if (!drm_enc) {
1008 		DPU_ERROR("invalid encoder\n");
1009 		return;
1010 	}
1011 
1012 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1013 	DPU_DEBUG_ENC(dpu_enc, "\n");
1014 
1015 	priv = drm_enc->dev->dev_private;
1016 	dpu_kms = to_dpu_kms(priv->kms);
1017 	connector_list = &dpu_kms->dev->mode_config.connector_list;
1018 
1019 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1020 
1021 	list_for_each_entry(conn_iter, connector_list, head)
1022 		if (conn_iter->encoder == drm_enc)
1023 			conn = conn_iter;
1024 
1025 	if (!conn) {
1026 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1027 		return;
1028 	} else if (!conn->state) {
1029 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1030 		return;
1031 	}
1032 
1033 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1034 
1035 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
1036 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state,
1037 			     topology, false);
1038 	if (ret) {
1039 		DPU_ERROR_ENC(dpu_enc,
1040 				"failed to reserve hw resources, %d\n", ret);
1041 		return;
1042 	}
1043 
1044 	dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1045 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1046 		dpu_enc->hw_pp[i] = NULL;
1047 		if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter))
1048 			break;
1049 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw;
1050 	}
1051 
1052 	dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1053 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1054 		if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter))
1055 			break;
1056 		hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw;
1057 	}
1058 
1059 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1060 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1061 
1062 		if (phys) {
1063 			if (!dpu_enc->hw_pp[i]) {
1064 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1065 					     "at idx: %d\n", i);
1066 				return;
1067 			}
1068 
1069 			if (!hw_ctl[i]) {
1070 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1071 					     "at idx: %d\n", i);
1072 				return;
1073 			}
1074 
1075 			phys->hw_pp = dpu_enc->hw_pp[i];
1076 			phys->hw_ctl = hw_ctl[i];
1077 
1078 			phys->connector = conn->state->connector;
1079 			if (phys->ops.mode_set)
1080 				phys->ops.mode_set(phys, mode, adj_mode);
1081 		}
1082 	}
1083 
1084 	dpu_enc->mode_set_complete = true;
1085 }
1086 
1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1088 {
1089 	struct dpu_encoder_virt *dpu_enc = NULL;
1090 	struct msm_drm_private *priv;
1091 	struct dpu_kms *dpu_kms;
1092 
1093 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1094 		DPU_ERROR("invalid parameters\n");
1095 		return;
1096 	}
1097 
1098 	priv = drm_enc->dev->dev_private;
1099 	dpu_kms = to_dpu_kms(priv->kms);
1100 	if (!dpu_kms) {
1101 		DPU_ERROR("invalid dpu_kms\n");
1102 		return;
1103 	}
1104 
1105 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1106 	if (!dpu_enc || !dpu_enc->cur_master) {
1107 		DPU_ERROR("invalid dpu encoder/master\n");
1108 		return;
1109 	}
1110 
1111 	if (dpu_enc->cur_master->hw_mdptop &&
1112 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1113 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1114 				dpu_enc->cur_master->hw_mdptop,
1115 				dpu_kms->catalog);
1116 
1117 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1118 }
1119 
1120 void dpu_encoder_virt_restore(struct drm_encoder *drm_enc)
1121 {
1122 	struct dpu_encoder_virt *dpu_enc = NULL;
1123 	int i;
1124 
1125 	if (!drm_enc) {
1126 		DPU_ERROR("invalid encoder\n");
1127 		return;
1128 	}
1129 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1130 
1131 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1132 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1133 
1134 		if (phys && (phys != dpu_enc->cur_master) && phys->ops.restore)
1135 			phys->ops.restore(phys);
1136 	}
1137 
1138 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1139 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1140 
1141 	_dpu_encoder_virt_enable_helper(drm_enc);
1142 }
1143 
1144 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1145 {
1146 	struct dpu_encoder_virt *dpu_enc = NULL;
1147 	int ret = 0;
1148 	struct drm_display_mode *cur_mode = NULL;
1149 
1150 	if (!drm_enc) {
1151 		DPU_ERROR("invalid encoder\n");
1152 		return;
1153 	}
1154 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1155 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1156 
1157 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1158 			     cur_mode->vdisplay);
1159 
1160 	/* always enable slave encoder before master */
1161 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1162 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1163 
1164 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1165 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1166 
1167 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1168 	if (ret) {
1169 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1170 				ret);
1171 		return;
1172 	}
1173 
1174 	_dpu_encoder_virt_enable_helper(drm_enc);
1175 }
1176 
1177 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1178 {
1179 	struct dpu_encoder_virt *dpu_enc = NULL;
1180 	struct msm_drm_private *priv;
1181 	struct dpu_kms *dpu_kms;
1182 	struct drm_display_mode *mode;
1183 	int i = 0;
1184 
1185 	if (!drm_enc) {
1186 		DPU_ERROR("invalid encoder\n");
1187 		return;
1188 	} else if (!drm_enc->dev) {
1189 		DPU_ERROR("invalid dev\n");
1190 		return;
1191 	} else if (!drm_enc->dev->dev_private) {
1192 		DPU_ERROR("invalid dev_private\n");
1193 		return;
1194 	}
1195 
1196 	mode = &drm_enc->crtc->state->adjusted_mode;
1197 
1198 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1199 	DPU_DEBUG_ENC(dpu_enc, "\n");
1200 
1201 	priv = drm_enc->dev->dev_private;
1202 	dpu_kms = to_dpu_kms(priv->kms);
1203 
1204 	trace_dpu_enc_disable(DRMID(drm_enc));
1205 
1206 	/* wait for idle */
1207 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1208 
1209 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1210 
1211 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1212 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1213 
1214 		if (phys && phys->ops.disable)
1215 			phys->ops.disable(phys);
1216 	}
1217 
1218 	/* after phys waits for frame-done, should be no more frames pending */
1219 	if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
1220 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1221 		del_timer_sync(&dpu_enc->frame_done_timer);
1222 	}
1223 
1224 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1225 
1226 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1227 		if (dpu_enc->phys_encs[i])
1228 			dpu_enc->phys_encs[i]->connector = NULL;
1229 	}
1230 
1231 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1232 
1233 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1234 }
1235 
1236 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1237 		enum dpu_intf_type type, u32 controller_id)
1238 {
1239 	int i = 0;
1240 
1241 	for (i = 0; i < catalog->intf_count; i++) {
1242 		if (catalog->intf[i].type == type
1243 		    && catalog->intf[i].controller_id == controller_id) {
1244 			return catalog->intf[i].id;
1245 		}
1246 	}
1247 
1248 	return INTF_MAX;
1249 }
1250 
1251 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1252 		struct dpu_encoder_phys *phy_enc)
1253 {
1254 	struct dpu_encoder_virt *dpu_enc = NULL;
1255 	unsigned long lock_flags;
1256 
1257 	if (!drm_enc || !phy_enc)
1258 		return;
1259 
1260 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1261 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1262 
1263 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1264 	if (dpu_enc->crtc_vblank_cb)
1265 		dpu_enc->crtc_vblank_cb(dpu_enc->crtc_vblank_cb_data);
1266 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1267 
1268 	atomic_inc(&phy_enc->vsync_cnt);
1269 	DPU_ATRACE_END("encoder_vblank_callback");
1270 }
1271 
1272 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1273 		struct dpu_encoder_phys *phy_enc)
1274 {
1275 	if (!phy_enc)
1276 		return;
1277 
1278 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1279 	atomic_inc(&phy_enc->underrun_cnt);
1280 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1281 				  atomic_read(&phy_enc->underrun_cnt));
1282 	DPU_ATRACE_END("encoder_underrun_callback");
1283 }
1284 
1285 void dpu_encoder_register_vblank_callback(struct drm_encoder *drm_enc,
1286 		void (*vbl_cb)(void *), void *vbl_data)
1287 {
1288 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1289 	unsigned long lock_flags;
1290 	bool enable;
1291 	int i;
1292 
1293 	enable = vbl_cb ? true : false;
1294 
1295 	if (!drm_enc) {
1296 		DPU_ERROR("invalid encoder\n");
1297 		return;
1298 	}
1299 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1300 
1301 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1302 	dpu_enc->crtc_vblank_cb = vbl_cb;
1303 	dpu_enc->crtc_vblank_cb_data = vbl_data;
1304 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305 
1306 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1307 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1308 
1309 		if (phys && phys->ops.control_vblank_irq)
1310 			phys->ops.control_vblank_irq(phys, enable);
1311 	}
1312 }
1313 
1314 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1315 		void (*frame_event_cb)(void *, u32 event),
1316 		void *frame_event_cb_data)
1317 {
1318 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1319 	unsigned long lock_flags;
1320 	bool enable;
1321 
1322 	enable = frame_event_cb ? true : false;
1323 
1324 	if (!drm_enc) {
1325 		DPU_ERROR("invalid encoder\n");
1326 		return;
1327 	}
1328 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1329 
1330 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1331 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1332 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1333 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1334 }
1335 
1336 static void dpu_encoder_frame_done_callback(
1337 		struct drm_encoder *drm_enc,
1338 		struct dpu_encoder_phys *ready_phys, u32 event)
1339 {
1340 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1341 	unsigned int i;
1342 
1343 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1344 			| DPU_ENCODER_FRAME_EVENT_ERROR
1345 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1346 
1347 		if (!dpu_enc->frame_busy_mask[0]) {
1348 			/**
1349 			 * suppress frame_done without waiter,
1350 			 * likely autorefresh
1351 			 */
1352 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1353 					event, ready_phys->intf_idx);
1354 			return;
1355 		}
1356 
1357 		/* One of the physical encoders has become idle */
1358 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1359 			if (dpu_enc->phys_encs[i] == ready_phys) {
1360 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1361 						dpu_enc->frame_busy_mask[0]);
1362 				clear_bit(i, dpu_enc->frame_busy_mask);
1363 			}
1364 		}
1365 
1366 		if (!dpu_enc->frame_busy_mask[0]) {
1367 			atomic_set(&dpu_enc->frame_done_timeout, 0);
1368 			del_timer(&dpu_enc->frame_done_timer);
1369 
1370 			dpu_encoder_resource_control(drm_enc,
1371 					DPU_ENC_RC_EVENT_FRAME_DONE);
1372 
1373 			if (dpu_enc->crtc_frame_event_cb)
1374 				dpu_enc->crtc_frame_event_cb(
1375 					dpu_enc->crtc_frame_event_cb_data,
1376 					event);
1377 		}
1378 	} else {
1379 		if (dpu_enc->crtc_frame_event_cb)
1380 			dpu_enc->crtc_frame_event_cb(
1381 				dpu_enc->crtc_frame_event_cb_data, event);
1382 	}
1383 }
1384 
1385 static void dpu_encoder_off_work(struct kthread_work *work)
1386 {
1387 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1388 			struct dpu_encoder_virt, delayed_off_work.work);
1389 
1390 	if (!dpu_enc) {
1391 		DPU_ERROR("invalid dpu encoder\n");
1392 		return;
1393 	}
1394 
1395 	dpu_encoder_resource_control(&dpu_enc->base,
1396 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1397 
1398 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1399 				DPU_ENCODER_FRAME_EVENT_IDLE);
1400 }
1401 
1402 /**
1403  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1404  * drm_enc: Pointer to drm encoder structure
1405  * phys: Pointer to physical encoder structure
1406  * extra_flush_bits: Additional bit mask to include in flush trigger
1407  */
1408 static inline void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1409 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1410 {
1411 	struct dpu_hw_ctl *ctl;
1412 	int pending_kickoff_cnt;
1413 	u32 ret = UINT_MAX;
1414 
1415 	if (!drm_enc || !phys) {
1416 		DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1417 				drm_enc != 0, phys != 0);
1418 		return;
1419 	}
1420 
1421 	if (!phys->hw_pp) {
1422 		DPU_ERROR("invalid pingpong hw\n");
1423 		return;
1424 	}
1425 
1426 	ctl = phys->hw_ctl;
1427 	if (!ctl || !ctl->ops.trigger_flush) {
1428 		DPU_ERROR("missing trigger cb\n");
1429 		return;
1430 	}
1431 
1432 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1433 
1434 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1435 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1436 
1437 	ctl->ops.trigger_flush(ctl);
1438 
1439 	if (ctl->ops.get_pending_flush)
1440 		ret = ctl->ops.get_pending_flush(ctl);
1441 
1442 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1443 				    pending_kickoff_cnt, ctl->idx,
1444 				    extra_flush_bits, ret);
1445 }
1446 
1447 /**
1448  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1449  * phys: Pointer to physical encoder structure
1450  */
1451 static inline void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1452 {
1453 	if (!phys) {
1454 		DPU_ERROR("invalid argument(s)\n");
1455 		return;
1456 	}
1457 
1458 	if (!phys->hw_pp) {
1459 		DPU_ERROR("invalid pingpong hw\n");
1460 		return;
1461 	}
1462 
1463 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1464 		phys->ops.trigger_start(phys);
1465 }
1466 
1467 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1468 {
1469 	struct dpu_hw_ctl *ctl;
1470 
1471 	if (!phys_enc) {
1472 		DPU_ERROR("invalid encoder\n");
1473 		return;
1474 	}
1475 
1476 	ctl = phys_enc->hw_ctl;
1477 	if (ctl && ctl->ops.trigger_start) {
1478 		ctl->ops.trigger_start(ctl);
1479 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1480 	}
1481 }
1482 
1483 static int dpu_encoder_helper_wait_event_timeout(
1484 		int32_t drm_id,
1485 		int32_t hw_id,
1486 		struct dpu_encoder_wait_info *info)
1487 {
1488 	int rc = 0;
1489 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1490 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1491 	s64 time;
1492 
1493 	do {
1494 		rc = wait_event_timeout(*(info->wq),
1495 				atomic_read(info->atomic_cnt) == 0, jiffies);
1496 		time = ktime_to_ms(ktime_get());
1497 
1498 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1499 						 expected_time,
1500 						 atomic_read(info->atomic_cnt));
1501 	/* If we timed out, counter is valid and time is less, wait again */
1502 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1503 			(time < expected_time));
1504 
1505 	return rc;
1506 }
1507 
1508 void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1509 {
1510 	struct dpu_encoder_virt *dpu_enc;
1511 	struct dpu_hw_ctl *ctl;
1512 	int rc;
1513 
1514 	if (!phys_enc) {
1515 		DPU_ERROR("invalid encoder\n");
1516 		return;
1517 	}
1518 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1519 	ctl = phys_enc->hw_ctl;
1520 
1521 	if (!ctl || !ctl->ops.reset)
1522 		return;
1523 
1524 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1525 		      ctl->idx);
1526 
1527 	rc = ctl->ops.reset(ctl);
1528 	if (rc) {
1529 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1530 		dpu_dbg_dump(false, __func__, true, true);
1531 	}
1532 
1533 	phys_enc->enable_state = DPU_ENC_ENABLED;
1534 }
1535 
1536 /**
1537  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1538  *	Iterate through the physical encoders and perform consolidated flush
1539  *	and/or control start triggering as needed. This is done in the virtual
1540  *	encoder rather than the individual physical ones in order to handle
1541  *	use cases that require visibility into multiple physical encoders at
1542  *	a time.
1543  * dpu_enc: Pointer to virtual encoder structure
1544  */
1545 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1546 {
1547 	struct dpu_hw_ctl *ctl;
1548 	uint32_t i, pending_flush;
1549 	unsigned long lock_flags;
1550 
1551 	if (!dpu_enc) {
1552 		DPU_ERROR("invalid encoder\n");
1553 		return;
1554 	}
1555 
1556 	pending_flush = 0x0;
1557 
1558 	/* update pending counts and trigger kickoff ctl flush atomically */
1559 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1560 
1561 	/* don't perform flush/start operations for slave encoders */
1562 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1563 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1564 
1565 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1566 			continue;
1567 
1568 		ctl = phys->hw_ctl;
1569 		if (!ctl)
1570 			continue;
1571 
1572 		if (phys->split_role != ENC_ROLE_SLAVE)
1573 			set_bit(i, dpu_enc->frame_busy_mask);
1574 		if (!phys->ops.needs_single_flush ||
1575 				!phys->ops.needs_single_flush(phys))
1576 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1577 		else if (ctl->ops.get_pending_flush)
1578 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1579 	}
1580 
1581 	/* for split flush, combine pending flush masks and send to master */
1582 	if (pending_flush && dpu_enc->cur_master) {
1583 		_dpu_encoder_trigger_flush(
1584 				&dpu_enc->base,
1585 				dpu_enc->cur_master,
1586 				pending_flush);
1587 	}
1588 
1589 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1590 
1591 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1592 }
1593 
1594 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1595 {
1596 	struct dpu_encoder_virt *dpu_enc;
1597 	struct dpu_encoder_phys *phys;
1598 	unsigned int i;
1599 	struct dpu_hw_ctl *ctl;
1600 	struct msm_display_info *disp_info;
1601 
1602 	if (!drm_enc) {
1603 		DPU_ERROR("invalid encoder\n");
1604 		return;
1605 	}
1606 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1607 	disp_info = &dpu_enc->disp_info;
1608 
1609 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1610 		phys = dpu_enc->phys_encs[i];
1611 
1612 		if (phys && phys->hw_ctl) {
1613 			ctl = phys->hw_ctl;
1614 			if (ctl->ops.clear_pending_flush)
1615 				ctl->ops.clear_pending_flush(ctl);
1616 
1617 			/* update only for command mode primary ctl */
1618 			if ((phys == dpu_enc->cur_master) &&
1619 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1620 			    && ctl->ops.trigger_pending)
1621 				ctl->ops.trigger_pending(ctl);
1622 		}
1623 	}
1624 }
1625 
1626 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1627 		struct drm_display_mode *mode)
1628 {
1629 	u64 pclk_rate;
1630 	u32 pclk_period;
1631 	u32 line_time;
1632 
1633 	/*
1634 	 * For linetime calculation, only operate on master encoder.
1635 	 */
1636 	if (!dpu_enc->cur_master)
1637 		return 0;
1638 
1639 	if (!dpu_enc->cur_master->ops.get_line_count) {
1640 		DPU_ERROR("get_line_count function not defined\n");
1641 		return 0;
1642 	}
1643 
1644 	pclk_rate = mode->clock; /* pixel clock in kHz */
1645 	if (pclk_rate == 0) {
1646 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1647 		return 0;
1648 	}
1649 
1650 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1651 	if (pclk_period == 0) {
1652 		DPU_ERROR("pclk period is 0\n");
1653 		return 0;
1654 	}
1655 
1656 	/*
1657 	 * Line time calculation based on Pixel clock and HTOTAL.
1658 	 * Final unit is in ns.
1659 	 */
1660 	line_time = (pclk_period * mode->htotal) / 1000;
1661 	if (line_time == 0) {
1662 		DPU_ERROR("line time calculation is 0\n");
1663 		return 0;
1664 	}
1665 
1666 	DPU_DEBUG_ENC(dpu_enc,
1667 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1668 			pclk_rate, pclk_period, line_time);
1669 
1670 	return line_time;
1671 }
1672 
1673 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1674 		ktime_t *wakeup_time)
1675 {
1676 	struct drm_display_mode *mode;
1677 	struct dpu_encoder_virt *dpu_enc;
1678 	u32 cur_line;
1679 	u32 line_time;
1680 	u32 vtotal, time_to_vsync;
1681 	ktime_t cur_time;
1682 
1683 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1684 
1685 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1686 		DPU_ERROR("crtc/crtc state object is NULL\n");
1687 		return -EINVAL;
1688 	}
1689 	mode = &drm_enc->crtc->state->adjusted_mode;
1690 
1691 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1692 	if (!line_time)
1693 		return -EINVAL;
1694 
1695 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1696 
1697 	vtotal = mode->vtotal;
1698 	if (cur_line >= vtotal)
1699 		time_to_vsync = line_time * vtotal;
1700 	else
1701 		time_to_vsync = line_time * (vtotal - cur_line);
1702 
1703 	if (time_to_vsync == 0) {
1704 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1705 				vtotal);
1706 		return -EINVAL;
1707 	}
1708 
1709 	cur_time = ktime_get();
1710 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1711 
1712 	DPU_DEBUG_ENC(dpu_enc,
1713 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1714 			cur_line, vtotal, time_to_vsync,
1715 			ktime_to_ms(cur_time),
1716 			ktime_to_ms(*wakeup_time));
1717 	return 0;
1718 }
1719 
1720 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1721 {
1722 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1723 			vsync_event_timer);
1724 	struct drm_encoder *drm_enc = &dpu_enc->base;
1725 	struct msm_drm_private *priv;
1726 	struct msm_drm_thread *event_thread;
1727 
1728 	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1729 			!drm_enc->crtc) {
1730 		DPU_ERROR("invalid parameters\n");
1731 		return;
1732 	}
1733 
1734 	priv = drm_enc->dev->dev_private;
1735 
1736 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1737 		DPU_ERROR("invalid crtc index\n");
1738 		return;
1739 	}
1740 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1741 	if (!event_thread) {
1742 		DPU_ERROR("event_thread not found for crtc:%d\n",
1743 				drm_enc->crtc->index);
1744 		return;
1745 	}
1746 
1747 	del_timer(&dpu_enc->vsync_event_timer);
1748 }
1749 
1750 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1751 {
1752 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1753 			struct dpu_encoder_virt, vsync_event_work);
1754 	ktime_t wakeup_time;
1755 
1756 	if (!dpu_enc) {
1757 		DPU_ERROR("invalid dpu encoder\n");
1758 		return;
1759 	}
1760 
1761 	if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1762 		return;
1763 
1764 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1765 	mod_timer(&dpu_enc->vsync_event_timer,
1766 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1767 }
1768 
1769 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc,
1770 		struct dpu_encoder_kickoff_params *params)
1771 {
1772 	struct dpu_encoder_virt *dpu_enc;
1773 	struct dpu_encoder_phys *phys;
1774 	bool needs_hw_reset = false;
1775 	unsigned int i;
1776 
1777 	if (!drm_enc || !params) {
1778 		DPU_ERROR("invalid args\n");
1779 		return;
1780 	}
1781 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1782 
1783 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1784 
1785 	/* prepare for next kickoff, may include waiting on previous kickoff */
1786 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1787 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1788 		phys = dpu_enc->phys_encs[i];
1789 		if (phys) {
1790 			if (phys->ops.prepare_for_kickoff)
1791 				phys->ops.prepare_for_kickoff(phys, params);
1792 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1793 				needs_hw_reset = true;
1794 		}
1795 	}
1796 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1797 
1798 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1799 
1800 	/* if any phys needs reset, reset all phys, in-order */
1801 	if (needs_hw_reset) {
1802 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1803 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1804 			phys = dpu_enc->phys_encs[i];
1805 			if (phys && phys->ops.hw_reset)
1806 				phys->ops.hw_reset(phys);
1807 		}
1808 	}
1809 }
1810 
1811 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1812 {
1813 	struct dpu_encoder_virt *dpu_enc;
1814 	struct dpu_encoder_phys *phys;
1815 	ktime_t wakeup_time;
1816 	unsigned int i;
1817 
1818 	if (!drm_enc) {
1819 		DPU_ERROR("invalid encoder\n");
1820 		return;
1821 	}
1822 	DPU_ATRACE_BEGIN("encoder_kickoff");
1823 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1824 
1825 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1826 
1827 	atomic_set(&dpu_enc->frame_done_timeout,
1828 			DPU_FRAME_DONE_TIMEOUT * 1000 /
1829 			drm_enc->crtc->state->adjusted_mode.vrefresh);
1830 	mod_timer(&dpu_enc->frame_done_timer, jiffies +
1831 		((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000));
1832 
1833 	/* All phys encs are ready to go, trigger the kickoff */
1834 	_dpu_encoder_kickoff_phys(dpu_enc);
1835 
1836 	/* allow phys encs to handle any post-kickoff business */
1837 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1838 		phys = dpu_enc->phys_encs[i];
1839 		if (phys && phys->ops.handle_post_kickoff)
1840 			phys->ops.handle_post_kickoff(phys);
1841 	}
1842 
1843 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1844 			!_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1845 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1846 					    ktime_to_ms(wakeup_time));
1847 		mod_timer(&dpu_enc->vsync_event_timer,
1848 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1849 	}
1850 
1851 	DPU_ATRACE_END("encoder_kickoff");
1852 }
1853 
1854 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1855 {
1856 	struct dpu_encoder_virt *dpu_enc;
1857 	struct dpu_encoder_phys *phys;
1858 	int i;
1859 
1860 	if (!drm_enc) {
1861 		DPU_ERROR("invalid encoder\n");
1862 		return;
1863 	}
1864 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1865 
1866 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1867 		phys = dpu_enc->phys_encs[i];
1868 		if (phys && phys->ops.prepare_commit)
1869 			phys->ops.prepare_commit(phys);
1870 	}
1871 }
1872 
1873 #ifdef CONFIG_DEBUG_FS
1874 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1875 {
1876 	struct dpu_encoder_virt *dpu_enc;
1877 	int i;
1878 
1879 	if (!s || !s->private)
1880 		return -EINVAL;
1881 
1882 	dpu_enc = s->private;
1883 
1884 	mutex_lock(&dpu_enc->enc_lock);
1885 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1886 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1887 
1888 		if (!phys)
1889 			continue;
1890 
1891 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1892 				phys->intf_idx - INTF_0,
1893 				atomic_read(&phys->vsync_cnt),
1894 				atomic_read(&phys->underrun_cnt));
1895 
1896 		switch (phys->intf_mode) {
1897 		case INTF_MODE_VIDEO:
1898 			seq_puts(s, "mode: video\n");
1899 			break;
1900 		case INTF_MODE_CMD:
1901 			seq_puts(s, "mode: command\n");
1902 			break;
1903 		default:
1904 			seq_puts(s, "mode: ???\n");
1905 			break;
1906 		}
1907 	}
1908 	mutex_unlock(&dpu_enc->enc_lock);
1909 
1910 	return 0;
1911 }
1912 
1913 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1914 		struct file *file)
1915 {
1916 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1917 }
1918 
1919 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1920 {
1921 	struct dpu_encoder_virt *dpu_enc;
1922 	struct msm_drm_private *priv;
1923 	struct dpu_kms *dpu_kms;
1924 	int i;
1925 
1926 	static const struct file_operations debugfs_status_fops = {
1927 		.open =		_dpu_encoder_debugfs_status_open,
1928 		.read =		seq_read,
1929 		.llseek =	seq_lseek,
1930 		.release =	single_release,
1931 	};
1932 
1933 	char name[DPU_NAME_SIZE];
1934 
1935 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1936 		DPU_ERROR("invalid encoder or kms\n");
1937 		return -EINVAL;
1938 	}
1939 
1940 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1941 	priv = drm_enc->dev->dev_private;
1942 	dpu_kms = to_dpu_kms(priv->kms);
1943 
1944 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1945 
1946 	/* create overall sub-directory for the encoder */
1947 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1948 			drm_enc->dev->primary->debugfs_root);
1949 	if (!dpu_enc->debugfs_root)
1950 		return -ENOMEM;
1951 
1952 	/* don't error check these */
1953 	debugfs_create_file("status", 0600,
1954 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1955 
1956 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1957 		if (dpu_enc->phys_encs[i] &&
1958 				dpu_enc->phys_encs[i]->ops.late_register)
1959 			dpu_enc->phys_encs[i]->ops.late_register(
1960 					dpu_enc->phys_encs[i],
1961 					dpu_enc->debugfs_root);
1962 
1963 	return 0;
1964 }
1965 
1966 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
1967 {
1968 	struct dpu_encoder_virt *dpu_enc;
1969 
1970 	if (!drm_enc)
1971 		return;
1972 
1973 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1974 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1975 }
1976 #else
1977 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1978 {
1979 	return 0;
1980 }
1981 
1982 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc)
1983 {
1984 }
1985 #endif
1986 
1987 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1988 {
1989 	return _dpu_encoder_init_debugfs(encoder);
1990 }
1991 
1992 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1993 {
1994 	_dpu_encoder_destroy_debugfs(encoder);
1995 }
1996 
1997 static int dpu_encoder_virt_add_phys_encs(
1998 		u32 display_caps,
1999 		struct dpu_encoder_virt *dpu_enc,
2000 		struct dpu_enc_phys_init_params *params)
2001 {
2002 	struct dpu_encoder_phys *enc = NULL;
2003 
2004 	DPU_DEBUG_ENC(dpu_enc, "\n");
2005 
2006 	/*
2007 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2008 	 * in this function, check up-front.
2009 	 */
2010 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2011 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2012 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2013 			  dpu_enc->num_phys_encs);
2014 		return -EINVAL;
2015 	}
2016 
2017 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2018 		enc = dpu_encoder_phys_vid_init(params);
2019 
2020 		if (IS_ERR_OR_NULL(enc)) {
2021 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2022 				PTR_ERR(enc));
2023 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2024 		}
2025 
2026 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2027 		++dpu_enc->num_phys_encs;
2028 	}
2029 
2030 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2031 		enc = dpu_encoder_phys_cmd_init(params);
2032 
2033 		if (IS_ERR_OR_NULL(enc)) {
2034 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2035 				PTR_ERR(enc));
2036 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2037 		}
2038 
2039 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2040 		++dpu_enc->num_phys_encs;
2041 	}
2042 
2043 	if (params->split_role == ENC_ROLE_SLAVE)
2044 		dpu_enc->cur_slave = enc;
2045 	else
2046 		dpu_enc->cur_master = enc;
2047 
2048 	return 0;
2049 }
2050 
2051 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2052 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2053 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2054 	.handle_frame_done = dpu_encoder_frame_done_callback,
2055 };
2056 
2057 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2058 				 struct dpu_kms *dpu_kms,
2059 				 struct msm_display_info *disp_info)
2060 {
2061 	int ret = 0;
2062 	int i = 0;
2063 	enum dpu_intf_type intf_type;
2064 	struct dpu_enc_phys_init_params phys_params;
2065 
2066 	if (!dpu_enc || !dpu_kms) {
2067 		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2068 				dpu_enc != 0, dpu_kms != 0);
2069 		return -EINVAL;
2070 	}
2071 
2072 	dpu_enc->cur_master = NULL;
2073 
2074 	memset(&phys_params, 0, sizeof(phys_params));
2075 	phys_params.dpu_kms = dpu_kms;
2076 	phys_params.parent = &dpu_enc->base;
2077 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2078 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2079 
2080 	DPU_DEBUG("\n");
2081 
2082 	switch (disp_info->intf_type) {
2083 	case DRM_MODE_ENCODER_DSI:
2084 		intf_type = INTF_DSI;
2085 		break;
2086 	default:
2087 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2088 		return -EINVAL;
2089 	}
2090 
2091 	WARN_ON(disp_info->num_of_h_tiles < 1);
2092 
2093 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2094 
2095 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2096 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2097 		dpu_enc->idle_pc_supported =
2098 				dpu_kms->catalog->caps->has_idle_pc;
2099 
2100 	mutex_lock(&dpu_enc->enc_lock);
2101 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2102 		/*
2103 		 * Left-most tile is at index 0, content is controller id
2104 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2105 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2106 		 */
2107 		u32 controller_id = disp_info->h_tile_instance[i];
2108 
2109 		if (disp_info->num_of_h_tiles > 1) {
2110 			if (i == 0)
2111 				phys_params.split_role = ENC_ROLE_MASTER;
2112 			else
2113 				phys_params.split_role = ENC_ROLE_SLAVE;
2114 		} else {
2115 			phys_params.split_role = ENC_ROLE_SOLO;
2116 		}
2117 
2118 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2119 				i, controller_id, phys_params.split_role);
2120 
2121 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2122 													intf_type,
2123 													controller_id);
2124 		if (phys_params.intf_idx == INTF_MAX) {
2125 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2126 						  intf_type, controller_id);
2127 			ret = -EINVAL;
2128 		}
2129 
2130 		if (!ret) {
2131 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2132 												 dpu_enc,
2133 												 &phys_params);
2134 			if (ret)
2135 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2136 		}
2137 	}
2138 
2139 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2140 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2141 
2142 		if (phys) {
2143 			atomic_set(&phys->vsync_cnt, 0);
2144 			atomic_set(&phys->underrun_cnt, 0);
2145 		}
2146 	}
2147 	mutex_unlock(&dpu_enc->enc_lock);
2148 
2149 	return ret;
2150 }
2151 
2152 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2153 {
2154 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2155 			frame_done_timer);
2156 	struct drm_encoder *drm_enc = &dpu_enc->base;
2157 	struct msm_drm_private *priv;
2158 	u32 event;
2159 
2160 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2161 		DPU_ERROR("invalid parameters\n");
2162 		return;
2163 	}
2164 	priv = drm_enc->dev->dev_private;
2165 
2166 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2167 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2168 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2169 		return;
2170 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
2171 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2172 		return;
2173 	}
2174 
2175 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2176 
2177 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2178 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2179 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2180 }
2181 
2182 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2183 	.mode_set = dpu_encoder_virt_mode_set,
2184 	.disable = dpu_encoder_virt_disable,
2185 	.enable = dpu_kms_encoder_enable,
2186 	.atomic_check = dpu_encoder_virt_atomic_check,
2187 
2188 	/* This is called by dpu_kms_encoder_enable */
2189 	.commit = dpu_encoder_virt_enable,
2190 };
2191 
2192 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2193 		.destroy = dpu_encoder_destroy,
2194 		.late_register = dpu_encoder_late_register,
2195 		.early_unregister = dpu_encoder_early_unregister,
2196 };
2197 
2198 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2199 		struct msm_display_info *disp_info)
2200 {
2201 	struct msm_drm_private *priv = dev->dev_private;
2202 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2203 	struct drm_encoder *drm_enc = NULL;
2204 	struct dpu_encoder_virt *dpu_enc = NULL;
2205 	int ret = 0;
2206 
2207 	dpu_enc = to_dpu_encoder_virt(enc);
2208 
2209 	mutex_init(&dpu_enc->enc_lock);
2210 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2211 	if (ret)
2212 		goto fail;
2213 
2214 	spin_lock_init(&dpu_enc->enc_spinlock);
2215 
2216 	atomic_set(&dpu_enc->frame_done_timeout, 0);
2217 	timer_setup(&dpu_enc->frame_done_timer,
2218 			dpu_encoder_frame_done_timeout, 0);
2219 
2220 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2221 		timer_setup(&dpu_enc->vsync_event_timer,
2222 				dpu_encoder_vsync_event_handler,
2223 				0);
2224 
2225 
2226 	mutex_init(&dpu_enc->rc_lock);
2227 	kthread_init_delayed_work(&dpu_enc->delayed_off_work,
2228 			dpu_encoder_off_work);
2229 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2230 
2231 	kthread_init_work(&dpu_enc->vsync_event_work,
2232 			dpu_encoder_vsync_event_work_handler);
2233 
2234 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2235 
2236 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2237 
2238 	return ret;
2239 
2240 fail:
2241 	DPU_ERROR("failed to create encoder\n");
2242 	if (drm_enc)
2243 		dpu_encoder_destroy(drm_enc);
2244 
2245 	return ret;
2246 
2247 
2248 }
2249 
2250 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2251 		int drm_enc_mode)
2252 {
2253 	struct dpu_encoder_virt *dpu_enc = NULL;
2254 	int rc = 0;
2255 
2256 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2257 	if (!dpu_enc)
2258 		return ERR_PTR(ENOMEM);
2259 
2260 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2261 			drm_enc_mode, NULL);
2262 	if (rc) {
2263 		devm_kfree(dev->dev, dpu_enc);
2264 		return ERR_PTR(rc);
2265 	}
2266 
2267 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2268 
2269 	return &dpu_enc->base;
2270 }
2271 
2272 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2273 	enum msm_event_wait event)
2274 {
2275 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2276 	struct dpu_encoder_virt *dpu_enc = NULL;
2277 	int i, ret = 0;
2278 
2279 	if (!drm_enc) {
2280 		DPU_ERROR("invalid encoder\n");
2281 		return -EINVAL;
2282 	}
2283 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2284 	DPU_DEBUG_ENC(dpu_enc, "\n");
2285 
2286 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2287 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2288 		if (!phys)
2289 			continue;
2290 
2291 		switch (event) {
2292 		case MSM_ENC_COMMIT_DONE:
2293 			fn_wait = phys->ops.wait_for_commit_done;
2294 			break;
2295 		case MSM_ENC_TX_COMPLETE:
2296 			fn_wait = phys->ops.wait_for_tx_complete;
2297 			break;
2298 		case MSM_ENC_VBLANK:
2299 			fn_wait = phys->ops.wait_for_vblank;
2300 			break;
2301 		default:
2302 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2303 					event);
2304 			return -EINVAL;
2305 		};
2306 
2307 		if (fn_wait) {
2308 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2309 			ret = fn_wait(phys);
2310 			DPU_ATRACE_END("wait_for_completion_event");
2311 			if (ret)
2312 				return ret;
2313 		}
2314 	}
2315 
2316 	return ret;
2317 }
2318 
2319 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2320 {
2321 	struct dpu_encoder_virt *dpu_enc = NULL;
2322 	int i;
2323 
2324 	if (!encoder) {
2325 		DPU_ERROR("invalid encoder\n");
2326 		return INTF_MODE_NONE;
2327 	}
2328 	dpu_enc = to_dpu_encoder_virt(encoder);
2329 
2330 	if (dpu_enc->cur_master)
2331 		return dpu_enc->cur_master->intf_mode;
2332 
2333 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2334 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2335 
2336 		if (phys)
2337 			return phys->intf_mode;
2338 	}
2339 
2340 	return INTF_MODE_NONE;
2341 }
2342