1 /* 2 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 20 #include <linux/kthread.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include "msm_drv.h" 25 #include "dpu_kms.h" 26 #include <drm/drm_crtc.h> 27 #include <drm/drm_crtc_helper.h> 28 #include "dpu_hwio.h" 29 #include "dpu_hw_catalog.h" 30 #include "dpu_hw_intf.h" 31 #include "dpu_hw_ctl.h" 32 #include "dpu_formats.h" 33 #include "dpu_encoder_phys.h" 34 #include "dpu_crtc.h" 35 #include "dpu_trace.h" 36 #include "dpu_core_irq.h" 37 38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 43 44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 45 (p) ? (p)->parent->base.id : -1, \ 46 (p) ? (p)->intf_idx - INTF_0 : -1, \ 47 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 48 ##__VA_ARGS__) 49 50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 51 (p) ? (p)->parent->base.id : -1, \ 52 (p) ? (p)->intf_idx - INTF_0 : -1, \ 53 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 54 ##__VA_ARGS__) 55 56 /* 57 * Two to anticipate panels that can do cmd/vid dynamic switching 58 * plan is to create all possible physical encoder types, and switch between 59 * them at runtime 60 */ 61 #define NUM_PHYS_ENCODER_TYPES 2 62 63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 64 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 65 66 #define MAX_CHANNELS_PER_ENC 2 67 68 #define IDLE_SHORT_TIMEOUT 1 69 70 #define MAX_VDISPLAY_SPLIT 1080 71 72 /** 73 * enum dpu_enc_rc_events - events for resource control state machine 74 * @DPU_ENC_RC_EVENT_KICKOFF: 75 * This event happens at NORMAL priority. 76 * Event that signals the start of the transfer. When this event is 77 * received, enable MDP/DSI core clocks. Regardless of the previous 78 * state, the resource should be in ON state at the end of this event. 79 * @DPU_ENC_RC_EVENT_FRAME_DONE: 80 * This event happens at INTERRUPT level. 81 * Event signals the end of the data transfer after the PP FRAME_DONE 82 * event. At the end of this event, a delayed work is scheduled to go to 83 * IDLE_PC state after IDLE_TIMEOUT time. 84 * @DPU_ENC_RC_EVENT_PRE_STOP: 85 * This event happens at NORMAL priority. 86 * This event, when received during the ON state, leave the RC STATE 87 * in the PRE_OFF state. It should be followed by the STOP event as 88 * part of encoder disable. 89 * If received during IDLE or OFF states, it will do nothing. 90 * @DPU_ENC_RC_EVENT_STOP: 91 * This event happens at NORMAL priority. 92 * When this event is received, disable all the MDP/DSI core clocks, and 93 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 94 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 95 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 96 * Resource state should be in OFF at the end of the event. 97 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 98 * This event happens at NORMAL priority from a work item. 99 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 100 * This would disable MDP/DSI core clocks and change the resource state 101 * to IDLE. 102 */ 103 enum dpu_enc_rc_events { 104 DPU_ENC_RC_EVENT_KICKOFF = 1, 105 DPU_ENC_RC_EVENT_FRAME_DONE, 106 DPU_ENC_RC_EVENT_PRE_STOP, 107 DPU_ENC_RC_EVENT_STOP, 108 DPU_ENC_RC_EVENT_ENTER_IDLE 109 }; 110 111 /* 112 * enum dpu_enc_rc_states - states that the resource control maintains 113 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 114 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 115 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 116 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 117 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 118 */ 119 enum dpu_enc_rc_states { 120 DPU_ENC_RC_STATE_OFF, 121 DPU_ENC_RC_STATE_PRE_OFF, 122 DPU_ENC_RC_STATE_ON, 123 DPU_ENC_RC_STATE_IDLE 124 }; 125 126 /** 127 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 128 * encoders. Virtual encoder manages one "logical" display. Physical 129 * encoders manage one intf block, tied to a specific panel/sub-panel. 130 * Virtual encoder defers as much as possible to the physical encoders. 131 * Virtual encoder registers itself with the DRM Framework as the encoder. 132 * @base: drm_encoder base class for registration with DRM 133 * @enc_spin_lock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 134 * @bus_scaling_client: Client handle to the bus scaling interface 135 * @num_phys_encs: Actual number of physical encoders contained. 136 * @phys_encs: Container of physical encoders managed. 137 * @cur_master: Pointer to the current master in this mode. Optimization 138 * Only valid after enable. Cleared as disable. 139 * @hw_pp Handle to the pingpong blocks used for the display. No. 140 * pingpong blocks can be different than num_phys_encs. 141 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 142 * for partial update right-only cases, such as pingpong 143 * split where virtual pingpong does not generate IRQs 144 * @crtc_vblank_cb: Callback into the upper layer / CRTC for 145 * notification of the VBLANK 146 * @crtc_vblank_cb_data: Data from upper layer for VBLANK notification 147 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 148 * all CTL paths 149 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 150 * @debugfs_root: Debug file system root file node 151 * @enc_lock: Lock around physical encoder create/destroy and 152 access. 153 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 154 * busy processing current command. 155 * Bit0 = phys_encs[0] etc. 156 * @crtc_frame_event_cb: callback handler for frame event 157 * @crtc_frame_event_cb_data: callback handler private data 158 * @frame_done_timeout: frame done timeout in Hz 159 * @frame_done_timer: watchdog timer for frame done event 160 * @vsync_event_timer: vsync timer 161 * @disp_info: local copy of msm_display_info struct 162 * @idle_pc_supported: indicate if idle power collaps is supported 163 * @rc_lock: resource control mutex lock to protect 164 * virt encoder over various state changes 165 * @rc_state: resource controller state 166 * @delayed_off_work: delayed worker to schedule disabling of 167 * clks and resources after IDLE_TIMEOUT time. 168 * @vsync_event_work: worker to handle vsync event for autorefresh 169 * @topology: topology of the display 170 * @mode_set_complete: flag to indicate modeset completion 171 * @idle_timeout: idle timeout duration in milliseconds 172 */ 173 struct dpu_encoder_virt { 174 struct drm_encoder base; 175 spinlock_t enc_spinlock; 176 uint32_t bus_scaling_client; 177 178 unsigned int num_phys_encs; 179 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 180 struct dpu_encoder_phys *cur_master; 181 struct dpu_encoder_phys *cur_slave; 182 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 183 184 bool intfs_swapped; 185 186 void (*crtc_vblank_cb)(void *); 187 void *crtc_vblank_cb_data; 188 189 struct dentry *debugfs_root; 190 struct mutex enc_lock; 191 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 192 void (*crtc_frame_event_cb)(void *, u32 event); 193 void *crtc_frame_event_cb_data; 194 195 atomic_t frame_done_timeout; 196 struct timer_list frame_done_timer; 197 struct timer_list vsync_event_timer; 198 199 struct msm_display_info disp_info; 200 201 bool idle_pc_supported; 202 struct mutex rc_lock; 203 enum dpu_enc_rc_states rc_state; 204 struct kthread_delayed_work delayed_off_work; 205 struct kthread_work vsync_event_work; 206 struct msm_display_topology topology; 207 bool mode_set_complete; 208 209 u32 idle_timeout; 210 }; 211 212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 213 static inline int _dpu_encoder_power_enable(struct dpu_encoder_virt *dpu_enc, 214 bool enable) 215 { 216 struct drm_encoder *drm_enc; 217 struct msm_drm_private *priv; 218 struct dpu_kms *dpu_kms; 219 220 if (!dpu_enc) { 221 DPU_ERROR("invalid dpu enc\n"); 222 return -EINVAL; 223 } 224 225 drm_enc = &dpu_enc->base; 226 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 227 DPU_ERROR("drm device invalid\n"); 228 return -EINVAL; 229 } 230 231 priv = drm_enc->dev->dev_private; 232 if (!priv->kms) { 233 DPU_ERROR("invalid kms\n"); 234 return -EINVAL; 235 } 236 237 dpu_kms = to_dpu_kms(priv->kms); 238 239 if (enable) 240 pm_runtime_get_sync(&dpu_kms->pdev->dev); 241 else 242 pm_runtime_put_sync(&dpu_kms->pdev->dev); 243 244 return 0; 245 } 246 247 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 248 enum dpu_intr_idx intr_idx) 249 { 250 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 251 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 252 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 253 254 if (phys_enc->parent_ops->handle_frame_done) 255 phys_enc->parent_ops->handle_frame_done( 256 phys_enc->parent, phys_enc, 257 DPU_ENCODER_FRAME_EVENT_ERROR); 258 } 259 260 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 261 int32_t hw_id, struct dpu_encoder_wait_info *info); 262 263 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 264 enum dpu_intr_idx intr_idx, 265 struct dpu_encoder_wait_info *wait_info) 266 { 267 struct dpu_encoder_irq *irq; 268 u32 irq_status; 269 int ret; 270 271 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 272 DPU_ERROR("invalid params\n"); 273 return -EINVAL; 274 } 275 irq = &phys_enc->irq[intr_idx]; 276 277 /* note: do master / slave checking outside */ 278 279 /* return EWOULDBLOCK since we know the wait isn't necessary */ 280 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 281 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 282 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 283 irq->irq_idx); 284 return -EWOULDBLOCK; 285 } 286 287 if (irq->irq_idx < 0) { 288 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 290 irq->name); 291 return 0; 292 } 293 294 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 295 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 296 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 297 atomic_read(wait_info->atomic_cnt)); 298 299 ret = dpu_encoder_helper_wait_event_timeout( 300 DRMID(phys_enc->parent), 301 irq->hw_idx, 302 wait_info); 303 304 if (ret <= 0) { 305 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 306 irq->irq_idx, true); 307 if (irq_status) { 308 unsigned long flags; 309 310 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 311 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 312 DRMID(phys_enc->parent), intr_idx, 313 irq->hw_idx, irq->irq_idx, 314 phys_enc->hw_pp->idx - PINGPONG_0, 315 atomic_read(wait_info->atomic_cnt)); 316 local_irq_save(flags); 317 irq->cb.func(phys_enc, irq->irq_idx); 318 local_irq_restore(flags); 319 ret = 0; 320 } else { 321 ret = -ETIMEDOUT; 322 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 323 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 324 DRMID(phys_enc->parent), intr_idx, 325 irq->hw_idx, irq->irq_idx, 326 phys_enc->hw_pp->idx - PINGPONG_0, 327 atomic_read(wait_info->atomic_cnt)); 328 } 329 } else { 330 ret = 0; 331 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 332 intr_idx, irq->hw_idx, irq->irq_idx, 333 phys_enc->hw_pp->idx - PINGPONG_0, 334 atomic_read(wait_info->atomic_cnt)); 335 } 336 337 return ret; 338 } 339 340 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 341 enum dpu_intr_idx intr_idx) 342 { 343 struct dpu_encoder_irq *irq; 344 int ret = 0; 345 346 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 347 DPU_ERROR("invalid params\n"); 348 return -EINVAL; 349 } 350 irq = &phys_enc->irq[intr_idx]; 351 352 if (irq->irq_idx >= 0) { 353 DPU_DEBUG_PHYS(phys_enc, 354 "skipping already registered irq %s type %d\n", 355 irq->name, irq->intr_type); 356 return 0; 357 } 358 359 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 360 irq->intr_type, irq->hw_idx); 361 if (irq->irq_idx < 0) { 362 DPU_ERROR_PHYS(phys_enc, 363 "failed to lookup IRQ index for %s type:%d\n", 364 irq->name, irq->intr_type); 365 return -EINVAL; 366 } 367 368 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 369 &irq->cb); 370 if (ret) { 371 DPU_ERROR_PHYS(phys_enc, 372 "failed to register IRQ callback for %s\n", 373 irq->name); 374 irq->irq_idx = -EINVAL; 375 return ret; 376 } 377 378 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 379 if (ret) { 380 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 382 irq->irq_idx); 383 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 384 irq->irq_idx, &irq->cb); 385 irq->irq_idx = -EINVAL; 386 return ret; 387 } 388 389 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 390 irq->hw_idx, irq->irq_idx); 391 392 return ret; 393 } 394 395 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 396 enum dpu_intr_idx intr_idx) 397 { 398 struct dpu_encoder_irq *irq; 399 int ret; 400 401 if (!phys_enc) { 402 DPU_ERROR("invalid encoder\n"); 403 return -EINVAL; 404 } 405 irq = &phys_enc->irq[intr_idx]; 406 407 /* silently skip irqs that weren't registered */ 408 if (irq->irq_idx < 0) { 409 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 410 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 411 irq->irq_idx); 412 return 0; 413 } 414 415 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 416 if (ret) { 417 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 418 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 419 irq->irq_idx, ret); 420 } 421 422 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 423 &irq->cb); 424 if (ret) { 425 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 426 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 427 irq->irq_idx, ret); 428 } 429 430 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 431 irq->hw_idx, irq->irq_idx); 432 433 irq->irq_idx = -EINVAL; 434 435 return 0; 436 } 437 438 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 439 struct dpu_encoder_hw_resources *hw_res) 440 { 441 struct dpu_encoder_virt *dpu_enc = NULL; 442 int i = 0; 443 444 dpu_enc = to_dpu_encoder_virt(drm_enc); 445 DPU_DEBUG_ENC(dpu_enc, "\n"); 446 447 /* Query resources used by phys encs, expected to be without overlap */ 448 memset(hw_res, 0, sizeof(*hw_res)); 449 450 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 451 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 452 453 if (phys && phys->ops.get_hw_resources) 454 phys->ops.get_hw_resources(phys, hw_res); 455 } 456 } 457 458 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 459 { 460 struct dpu_encoder_virt *dpu_enc = NULL; 461 int i = 0; 462 463 if (!drm_enc) { 464 DPU_ERROR("invalid encoder\n"); 465 return; 466 } 467 468 dpu_enc = to_dpu_encoder_virt(drm_enc); 469 DPU_DEBUG_ENC(dpu_enc, "\n"); 470 471 mutex_lock(&dpu_enc->enc_lock); 472 473 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 474 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 475 476 if (phys && phys->ops.destroy) { 477 phys->ops.destroy(phys); 478 --dpu_enc->num_phys_encs; 479 dpu_enc->phys_encs[i] = NULL; 480 } 481 } 482 483 if (dpu_enc->num_phys_encs) 484 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 485 dpu_enc->num_phys_encs); 486 dpu_enc->num_phys_encs = 0; 487 mutex_unlock(&dpu_enc->enc_lock); 488 489 drm_encoder_cleanup(drm_enc); 490 mutex_destroy(&dpu_enc->enc_lock); 491 } 492 493 void dpu_encoder_helper_split_config( 494 struct dpu_encoder_phys *phys_enc, 495 enum dpu_intf interface) 496 { 497 struct dpu_encoder_virt *dpu_enc; 498 struct split_pipe_cfg cfg = { 0 }; 499 struct dpu_hw_mdp *hw_mdptop; 500 struct msm_display_info *disp_info; 501 502 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 503 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 504 return; 505 } 506 507 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 508 hw_mdptop = phys_enc->hw_mdptop; 509 disp_info = &dpu_enc->disp_info; 510 511 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 512 return; 513 514 /** 515 * disable split modes since encoder will be operating in as the only 516 * encoder, either for the entire use case in the case of, for example, 517 * single DSI, or for this frame in the case of left/right only partial 518 * update. 519 */ 520 if (phys_enc->split_role == ENC_ROLE_SOLO) { 521 if (hw_mdptop->ops.setup_split_pipe) 522 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 523 return; 524 } 525 526 cfg.en = true; 527 cfg.mode = phys_enc->intf_mode; 528 cfg.intf = interface; 529 530 if (cfg.en && phys_enc->ops.needs_single_flush && 531 phys_enc->ops.needs_single_flush(phys_enc)) 532 cfg.split_flush_en = true; 533 534 if (phys_enc->split_role == ENC_ROLE_MASTER) { 535 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 536 537 if (hw_mdptop->ops.setup_split_pipe) 538 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 539 } 540 } 541 542 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 543 struct drm_display_mode *adj_mode) 544 { 545 struct drm_display_mode *cur_mode; 546 547 if (!connector || !adj_mode) 548 return; 549 550 list_for_each_entry(cur_mode, &connector->modes, head) { 551 if (cur_mode->vdisplay == adj_mode->vdisplay && 552 cur_mode->hdisplay == adj_mode->hdisplay && 553 cur_mode->vrefresh == adj_mode->vrefresh) { 554 adj_mode->private = cur_mode->private; 555 adj_mode->private_flags |= cur_mode->private_flags; 556 } 557 } 558 } 559 560 static struct msm_display_topology dpu_encoder_get_topology( 561 struct dpu_encoder_virt *dpu_enc, 562 struct dpu_kms *dpu_kms, 563 struct drm_display_mode *mode) 564 { 565 struct msm_display_topology topology; 566 int i, intf_count = 0; 567 568 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 569 if (dpu_enc->phys_encs[i]) 570 intf_count++; 571 572 /* User split topology for width > 1080 */ 573 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 574 topology.num_enc = 0; 575 topology.num_intf = intf_count; 576 577 return topology; 578 } 579 static int dpu_encoder_virt_atomic_check( 580 struct drm_encoder *drm_enc, 581 struct drm_crtc_state *crtc_state, 582 struct drm_connector_state *conn_state) 583 { 584 struct dpu_encoder_virt *dpu_enc; 585 struct msm_drm_private *priv; 586 struct dpu_kms *dpu_kms; 587 const struct drm_display_mode *mode; 588 struct drm_display_mode *adj_mode; 589 struct msm_display_topology topology; 590 int i = 0; 591 int ret = 0; 592 593 if (!drm_enc || !crtc_state || !conn_state) { 594 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 595 drm_enc != 0, crtc_state != 0, conn_state != 0); 596 return -EINVAL; 597 } 598 599 dpu_enc = to_dpu_encoder_virt(drm_enc); 600 DPU_DEBUG_ENC(dpu_enc, "\n"); 601 602 priv = drm_enc->dev->dev_private; 603 dpu_kms = to_dpu_kms(priv->kms); 604 mode = &crtc_state->mode; 605 adj_mode = &crtc_state->adjusted_mode; 606 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 607 608 /* 609 * display drivers may populate private fields of the drm display mode 610 * structure while registering possible modes of a connector with DRM. 611 * These private fields are not populated back while DRM invokes 612 * the mode_set callbacks. This module retrieves and populates the 613 * private fields of the given mode. 614 */ 615 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 616 617 /* perform atomic check on the first physical encoder (master) */ 618 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 619 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 620 621 if (phys && phys->ops.atomic_check) 622 ret = phys->ops.atomic_check(phys, crtc_state, 623 conn_state); 624 else if (phys && phys->ops.mode_fixup) 625 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 626 ret = -EINVAL; 627 628 if (ret) { 629 DPU_ERROR_ENC(dpu_enc, 630 "mode unsupported, phys idx %d\n", i); 631 break; 632 } 633 } 634 635 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 636 637 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 638 if (!ret) { 639 /* 640 * Avoid reserving resources when mode set is pending. Topology 641 * info may not be available to complete reservation. 642 */ 643 if (drm_atomic_crtc_needs_modeset(crtc_state) 644 && dpu_enc->mode_set_complete) { 645 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 646 topology, true); 647 dpu_enc->mode_set_complete = false; 648 } 649 } 650 651 if (!ret) 652 drm_mode_set_crtcinfo(adj_mode, 0); 653 654 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 655 adj_mode->private_flags); 656 657 return ret; 658 } 659 660 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 661 struct msm_display_info *disp_info) 662 { 663 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 664 struct msm_drm_private *priv; 665 struct dpu_kms *dpu_kms; 666 struct dpu_hw_mdp *hw_mdptop; 667 struct drm_encoder *drm_enc; 668 int i; 669 670 if (!dpu_enc || !disp_info) { 671 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 672 dpu_enc != NULL, disp_info != NULL); 673 return; 674 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 675 DPU_ERROR("invalid num phys enc %d/%d\n", 676 dpu_enc->num_phys_encs, 677 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 678 return; 679 } 680 681 drm_enc = &dpu_enc->base; 682 /* this pointers are checked in virt_enable_helper */ 683 priv = drm_enc->dev->dev_private; 684 685 dpu_kms = to_dpu_kms(priv->kms); 686 if (!dpu_kms) { 687 DPU_ERROR("invalid dpu_kms\n"); 688 return; 689 } 690 691 hw_mdptop = dpu_kms->hw_mdp; 692 if (!hw_mdptop) { 693 DPU_ERROR("invalid mdptop\n"); 694 return; 695 } 696 697 if (hw_mdptop->ops.setup_vsync_source && 698 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 699 for (i = 0; i < dpu_enc->num_phys_encs; i++) 700 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 701 702 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 703 if (disp_info->is_te_using_watchdog_timer) 704 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 705 else 706 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 707 708 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 709 } 710 } 711 712 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 713 { 714 struct dpu_encoder_virt *dpu_enc; 715 int i; 716 717 if (!drm_enc) { 718 DPU_ERROR("invalid encoder\n"); 719 return; 720 } 721 722 dpu_enc = to_dpu_encoder_virt(drm_enc); 723 724 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 725 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 726 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 727 728 if (phys && phys->ops.irq_control) 729 phys->ops.irq_control(phys, enable); 730 } 731 732 } 733 734 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 735 bool enable) 736 { 737 struct msm_drm_private *priv; 738 struct dpu_kms *dpu_kms; 739 struct dpu_encoder_virt *dpu_enc; 740 741 dpu_enc = to_dpu_encoder_virt(drm_enc); 742 priv = drm_enc->dev->dev_private; 743 dpu_kms = to_dpu_kms(priv->kms); 744 745 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 746 747 if (!dpu_enc->cur_master) { 748 DPU_ERROR("encoder master not set\n"); 749 return; 750 } 751 752 if (enable) { 753 /* enable DPU core clks */ 754 pm_runtime_get_sync(&dpu_kms->pdev->dev); 755 756 /* enable all the irq */ 757 _dpu_encoder_irq_control(drm_enc, true); 758 759 } else { 760 /* disable all the irq */ 761 _dpu_encoder_irq_control(drm_enc, false); 762 763 /* disable DPU core clks */ 764 pm_runtime_put_sync(&dpu_kms->pdev->dev); 765 } 766 767 } 768 769 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 770 u32 sw_event) 771 { 772 struct dpu_encoder_virt *dpu_enc; 773 struct msm_drm_private *priv; 774 struct msm_drm_thread *disp_thread; 775 bool is_vid_mode = false; 776 777 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 778 !drm_enc->crtc) { 779 DPU_ERROR("invalid parameters\n"); 780 return -EINVAL; 781 } 782 dpu_enc = to_dpu_encoder_virt(drm_enc); 783 priv = drm_enc->dev->dev_private; 784 is_vid_mode = dpu_enc->disp_info.capabilities & 785 MSM_DISPLAY_CAP_VID_MODE; 786 787 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) { 788 DPU_ERROR("invalid crtc index\n"); 789 return -EINVAL; 790 } 791 disp_thread = &priv->disp_thread[drm_enc->crtc->index]; 792 793 /* 794 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 795 * events and return early for other events (ie wb display). 796 */ 797 if (!dpu_enc->idle_pc_supported && 798 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 799 sw_event != DPU_ENC_RC_EVENT_STOP && 800 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 801 return 0; 802 803 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 804 dpu_enc->rc_state, "begin"); 805 806 switch (sw_event) { 807 case DPU_ENC_RC_EVENT_KICKOFF: 808 /* cancel delayed off work, if any */ 809 if (kthread_cancel_delayed_work_sync( 810 &dpu_enc->delayed_off_work)) 811 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 812 sw_event); 813 814 mutex_lock(&dpu_enc->rc_lock); 815 816 /* return if the resource control is already in ON state */ 817 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 818 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 819 DRMID(drm_enc), sw_event); 820 mutex_unlock(&dpu_enc->rc_lock); 821 return 0; 822 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 823 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 824 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 825 DRMID(drm_enc), sw_event, 826 dpu_enc->rc_state); 827 mutex_unlock(&dpu_enc->rc_lock); 828 return -EINVAL; 829 } 830 831 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 832 _dpu_encoder_irq_control(drm_enc, true); 833 else 834 _dpu_encoder_resource_control_helper(drm_enc, true); 835 836 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 837 838 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 839 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 840 "kickoff"); 841 842 mutex_unlock(&dpu_enc->rc_lock); 843 break; 844 845 case DPU_ENC_RC_EVENT_FRAME_DONE: 846 /* 847 * mutex lock is not used as this event happens at interrupt 848 * context. And locking is not required as, the other events 849 * like KICKOFF and STOP does a wait-for-idle before executing 850 * the resource_control 851 */ 852 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 853 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 854 DRMID(drm_enc), sw_event, 855 dpu_enc->rc_state); 856 return -EINVAL; 857 } 858 859 /* 860 * schedule off work item only when there are no 861 * frames pending 862 */ 863 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 864 DRM_DEBUG_KMS("id:%d skip schedule work\n", 865 DRMID(drm_enc)); 866 return 0; 867 } 868 869 kthread_queue_delayed_work( 870 &disp_thread->worker, 871 &dpu_enc->delayed_off_work, 872 msecs_to_jiffies(dpu_enc->idle_timeout)); 873 874 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 875 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 876 "frame done"); 877 break; 878 879 case DPU_ENC_RC_EVENT_PRE_STOP: 880 /* cancel delayed off work, if any */ 881 if (kthread_cancel_delayed_work_sync( 882 &dpu_enc->delayed_off_work)) 883 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 884 sw_event); 885 886 mutex_lock(&dpu_enc->rc_lock); 887 888 if (is_vid_mode && 889 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 890 _dpu_encoder_irq_control(drm_enc, true); 891 } 892 /* skip if is already OFF or IDLE, resources are off already */ 893 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 894 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 895 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 896 DRMID(drm_enc), sw_event, 897 dpu_enc->rc_state); 898 mutex_unlock(&dpu_enc->rc_lock); 899 return 0; 900 } 901 902 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 903 904 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 905 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 906 "pre stop"); 907 908 mutex_unlock(&dpu_enc->rc_lock); 909 break; 910 911 case DPU_ENC_RC_EVENT_STOP: 912 mutex_lock(&dpu_enc->rc_lock); 913 914 /* return if the resource control is already in OFF state */ 915 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 916 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 917 DRMID(drm_enc), sw_event); 918 mutex_unlock(&dpu_enc->rc_lock); 919 return 0; 920 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 921 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 922 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 923 mutex_unlock(&dpu_enc->rc_lock); 924 return -EINVAL; 925 } 926 927 /** 928 * expect to arrive here only if in either idle state or pre-off 929 * and in IDLE state the resources are already disabled 930 */ 931 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 932 _dpu_encoder_resource_control_helper(drm_enc, false); 933 934 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 935 936 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 937 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 938 "stop"); 939 940 mutex_unlock(&dpu_enc->rc_lock); 941 break; 942 943 case DPU_ENC_RC_EVENT_ENTER_IDLE: 944 mutex_lock(&dpu_enc->rc_lock); 945 946 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 947 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 948 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 949 mutex_unlock(&dpu_enc->rc_lock); 950 return 0; 951 } 952 953 /* 954 * if we are in ON but a frame was just kicked off, 955 * ignore the IDLE event, it's probably a stale timer event 956 */ 957 if (dpu_enc->frame_busy_mask[0]) { 958 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 959 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 960 mutex_unlock(&dpu_enc->rc_lock); 961 return 0; 962 } 963 964 if (is_vid_mode) 965 _dpu_encoder_irq_control(drm_enc, false); 966 else 967 _dpu_encoder_resource_control_helper(drm_enc, false); 968 969 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 970 971 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 972 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 973 "idle"); 974 975 mutex_unlock(&dpu_enc->rc_lock); 976 break; 977 978 default: 979 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 980 sw_event); 981 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 982 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 983 "error"); 984 break; 985 } 986 987 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 988 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 989 "end"); 990 return 0; 991 } 992 993 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 994 struct drm_display_mode *mode, 995 struct drm_display_mode *adj_mode) 996 { 997 struct dpu_encoder_virt *dpu_enc; 998 struct msm_drm_private *priv; 999 struct dpu_kms *dpu_kms; 1000 struct list_head *connector_list; 1001 struct drm_connector *conn = NULL, *conn_iter; 1002 struct dpu_rm_hw_iter pp_iter, ctl_iter; 1003 struct msm_display_topology topology; 1004 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 1005 int i = 0, ret; 1006 1007 if (!drm_enc) { 1008 DPU_ERROR("invalid encoder\n"); 1009 return; 1010 } 1011 1012 dpu_enc = to_dpu_encoder_virt(drm_enc); 1013 DPU_DEBUG_ENC(dpu_enc, "\n"); 1014 1015 priv = drm_enc->dev->dev_private; 1016 dpu_kms = to_dpu_kms(priv->kms); 1017 connector_list = &dpu_kms->dev->mode_config.connector_list; 1018 1019 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1020 1021 list_for_each_entry(conn_iter, connector_list, head) 1022 if (conn_iter->encoder == drm_enc) 1023 conn = conn_iter; 1024 1025 if (!conn) { 1026 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 1027 return; 1028 } else if (!conn->state) { 1029 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 1030 return; 1031 } 1032 1033 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 1034 1035 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 1036 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state, 1037 topology, false); 1038 if (ret) { 1039 DPU_ERROR_ENC(dpu_enc, 1040 "failed to reserve hw resources, %d\n", ret); 1041 return; 1042 } 1043 1044 dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1045 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1046 dpu_enc->hw_pp[i] = NULL; 1047 if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter)) 1048 break; 1049 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw; 1050 } 1051 1052 dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1053 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1054 if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter)) 1055 break; 1056 hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw; 1057 } 1058 1059 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1060 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1061 1062 if (phys) { 1063 if (!dpu_enc->hw_pp[i]) { 1064 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1065 "at idx: %d\n", i); 1066 return; 1067 } 1068 1069 if (!hw_ctl[i]) { 1070 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1071 "at idx: %d\n", i); 1072 return; 1073 } 1074 1075 phys->hw_pp = dpu_enc->hw_pp[i]; 1076 phys->hw_ctl = hw_ctl[i]; 1077 1078 phys->connector = conn->state->connector; 1079 if (phys->ops.mode_set) 1080 phys->ops.mode_set(phys, mode, adj_mode); 1081 } 1082 } 1083 1084 dpu_enc->mode_set_complete = true; 1085 } 1086 1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1088 { 1089 struct dpu_encoder_virt *dpu_enc = NULL; 1090 struct msm_drm_private *priv; 1091 struct dpu_kms *dpu_kms; 1092 1093 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1094 DPU_ERROR("invalid parameters\n"); 1095 return; 1096 } 1097 1098 priv = drm_enc->dev->dev_private; 1099 dpu_kms = to_dpu_kms(priv->kms); 1100 if (!dpu_kms) { 1101 DPU_ERROR("invalid dpu_kms\n"); 1102 return; 1103 } 1104 1105 dpu_enc = to_dpu_encoder_virt(drm_enc); 1106 if (!dpu_enc || !dpu_enc->cur_master) { 1107 DPU_ERROR("invalid dpu encoder/master\n"); 1108 return; 1109 } 1110 1111 if (dpu_enc->cur_master->hw_mdptop && 1112 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1113 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1114 dpu_enc->cur_master->hw_mdptop, 1115 dpu_kms->catalog); 1116 1117 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1118 } 1119 1120 void dpu_encoder_virt_restore(struct drm_encoder *drm_enc) 1121 { 1122 struct dpu_encoder_virt *dpu_enc = NULL; 1123 int i; 1124 1125 if (!drm_enc) { 1126 DPU_ERROR("invalid encoder\n"); 1127 return; 1128 } 1129 dpu_enc = to_dpu_encoder_virt(drm_enc); 1130 1131 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1132 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1133 1134 if (phys && (phys != dpu_enc->cur_master) && phys->ops.restore) 1135 phys->ops.restore(phys); 1136 } 1137 1138 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1139 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1140 1141 _dpu_encoder_virt_enable_helper(drm_enc); 1142 } 1143 1144 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1145 { 1146 struct dpu_encoder_virt *dpu_enc = NULL; 1147 int ret = 0; 1148 struct drm_display_mode *cur_mode = NULL; 1149 1150 if (!drm_enc) { 1151 DPU_ERROR("invalid encoder\n"); 1152 return; 1153 } 1154 dpu_enc = to_dpu_encoder_virt(drm_enc); 1155 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1156 1157 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1158 cur_mode->vdisplay); 1159 1160 /* always enable slave encoder before master */ 1161 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1162 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1163 1164 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1165 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1166 1167 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1168 if (ret) { 1169 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1170 ret); 1171 return; 1172 } 1173 1174 _dpu_encoder_virt_enable_helper(drm_enc); 1175 } 1176 1177 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1178 { 1179 struct dpu_encoder_virt *dpu_enc = NULL; 1180 struct msm_drm_private *priv; 1181 struct dpu_kms *dpu_kms; 1182 struct drm_display_mode *mode; 1183 int i = 0; 1184 1185 if (!drm_enc) { 1186 DPU_ERROR("invalid encoder\n"); 1187 return; 1188 } else if (!drm_enc->dev) { 1189 DPU_ERROR("invalid dev\n"); 1190 return; 1191 } else if (!drm_enc->dev->dev_private) { 1192 DPU_ERROR("invalid dev_private\n"); 1193 return; 1194 } 1195 1196 mode = &drm_enc->crtc->state->adjusted_mode; 1197 1198 dpu_enc = to_dpu_encoder_virt(drm_enc); 1199 DPU_DEBUG_ENC(dpu_enc, "\n"); 1200 1201 priv = drm_enc->dev->dev_private; 1202 dpu_kms = to_dpu_kms(priv->kms); 1203 1204 trace_dpu_enc_disable(DRMID(drm_enc)); 1205 1206 /* wait for idle */ 1207 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1208 1209 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1210 1211 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1212 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1213 1214 if (phys && phys->ops.disable) 1215 phys->ops.disable(phys); 1216 } 1217 1218 /* after phys waits for frame-done, should be no more frames pending */ 1219 if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 1220 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1221 del_timer_sync(&dpu_enc->frame_done_timer); 1222 } 1223 1224 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1225 1226 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1227 if (dpu_enc->phys_encs[i]) 1228 dpu_enc->phys_encs[i]->connector = NULL; 1229 } 1230 1231 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1232 1233 dpu_rm_release(&dpu_kms->rm, drm_enc); 1234 } 1235 1236 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1237 enum dpu_intf_type type, u32 controller_id) 1238 { 1239 int i = 0; 1240 1241 for (i = 0; i < catalog->intf_count; i++) { 1242 if (catalog->intf[i].type == type 1243 && catalog->intf[i].controller_id == controller_id) { 1244 return catalog->intf[i].id; 1245 } 1246 } 1247 1248 return INTF_MAX; 1249 } 1250 1251 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1252 struct dpu_encoder_phys *phy_enc) 1253 { 1254 struct dpu_encoder_virt *dpu_enc = NULL; 1255 unsigned long lock_flags; 1256 1257 if (!drm_enc || !phy_enc) 1258 return; 1259 1260 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1261 dpu_enc = to_dpu_encoder_virt(drm_enc); 1262 1263 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1264 if (dpu_enc->crtc_vblank_cb) 1265 dpu_enc->crtc_vblank_cb(dpu_enc->crtc_vblank_cb_data); 1266 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1267 1268 atomic_inc(&phy_enc->vsync_cnt); 1269 DPU_ATRACE_END("encoder_vblank_callback"); 1270 } 1271 1272 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1273 struct dpu_encoder_phys *phy_enc) 1274 { 1275 if (!phy_enc) 1276 return; 1277 1278 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1279 atomic_inc(&phy_enc->underrun_cnt); 1280 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1281 atomic_read(&phy_enc->underrun_cnt)); 1282 DPU_ATRACE_END("encoder_underrun_callback"); 1283 } 1284 1285 void dpu_encoder_register_vblank_callback(struct drm_encoder *drm_enc, 1286 void (*vbl_cb)(void *), void *vbl_data) 1287 { 1288 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1289 unsigned long lock_flags; 1290 bool enable; 1291 int i; 1292 1293 enable = vbl_cb ? true : false; 1294 1295 if (!drm_enc) { 1296 DPU_ERROR("invalid encoder\n"); 1297 return; 1298 } 1299 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1300 1301 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1302 dpu_enc->crtc_vblank_cb = vbl_cb; 1303 dpu_enc->crtc_vblank_cb_data = vbl_data; 1304 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1305 1306 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1307 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1308 1309 if (phys && phys->ops.control_vblank_irq) 1310 phys->ops.control_vblank_irq(phys, enable); 1311 } 1312 } 1313 1314 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1315 void (*frame_event_cb)(void *, u32 event), 1316 void *frame_event_cb_data) 1317 { 1318 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1319 unsigned long lock_flags; 1320 bool enable; 1321 1322 enable = frame_event_cb ? true : false; 1323 1324 if (!drm_enc) { 1325 DPU_ERROR("invalid encoder\n"); 1326 return; 1327 } 1328 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1329 1330 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1331 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1332 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1333 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1334 } 1335 1336 static void dpu_encoder_frame_done_callback( 1337 struct drm_encoder *drm_enc, 1338 struct dpu_encoder_phys *ready_phys, u32 event) 1339 { 1340 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1341 unsigned int i; 1342 1343 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1344 | DPU_ENCODER_FRAME_EVENT_ERROR 1345 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1346 1347 if (!dpu_enc->frame_busy_mask[0]) { 1348 /** 1349 * suppress frame_done without waiter, 1350 * likely autorefresh 1351 */ 1352 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1353 event, ready_phys->intf_idx); 1354 return; 1355 } 1356 1357 /* One of the physical encoders has become idle */ 1358 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1359 if (dpu_enc->phys_encs[i] == ready_phys) { 1360 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1361 dpu_enc->frame_busy_mask[0]); 1362 clear_bit(i, dpu_enc->frame_busy_mask); 1363 } 1364 } 1365 1366 if (!dpu_enc->frame_busy_mask[0]) { 1367 atomic_set(&dpu_enc->frame_done_timeout, 0); 1368 del_timer(&dpu_enc->frame_done_timer); 1369 1370 dpu_encoder_resource_control(drm_enc, 1371 DPU_ENC_RC_EVENT_FRAME_DONE); 1372 1373 if (dpu_enc->crtc_frame_event_cb) 1374 dpu_enc->crtc_frame_event_cb( 1375 dpu_enc->crtc_frame_event_cb_data, 1376 event); 1377 } 1378 } else { 1379 if (dpu_enc->crtc_frame_event_cb) 1380 dpu_enc->crtc_frame_event_cb( 1381 dpu_enc->crtc_frame_event_cb_data, event); 1382 } 1383 } 1384 1385 static void dpu_encoder_off_work(struct kthread_work *work) 1386 { 1387 struct dpu_encoder_virt *dpu_enc = container_of(work, 1388 struct dpu_encoder_virt, delayed_off_work.work); 1389 1390 if (!dpu_enc) { 1391 DPU_ERROR("invalid dpu encoder\n"); 1392 return; 1393 } 1394 1395 dpu_encoder_resource_control(&dpu_enc->base, 1396 DPU_ENC_RC_EVENT_ENTER_IDLE); 1397 1398 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1399 DPU_ENCODER_FRAME_EVENT_IDLE); 1400 } 1401 1402 /** 1403 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1404 * drm_enc: Pointer to drm encoder structure 1405 * phys: Pointer to physical encoder structure 1406 * extra_flush_bits: Additional bit mask to include in flush trigger 1407 */ 1408 static inline void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1409 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1410 { 1411 struct dpu_hw_ctl *ctl; 1412 int pending_kickoff_cnt; 1413 u32 ret = UINT_MAX; 1414 1415 if (!drm_enc || !phys) { 1416 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1417 drm_enc != 0, phys != 0); 1418 return; 1419 } 1420 1421 if (!phys->hw_pp) { 1422 DPU_ERROR("invalid pingpong hw\n"); 1423 return; 1424 } 1425 1426 ctl = phys->hw_ctl; 1427 if (!ctl || !ctl->ops.trigger_flush) { 1428 DPU_ERROR("missing trigger cb\n"); 1429 return; 1430 } 1431 1432 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1433 1434 if (extra_flush_bits && ctl->ops.update_pending_flush) 1435 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1436 1437 ctl->ops.trigger_flush(ctl); 1438 1439 if (ctl->ops.get_pending_flush) 1440 ret = ctl->ops.get_pending_flush(ctl); 1441 1442 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1443 pending_kickoff_cnt, ctl->idx, 1444 extra_flush_bits, ret); 1445 } 1446 1447 /** 1448 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1449 * phys: Pointer to physical encoder structure 1450 */ 1451 static inline void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1452 { 1453 if (!phys) { 1454 DPU_ERROR("invalid argument(s)\n"); 1455 return; 1456 } 1457 1458 if (!phys->hw_pp) { 1459 DPU_ERROR("invalid pingpong hw\n"); 1460 return; 1461 } 1462 1463 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1464 phys->ops.trigger_start(phys); 1465 } 1466 1467 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1468 { 1469 struct dpu_hw_ctl *ctl; 1470 1471 if (!phys_enc) { 1472 DPU_ERROR("invalid encoder\n"); 1473 return; 1474 } 1475 1476 ctl = phys_enc->hw_ctl; 1477 if (ctl && ctl->ops.trigger_start) { 1478 ctl->ops.trigger_start(ctl); 1479 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1480 } 1481 } 1482 1483 static int dpu_encoder_helper_wait_event_timeout( 1484 int32_t drm_id, 1485 int32_t hw_id, 1486 struct dpu_encoder_wait_info *info) 1487 { 1488 int rc = 0; 1489 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1490 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1491 s64 time; 1492 1493 do { 1494 rc = wait_event_timeout(*(info->wq), 1495 atomic_read(info->atomic_cnt) == 0, jiffies); 1496 time = ktime_to_ms(ktime_get()); 1497 1498 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1499 expected_time, 1500 atomic_read(info->atomic_cnt)); 1501 /* If we timed out, counter is valid and time is less, wait again */ 1502 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1503 (time < expected_time)); 1504 1505 return rc; 1506 } 1507 1508 void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1509 { 1510 struct dpu_encoder_virt *dpu_enc; 1511 struct dpu_hw_ctl *ctl; 1512 int rc; 1513 1514 if (!phys_enc) { 1515 DPU_ERROR("invalid encoder\n"); 1516 return; 1517 } 1518 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1519 ctl = phys_enc->hw_ctl; 1520 1521 if (!ctl || !ctl->ops.reset) 1522 return; 1523 1524 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1525 ctl->idx); 1526 1527 rc = ctl->ops.reset(ctl); 1528 if (rc) { 1529 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1530 dpu_dbg_dump(false, __func__, true, true); 1531 } 1532 1533 phys_enc->enable_state = DPU_ENC_ENABLED; 1534 } 1535 1536 /** 1537 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1538 * Iterate through the physical encoders and perform consolidated flush 1539 * and/or control start triggering as needed. This is done in the virtual 1540 * encoder rather than the individual physical ones in order to handle 1541 * use cases that require visibility into multiple physical encoders at 1542 * a time. 1543 * dpu_enc: Pointer to virtual encoder structure 1544 */ 1545 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1546 { 1547 struct dpu_hw_ctl *ctl; 1548 uint32_t i, pending_flush; 1549 unsigned long lock_flags; 1550 1551 if (!dpu_enc) { 1552 DPU_ERROR("invalid encoder\n"); 1553 return; 1554 } 1555 1556 pending_flush = 0x0; 1557 1558 /* update pending counts and trigger kickoff ctl flush atomically */ 1559 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1560 1561 /* don't perform flush/start operations for slave encoders */ 1562 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1563 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1564 1565 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1566 continue; 1567 1568 ctl = phys->hw_ctl; 1569 if (!ctl) 1570 continue; 1571 1572 if (phys->split_role != ENC_ROLE_SLAVE) 1573 set_bit(i, dpu_enc->frame_busy_mask); 1574 if (!phys->ops.needs_single_flush || 1575 !phys->ops.needs_single_flush(phys)) 1576 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1577 else if (ctl->ops.get_pending_flush) 1578 pending_flush |= ctl->ops.get_pending_flush(ctl); 1579 } 1580 1581 /* for split flush, combine pending flush masks and send to master */ 1582 if (pending_flush && dpu_enc->cur_master) { 1583 _dpu_encoder_trigger_flush( 1584 &dpu_enc->base, 1585 dpu_enc->cur_master, 1586 pending_flush); 1587 } 1588 1589 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1590 1591 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1592 } 1593 1594 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1595 { 1596 struct dpu_encoder_virt *dpu_enc; 1597 struct dpu_encoder_phys *phys; 1598 unsigned int i; 1599 struct dpu_hw_ctl *ctl; 1600 struct msm_display_info *disp_info; 1601 1602 if (!drm_enc) { 1603 DPU_ERROR("invalid encoder\n"); 1604 return; 1605 } 1606 dpu_enc = to_dpu_encoder_virt(drm_enc); 1607 disp_info = &dpu_enc->disp_info; 1608 1609 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1610 phys = dpu_enc->phys_encs[i]; 1611 1612 if (phys && phys->hw_ctl) { 1613 ctl = phys->hw_ctl; 1614 if (ctl->ops.clear_pending_flush) 1615 ctl->ops.clear_pending_flush(ctl); 1616 1617 /* update only for command mode primary ctl */ 1618 if ((phys == dpu_enc->cur_master) && 1619 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1620 && ctl->ops.trigger_pending) 1621 ctl->ops.trigger_pending(ctl); 1622 } 1623 } 1624 } 1625 1626 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1627 struct drm_display_mode *mode) 1628 { 1629 u64 pclk_rate; 1630 u32 pclk_period; 1631 u32 line_time; 1632 1633 /* 1634 * For linetime calculation, only operate on master encoder. 1635 */ 1636 if (!dpu_enc->cur_master) 1637 return 0; 1638 1639 if (!dpu_enc->cur_master->ops.get_line_count) { 1640 DPU_ERROR("get_line_count function not defined\n"); 1641 return 0; 1642 } 1643 1644 pclk_rate = mode->clock; /* pixel clock in kHz */ 1645 if (pclk_rate == 0) { 1646 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1647 return 0; 1648 } 1649 1650 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1651 if (pclk_period == 0) { 1652 DPU_ERROR("pclk period is 0\n"); 1653 return 0; 1654 } 1655 1656 /* 1657 * Line time calculation based on Pixel clock and HTOTAL. 1658 * Final unit is in ns. 1659 */ 1660 line_time = (pclk_period * mode->htotal) / 1000; 1661 if (line_time == 0) { 1662 DPU_ERROR("line time calculation is 0\n"); 1663 return 0; 1664 } 1665 1666 DPU_DEBUG_ENC(dpu_enc, 1667 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1668 pclk_rate, pclk_period, line_time); 1669 1670 return line_time; 1671 } 1672 1673 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1674 ktime_t *wakeup_time) 1675 { 1676 struct drm_display_mode *mode; 1677 struct dpu_encoder_virt *dpu_enc; 1678 u32 cur_line; 1679 u32 line_time; 1680 u32 vtotal, time_to_vsync; 1681 ktime_t cur_time; 1682 1683 dpu_enc = to_dpu_encoder_virt(drm_enc); 1684 1685 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1686 DPU_ERROR("crtc/crtc state object is NULL\n"); 1687 return -EINVAL; 1688 } 1689 mode = &drm_enc->crtc->state->adjusted_mode; 1690 1691 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1692 if (!line_time) 1693 return -EINVAL; 1694 1695 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1696 1697 vtotal = mode->vtotal; 1698 if (cur_line >= vtotal) 1699 time_to_vsync = line_time * vtotal; 1700 else 1701 time_to_vsync = line_time * (vtotal - cur_line); 1702 1703 if (time_to_vsync == 0) { 1704 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1705 vtotal); 1706 return -EINVAL; 1707 } 1708 1709 cur_time = ktime_get(); 1710 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1711 1712 DPU_DEBUG_ENC(dpu_enc, 1713 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1714 cur_line, vtotal, time_to_vsync, 1715 ktime_to_ms(cur_time), 1716 ktime_to_ms(*wakeup_time)); 1717 return 0; 1718 } 1719 1720 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1721 { 1722 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1723 vsync_event_timer); 1724 struct drm_encoder *drm_enc = &dpu_enc->base; 1725 struct msm_drm_private *priv; 1726 struct msm_drm_thread *event_thread; 1727 1728 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1729 !drm_enc->crtc) { 1730 DPU_ERROR("invalid parameters\n"); 1731 return; 1732 } 1733 1734 priv = drm_enc->dev->dev_private; 1735 1736 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1737 DPU_ERROR("invalid crtc index\n"); 1738 return; 1739 } 1740 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1741 if (!event_thread) { 1742 DPU_ERROR("event_thread not found for crtc:%d\n", 1743 drm_enc->crtc->index); 1744 return; 1745 } 1746 1747 del_timer(&dpu_enc->vsync_event_timer); 1748 } 1749 1750 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1751 { 1752 struct dpu_encoder_virt *dpu_enc = container_of(work, 1753 struct dpu_encoder_virt, vsync_event_work); 1754 ktime_t wakeup_time; 1755 1756 if (!dpu_enc) { 1757 DPU_ERROR("invalid dpu encoder\n"); 1758 return; 1759 } 1760 1761 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1762 return; 1763 1764 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1765 mod_timer(&dpu_enc->vsync_event_timer, 1766 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1767 } 1768 1769 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, 1770 struct dpu_encoder_kickoff_params *params) 1771 { 1772 struct dpu_encoder_virt *dpu_enc; 1773 struct dpu_encoder_phys *phys; 1774 bool needs_hw_reset = false; 1775 unsigned int i; 1776 1777 if (!drm_enc || !params) { 1778 DPU_ERROR("invalid args\n"); 1779 return; 1780 } 1781 dpu_enc = to_dpu_encoder_virt(drm_enc); 1782 1783 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1784 1785 /* prepare for next kickoff, may include waiting on previous kickoff */ 1786 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1787 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1788 phys = dpu_enc->phys_encs[i]; 1789 if (phys) { 1790 if (phys->ops.prepare_for_kickoff) 1791 phys->ops.prepare_for_kickoff(phys, params); 1792 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1793 needs_hw_reset = true; 1794 } 1795 } 1796 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1797 1798 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1799 1800 /* if any phys needs reset, reset all phys, in-order */ 1801 if (needs_hw_reset) { 1802 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1803 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1804 phys = dpu_enc->phys_encs[i]; 1805 if (phys && phys->ops.hw_reset) 1806 phys->ops.hw_reset(phys); 1807 } 1808 } 1809 } 1810 1811 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1812 { 1813 struct dpu_encoder_virt *dpu_enc; 1814 struct dpu_encoder_phys *phys; 1815 ktime_t wakeup_time; 1816 unsigned int i; 1817 1818 if (!drm_enc) { 1819 DPU_ERROR("invalid encoder\n"); 1820 return; 1821 } 1822 DPU_ATRACE_BEGIN("encoder_kickoff"); 1823 dpu_enc = to_dpu_encoder_virt(drm_enc); 1824 1825 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1826 1827 atomic_set(&dpu_enc->frame_done_timeout, 1828 DPU_FRAME_DONE_TIMEOUT * 1000 / 1829 drm_enc->crtc->state->adjusted_mode.vrefresh); 1830 mod_timer(&dpu_enc->frame_done_timer, jiffies + 1831 ((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000)); 1832 1833 /* All phys encs are ready to go, trigger the kickoff */ 1834 _dpu_encoder_kickoff_phys(dpu_enc); 1835 1836 /* allow phys encs to handle any post-kickoff business */ 1837 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1838 phys = dpu_enc->phys_encs[i]; 1839 if (phys && phys->ops.handle_post_kickoff) 1840 phys->ops.handle_post_kickoff(phys); 1841 } 1842 1843 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1844 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1845 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1846 ktime_to_ms(wakeup_time)); 1847 mod_timer(&dpu_enc->vsync_event_timer, 1848 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1849 } 1850 1851 DPU_ATRACE_END("encoder_kickoff"); 1852 } 1853 1854 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1855 { 1856 struct dpu_encoder_virt *dpu_enc; 1857 struct dpu_encoder_phys *phys; 1858 int i; 1859 1860 if (!drm_enc) { 1861 DPU_ERROR("invalid encoder\n"); 1862 return; 1863 } 1864 dpu_enc = to_dpu_encoder_virt(drm_enc); 1865 1866 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1867 phys = dpu_enc->phys_encs[i]; 1868 if (phys && phys->ops.prepare_commit) 1869 phys->ops.prepare_commit(phys); 1870 } 1871 } 1872 1873 #ifdef CONFIG_DEBUG_FS 1874 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1875 { 1876 struct dpu_encoder_virt *dpu_enc; 1877 int i; 1878 1879 if (!s || !s->private) 1880 return -EINVAL; 1881 1882 dpu_enc = s->private; 1883 1884 mutex_lock(&dpu_enc->enc_lock); 1885 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1886 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1887 1888 if (!phys) 1889 continue; 1890 1891 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1892 phys->intf_idx - INTF_0, 1893 atomic_read(&phys->vsync_cnt), 1894 atomic_read(&phys->underrun_cnt)); 1895 1896 switch (phys->intf_mode) { 1897 case INTF_MODE_VIDEO: 1898 seq_puts(s, "mode: video\n"); 1899 break; 1900 case INTF_MODE_CMD: 1901 seq_puts(s, "mode: command\n"); 1902 break; 1903 default: 1904 seq_puts(s, "mode: ???\n"); 1905 break; 1906 } 1907 } 1908 mutex_unlock(&dpu_enc->enc_lock); 1909 1910 return 0; 1911 } 1912 1913 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1914 struct file *file) 1915 { 1916 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1917 } 1918 1919 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1920 { 1921 struct dpu_encoder_virt *dpu_enc; 1922 struct msm_drm_private *priv; 1923 struct dpu_kms *dpu_kms; 1924 int i; 1925 1926 static const struct file_operations debugfs_status_fops = { 1927 .open = _dpu_encoder_debugfs_status_open, 1928 .read = seq_read, 1929 .llseek = seq_lseek, 1930 .release = single_release, 1931 }; 1932 1933 char name[DPU_NAME_SIZE]; 1934 1935 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1936 DPU_ERROR("invalid encoder or kms\n"); 1937 return -EINVAL; 1938 } 1939 1940 dpu_enc = to_dpu_encoder_virt(drm_enc); 1941 priv = drm_enc->dev->dev_private; 1942 dpu_kms = to_dpu_kms(priv->kms); 1943 1944 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1945 1946 /* create overall sub-directory for the encoder */ 1947 dpu_enc->debugfs_root = debugfs_create_dir(name, 1948 drm_enc->dev->primary->debugfs_root); 1949 if (!dpu_enc->debugfs_root) 1950 return -ENOMEM; 1951 1952 /* don't error check these */ 1953 debugfs_create_file("status", 0600, 1954 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1955 1956 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1957 if (dpu_enc->phys_encs[i] && 1958 dpu_enc->phys_encs[i]->ops.late_register) 1959 dpu_enc->phys_encs[i]->ops.late_register( 1960 dpu_enc->phys_encs[i], 1961 dpu_enc->debugfs_root); 1962 1963 return 0; 1964 } 1965 1966 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 1967 { 1968 struct dpu_encoder_virt *dpu_enc; 1969 1970 if (!drm_enc) 1971 return; 1972 1973 dpu_enc = to_dpu_encoder_virt(drm_enc); 1974 debugfs_remove_recursive(dpu_enc->debugfs_root); 1975 } 1976 #else 1977 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1978 { 1979 return 0; 1980 } 1981 1982 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 1983 { 1984 } 1985 #endif 1986 1987 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1988 { 1989 return _dpu_encoder_init_debugfs(encoder); 1990 } 1991 1992 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1993 { 1994 _dpu_encoder_destroy_debugfs(encoder); 1995 } 1996 1997 static int dpu_encoder_virt_add_phys_encs( 1998 u32 display_caps, 1999 struct dpu_encoder_virt *dpu_enc, 2000 struct dpu_enc_phys_init_params *params) 2001 { 2002 struct dpu_encoder_phys *enc = NULL; 2003 2004 DPU_DEBUG_ENC(dpu_enc, "\n"); 2005 2006 /* 2007 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2008 * in this function, check up-front. 2009 */ 2010 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2011 ARRAY_SIZE(dpu_enc->phys_encs)) { 2012 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2013 dpu_enc->num_phys_encs); 2014 return -EINVAL; 2015 } 2016 2017 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 2018 enc = dpu_encoder_phys_vid_init(params); 2019 2020 if (IS_ERR_OR_NULL(enc)) { 2021 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2022 PTR_ERR(enc)); 2023 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2024 } 2025 2026 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2027 ++dpu_enc->num_phys_encs; 2028 } 2029 2030 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 2031 enc = dpu_encoder_phys_cmd_init(params); 2032 2033 if (IS_ERR_OR_NULL(enc)) { 2034 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2035 PTR_ERR(enc)); 2036 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2037 } 2038 2039 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2040 ++dpu_enc->num_phys_encs; 2041 } 2042 2043 if (params->split_role == ENC_ROLE_SLAVE) 2044 dpu_enc->cur_slave = enc; 2045 else 2046 dpu_enc->cur_master = enc; 2047 2048 return 0; 2049 } 2050 2051 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2052 .handle_vblank_virt = dpu_encoder_vblank_callback, 2053 .handle_underrun_virt = dpu_encoder_underrun_callback, 2054 .handle_frame_done = dpu_encoder_frame_done_callback, 2055 }; 2056 2057 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2058 struct dpu_kms *dpu_kms, 2059 struct msm_display_info *disp_info) 2060 { 2061 int ret = 0; 2062 int i = 0; 2063 enum dpu_intf_type intf_type; 2064 struct dpu_enc_phys_init_params phys_params; 2065 2066 if (!dpu_enc || !dpu_kms) { 2067 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2068 dpu_enc != 0, dpu_kms != 0); 2069 return -EINVAL; 2070 } 2071 2072 dpu_enc->cur_master = NULL; 2073 2074 memset(&phys_params, 0, sizeof(phys_params)); 2075 phys_params.dpu_kms = dpu_kms; 2076 phys_params.parent = &dpu_enc->base; 2077 phys_params.parent_ops = &dpu_encoder_parent_ops; 2078 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2079 2080 DPU_DEBUG("\n"); 2081 2082 switch (disp_info->intf_type) { 2083 case DRM_MODE_ENCODER_DSI: 2084 intf_type = INTF_DSI; 2085 break; 2086 default: 2087 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2088 return -EINVAL; 2089 } 2090 2091 WARN_ON(disp_info->num_of_h_tiles < 1); 2092 2093 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2094 2095 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2096 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2097 dpu_enc->idle_pc_supported = 2098 dpu_kms->catalog->caps->has_idle_pc; 2099 2100 mutex_lock(&dpu_enc->enc_lock); 2101 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2102 /* 2103 * Left-most tile is at index 0, content is controller id 2104 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2105 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2106 */ 2107 u32 controller_id = disp_info->h_tile_instance[i]; 2108 2109 if (disp_info->num_of_h_tiles > 1) { 2110 if (i == 0) 2111 phys_params.split_role = ENC_ROLE_MASTER; 2112 else 2113 phys_params.split_role = ENC_ROLE_SLAVE; 2114 } else { 2115 phys_params.split_role = ENC_ROLE_SOLO; 2116 } 2117 2118 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2119 i, controller_id, phys_params.split_role); 2120 2121 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2122 intf_type, 2123 controller_id); 2124 if (phys_params.intf_idx == INTF_MAX) { 2125 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2126 intf_type, controller_id); 2127 ret = -EINVAL; 2128 } 2129 2130 if (!ret) { 2131 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2132 dpu_enc, 2133 &phys_params); 2134 if (ret) 2135 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2136 } 2137 } 2138 2139 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2140 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2141 2142 if (phys) { 2143 atomic_set(&phys->vsync_cnt, 0); 2144 atomic_set(&phys->underrun_cnt, 0); 2145 } 2146 } 2147 mutex_unlock(&dpu_enc->enc_lock); 2148 2149 return ret; 2150 } 2151 2152 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2153 { 2154 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2155 frame_done_timer); 2156 struct drm_encoder *drm_enc = &dpu_enc->base; 2157 struct msm_drm_private *priv; 2158 u32 event; 2159 2160 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2161 DPU_ERROR("invalid parameters\n"); 2162 return; 2163 } 2164 priv = drm_enc->dev->dev_private; 2165 2166 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2167 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2168 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2169 return; 2170 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 2171 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2172 return; 2173 } 2174 2175 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2176 2177 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2178 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2179 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2180 } 2181 2182 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2183 .mode_set = dpu_encoder_virt_mode_set, 2184 .disable = dpu_encoder_virt_disable, 2185 .enable = dpu_kms_encoder_enable, 2186 .atomic_check = dpu_encoder_virt_atomic_check, 2187 2188 /* This is called by dpu_kms_encoder_enable */ 2189 .commit = dpu_encoder_virt_enable, 2190 }; 2191 2192 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2193 .destroy = dpu_encoder_destroy, 2194 .late_register = dpu_encoder_late_register, 2195 .early_unregister = dpu_encoder_early_unregister, 2196 }; 2197 2198 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2199 struct msm_display_info *disp_info) 2200 { 2201 struct msm_drm_private *priv = dev->dev_private; 2202 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2203 struct drm_encoder *drm_enc = NULL; 2204 struct dpu_encoder_virt *dpu_enc = NULL; 2205 int ret = 0; 2206 2207 dpu_enc = to_dpu_encoder_virt(enc); 2208 2209 mutex_init(&dpu_enc->enc_lock); 2210 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2211 if (ret) 2212 goto fail; 2213 2214 spin_lock_init(&dpu_enc->enc_spinlock); 2215 2216 atomic_set(&dpu_enc->frame_done_timeout, 0); 2217 timer_setup(&dpu_enc->frame_done_timer, 2218 dpu_encoder_frame_done_timeout, 0); 2219 2220 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2221 timer_setup(&dpu_enc->vsync_event_timer, 2222 dpu_encoder_vsync_event_handler, 2223 0); 2224 2225 2226 mutex_init(&dpu_enc->rc_lock); 2227 kthread_init_delayed_work(&dpu_enc->delayed_off_work, 2228 dpu_encoder_off_work); 2229 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2230 2231 kthread_init_work(&dpu_enc->vsync_event_work, 2232 dpu_encoder_vsync_event_work_handler); 2233 2234 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2235 2236 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2237 2238 return ret; 2239 2240 fail: 2241 DPU_ERROR("failed to create encoder\n"); 2242 if (drm_enc) 2243 dpu_encoder_destroy(drm_enc); 2244 2245 return ret; 2246 2247 2248 } 2249 2250 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2251 int drm_enc_mode) 2252 { 2253 struct dpu_encoder_virt *dpu_enc = NULL; 2254 int rc = 0; 2255 2256 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2257 if (!dpu_enc) 2258 return ERR_PTR(ENOMEM); 2259 2260 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2261 drm_enc_mode, NULL); 2262 if (rc) { 2263 devm_kfree(dev->dev, dpu_enc); 2264 return ERR_PTR(rc); 2265 } 2266 2267 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2268 2269 return &dpu_enc->base; 2270 } 2271 2272 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2273 enum msm_event_wait event) 2274 { 2275 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2276 struct dpu_encoder_virt *dpu_enc = NULL; 2277 int i, ret = 0; 2278 2279 if (!drm_enc) { 2280 DPU_ERROR("invalid encoder\n"); 2281 return -EINVAL; 2282 } 2283 dpu_enc = to_dpu_encoder_virt(drm_enc); 2284 DPU_DEBUG_ENC(dpu_enc, "\n"); 2285 2286 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2287 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2288 if (!phys) 2289 continue; 2290 2291 switch (event) { 2292 case MSM_ENC_COMMIT_DONE: 2293 fn_wait = phys->ops.wait_for_commit_done; 2294 break; 2295 case MSM_ENC_TX_COMPLETE: 2296 fn_wait = phys->ops.wait_for_tx_complete; 2297 break; 2298 case MSM_ENC_VBLANK: 2299 fn_wait = phys->ops.wait_for_vblank; 2300 break; 2301 default: 2302 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2303 event); 2304 return -EINVAL; 2305 }; 2306 2307 if (fn_wait) { 2308 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2309 ret = fn_wait(phys); 2310 DPU_ATRACE_END("wait_for_completion_event"); 2311 if (ret) 2312 return ret; 2313 } 2314 } 2315 2316 return ret; 2317 } 2318 2319 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2320 { 2321 struct dpu_encoder_virt *dpu_enc = NULL; 2322 int i; 2323 2324 if (!encoder) { 2325 DPU_ERROR("invalid encoder\n"); 2326 return INTF_MODE_NONE; 2327 } 2328 dpu_enc = to_dpu_encoder_virt(encoder); 2329 2330 if (dpu_enc->cur_master) 2331 return dpu_enc->cur_master->intf_mode; 2332 2333 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2334 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2335 2336 if (phys) 2337 return phys->intf_mode; 2338 } 2339 2340 return INTF_MODE_NONE; 2341 } 2342