1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_formats.h"
24 #include "dpu_encoder_phys.h"
25 #include "dpu_crtc.h"
26 #include "dpu_trace.h"
27 #include "dpu_core_irq.h"
28 
29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
30 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
31 
32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
33 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
34 
35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
36 		(p) ? (p)->parent->base.id : -1, \
37 		(p) ? (p)->intf_idx - INTF_0 : -1, \
38 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
39 		##__VA_ARGS__)
40 
41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
42 		(p) ? (p)->parent->base.id : -1, \
43 		(p) ? (p)->intf_idx - INTF_0 : -1, \
44 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
45 		##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @bus_scaling_client:	Client handle to the bus scaling interface
129  * @enabled:		True if the encoder is active, protected by enc_lock
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @hw_pp		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
137  *			for partial update right-only cases, such as pingpong
138  *			split where virtual pingpong does not generate IRQs
139  * @crtc:		Pointer to the currently assigned crtc. Normally you
140  *			would use crtc->state->encoder_mask to determine the
141  *			link between encoder/crtc. However in this case we need
142  *			to track crtc in the disable() hook which is called
143  *			_after_ encoder_mask is cleared.
144  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
145  *				all CTL paths
146  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
147  * @debugfs_root:		Debug file system root file node
148  * @enc_lock:			Lock around physical encoder
149  *				create/destroy/enable/disable
150  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
151  *				busy processing current command.
152  *				Bit0 = phys_encs[0] etc.
153  * @crtc_frame_event_cb:	callback handler for frame event
154  * @crtc_frame_event_cb_data:	callback handler private data
155  * @frame_done_timeout_ms:	frame done timeout in ms
156  * @frame_done_timer:		watchdog timer for frame done event
157  * @vsync_event_timer:		vsync timer
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @vsync_event_work:		worker to handle vsync event for autorefresh
166  * @topology:                   topology of the display
167  * @mode_set_complete:          flag to indicate modeset completion
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 	bool mode_set_complete;
206 
207 	u32 idle_timeout;
208 };
209 
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211 
212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
213 		enum dpu_intr_idx intr_idx)
214 {
215 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
216 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
217 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
218 
219 	if (phys_enc->parent_ops->handle_frame_done)
220 		phys_enc->parent_ops->handle_frame_done(
221 				phys_enc->parent, phys_enc,
222 				DPU_ENCODER_FRAME_EVENT_ERROR);
223 }
224 
225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
226 		int32_t hw_id, struct dpu_encoder_wait_info *info);
227 
228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
229 		enum dpu_intr_idx intr_idx,
230 		struct dpu_encoder_wait_info *wait_info)
231 {
232 	struct dpu_encoder_irq *irq;
233 	u32 irq_status;
234 	int ret;
235 
236 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
237 		DPU_ERROR("invalid params\n");
238 		return -EINVAL;
239 	}
240 	irq = &phys_enc->irq[intr_idx];
241 
242 	/* note: do master / slave checking outside */
243 
244 	/* return EWOULDBLOCK since we know the wait isn't necessary */
245 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
246 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
247 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
248 			  irq->irq_idx);
249 		return -EWOULDBLOCK;
250 	}
251 
252 	if (irq->irq_idx < 0) {
253 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
254 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
255 			      irq->name);
256 		return 0;
257 	}
258 
259 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
260 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
261 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
262 		      atomic_read(wait_info->atomic_cnt));
263 
264 	ret = dpu_encoder_helper_wait_event_timeout(
265 			DRMID(phys_enc->parent),
266 			irq->hw_idx,
267 			wait_info);
268 
269 	if (ret <= 0) {
270 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
271 				irq->irq_idx, true);
272 		if (irq_status) {
273 			unsigned long flags;
274 
275 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
276 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
277 				      DRMID(phys_enc->parent), intr_idx,
278 				      irq->hw_idx, irq->irq_idx,
279 				      phys_enc->hw_pp->idx - PINGPONG_0,
280 				      atomic_read(wait_info->atomic_cnt));
281 			local_irq_save(flags);
282 			irq->cb.func(phys_enc, irq->irq_idx);
283 			local_irq_restore(flags);
284 			ret = 0;
285 		} else {
286 			ret = -ETIMEDOUT;
287 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
288 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
289 				      DRMID(phys_enc->parent), intr_idx,
290 				      irq->hw_idx, irq->irq_idx,
291 				      phys_enc->hw_pp->idx - PINGPONG_0,
292 				      atomic_read(wait_info->atomic_cnt));
293 		}
294 	} else {
295 		ret = 0;
296 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
297 			intr_idx, irq->hw_idx, irq->irq_idx,
298 			phys_enc->hw_pp->idx - PINGPONG_0,
299 			atomic_read(wait_info->atomic_cnt));
300 	}
301 
302 	return ret;
303 }
304 
305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
306 		enum dpu_intr_idx intr_idx)
307 {
308 	struct dpu_encoder_irq *irq;
309 	int ret = 0;
310 
311 	if (intr_idx >= INTR_IDX_MAX) {
312 		DPU_ERROR("invalid params\n");
313 		return -EINVAL;
314 	}
315 	irq = &phys_enc->irq[intr_idx];
316 
317 	if (irq->irq_idx >= 0) {
318 		DPU_DEBUG_PHYS(phys_enc,
319 				"skipping already registered irq %s type %d\n",
320 				irq->name, irq->intr_type);
321 		return 0;
322 	}
323 
324 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
325 			irq->intr_type, irq->hw_idx);
326 	if (irq->irq_idx < 0) {
327 		DPU_ERROR_PHYS(phys_enc,
328 			"failed to lookup IRQ index for %s type:%d\n",
329 			irq->name, irq->intr_type);
330 		return -EINVAL;
331 	}
332 
333 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
334 			&irq->cb);
335 	if (ret) {
336 		DPU_ERROR_PHYS(phys_enc,
337 			"failed to register IRQ callback for %s\n",
338 			irq->name);
339 		irq->irq_idx = -EINVAL;
340 		return ret;
341 	}
342 
343 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
344 	if (ret) {
345 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
346 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
347 			  irq->irq_idx);
348 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
349 				irq->irq_idx, &irq->cb);
350 		irq->irq_idx = -EINVAL;
351 		return ret;
352 	}
353 
354 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
355 				irq->hw_idx, irq->irq_idx);
356 
357 	return ret;
358 }
359 
360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
361 		enum dpu_intr_idx intr_idx)
362 {
363 	struct dpu_encoder_irq *irq;
364 	int ret;
365 
366 	irq = &phys_enc->irq[intr_idx];
367 
368 	/* silently skip irqs that weren't registered */
369 	if (irq->irq_idx < 0) {
370 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
371 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
372 			  irq->irq_idx);
373 		return 0;
374 	}
375 
376 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
377 	if (ret) {
378 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
379 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
380 			  irq->irq_idx, ret);
381 	}
382 
383 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
384 			&irq->cb);
385 	if (ret) {
386 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
387 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
388 			  irq->irq_idx, ret);
389 	}
390 
391 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
392 					     irq->hw_idx, irq->irq_idx);
393 
394 	irq->irq_idx = -EINVAL;
395 
396 	return 0;
397 }
398 
399 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
400 				  struct dpu_encoder_hw_resources *hw_res)
401 {
402 	struct dpu_encoder_virt *dpu_enc = NULL;
403 	int i = 0;
404 
405 	dpu_enc = to_dpu_encoder_virt(drm_enc);
406 	DPU_DEBUG_ENC(dpu_enc, "\n");
407 
408 	/* Query resources used by phys encs, expected to be without overlap */
409 	memset(hw_res, 0, sizeof(*hw_res));
410 
411 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
412 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
413 
414 		if (phys->ops.get_hw_resources)
415 			phys->ops.get_hw_resources(phys, hw_res);
416 	}
417 }
418 
419 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
420 {
421 	struct dpu_encoder_virt *dpu_enc = NULL;
422 	int i = 0;
423 
424 	if (!drm_enc) {
425 		DPU_ERROR("invalid encoder\n");
426 		return;
427 	}
428 
429 	dpu_enc = to_dpu_encoder_virt(drm_enc);
430 	DPU_DEBUG_ENC(dpu_enc, "\n");
431 
432 	mutex_lock(&dpu_enc->enc_lock);
433 
434 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
435 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
436 
437 		if (phys->ops.destroy) {
438 			phys->ops.destroy(phys);
439 			--dpu_enc->num_phys_encs;
440 			dpu_enc->phys_encs[i] = NULL;
441 		}
442 	}
443 
444 	if (dpu_enc->num_phys_encs)
445 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
446 				dpu_enc->num_phys_encs);
447 	dpu_enc->num_phys_encs = 0;
448 	mutex_unlock(&dpu_enc->enc_lock);
449 
450 	drm_encoder_cleanup(drm_enc);
451 	mutex_destroy(&dpu_enc->enc_lock);
452 }
453 
454 void dpu_encoder_helper_split_config(
455 		struct dpu_encoder_phys *phys_enc,
456 		enum dpu_intf interface)
457 {
458 	struct dpu_encoder_virt *dpu_enc;
459 	struct split_pipe_cfg cfg = { 0 };
460 	struct dpu_hw_mdp *hw_mdptop;
461 	struct msm_display_info *disp_info;
462 
463 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
464 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
465 		return;
466 	}
467 
468 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
469 	hw_mdptop = phys_enc->hw_mdptop;
470 	disp_info = &dpu_enc->disp_info;
471 
472 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
473 		return;
474 
475 	/**
476 	 * disable split modes since encoder will be operating in as the only
477 	 * encoder, either for the entire use case in the case of, for example,
478 	 * single DSI, or for this frame in the case of left/right only partial
479 	 * update.
480 	 */
481 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
482 		if (hw_mdptop->ops.setup_split_pipe)
483 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
484 		return;
485 	}
486 
487 	cfg.en = true;
488 	cfg.mode = phys_enc->intf_mode;
489 	cfg.intf = interface;
490 
491 	if (cfg.en && phys_enc->ops.needs_single_flush &&
492 			phys_enc->ops.needs_single_flush(phys_enc))
493 		cfg.split_flush_en = true;
494 
495 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
496 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
497 
498 		if (hw_mdptop->ops.setup_split_pipe)
499 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
500 	}
501 }
502 
503 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
504 		struct drm_display_mode *adj_mode)
505 {
506 	struct drm_display_mode *cur_mode;
507 
508 	if (!connector || !adj_mode)
509 		return;
510 
511 	list_for_each_entry(cur_mode, &connector->modes, head) {
512 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
513 		    cur_mode->hdisplay == adj_mode->hdisplay &&
514 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
515 			adj_mode->private = cur_mode->private;
516 			adj_mode->private_flags |= cur_mode->private_flags;
517 		}
518 	}
519 }
520 
521 static struct msm_display_topology dpu_encoder_get_topology(
522 			struct dpu_encoder_virt *dpu_enc,
523 			struct dpu_kms *dpu_kms,
524 			struct drm_display_mode *mode)
525 {
526 	struct msm_display_topology topology;
527 	int i, intf_count = 0;
528 
529 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
530 		if (dpu_enc->phys_encs[i])
531 			intf_count++;
532 
533 	/* Datapath topology selection
534 	 *
535 	 * Dual display
536 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
537 	 *
538 	 * Single display
539 	 * 1 LM, 1 INTF
540 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
541 	 *
542 	 */
543 	if (intf_count == 2)
544 		topology.num_lm = 2;
545 	else if (!dpu_kms->catalog->caps->has_3d_merge)
546 		topology.num_lm = 1;
547 	else
548 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
549 
550 	topology.num_enc = 0;
551 	topology.num_intf = intf_count;
552 
553 	return topology;
554 }
555 static int dpu_encoder_virt_atomic_check(
556 		struct drm_encoder *drm_enc,
557 		struct drm_crtc_state *crtc_state,
558 		struct drm_connector_state *conn_state)
559 {
560 	struct dpu_encoder_virt *dpu_enc;
561 	struct msm_drm_private *priv;
562 	struct dpu_kms *dpu_kms;
563 	const struct drm_display_mode *mode;
564 	struct drm_display_mode *adj_mode;
565 	struct msm_display_topology topology;
566 	int i = 0;
567 	int ret = 0;
568 
569 	if (!drm_enc || !crtc_state || !conn_state) {
570 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
571 				drm_enc != 0, crtc_state != 0, conn_state != 0);
572 		return -EINVAL;
573 	}
574 
575 	dpu_enc = to_dpu_encoder_virt(drm_enc);
576 	DPU_DEBUG_ENC(dpu_enc, "\n");
577 
578 	priv = drm_enc->dev->dev_private;
579 	dpu_kms = to_dpu_kms(priv->kms);
580 	mode = &crtc_state->mode;
581 	adj_mode = &crtc_state->adjusted_mode;
582 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
583 
584 	/*
585 	 * display drivers may populate private fields of the drm display mode
586 	 * structure while registering possible modes of a connector with DRM.
587 	 * These private fields are not populated back while DRM invokes
588 	 * the mode_set callbacks. This module retrieves and populates the
589 	 * private fields of the given mode.
590 	 */
591 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
592 
593 	/* perform atomic check on the first physical encoder (master) */
594 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
595 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
596 
597 		if (phys->ops.atomic_check)
598 			ret = phys->ops.atomic_check(phys, crtc_state,
599 					conn_state);
600 		else if (phys->ops.mode_fixup)
601 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
602 				ret = -EINVAL;
603 
604 		if (ret) {
605 			DPU_ERROR_ENC(dpu_enc,
606 					"mode unsupported, phys idx %d\n", i);
607 			break;
608 		}
609 	}
610 
611 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
612 
613 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
614 	if (!ret) {
615 		/*
616 		 * Avoid reserving resources when mode set is pending. Topology
617 		 * info may not be available to complete reservation.
618 		 */
619 		if (drm_atomic_crtc_needs_modeset(crtc_state)
620 				&& dpu_enc->mode_set_complete) {
621 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
622 					     topology, true);
623 			dpu_enc->mode_set_complete = false;
624 		}
625 	}
626 
627 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
628 			adj_mode->private_flags);
629 
630 	return ret;
631 }
632 
633 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
634 			struct msm_display_info *disp_info)
635 {
636 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
637 	struct msm_drm_private *priv;
638 	struct dpu_kms *dpu_kms;
639 	struct dpu_hw_mdp *hw_mdptop;
640 	struct drm_encoder *drm_enc;
641 	int i;
642 
643 	if (!dpu_enc || !disp_info) {
644 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
645 					dpu_enc != NULL, disp_info != NULL);
646 		return;
647 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
648 		DPU_ERROR("invalid num phys enc %d/%d\n",
649 				dpu_enc->num_phys_encs,
650 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
651 		return;
652 	}
653 
654 	drm_enc = &dpu_enc->base;
655 	/* this pointers are checked in virt_enable_helper */
656 	priv = drm_enc->dev->dev_private;
657 
658 	dpu_kms = to_dpu_kms(priv->kms);
659 	hw_mdptop = dpu_kms->hw_mdp;
660 	if (!hw_mdptop) {
661 		DPU_ERROR("invalid mdptop\n");
662 		return;
663 	}
664 
665 	if (hw_mdptop->ops.setup_vsync_source &&
666 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
667 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
668 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
669 
670 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
671 		if (disp_info->is_te_using_watchdog_timer)
672 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
673 		else
674 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
675 
676 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
677 	}
678 }
679 
680 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
681 {
682 	struct dpu_encoder_virt *dpu_enc;
683 	int i;
684 
685 	if (!drm_enc) {
686 		DPU_ERROR("invalid encoder\n");
687 		return;
688 	}
689 
690 	dpu_enc = to_dpu_encoder_virt(drm_enc);
691 
692 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
693 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
694 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
695 
696 		if (phys->ops.irq_control)
697 			phys->ops.irq_control(phys, enable);
698 	}
699 
700 }
701 
702 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
703 		bool enable)
704 {
705 	struct msm_drm_private *priv;
706 	struct dpu_kms *dpu_kms;
707 	struct dpu_encoder_virt *dpu_enc;
708 
709 	dpu_enc = to_dpu_encoder_virt(drm_enc);
710 	priv = drm_enc->dev->dev_private;
711 	dpu_kms = to_dpu_kms(priv->kms);
712 
713 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
714 
715 	if (!dpu_enc->cur_master) {
716 		DPU_ERROR("encoder master not set\n");
717 		return;
718 	}
719 
720 	if (enable) {
721 		/* enable DPU core clks */
722 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
723 
724 		/* enable all the irq */
725 		_dpu_encoder_irq_control(drm_enc, true);
726 
727 	} else {
728 		/* disable all the irq */
729 		_dpu_encoder_irq_control(drm_enc, false);
730 
731 		/* disable DPU core clks */
732 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
733 	}
734 
735 }
736 
737 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
738 		u32 sw_event)
739 {
740 	struct dpu_encoder_virt *dpu_enc;
741 	struct msm_drm_private *priv;
742 	bool is_vid_mode = false;
743 
744 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
745 		DPU_ERROR("invalid parameters\n");
746 		return -EINVAL;
747 	}
748 	dpu_enc = to_dpu_encoder_virt(drm_enc);
749 	priv = drm_enc->dev->dev_private;
750 	is_vid_mode = dpu_enc->disp_info.capabilities &
751 						MSM_DISPLAY_CAP_VID_MODE;
752 
753 	/*
754 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
755 	 * events and return early for other events (ie wb display).
756 	 */
757 	if (!dpu_enc->idle_pc_supported &&
758 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
759 			sw_event != DPU_ENC_RC_EVENT_STOP &&
760 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
761 		return 0;
762 
763 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
764 			 dpu_enc->rc_state, "begin");
765 
766 	switch (sw_event) {
767 	case DPU_ENC_RC_EVENT_KICKOFF:
768 		/* cancel delayed off work, if any */
769 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
770 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
771 					sw_event);
772 
773 		mutex_lock(&dpu_enc->rc_lock);
774 
775 		/* return if the resource control is already in ON state */
776 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
777 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
778 				      DRMID(drm_enc), sw_event);
779 			mutex_unlock(&dpu_enc->rc_lock);
780 			return 0;
781 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
782 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
783 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
784 				      DRMID(drm_enc), sw_event,
785 				      dpu_enc->rc_state);
786 			mutex_unlock(&dpu_enc->rc_lock);
787 			return -EINVAL;
788 		}
789 
790 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
791 			_dpu_encoder_irq_control(drm_enc, true);
792 		else
793 			_dpu_encoder_resource_control_helper(drm_enc, true);
794 
795 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
796 
797 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
798 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
799 				 "kickoff");
800 
801 		mutex_unlock(&dpu_enc->rc_lock);
802 		break;
803 
804 	case DPU_ENC_RC_EVENT_FRAME_DONE:
805 		/*
806 		 * mutex lock is not used as this event happens at interrupt
807 		 * context. And locking is not required as, the other events
808 		 * like KICKOFF and STOP does a wait-for-idle before executing
809 		 * the resource_control
810 		 */
811 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
812 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
813 				      DRMID(drm_enc), sw_event,
814 				      dpu_enc->rc_state);
815 			return -EINVAL;
816 		}
817 
818 		/*
819 		 * schedule off work item only when there are no
820 		 * frames pending
821 		 */
822 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
823 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
824 				      DRMID(drm_enc));
825 			return 0;
826 		}
827 
828 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
829 				   msecs_to_jiffies(dpu_enc->idle_timeout));
830 
831 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
832 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
833 				 "frame done");
834 		break;
835 
836 	case DPU_ENC_RC_EVENT_PRE_STOP:
837 		/* cancel delayed off work, if any */
838 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
839 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
840 					sw_event);
841 
842 		mutex_lock(&dpu_enc->rc_lock);
843 
844 		if (is_vid_mode &&
845 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
846 			_dpu_encoder_irq_control(drm_enc, true);
847 		}
848 		/* skip if is already OFF or IDLE, resources are off already */
849 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
850 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
851 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
852 				      DRMID(drm_enc), sw_event,
853 				      dpu_enc->rc_state);
854 			mutex_unlock(&dpu_enc->rc_lock);
855 			return 0;
856 		}
857 
858 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
859 
860 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
861 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
862 				 "pre stop");
863 
864 		mutex_unlock(&dpu_enc->rc_lock);
865 		break;
866 
867 	case DPU_ENC_RC_EVENT_STOP:
868 		mutex_lock(&dpu_enc->rc_lock);
869 
870 		/* return if the resource control is already in OFF state */
871 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
872 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
873 				      DRMID(drm_enc), sw_event);
874 			mutex_unlock(&dpu_enc->rc_lock);
875 			return 0;
876 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
877 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
878 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
879 			mutex_unlock(&dpu_enc->rc_lock);
880 			return -EINVAL;
881 		}
882 
883 		/**
884 		 * expect to arrive here only if in either idle state or pre-off
885 		 * and in IDLE state the resources are already disabled
886 		 */
887 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
888 			_dpu_encoder_resource_control_helper(drm_enc, false);
889 
890 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
891 
892 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
893 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
894 				 "stop");
895 
896 		mutex_unlock(&dpu_enc->rc_lock);
897 		break;
898 
899 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
900 		mutex_lock(&dpu_enc->rc_lock);
901 
902 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
903 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
904 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
905 			mutex_unlock(&dpu_enc->rc_lock);
906 			return 0;
907 		}
908 
909 		/*
910 		 * if we are in ON but a frame was just kicked off,
911 		 * ignore the IDLE event, it's probably a stale timer event
912 		 */
913 		if (dpu_enc->frame_busy_mask[0]) {
914 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
915 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
916 			mutex_unlock(&dpu_enc->rc_lock);
917 			return 0;
918 		}
919 
920 		if (is_vid_mode)
921 			_dpu_encoder_irq_control(drm_enc, false);
922 		else
923 			_dpu_encoder_resource_control_helper(drm_enc, false);
924 
925 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
926 
927 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
928 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
929 				 "idle");
930 
931 		mutex_unlock(&dpu_enc->rc_lock);
932 		break;
933 
934 	default:
935 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
936 			  sw_event);
937 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
938 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
939 				 "error");
940 		break;
941 	}
942 
943 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
944 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
945 			 "end");
946 	return 0;
947 }
948 
949 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
950 				      struct drm_display_mode *mode,
951 				      struct drm_display_mode *adj_mode)
952 {
953 	struct dpu_encoder_virt *dpu_enc;
954 	struct msm_drm_private *priv;
955 	struct dpu_kms *dpu_kms;
956 	struct list_head *connector_list;
957 	struct drm_connector *conn = NULL, *conn_iter;
958 	struct drm_crtc *drm_crtc;
959 	struct dpu_crtc_state *cstate;
960 	struct dpu_rm_hw_iter hw_iter;
961 	struct msm_display_topology topology;
962 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
963 	struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
964 	int num_lm = 0, num_ctl = 0;
965 	int i, j, ret;
966 
967 	if (!drm_enc) {
968 		DPU_ERROR("invalid encoder\n");
969 		return;
970 	}
971 
972 	dpu_enc = to_dpu_encoder_virt(drm_enc);
973 	DPU_DEBUG_ENC(dpu_enc, "\n");
974 
975 	priv = drm_enc->dev->dev_private;
976 	dpu_kms = to_dpu_kms(priv->kms);
977 	connector_list = &dpu_kms->dev->mode_config.connector_list;
978 
979 	trace_dpu_enc_mode_set(DRMID(drm_enc));
980 
981 	list_for_each_entry(conn_iter, connector_list, head)
982 		if (conn_iter->encoder == drm_enc)
983 			conn = conn_iter;
984 
985 	if (!conn) {
986 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
987 		return;
988 	} else if (!conn->state) {
989 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
990 		return;
991 	}
992 
993 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
994 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
995 			break;
996 
997 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
998 
999 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
1000 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
1001 			     topology, false);
1002 	if (ret) {
1003 		DPU_ERROR_ENC(dpu_enc,
1004 				"failed to reserve hw resources, %d\n", ret);
1005 		return;
1006 	}
1007 
1008 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1009 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1010 		dpu_enc->hw_pp[i] = NULL;
1011 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1012 			break;
1013 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1014 	}
1015 
1016 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1017 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1018 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1019 			break;
1020 		hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1021 		num_ctl++;
1022 	}
1023 
1024 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1025 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1026 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1027 			break;
1028 		hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1029 		num_lm++;
1030 	}
1031 
1032 	cstate = to_dpu_crtc_state(drm_crtc->state);
1033 
1034 	for (i = 0; i < num_lm; i++) {
1035 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1036 
1037 		cstate->mixers[i].hw_lm = hw_lm[i];
1038 		cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1039 	}
1040 
1041 	cstate->num_mixers = num_lm;
1042 
1043 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1044 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1045 
1046 		if (!dpu_enc->hw_pp[i]) {
1047 			DPU_ERROR_ENC(dpu_enc,
1048 				"no pp block assigned at idx: %d\n", i);
1049 			goto error;
1050 		}
1051 
1052 		if (!hw_ctl[i]) {
1053 			DPU_ERROR_ENC(dpu_enc,
1054 				"no ctl block assigned at idx: %d\n", i);
1055 			goto error;
1056 		}
1057 
1058 		phys->hw_pp = dpu_enc->hw_pp[i];
1059 		phys->hw_ctl = hw_ctl[i];
1060 
1061 		dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1062 				    DPU_HW_BLK_INTF);
1063 		for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1064 			struct dpu_hw_intf *hw_intf;
1065 
1066 			if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1067 				break;
1068 
1069 			hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1070 			if (hw_intf->idx == phys->intf_idx)
1071 				phys->hw_intf = hw_intf;
1072 		}
1073 
1074 		if (!phys->hw_intf) {
1075 			DPU_ERROR_ENC(dpu_enc,
1076 				      "no intf block assigned at idx: %d\n", i);
1077 				goto error;
1078 		}
1079 
1080 		phys->connector = conn->state->connector;
1081 		if (phys->ops.mode_set)
1082 			phys->ops.mode_set(phys, mode, adj_mode);
1083 	}
1084 
1085 	dpu_enc->mode_set_complete = true;
1086 
1087 error:
1088 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1089 }
1090 
1091 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1092 {
1093 	struct dpu_encoder_virt *dpu_enc = NULL;
1094 	struct msm_drm_private *priv;
1095 	struct dpu_kms *dpu_kms;
1096 
1097 	if (!drm_enc || !drm_enc->dev) {
1098 		DPU_ERROR("invalid parameters\n");
1099 		return;
1100 	}
1101 
1102 	priv = drm_enc->dev->dev_private;
1103 	dpu_kms = to_dpu_kms(priv->kms);
1104 
1105 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1106 	if (!dpu_enc || !dpu_enc->cur_master) {
1107 		DPU_ERROR("invalid dpu encoder/master\n");
1108 		return;
1109 	}
1110 
1111 	if (dpu_enc->cur_master->hw_mdptop &&
1112 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1113 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1114 				dpu_enc->cur_master->hw_mdptop,
1115 				dpu_kms->catalog);
1116 
1117 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1118 }
1119 
1120 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1121 {
1122 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1123 
1124 	mutex_lock(&dpu_enc->enc_lock);
1125 
1126 	if (!dpu_enc->enabled)
1127 		goto out;
1128 
1129 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1130 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1131 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1132 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1133 
1134 	_dpu_encoder_virt_enable_helper(drm_enc);
1135 
1136 out:
1137 	mutex_unlock(&dpu_enc->enc_lock);
1138 }
1139 
1140 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1141 {
1142 	struct dpu_encoder_virt *dpu_enc = NULL;
1143 	int ret = 0;
1144 	struct drm_display_mode *cur_mode = NULL;
1145 
1146 	if (!drm_enc) {
1147 		DPU_ERROR("invalid encoder\n");
1148 		return;
1149 	}
1150 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1151 
1152 	mutex_lock(&dpu_enc->enc_lock);
1153 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1154 
1155 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1156 			     cur_mode->vdisplay);
1157 
1158 	/* always enable slave encoder before master */
1159 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1160 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1161 
1162 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1163 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1164 
1165 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1166 	if (ret) {
1167 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1168 				ret);
1169 		goto out;
1170 	}
1171 
1172 	_dpu_encoder_virt_enable_helper(drm_enc);
1173 
1174 	dpu_enc->enabled = true;
1175 
1176 out:
1177 	mutex_unlock(&dpu_enc->enc_lock);
1178 }
1179 
1180 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1181 {
1182 	struct dpu_encoder_virt *dpu_enc = NULL;
1183 	struct msm_drm_private *priv;
1184 	struct dpu_kms *dpu_kms;
1185 	int i = 0;
1186 
1187 	if (!drm_enc) {
1188 		DPU_ERROR("invalid encoder\n");
1189 		return;
1190 	} else if (!drm_enc->dev) {
1191 		DPU_ERROR("invalid dev\n");
1192 		return;
1193 	}
1194 
1195 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1196 	DPU_DEBUG_ENC(dpu_enc, "\n");
1197 
1198 	mutex_lock(&dpu_enc->enc_lock);
1199 	dpu_enc->enabled = false;
1200 
1201 	priv = drm_enc->dev->dev_private;
1202 	dpu_kms = to_dpu_kms(priv->kms);
1203 
1204 	trace_dpu_enc_disable(DRMID(drm_enc));
1205 
1206 	/* wait for idle */
1207 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1208 
1209 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1210 
1211 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1212 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1213 
1214 		if (phys->ops.disable)
1215 			phys->ops.disable(phys);
1216 	}
1217 
1218 	/* after phys waits for frame-done, should be no more frames pending */
1219 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1220 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1221 		del_timer_sync(&dpu_enc->frame_done_timer);
1222 	}
1223 
1224 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1225 
1226 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1227 		dpu_enc->phys_encs[i]->connector = NULL;
1228 	}
1229 
1230 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1231 
1232 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1233 
1234 	mutex_unlock(&dpu_enc->enc_lock);
1235 }
1236 
1237 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1238 		enum dpu_intf_type type, u32 controller_id)
1239 {
1240 	int i = 0;
1241 
1242 	for (i = 0; i < catalog->intf_count; i++) {
1243 		if (catalog->intf[i].type == type
1244 		    && catalog->intf[i].controller_id == controller_id) {
1245 			return catalog->intf[i].id;
1246 		}
1247 	}
1248 
1249 	return INTF_MAX;
1250 }
1251 
1252 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1253 		struct dpu_encoder_phys *phy_enc)
1254 {
1255 	struct dpu_encoder_virt *dpu_enc = NULL;
1256 	unsigned long lock_flags;
1257 
1258 	if (!drm_enc || !phy_enc)
1259 		return;
1260 
1261 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1262 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1263 
1264 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1265 	if (dpu_enc->crtc)
1266 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1267 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1268 
1269 	atomic_inc(&phy_enc->vsync_cnt);
1270 	DPU_ATRACE_END("encoder_vblank_callback");
1271 }
1272 
1273 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1274 		struct dpu_encoder_phys *phy_enc)
1275 {
1276 	if (!phy_enc)
1277 		return;
1278 
1279 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1280 	atomic_inc(&phy_enc->underrun_cnt);
1281 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1282 				  atomic_read(&phy_enc->underrun_cnt));
1283 	DPU_ATRACE_END("encoder_underrun_callback");
1284 }
1285 
1286 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1287 {
1288 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1289 	unsigned long lock_flags;
1290 
1291 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1292 	/* crtc should always be cleared before re-assigning */
1293 	WARN_ON(crtc && dpu_enc->crtc);
1294 	dpu_enc->crtc = crtc;
1295 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1296 }
1297 
1298 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1299 					struct drm_crtc *crtc, bool enable)
1300 {
1301 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1302 	unsigned long lock_flags;
1303 	int i;
1304 
1305 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1306 
1307 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1308 	if (dpu_enc->crtc != crtc) {
1309 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1310 		return;
1311 	}
1312 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1313 
1314 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1315 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1316 
1317 		if (phys->ops.control_vblank_irq)
1318 			phys->ops.control_vblank_irq(phys, enable);
1319 	}
1320 }
1321 
1322 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1323 		void (*frame_event_cb)(void *, u32 event),
1324 		void *frame_event_cb_data)
1325 {
1326 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1327 	unsigned long lock_flags;
1328 	bool enable;
1329 
1330 	enable = frame_event_cb ? true : false;
1331 
1332 	if (!drm_enc) {
1333 		DPU_ERROR("invalid encoder\n");
1334 		return;
1335 	}
1336 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1337 
1338 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1339 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1340 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1341 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1342 }
1343 
1344 static void dpu_encoder_frame_done_callback(
1345 		struct drm_encoder *drm_enc,
1346 		struct dpu_encoder_phys *ready_phys, u32 event)
1347 {
1348 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1349 	unsigned int i;
1350 
1351 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1352 			| DPU_ENCODER_FRAME_EVENT_ERROR
1353 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1354 
1355 		if (!dpu_enc->frame_busy_mask[0]) {
1356 			/**
1357 			 * suppress frame_done without waiter,
1358 			 * likely autorefresh
1359 			 */
1360 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1361 					event, ready_phys->intf_idx);
1362 			return;
1363 		}
1364 
1365 		/* One of the physical encoders has become idle */
1366 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1367 			if (dpu_enc->phys_encs[i] == ready_phys) {
1368 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1369 						dpu_enc->frame_busy_mask[0]);
1370 				clear_bit(i, dpu_enc->frame_busy_mask);
1371 			}
1372 		}
1373 
1374 		if (!dpu_enc->frame_busy_mask[0]) {
1375 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1376 			del_timer(&dpu_enc->frame_done_timer);
1377 
1378 			dpu_encoder_resource_control(drm_enc,
1379 					DPU_ENC_RC_EVENT_FRAME_DONE);
1380 
1381 			if (dpu_enc->crtc_frame_event_cb)
1382 				dpu_enc->crtc_frame_event_cb(
1383 					dpu_enc->crtc_frame_event_cb_data,
1384 					event);
1385 		}
1386 	} else {
1387 		if (dpu_enc->crtc_frame_event_cb)
1388 			dpu_enc->crtc_frame_event_cb(
1389 				dpu_enc->crtc_frame_event_cb_data, event);
1390 	}
1391 }
1392 
1393 static void dpu_encoder_off_work(struct work_struct *work)
1394 {
1395 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1396 			struct dpu_encoder_virt, delayed_off_work.work);
1397 
1398 	if (!dpu_enc) {
1399 		DPU_ERROR("invalid dpu encoder\n");
1400 		return;
1401 	}
1402 
1403 	dpu_encoder_resource_control(&dpu_enc->base,
1404 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1405 
1406 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1407 				DPU_ENCODER_FRAME_EVENT_IDLE);
1408 }
1409 
1410 /**
1411  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1412  * drm_enc: Pointer to drm encoder structure
1413  * phys: Pointer to physical encoder structure
1414  * extra_flush_bits: Additional bit mask to include in flush trigger
1415  */
1416 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1417 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1418 {
1419 	struct dpu_hw_ctl *ctl;
1420 	int pending_kickoff_cnt;
1421 	u32 ret = UINT_MAX;
1422 
1423 	if (!phys->hw_pp) {
1424 		DPU_ERROR("invalid pingpong hw\n");
1425 		return;
1426 	}
1427 
1428 	ctl = phys->hw_ctl;
1429 	if (!ctl->ops.trigger_flush) {
1430 		DPU_ERROR("missing trigger cb\n");
1431 		return;
1432 	}
1433 
1434 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1435 
1436 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1437 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1438 
1439 	ctl->ops.trigger_flush(ctl);
1440 
1441 	if (ctl->ops.get_pending_flush)
1442 		ret = ctl->ops.get_pending_flush(ctl);
1443 
1444 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1445 				    pending_kickoff_cnt, ctl->idx,
1446 				    extra_flush_bits, ret);
1447 }
1448 
1449 /**
1450  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1451  * phys: Pointer to physical encoder structure
1452  */
1453 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1454 {
1455 	if (!phys) {
1456 		DPU_ERROR("invalid argument(s)\n");
1457 		return;
1458 	}
1459 
1460 	if (!phys->hw_pp) {
1461 		DPU_ERROR("invalid pingpong hw\n");
1462 		return;
1463 	}
1464 
1465 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1466 		phys->ops.trigger_start(phys);
1467 }
1468 
1469 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1470 {
1471 	struct dpu_hw_ctl *ctl;
1472 
1473 	ctl = phys_enc->hw_ctl;
1474 	if (ctl->ops.trigger_start) {
1475 		ctl->ops.trigger_start(ctl);
1476 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1477 	}
1478 }
1479 
1480 static int dpu_encoder_helper_wait_event_timeout(
1481 		int32_t drm_id,
1482 		int32_t hw_id,
1483 		struct dpu_encoder_wait_info *info)
1484 {
1485 	int rc = 0;
1486 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1487 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1488 	s64 time;
1489 
1490 	do {
1491 		rc = wait_event_timeout(*(info->wq),
1492 				atomic_read(info->atomic_cnt) == 0, jiffies);
1493 		time = ktime_to_ms(ktime_get());
1494 
1495 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1496 						 expected_time,
1497 						 atomic_read(info->atomic_cnt));
1498 	/* If we timed out, counter is valid and time is less, wait again */
1499 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1500 			(time < expected_time));
1501 
1502 	return rc;
1503 }
1504 
1505 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1506 {
1507 	struct dpu_encoder_virt *dpu_enc;
1508 	struct dpu_hw_ctl *ctl;
1509 	int rc;
1510 
1511 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1512 	ctl = phys_enc->hw_ctl;
1513 
1514 	if (!ctl->ops.reset)
1515 		return;
1516 
1517 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1518 		      ctl->idx);
1519 
1520 	rc = ctl->ops.reset(ctl);
1521 	if (rc)
1522 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1523 
1524 	phys_enc->enable_state = DPU_ENC_ENABLED;
1525 }
1526 
1527 /**
1528  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1529  *	Iterate through the physical encoders and perform consolidated flush
1530  *	and/or control start triggering as needed. This is done in the virtual
1531  *	encoder rather than the individual physical ones in order to handle
1532  *	use cases that require visibility into multiple physical encoders at
1533  *	a time.
1534  * dpu_enc: Pointer to virtual encoder structure
1535  */
1536 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1537 {
1538 	struct dpu_hw_ctl *ctl;
1539 	uint32_t i, pending_flush;
1540 	unsigned long lock_flags;
1541 
1542 	pending_flush = 0x0;
1543 
1544 	/* update pending counts and trigger kickoff ctl flush atomically */
1545 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1546 
1547 	/* don't perform flush/start operations for slave encoders */
1548 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1549 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1550 
1551 		if (phys->enable_state == DPU_ENC_DISABLED)
1552 			continue;
1553 
1554 		ctl = phys->hw_ctl;
1555 
1556 		/*
1557 		 * This is cleared in frame_done worker, which isn't invoked
1558 		 * for async commits. So don't set this for async, since it'll
1559 		 * roll over to the next commit.
1560 		 */
1561 		if (phys->split_role != ENC_ROLE_SLAVE)
1562 			set_bit(i, dpu_enc->frame_busy_mask);
1563 
1564 		if (!phys->ops.needs_single_flush ||
1565 				!phys->ops.needs_single_flush(phys))
1566 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1567 		else if (ctl->ops.get_pending_flush)
1568 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1569 	}
1570 
1571 	/* for split flush, combine pending flush masks and send to master */
1572 	if (pending_flush && dpu_enc->cur_master) {
1573 		_dpu_encoder_trigger_flush(
1574 				&dpu_enc->base,
1575 				dpu_enc->cur_master,
1576 				pending_flush);
1577 	}
1578 
1579 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1580 
1581 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1582 }
1583 
1584 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1585 {
1586 	struct dpu_encoder_virt *dpu_enc;
1587 	struct dpu_encoder_phys *phys;
1588 	unsigned int i;
1589 	struct dpu_hw_ctl *ctl;
1590 	struct msm_display_info *disp_info;
1591 
1592 	if (!drm_enc) {
1593 		DPU_ERROR("invalid encoder\n");
1594 		return;
1595 	}
1596 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1597 	disp_info = &dpu_enc->disp_info;
1598 
1599 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1600 		phys = dpu_enc->phys_encs[i];
1601 
1602 		ctl = phys->hw_ctl;
1603 		if (ctl->ops.clear_pending_flush)
1604 			ctl->ops.clear_pending_flush(ctl);
1605 
1606 		/* update only for command mode primary ctl */
1607 		if ((phys == dpu_enc->cur_master) &&
1608 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1609 		    && ctl->ops.trigger_pending)
1610 			ctl->ops.trigger_pending(ctl);
1611 	}
1612 }
1613 
1614 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1615 		struct drm_display_mode *mode)
1616 {
1617 	u64 pclk_rate;
1618 	u32 pclk_period;
1619 	u32 line_time;
1620 
1621 	/*
1622 	 * For linetime calculation, only operate on master encoder.
1623 	 */
1624 	if (!dpu_enc->cur_master)
1625 		return 0;
1626 
1627 	if (!dpu_enc->cur_master->ops.get_line_count) {
1628 		DPU_ERROR("get_line_count function not defined\n");
1629 		return 0;
1630 	}
1631 
1632 	pclk_rate = mode->clock; /* pixel clock in kHz */
1633 	if (pclk_rate == 0) {
1634 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1635 		return 0;
1636 	}
1637 
1638 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1639 	if (pclk_period == 0) {
1640 		DPU_ERROR("pclk period is 0\n");
1641 		return 0;
1642 	}
1643 
1644 	/*
1645 	 * Line time calculation based on Pixel clock and HTOTAL.
1646 	 * Final unit is in ns.
1647 	 */
1648 	line_time = (pclk_period * mode->htotal) / 1000;
1649 	if (line_time == 0) {
1650 		DPU_ERROR("line time calculation is 0\n");
1651 		return 0;
1652 	}
1653 
1654 	DPU_DEBUG_ENC(dpu_enc,
1655 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1656 			pclk_rate, pclk_period, line_time);
1657 
1658 	return line_time;
1659 }
1660 
1661 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1662 {
1663 	struct drm_display_mode *mode;
1664 	struct dpu_encoder_virt *dpu_enc;
1665 	u32 cur_line;
1666 	u32 line_time;
1667 	u32 vtotal, time_to_vsync;
1668 	ktime_t cur_time;
1669 
1670 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1671 
1672 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1673 		DPU_ERROR("crtc/crtc state object is NULL\n");
1674 		return -EINVAL;
1675 	}
1676 	mode = &drm_enc->crtc->state->adjusted_mode;
1677 
1678 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1679 	if (!line_time)
1680 		return -EINVAL;
1681 
1682 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1683 
1684 	vtotal = mode->vtotal;
1685 	if (cur_line >= vtotal)
1686 		time_to_vsync = line_time * vtotal;
1687 	else
1688 		time_to_vsync = line_time * (vtotal - cur_line);
1689 
1690 	if (time_to_vsync == 0) {
1691 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1692 				vtotal);
1693 		return -EINVAL;
1694 	}
1695 
1696 	cur_time = ktime_get();
1697 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1698 
1699 	DPU_DEBUG_ENC(dpu_enc,
1700 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1701 			cur_line, vtotal, time_to_vsync,
1702 			ktime_to_ms(cur_time),
1703 			ktime_to_ms(*wakeup_time));
1704 	return 0;
1705 }
1706 
1707 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1708 {
1709 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1710 			vsync_event_timer);
1711 	struct drm_encoder *drm_enc = &dpu_enc->base;
1712 	struct msm_drm_private *priv;
1713 	struct msm_drm_thread *event_thread;
1714 
1715 	if (!drm_enc->dev || !drm_enc->crtc) {
1716 		DPU_ERROR("invalid parameters\n");
1717 		return;
1718 	}
1719 
1720 	priv = drm_enc->dev->dev_private;
1721 
1722 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1723 		DPU_ERROR("invalid crtc index\n");
1724 		return;
1725 	}
1726 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1727 	if (!event_thread) {
1728 		DPU_ERROR("event_thread not found for crtc:%d\n",
1729 				drm_enc->crtc->index);
1730 		return;
1731 	}
1732 
1733 	del_timer(&dpu_enc->vsync_event_timer);
1734 }
1735 
1736 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1737 {
1738 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1739 			struct dpu_encoder_virt, vsync_event_work);
1740 	ktime_t wakeup_time;
1741 
1742 	if (!dpu_enc) {
1743 		DPU_ERROR("invalid dpu encoder\n");
1744 		return;
1745 	}
1746 
1747 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1748 		return;
1749 
1750 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1751 	mod_timer(&dpu_enc->vsync_event_timer,
1752 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1753 }
1754 
1755 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1756 {
1757 	struct dpu_encoder_virt *dpu_enc;
1758 	struct dpu_encoder_phys *phys;
1759 	bool needs_hw_reset = false;
1760 	unsigned int i;
1761 
1762 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1763 
1764 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1765 
1766 	/* prepare for next kickoff, may include waiting on previous kickoff */
1767 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1768 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1769 		phys = dpu_enc->phys_encs[i];
1770 		if (phys->ops.prepare_for_kickoff)
1771 			phys->ops.prepare_for_kickoff(phys);
1772 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1773 			needs_hw_reset = true;
1774 	}
1775 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1776 
1777 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1778 
1779 	/* if any phys needs reset, reset all phys, in-order */
1780 	if (needs_hw_reset) {
1781 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1782 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1783 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1784 		}
1785 	}
1786 }
1787 
1788 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1789 {
1790 	struct dpu_encoder_virt *dpu_enc;
1791 	struct dpu_encoder_phys *phys;
1792 	ktime_t wakeup_time;
1793 	unsigned long timeout_ms;
1794 	unsigned int i;
1795 
1796 	DPU_ATRACE_BEGIN("encoder_kickoff");
1797 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1798 
1799 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1800 
1801 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1802 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1803 
1804 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1805 	mod_timer(&dpu_enc->frame_done_timer,
1806 			jiffies + msecs_to_jiffies(timeout_ms));
1807 
1808 	/* All phys encs are ready to go, trigger the kickoff */
1809 	_dpu_encoder_kickoff_phys(dpu_enc);
1810 
1811 	/* allow phys encs to handle any post-kickoff business */
1812 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1813 		phys = dpu_enc->phys_encs[i];
1814 		if (phys->ops.handle_post_kickoff)
1815 			phys->ops.handle_post_kickoff(phys);
1816 	}
1817 
1818 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1819 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1820 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1821 					    ktime_to_ms(wakeup_time));
1822 		mod_timer(&dpu_enc->vsync_event_timer,
1823 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1824 	}
1825 
1826 	DPU_ATRACE_END("encoder_kickoff");
1827 }
1828 
1829 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1830 {
1831 	struct dpu_encoder_virt *dpu_enc;
1832 	struct dpu_encoder_phys *phys;
1833 	int i;
1834 
1835 	if (!drm_enc) {
1836 		DPU_ERROR("invalid encoder\n");
1837 		return;
1838 	}
1839 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1840 
1841 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1842 		phys = dpu_enc->phys_encs[i];
1843 		if (phys->ops.prepare_commit)
1844 			phys->ops.prepare_commit(phys);
1845 	}
1846 }
1847 
1848 #ifdef CONFIG_DEBUG_FS
1849 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1850 {
1851 	struct dpu_encoder_virt *dpu_enc = s->private;
1852 	int i;
1853 
1854 	mutex_lock(&dpu_enc->enc_lock);
1855 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1856 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1857 
1858 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1859 				phys->intf_idx - INTF_0,
1860 				atomic_read(&phys->vsync_cnt),
1861 				atomic_read(&phys->underrun_cnt));
1862 
1863 		switch (phys->intf_mode) {
1864 		case INTF_MODE_VIDEO:
1865 			seq_puts(s, "mode: video\n");
1866 			break;
1867 		case INTF_MODE_CMD:
1868 			seq_puts(s, "mode: command\n");
1869 			break;
1870 		default:
1871 			seq_puts(s, "mode: ???\n");
1872 			break;
1873 		}
1874 	}
1875 	mutex_unlock(&dpu_enc->enc_lock);
1876 
1877 	return 0;
1878 }
1879 
1880 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1881 		struct file *file)
1882 {
1883 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1884 }
1885 
1886 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1887 {
1888 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1889 	int i;
1890 
1891 	static const struct file_operations debugfs_status_fops = {
1892 		.open =		_dpu_encoder_debugfs_status_open,
1893 		.read =		seq_read,
1894 		.llseek =	seq_lseek,
1895 		.release =	single_release,
1896 	};
1897 
1898 	char name[DPU_NAME_SIZE];
1899 
1900 	if (!drm_enc->dev) {
1901 		DPU_ERROR("invalid encoder or kms\n");
1902 		return -EINVAL;
1903 	}
1904 
1905 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1906 
1907 	/* create overall sub-directory for the encoder */
1908 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1909 			drm_enc->dev->primary->debugfs_root);
1910 
1911 	/* don't error check these */
1912 	debugfs_create_file("status", 0600,
1913 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1914 
1915 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1916 		if (dpu_enc->phys_encs[i]->ops.late_register)
1917 			dpu_enc->phys_encs[i]->ops.late_register(
1918 					dpu_enc->phys_encs[i],
1919 					dpu_enc->debugfs_root);
1920 
1921 	return 0;
1922 }
1923 #else
1924 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1925 {
1926 	return 0;
1927 }
1928 #endif
1929 
1930 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1931 {
1932 	return _dpu_encoder_init_debugfs(encoder);
1933 }
1934 
1935 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1936 {
1937 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1938 
1939 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1940 }
1941 
1942 static int dpu_encoder_virt_add_phys_encs(
1943 		u32 display_caps,
1944 		struct dpu_encoder_virt *dpu_enc,
1945 		struct dpu_enc_phys_init_params *params)
1946 {
1947 	struct dpu_encoder_phys *enc = NULL;
1948 
1949 	DPU_DEBUG_ENC(dpu_enc, "\n");
1950 
1951 	/*
1952 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1953 	 * in this function, check up-front.
1954 	 */
1955 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1956 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1957 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1958 			  dpu_enc->num_phys_encs);
1959 		return -EINVAL;
1960 	}
1961 
1962 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1963 		enc = dpu_encoder_phys_vid_init(params);
1964 
1965 		if (IS_ERR_OR_NULL(enc)) {
1966 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1967 				PTR_ERR(enc));
1968 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
1969 		}
1970 
1971 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1972 		++dpu_enc->num_phys_encs;
1973 	}
1974 
1975 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1976 		enc = dpu_encoder_phys_cmd_init(params);
1977 
1978 		if (IS_ERR_OR_NULL(enc)) {
1979 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1980 				PTR_ERR(enc));
1981 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
1982 		}
1983 
1984 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1985 		++dpu_enc->num_phys_encs;
1986 	}
1987 
1988 	if (params->split_role == ENC_ROLE_SLAVE)
1989 		dpu_enc->cur_slave = enc;
1990 	else
1991 		dpu_enc->cur_master = enc;
1992 
1993 	return 0;
1994 }
1995 
1996 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
1997 	.handle_vblank_virt = dpu_encoder_vblank_callback,
1998 	.handle_underrun_virt = dpu_encoder_underrun_callback,
1999 	.handle_frame_done = dpu_encoder_frame_done_callback,
2000 };
2001 
2002 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2003 				 struct dpu_kms *dpu_kms,
2004 				 struct msm_display_info *disp_info)
2005 {
2006 	int ret = 0;
2007 	int i = 0;
2008 	enum dpu_intf_type intf_type;
2009 	struct dpu_enc_phys_init_params phys_params;
2010 
2011 	if (!dpu_enc) {
2012 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != 0);
2013 		return -EINVAL;
2014 	}
2015 
2016 	dpu_enc->cur_master = NULL;
2017 
2018 	memset(&phys_params, 0, sizeof(phys_params));
2019 	phys_params.dpu_kms = dpu_kms;
2020 	phys_params.parent = &dpu_enc->base;
2021 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2022 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2023 
2024 	DPU_DEBUG("\n");
2025 
2026 	switch (disp_info->intf_type) {
2027 	case DRM_MODE_ENCODER_DSI:
2028 		intf_type = INTF_DSI;
2029 		break;
2030 	default:
2031 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2032 		return -EINVAL;
2033 	}
2034 
2035 	WARN_ON(disp_info->num_of_h_tiles < 1);
2036 
2037 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2038 
2039 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2040 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2041 		dpu_enc->idle_pc_supported =
2042 				dpu_kms->catalog->caps->has_idle_pc;
2043 
2044 	mutex_lock(&dpu_enc->enc_lock);
2045 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2046 		/*
2047 		 * Left-most tile is at index 0, content is controller id
2048 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2049 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2050 		 */
2051 		u32 controller_id = disp_info->h_tile_instance[i];
2052 
2053 		if (disp_info->num_of_h_tiles > 1) {
2054 			if (i == 0)
2055 				phys_params.split_role = ENC_ROLE_MASTER;
2056 			else
2057 				phys_params.split_role = ENC_ROLE_SLAVE;
2058 		} else {
2059 			phys_params.split_role = ENC_ROLE_SOLO;
2060 		}
2061 
2062 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2063 				i, controller_id, phys_params.split_role);
2064 
2065 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2066 													intf_type,
2067 													controller_id);
2068 		if (phys_params.intf_idx == INTF_MAX) {
2069 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2070 						  intf_type, controller_id);
2071 			ret = -EINVAL;
2072 		}
2073 
2074 		if (!ret) {
2075 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2076 												 dpu_enc,
2077 												 &phys_params);
2078 			if (ret)
2079 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2080 		}
2081 	}
2082 
2083 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2084 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2085 		atomic_set(&phys->vsync_cnt, 0);
2086 		atomic_set(&phys->underrun_cnt, 0);
2087 	}
2088 	mutex_unlock(&dpu_enc->enc_lock);
2089 
2090 	return ret;
2091 }
2092 
2093 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2094 {
2095 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2096 			frame_done_timer);
2097 	struct drm_encoder *drm_enc = &dpu_enc->base;
2098 	u32 event;
2099 
2100 	if (!drm_enc->dev) {
2101 		DPU_ERROR("invalid parameters\n");
2102 		return;
2103 	}
2104 
2105 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2106 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2107 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2108 		return;
2109 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2110 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2111 		return;
2112 	}
2113 
2114 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2115 
2116 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2117 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2118 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2119 }
2120 
2121 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2122 	.mode_set = dpu_encoder_virt_mode_set,
2123 	.disable = dpu_encoder_virt_disable,
2124 	.enable = dpu_kms_encoder_enable,
2125 	.atomic_check = dpu_encoder_virt_atomic_check,
2126 
2127 	/* This is called by dpu_kms_encoder_enable */
2128 	.commit = dpu_encoder_virt_enable,
2129 };
2130 
2131 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2132 		.destroy = dpu_encoder_destroy,
2133 		.late_register = dpu_encoder_late_register,
2134 		.early_unregister = dpu_encoder_early_unregister,
2135 };
2136 
2137 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2138 		struct msm_display_info *disp_info)
2139 {
2140 	struct msm_drm_private *priv = dev->dev_private;
2141 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2142 	struct drm_encoder *drm_enc = NULL;
2143 	struct dpu_encoder_virt *dpu_enc = NULL;
2144 	int ret = 0;
2145 
2146 	dpu_enc = to_dpu_encoder_virt(enc);
2147 
2148 	mutex_init(&dpu_enc->enc_lock);
2149 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2150 	if (ret)
2151 		goto fail;
2152 
2153 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2154 	timer_setup(&dpu_enc->frame_done_timer,
2155 			dpu_encoder_frame_done_timeout, 0);
2156 
2157 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2158 		timer_setup(&dpu_enc->vsync_event_timer,
2159 				dpu_encoder_vsync_event_handler,
2160 				0);
2161 
2162 
2163 	mutex_init(&dpu_enc->rc_lock);
2164 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2165 			dpu_encoder_off_work);
2166 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2167 
2168 	kthread_init_work(&dpu_enc->vsync_event_work,
2169 			dpu_encoder_vsync_event_work_handler);
2170 
2171 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2172 
2173 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2174 
2175 	return ret;
2176 
2177 fail:
2178 	DPU_ERROR("failed to create encoder\n");
2179 	if (drm_enc)
2180 		dpu_encoder_destroy(drm_enc);
2181 
2182 	return ret;
2183 
2184 
2185 }
2186 
2187 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2188 		int drm_enc_mode)
2189 {
2190 	struct dpu_encoder_virt *dpu_enc = NULL;
2191 	int rc = 0;
2192 
2193 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2194 	if (!dpu_enc)
2195 		return ERR_PTR(ENOMEM);
2196 
2197 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2198 			drm_enc_mode, NULL);
2199 	if (rc) {
2200 		devm_kfree(dev->dev, dpu_enc);
2201 		return ERR_PTR(rc);
2202 	}
2203 
2204 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2205 
2206 	spin_lock_init(&dpu_enc->enc_spinlock);
2207 	dpu_enc->enabled = false;
2208 
2209 	return &dpu_enc->base;
2210 }
2211 
2212 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2213 	enum msm_event_wait event)
2214 {
2215 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2216 	struct dpu_encoder_virt *dpu_enc = NULL;
2217 	int i, ret = 0;
2218 
2219 	if (!drm_enc) {
2220 		DPU_ERROR("invalid encoder\n");
2221 		return -EINVAL;
2222 	}
2223 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2224 	DPU_DEBUG_ENC(dpu_enc, "\n");
2225 
2226 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2227 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2228 
2229 		switch (event) {
2230 		case MSM_ENC_COMMIT_DONE:
2231 			fn_wait = phys->ops.wait_for_commit_done;
2232 			break;
2233 		case MSM_ENC_TX_COMPLETE:
2234 			fn_wait = phys->ops.wait_for_tx_complete;
2235 			break;
2236 		case MSM_ENC_VBLANK:
2237 			fn_wait = phys->ops.wait_for_vblank;
2238 			break;
2239 		default:
2240 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2241 					event);
2242 			return -EINVAL;
2243 		}
2244 
2245 		if (fn_wait) {
2246 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2247 			ret = fn_wait(phys);
2248 			DPU_ATRACE_END("wait_for_completion_event");
2249 			if (ret)
2250 				return ret;
2251 		}
2252 	}
2253 
2254 	return ret;
2255 }
2256 
2257 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2258 {
2259 	struct dpu_encoder_virt *dpu_enc = NULL;
2260 
2261 	if (!encoder) {
2262 		DPU_ERROR("invalid encoder\n");
2263 		return INTF_MODE_NONE;
2264 	}
2265 	dpu_enc = to_dpu_encoder_virt(encoder);
2266 
2267 	if (dpu_enc->cur_master)
2268 		return dpu_enc->cur_master->intf_mode;
2269 
2270 	if (dpu_enc->num_phys_encs)
2271 		return dpu_enc->phys_encs[0]->intf_mode;
2272 
2273 	return INTF_MODE_NONE;
2274 }
2275