1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_hw_dspp.h" 24 #include "dpu_formats.h" 25 #include "dpu_encoder_phys.h" 26 #include "dpu_crtc.h" 27 #include "dpu_trace.h" 28 #include "dpu_core_irq.h" 29 30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 32 33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 35 36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 37 (p) ? (p)->parent->base.id : -1, \ 38 (p) ? (p)->intf_idx - INTF_0 : -1, \ 39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 40 ##__VA_ARGS__) 41 42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 43 (p) ? (p)->parent->base.id : -1, \ 44 (p) ? (p)->intf_idx - INTF_0 : -1, \ 45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 46 ##__VA_ARGS__) 47 48 /* 49 * Two to anticipate panels that can do cmd/vid dynamic switching 50 * plan is to create all possible physical encoder types, and switch between 51 * them at runtime 52 */ 53 #define NUM_PHYS_ENCODER_TYPES 2 54 55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 57 58 #define MAX_CHANNELS_PER_ENC 2 59 60 #define IDLE_SHORT_TIMEOUT 1 61 62 #define MAX_HDISPLAY_SPLIT 1080 63 64 /* timeout in frames waiting for frame done */ 65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 66 67 /** 68 * enum dpu_enc_rc_events - events for resource control state machine 69 * @DPU_ENC_RC_EVENT_KICKOFF: 70 * This event happens at NORMAL priority. 71 * Event that signals the start of the transfer. When this event is 72 * received, enable MDP/DSI core clocks. Regardless of the previous 73 * state, the resource should be in ON state at the end of this event. 74 * @DPU_ENC_RC_EVENT_FRAME_DONE: 75 * This event happens at INTERRUPT level. 76 * Event signals the end of the data transfer after the PP FRAME_DONE 77 * event. At the end of this event, a delayed work is scheduled to go to 78 * IDLE_PC state after IDLE_TIMEOUT time. 79 * @DPU_ENC_RC_EVENT_PRE_STOP: 80 * This event happens at NORMAL priority. 81 * This event, when received during the ON state, leave the RC STATE 82 * in the PRE_OFF state. It should be followed by the STOP event as 83 * part of encoder disable. 84 * If received during IDLE or OFF states, it will do nothing. 85 * @DPU_ENC_RC_EVENT_STOP: 86 * This event happens at NORMAL priority. 87 * When this event is received, disable all the MDP/DSI core clocks, and 88 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 89 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 90 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 91 * Resource state should be in OFF at the end of the event. 92 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 93 * This event happens at NORMAL priority from a work item. 94 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 95 * This would disable MDP/DSI core clocks and change the resource state 96 * to IDLE. 97 */ 98 enum dpu_enc_rc_events { 99 DPU_ENC_RC_EVENT_KICKOFF = 1, 100 DPU_ENC_RC_EVENT_FRAME_DONE, 101 DPU_ENC_RC_EVENT_PRE_STOP, 102 DPU_ENC_RC_EVENT_STOP, 103 DPU_ENC_RC_EVENT_ENTER_IDLE 104 }; 105 106 /* 107 * enum dpu_enc_rc_states - states that the resource control maintains 108 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 109 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 110 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 111 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 112 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 113 */ 114 enum dpu_enc_rc_states { 115 DPU_ENC_RC_STATE_OFF, 116 DPU_ENC_RC_STATE_PRE_OFF, 117 DPU_ENC_RC_STATE_ON, 118 DPU_ENC_RC_STATE_IDLE 119 }; 120 121 /** 122 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 123 * encoders. Virtual encoder manages one "logical" display. Physical 124 * encoders manage one intf block, tied to a specific panel/sub-panel. 125 * Virtual encoder defers as much as possible to the physical encoders. 126 * Virtual encoder registers itself with the DRM Framework as the encoder. 127 * @base: drm_encoder base class for registration with DRM 128 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 129 * @bus_scaling_client: Client handle to the bus scaling interface 130 * @enabled: True if the encoder is active, protected by enc_lock 131 * @num_phys_encs: Actual number of physical encoders contained. 132 * @phys_encs: Container of physical encoders managed. 133 * @cur_master: Pointer to the current master in this mode. Optimization 134 * Only valid after enable. Cleared as disable. 135 * @hw_pp Handle to the pingpong blocks used for the display. No. 136 * pingpong blocks can be different than num_phys_encs. 137 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 138 * for partial update right-only cases, such as pingpong 139 * split where virtual pingpong does not generate IRQs 140 * @crtc: Pointer to the currently assigned crtc. Normally you 141 * would use crtc->state->encoder_mask to determine the 142 * link between encoder/crtc. However in this case we need 143 * to track crtc in the disable() hook which is called 144 * _after_ encoder_mask is cleared. 145 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 146 * all CTL paths 147 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 148 * @debugfs_root: Debug file system root file node 149 * @enc_lock: Lock around physical encoder 150 * create/destroy/enable/disable 151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 152 * busy processing current command. 153 * Bit0 = phys_encs[0] etc. 154 * @crtc_frame_event_cb: callback handler for frame event 155 * @crtc_frame_event_cb_data: callback handler private data 156 * @frame_done_timeout_ms: frame done timeout in ms 157 * @frame_done_timer: watchdog timer for frame done event 158 * @vsync_event_timer: vsync timer 159 * @disp_info: local copy of msm_display_info struct 160 * @idle_pc_supported: indicate if idle power collaps is supported 161 * @rc_lock: resource control mutex lock to protect 162 * virt encoder over various state changes 163 * @rc_state: resource controller state 164 * @delayed_off_work: delayed worker to schedule disabling of 165 * clks and resources after IDLE_TIMEOUT time. 166 * @vsync_event_work: worker to handle vsync event for autorefresh 167 * @topology: topology of the display 168 * @idle_timeout: idle timeout duration in milliseconds 169 */ 170 struct dpu_encoder_virt { 171 struct drm_encoder base; 172 spinlock_t enc_spinlock; 173 uint32_t bus_scaling_client; 174 175 bool enabled; 176 177 unsigned int num_phys_encs; 178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 179 struct dpu_encoder_phys *cur_master; 180 struct dpu_encoder_phys *cur_slave; 181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 182 183 bool intfs_swapped; 184 185 struct drm_crtc *crtc; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 206 u32 idle_timeout; 207 }; 208 209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 210 211 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 212 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 213 }; 214 215 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 216 { 217 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 218 219 if (!hw_pp->ops.setup_dither) 220 return; 221 222 switch (bpc) { 223 case 6: 224 dither_cfg.c0_bitdepth = 6; 225 dither_cfg.c1_bitdepth = 6; 226 dither_cfg.c2_bitdepth = 6; 227 dither_cfg.c3_bitdepth = 6; 228 dither_cfg.temporal_en = 0; 229 break; 230 default: 231 hw_pp->ops.setup_dither(hw_pp, NULL); 232 return; 233 } 234 235 memcpy(&dither_cfg.matrix, dither_matrix, 236 sizeof(u32) * DITHER_MATRIX_SZ); 237 238 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 239 } 240 241 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 242 enum dpu_intr_idx intr_idx) 243 { 244 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 245 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 246 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 247 248 if (phys_enc->parent_ops->handle_frame_done) 249 phys_enc->parent_ops->handle_frame_done( 250 phys_enc->parent, phys_enc, 251 DPU_ENCODER_FRAME_EVENT_ERROR); 252 } 253 254 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 255 int32_t hw_id, struct dpu_encoder_wait_info *info); 256 257 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 258 enum dpu_intr_idx intr_idx, 259 struct dpu_encoder_wait_info *wait_info) 260 { 261 struct dpu_encoder_irq *irq; 262 u32 irq_status; 263 int ret; 264 265 if (!wait_info || intr_idx >= INTR_IDX_MAX) { 266 DPU_ERROR("invalid params\n"); 267 return -EINVAL; 268 } 269 irq = &phys_enc->irq[intr_idx]; 270 271 /* note: do master / slave checking outside */ 272 273 /* return EWOULDBLOCK since we know the wait isn't necessary */ 274 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 275 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 276 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 277 irq->irq_idx); 278 return -EWOULDBLOCK; 279 } 280 281 if (irq->irq_idx < 0) { 282 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 283 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 284 irq->name); 285 return 0; 286 } 287 288 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 290 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 291 atomic_read(wait_info->atomic_cnt)); 292 293 ret = dpu_encoder_helper_wait_event_timeout( 294 DRMID(phys_enc->parent), 295 irq->hw_idx, 296 wait_info); 297 298 if (ret <= 0) { 299 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 300 irq->irq_idx, true); 301 if (irq_status) { 302 unsigned long flags; 303 304 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 305 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 306 DRMID(phys_enc->parent), intr_idx, 307 irq->hw_idx, irq->irq_idx, 308 phys_enc->hw_pp->idx - PINGPONG_0, 309 atomic_read(wait_info->atomic_cnt)); 310 local_irq_save(flags); 311 irq->cb.func(phys_enc, irq->irq_idx); 312 local_irq_restore(flags); 313 ret = 0; 314 } else { 315 ret = -ETIMEDOUT; 316 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 317 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 318 DRMID(phys_enc->parent), intr_idx, 319 irq->hw_idx, irq->irq_idx, 320 phys_enc->hw_pp->idx - PINGPONG_0, 321 atomic_read(wait_info->atomic_cnt)); 322 } 323 } else { 324 ret = 0; 325 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 326 intr_idx, irq->hw_idx, irq->irq_idx, 327 phys_enc->hw_pp->idx - PINGPONG_0, 328 atomic_read(wait_info->atomic_cnt)); 329 } 330 331 return ret; 332 } 333 334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 335 enum dpu_intr_idx intr_idx) 336 { 337 struct dpu_encoder_irq *irq; 338 int ret = 0; 339 340 if (intr_idx >= INTR_IDX_MAX) { 341 DPU_ERROR("invalid params\n"); 342 return -EINVAL; 343 } 344 irq = &phys_enc->irq[intr_idx]; 345 346 if (irq->irq_idx >= 0) { 347 DPU_DEBUG_PHYS(phys_enc, 348 "skipping already registered irq %s type %d\n", 349 irq->name, irq->intr_type); 350 return 0; 351 } 352 353 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 354 irq->intr_type, irq->hw_idx); 355 if (irq->irq_idx < 0) { 356 DPU_ERROR_PHYS(phys_enc, 357 "failed to lookup IRQ index for %s type:%d\n", 358 irq->name, irq->intr_type); 359 return -EINVAL; 360 } 361 362 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 363 &irq->cb); 364 if (ret) { 365 DPU_ERROR_PHYS(phys_enc, 366 "failed to register IRQ callback for %s\n", 367 irq->name); 368 irq->irq_idx = -EINVAL; 369 return ret; 370 } 371 372 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 373 if (ret) { 374 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 375 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 376 irq->irq_idx); 377 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 378 irq->irq_idx, &irq->cb); 379 irq->irq_idx = -EINVAL; 380 return ret; 381 } 382 383 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 384 irq->hw_idx, irq->irq_idx); 385 386 return ret; 387 } 388 389 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 390 enum dpu_intr_idx intr_idx) 391 { 392 struct dpu_encoder_irq *irq; 393 int ret; 394 395 irq = &phys_enc->irq[intr_idx]; 396 397 /* silently skip irqs that weren't registered */ 398 if (irq->irq_idx < 0) { 399 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 400 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 401 irq->irq_idx); 402 return 0; 403 } 404 405 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 406 if (ret) { 407 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 408 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 409 irq->irq_idx, ret); 410 } 411 412 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 413 &irq->cb); 414 if (ret) { 415 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 416 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 417 irq->irq_idx, ret); 418 } 419 420 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 421 irq->hw_idx, irq->irq_idx); 422 423 irq->irq_idx = -EINVAL; 424 425 return 0; 426 } 427 428 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 429 struct dpu_encoder_hw_resources *hw_res) 430 { 431 struct dpu_encoder_virt *dpu_enc = NULL; 432 int i = 0; 433 434 dpu_enc = to_dpu_encoder_virt(drm_enc); 435 DPU_DEBUG_ENC(dpu_enc, "\n"); 436 437 /* Query resources used by phys encs, expected to be without overlap */ 438 memset(hw_res, 0, sizeof(*hw_res)); 439 440 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 441 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 442 443 if (phys->ops.get_hw_resources) 444 phys->ops.get_hw_resources(phys, hw_res); 445 } 446 } 447 448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 449 { 450 struct dpu_encoder_virt *dpu_enc = NULL; 451 int i = 0; 452 453 if (!drm_enc) { 454 DPU_ERROR("invalid encoder\n"); 455 return; 456 } 457 458 dpu_enc = to_dpu_encoder_virt(drm_enc); 459 DPU_DEBUG_ENC(dpu_enc, "\n"); 460 461 mutex_lock(&dpu_enc->enc_lock); 462 463 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 464 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 465 466 if (phys->ops.destroy) { 467 phys->ops.destroy(phys); 468 --dpu_enc->num_phys_encs; 469 dpu_enc->phys_encs[i] = NULL; 470 } 471 } 472 473 if (dpu_enc->num_phys_encs) 474 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 475 dpu_enc->num_phys_encs); 476 dpu_enc->num_phys_encs = 0; 477 mutex_unlock(&dpu_enc->enc_lock); 478 479 drm_encoder_cleanup(drm_enc); 480 mutex_destroy(&dpu_enc->enc_lock); 481 } 482 483 void dpu_encoder_helper_split_config( 484 struct dpu_encoder_phys *phys_enc, 485 enum dpu_intf interface) 486 { 487 struct dpu_encoder_virt *dpu_enc; 488 struct split_pipe_cfg cfg = { 0 }; 489 struct dpu_hw_mdp *hw_mdptop; 490 struct msm_display_info *disp_info; 491 492 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 493 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 494 return; 495 } 496 497 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 498 hw_mdptop = phys_enc->hw_mdptop; 499 disp_info = &dpu_enc->disp_info; 500 501 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 502 return; 503 504 /** 505 * disable split modes since encoder will be operating in as the only 506 * encoder, either for the entire use case in the case of, for example, 507 * single DSI, or for this frame in the case of left/right only partial 508 * update. 509 */ 510 if (phys_enc->split_role == ENC_ROLE_SOLO) { 511 if (hw_mdptop->ops.setup_split_pipe) 512 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 513 return; 514 } 515 516 cfg.en = true; 517 cfg.mode = phys_enc->intf_mode; 518 cfg.intf = interface; 519 520 if (cfg.en && phys_enc->ops.needs_single_flush && 521 phys_enc->ops.needs_single_flush(phys_enc)) 522 cfg.split_flush_en = true; 523 524 if (phys_enc->split_role == ENC_ROLE_MASTER) { 525 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 526 527 if (hw_mdptop->ops.setup_split_pipe) 528 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 529 } 530 } 531 532 static struct msm_display_topology dpu_encoder_get_topology( 533 struct dpu_encoder_virt *dpu_enc, 534 struct dpu_kms *dpu_kms, 535 struct drm_display_mode *mode) 536 { 537 struct msm_display_topology topology = {0}; 538 int i, intf_count = 0; 539 540 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 541 if (dpu_enc->phys_encs[i]) 542 intf_count++; 543 544 /* Datapath topology selection 545 * 546 * Dual display 547 * 2 LM, 2 INTF ( Split display using 2 interfaces) 548 * 549 * Single display 550 * 1 LM, 1 INTF 551 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 552 * 553 * Adding color blocks only to primary interface if available in 554 * sufficient number 555 */ 556 if (intf_count == 2) 557 topology.num_lm = 2; 558 else if (!dpu_kms->catalog->caps->has_3d_merge) 559 topology.num_lm = 1; 560 else 561 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 562 563 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) { 564 if (dpu_kms->catalog->dspp && 565 (dpu_kms->catalog->dspp_count >= topology.num_lm)) 566 topology.num_dspp = topology.num_lm; 567 } 568 569 topology.num_enc = 0; 570 topology.num_intf = intf_count; 571 572 return topology; 573 } 574 static int dpu_encoder_virt_atomic_check( 575 struct drm_encoder *drm_enc, 576 struct drm_crtc_state *crtc_state, 577 struct drm_connector_state *conn_state) 578 { 579 struct dpu_encoder_virt *dpu_enc; 580 struct msm_drm_private *priv; 581 struct dpu_kms *dpu_kms; 582 const struct drm_display_mode *mode; 583 struct drm_display_mode *adj_mode; 584 struct msm_display_topology topology; 585 struct dpu_global_state *global_state; 586 int i = 0; 587 int ret = 0; 588 589 if (!drm_enc || !crtc_state || !conn_state) { 590 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 591 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 592 return -EINVAL; 593 } 594 595 dpu_enc = to_dpu_encoder_virt(drm_enc); 596 DPU_DEBUG_ENC(dpu_enc, "\n"); 597 598 priv = drm_enc->dev->dev_private; 599 dpu_kms = to_dpu_kms(priv->kms); 600 mode = &crtc_state->mode; 601 adj_mode = &crtc_state->adjusted_mode; 602 global_state = dpu_kms_get_global_state(crtc_state->state); 603 if (IS_ERR(global_state)) 604 return PTR_ERR(global_state); 605 606 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 607 608 /* perform atomic check on the first physical encoder (master) */ 609 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 610 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 611 612 if (phys->ops.atomic_check) 613 ret = phys->ops.atomic_check(phys, crtc_state, 614 conn_state); 615 else if (phys->ops.mode_fixup) 616 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 617 ret = -EINVAL; 618 619 if (ret) { 620 DPU_ERROR_ENC(dpu_enc, 621 "mode unsupported, phys idx %d\n", i); 622 break; 623 } 624 } 625 626 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 627 628 /* Reserve dynamic resources now. */ 629 if (!ret) { 630 /* 631 * Release and Allocate resources on every modeset 632 * Dont allocate when active is false. 633 */ 634 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 635 dpu_rm_release(global_state, drm_enc); 636 637 if (!crtc_state->active_changed || crtc_state->active) 638 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 639 drm_enc, crtc_state, topology); 640 } 641 } 642 643 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 644 645 return ret; 646 } 647 648 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 649 struct msm_display_info *disp_info) 650 { 651 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 652 struct msm_drm_private *priv; 653 struct dpu_kms *dpu_kms; 654 struct dpu_hw_mdp *hw_mdptop; 655 struct drm_encoder *drm_enc; 656 int i; 657 658 if (!dpu_enc || !disp_info) { 659 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 660 dpu_enc != NULL, disp_info != NULL); 661 return; 662 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 663 DPU_ERROR("invalid num phys enc %d/%d\n", 664 dpu_enc->num_phys_encs, 665 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 666 return; 667 } 668 669 drm_enc = &dpu_enc->base; 670 /* this pointers are checked in virt_enable_helper */ 671 priv = drm_enc->dev->dev_private; 672 673 dpu_kms = to_dpu_kms(priv->kms); 674 hw_mdptop = dpu_kms->hw_mdp; 675 if (!hw_mdptop) { 676 DPU_ERROR("invalid mdptop\n"); 677 return; 678 } 679 680 if (hw_mdptop->ops.setup_vsync_source && 681 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 682 for (i = 0; i < dpu_enc->num_phys_encs; i++) 683 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 684 685 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 686 if (disp_info->is_te_using_watchdog_timer) 687 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 688 else 689 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 690 691 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 692 } 693 } 694 695 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 696 { 697 struct dpu_encoder_virt *dpu_enc; 698 int i; 699 700 if (!drm_enc) { 701 DPU_ERROR("invalid encoder\n"); 702 return; 703 } 704 705 dpu_enc = to_dpu_encoder_virt(drm_enc); 706 707 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 708 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 709 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 710 711 if (phys->ops.irq_control) 712 phys->ops.irq_control(phys, enable); 713 } 714 715 } 716 717 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 718 bool enable) 719 { 720 struct msm_drm_private *priv; 721 struct dpu_kms *dpu_kms; 722 struct dpu_encoder_virt *dpu_enc; 723 724 dpu_enc = to_dpu_encoder_virt(drm_enc); 725 priv = drm_enc->dev->dev_private; 726 dpu_kms = to_dpu_kms(priv->kms); 727 728 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 729 730 if (!dpu_enc->cur_master) { 731 DPU_ERROR("encoder master not set\n"); 732 return; 733 } 734 735 if (enable) { 736 /* enable DPU core clks */ 737 pm_runtime_get_sync(&dpu_kms->pdev->dev); 738 739 /* enable all the irq */ 740 _dpu_encoder_irq_control(drm_enc, true); 741 742 } else { 743 /* disable all the irq */ 744 _dpu_encoder_irq_control(drm_enc, false); 745 746 /* disable DPU core clks */ 747 pm_runtime_put_sync(&dpu_kms->pdev->dev); 748 } 749 750 } 751 752 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 753 u32 sw_event) 754 { 755 struct dpu_encoder_virt *dpu_enc; 756 struct msm_drm_private *priv; 757 bool is_vid_mode = false; 758 759 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 760 DPU_ERROR("invalid parameters\n"); 761 return -EINVAL; 762 } 763 dpu_enc = to_dpu_encoder_virt(drm_enc); 764 priv = drm_enc->dev->dev_private; 765 is_vid_mode = dpu_enc->disp_info.capabilities & 766 MSM_DISPLAY_CAP_VID_MODE; 767 768 /* 769 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 770 * events and return early for other events (ie wb display). 771 */ 772 if (!dpu_enc->idle_pc_supported && 773 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 774 sw_event != DPU_ENC_RC_EVENT_STOP && 775 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 776 return 0; 777 778 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 779 dpu_enc->rc_state, "begin"); 780 781 switch (sw_event) { 782 case DPU_ENC_RC_EVENT_KICKOFF: 783 /* cancel delayed off work, if any */ 784 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 785 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 786 sw_event); 787 788 mutex_lock(&dpu_enc->rc_lock); 789 790 /* return if the resource control is already in ON state */ 791 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 792 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 793 DRMID(drm_enc), sw_event); 794 mutex_unlock(&dpu_enc->rc_lock); 795 return 0; 796 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 797 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 798 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 799 DRMID(drm_enc), sw_event, 800 dpu_enc->rc_state); 801 mutex_unlock(&dpu_enc->rc_lock); 802 return -EINVAL; 803 } 804 805 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 806 _dpu_encoder_irq_control(drm_enc, true); 807 else 808 _dpu_encoder_resource_control_helper(drm_enc, true); 809 810 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 811 812 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 813 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 814 "kickoff"); 815 816 mutex_unlock(&dpu_enc->rc_lock); 817 break; 818 819 case DPU_ENC_RC_EVENT_FRAME_DONE: 820 /* 821 * mutex lock is not used as this event happens at interrupt 822 * context. And locking is not required as, the other events 823 * like KICKOFF and STOP does a wait-for-idle before executing 824 * the resource_control 825 */ 826 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 827 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 828 DRMID(drm_enc), sw_event, 829 dpu_enc->rc_state); 830 return -EINVAL; 831 } 832 833 /* 834 * schedule off work item only when there are no 835 * frames pending 836 */ 837 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 838 DRM_DEBUG_KMS("id:%d skip schedule work\n", 839 DRMID(drm_enc)); 840 return 0; 841 } 842 843 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 844 msecs_to_jiffies(dpu_enc->idle_timeout)); 845 846 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 847 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 848 "frame done"); 849 break; 850 851 case DPU_ENC_RC_EVENT_PRE_STOP: 852 /* cancel delayed off work, if any */ 853 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 854 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 855 sw_event); 856 857 mutex_lock(&dpu_enc->rc_lock); 858 859 if (is_vid_mode && 860 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 861 _dpu_encoder_irq_control(drm_enc, true); 862 } 863 /* skip if is already OFF or IDLE, resources are off already */ 864 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 865 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 866 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 867 DRMID(drm_enc), sw_event, 868 dpu_enc->rc_state); 869 mutex_unlock(&dpu_enc->rc_lock); 870 return 0; 871 } 872 873 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 874 875 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 876 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 877 "pre stop"); 878 879 mutex_unlock(&dpu_enc->rc_lock); 880 break; 881 882 case DPU_ENC_RC_EVENT_STOP: 883 mutex_lock(&dpu_enc->rc_lock); 884 885 /* return if the resource control is already in OFF state */ 886 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 887 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 888 DRMID(drm_enc), sw_event); 889 mutex_unlock(&dpu_enc->rc_lock); 890 return 0; 891 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 892 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 893 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 894 mutex_unlock(&dpu_enc->rc_lock); 895 return -EINVAL; 896 } 897 898 /** 899 * expect to arrive here only if in either idle state or pre-off 900 * and in IDLE state the resources are already disabled 901 */ 902 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 903 _dpu_encoder_resource_control_helper(drm_enc, false); 904 905 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 906 907 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 908 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 909 "stop"); 910 911 mutex_unlock(&dpu_enc->rc_lock); 912 break; 913 914 case DPU_ENC_RC_EVENT_ENTER_IDLE: 915 mutex_lock(&dpu_enc->rc_lock); 916 917 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 918 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 919 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 920 mutex_unlock(&dpu_enc->rc_lock); 921 return 0; 922 } 923 924 /* 925 * if we are in ON but a frame was just kicked off, 926 * ignore the IDLE event, it's probably a stale timer event 927 */ 928 if (dpu_enc->frame_busy_mask[0]) { 929 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 930 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 931 mutex_unlock(&dpu_enc->rc_lock); 932 return 0; 933 } 934 935 if (is_vid_mode) 936 _dpu_encoder_irq_control(drm_enc, false); 937 else 938 _dpu_encoder_resource_control_helper(drm_enc, false); 939 940 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 941 942 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 943 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 944 "idle"); 945 946 mutex_unlock(&dpu_enc->rc_lock); 947 break; 948 949 default: 950 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 951 sw_event); 952 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 953 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 954 "error"); 955 break; 956 } 957 958 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 959 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 960 "end"); 961 return 0; 962 } 963 964 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 965 struct drm_display_mode *mode, 966 struct drm_display_mode *adj_mode) 967 { 968 struct dpu_encoder_virt *dpu_enc; 969 struct msm_drm_private *priv; 970 struct dpu_kms *dpu_kms; 971 struct list_head *connector_list; 972 struct drm_connector *conn = NULL, *conn_iter; 973 struct drm_crtc *drm_crtc; 974 struct dpu_crtc_state *cstate; 975 struct dpu_global_state *global_state; 976 struct msm_display_topology topology; 977 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 978 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 979 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 980 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 981 int num_lm, num_ctl, num_pp, num_dspp; 982 int i, j; 983 984 if (!drm_enc) { 985 DPU_ERROR("invalid encoder\n"); 986 return; 987 } 988 989 dpu_enc = to_dpu_encoder_virt(drm_enc); 990 DPU_DEBUG_ENC(dpu_enc, "\n"); 991 992 priv = drm_enc->dev->dev_private; 993 dpu_kms = to_dpu_kms(priv->kms); 994 connector_list = &dpu_kms->dev->mode_config.connector_list; 995 996 global_state = dpu_kms_get_existing_global_state(dpu_kms); 997 if (IS_ERR_OR_NULL(global_state)) { 998 DPU_ERROR("Failed to get global state"); 999 return; 1000 } 1001 1002 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1003 1004 list_for_each_entry(conn_iter, connector_list, head) 1005 if (conn_iter->encoder == drm_enc) 1006 conn = conn_iter; 1007 1008 if (!conn) { 1009 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 1010 return; 1011 } else if (!conn->state) { 1012 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 1013 return; 1014 } 1015 1016 drm_for_each_crtc(drm_crtc, drm_enc->dev) 1017 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 1018 break; 1019 1020 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 1021 1022 /* Query resource that have been reserved in atomic check step. */ 1023 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1024 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 1025 ARRAY_SIZE(hw_pp)); 1026 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1027 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 1028 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1029 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1030 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1031 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 1032 ARRAY_SIZE(hw_dspp)); 1033 1034 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1035 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1036 : NULL; 1037 1038 cstate = to_dpu_crtc_state(drm_crtc->state); 1039 1040 for (i = 0; i < num_lm; i++) { 1041 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1042 1043 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1044 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1045 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1046 } 1047 1048 cstate->num_mixers = num_lm; 1049 1050 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1051 int num_blk; 1052 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC]; 1053 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1054 1055 if (!dpu_enc->hw_pp[i]) { 1056 DPU_ERROR_ENC(dpu_enc, 1057 "no pp block assigned at idx: %d\n", i); 1058 return; 1059 } 1060 1061 if (!hw_ctl[i]) { 1062 DPU_ERROR_ENC(dpu_enc, 1063 "no ctl block assigned at idx: %d\n", i); 1064 return; 1065 } 1066 1067 phys->hw_pp = dpu_enc->hw_pp[i]; 1068 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1069 1070 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm, 1071 global_state, drm_enc->base.id, DPU_HW_BLK_INTF, 1072 hw_blk, ARRAY_SIZE(hw_blk)); 1073 for (j = 0; j < num_blk; j++) { 1074 struct dpu_hw_intf *hw_intf; 1075 1076 hw_intf = to_dpu_hw_intf(hw_blk[i]); 1077 if (hw_intf->idx == phys->intf_idx) 1078 phys->hw_intf = hw_intf; 1079 } 1080 1081 if (!phys->hw_intf) { 1082 DPU_ERROR_ENC(dpu_enc, 1083 "no intf block assigned at idx: %d\n", i); 1084 return; 1085 } 1086 1087 phys->connector = conn->state->connector; 1088 if (phys->ops.mode_set) 1089 phys->ops.mode_set(phys, mode, adj_mode); 1090 } 1091 } 1092 1093 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1094 { 1095 struct dpu_encoder_virt *dpu_enc = NULL; 1096 struct msm_drm_private *priv; 1097 int i; 1098 1099 if (!drm_enc || !drm_enc->dev) { 1100 DPU_ERROR("invalid parameters\n"); 1101 return; 1102 } 1103 1104 priv = drm_enc->dev->dev_private; 1105 1106 dpu_enc = to_dpu_encoder_virt(drm_enc); 1107 if (!dpu_enc || !dpu_enc->cur_master) { 1108 DPU_ERROR("invalid dpu encoder/master\n"); 1109 return; 1110 } 1111 1112 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1113 1114 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1115 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1116 unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc; 1117 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1118 if (!dpu_enc->hw_pp[i]) 1119 continue; 1120 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1121 } 1122 } 1123 } 1124 1125 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1126 { 1127 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1128 1129 mutex_lock(&dpu_enc->enc_lock); 1130 1131 if (!dpu_enc->enabled) 1132 goto out; 1133 1134 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1135 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1136 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1137 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1138 1139 _dpu_encoder_virt_enable_helper(drm_enc); 1140 1141 out: 1142 mutex_unlock(&dpu_enc->enc_lock); 1143 } 1144 1145 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1146 { 1147 struct dpu_encoder_virt *dpu_enc = NULL; 1148 int ret = 0; 1149 struct drm_display_mode *cur_mode = NULL; 1150 1151 if (!drm_enc) { 1152 DPU_ERROR("invalid encoder\n"); 1153 return; 1154 } 1155 dpu_enc = to_dpu_encoder_virt(drm_enc); 1156 1157 mutex_lock(&dpu_enc->enc_lock); 1158 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1159 1160 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1161 cur_mode->vdisplay); 1162 1163 /* always enable slave encoder before master */ 1164 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1165 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1166 1167 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1168 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1169 1170 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1171 if (ret) { 1172 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1173 ret); 1174 goto out; 1175 } 1176 1177 _dpu_encoder_virt_enable_helper(drm_enc); 1178 1179 dpu_enc->enabled = true; 1180 1181 out: 1182 mutex_unlock(&dpu_enc->enc_lock); 1183 } 1184 1185 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1186 { 1187 struct dpu_encoder_virt *dpu_enc = NULL; 1188 struct msm_drm_private *priv; 1189 struct dpu_kms *dpu_kms; 1190 int i = 0; 1191 1192 if (!drm_enc) { 1193 DPU_ERROR("invalid encoder\n"); 1194 return; 1195 } else if (!drm_enc->dev) { 1196 DPU_ERROR("invalid dev\n"); 1197 return; 1198 } 1199 1200 dpu_enc = to_dpu_encoder_virt(drm_enc); 1201 DPU_DEBUG_ENC(dpu_enc, "\n"); 1202 1203 mutex_lock(&dpu_enc->enc_lock); 1204 dpu_enc->enabled = false; 1205 1206 priv = drm_enc->dev->dev_private; 1207 dpu_kms = to_dpu_kms(priv->kms); 1208 1209 trace_dpu_enc_disable(DRMID(drm_enc)); 1210 1211 /* wait for idle */ 1212 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1213 1214 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1215 1216 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1217 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1218 1219 if (phys->ops.disable) 1220 phys->ops.disable(phys); 1221 } 1222 1223 /* after phys waits for frame-done, should be no more frames pending */ 1224 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1225 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1226 del_timer_sync(&dpu_enc->frame_done_timer); 1227 } 1228 1229 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1230 1231 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1232 dpu_enc->phys_encs[i]->connector = NULL; 1233 } 1234 1235 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1236 1237 mutex_unlock(&dpu_enc->enc_lock); 1238 } 1239 1240 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1241 enum dpu_intf_type type, u32 controller_id) 1242 { 1243 int i = 0; 1244 1245 for (i = 0; i < catalog->intf_count; i++) { 1246 if (catalog->intf[i].type == type 1247 && catalog->intf[i].controller_id == controller_id) { 1248 return catalog->intf[i].id; 1249 } 1250 } 1251 1252 return INTF_MAX; 1253 } 1254 1255 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1256 struct dpu_encoder_phys *phy_enc) 1257 { 1258 struct dpu_encoder_virt *dpu_enc = NULL; 1259 unsigned long lock_flags; 1260 1261 if (!drm_enc || !phy_enc) 1262 return; 1263 1264 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1265 dpu_enc = to_dpu_encoder_virt(drm_enc); 1266 1267 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1268 if (dpu_enc->crtc) 1269 dpu_crtc_vblank_callback(dpu_enc->crtc); 1270 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1271 1272 atomic_inc(&phy_enc->vsync_cnt); 1273 DPU_ATRACE_END("encoder_vblank_callback"); 1274 } 1275 1276 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1277 struct dpu_encoder_phys *phy_enc) 1278 { 1279 if (!phy_enc) 1280 return; 1281 1282 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1283 atomic_inc(&phy_enc->underrun_cnt); 1284 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1285 atomic_read(&phy_enc->underrun_cnt)); 1286 DPU_ATRACE_END("encoder_underrun_callback"); 1287 } 1288 1289 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1290 { 1291 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1292 unsigned long lock_flags; 1293 1294 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1295 /* crtc should always be cleared before re-assigning */ 1296 WARN_ON(crtc && dpu_enc->crtc); 1297 dpu_enc->crtc = crtc; 1298 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1299 } 1300 1301 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1302 struct drm_crtc *crtc, bool enable) 1303 { 1304 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1305 unsigned long lock_flags; 1306 int i; 1307 1308 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1309 1310 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1311 if (dpu_enc->crtc != crtc) { 1312 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1313 return; 1314 } 1315 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1316 1317 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1318 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1319 1320 if (phys->ops.control_vblank_irq) 1321 phys->ops.control_vblank_irq(phys, enable); 1322 } 1323 } 1324 1325 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1326 void (*frame_event_cb)(void *, u32 event), 1327 void *frame_event_cb_data) 1328 { 1329 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1330 unsigned long lock_flags; 1331 bool enable; 1332 1333 enable = frame_event_cb ? true : false; 1334 1335 if (!drm_enc) { 1336 DPU_ERROR("invalid encoder\n"); 1337 return; 1338 } 1339 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1340 1341 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1342 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1343 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1344 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1345 } 1346 1347 static void dpu_encoder_frame_done_callback( 1348 struct drm_encoder *drm_enc, 1349 struct dpu_encoder_phys *ready_phys, u32 event) 1350 { 1351 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1352 unsigned int i; 1353 1354 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1355 | DPU_ENCODER_FRAME_EVENT_ERROR 1356 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1357 1358 if (!dpu_enc->frame_busy_mask[0]) { 1359 /** 1360 * suppress frame_done without waiter, 1361 * likely autorefresh 1362 */ 1363 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1364 event, ready_phys->intf_idx); 1365 return; 1366 } 1367 1368 /* One of the physical encoders has become idle */ 1369 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1370 if (dpu_enc->phys_encs[i] == ready_phys) { 1371 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1372 dpu_enc->frame_busy_mask[0]); 1373 clear_bit(i, dpu_enc->frame_busy_mask); 1374 } 1375 } 1376 1377 if (!dpu_enc->frame_busy_mask[0]) { 1378 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1379 del_timer(&dpu_enc->frame_done_timer); 1380 1381 dpu_encoder_resource_control(drm_enc, 1382 DPU_ENC_RC_EVENT_FRAME_DONE); 1383 1384 if (dpu_enc->crtc_frame_event_cb) 1385 dpu_enc->crtc_frame_event_cb( 1386 dpu_enc->crtc_frame_event_cb_data, 1387 event); 1388 } 1389 } else { 1390 if (dpu_enc->crtc_frame_event_cb) 1391 dpu_enc->crtc_frame_event_cb( 1392 dpu_enc->crtc_frame_event_cb_data, event); 1393 } 1394 } 1395 1396 static void dpu_encoder_off_work(struct work_struct *work) 1397 { 1398 struct dpu_encoder_virt *dpu_enc = container_of(work, 1399 struct dpu_encoder_virt, delayed_off_work.work); 1400 1401 if (!dpu_enc) { 1402 DPU_ERROR("invalid dpu encoder\n"); 1403 return; 1404 } 1405 1406 dpu_encoder_resource_control(&dpu_enc->base, 1407 DPU_ENC_RC_EVENT_ENTER_IDLE); 1408 1409 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1410 DPU_ENCODER_FRAME_EVENT_IDLE); 1411 } 1412 1413 /** 1414 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1415 * drm_enc: Pointer to drm encoder structure 1416 * phys: Pointer to physical encoder structure 1417 * extra_flush_bits: Additional bit mask to include in flush trigger 1418 */ 1419 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1420 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1421 { 1422 struct dpu_hw_ctl *ctl; 1423 int pending_kickoff_cnt; 1424 u32 ret = UINT_MAX; 1425 1426 if (!phys->hw_pp) { 1427 DPU_ERROR("invalid pingpong hw\n"); 1428 return; 1429 } 1430 1431 ctl = phys->hw_ctl; 1432 if (!ctl->ops.trigger_flush) { 1433 DPU_ERROR("missing trigger cb\n"); 1434 return; 1435 } 1436 1437 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1438 1439 if (extra_flush_bits && ctl->ops.update_pending_flush) 1440 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1441 1442 ctl->ops.trigger_flush(ctl); 1443 1444 if (ctl->ops.get_pending_flush) 1445 ret = ctl->ops.get_pending_flush(ctl); 1446 1447 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1448 pending_kickoff_cnt, ctl->idx, 1449 extra_flush_bits, ret); 1450 } 1451 1452 /** 1453 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1454 * phys: Pointer to physical encoder structure 1455 */ 1456 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1457 { 1458 if (!phys) { 1459 DPU_ERROR("invalid argument(s)\n"); 1460 return; 1461 } 1462 1463 if (!phys->hw_pp) { 1464 DPU_ERROR("invalid pingpong hw\n"); 1465 return; 1466 } 1467 1468 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1469 phys->ops.trigger_start(phys); 1470 } 1471 1472 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1473 { 1474 struct dpu_hw_ctl *ctl; 1475 1476 ctl = phys_enc->hw_ctl; 1477 if (ctl->ops.trigger_start) { 1478 ctl->ops.trigger_start(ctl); 1479 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1480 } 1481 } 1482 1483 static int dpu_encoder_helper_wait_event_timeout( 1484 int32_t drm_id, 1485 int32_t hw_id, 1486 struct dpu_encoder_wait_info *info) 1487 { 1488 int rc = 0; 1489 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1490 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1491 s64 time; 1492 1493 do { 1494 rc = wait_event_timeout(*(info->wq), 1495 atomic_read(info->atomic_cnt) == 0, jiffies); 1496 time = ktime_to_ms(ktime_get()); 1497 1498 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1499 expected_time, 1500 atomic_read(info->atomic_cnt)); 1501 /* If we timed out, counter is valid and time is less, wait again */ 1502 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1503 (time < expected_time)); 1504 1505 return rc; 1506 } 1507 1508 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1509 { 1510 struct dpu_encoder_virt *dpu_enc; 1511 struct dpu_hw_ctl *ctl; 1512 int rc; 1513 1514 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1515 ctl = phys_enc->hw_ctl; 1516 1517 if (!ctl->ops.reset) 1518 return; 1519 1520 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1521 ctl->idx); 1522 1523 rc = ctl->ops.reset(ctl); 1524 if (rc) 1525 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1526 1527 phys_enc->enable_state = DPU_ENC_ENABLED; 1528 } 1529 1530 /** 1531 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1532 * Iterate through the physical encoders and perform consolidated flush 1533 * and/or control start triggering as needed. This is done in the virtual 1534 * encoder rather than the individual physical ones in order to handle 1535 * use cases that require visibility into multiple physical encoders at 1536 * a time. 1537 * dpu_enc: Pointer to virtual encoder structure 1538 */ 1539 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1540 { 1541 struct dpu_hw_ctl *ctl; 1542 uint32_t i, pending_flush; 1543 unsigned long lock_flags; 1544 1545 pending_flush = 0x0; 1546 1547 /* update pending counts and trigger kickoff ctl flush atomically */ 1548 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1549 1550 /* don't perform flush/start operations for slave encoders */ 1551 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1552 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1553 1554 if (phys->enable_state == DPU_ENC_DISABLED) 1555 continue; 1556 1557 ctl = phys->hw_ctl; 1558 1559 /* 1560 * This is cleared in frame_done worker, which isn't invoked 1561 * for async commits. So don't set this for async, since it'll 1562 * roll over to the next commit. 1563 */ 1564 if (phys->split_role != ENC_ROLE_SLAVE) 1565 set_bit(i, dpu_enc->frame_busy_mask); 1566 1567 if (!phys->ops.needs_single_flush || 1568 !phys->ops.needs_single_flush(phys)) 1569 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1570 else if (ctl->ops.get_pending_flush) 1571 pending_flush |= ctl->ops.get_pending_flush(ctl); 1572 } 1573 1574 /* for split flush, combine pending flush masks and send to master */ 1575 if (pending_flush && dpu_enc->cur_master) { 1576 _dpu_encoder_trigger_flush( 1577 &dpu_enc->base, 1578 dpu_enc->cur_master, 1579 pending_flush); 1580 } 1581 1582 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1583 1584 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1585 } 1586 1587 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1588 { 1589 struct dpu_encoder_virt *dpu_enc; 1590 struct dpu_encoder_phys *phys; 1591 unsigned int i; 1592 struct dpu_hw_ctl *ctl; 1593 struct msm_display_info *disp_info; 1594 1595 if (!drm_enc) { 1596 DPU_ERROR("invalid encoder\n"); 1597 return; 1598 } 1599 dpu_enc = to_dpu_encoder_virt(drm_enc); 1600 disp_info = &dpu_enc->disp_info; 1601 1602 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1603 phys = dpu_enc->phys_encs[i]; 1604 1605 ctl = phys->hw_ctl; 1606 if (ctl->ops.clear_pending_flush) 1607 ctl->ops.clear_pending_flush(ctl); 1608 1609 /* update only for command mode primary ctl */ 1610 if ((phys == dpu_enc->cur_master) && 1611 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1612 && ctl->ops.trigger_pending) 1613 ctl->ops.trigger_pending(ctl); 1614 } 1615 } 1616 1617 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1618 struct drm_display_mode *mode) 1619 { 1620 u64 pclk_rate; 1621 u32 pclk_period; 1622 u32 line_time; 1623 1624 /* 1625 * For linetime calculation, only operate on master encoder. 1626 */ 1627 if (!dpu_enc->cur_master) 1628 return 0; 1629 1630 if (!dpu_enc->cur_master->ops.get_line_count) { 1631 DPU_ERROR("get_line_count function not defined\n"); 1632 return 0; 1633 } 1634 1635 pclk_rate = mode->clock; /* pixel clock in kHz */ 1636 if (pclk_rate == 0) { 1637 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1638 return 0; 1639 } 1640 1641 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1642 if (pclk_period == 0) { 1643 DPU_ERROR("pclk period is 0\n"); 1644 return 0; 1645 } 1646 1647 /* 1648 * Line time calculation based on Pixel clock and HTOTAL. 1649 * Final unit is in ns. 1650 */ 1651 line_time = (pclk_period * mode->htotal) / 1000; 1652 if (line_time == 0) { 1653 DPU_ERROR("line time calculation is 0\n"); 1654 return 0; 1655 } 1656 1657 DPU_DEBUG_ENC(dpu_enc, 1658 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1659 pclk_rate, pclk_period, line_time); 1660 1661 return line_time; 1662 } 1663 1664 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1665 { 1666 struct drm_display_mode *mode; 1667 struct dpu_encoder_virt *dpu_enc; 1668 u32 cur_line; 1669 u32 line_time; 1670 u32 vtotal, time_to_vsync; 1671 ktime_t cur_time; 1672 1673 dpu_enc = to_dpu_encoder_virt(drm_enc); 1674 1675 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1676 DPU_ERROR("crtc/crtc state object is NULL\n"); 1677 return -EINVAL; 1678 } 1679 mode = &drm_enc->crtc->state->adjusted_mode; 1680 1681 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1682 if (!line_time) 1683 return -EINVAL; 1684 1685 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1686 1687 vtotal = mode->vtotal; 1688 if (cur_line >= vtotal) 1689 time_to_vsync = line_time * vtotal; 1690 else 1691 time_to_vsync = line_time * (vtotal - cur_line); 1692 1693 if (time_to_vsync == 0) { 1694 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1695 vtotal); 1696 return -EINVAL; 1697 } 1698 1699 cur_time = ktime_get(); 1700 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1701 1702 DPU_DEBUG_ENC(dpu_enc, 1703 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1704 cur_line, vtotal, time_to_vsync, 1705 ktime_to_ms(cur_time), 1706 ktime_to_ms(*wakeup_time)); 1707 return 0; 1708 } 1709 1710 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1711 { 1712 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1713 vsync_event_timer); 1714 struct drm_encoder *drm_enc = &dpu_enc->base; 1715 struct msm_drm_private *priv; 1716 struct msm_drm_thread *event_thread; 1717 1718 if (!drm_enc->dev || !drm_enc->crtc) { 1719 DPU_ERROR("invalid parameters\n"); 1720 return; 1721 } 1722 1723 priv = drm_enc->dev->dev_private; 1724 1725 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1726 DPU_ERROR("invalid crtc index\n"); 1727 return; 1728 } 1729 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1730 if (!event_thread) { 1731 DPU_ERROR("event_thread not found for crtc:%d\n", 1732 drm_enc->crtc->index); 1733 return; 1734 } 1735 1736 del_timer(&dpu_enc->vsync_event_timer); 1737 } 1738 1739 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1740 { 1741 struct dpu_encoder_virt *dpu_enc = container_of(work, 1742 struct dpu_encoder_virt, vsync_event_work); 1743 ktime_t wakeup_time; 1744 1745 if (!dpu_enc) { 1746 DPU_ERROR("invalid dpu encoder\n"); 1747 return; 1748 } 1749 1750 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1751 return; 1752 1753 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1754 mod_timer(&dpu_enc->vsync_event_timer, 1755 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1756 } 1757 1758 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1759 { 1760 struct dpu_encoder_virt *dpu_enc; 1761 struct dpu_encoder_phys *phys; 1762 bool needs_hw_reset = false; 1763 unsigned int i; 1764 1765 dpu_enc = to_dpu_encoder_virt(drm_enc); 1766 1767 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1768 1769 /* prepare for next kickoff, may include waiting on previous kickoff */ 1770 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1771 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1772 phys = dpu_enc->phys_encs[i]; 1773 if (phys->ops.prepare_for_kickoff) 1774 phys->ops.prepare_for_kickoff(phys); 1775 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1776 needs_hw_reset = true; 1777 } 1778 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1779 1780 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1781 1782 /* if any phys needs reset, reset all phys, in-order */ 1783 if (needs_hw_reset) { 1784 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1785 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1786 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1787 } 1788 } 1789 } 1790 1791 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1792 { 1793 struct dpu_encoder_virt *dpu_enc; 1794 struct dpu_encoder_phys *phys; 1795 ktime_t wakeup_time; 1796 unsigned long timeout_ms; 1797 unsigned int i; 1798 1799 DPU_ATRACE_BEGIN("encoder_kickoff"); 1800 dpu_enc = to_dpu_encoder_virt(drm_enc); 1801 1802 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1803 1804 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1805 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1806 1807 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1808 mod_timer(&dpu_enc->frame_done_timer, 1809 jiffies + msecs_to_jiffies(timeout_ms)); 1810 1811 /* All phys encs are ready to go, trigger the kickoff */ 1812 _dpu_encoder_kickoff_phys(dpu_enc); 1813 1814 /* allow phys encs to handle any post-kickoff business */ 1815 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1816 phys = dpu_enc->phys_encs[i]; 1817 if (phys->ops.handle_post_kickoff) 1818 phys->ops.handle_post_kickoff(phys); 1819 } 1820 1821 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1822 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1823 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1824 ktime_to_ms(wakeup_time)); 1825 mod_timer(&dpu_enc->vsync_event_timer, 1826 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1827 } 1828 1829 DPU_ATRACE_END("encoder_kickoff"); 1830 } 1831 1832 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1833 { 1834 struct dpu_encoder_virt *dpu_enc; 1835 struct dpu_encoder_phys *phys; 1836 int i; 1837 1838 if (!drm_enc) { 1839 DPU_ERROR("invalid encoder\n"); 1840 return; 1841 } 1842 dpu_enc = to_dpu_encoder_virt(drm_enc); 1843 1844 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1845 phys = dpu_enc->phys_encs[i]; 1846 if (phys->ops.prepare_commit) 1847 phys->ops.prepare_commit(phys); 1848 } 1849 } 1850 1851 #ifdef CONFIG_DEBUG_FS 1852 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1853 { 1854 struct dpu_encoder_virt *dpu_enc = s->private; 1855 int i; 1856 1857 mutex_lock(&dpu_enc->enc_lock); 1858 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1859 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1860 1861 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1862 phys->intf_idx - INTF_0, 1863 atomic_read(&phys->vsync_cnt), 1864 atomic_read(&phys->underrun_cnt)); 1865 1866 switch (phys->intf_mode) { 1867 case INTF_MODE_VIDEO: 1868 seq_puts(s, "mode: video\n"); 1869 break; 1870 case INTF_MODE_CMD: 1871 seq_puts(s, "mode: command\n"); 1872 break; 1873 default: 1874 seq_puts(s, "mode: ???\n"); 1875 break; 1876 } 1877 } 1878 mutex_unlock(&dpu_enc->enc_lock); 1879 1880 return 0; 1881 } 1882 1883 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1884 struct file *file) 1885 { 1886 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1887 } 1888 1889 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1890 { 1891 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1892 int i; 1893 1894 static const struct file_operations debugfs_status_fops = { 1895 .open = _dpu_encoder_debugfs_status_open, 1896 .read = seq_read, 1897 .llseek = seq_lseek, 1898 .release = single_release, 1899 }; 1900 1901 char name[DPU_NAME_SIZE]; 1902 1903 if (!drm_enc->dev) { 1904 DPU_ERROR("invalid encoder or kms\n"); 1905 return -EINVAL; 1906 } 1907 1908 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1909 1910 /* create overall sub-directory for the encoder */ 1911 dpu_enc->debugfs_root = debugfs_create_dir(name, 1912 drm_enc->dev->primary->debugfs_root); 1913 1914 /* don't error check these */ 1915 debugfs_create_file("status", 0600, 1916 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1917 1918 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1919 if (dpu_enc->phys_encs[i]->ops.late_register) 1920 dpu_enc->phys_encs[i]->ops.late_register( 1921 dpu_enc->phys_encs[i], 1922 dpu_enc->debugfs_root); 1923 1924 return 0; 1925 } 1926 #else 1927 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1928 { 1929 return 0; 1930 } 1931 #endif 1932 1933 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1934 { 1935 return _dpu_encoder_init_debugfs(encoder); 1936 } 1937 1938 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1939 { 1940 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1941 1942 debugfs_remove_recursive(dpu_enc->debugfs_root); 1943 } 1944 1945 static int dpu_encoder_virt_add_phys_encs( 1946 u32 display_caps, 1947 struct dpu_encoder_virt *dpu_enc, 1948 struct dpu_enc_phys_init_params *params) 1949 { 1950 struct dpu_encoder_phys *enc = NULL; 1951 1952 DPU_DEBUG_ENC(dpu_enc, "\n"); 1953 1954 /* 1955 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1956 * in this function, check up-front. 1957 */ 1958 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1959 ARRAY_SIZE(dpu_enc->phys_encs)) { 1960 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1961 dpu_enc->num_phys_encs); 1962 return -EINVAL; 1963 } 1964 1965 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1966 enc = dpu_encoder_phys_vid_init(params); 1967 1968 if (IS_ERR_OR_NULL(enc)) { 1969 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1970 PTR_ERR(enc)); 1971 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1972 } 1973 1974 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1975 ++dpu_enc->num_phys_encs; 1976 } 1977 1978 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1979 enc = dpu_encoder_phys_cmd_init(params); 1980 1981 if (IS_ERR_OR_NULL(enc)) { 1982 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1983 PTR_ERR(enc)); 1984 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1985 } 1986 1987 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1988 ++dpu_enc->num_phys_encs; 1989 } 1990 1991 if (params->split_role == ENC_ROLE_SLAVE) 1992 dpu_enc->cur_slave = enc; 1993 else 1994 dpu_enc->cur_master = enc; 1995 1996 return 0; 1997 } 1998 1999 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2000 .handle_vblank_virt = dpu_encoder_vblank_callback, 2001 .handle_underrun_virt = dpu_encoder_underrun_callback, 2002 .handle_frame_done = dpu_encoder_frame_done_callback, 2003 }; 2004 2005 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2006 struct dpu_kms *dpu_kms, 2007 struct msm_display_info *disp_info) 2008 { 2009 int ret = 0; 2010 int i = 0; 2011 enum dpu_intf_type intf_type; 2012 struct dpu_enc_phys_init_params phys_params; 2013 2014 if (!dpu_enc) { 2015 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 2016 return -EINVAL; 2017 } 2018 2019 dpu_enc->cur_master = NULL; 2020 2021 memset(&phys_params, 0, sizeof(phys_params)); 2022 phys_params.dpu_kms = dpu_kms; 2023 phys_params.parent = &dpu_enc->base; 2024 phys_params.parent_ops = &dpu_encoder_parent_ops; 2025 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2026 2027 DPU_DEBUG("\n"); 2028 2029 switch (disp_info->intf_type) { 2030 case DRM_MODE_ENCODER_DSI: 2031 intf_type = INTF_DSI; 2032 break; 2033 default: 2034 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2035 return -EINVAL; 2036 } 2037 2038 WARN_ON(disp_info->num_of_h_tiles < 1); 2039 2040 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2041 2042 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2043 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2044 dpu_enc->idle_pc_supported = 2045 dpu_kms->catalog->caps->has_idle_pc; 2046 2047 mutex_lock(&dpu_enc->enc_lock); 2048 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2049 /* 2050 * Left-most tile is at index 0, content is controller id 2051 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2052 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2053 */ 2054 u32 controller_id = disp_info->h_tile_instance[i]; 2055 2056 if (disp_info->num_of_h_tiles > 1) { 2057 if (i == 0) 2058 phys_params.split_role = ENC_ROLE_MASTER; 2059 else 2060 phys_params.split_role = ENC_ROLE_SLAVE; 2061 } else { 2062 phys_params.split_role = ENC_ROLE_SOLO; 2063 } 2064 2065 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2066 i, controller_id, phys_params.split_role); 2067 2068 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2069 intf_type, 2070 controller_id); 2071 if (phys_params.intf_idx == INTF_MAX) { 2072 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2073 intf_type, controller_id); 2074 ret = -EINVAL; 2075 } 2076 2077 if (!ret) { 2078 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2079 dpu_enc, 2080 &phys_params); 2081 if (ret) 2082 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2083 } 2084 } 2085 2086 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2087 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2088 atomic_set(&phys->vsync_cnt, 0); 2089 atomic_set(&phys->underrun_cnt, 0); 2090 } 2091 mutex_unlock(&dpu_enc->enc_lock); 2092 2093 return ret; 2094 } 2095 2096 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2097 { 2098 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2099 frame_done_timer); 2100 struct drm_encoder *drm_enc = &dpu_enc->base; 2101 u32 event; 2102 2103 if (!drm_enc->dev) { 2104 DPU_ERROR("invalid parameters\n"); 2105 return; 2106 } 2107 2108 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2109 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2110 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2111 return; 2112 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2113 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2114 return; 2115 } 2116 2117 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2118 2119 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2120 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2121 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2122 } 2123 2124 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2125 .mode_set = dpu_encoder_virt_mode_set, 2126 .disable = dpu_encoder_virt_disable, 2127 .enable = dpu_kms_encoder_enable, 2128 .atomic_check = dpu_encoder_virt_atomic_check, 2129 2130 /* This is called by dpu_kms_encoder_enable */ 2131 .commit = dpu_encoder_virt_enable, 2132 }; 2133 2134 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2135 .destroy = dpu_encoder_destroy, 2136 .late_register = dpu_encoder_late_register, 2137 .early_unregister = dpu_encoder_early_unregister, 2138 }; 2139 2140 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2141 struct msm_display_info *disp_info) 2142 { 2143 struct msm_drm_private *priv = dev->dev_private; 2144 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2145 struct drm_encoder *drm_enc = NULL; 2146 struct dpu_encoder_virt *dpu_enc = NULL; 2147 int ret = 0; 2148 2149 dpu_enc = to_dpu_encoder_virt(enc); 2150 2151 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2152 if (ret) 2153 goto fail; 2154 2155 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2156 timer_setup(&dpu_enc->frame_done_timer, 2157 dpu_encoder_frame_done_timeout, 0); 2158 2159 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2160 timer_setup(&dpu_enc->vsync_event_timer, 2161 dpu_encoder_vsync_event_handler, 2162 0); 2163 2164 2165 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2166 dpu_encoder_off_work); 2167 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2168 2169 kthread_init_work(&dpu_enc->vsync_event_work, 2170 dpu_encoder_vsync_event_work_handler); 2171 2172 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2173 2174 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2175 2176 return ret; 2177 2178 fail: 2179 DPU_ERROR("failed to create encoder\n"); 2180 if (drm_enc) 2181 dpu_encoder_destroy(drm_enc); 2182 2183 return ret; 2184 2185 2186 } 2187 2188 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2189 int drm_enc_mode) 2190 { 2191 struct dpu_encoder_virt *dpu_enc = NULL; 2192 int rc = 0; 2193 2194 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2195 if (!dpu_enc) 2196 return ERR_PTR(-ENOMEM); 2197 2198 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2199 drm_enc_mode, NULL); 2200 if (rc) { 2201 devm_kfree(dev->dev, dpu_enc); 2202 return ERR_PTR(rc); 2203 } 2204 2205 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2206 2207 spin_lock_init(&dpu_enc->enc_spinlock); 2208 dpu_enc->enabled = false; 2209 mutex_init(&dpu_enc->enc_lock); 2210 mutex_init(&dpu_enc->rc_lock); 2211 2212 return &dpu_enc->base; 2213 } 2214 2215 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2216 enum msm_event_wait event) 2217 { 2218 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2219 struct dpu_encoder_virt *dpu_enc = NULL; 2220 int i, ret = 0; 2221 2222 if (!drm_enc) { 2223 DPU_ERROR("invalid encoder\n"); 2224 return -EINVAL; 2225 } 2226 dpu_enc = to_dpu_encoder_virt(drm_enc); 2227 DPU_DEBUG_ENC(dpu_enc, "\n"); 2228 2229 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2230 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2231 2232 switch (event) { 2233 case MSM_ENC_COMMIT_DONE: 2234 fn_wait = phys->ops.wait_for_commit_done; 2235 break; 2236 case MSM_ENC_TX_COMPLETE: 2237 fn_wait = phys->ops.wait_for_tx_complete; 2238 break; 2239 case MSM_ENC_VBLANK: 2240 fn_wait = phys->ops.wait_for_vblank; 2241 break; 2242 default: 2243 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2244 event); 2245 return -EINVAL; 2246 } 2247 2248 if (fn_wait) { 2249 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2250 ret = fn_wait(phys); 2251 DPU_ATRACE_END("wait_for_completion_event"); 2252 if (ret) 2253 return ret; 2254 } 2255 } 2256 2257 return ret; 2258 } 2259 2260 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2261 { 2262 struct dpu_encoder_virt *dpu_enc = NULL; 2263 2264 if (!encoder) { 2265 DPU_ERROR("invalid encoder\n"); 2266 return INTF_MODE_NONE; 2267 } 2268 dpu_enc = to_dpu_encoder_virt(encoder); 2269 2270 if (dpu_enc->cur_master) 2271 return dpu_enc->cur_master->intf_mode; 2272 2273 if (dpu_enc->num_phys_encs) 2274 return dpu_enc->phys_encs[0]->intf_mode; 2275 2276 return INTF_MODE_NONE; 2277 } 2278