1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/kthread.h> 10 #include <linux/debugfs.h> 11 #include <linux/seq_file.h> 12 13 #include "msm_drv.h" 14 #include "dpu_kms.h" 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_probe_helper.h> 17 #include "dpu_hwio.h" 18 #include "dpu_hw_catalog.h" 19 #include "dpu_hw_intf.h" 20 #include "dpu_hw_ctl.h" 21 #include "dpu_formats.h" 22 #include "dpu_encoder_phys.h" 23 #include "dpu_crtc.h" 24 #include "dpu_trace.h" 25 #include "dpu_core_irq.h" 26 27 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 28 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 29 30 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 32 33 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 34 (p) ? (p)->parent->base.id : -1, \ 35 (p) ? (p)->intf_idx - INTF_0 : -1, \ 36 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 37 ##__VA_ARGS__) 38 39 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 40 (p) ? (p)->parent->base.id : -1, \ 41 (p) ? (p)->intf_idx - INTF_0 : -1, \ 42 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 43 ##__VA_ARGS__) 44 45 /* 46 * Two to anticipate panels that can do cmd/vid dynamic switching 47 * plan is to create all possible physical encoder types, and switch between 48 * them at runtime 49 */ 50 #define NUM_PHYS_ENCODER_TYPES 2 51 52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 53 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 54 55 #define MAX_CHANNELS_PER_ENC 2 56 57 #define IDLE_SHORT_TIMEOUT 1 58 59 #define MAX_VDISPLAY_SPLIT 1080 60 61 /* timeout in frames waiting for frame done */ 62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 63 64 /** 65 * enum dpu_enc_rc_events - events for resource control state machine 66 * @DPU_ENC_RC_EVENT_KICKOFF: 67 * This event happens at NORMAL priority. 68 * Event that signals the start of the transfer. When this event is 69 * received, enable MDP/DSI core clocks. Regardless of the previous 70 * state, the resource should be in ON state at the end of this event. 71 * @DPU_ENC_RC_EVENT_FRAME_DONE: 72 * This event happens at INTERRUPT level. 73 * Event signals the end of the data transfer after the PP FRAME_DONE 74 * event. At the end of this event, a delayed work is scheduled to go to 75 * IDLE_PC state after IDLE_TIMEOUT time. 76 * @DPU_ENC_RC_EVENT_PRE_STOP: 77 * This event happens at NORMAL priority. 78 * This event, when received during the ON state, leave the RC STATE 79 * in the PRE_OFF state. It should be followed by the STOP event as 80 * part of encoder disable. 81 * If received during IDLE or OFF states, it will do nothing. 82 * @DPU_ENC_RC_EVENT_STOP: 83 * This event happens at NORMAL priority. 84 * When this event is received, disable all the MDP/DSI core clocks, and 85 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 86 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 87 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 88 * Resource state should be in OFF at the end of the event. 89 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 90 * This event happens at NORMAL priority from a work item. 91 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 92 * This would disable MDP/DSI core clocks and change the resource state 93 * to IDLE. 94 */ 95 enum dpu_enc_rc_events { 96 DPU_ENC_RC_EVENT_KICKOFF = 1, 97 DPU_ENC_RC_EVENT_FRAME_DONE, 98 DPU_ENC_RC_EVENT_PRE_STOP, 99 DPU_ENC_RC_EVENT_STOP, 100 DPU_ENC_RC_EVENT_ENTER_IDLE 101 }; 102 103 /* 104 * enum dpu_enc_rc_states - states that the resource control maintains 105 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 106 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 107 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 108 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 109 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 110 */ 111 enum dpu_enc_rc_states { 112 DPU_ENC_RC_STATE_OFF, 113 DPU_ENC_RC_STATE_PRE_OFF, 114 DPU_ENC_RC_STATE_ON, 115 DPU_ENC_RC_STATE_IDLE 116 }; 117 118 /** 119 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 120 * encoders. Virtual encoder manages one "logical" display. Physical 121 * encoders manage one intf block, tied to a specific panel/sub-panel. 122 * Virtual encoder defers as much as possible to the physical encoders. 123 * Virtual encoder registers itself with the DRM Framework as the encoder. 124 * @base: drm_encoder base class for registration with DRM 125 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 126 * @bus_scaling_client: Client handle to the bus scaling interface 127 * @enabled: True if the encoder is active, protected by enc_lock 128 * @num_phys_encs: Actual number of physical encoders contained. 129 * @phys_encs: Container of physical encoders managed. 130 * @cur_master: Pointer to the current master in this mode. Optimization 131 * Only valid after enable. Cleared as disable. 132 * @hw_pp Handle to the pingpong blocks used for the display. No. 133 * pingpong blocks can be different than num_phys_encs. 134 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 135 * for partial update right-only cases, such as pingpong 136 * split where virtual pingpong does not generate IRQs 137 * @crtc: Pointer to the currently assigned crtc. Normally you 138 * would use crtc->state->encoder_mask to determine the 139 * link between encoder/crtc. However in this case we need 140 * to track crtc in the disable() hook which is called 141 * _after_ encoder_mask is cleared. 142 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 143 * all CTL paths 144 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 145 * @debugfs_root: Debug file system root file node 146 * @enc_lock: Lock around physical encoder 147 * create/destroy/enable/disable 148 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 149 * busy processing current command. 150 * Bit0 = phys_encs[0] etc. 151 * @crtc_frame_event_cb: callback handler for frame event 152 * @crtc_frame_event_cb_data: callback handler private data 153 * @frame_done_timeout_ms: frame done timeout in ms 154 * @frame_done_timer: watchdog timer for frame done event 155 * @vsync_event_timer: vsync timer 156 * @disp_info: local copy of msm_display_info struct 157 * @idle_pc_supported: indicate if idle power collaps is supported 158 * @rc_lock: resource control mutex lock to protect 159 * virt encoder over various state changes 160 * @rc_state: resource controller state 161 * @delayed_off_work: delayed worker to schedule disabling of 162 * clks and resources after IDLE_TIMEOUT time. 163 * @vsync_event_work: worker to handle vsync event for autorefresh 164 * @topology: topology of the display 165 * @mode_set_complete: flag to indicate modeset completion 166 * @idle_timeout: idle timeout duration in milliseconds 167 */ 168 struct dpu_encoder_virt { 169 struct drm_encoder base; 170 spinlock_t enc_spinlock; 171 uint32_t bus_scaling_client; 172 173 bool enabled; 174 175 unsigned int num_phys_encs; 176 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 177 struct dpu_encoder_phys *cur_master; 178 struct dpu_encoder_phys *cur_slave; 179 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 180 181 bool intfs_swapped; 182 183 struct drm_crtc *crtc; 184 185 struct dentry *debugfs_root; 186 struct mutex enc_lock; 187 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 188 void (*crtc_frame_event_cb)(void *, u32 event); 189 void *crtc_frame_event_cb_data; 190 191 atomic_t frame_done_timeout_ms; 192 struct timer_list frame_done_timer; 193 struct timer_list vsync_event_timer; 194 195 struct msm_display_info disp_info; 196 197 bool idle_pc_supported; 198 struct mutex rc_lock; 199 enum dpu_enc_rc_states rc_state; 200 struct delayed_work delayed_off_work; 201 struct kthread_work vsync_event_work; 202 struct msm_display_topology topology; 203 bool mode_set_complete; 204 205 u32 idle_timeout; 206 }; 207 208 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 209 210 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 211 enum dpu_intr_idx intr_idx) 212 { 213 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 214 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 215 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 216 217 if (phys_enc->parent_ops->handle_frame_done) 218 phys_enc->parent_ops->handle_frame_done( 219 phys_enc->parent, phys_enc, 220 DPU_ENCODER_FRAME_EVENT_ERROR); 221 } 222 223 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 224 int32_t hw_id, struct dpu_encoder_wait_info *info); 225 226 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 227 enum dpu_intr_idx intr_idx, 228 struct dpu_encoder_wait_info *wait_info) 229 { 230 struct dpu_encoder_irq *irq; 231 u32 irq_status; 232 int ret; 233 234 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 235 DPU_ERROR("invalid params\n"); 236 return -EINVAL; 237 } 238 irq = &phys_enc->irq[intr_idx]; 239 240 /* note: do master / slave checking outside */ 241 242 /* return EWOULDBLOCK since we know the wait isn't necessary */ 243 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 244 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 245 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 246 irq->irq_idx); 247 return -EWOULDBLOCK; 248 } 249 250 if (irq->irq_idx < 0) { 251 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 252 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 253 irq->name); 254 return 0; 255 } 256 257 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 258 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 259 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 260 atomic_read(wait_info->atomic_cnt)); 261 262 ret = dpu_encoder_helper_wait_event_timeout( 263 DRMID(phys_enc->parent), 264 irq->hw_idx, 265 wait_info); 266 267 if (ret <= 0) { 268 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 269 irq->irq_idx, true); 270 if (irq_status) { 271 unsigned long flags; 272 273 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 274 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 275 DRMID(phys_enc->parent), intr_idx, 276 irq->hw_idx, irq->irq_idx, 277 phys_enc->hw_pp->idx - PINGPONG_0, 278 atomic_read(wait_info->atomic_cnt)); 279 local_irq_save(flags); 280 irq->cb.func(phys_enc, irq->irq_idx); 281 local_irq_restore(flags); 282 ret = 0; 283 } else { 284 ret = -ETIMEDOUT; 285 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 286 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 287 DRMID(phys_enc->parent), intr_idx, 288 irq->hw_idx, irq->irq_idx, 289 phys_enc->hw_pp->idx - PINGPONG_0, 290 atomic_read(wait_info->atomic_cnt)); 291 } 292 } else { 293 ret = 0; 294 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 295 intr_idx, irq->hw_idx, irq->irq_idx, 296 phys_enc->hw_pp->idx - PINGPONG_0, 297 atomic_read(wait_info->atomic_cnt)); 298 } 299 300 return ret; 301 } 302 303 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 304 enum dpu_intr_idx intr_idx) 305 { 306 struct dpu_encoder_irq *irq; 307 int ret = 0; 308 309 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 310 DPU_ERROR("invalid params\n"); 311 return -EINVAL; 312 } 313 irq = &phys_enc->irq[intr_idx]; 314 315 if (irq->irq_idx >= 0) { 316 DPU_DEBUG_PHYS(phys_enc, 317 "skipping already registered irq %s type %d\n", 318 irq->name, irq->intr_type); 319 return 0; 320 } 321 322 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 323 irq->intr_type, irq->hw_idx); 324 if (irq->irq_idx < 0) { 325 DPU_ERROR_PHYS(phys_enc, 326 "failed to lookup IRQ index for %s type:%d\n", 327 irq->name, irq->intr_type); 328 return -EINVAL; 329 } 330 331 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 332 &irq->cb); 333 if (ret) { 334 DPU_ERROR_PHYS(phys_enc, 335 "failed to register IRQ callback for %s\n", 336 irq->name); 337 irq->irq_idx = -EINVAL; 338 return ret; 339 } 340 341 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 342 if (ret) { 343 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 344 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 345 irq->irq_idx); 346 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 347 irq->irq_idx, &irq->cb); 348 irq->irq_idx = -EINVAL; 349 return ret; 350 } 351 352 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 353 irq->hw_idx, irq->irq_idx); 354 355 return ret; 356 } 357 358 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 359 enum dpu_intr_idx intr_idx) 360 { 361 struct dpu_encoder_irq *irq; 362 int ret; 363 364 if (!phys_enc) { 365 DPU_ERROR("invalid encoder\n"); 366 return -EINVAL; 367 } 368 irq = &phys_enc->irq[intr_idx]; 369 370 /* silently skip irqs that weren't registered */ 371 if (irq->irq_idx < 0) { 372 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 373 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 374 irq->irq_idx); 375 return 0; 376 } 377 378 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 379 if (ret) { 380 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 382 irq->irq_idx, ret); 383 } 384 385 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 386 &irq->cb); 387 if (ret) { 388 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 389 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 390 irq->irq_idx, ret); 391 } 392 393 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 394 irq->hw_idx, irq->irq_idx); 395 396 irq->irq_idx = -EINVAL; 397 398 return 0; 399 } 400 401 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 402 struct dpu_encoder_hw_resources *hw_res) 403 { 404 struct dpu_encoder_virt *dpu_enc = NULL; 405 int i = 0; 406 407 dpu_enc = to_dpu_encoder_virt(drm_enc); 408 DPU_DEBUG_ENC(dpu_enc, "\n"); 409 410 /* Query resources used by phys encs, expected to be without overlap */ 411 memset(hw_res, 0, sizeof(*hw_res)); 412 413 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 414 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 415 416 if (phys && phys->ops.get_hw_resources) 417 phys->ops.get_hw_resources(phys, hw_res); 418 } 419 } 420 421 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 422 { 423 struct dpu_encoder_virt *dpu_enc = NULL; 424 int i = 0; 425 426 if (!drm_enc) { 427 DPU_ERROR("invalid encoder\n"); 428 return; 429 } 430 431 dpu_enc = to_dpu_encoder_virt(drm_enc); 432 DPU_DEBUG_ENC(dpu_enc, "\n"); 433 434 mutex_lock(&dpu_enc->enc_lock); 435 436 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 437 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 438 439 if (phys && phys->ops.destroy) { 440 phys->ops.destroy(phys); 441 --dpu_enc->num_phys_encs; 442 dpu_enc->phys_encs[i] = NULL; 443 } 444 } 445 446 if (dpu_enc->num_phys_encs) 447 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 448 dpu_enc->num_phys_encs); 449 dpu_enc->num_phys_encs = 0; 450 mutex_unlock(&dpu_enc->enc_lock); 451 452 drm_encoder_cleanup(drm_enc); 453 mutex_destroy(&dpu_enc->enc_lock); 454 } 455 456 void dpu_encoder_helper_split_config( 457 struct dpu_encoder_phys *phys_enc, 458 enum dpu_intf interface) 459 { 460 struct dpu_encoder_virt *dpu_enc; 461 struct split_pipe_cfg cfg = { 0 }; 462 struct dpu_hw_mdp *hw_mdptop; 463 struct msm_display_info *disp_info; 464 465 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 466 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 467 return; 468 } 469 470 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 471 hw_mdptop = phys_enc->hw_mdptop; 472 disp_info = &dpu_enc->disp_info; 473 474 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 475 return; 476 477 /** 478 * disable split modes since encoder will be operating in as the only 479 * encoder, either for the entire use case in the case of, for example, 480 * single DSI, or for this frame in the case of left/right only partial 481 * update. 482 */ 483 if (phys_enc->split_role == ENC_ROLE_SOLO) { 484 if (hw_mdptop->ops.setup_split_pipe) 485 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 486 return; 487 } 488 489 cfg.en = true; 490 cfg.mode = phys_enc->intf_mode; 491 cfg.intf = interface; 492 493 if (cfg.en && phys_enc->ops.needs_single_flush && 494 phys_enc->ops.needs_single_flush(phys_enc)) 495 cfg.split_flush_en = true; 496 497 if (phys_enc->split_role == ENC_ROLE_MASTER) { 498 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 499 500 if (hw_mdptop->ops.setup_split_pipe) 501 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 502 } 503 } 504 505 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 506 struct drm_display_mode *adj_mode) 507 { 508 struct drm_display_mode *cur_mode; 509 510 if (!connector || !adj_mode) 511 return; 512 513 list_for_each_entry(cur_mode, &connector->modes, head) { 514 if (cur_mode->vdisplay == adj_mode->vdisplay && 515 cur_mode->hdisplay == adj_mode->hdisplay && 516 drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) { 517 adj_mode->private = cur_mode->private; 518 adj_mode->private_flags |= cur_mode->private_flags; 519 } 520 } 521 } 522 523 static struct msm_display_topology dpu_encoder_get_topology( 524 struct dpu_encoder_virt *dpu_enc, 525 struct dpu_kms *dpu_kms, 526 struct drm_display_mode *mode) 527 { 528 struct msm_display_topology topology; 529 int i, intf_count = 0; 530 531 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 532 if (dpu_enc->phys_encs[i]) 533 intf_count++; 534 535 /* User split topology for width > 1080 */ 536 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 537 topology.num_enc = 0; 538 topology.num_intf = intf_count; 539 540 return topology; 541 } 542 static int dpu_encoder_virt_atomic_check( 543 struct drm_encoder *drm_enc, 544 struct drm_crtc_state *crtc_state, 545 struct drm_connector_state *conn_state) 546 { 547 struct dpu_encoder_virt *dpu_enc; 548 struct msm_drm_private *priv; 549 struct dpu_kms *dpu_kms; 550 const struct drm_display_mode *mode; 551 struct drm_display_mode *adj_mode; 552 struct msm_display_topology topology; 553 int i = 0; 554 int ret = 0; 555 556 if (!drm_enc || !crtc_state || !conn_state) { 557 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 558 drm_enc != 0, crtc_state != 0, conn_state != 0); 559 return -EINVAL; 560 } 561 562 dpu_enc = to_dpu_encoder_virt(drm_enc); 563 DPU_DEBUG_ENC(dpu_enc, "\n"); 564 565 priv = drm_enc->dev->dev_private; 566 dpu_kms = to_dpu_kms(priv->kms); 567 mode = &crtc_state->mode; 568 adj_mode = &crtc_state->adjusted_mode; 569 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 570 571 /* 572 * display drivers may populate private fields of the drm display mode 573 * structure while registering possible modes of a connector with DRM. 574 * These private fields are not populated back while DRM invokes 575 * the mode_set callbacks. This module retrieves and populates the 576 * private fields of the given mode. 577 */ 578 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 579 580 /* perform atomic check on the first physical encoder (master) */ 581 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 582 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 583 584 if (phys && phys->ops.atomic_check) 585 ret = phys->ops.atomic_check(phys, crtc_state, 586 conn_state); 587 else if (phys && phys->ops.mode_fixup) 588 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 589 ret = -EINVAL; 590 591 if (ret) { 592 DPU_ERROR_ENC(dpu_enc, 593 "mode unsupported, phys idx %d\n", i); 594 break; 595 } 596 } 597 598 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 599 600 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 601 if (!ret) { 602 /* 603 * Avoid reserving resources when mode set is pending. Topology 604 * info may not be available to complete reservation. 605 */ 606 if (drm_atomic_crtc_needs_modeset(crtc_state) 607 && dpu_enc->mode_set_complete) { 608 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 609 topology, true); 610 dpu_enc->mode_set_complete = false; 611 } 612 } 613 614 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 615 adj_mode->private_flags); 616 617 return ret; 618 } 619 620 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 621 struct msm_display_info *disp_info) 622 { 623 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 624 struct msm_drm_private *priv; 625 struct dpu_kms *dpu_kms; 626 struct dpu_hw_mdp *hw_mdptop; 627 struct drm_encoder *drm_enc; 628 int i; 629 630 if (!dpu_enc || !disp_info) { 631 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 632 dpu_enc != NULL, disp_info != NULL); 633 return; 634 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 635 DPU_ERROR("invalid num phys enc %d/%d\n", 636 dpu_enc->num_phys_encs, 637 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 638 return; 639 } 640 641 drm_enc = &dpu_enc->base; 642 /* this pointers are checked in virt_enable_helper */ 643 priv = drm_enc->dev->dev_private; 644 645 dpu_kms = to_dpu_kms(priv->kms); 646 if (!dpu_kms) { 647 DPU_ERROR("invalid dpu_kms\n"); 648 return; 649 } 650 651 hw_mdptop = dpu_kms->hw_mdp; 652 if (!hw_mdptop) { 653 DPU_ERROR("invalid mdptop\n"); 654 return; 655 } 656 657 if (hw_mdptop->ops.setup_vsync_source && 658 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 659 for (i = 0; i < dpu_enc->num_phys_encs; i++) 660 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 661 662 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 663 if (disp_info->is_te_using_watchdog_timer) 664 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 665 else 666 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 667 668 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 669 } 670 } 671 672 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 673 { 674 struct dpu_encoder_virt *dpu_enc; 675 int i; 676 677 if (!drm_enc) { 678 DPU_ERROR("invalid encoder\n"); 679 return; 680 } 681 682 dpu_enc = to_dpu_encoder_virt(drm_enc); 683 684 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 685 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 686 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 687 688 if (phys && phys->ops.irq_control) 689 phys->ops.irq_control(phys, enable); 690 } 691 692 } 693 694 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 695 bool enable) 696 { 697 struct msm_drm_private *priv; 698 struct dpu_kms *dpu_kms; 699 struct dpu_encoder_virt *dpu_enc; 700 701 dpu_enc = to_dpu_encoder_virt(drm_enc); 702 priv = drm_enc->dev->dev_private; 703 dpu_kms = to_dpu_kms(priv->kms); 704 705 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 706 707 if (!dpu_enc->cur_master) { 708 DPU_ERROR("encoder master not set\n"); 709 return; 710 } 711 712 if (enable) { 713 /* enable DPU core clks */ 714 pm_runtime_get_sync(&dpu_kms->pdev->dev); 715 716 /* enable all the irq */ 717 _dpu_encoder_irq_control(drm_enc, true); 718 719 } else { 720 /* disable all the irq */ 721 _dpu_encoder_irq_control(drm_enc, false); 722 723 /* disable DPU core clks */ 724 pm_runtime_put_sync(&dpu_kms->pdev->dev); 725 } 726 727 } 728 729 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 730 u32 sw_event) 731 { 732 struct dpu_encoder_virt *dpu_enc; 733 struct msm_drm_private *priv; 734 bool is_vid_mode = false; 735 736 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 737 !drm_enc->crtc) { 738 DPU_ERROR("invalid parameters\n"); 739 return -EINVAL; 740 } 741 dpu_enc = to_dpu_encoder_virt(drm_enc); 742 priv = drm_enc->dev->dev_private; 743 is_vid_mode = dpu_enc->disp_info.capabilities & 744 MSM_DISPLAY_CAP_VID_MODE; 745 746 /* 747 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 748 * events and return early for other events (ie wb display). 749 */ 750 if (!dpu_enc->idle_pc_supported && 751 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 752 sw_event != DPU_ENC_RC_EVENT_STOP && 753 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 754 return 0; 755 756 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 757 dpu_enc->rc_state, "begin"); 758 759 switch (sw_event) { 760 case DPU_ENC_RC_EVENT_KICKOFF: 761 /* cancel delayed off work, if any */ 762 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 763 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 764 sw_event); 765 766 mutex_lock(&dpu_enc->rc_lock); 767 768 /* return if the resource control is already in ON state */ 769 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 770 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 771 DRMID(drm_enc), sw_event); 772 mutex_unlock(&dpu_enc->rc_lock); 773 return 0; 774 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 775 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 776 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 777 DRMID(drm_enc), sw_event, 778 dpu_enc->rc_state); 779 mutex_unlock(&dpu_enc->rc_lock); 780 return -EINVAL; 781 } 782 783 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 784 _dpu_encoder_irq_control(drm_enc, true); 785 else 786 _dpu_encoder_resource_control_helper(drm_enc, true); 787 788 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 789 790 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 791 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 792 "kickoff"); 793 794 mutex_unlock(&dpu_enc->rc_lock); 795 break; 796 797 case DPU_ENC_RC_EVENT_FRAME_DONE: 798 /* 799 * mutex lock is not used as this event happens at interrupt 800 * context. And locking is not required as, the other events 801 * like KICKOFF and STOP does a wait-for-idle before executing 802 * the resource_control 803 */ 804 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 805 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 806 DRMID(drm_enc), sw_event, 807 dpu_enc->rc_state); 808 return -EINVAL; 809 } 810 811 /* 812 * schedule off work item only when there are no 813 * frames pending 814 */ 815 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 816 DRM_DEBUG_KMS("id:%d skip schedule work\n", 817 DRMID(drm_enc)); 818 return 0; 819 } 820 821 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 822 msecs_to_jiffies(dpu_enc->idle_timeout)); 823 824 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 825 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 826 "frame done"); 827 break; 828 829 case DPU_ENC_RC_EVENT_PRE_STOP: 830 /* cancel delayed off work, if any */ 831 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 832 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 833 sw_event); 834 835 mutex_lock(&dpu_enc->rc_lock); 836 837 if (is_vid_mode && 838 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 839 _dpu_encoder_irq_control(drm_enc, true); 840 } 841 /* skip if is already OFF or IDLE, resources are off already */ 842 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 843 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 844 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 845 DRMID(drm_enc), sw_event, 846 dpu_enc->rc_state); 847 mutex_unlock(&dpu_enc->rc_lock); 848 return 0; 849 } 850 851 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 852 853 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 854 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 855 "pre stop"); 856 857 mutex_unlock(&dpu_enc->rc_lock); 858 break; 859 860 case DPU_ENC_RC_EVENT_STOP: 861 mutex_lock(&dpu_enc->rc_lock); 862 863 /* return if the resource control is already in OFF state */ 864 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 865 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 866 DRMID(drm_enc), sw_event); 867 mutex_unlock(&dpu_enc->rc_lock); 868 return 0; 869 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 870 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 871 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 872 mutex_unlock(&dpu_enc->rc_lock); 873 return -EINVAL; 874 } 875 876 /** 877 * expect to arrive here only if in either idle state or pre-off 878 * and in IDLE state the resources are already disabled 879 */ 880 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 881 _dpu_encoder_resource_control_helper(drm_enc, false); 882 883 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 884 885 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 886 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 887 "stop"); 888 889 mutex_unlock(&dpu_enc->rc_lock); 890 break; 891 892 case DPU_ENC_RC_EVENT_ENTER_IDLE: 893 mutex_lock(&dpu_enc->rc_lock); 894 895 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 896 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 897 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 898 mutex_unlock(&dpu_enc->rc_lock); 899 return 0; 900 } 901 902 /* 903 * if we are in ON but a frame was just kicked off, 904 * ignore the IDLE event, it's probably a stale timer event 905 */ 906 if (dpu_enc->frame_busy_mask[0]) { 907 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 908 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 909 mutex_unlock(&dpu_enc->rc_lock); 910 return 0; 911 } 912 913 if (is_vid_mode) 914 _dpu_encoder_irq_control(drm_enc, false); 915 else 916 _dpu_encoder_resource_control_helper(drm_enc, false); 917 918 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 919 920 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 921 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 922 "idle"); 923 924 mutex_unlock(&dpu_enc->rc_lock); 925 break; 926 927 default: 928 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 929 sw_event); 930 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 931 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 932 "error"); 933 break; 934 } 935 936 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 937 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 938 "end"); 939 return 0; 940 } 941 942 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 943 struct drm_display_mode *mode, 944 struct drm_display_mode *adj_mode) 945 { 946 struct dpu_encoder_virt *dpu_enc; 947 struct msm_drm_private *priv; 948 struct dpu_kms *dpu_kms; 949 struct list_head *connector_list; 950 struct drm_connector *conn = NULL, *conn_iter; 951 struct drm_crtc *drm_crtc; 952 struct dpu_crtc_state *cstate; 953 struct dpu_rm_hw_iter hw_iter; 954 struct msm_display_topology topology; 955 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 956 struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL }; 957 int num_lm = 0, num_ctl = 0; 958 int i, j, ret; 959 960 if (!drm_enc) { 961 DPU_ERROR("invalid encoder\n"); 962 return; 963 } 964 965 dpu_enc = to_dpu_encoder_virt(drm_enc); 966 DPU_DEBUG_ENC(dpu_enc, "\n"); 967 968 priv = drm_enc->dev->dev_private; 969 dpu_kms = to_dpu_kms(priv->kms); 970 connector_list = &dpu_kms->dev->mode_config.connector_list; 971 972 trace_dpu_enc_mode_set(DRMID(drm_enc)); 973 974 list_for_each_entry(conn_iter, connector_list, head) 975 if (conn_iter->encoder == drm_enc) 976 conn = conn_iter; 977 978 if (!conn) { 979 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 980 return; 981 } else if (!conn->state) { 982 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 983 return; 984 } 985 986 drm_for_each_crtc(drm_crtc, drm_enc->dev) 987 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 988 break; 989 990 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 991 992 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 993 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state, 994 topology, false); 995 if (ret) { 996 DPU_ERROR_ENC(dpu_enc, 997 "failed to reserve hw resources, %d\n", ret); 998 return; 999 } 1000 1001 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1002 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1003 dpu_enc->hw_pp[i] = NULL; 1004 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1005 break; 1006 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw; 1007 } 1008 1009 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1010 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1011 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1012 break; 1013 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw; 1014 num_ctl++; 1015 } 1016 1017 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM); 1018 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1019 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1020 break; 1021 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw; 1022 num_lm++; 1023 } 1024 1025 cstate = to_dpu_crtc_state(drm_crtc->state); 1026 1027 for (i = 0; i < num_lm; i++) { 1028 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1029 1030 cstate->mixers[i].hw_lm = hw_lm[i]; 1031 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx]; 1032 } 1033 1034 cstate->num_mixers = num_lm; 1035 1036 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1037 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1038 1039 if (phys) { 1040 if (!dpu_enc->hw_pp[i]) { 1041 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1042 "at idx: %d\n", i); 1043 goto error; 1044 } 1045 1046 if (!hw_ctl[i]) { 1047 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1048 "at idx: %d\n", i); 1049 goto error; 1050 } 1051 1052 phys->hw_pp = dpu_enc->hw_pp[i]; 1053 phys->hw_ctl = hw_ctl[i]; 1054 1055 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, 1056 DPU_HW_BLK_INTF); 1057 for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) { 1058 struct dpu_hw_intf *hw_intf; 1059 1060 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1061 break; 1062 1063 hw_intf = (struct dpu_hw_intf *)hw_iter.hw; 1064 if (hw_intf->idx == phys->intf_idx) 1065 phys->hw_intf = hw_intf; 1066 } 1067 1068 if (!phys->hw_intf) { 1069 DPU_ERROR_ENC(dpu_enc, 1070 "no intf block assigned at idx: %d\n", 1071 i); 1072 goto error; 1073 } 1074 1075 phys->connector = conn->state->connector; 1076 if (phys->ops.mode_set) 1077 phys->ops.mode_set(phys, mode, adj_mode); 1078 } 1079 } 1080 1081 dpu_enc->mode_set_complete = true; 1082 1083 error: 1084 dpu_rm_release(&dpu_kms->rm, drm_enc); 1085 } 1086 1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1088 { 1089 struct dpu_encoder_virt *dpu_enc = NULL; 1090 struct msm_drm_private *priv; 1091 struct dpu_kms *dpu_kms; 1092 1093 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1094 DPU_ERROR("invalid parameters\n"); 1095 return; 1096 } 1097 1098 priv = drm_enc->dev->dev_private; 1099 dpu_kms = to_dpu_kms(priv->kms); 1100 if (!dpu_kms) { 1101 DPU_ERROR("invalid dpu_kms\n"); 1102 return; 1103 } 1104 1105 dpu_enc = to_dpu_encoder_virt(drm_enc); 1106 if (!dpu_enc || !dpu_enc->cur_master) { 1107 DPU_ERROR("invalid dpu encoder/master\n"); 1108 return; 1109 } 1110 1111 if (dpu_enc->cur_master->hw_mdptop && 1112 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1113 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1114 dpu_enc->cur_master->hw_mdptop, 1115 dpu_kms->catalog); 1116 1117 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1118 } 1119 1120 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1121 { 1122 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1123 1124 mutex_lock(&dpu_enc->enc_lock); 1125 1126 if (!dpu_enc->enabled) 1127 goto out; 1128 1129 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1130 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1131 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1132 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1133 1134 _dpu_encoder_virt_enable_helper(drm_enc); 1135 1136 out: 1137 mutex_unlock(&dpu_enc->enc_lock); 1138 } 1139 1140 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1141 { 1142 struct dpu_encoder_virt *dpu_enc = NULL; 1143 int ret = 0; 1144 struct drm_display_mode *cur_mode = NULL; 1145 1146 if (!drm_enc) { 1147 DPU_ERROR("invalid encoder\n"); 1148 return; 1149 } 1150 dpu_enc = to_dpu_encoder_virt(drm_enc); 1151 1152 mutex_lock(&dpu_enc->enc_lock); 1153 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1154 1155 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1156 cur_mode->vdisplay); 1157 1158 /* always enable slave encoder before master */ 1159 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1160 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1161 1162 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1163 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1164 1165 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1166 if (ret) { 1167 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1168 ret); 1169 goto out; 1170 } 1171 1172 _dpu_encoder_virt_enable_helper(drm_enc); 1173 1174 dpu_enc->enabled = true; 1175 1176 out: 1177 mutex_unlock(&dpu_enc->enc_lock); 1178 } 1179 1180 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1181 { 1182 struct dpu_encoder_virt *dpu_enc = NULL; 1183 struct msm_drm_private *priv; 1184 struct dpu_kms *dpu_kms; 1185 struct drm_display_mode *mode; 1186 int i = 0; 1187 1188 if (!drm_enc) { 1189 DPU_ERROR("invalid encoder\n"); 1190 return; 1191 } else if (!drm_enc->dev) { 1192 DPU_ERROR("invalid dev\n"); 1193 return; 1194 } else if (!drm_enc->dev->dev_private) { 1195 DPU_ERROR("invalid dev_private\n"); 1196 return; 1197 } 1198 1199 dpu_enc = to_dpu_encoder_virt(drm_enc); 1200 DPU_DEBUG_ENC(dpu_enc, "\n"); 1201 1202 mutex_lock(&dpu_enc->enc_lock); 1203 dpu_enc->enabled = false; 1204 1205 mode = &drm_enc->crtc->state->adjusted_mode; 1206 1207 priv = drm_enc->dev->dev_private; 1208 dpu_kms = to_dpu_kms(priv->kms); 1209 1210 trace_dpu_enc_disable(DRMID(drm_enc)); 1211 1212 /* wait for idle */ 1213 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1214 1215 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1216 1217 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1218 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1219 1220 if (phys && phys->ops.disable) 1221 phys->ops.disable(phys); 1222 } 1223 1224 /* after phys waits for frame-done, should be no more frames pending */ 1225 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1226 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1227 del_timer_sync(&dpu_enc->frame_done_timer); 1228 } 1229 1230 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1231 1232 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1233 if (dpu_enc->phys_encs[i]) 1234 dpu_enc->phys_encs[i]->connector = NULL; 1235 } 1236 1237 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1238 1239 dpu_rm_release(&dpu_kms->rm, drm_enc); 1240 1241 mutex_unlock(&dpu_enc->enc_lock); 1242 } 1243 1244 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1245 enum dpu_intf_type type, u32 controller_id) 1246 { 1247 int i = 0; 1248 1249 for (i = 0; i < catalog->intf_count; i++) { 1250 if (catalog->intf[i].type == type 1251 && catalog->intf[i].controller_id == controller_id) { 1252 return catalog->intf[i].id; 1253 } 1254 } 1255 1256 return INTF_MAX; 1257 } 1258 1259 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1260 struct dpu_encoder_phys *phy_enc) 1261 { 1262 struct dpu_encoder_virt *dpu_enc = NULL; 1263 unsigned long lock_flags; 1264 1265 if (!drm_enc || !phy_enc) 1266 return; 1267 1268 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1269 dpu_enc = to_dpu_encoder_virt(drm_enc); 1270 1271 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1272 if (dpu_enc->crtc) 1273 dpu_crtc_vblank_callback(dpu_enc->crtc); 1274 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1275 1276 atomic_inc(&phy_enc->vsync_cnt); 1277 DPU_ATRACE_END("encoder_vblank_callback"); 1278 } 1279 1280 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1281 struct dpu_encoder_phys *phy_enc) 1282 { 1283 if (!phy_enc) 1284 return; 1285 1286 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1287 atomic_inc(&phy_enc->underrun_cnt); 1288 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1289 atomic_read(&phy_enc->underrun_cnt)); 1290 DPU_ATRACE_END("encoder_underrun_callback"); 1291 } 1292 1293 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1294 { 1295 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1296 unsigned long lock_flags; 1297 1298 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1299 /* crtc should always be cleared before re-assigning */ 1300 WARN_ON(crtc && dpu_enc->crtc); 1301 dpu_enc->crtc = crtc; 1302 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1303 } 1304 1305 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1306 struct drm_crtc *crtc, bool enable) 1307 { 1308 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1309 unsigned long lock_flags; 1310 int i; 1311 1312 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1313 1314 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1315 if (dpu_enc->crtc != crtc) { 1316 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1317 return; 1318 } 1319 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1320 1321 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1322 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1323 1324 if (phys && phys->ops.control_vblank_irq) 1325 phys->ops.control_vblank_irq(phys, enable); 1326 } 1327 } 1328 1329 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1330 void (*frame_event_cb)(void *, u32 event), 1331 void *frame_event_cb_data) 1332 { 1333 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1334 unsigned long lock_flags; 1335 bool enable; 1336 1337 enable = frame_event_cb ? true : false; 1338 1339 if (!drm_enc) { 1340 DPU_ERROR("invalid encoder\n"); 1341 return; 1342 } 1343 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1344 1345 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1346 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1347 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1348 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1349 } 1350 1351 static void dpu_encoder_frame_done_callback( 1352 struct drm_encoder *drm_enc, 1353 struct dpu_encoder_phys *ready_phys, u32 event) 1354 { 1355 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1356 unsigned int i; 1357 1358 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1359 | DPU_ENCODER_FRAME_EVENT_ERROR 1360 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1361 1362 if (!dpu_enc->frame_busy_mask[0]) { 1363 /** 1364 * suppress frame_done without waiter, 1365 * likely autorefresh 1366 */ 1367 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1368 event, ready_phys->intf_idx); 1369 return; 1370 } 1371 1372 /* One of the physical encoders has become idle */ 1373 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1374 if (dpu_enc->phys_encs[i] == ready_phys) { 1375 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1376 dpu_enc->frame_busy_mask[0]); 1377 clear_bit(i, dpu_enc->frame_busy_mask); 1378 } 1379 } 1380 1381 if (!dpu_enc->frame_busy_mask[0]) { 1382 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1383 del_timer(&dpu_enc->frame_done_timer); 1384 1385 dpu_encoder_resource_control(drm_enc, 1386 DPU_ENC_RC_EVENT_FRAME_DONE); 1387 1388 if (dpu_enc->crtc_frame_event_cb) 1389 dpu_enc->crtc_frame_event_cb( 1390 dpu_enc->crtc_frame_event_cb_data, 1391 event); 1392 } 1393 } else { 1394 if (dpu_enc->crtc_frame_event_cb) 1395 dpu_enc->crtc_frame_event_cb( 1396 dpu_enc->crtc_frame_event_cb_data, event); 1397 } 1398 } 1399 1400 static void dpu_encoder_off_work(struct work_struct *work) 1401 { 1402 struct dpu_encoder_virt *dpu_enc = container_of(work, 1403 struct dpu_encoder_virt, delayed_off_work.work); 1404 1405 if (!dpu_enc) { 1406 DPU_ERROR("invalid dpu encoder\n"); 1407 return; 1408 } 1409 1410 dpu_encoder_resource_control(&dpu_enc->base, 1411 DPU_ENC_RC_EVENT_ENTER_IDLE); 1412 1413 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1414 DPU_ENCODER_FRAME_EVENT_IDLE); 1415 } 1416 1417 /** 1418 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1419 * drm_enc: Pointer to drm encoder structure 1420 * phys: Pointer to physical encoder structure 1421 * extra_flush_bits: Additional bit mask to include in flush trigger 1422 */ 1423 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1424 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits, 1425 bool async) 1426 { 1427 struct dpu_hw_ctl *ctl; 1428 int pending_kickoff_cnt; 1429 u32 ret = UINT_MAX; 1430 1431 if (!drm_enc || !phys) { 1432 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1433 drm_enc != 0, phys != 0); 1434 return; 1435 } 1436 1437 if (!phys->hw_pp) { 1438 DPU_ERROR("invalid pingpong hw\n"); 1439 return; 1440 } 1441 1442 ctl = phys->hw_ctl; 1443 if (!ctl || !ctl->ops.trigger_flush) { 1444 DPU_ERROR("missing trigger cb\n"); 1445 return; 1446 } 1447 1448 if (!async) 1449 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1450 else 1451 pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt); 1452 1453 if (extra_flush_bits && ctl->ops.update_pending_flush) 1454 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1455 1456 ctl->ops.trigger_flush(ctl); 1457 1458 if (ctl->ops.get_pending_flush) 1459 ret = ctl->ops.get_pending_flush(ctl); 1460 1461 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1462 pending_kickoff_cnt, ctl->idx, 1463 extra_flush_bits, ret); 1464 } 1465 1466 /** 1467 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1468 * phys: Pointer to physical encoder structure 1469 */ 1470 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1471 { 1472 if (!phys) { 1473 DPU_ERROR("invalid argument(s)\n"); 1474 return; 1475 } 1476 1477 if (!phys->hw_pp) { 1478 DPU_ERROR("invalid pingpong hw\n"); 1479 return; 1480 } 1481 1482 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1483 phys->ops.trigger_start(phys); 1484 } 1485 1486 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1487 { 1488 struct dpu_hw_ctl *ctl; 1489 1490 if (!phys_enc) { 1491 DPU_ERROR("invalid encoder\n"); 1492 return; 1493 } 1494 1495 ctl = phys_enc->hw_ctl; 1496 if (ctl && ctl->ops.trigger_start) { 1497 ctl->ops.trigger_start(ctl); 1498 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1499 } 1500 } 1501 1502 static int dpu_encoder_helper_wait_event_timeout( 1503 int32_t drm_id, 1504 int32_t hw_id, 1505 struct dpu_encoder_wait_info *info) 1506 { 1507 int rc = 0; 1508 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1509 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1510 s64 time; 1511 1512 do { 1513 rc = wait_event_timeout(*(info->wq), 1514 atomic_read(info->atomic_cnt) == 0, jiffies); 1515 time = ktime_to_ms(ktime_get()); 1516 1517 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1518 expected_time, 1519 atomic_read(info->atomic_cnt)); 1520 /* If we timed out, counter is valid and time is less, wait again */ 1521 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1522 (time < expected_time)); 1523 1524 return rc; 1525 } 1526 1527 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1528 { 1529 struct dpu_encoder_virt *dpu_enc; 1530 struct dpu_hw_ctl *ctl; 1531 int rc; 1532 1533 if (!phys_enc) { 1534 DPU_ERROR("invalid encoder\n"); 1535 return; 1536 } 1537 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1538 ctl = phys_enc->hw_ctl; 1539 1540 if (!ctl || !ctl->ops.reset) 1541 return; 1542 1543 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1544 ctl->idx); 1545 1546 rc = ctl->ops.reset(ctl); 1547 if (rc) 1548 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1549 1550 phys_enc->enable_state = DPU_ENC_ENABLED; 1551 } 1552 1553 /** 1554 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1555 * Iterate through the physical encoders and perform consolidated flush 1556 * and/or control start triggering as needed. This is done in the virtual 1557 * encoder rather than the individual physical ones in order to handle 1558 * use cases that require visibility into multiple physical encoders at 1559 * a time. 1560 * dpu_enc: Pointer to virtual encoder structure 1561 */ 1562 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc, 1563 bool async) 1564 { 1565 struct dpu_hw_ctl *ctl; 1566 uint32_t i, pending_flush; 1567 unsigned long lock_flags; 1568 1569 if (!dpu_enc) { 1570 DPU_ERROR("invalid encoder\n"); 1571 return; 1572 } 1573 1574 pending_flush = 0x0; 1575 1576 /* update pending counts and trigger kickoff ctl flush atomically */ 1577 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1578 1579 /* don't perform flush/start operations for slave encoders */ 1580 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1581 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1582 1583 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1584 continue; 1585 1586 ctl = phys->hw_ctl; 1587 if (!ctl) 1588 continue; 1589 1590 /* 1591 * This is cleared in frame_done worker, which isn't invoked 1592 * for async commits. So don't set this for async, since it'll 1593 * roll over to the next commit. 1594 */ 1595 if (!async && phys->split_role != ENC_ROLE_SLAVE) 1596 set_bit(i, dpu_enc->frame_busy_mask); 1597 1598 if (!phys->ops.needs_single_flush || 1599 !phys->ops.needs_single_flush(phys)) 1600 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0, 1601 async); 1602 else if (ctl->ops.get_pending_flush) 1603 pending_flush |= ctl->ops.get_pending_flush(ctl); 1604 } 1605 1606 /* for split flush, combine pending flush masks and send to master */ 1607 if (pending_flush && dpu_enc->cur_master) { 1608 _dpu_encoder_trigger_flush( 1609 &dpu_enc->base, 1610 dpu_enc->cur_master, 1611 pending_flush, async); 1612 } 1613 1614 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1615 1616 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1617 } 1618 1619 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1620 { 1621 struct dpu_encoder_virt *dpu_enc; 1622 struct dpu_encoder_phys *phys; 1623 unsigned int i; 1624 struct dpu_hw_ctl *ctl; 1625 struct msm_display_info *disp_info; 1626 1627 if (!drm_enc) { 1628 DPU_ERROR("invalid encoder\n"); 1629 return; 1630 } 1631 dpu_enc = to_dpu_encoder_virt(drm_enc); 1632 disp_info = &dpu_enc->disp_info; 1633 1634 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1635 phys = dpu_enc->phys_encs[i]; 1636 1637 if (phys && phys->hw_ctl) { 1638 ctl = phys->hw_ctl; 1639 if (ctl->ops.clear_pending_flush) 1640 ctl->ops.clear_pending_flush(ctl); 1641 1642 /* update only for command mode primary ctl */ 1643 if ((phys == dpu_enc->cur_master) && 1644 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1645 && ctl->ops.trigger_pending) 1646 ctl->ops.trigger_pending(ctl); 1647 } 1648 } 1649 } 1650 1651 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1652 struct drm_display_mode *mode) 1653 { 1654 u64 pclk_rate; 1655 u32 pclk_period; 1656 u32 line_time; 1657 1658 /* 1659 * For linetime calculation, only operate on master encoder. 1660 */ 1661 if (!dpu_enc->cur_master) 1662 return 0; 1663 1664 if (!dpu_enc->cur_master->ops.get_line_count) { 1665 DPU_ERROR("get_line_count function not defined\n"); 1666 return 0; 1667 } 1668 1669 pclk_rate = mode->clock; /* pixel clock in kHz */ 1670 if (pclk_rate == 0) { 1671 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1672 return 0; 1673 } 1674 1675 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1676 if (pclk_period == 0) { 1677 DPU_ERROR("pclk period is 0\n"); 1678 return 0; 1679 } 1680 1681 /* 1682 * Line time calculation based on Pixel clock and HTOTAL. 1683 * Final unit is in ns. 1684 */ 1685 line_time = (pclk_period * mode->htotal) / 1000; 1686 if (line_time == 0) { 1687 DPU_ERROR("line time calculation is 0\n"); 1688 return 0; 1689 } 1690 1691 DPU_DEBUG_ENC(dpu_enc, 1692 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1693 pclk_rate, pclk_period, line_time); 1694 1695 return line_time; 1696 } 1697 1698 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1699 ktime_t *wakeup_time) 1700 { 1701 struct drm_display_mode *mode; 1702 struct dpu_encoder_virt *dpu_enc; 1703 u32 cur_line; 1704 u32 line_time; 1705 u32 vtotal, time_to_vsync; 1706 ktime_t cur_time; 1707 1708 dpu_enc = to_dpu_encoder_virt(drm_enc); 1709 1710 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1711 DPU_ERROR("crtc/crtc state object is NULL\n"); 1712 return -EINVAL; 1713 } 1714 mode = &drm_enc->crtc->state->adjusted_mode; 1715 1716 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1717 if (!line_time) 1718 return -EINVAL; 1719 1720 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1721 1722 vtotal = mode->vtotal; 1723 if (cur_line >= vtotal) 1724 time_to_vsync = line_time * vtotal; 1725 else 1726 time_to_vsync = line_time * (vtotal - cur_line); 1727 1728 if (time_to_vsync == 0) { 1729 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1730 vtotal); 1731 return -EINVAL; 1732 } 1733 1734 cur_time = ktime_get(); 1735 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1736 1737 DPU_DEBUG_ENC(dpu_enc, 1738 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1739 cur_line, vtotal, time_to_vsync, 1740 ktime_to_ms(cur_time), 1741 ktime_to_ms(*wakeup_time)); 1742 return 0; 1743 } 1744 1745 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1746 { 1747 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1748 vsync_event_timer); 1749 struct drm_encoder *drm_enc = &dpu_enc->base; 1750 struct msm_drm_private *priv; 1751 struct msm_drm_thread *event_thread; 1752 1753 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1754 !drm_enc->crtc) { 1755 DPU_ERROR("invalid parameters\n"); 1756 return; 1757 } 1758 1759 priv = drm_enc->dev->dev_private; 1760 1761 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1762 DPU_ERROR("invalid crtc index\n"); 1763 return; 1764 } 1765 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1766 if (!event_thread) { 1767 DPU_ERROR("event_thread not found for crtc:%d\n", 1768 drm_enc->crtc->index); 1769 return; 1770 } 1771 1772 del_timer(&dpu_enc->vsync_event_timer); 1773 } 1774 1775 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1776 { 1777 struct dpu_encoder_virt *dpu_enc = container_of(work, 1778 struct dpu_encoder_virt, vsync_event_work); 1779 ktime_t wakeup_time; 1780 1781 if (!dpu_enc) { 1782 DPU_ERROR("invalid dpu encoder\n"); 1783 return; 1784 } 1785 1786 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1787 return; 1788 1789 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1790 mod_timer(&dpu_enc->vsync_event_timer, 1791 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1792 } 1793 1794 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async) 1795 { 1796 struct dpu_encoder_virt *dpu_enc; 1797 struct dpu_encoder_phys *phys; 1798 bool needs_hw_reset = false; 1799 unsigned int i; 1800 1801 if (!drm_enc) { 1802 DPU_ERROR("invalid args\n"); 1803 return; 1804 } 1805 dpu_enc = to_dpu_encoder_virt(drm_enc); 1806 1807 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1808 1809 /* prepare for next kickoff, may include waiting on previous kickoff */ 1810 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1811 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1812 phys = dpu_enc->phys_encs[i]; 1813 if (phys) { 1814 if (phys->ops.prepare_for_kickoff) 1815 phys->ops.prepare_for_kickoff(phys); 1816 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1817 needs_hw_reset = true; 1818 } 1819 } 1820 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1821 1822 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1823 1824 /* if any phys needs reset, reset all phys, in-order */ 1825 if (needs_hw_reset) { 1826 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1827 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1828 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1829 } 1830 } 1831 } 1832 1833 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async) 1834 { 1835 struct dpu_encoder_virt *dpu_enc; 1836 struct dpu_encoder_phys *phys; 1837 ktime_t wakeup_time; 1838 unsigned int i; 1839 1840 if (!drm_enc) { 1841 DPU_ERROR("invalid encoder\n"); 1842 return; 1843 } 1844 DPU_ATRACE_BEGIN("encoder_kickoff"); 1845 dpu_enc = to_dpu_encoder_virt(drm_enc); 1846 1847 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1848 1849 /* 1850 * Asynchronous frames don't handle FRAME_DONE events. As such, they 1851 * shouldn't enable the frame_done watchdog since it will always time 1852 * out. 1853 */ 1854 if (!async) { 1855 unsigned long timeout_ms; 1856 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1857 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1858 1859 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1860 mod_timer(&dpu_enc->frame_done_timer, 1861 jiffies + msecs_to_jiffies(timeout_ms)); 1862 } 1863 1864 /* All phys encs are ready to go, trigger the kickoff */ 1865 _dpu_encoder_kickoff_phys(dpu_enc, async); 1866 1867 /* allow phys encs to handle any post-kickoff business */ 1868 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1869 phys = dpu_enc->phys_encs[i]; 1870 if (phys && phys->ops.handle_post_kickoff) 1871 phys->ops.handle_post_kickoff(phys); 1872 } 1873 1874 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1875 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1876 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1877 ktime_to_ms(wakeup_time)); 1878 mod_timer(&dpu_enc->vsync_event_timer, 1879 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1880 } 1881 1882 DPU_ATRACE_END("encoder_kickoff"); 1883 } 1884 1885 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1886 { 1887 struct dpu_encoder_virt *dpu_enc; 1888 struct dpu_encoder_phys *phys; 1889 int i; 1890 1891 if (!drm_enc) { 1892 DPU_ERROR("invalid encoder\n"); 1893 return; 1894 } 1895 dpu_enc = to_dpu_encoder_virt(drm_enc); 1896 1897 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1898 phys = dpu_enc->phys_encs[i]; 1899 if (phys && phys->ops.prepare_commit) 1900 phys->ops.prepare_commit(phys); 1901 } 1902 } 1903 1904 #ifdef CONFIG_DEBUG_FS 1905 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1906 { 1907 struct dpu_encoder_virt *dpu_enc = s->private; 1908 int i; 1909 1910 mutex_lock(&dpu_enc->enc_lock); 1911 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1912 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1913 1914 if (!phys) 1915 continue; 1916 1917 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1918 phys->intf_idx - INTF_0, 1919 atomic_read(&phys->vsync_cnt), 1920 atomic_read(&phys->underrun_cnt)); 1921 1922 switch (phys->intf_mode) { 1923 case INTF_MODE_VIDEO: 1924 seq_puts(s, "mode: video\n"); 1925 break; 1926 case INTF_MODE_CMD: 1927 seq_puts(s, "mode: command\n"); 1928 break; 1929 default: 1930 seq_puts(s, "mode: ???\n"); 1931 break; 1932 } 1933 } 1934 mutex_unlock(&dpu_enc->enc_lock); 1935 1936 return 0; 1937 } 1938 1939 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1940 struct file *file) 1941 { 1942 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1943 } 1944 1945 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1946 { 1947 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1948 struct msm_drm_private *priv; 1949 struct dpu_kms *dpu_kms; 1950 int i; 1951 1952 static const struct file_operations debugfs_status_fops = { 1953 .open = _dpu_encoder_debugfs_status_open, 1954 .read = seq_read, 1955 .llseek = seq_lseek, 1956 .release = single_release, 1957 }; 1958 1959 char name[DPU_NAME_SIZE]; 1960 1961 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 1962 DPU_ERROR("invalid encoder or kms\n"); 1963 return -EINVAL; 1964 } 1965 1966 priv = drm_enc->dev->dev_private; 1967 dpu_kms = to_dpu_kms(priv->kms); 1968 1969 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1970 1971 /* create overall sub-directory for the encoder */ 1972 dpu_enc->debugfs_root = debugfs_create_dir(name, 1973 drm_enc->dev->primary->debugfs_root); 1974 1975 /* don't error check these */ 1976 debugfs_create_file("status", 0600, 1977 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1978 1979 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1980 if (dpu_enc->phys_encs[i] && 1981 dpu_enc->phys_encs[i]->ops.late_register) 1982 dpu_enc->phys_encs[i]->ops.late_register( 1983 dpu_enc->phys_encs[i], 1984 dpu_enc->debugfs_root); 1985 1986 return 0; 1987 } 1988 #else 1989 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1990 { 1991 return 0; 1992 } 1993 #endif 1994 1995 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1996 { 1997 return _dpu_encoder_init_debugfs(encoder); 1998 } 1999 2000 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 2001 { 2002 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2003 2004 debugfs_remove_recursive(dpu_enc->debugfs_root); 2005 } 2006 2007 static int dpu_encoder_virt_add_phys_encs( 2008 u32 display_caps, 2009 struct dpu_encoder_virt *dpu_enc, 2010 struct dpu_enc_phys_init_params *params) 2011 { 2012 struct dpu_encoder_phys *enc = NULL; 2013 2014 DPU_DEBUG_ENC(dpu_enc, "\n"); 2015 2016 /* 2017 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2018 * in this function, check up-front. 2019 */ 2020 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2021 ARRAY_SIZE(dpu_enc->phys_encs)) { 2022 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2023 dpu_enc->num_phys_encs); 2024 return -EINVAL; 2025 } 2026 2027 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 2028 enc = dpu_encoder_phys_vid_init(params); 2029 2030 if (IS_ERR_OR_NULL(enc)) { 2031 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2032 PTR_ERR(enc)); 2033 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2034 } 2035 2036 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2037 ++dpu_enc->num_phys_encs; 2038 } 2039 2040 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 2041 enc = dpu_encoder_phys_cmd_init(params); 2042 2043 if (IS_ERR_OR_NULL(enc)) { 2044 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2045 PTR_ERR(enc)); 2046 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2047 } 2048 2049 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2050 ++dpu_enc->num_phys_encs; 2051 } 2052 2053 if (params->split_role == ENC_ROLE_SLAVE) 2054 dpu_enc->cur_slave = enc; 2055 else 2056 dpu_enc->cur_master = enc; 2057 2058 return 0; 2059 } 2060 2061 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2062 .handle_vblank_virt = dpu_encoder_vblank_callback, 2063 .handle_underrun_virt = dpu_encoder_underrun_callback, 2064 .handle_frame_done = dpu_encoder_frame_done_callback, 2065 }; 2066 2067 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2068 struct dpu_kms *dpu_kms, 2069 struct msm_display_info *disp_info) 2070 { 2071 int ret = 0; 2072 int i = 0; 2073 enum dpu_intf_type intf_type; 2074 struct dpu_enc_phys_init_params phys_params; 2075 2076 if (!dpu_enc || !dpu_kms) { 2077 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2078 dpu_enc != 0, dpu_kms != 0); 2079 return -EINVAL; 2080 } 2081 2082 dpu_enc->cur_master = NULL; 2083 2084 memset(&phys_params, 0, sizeof(phys_params)); 2085 phys_params.dpu_kms = dpu_kms; 2086 phys_params.parent = &dpu_enc->base; 2087 phys_params.parent_ops = &dpu_encoder_parent_ops; 2088 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2089 2090 DPU_DEBUG("\n"); 2091 2092 switch (disp_info->intf_type) { 2093 case DRM_MODE_ENCODER_DSI: 2094 intf_type = INTF_DSI; 2095 break; 2096 default: 2097 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2098 return -EINVAL; 2099 } 2100 2101 WARN_ON(disp_info->num_of_h_tiles < 1); 2102 2103 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2104 2105 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2106 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2107 dpu_enc->idle_pc_supported = 2108 dpu_kms->catalog->caps->has_idle_pc; 2109 2110 mutex_lock(&dpu_enc->enc_lock); 2111 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2112 /* 2113 * Left-most tile is at index 0, content is controller id 2114 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2115 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2116 */ 2117 u32 controller_id = disp_info->h_tile_instance[i]; 2118 2119 if (disp_info->num_of_h_tiles > 1) { 2120 if (i == 0) 2121 phys_params.split_role = ENC_ROLE_MASTER; 2122 else 2123 phys_params.split_role = ENC_ROLE_SLAVE; 2124 } else { 2125 phys_params.split_role = ENC_ROLE_SOLO; 2126 } 2127 2128 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2129 i, controller_id, phys_params.split_role); 2130 2131 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2132 intf_type, 2133 controller_id); 2134 if (phys_params.intf_idx == INTF_MAX) { 2135 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2136 intf_type, controller_id); 2137 ret = -EINVAL; 2138 } 2139 2140 if (!ret) { 2141 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2142 dpu_enc, 2143 &phys_params); 2144 if (ret) 2145 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2146 } 2147 } 2148 2149 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2150 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2151 2152 if (phys) { 2153 atomic_set(&phys->vsync_cnt, 0); 2154 atomic_set(&phys->underrun_cnt, 0); 2155 } 2156 } 2157 mutex_unlock(&dpu_enc->enc_lock); 2158 2159 return ret; 2160 } 2161 2162 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2163 { 2164 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2165 frame_done_timer); 2166 struct drm_encoder *drm_enc = &dpu_enc->base; 2167 struct msm_drm_private *priv; 2168 u32 event; 2169 2170 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2171 DPU_ERROR("invalid parameters\n"); 2172 return; 2173 } 2174 priv = drm_enc->dev->dev_private; 2175 2176 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2177 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2178 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2179 return; 2180 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2181 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2182 return; 2183 } 2184 2185 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2186 2187 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2188 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2189 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2190 } 2191 2192 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2193 .mode_set = dpu_encoder_virt_mode_set, 2194 .disable = dpu_encoder_virt_disable, 2195 .enable = dpu_kms_encoder_enable, 2196 .atomic_check = dpu_encoder_virt_atomic_check, 2197 2198 /* This is called by dpu_kms_encoder_enable */ 2199 .commit = dpu_encoder_virt_enable, 2200 }; 2201 2202 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2203 .destroy = dpu_encoder_destroy, 2204 .late_register = dpu_encoder_late_register, 2205 .early_unregister = dpu_encoder_early_unregister, 2206 }; 2207 2208 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2209 struct msm_display_info *disp_info) 2210 { 2211 struct msm_drm_private *priv = dev->dev_private; 2212 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2213 struct drm_encoder *drm_enc = NULL; 2214 struct dpu_encoder_virt *dpu_enc = NULL; 2215 int ret = 0; 2216 2217 dpu_enc = to_dpu_encoder_virt(enc); 2218 2219 mutex_init(&dpu_enc->enc_lock); 2220 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2221 if (ret) 2222 goto fail; 2223 2224 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2225 timer_setup(&dpu_enc->frame_done_timer, 2226 dpu_encoder_frame_done_timeout, 0); 2227 2228 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2229 timer_setup(&dpu_enc->vsync_event_timer, 2230 dpu_encoder_vsync_event_handler, 2231 0); 2232 2233 2234 mutex_init(&dpu_enc->rc_lock); 2235 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2236 dpu_encoder_off_work); 2237 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2238 2239 kthread_init_work(&dpu_enc->vsync_event_work, 2240 dpu_encoder_vsync_event_work_handler); 2241 2242 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2243 2244 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2245 2246 return ret; 2247 2248 fail: 2249 DPU_ERROR("failed to create encoder\n"); 2250 if (drm_enc) 2251 dpu_encoder_destroy(drm_enc); 2252 2253 return ret; 2254 2255 2256 } 2257 2258 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2259 int drm_enc_mode) 2260 { 2261 struct dpu_encoder_virt *dpu_enc = NULL; 2262 int rc = 0; 2263 2264 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2265 if (!dpu_enc) 2266 return ERR_PTR(ENOMEM); 2267 2268 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2269 drm_enc_mode, NULL); 2270 if (rc) { 2271 devm_kfree(dev->dev, dpu_enc); 2272 return ERR_PTR(rc); 2273 } 2274 2275 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2276 2277 spin_lock_init(&dpu_enc->enc_spinlock); 2278 dpu_enc->enabled = false; 2279 2280 return &dpu_enc->base; 2281 } 2282 2283 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2284 enum msm_event_wait event) 2285 { 2286 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2287 struct dpu_encoder_virt *dpu_enc = NULL; 2288 int i, ret = 0; 2289 2290 if (!drm_enc) { 2291 DPU_ERROR("invalid encoder\n"); 2292 return -EINVAL; 2293 } 2294 dpu_enc = to_dpu_encoder_virt(drm_enc); 2295 DPU_DEBUG_ENC(dpu_enc, "\n"); 2296 2297 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2298 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2299 if (!phys) 2300 continue; 2301 2302 switch (event) { 2303 case MSM_ENC_COMMIT_DONE: 2304 fn_wait = phys->ops.wait_for_commit_done; 2305 break; 2306 case MSM_ENC_TX_COMPLETE: 2307 fn_wait = phys->ops.wait_for_tx_complete; 2308 break; 2309 case MSM_ENC_VBLANK: 2310 fn_wait = phys->ops.wait_for_vblank; 2311 break; 2312 default: 2313 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2314 event); 2315 return -EINVAL; 2316 }; 2317 2318 if (fn_wait) { 2319 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2320 ret = fn_wait(phys); 2321 DPU_ATRACE_END("wait_for_completion_event"); 2322 if (ret) 2323 return ret; 2324 } 2325 } 2326 2327 return ret; 2328 } 2329 2330 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2331 { 2332 struct dpu_encoder_virt *dpu_enc = NULL; 2333 int i; 2334 2335 if (!encoder) { 2336 DPU_ERROR("invalid encoder\n"); 2337 return INTF_MODE_NONE; 2338 } 2339 dpu_enc = to_dpu_encoder_virt(encoder); 2340 2341 if (dpu_enc->cur_master) 2342 return dpu_enc->cur_master->intf_mode; 2343 2344 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2345 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2346 2347 if (phys) 2348 return phys->intf_mode; 2349 } 2350 2351 return INTF_MODE_NONE; 2352 } 2353