1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 #include "disp/msm_disp_snapshot.h"
30 
31 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
32 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
33 
34 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
35 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
36 
37 #define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\
38 		(p) ? (p)->parent->base.id : -1, \
39 		(p) ? (p)->intf_idx - INTF_0 : -1, \
40 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
41 		##__VA_ARGS__)
42 
43 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
44 		(p) ? (p)->parent->base.id : -1, \
45 		(p) ? (p)->intf_idx - INTF_0 : -1, \
46 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
47 		##__VA_ARGS__)
48 
49 /*
50  * Two to anticipate panels that can do cmd/vid dynamic switching
51  * plan is to create all possible physical encoder types, and switch between
52  * them at runtime
53  */
54 #define NUM_PHYS_ENCODER_TYPES 2
55 
56 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
57 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
58 
59 #define MAX_CHANNELS_PER_ENC 2
60 
61 #define IDLE_SHORT_TIMEOUT	1
62 
63 #define MAX_HDISPLAY_SPLIT 1080
64 
65 /* timeout in frames waiting for frame done */
66 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
67 
68 /**
69  * enum dpu_enc_rc_events - events for resource control state machine
70  * @DPU_ENC_RC_EVENT_KICKOFF:
71  *	This event happens at NORMAL priority.
72  *	Event that signals the start of the transfer. When this event is
73  *	received, enable MDP/DSI core clocks. Regardless of the previous
74  *	state, the resource should be in ON state at the end of this event.
75  * @DPU_ENC_RC_EVENT_FRAME_DONE:
76  *	This event happens at INTERRUPT level.
77  *	Event signals the end of the data transfer after the PP FRAME_DONE
78  *	event. At the end of this event, a delayed work is scheduled to go to
79  *	IDLE_PC state after IDLE_TIMEOUT time.
80  * @DPU_ENC_RC_EVENT_PRE_STOP:
81  *	This event happens at NORMAL priority.
82  *	This event, when received during the ON state, leave the RC STATE
83  *	in the PRE_OFF state. It should be followed by the STOP event as
84  *	part of encoder disable.
85  *	If received during IDLE or OFF states, it will do nothing.
86  * @DPU_ENC_RC_EVENT_STOP:
87  *	This event happens at NORMAL priority.
88  *	When this event is received, disable all the MDP/DSI core clocks, and
89  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
90  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
91  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
92  *	Resource state should be in OFF at the end of the event.
93  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
94  *	This event happens at NORMAL priority from a work item.
95  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
96  *	This would disable MDP/DSI core clocks and change the resource state
97  *	to IDLE.
98  */
99 enum dpu_enc_rc_events {
100 	DPU_ENC_RC_EVENT_KICKOFF = 1,
101 	DPU_ENC_RC_EVENT_FRAME_DONE,
102 	DPU_ENC_RC_EVENT_PRE_STOP,
103 	DPU_ENC_RC_EVENT_STOP,
104 	DPU_ENC_RC_EVENT_ENTER_IDLE
105 };
106 
107 /*
108  * enum dpu_enc_rc_states - states that the resource control maintains
109  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
110  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
111  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
112  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
113  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
114  */
115 enum dpu_enc_rc_states {
116 	DPU_ENC_RC_STATE_OFF,
117 	DPU_ENC_RC_STATE_PRE_OFF,
118 	DPU_ENC_RC_STATE_ON,
119 	DPU_ENC_RC_STATE_IDLE
120 };
121 
122 /**
123  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
124  *	encoders. Virtual encoder manages one "logical" display. Physical
125  *	encoders manage one intf block, tied to a specific panel/sub-panel.
126  *	Virtual encoder defers as much as possible to the physical encoders.
127  *	Virtual encoder registers itself with the DRM Framework as the encoder.
128  * @base:		drm_encoder base class for registration with DRM
129  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @connector:		If a mode is set, cached pointer to the active connector
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder
152  *				create/destroy/enable/disable
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout_ms:	frame done timeout in ms
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @vsync_event_timer:		vsync timer
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @vsync_event_work:		worker to handle vsync event for autorefresh
169  * @topology:                   topology of the display
170  * @idle_timeout:		idle timeout duration in milliseconds
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 
176 	bool enabled;
177 
178 	unsigned int num_phys_encs;
179 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
180 	struct dpu_encoder_phys *cur_master;
181 	struct dpu_encoder_phys *cur_slave;
182 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
183 
184 	bool intfs_swapped;
185 
186 	struct drm_crtc *crtc;
187 	struct drm_connector *connector;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 
208 	u32 idle_timeout;
209 };
210 
211 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
212 
213 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
214 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
215 };
216 
217 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
218 {
219 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
220 
221 	if (!hw_pp->ops.setup_dither)
222 		return;
223 
224 	switch (bpc) {
225 	case 6:
226 		dither_cfg.c0_bitdepth = 6;
227 		dither_cfg.c1_bitdepth = 6;
228 		dither_cfg.c2_bitdepth = 6;
229 		dither_cfg.c3_bitdepth = 6;
230 		dither_cfg.temporal_en = 0;
231 		break;
232 	default:
233 		hw_pp->ops.setup_dither(hw_pp, NULL);
234 		return;
235 	}
236 
237 	memcpy(&dither_cfg.matrix, dither_matrix,
238 			sizeof(u32) * DITHER_MATRIX_SZ);
239 
240 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
241 }
242 
243 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
244 		enum dpu_intr_idx intr_idx)
245 {
246 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
247 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
248 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
249 
250 	if (phys_enc->parent_ops->handle_frame_done)
251 		phys_enc->parent_ops->handle_frame_done(
252 				phys_enc->parent, phys_enc,
253 				DPU_ENCODER_FRAME_EVENT_ERROR);
254 }
255 
256 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
257 		u32 irq_idx, struct dpu_encoder_wait_info *info);
258 
259 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
260 		enum dpu_intr_idx intr_idx,
261 		struct dpu_encoder_wait_info *wait_info)
262 {
263 	struct dpu_encoder_irq *irq;
264 	u32 irq_status;
265 	int ret;
266 
267 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
268 		DPU_ERROR("invalid params\n");
269 		return -EINVAL;
270 	}
271 	irq = &phys_enc->irq[intr_idx];
272 
273 	/* note: do master / slave checking outside */
274 
275 	/* return EWOULDBLOCK since we know the wait isn't necessary */
276 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
277 		DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d\n",
278 			  DRMID(phys_enc->parent), intr_idx,
279 			  irq->irq_idx);
280 		return -EWOULDBLOCK;
281 	}
282 
283 	if (irq->irq_idx < 0) {
284 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s\n",
285 			      DRMID(phys_enc->parent), intr_idx,
286 			      irq->name);
287 		return 0;
288 	}
289 
290 	DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d\n",
291 		      DRMID(phys_enc->parent), intr_idx,
292 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
293 		      atomic_read(wait_info->atomic_cnt));
294 
295 	ret = dpu_encoder_helper_wait_event_timeout(
296 			DRMID(phys_enc->parent),
297 			irq->irq_idx,
298 			wait_info);
299 
300 	if (ret <= 0) {
301 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
302 				irq->irq_idx, true);
303 		if (irq_status) {
304 			unsigned long flags;
305 
306 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
307 				      DRMID(phys_enc->parent), intr_idx,
308 				      irq->irq_idx,
309 				      phys_enc->hw_pp->idx - PINGPONG_0,
310 				      atomic_read(wait_info->atomic_cnt));
311 			local_irq_save(flags);
312 			irq->cb.func(phys_enc, irq->irq_idx);
313 			local_irq_restore(flags);
314 			ret = 0;
315 		} else {
316 			ret = -ETIMEDOUT;
317 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
318 				      DRMID(phys_enc->parent), intr_idx,
319 				      irq->irq_idx,
320 				      phys_enc->hw_pp->idx - PINGPONG_0,
321 				      atomic_read(wait_info->atomic_cnt));
322 		}
323 	} else {
324 		ret = 0;
325 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
326 			intr_idx, irq->irq_idx,
327 			phys_enc->hw_pp->idx - PINGPONG_0,
328 			atomic_read(wait_info->atomic_cnt));
329 	}
330 
331 	return ret;
332 }
333 
334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
335 		enum dpu_intr_idx intr_idx)
336 {
337 	struct dpu_encoder_irq *irq;
338 	int ret = 0;
339 
340 	if (intr_idx >= INTR_IDX_MAX) {
341 		DPU_ERROR("invalid params\n");
342 		return -EINVAL;
343 	}
344 	irq = &phys_enc->irq[intr_idx];
345 
346 	if (irq->irq_idx < 0) {
347 		DPU_ERROR_PHYS(phys_enc,
348 			"invalid IRQ index:%d\n", irq->irq_idx);
349 		return -EINVAL;
350 	}
351 
352 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
353 			&irq->cb);
354 	if (ret) {
355 		DPU_ERROR_PHYS(phys_enc,
356 			"failed to register IRQ callback for %s\n",
357 			irq->name);
358 		irq->irq_idx = -EINVAL;
359 		return ret;
360 	}
361 
362 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
363 				irq->irq_idx);
364 
365 	return ret;
366 }
367 
368 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
369 		enum dpu_intr_idx intr_idx)
370 {
371 	struct dpu_encoder_irq *irq;
372 	int ret;
373 
374 	irq = &phys_enc->irq[intr_idx];
375 
376 	/* silently skip irqs that weren't registered */
377 	if (irq->irq_idx < 0) {
378 		DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d",
379 			  DRMID(phys_enc->parent), intr_idx,
380 			  irq->irq_idx);
381 		return 0;
382 	}
383 
384 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
385 			&irq->cb);
386 	if (ret) {
387 		DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d",
388 			  DRMID(phys_enc->parent), intr_idx,
389 			  irq->irq_idx, ret);
390 	}
391 
392 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
393 					     irq->irq_idx);
394 
395 	return 0;
396 }
397 
398 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
399 {
400 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
401 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
402 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
403 }
404 
405 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
406 {
407 	struct dpu_encoder_virt *dpu_enc;
408 	struct dpu_encoder_phys *phys;
409 	int linecount = 0;
410 
411 	dpu_enc = to_dpu_encoder_virt(drm_enc);
412 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
413 
414 	if (phys && phys->ops.get_line_count)
415 		linecount = phys->ops.get_line_count(phys);
416 
417 	return linecount;
418 }
419 
420 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
421 {
422 	struct dpu_encoder_virt *dpu_enc = NULL;
423 	int i = 0;
424 
425 	if (!drm_enc) {
426 		DPU_ERROR("invalid encoder\n");
427 		return;
428 	}
429 
430 	dpu_enc = to_dpu_encoder_virt(drm_enc);
431 	DPU_DEBUG_ENC(dpu_enc, "\n");
432 
433 	mutex_lock(&dpu_enc->enc_lock);
434 
435 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
436 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
437 
438 		if (phys->ops.destroy) {
439 			phys->ops.destroy(phys);
440 			--dpu_enc->num_phys_encs;
441 			dpu_enc->phys_encs[i] = NULL;
442 		}
443 	}
444 
445 	if (dpu_enc->num_phys_encs)
446 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
447 				dpu_enc->num_phys_encs);
448 	dpu_enc->num_phys_encs = 0;
449 	mutex_unlock(&dpu_enc->enc_lock);
450 
451 	drm_encoder_cleanup(drm_enc);
452 	mutex_destroy(&dpu_enc->enc_lock);
453 }
454 
455 void dpu_encoder_helper_split_config(
456 		struct dpu_encoder_phys *phys_enc,
457 		enum dpu_intf interface)
458 {
459 	struct dpu_encoder_virt *dpu_enc;
460 	struct split_pipe_cfg cfg = { 0 };
461 	struct dpu_hw_mdp *hw_mdptop;
462 	struct msm_display_info *disp_info;
463 
464 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
465 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
466 		return;
467 	}
468 
469 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
470 	hw_mdptop = phys_enc->hw_mdptop;
471 	disp_info = &dpu_enc->disp_info;
472 
473 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
474 		return;
475 
476 	/**
477 	 * disable split modes since encoder will be operating in as the only
478 	 * encoder, either for the entire use case in the case of, for example,
479 	 * single DSI, or for this frame in the case of left/right only partial
480 	 * update.
481 	 */
482 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
483 		if (hw_mdptop->ops.setup_split_pipe)
484 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
485 		return;
486 	}
487 
488 	cfg.en = true;
489 	cfg.mode = phys_enc->intf_mode;
490 	cfg.intf = interface;
491 
492 	if (cfg.en && phys_enc->ops.needs_single_flush &&
493 			phys_enc->ops.needs_single_flush(phys_enc))
494 		cfg.split_flush_en = true;
495 
496 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
497 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
498 
499 		if (hw_mdptop->ops.setup_split_pipe)
500 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
501 	}
502 }
503 
504 static struct msm_display_topology dpu_encoder_get_topology(
505 			struct dpu_encoder_virt *dpu_enc,
506 			struct dpu_kms *dpu_kms,
507 			struct drm_display_mode *mode)
508 {
509 	struct msm_display_topology topology = {0};
510 	int i, intf_count = 0;
511 
512 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
513 		if (dpu_enc->phys_encs[i])
514 			intf_count++;
515 
516 	/* Datapath topology selection
517 	 *
518 	 * Dual display
519 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
520 	 *
521 	 * Single display
522 	 * 1 LM, 1 INTF
523 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
524 	 *
525 	 * Adding color blocks only to primary interface if available in
526 	 * sufficient number
527 	 */
528 	if (intf_count == 2)
529 		topology.num_lm = 2;
530 	else if (!dpu_kms->catalog->caps->has_3d_merge)
531 		topology.num_lm = 1;
532 	else
533 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
534 
535 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
536 		if (dpu_kms->catalog->dspp &&
537 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
538 			topology.num_dspp = topology.num_lm;
539 	}
540 
541 	topology.num_enc = 0;
542 	topology.num_intf = intf_count;
543 
544 	return topology;
545 }
546 static int dpu_encoder_virt_atomic_check(
547 		struct drm_encoder *drm_enc,
548 		struct drm_crtc_state *crtc_state,
549 		struct drm_connector_state *conn_state)
550 {
551 	struct dpu_encoder_virt *dpu_enc;
552 	struct msm_drm_private *priv;
553 	struct dpu_kms *dpu_kms;
554 	const struct drm_display_mode *mode;
555 	struct drm_display_mode *adj_mode;
556 	struct msm_display_topology topology;
557 	struct dpu_global_state *global_state;
558 	int i = 0;
559 	int ret = 0;
560 
561 	if (!drm_enc || !crtc_state || !conn_state) {
562 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
563 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
564 		return -EINVAL;
565 	}
566 
567 	dpu_enc = to_dpu_encoder_virt(drm_enc);
568 	DPU_DEBUG_ENC(dpu_enc, "\n");
569 
570 	priv = drm_enc->dev->dev_private;
571 	dpu_kms = to_dpu_kms(priv->kms);
572 	mode = &crtc_state->mode;
573 	adj_mode = &crtc_state->adjusted_mode;
574 	global_state = dpu_kms_get_global_state(crtc_state->state);
575 	if (IS_ERR(global_state))
576 		return PTR_ERR(global_state);
577 
578 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
579 
580 	/* perform atomic check on the first physical encoder (master) */
581 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
582 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
583 
584 		if (phys->ops.atomic_check)
585 			ret = phys->ops.atomic_check(phys, crtc_state,
586 					conn_state);
587 		if (ret) {
588 			DPU_ERROR_ENC(dpu_enc,
589 					"mode unsupported, phys idx %d\n", i);
590 			break;
591 		}
592 	}
593 
594 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
595 
596 	/* Reserve dynamic resources now. */
597 	if (!ret) {
598 		/*
599 		 * Release and Allocate resources on every modeset
600 		 * Dont allocate when active is false.
601 		 */
602 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
603 			dpu_rm_release(global_state, drm_enc);
604 
605 			if (!crtc_state->active_changed || crtc_state->active)
606 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
607 						drm_enc, crtc_state, topology);
608 		}
609 	}
610 
611 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
612 
613 	return ret;
614 }
615 
616 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
617 			struct msm_display_info *disp_info)
618 {
619 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
620 	struct msm_drm_private *priv;
621 	struct dpu_kms *dpu_kms;
622 	struct dpu_hw_mdp *hw_mdptop;
623 	struct drm_encoder *drm_enc;
624 	int i;
625 
626 	if (!dpu_enc || !disp_info) {
627 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
628 					dpu_enc != NULL, disp_info != NULL);
629 		return;
630 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
631 		DPU_ERROR("invalid num phys enc %d/%d\n",
632 				dpu_enc->num_phys_encs,
633 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
634 		return;
635 	}
636 
637 	drm_enc = &dpu_enc->base;
638 	/* this pointers are checked in virt_enable_helper */
639 	priv = drm_enc->dev->dev_private;
640 
641 	dpu_kms = to_dpu_kms(priv->kms);
642 	hw_mdptop = dpu_kms->hw_mdp;
643 	if (!hw_mdptop) {
644 		DPU_ERROR("invalid mdptop\n");
645 		return;
646 	}
647 
648 	if (hw_mdptop->ops.setup_vsync_source &&
649 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
650 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
651 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
652 
653 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
654 		if (disp_info->is_te_using_watchdog_timer)
655 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
656 		else
657 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
658 
659 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
660 	}
661 }
662 
663 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
664 {
665 	struct dpu_encoder_virt *dpu_enc;
666 	int i;
667 
668 	if (!drm_enc) {
669 		DPU_ERROR("invalid encoder\n");
670 		return;
671 	}
672 
673 	dpu_enc = to_dpu_encoder_virt(drm_enc);
674 
675 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
676 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
677 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
678 
679 		if (phys->ops.irq_control)
680 			phys->ops.irq_control(phys, enable);
681 	}
682 
683 }
684 
685 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
686 		bool enable)
687 {
688 	struct msm_drm_private *priv;
689 	struct dpu_kms *dpu_kms;
690 	struct dpu_encoder_virt *dpu_enc;
691 
692 	dpu_enc = to_dpu_encoder_virt(drm_enc);
693 	priv = drm_enc->dev->dev_private;
694 	dpu_kms = to_dpu_kms(priv->kms);
695 
696 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
697 
698 	if (!dpu_enc->cur_master) {
699 		DPU_ERROR("encoder master not set\n");
700 		return;
701 	}
702 
703 	if (enable) {
704 		/* enable DPU core clks */
705 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
706 
707 		/* enable all the irq */
708 		_dpu_encoder_irq_control(drm_enc, true);
709 
710 	} else {
711 		/* disable all the irq */
712 		_dpu_encoder_irq_control(drm_enc, false);
713 
714 		/* disable DPU core clks */
715 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
716 	}
717 
718 }
719 
720 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
721 		u32 sw_event)
722 {
723 	struct dpu_encoder_virt *dpu_enc;
724 	struct msm_drm_private *priv;
725 	bool is_vid_mode = false;
726 
727 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
728 		DPU_ERROR("invalid parameters\n");
729 		return -EINVAL;
730 	}
731 	dpu_enc = to_dpu_encoder_virt(drm_enc);
732 	priv = drm_enc->dev->dev_private;
733 	is_vid_mode = dpu_enc->disp_info.capabilities &
734 						MSM_DISPLAY_CAP_VID_MODE;
735 
736 	/*
737 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
738 	 * events and return early for other events (ie wb display).
739 	 */
740 	if (!dpu_enc->idle_pc_supported &&
741 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
742 			sw_event != DPU_ENC_RC_EVENT_STOP &&
743 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
744 		return 0;
745 
746 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
747 			 dpu_enc->rc_state, "begin");
748 
749 	switch (sw_event) {
750 	case DPU_ENC_RC_EVENT_KICKOFF:
751 		/* cancel delayed off work, if any */
752 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
753 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
754 					sw_event);
755 
756 		mutex_lock(&dpu_enc->rc_lock);
757 
758 		/* return if the resource control is already in ON state */
759 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
760 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
761 				      DRMID(drm_enc), sw_event);
762 			mutex_unlock(&dpu_enc->rc_lock);
763 			return 0;
764 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
765 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
766 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
767 				      DRMID(drm_enc), sw_event,
768 				      dpu_enc->rc_state);
769 			mutex_unlock(&dpu_enc->rc_lock);
770 			return -EINVAL;
771 		}
772 
773 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
774 			_dpu_encoder_irq_control(drm_enc, true);
775 		else
776 			_dpu_encoder_resource_control_helper(drm_enc, true);
777 
778 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
779 
780 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
781 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
782 				 "kickoff");
783 
784 		mutex_unlock(&dpu_enc->rc_lock);
785 		break;
786 
787 	case DPU_ENC_RC_EVENT_FRAME_DONE:
788 		/*
789 		 * mutex lock is not used as this event happens at interrupt
790 		 * context. And locking is not required as, the other events
791 		 * like KICKOFF and STOP does a wait-for-idle before executing
792 		 * the resource_control
793 		 */
794 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
795 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
796 				      DRMID(drm_enc), sw_event,
797 				      dpu_enc->rc_state);
798 			return -EINVAL;
799 		}
800 
801 		/*
802 		 * schedule off work item only when there are no
803 		 * frames pending
804 		 */
805 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
806 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
807 				      DRMID(drm_enc));
808 			return 0;
809 		}
810 
811 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
812 				   msecs_to_jiffies(dpu_enc->idle_timeout));
813 
814 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
815 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
816 				 "frame done");
817 		break;
818 
819 	case DPU_ENC_RC_EVENT_PRE_STOP:
820 		/* cancel delayed off work, if any */
821 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
822 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
823 					sw_event);
824 
825 		mutex_lock(&dpu_enc->rc_lock);
826 
827 		if (is_vid_mode &&
828 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
829 			_dpu_encoder_irq_control(drm_enc, true);
830 		}
831 		/* skip if is already OFF or IDLE, resources are off already */
832 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
833 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
834 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
835 				      DRMID(drm_enc), sw_event,
836 				      dpu_enc->rc_state);
837 			mutex_unlock(&dpu_enc->rc_lock);
838 			return 0;
839 		}
840 
841 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
842 
843 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
844 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
845 				 "pre stop");
846 
847 		mutex_unlock(&dpu_enc->rc_lock);
848 		break;
849 
850 	case DPU_ENC_RC_EVENT_STOP:
851 		mutex_lock(&dpu_enc->rc_lock);
852 
853 		/* return if the resource control is already in OFF state */
854 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
855 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
856 				      DRMID(drm_enc), sw_event);
857 			mutex_unlock(&dpu_enc->rc_lock);
858 			return 0;
859 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
860 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
861 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
862 			mutex_unlock(&dpu_enc->rc_lock);
863 			return -EINVAL;
864 		}
865 
866 		/**
867 		 * expect to arrive here only if in either idle state or pre-off
868 		 * and in IDLE state the resources are already disabled
869 		 */
870 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
871 			_dpu_encoder_resource_control_helper(drm_enc, false);
872 
873 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
874 
875 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
876 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
877 				 "stop");
878 
879 		mutex_unlock(&dpu_enc->rc_lock);
880 		break;
881 
882 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
883 		mutex_lock(&dpu_enc->rc_lock);
884 
885 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
886 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
887 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
888 			mutex_unlock(&dpu_enc->rc_lock);
889 			return 0;
890 		}
891 
892 		/*
893 		 * if we are in ON but a frame was just kicked off,
894 		 * ignore the IDLE event, it's probably a stale timer event
895 		 */
896 		if (dpu_enc->frame_busy_mask[0]) {
897 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
898 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
899 			mutex_unlock(&dpu_enc->rc_lock);
900 			return 0;
901 		}
902 
903 		if (is_vid_mode)
904 			_dpu_encoder_irq_control(drm_enc, false);
905 		else
906 			_dpu_encoder_resource_control_helper(drm_enc, false);
907 
908 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
909 
910 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
911 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
912 				 "idle");
913 
914 		mutex_unlock(&dpu_enc->rc_lock);
915 		break;
916 
917 	default:
918 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
919 			  sw_event);
920 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
921 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
922 				 "error");
923 		break;
924 	}
925 
926 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
927 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
928 			 "end");
929 	return 0;
930 }
931 
932 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
933 					     struct drm_crtc_state *crtc_state,
934 					     struct drm_connector_state *conn_state)
935 {
936 	struct dpu_encoder_virt *dpu_enc;
937 	struct msm_drm_private *priv;
938 	struct dpu_kms *dpu_kms;
939 	struct dpu_crtc_state *cstate;
940 	struct dpu_global_state *global_state;
941 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
942 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
943 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
944 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
945 	int num_lm, num_ctl, num_pp;
946 	int i;
947 
948 	if (!drm_enc) {
949 		DPU_ERROR("invalid encoder\n");
950 		return;
951 	}
952 
953 	dpu_enc = to_dpu_encoder_virt(drm_enc);
954 	DPU_DEBUG_ENC(dpu_enc, "\n");
955 
956 	priv = drm_enc->dev->dev_private;
957 	dpu_kms = to_dpu_kms(priv->kms);
958 
959 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
960 	if (IS_ERR_OR_NULL(global_state)) {
961 		DPU_ERROR("Failed to get global state");
962 		return;
963 	}
964 
965 	trace_dpu_enc_mode_set(DRMID(drm_enc));
966 
967 	/* Query resource that have been reserved in atomic check step. */
968 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
969 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
970 		ARRAY_SIZE(hw_pp));
971 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
972 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
973 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
974 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
975 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
976 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
977 		ARRAY_SIZE(hw_dspp));
978 
979 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
980 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
981 						: NULL;
982 
983 	cstate = to_dpu_crtc_state(crtc_state);
984 
985 	for (i = 0; i < num_lm; i++) {
986 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
987 
988 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
989 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
990 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
991 	}
992 
993 	cstate->num_mixers = num_lm;
994 
995 	dpu_enc->connector = conn_state->connector;
996 
997 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
998 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
999 
1000 		if (!dpu_enc->hw_pp[i]) {
1001 			DPU_ERROR_ENC(dpu_enc,
1002 				"no pp block assigned at idx: %d\n", i);
1003 			return;
1004 		}
1005 
1006 		if (!hw_ctl[i]) {
1007 			DPU_ERROR_ENC(dpu_enc,
1008 				"no ctl block assigned at idx: %d\n", i);
1009 			return;
1010 		}
1011 
1012 		phys->hw_pp = dpu_enc->hw_pp[i];
1013 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1014 
1015 		if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
1016 			phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
1017 
1018 		if (!phys->hw_intf) {
1019 			DPU_ERROR_ENC(dpu_enc,
1020 				      "no intf block assigned at idx: %d\n", i);
1021 			return;
1022 		}
1023 
1024 		phys->cached_mode = crtc_state->adjusted_mode;
1025 		if (phys->ops.atomic_mode_set)
1026 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1027 	}
1028 }
1029 
1030 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1031 {
1032 	struct dpu_encoder_virt *dpu_enc = NULL;
1033 	int i;
1034 
1035 	if (!drm_enc || !drm_enc->dev) {
1036 		DPU_ERROR("invalid parameters\n");
1037 		return;
1038 	}
1039 
1040 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1041 	if (!dpu_enc || !dpu_enc->cur_master) {
1042 		DPU_ERROR("invalid dpu encoder/master\n");
1043 		return;
1044 	}
1045 
1046 
1047 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1048 		dpu_enc->cur_master->hw_mdptop &&
1049 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1050 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1051 			dpu_enc->cur_master->hw_mdptop);
1052 
1053 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1054 
1055 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1056 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1057 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1058 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1059 			if (!dpu_enc->hw_pp[i])
1060 				continue;
1061 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1062 		}
1063 	}
1064 }
1065 
1066 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1067 {
1068 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1069 
1070 	mutex_lock(&dpu_enc->enc_lock);
1071 
1072 	if (!dpu_enc->enabled)
1073 		goto out;
1074 
1075 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1076 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1077 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1078 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1079 
1080 	_dpu_encoder_virt_enable_helper(drm_enc);
1081 
1082 out:
1083 	mutex_unlock(&dpu_enc->enc_lock);
1084 }
1085 
1086 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1087 {
1088 	struct dpu_encoder_virt *dpu_enc = NULL;
1089 	int ret = 0;
1090 	struct drm_display_mode *cur_mode = NULL;
1091 
1092 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1093 
1094 	mutex_lock(&dpu_enc->enc_lock);
1095 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1096 
1097 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1098 			     cur_mode->vdisplay);
1099 
1100 	/* always enable slave encoder before master */
1101 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1102 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1103 
1104 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1105 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1106 
1107 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1108 	if (ret) {
1109 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1110 				ret);
1111 		goto out;
1112 	}
1113 
1114 	_dpu_encoder_virt_enable_helper(drm_enc);
1115 
1116 	dpu_enc->enabled = true;
1117 
1118 out:
1119 	mutex_unlock(&dpu_enc->enc_lock);
1120 }
1121 
1122 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1123 {
1124 	struct dpu_encoder_virt *dpu_enc = NULL;
1125 	int i = 0;
1126 
1127 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1128 	DPU_DEBUG_ENC(dpu_enc, "\n");
1129 
1130 	mutex_lock(&dpu_enc->enc_lock);
1131 	dpu_enc->enabled = false;
1132 
1133 	trace_dpu_enc_disable(DRMID(drm_enc));
1134 
1135 	/* wait for idle */
1136 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1137 
1138 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1139 
1140 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1141 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1142 
1143 		if (phys->ops.disable)
1144 			phys->ops.disable(phys);
1145 	}
1146 
1147 
1148 	/* after phys waits for frame-done, should be no more frames pending */
1149 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1150 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1151 		del_timer_sync(&dpu_enc->frame_done_timer);
1152 	}
1153 
1154 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1155 
1156 	dpu_enc->connector = NULL;
1157 
1158 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1159 
1160 	mutex_unlock(&dpu_enc->enc_lock);
1161 }
1162 
1163 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1164 		enum dpu_intf_type type, u32 controller_id)
1165 {
1166 	int i = 0;
1167 
1168 	for (i = 0; i < catalog->intf_count; i++) {
1169 		if (catalog->intf[i].type == type
1170 		    && catalog->intf[i].controller_id == controller_id) {
1171 			return catalog->intf[i].id;
1172 		}
1173 	}
1174 
1175 	return INTF_MAX;
1176 }
1177 
1178 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1179 		struct dpu_encoder_phys *phy_enc)
1180 {
1181 	struct dpu_encoder_virt *dpu_enc = NULL;
1182 	unsigned long lock_flags;
1183 
1184 	if (!drm_enc || !phy_enc)
1185 		return;
1186 
1187 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1188 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1189 
1190 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1191 	if (dpu_enc->crtc)
1192 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1193 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1194 
1195 	atomic_inc(&phy_enc->vsync_cnt);
1196 	DPU_ATRACE_END("encoder_vblank_callback");
1197 }
1198 
1199 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1200 		struct dpu_encoder_phys *phy_enc)
1201 {
1202 	if (!phy_enc)
1203 		return;
1204 
1205 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1206 	atomic_inc(&phy_enc->underrun_cnt);
1207 
1208 	/* trigger dump only on the first underrun */
1209 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1210 		msm_disp_snapshot_state(drm_enc->dev);
1211 
1212 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1213 				  atomic_read(&phy_enc->underrun_cnt));
1214 	DPU_ATRACE_END("encoder_underrun_callback");
1215 }
1216 
1217 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1218 {
1219 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1220 	unsigned long lock_flags;
1221 
1222 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1223 	/* crtc should always be cleared before re-assigning */
1224 	WARN_ON(crtc && dpu_enc->crtc);
1225 	dpu_enc->crtc = crtc;
1226 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1227 }
1228 
1229 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1230 					struct drm_crtc *crtc, bool enable)
1231 {
1232 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1233 	unsigned long lock_flags;
1234 	int i;
1235 
1236 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1237 
1238 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1239 	if (dpu_enc->crtc != crtc) {
1240 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1241 		return;
1242 	}
1243 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1244 
1245 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1246 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1247 
1248 		if (phys->ops.control_vblank_irq)
1249 			phys->ops.control_vblank_irq(phys, enable);
1250 	}
1251 }
1252 
1253 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1254 		void (*frame_event_cb)(void *, u32 event),
1255 		void *frame_event_cb_data)
1256 {
1257 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1258 	unsigned long lock_flags;
1259 	bool enable;
1260 
1261 	enable = frame_event_cb ? true : false;
1262 
1263 	if (!drm_enc) {
1264 		DPU_ERROR("invalid encoder\n");
1265 		return;
1266 	}
1267 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1268 
1269 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1270 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1271 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1272 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1273 }
1274 
1275 static void dpu_encoder_frame_done_callback(
1276 		struct drm_encoder *drm_enc,
1277 		struct dpu_encoder_phys *ready_phys, u32 event)
1278 {
1279 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1280 	unsigned int i;
1281 
1282 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1283 			| DPU_ENCODER_FRAME_EVENT_ERROR
1284 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1285 
1286 		if (!dpu_enc->frame_busy_mask[0]) {
1287 			/**
1288 			 * suppress frame_done without waiter,
1289 			 * likely autorefresh
1290 			 */
1291 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1292 					event, ready_phys->intf_idx);
1293 			return;
1294 		}
1295 
1296 		/* One of the physical encoders has become idle */
1297 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1298 			if (dpu_enc->phys_encs[i] == ready_phys) {
1299 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1300 						dpu_enc->frame_busy_mask[0]);
1301 				clear_bit(i, dpu_enc->frame_busy_mask);
1302 			}
1303 		}
1304 
1305 		if (!dpu_enc->frame_busy_mask[0]) {
1306 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1307 			del_timer(&dpu_enc->frame_done_timer);
1308 
1309 			dpu_encoder_resource_control(drm_enc,
1310 					DPU_ENC_RC_EVENT_FRAME_DONE);
1311 
1312 			if (dpu_enc->crtc_frame_event_cb)
1313 				dpu_enc->crtc_frame_event_cb(
1314 					dpu_enc->crtc_frame_event_cb_data,
1315 					event);
1316 		}
1317 	} else {
1318 		if (dpu_enc->crtc_frame_event_cb)
1319 			dpu_enc->crtc_frame_event_cb(
1320 				dpu_enc->crtc_frame_event_cb_data, event);
1321 	}
1322 }
1323 
1324 static void dpu_encoder_off_work(struct work_struct *work)
1325 {
1326 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1327 			struct dpu_encoder_virt, delayed_off_work.work);
1328 
1329 	dpu_encoder_resource_control(&dpu_enc->base,
1330 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1331 
1332 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1333 				DPU_ENCODER_FRAME_EVENT_IDLE);
1334 }
1335 
1336 /**
1337  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1338  * @drm_enc: Pointer to drm encoder structure
1339  * @phys: Pointer to physical encoder structure
1340  * @extra_flush_bits: Additional bit mask to include in flush trigger
1341  */
1342 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1343 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1344 {
1345 	struct dpu_hw_ctl *ctl;
1346 	int pending_kickoff_cnt;
1347 	u32 ret = UINT_MAX;
1348 
1349 	if (!phys->hw_pp) {
1350 		DPU_ERROR("invalid pingpong hw\n");
1351 		return;
1352 	}
1353 
1354 	ctl = phys->hw_ctl;
1355 	if (!ctl->ops.trigger_flush) {
1356 		DPU_ERROR("missing trigger cb\n");
1357 		return;
1358 	}
1359 
1360 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1361 
1362 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1363 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1364 
1365 	ctl->ops.trigger_flush(ctl);
1366 
1367 	if (ctl->ops.get_pending_flush)
1368 		ret = ctl->ops.get_pending_flush(ctl);
1369 
1370 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1371 				    pending_kickoff_cnt, ctl->idx,
1372 				    extra_flush_bits, ret);
1373 }
1374 
1375 /**
1376  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1377  * @phys: Pointer to physical encoder structure
1378  */
1379 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1380 {
1381 	if (!phys) {
1382 		DPU_ERROR("invalid argument(s)\n");
1383 		return;
1384 	}
1385 
1386 	if (!phys->hw_pp) {
1387 		DPU_ERROR("invalid pingpong hw\n");
1388 		return;
1389 	}
1390 
1391 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1392 		phys->ops.trigger_start(phys);
1393 }
1394 
1395 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1396 {
1397 	struct dpu_hw_ctl *ctl;
1398 
1399 	ctl = phys_enc->hw_ctl;
1400 	if (ctl->ops.trigger_start) {
1401 		ctl->ops.trigger_start(ctl);
1402 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1403 	}
1404 }
1405 
1406 static int dpu_encoder_helper_wait_event_timeout(
1407 		int32_t drm_id,
1408 		u32 irq_idx,
1409 		struct dpu_encoder_wait_info *info)
1410 {
1411 	int rc = 0;
1412 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1413 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1414 	s64 time;
1415 
1416 	do {
1417 		rc = wait_event_timeout(*(info->wq),
1418 				atomic_read(info->atomic_cnt) == 0, jiffies);
1419 		time = ktime_to_ms(ktime_get());
1420 
1421 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1422 						 expected_time,
1423 						 atomic_read(info->atomic_cnt));
1424 	/* If we timed out, counter is valid and time is less, wait again */
1425 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1426 			(time < expected_time));
1427 
1428 	return rc;
1429 }
1430 
1431 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1432 {
1433 	struct dpu_encoder_virt *dpu_enc;
1434 	struct dpu_hw_ctl *ctl;
1435 	int rc;
1436 	struct drm_encoder *drm_enc;
1437 
1438 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1439 	ctl = phys_enc->hw_ctl;
1440 	drm_enc = phys_enc->parent;
1441 
1442 	if (!ctl->ops.reset)
1443 		return;
1444 
1445 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1446 		      ctl->idx);
1447 
1448 	rc = ctl->ops.reset(ctl);
1449 	if (rc) {
1450 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1451 		msm_disp_snapshot_state(drm_enc->dev);
1452 	}
1453 
1454 	phys_enc->enable_state = DPU_ENC_ENABLED;
1455 }
1456 
1457 /**
1458  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1459  *	Iterate through the physical encoders and perform consolidated flush
1460  *	and/or control start triggering as needed. This is done in the virtual
1461  *	encoder rather than the individual physical ones in order to handle
1462  *	use cases that require visibility into multiple physical encoders at
1463  *	a time.
1464  * @dpu_enc: Pointer to virtual encoder structure
1465  */
1466 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1467 {
1468 	struct dpu_hw_ctl *ctl;
1469 	uint32_t i, pending_flush;
1470 	unsigned long lock_flags;
1471 
1472 	pending_flush = 0x0;
1473 
1474 	/* update pending counts and trigger kickoff ctl flush atomically */
1475 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1476 
1477 	/* don't perform flush/start operations for slave encoders */
1478 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1479 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1480 
1481 		if (phys->enable_state == DPU_ENC_DISABLED)
1482 			continue;
1483 
1484 		ctl = phys->hw_ctl;
1485 
1486 		/*
1487 		 * This is cleared in frame_done worker, which isn't invoked
1488 		 * for async commits. So don't set this for async, since it'll
1489 		 * roll over to the next commit.
1490 		 */
1491 		if (phys->split_role != ENC_ROLE_SLAVE)
1492 			set_bit(i, dpu_enc->frame_busy_mask);
1493 
1494 		if (!phys->ops.needs_single_flush ||
1495 				!phys->ops.needs_single_flush(phys))
1496 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1497 		else if (ctl->ops.get_pending_flush)
1498 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1499 	}
1500 
1501 	/* for split flush, combine pending flush masks and send to master */
1502 	if (pending_flush && dpu_enc->cur_master) {
1503 		_dpu_encoder_trigger_flush(
1504 				&dpu_enc->base,
1505 				dpu_enc->cur_master,
1506 				pending_flush);
1507 	}
1508 
1509 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1510 
1511 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1512 }
1513 
1514 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1515 {
1516 	struct dpu_encoder_virt *dpu_enc;
1517 	struct dpu_encoder_phys *phys;
1518 	unsigned int i;
1519 	struct dpu_hw_ctl *ctl;
1520 	struct msm_display_info *disp_info;
1521 
1522 	if (!drm_enc) {
1523 		DPU_ERROR("invalid encoder\n");
1524 		return;
1525 	}
1526 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1527 	disp_info = &dpu_enc->disp_info;
1528 
1529 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1530 		phys = dpu_enc->phys_encs[i];
1531 
1532 		ctl = phys->hw_ctl;
1533 		if (ctl->ops.clear_pending_flush)
1534 			ctl->ops.clear_pending_flush(ctl);
1535 
1536 		/* update only for command mode primary ctl */
1537 		if ((phys == dpu_enc->cur_master) &&
1538 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1539 		    && ctl->ops.trigger_pending)
1540 			ctl->ops.trigger_pending(ctl);
1541 	}
1542 }
1543 
1544 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1545 		struct drm_display_mode *mode)
1546 {
1547 	u64 pclk_rate;
1548 	u32 pclk_period;
1549 	u32 line_time;
1550 
1551 	/*
1552 	 * For linetime calculation, only operate on master encoder.
1553 	 */
1554 	if (!dpu_enc->cur_master)
1555 		return 0;
1556 
1557 	if (!dpu_enc->cur_master->ops.get_line_count) {
1558 		DPU_ERROR("get_line_count function not defined\n");
1559 		return 0;
1560 	}
1561 
1562 	pclk_rate = mode->clock; /* pixel clock in kHz */
1563 	if (pclk_rate == 0) {
1564 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1565 		return 0;
1566 	}
1567 
1568 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1569 	if (pclk_period == 0) {
1570 		DPU_ERROR("pclk period is 0\n");
1571 		return 0;
1572 	}
1573 
1574 	/*
1575 	 * Line time calculation based on Pixel clock and HTOTAL.
1576 	 * Final unit is in ns.
1577 	 */
1578 	line_time = (pclk_period * mode->htotal) / 1000;
1579 	if (line_time == 0) {
1580 		DPU_ERROR("line time calculation is 0\n");
1581 		return 0;
1582 	}
1583 
1584 	DPU_DEBUG_ENC(dpu_enc,
1585 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1586 			pclk_rate, pclk_period, line_time);
1587 
1588 	return line_time;
1589 }
1590 
1591 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1592 {
1593 	struct drm_display_mode *mode;
1594 	struct dpu_encoder_virt *dpu_enc;
1595 	u32 cur_line;
1596 	u32 line_time;
1597 	u32 vtotal, time_to_vsync;
1598 	ktime_t cur_time;
1599 
1600 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1601 
1602 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1603 		DPU_ERROR("crtc/crtc state object is NULL\n");
1604 		return -EINVAL;
1605 	}
1606 	mode = &drm_enc->crtc->state->adjusted_mode;
1607 
1608 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1609 	if (!line_time)
1610 		return -EINVAL;
1611 
1612 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1613 
1614 	vtotal = mode->vtotal;
1615 	if (cur_line >= vtotal)
1616 		time_to_vsync = line_time * vtotal;
1617 	else
1618 		time_to_vsync = line_time * (vtotal - cur_line);
1619 
1620 	if (time_to_vsync == 0) {
1621 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1622 				vtotal);
1623 		return -EINVAL;
1624 	}
1625 
1626 	cur_time = ktime_get();
1627 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1628 
1629 	DPU_DEBUG_ENC(dpu_enc,
1630 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1631 			cur_line, vtotal, time_to_vsync,
1632 			ktime_to_ms(cur_time),
1633 			ktime_to_ms(*wakeup_time));
1634 	return 0;
1635 }
1636 
1637 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1638 {
1639 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1640 			vsync_event_timer);
1641 	struct drm_encoder *drm_enc = &dpu_enc->base;
1642 	struct msm_drm_private *priv;
1643 	struct msm_drm_thread *event_thread;
1644 
1645 	if (!drm_enc->dev || !drm_enc->crtc) {
1646 		DPU_ERROR("invalid parameters\n");
1647 		return;
1648 	}
1649 
1650 	priv = drm_enc->dev->dev_private;
1651 
1652 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1653 		DPU_ERROR("invalid crtc index\n");
1654 		return;
1655 	}
1656 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1657 	if (!event_thread) {
1658 		DPU_ERROR("event_thread not found for crtc:%d\n",
1659 				drm_enc->crtc->index);
1660 		return;
1661 	}
1662 
1663 	del_timer(&dpu_enc->vsync_event_timer);
1664 }
1665 
1666 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1667 {
1668 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1669 			struct dpu_encoder_virt, vsync_event_work);
1670 	ktime_t wakeup_time;
1671 
1672 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1673 		return;
1674 
1675 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1676 	mod_timer(&dpu_enc->vsync_event_timer,
1677 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1678 }
1679 
1680 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1681 {
1682 	struct dpu_encoder_virt *dpu_enc;
1683 	struct dpu_encoder_phys *phys;
1684 	bool needs_hw_reset = false;
1685 	unsigned int i;
1686 
1687 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1688 
1689 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1690 
1691 	/* prepare for next kickoff, may include waiting on previous kickoff */
1692 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1693 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1694 		phys = dpu_enc->phys_encs[i];
1695 		if (phys->ops.prepare_for_kickoff)
1696 			phys->ops.prepare_for_kickoff(phys);
1697 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1698 			needs_hw_reset = true;
1699 	}
1700 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1701 
1702 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1703 
1704 	/* if any phys needs reset, reset all phys, in-order */
1705 	if (needs_hw_reset) {
1706 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1707 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1708 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1709 		}
1710 	}
1711 }
1712 
1713 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1714 {
1715 	struct dpu_encoder_virt *dpu_enc;
1716 	struct dpu_encoder_phys *phys;
1717 	ktime_t wakeup_time;
1718 	unsigned long timeout_ms;
1719 	unsigned int i;
1720 
1721 	DPU_ATRACE_BEGIN("encoder_kickoff");
1722 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1723 
1724 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1725 
1726 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1727 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1728 
1729 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1730 	mod_timer(&dpu_enc->frame_done_timer,
1731 			jiffies + msecs_to_jiffies(timeout_ms));
1732 
1733 	/* All phys encs are ready to go, trigger the kickoff */
1734 	_dpu_encoder_kickoff_phys(dpu_enc);
1735 
1736 	/* allow phys encs to handle any post-kickoff business */
1737 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1738 		phys = dpu_enc->phys_encs[i];
1739 		if (phys->ops.handle_post_kickoff)
1740 			phys->ops.handle_post_kickoff(phys);
1741 	}
1742 
1743 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1744 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1745 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1746 					    ktime_to_ms(wakeup_time));
1747 		mod_timer(&dpu_enc->vsync_event_timer,
1748 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1749 	}
1750 
1751 	DPU_ATRACE_END("encoder_kickoff");
1752 }
1753 
1754 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1755 {
1756 	struct dpu_encoder_virt *dpu_enc;
1757 	struct dpu_encoder_phys *phys;
1758 	int i;
1759 
1760 	if (!drm_enc) {
1761 		DPU_ERROR("invalid encoder\n");
1762 		return;
1763 	}
1764 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1765 
1766 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1767 		phys = dpu_enc->phys_encs[i];
1768 		if (phys->ops.prepare_commit)
1769 			phys->ops.prepare_commit(phys);
1770 	}
1771 }
1772 
1773 #ifdef CONFIG_DEBUG_FS
1774 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1775 {
1776 	struct dpu_encoder_virt *dpu_enc = s->private;
1777 	int i;
1778 
1779 	mutex_lock(&dpu_enc->enc_lock);
1780 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1781 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1782 
1783 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1784 				phys->intf_idx - INTF_0,
1785 				atomic_read(&phys->vsync_cnt),
1786 				atomic_read(&phys->underrun_cnt));
1787 
1788 		switch (phys->intf_mode) {
1789 		case INTF_MODE_VIDEO:
1790 			seq_puts(s, "mode: video\n");
1791 			break;
1792 		case INTF_MODE_CMD:
1793 			seq_puts(s, "mode: command\n");
1794 			break;
1795 		default:
1796 			seq_puts(s, "mode: ???\n");
1797 			break;
1798 		}
1799 	}
1800 	mutex_unlock(&dpu_enc->enc_lock);
1801 
1802 	return 0;
1803 }
1804 
1805 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1806 
1807 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1808 {
1809 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1810 	int i;
1811 
1812 	char name[DPU_NAME_SIZE];
1813 
1814 	if (!drm_enc->dev) {
1815 		DPU_ERROR("invalid encoder or kms\n");
1816 		return -EINVAL;
1817 	}
1818 
1819 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1820 
1821 	/* create overall sub-directory for the encoder */
1822 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1823 			drm_enc->dev->primary->debugfs_root);
1824 
1825 	/* don't error check these */
1826 	debugfs_create_file("status", 0600,
1827 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1828 
1829 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1830 		if (dpu_enc->phys_encs[i]->ops.late_register)
1831 			dpu_enc->phys_encs[i]->ops.late_register(
1832 					dpu_enc->phys_encs[i],
1833 					dpu_enc->debugfs_root);
1834 
1835 	return 0;
1836 }
1837 #else
1838 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1839 {
1840 	return 0;
1841 }
1842 #endif
1843 
1844 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1845 {
1846 	return _dpu_encoder_init_debugfs(encoder);
1847 }
1848 
1849 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1850 {
1851 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1852 
1853 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1854 }
1855 
1856 static int dpu_encoder_virt_add_phys_encs(
1857 		u32 display_caps,
1858 		struct dpu_encoder_virt *dpu_enc,
1859 		struct dpu_enc_phys_init_params *params)
1860 {
1861 	struct dpu_encoder_phys *enc = NULL;
1862 
1863 	DPU_DEBUG_ENC(dpu_enc, "\n");
1864 
1865 	/*
1866 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1867 	 * in this function, check up-front.
1868 	 */
1869 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1870 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1871 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1872 			  dpu_enc->num_phys_encs);
1873 		return -EINVAL;
1874 	}
1875 
1876 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1877 		enc = dpu_encoder_phys_vid_init(params);
1878 
1879 		if (IS_ERR_OR_NULL(enc)) {
1880 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1881 				PTR_ERR(enc));
1882 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1883 		}
1884 
1885 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1886 		++dpu_enc->num_phys_encs;
1887 	}
1888 
1889 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1890 		enc = dpu_encoder_phys_cmd_init(params);
1891 
1892 		if (IS_ERR_OR_NULL(enc)) {
1893 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1894 				PTR_ERR(enc));
1895 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1896 		}
1897 
1898 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1899 		++dpu_enc->num_phys_encs;
1900 	}
1901 
1902 	if (params->split_role == ENC_ROLE_SLAVE)
1903 		dpu_enc->cur_slave = enc;
1904 	else
1905 		dpu_enc->cur_master = enc;
1906 
1907 	return 0;
1908 }
1909 
1910 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
1911 	.handle_vblank_virt = dpu_encoder_vblank_callback,
1912 	.handle_underrun_virt = dpu_encoder_underrun_callback,
1913 	.handle_frame_done = dpu_encoder_frame_done_callback,
1914 };
1915 
1916 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
1917 				 struct dpu_kms *dpu_kms,
1918 				 struct msm_display_info *disp_info)
1919 {
1920 	int ret = 0;
1921 	int i = 0;
1922 	enum dpu_intf_type intf_type = INTF_NONE;
1923 	struct dpu_enc_phys_init_params phys_params;
1924 
1925 	if (!dpu_enc) {
1926 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
1927 		return -EINVAL;
1928 	}
1929 
1930 	dpu_enc->cur_master = NULL;
1931 
1932 	memset(&phys_params, 0, sizeof(phys_params));
1933 	phys_params.dpu_kms = dpu_kms;
1934 	phys_params.parent = &dpu_enc->base;
1935 	phys_params.parent_ops = &dpu_encoder_parent_ops;
1936 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
1937 
1938 	switch (disp_info->intf_type) {
1939 	case DRM_MODE_ENCODER_DSI:
1940 		intf_type = INTF_DSI;
1941 		break;
1942 	case DRM_MODE_ENCODER_TMDS:
1943 		intf_type = INTF_DP;
1944 		break;
1945 	}
1946 
1947 	WARN_ON(disp_info->num_of_h_tiles < 1);
1948 
1949 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
1950 
1951 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
1952 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
1953 		dpu_enc->idle_pc_supported =
1954 				dpu_kms->catalog->caps->has_idle_pc;
1955 
1956 	mutex_lock(&dpu_enc->enc_lock);
1957 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
1958 		/*
1959 		 * Left-most tile is at index 0, content is controller id
1960 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
1961 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
1962 		 */
1963 		u32 controller_id = disp_info->h_tile_instance[i];
1964 
1965 		if (disp_info->num_of_h_tiles > 1) {
1966 			if (i == 0)
1967 				phys_params.split_role = ENC_ROLE_MASTER;
1968 			else
1969 				phys_params.split_role = ENC_ROLE_SLAVE;
1970 		} else {
1971 			phys_params.split_role = ENC_ROLE_SOLO;
1972 		}
1973 
1974 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
1975 				i, controller_id, phys_params.split_role);
1976 
1977 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
1978 													intf_type,
1979 													controller_id);
1980 		if (phys_params.intf_idx == INTF_MAX) {
1981 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
1982 						  intf_type, controller_id);
1983 			ret = -EINVAL;
1984 		}
1985 
1986 		if (!ret) {
1987 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
1988 												 dpu_enc,
1989 												 &phys_params);
1990 			if (ret)
1991 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
1992 		}
1993 	}
1994 
1995 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1996 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1997 		atomic_set(&phys->vsync_cnt, 0);
1998 		atomic_set(&phys->underrun_cnt, 0);
1999 	}
2000 	mutex_unlock(&dpu_enc->enc_lock);
2001 
2002 	return ret;
2003 }
2004 
2005 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2006 {
2007 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2008 			frame_done_timer);
2009 	struct drm_encoder *drm_enc = &dpu_enc->base;
2010 	u32 event;
2011 
2012 	if (!drm_enc->dev) {
2013 		DPU_ERROR("invalid parameters\n");
2014 		return;
2015 	}
2016 
2017 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2018 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2019 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2020 		return;
2021 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2022 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2023 		return;
2024 	}
2025 
2026 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2027 
2028 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2029 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2030 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2031 }
2032 
2033 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2034 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2035 	.disable = dpu_encoder_virt_disable,
2036 	.enable = dpu_encoder_virt_enable,
2037 	.atomic_check = dpu_encoder_virt_atomic_check,
2038 };
2039 
2040 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2041 		.destroy = dpu_encoder_destroy,
2042 		.late_register = dpu_encoder_late_register,
2043 		.early_unregister = dpu_encoder_early_unregister,
2044 };
2045 
2046 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2047 		struct msm_display_info *disp_info)
2048 {
2049 	struct msm_drm_private *priv = dev->dev_private;
2050 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2051 	struct drm_encoder *drm_enc = NULL;
2052 	struct dpu_encoder_virt *dpu_enc = NULL;
2053 	int ret = 0;
2054 
2055 	dpu_enc = to_dpu_encoder_virt(enc);
2056 
2057 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2058 	if (ret)
2059 		goto fail;
2060 
2061 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2062 	timer_setup(&dpu_enc->frame_done_timer,
2063 			dpu_encoder_frame_done_timeout, 0);
2064 
2065 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2066 		timer_setup(&dpu_enc->vsync_event_timer,
2067 				dpu_encoder_vsync_event_handler,
2068 				0);
2069 
2070 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2071 			dpu_encoder_off_work);
2072 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2073 
2074 	kthread_init_work(&dpu_enc->vsync_event_work,
2075 			dpu_encoder_vsync_event_work_handler);
2076 
2077 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2078 
2079 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2080 
2081 	return ret;
2082 
2083 fail:
2084 	DPU_ERROR("failed to create encoder\n");
2085 	if (drm_enc)
2086 		dpu_encoder_destroy(drm_enc);
2087 
2088 	return ret;
2089 
2090 
2091 }
2092 
2093 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2094 		int drm_enc_mode)
2095 {
2096 	struct dpu_encoder_virt *dpu_enc = NULL;
2097 	int rc = 0;
2098 
2099 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2100 	if (!dpu_enc)
2101 		return ERR_PTR(-ENOMEM);
2102 
2103 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2104 			drm_enc_mode, NULL);
2105 	if (rc) {
2106 		devm_kfree(dev->dev, dpu_enc);
2107 		return ERR_PTR(rc);
2108 	}
2109 
2110 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2111 
2112 	spin_lock_init(&dpu_enc->enc_spinlock);
2113 	dpu_enc->enabled = false;
2114 	mutex_init(&dpu_enc->enc_lock);
2115 	mutex_init(&dpu_enc->rc_lock);
2116 
2117 	return &dpu_enc->base;
2118 }
2119 
2120 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2121 	enum msm_event_wait event)
2122 {
2123 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2124 	struct dpu_encoder_virt *dpu_enc = NULL;
2125 	int i, ret = 0;
2126 
2127 	if (!drm_enc) {
2128 		DPU_ERROR("invalid encoder\n");
2129 		return -EINVAL;
2130 	}
2131 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2132 	DPU_DEBUG_ENC(dpu_enc, "\n");
2133 
2134 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2135 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2136 
2137 		switch (event) {
2138 		case MSM_ENC_COMMIT_DONE:
2139 			fn_wait = phys->ops.wait_for_commit_done;
2140 			break;
2141 		case MSM_ENC_TX_COMPLETE:
2142 			fn_wait = phys->ops.wait_for_tx_complete;
2143 			break;
2144 		case MSM_ENC_VBLANK:
2145 			fn_wait = phys->ops.wait_for_vblank;
2146 			break;
2147 		default:
2148 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2149 					event);
2150 			return -EINVAL;
2151 		}
2152 
2153 		if (fn_wait) {
2154 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2155 			ret = fn_wait(phys);
2156 			DPU_ATRACE_END("wait_for_completion_event");
2157 			if (ret)
2158 				return ret;
2159 		}
2160 	}
2161 
2162 	return ret;
2163 }
2164 
2165 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2166 {
2167 	struct dpu_encoder_virt *dpu_enc = NULL;
2168 
2169 	if (!encoder) {
2170 		DPU_ERROR("invalid encoder\n");
2171 		return INTF_MODE_NONE;
2172 	}
2173 	dpu_enc = to_dpu_encoder_virt(encoder);
2174 
2175 	if (dpu_enc->cur_master)
2176 		return dpu_enc->cur_master->intf_mode;
2177 
2178 	if (dpu_enc->num_phys_encs)
2179 		return dpu_enc->phys_encs[0]->intf_mode;
2180 
2181 	return INTF_MODE_NONE;
2182 }
2183