1 /* 2 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 20 #include <linux/kthread.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include "msm_drv.h" 25 #include "dpu_kms.h" 26 #include <drm/drm_crtc.h> 27 #include <drm/drm_crtc_helper.h> 28 #include "dpu_hwio.h" 29 #include "dpu_hw_catalog.h" 30 #include "dpu_hw_intf.h" 31 #include "dpu_hw_ctl.h" 32 #include "dpu_formats.h" 33 #include "dpu_encoder_phys.h" 34 #include "dpu_crtc.h" 35 #include "dpu_trace.h" 36 #include "dpu_core_irq.h" 37 38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 43 44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 45 (p) ? (p)->parent->base.id : -1, \ 46 (p) ? (p)->intf_idx - INTF_0 : -1, \ 47 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 48 ##__VA_ARGS__) 49 50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 51 (p) ? (p)->parent->base.id : -1, \ 52 (p) ? (p)->intf_idx - INTF_0 : -1, \ 53 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 54 ##__VA_ARGS__) 55 56 /* 57 * Two to anticipate panels that can do cmd/vid dynamic switching 58 * plan is to create all possible physical encoder types, and switch between 59 * them at runtime 60 */ 61 #define NUM_PHYS_ENCODER_TYPES 2 62 63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 64 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 65 66 #define MAX_CHANNELS_PER_ENC 2 67 68 #define MISR_BUFF_SIZE 256 69 70 #define IDLE_SHORT_TIMEOUT 1 71 72 #define MAX_VDISPLAY_SPLIT 1080 73 74 /** 75 * enum dpu_enc_rc_events - events for resource control state machine 76 * @DPU_ENC_RC_EVENT_KICKOFF: 77 * This event happens at NORMAL priority. 78 * Event that signals the start of the transfer. When this event is 79 * received, enable MDP/DSI core clocks. Regardless of the previous 80 * state, the resource should be in ON state at the end of this event. 81 * @DPU_ENC_RC_EVENT_FRAME_DONE: 82 * This event happens at INTERRUPT level. 83 * Event signals the end of the data transfer after the PP FRAME_DONE 84 * event. At the end of this event, a delayed work is scheduled to go to 85 * IDLE_PC state after IDLE_TIMEOUT time. 86 * @DPU_ENC_RC_EVENT_PRE_STOP: 87 * This event happens at NORMAL priority. 88 * This event, when received during the ON state, leave the RC STATE 89 * in the PRE_OFF state. It should be followed by the STOP event as 90 * part of encoder disable. 91 * If received during IDLE or OFF states, it will do nothing. 92 * @DPU_ENC_RC_EVENT_STOP: 93 * This event happens at NORMAL priority. 94 * When this event is received, disable all the MDP/DSI core clocks, and 95 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 96 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 97 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 98 * Resource state should be in OFF at the end of the event. 99 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 100 * This event happens at NORMAL priority from a work item. 101 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 102 * This would disable MDP/DSI core clocks and change the resource state 103 * to IDLE. 104 */ 105 enum dpu_enc_rc_events { 106 DPU_ENC_RC_EVENT_KICKOFF = 1, 107 DPU_ENC_RC_EVENT_FRAME_DONE, 108 DPU_ENC_RC_EVENT_PRE_STOP, 109 DPU_ENC_RC_EVENT_STOP, 110 DPU_ENC_RC_EVENT_ENTER_IDLE 111 }; 112 113 /* 114 * enum dpu_enc_rc_states - states that the resource control maintains 115 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 116 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 117 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 118 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 119 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 120 */ 121 enum dpu_enc_rc_states { 122 DPU_ENC_RC_STATE_OFF, 123 DPU_ENC_RC_STATE_PRE_OFF, 124 DPU_ENC_RC_STATE_ON, 125 DPU_ENC_RC_STATE_IDLE 126 }; 127 128 /** 129 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 130 * encoders. Virtual encoder manages one "logical" display. Physical 131 * encoders manage one intf block, tied to a specific panel/sub-panel. 132 * Virtual encoder defers as much as possible to the physical encoders. 133 * Virtual encoder registers itself with the DRM Framework as the encoder. 134 * @base: drm_encoder base class for registration with DRM 135 * @enc_spin_lock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 136 * @bus_scaling_client: Client handle to the bus scaling interface 137 * @num_phys_encs: Actual number of physical encoders contained. 138 * @phys_encs: Container of physical encoders managed. 139 * @cur_master: Pointer to the current master in this mode. Optimization 140 * Only valid after enable. Cleared as disable. 141 * @hw_pp Handle to the pingpong blocks used for the display. No. 142 * pingpong blocks can be different than num_phys_encs. 143 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 144 * for partial update right-only cases, such as pingpong 145 * split where virtual pingpong does not generate IRQs 146 * @crtc_vblank_cb: Callback into the upper layer / CRTC for 147 * notification of the VBLANK 148 * @crtc_vblank_cb_data: Data from upper layer for VBLANK notification 149 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 150 * all CTL paths 151 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 152 * @debugfs_root: Debug file system root file node 153 * @enc_lock: Lock around physical encoder create/destroy and 154 access. 155 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 156 * busy processing current command. 157 * Bit0 = phys_encs[0] etc. 158 * @crtc_frame_event_cb: callback handler for frame event 159 * @crtc_frame_event_cb_data: callback handler private data 160 * @frame_done_timeout: frame done timeout in Hz 161 * @frame_done_timer: watchdog timer for frame done event 162 * @vsync_event_timer: vsync timer 163 * @disp_info: local copy of msm_display_info struct 164 * @misr_enable: misr enable/disable status 165 * @misr_frame_count: misr frame count before start capturing the data 166 * @idle_pc_supported: indicate if idle power collaps is supported 167 * @rc_lock: resource control mutex lock to protect 168 * virt encoder over various state changes 169 * @rc_state: resource controller state 170 * @delayed_off_work: delayed worker to schedule disabling of 171 * clks and resources after IDLE_TIMEOUT time. 172 * @vsync_event_work: worker to handle vsync event for autorefresh 173 * @topology: topology of the display 174 * @mode_set_complete: flag to indicate modeset completion 175 * @idle_timeout: idle timeout duration in milliseconds 176 */ 177 struct dpu_encoder_virt { 178 struct drm_encoder base; 179 spinlock_t enc_spinlock; 180 uint32_t bus_scaling_client; 181 182 uint32_t display_num_of_h_tiles; 183 184 unsigned int num_phys_encs; 185 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 186 struct dpu_encoder_phys *cur_master; 187 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 188 189 bool intfs_swapped; 190 191 void (*crtc_vblank_cb)(void *); 192 void *crtc_vblank_cb_data; 193 194 struct dentry *debugfs_root; 195 struct mutex enc_lock; 196 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 197 void (*crtc_frame_event_cb)(void *, u32 event); 198 void *crtc_frame_event_cb_data; 199 200 atomic_t frame_done_timeout; 201 struct timer_list frame_done_timer; 202 struct timer_list vsync_event_timer; 203 204 struct msm_display_info disp_info; 205 bool misr_enable; 206 u32 misr_frame_count; 207 208 bool idle_pc_supported; 209 struct mutex rc_lock; 210 enum dpu_enc_rc_states rc_state; 211 struct kthread_delayed_work delayed_off_work; 212 struct kthread_work vsync_event_work; 213 struct msm_display_topology topology; 214 bool mode_set_complete; 215 216 u32 idle_timeout; 217 }; 218 219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 220 static inline int _dpu_encoder_power_enable(struct dpu_encoder_virt *dpu_enc, 221 bool enable) 222 { 223 struct drm_encoder *drm_enc; 224 struct msm_drm_private *priv; 225 struct dpu_kms *dpu_kms; 226 227 if (!dpu_enc) { 228 DPU_ERROR("invalid dpu enc\n"); 229 return -EINVAL; 230 } 231 232 drm_enc = &dpu_enc->base; 233 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 234 DPU_ERROR("drm device invalid\n"); 235 return -EINVAL; 236 } 237 238 priv = drm_enc->dev->dev_private; 239 if (!priv->kms) { 240 DPU_ERROR("invalid kms\n"); 241 return -EINVAL; 242 } 243 244 dpu_kms = to_dpu_kms(priv->kms); 245 246 if (enable) 247 pm_runtime_get_sync(&dpu_kms->pdev->dev); 248 else 249 pm_runtime_put_sync(&dpu_kms->pdev->dev); 250 251 return 0; 252 } 253 254 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 255 enum dpu_intr_idx intr_idx) 256 { 257 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 258 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 259 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 260 261 if (phys_enc->parent_ops->handle_frame_done) 262 phys_enc->parent_ops->handle_frame_done( 263 phys_enc->parent, phys_enc, 264 DPU_ENCODER_FRAME_EVENT_ERROR); 265 } 266 267 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 268 int32_t hw_id, struct dpu_encoder_wait_info *info); 269 270 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 271 enum dpu_intr_idx intr_idx, 272 struct dpu_encoder_wait_info *wait_info) 273 { 274 struct dpu_encoder_irq *irq; 275 u32 irq_status; 276 int ret; 277 278 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 279 DPU_ERROR("invalid params\n"); 280 return -EINVAL; 281 } 282 irq = &phys_enc->irq[intr_idx]; 283 284 /* note: do master / slave checking outside */ 285 286 /* return EWOULDBLOCK since we know the wait isn't necessary */ 287 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 288 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 290 irq->irq_idx); 291 return -EWOULDBLOCK; 292 } 293 294 if (irq->irq_idx < 0) { 295 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 296 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 297 irq->name); 298 return 0; 299 } 300 301 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 302 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 303 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 304 atomic_read(wait_info->atomic_cnt)); 305 306 ret = dpu_encoder_helper_wait_event_timeout( 307 DRMID(phys_enc->parent), 308 irq->hw_idx, 309 wait_info); 310 311 if (ret <= 0) { 312 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 313 irq->irq_idx, true); 314 if (irq_status) { 315 unsigned long flags; 316 317 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 318 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 319 DRMID(phys_enc->parent), intr_idx, 320 irq->hw_idx, irq->irq_idx, 321 phys_enc->hw_pp->idx - PINGPONG_0, 322 atomic_read(wait_info->atomic_cnt)); 323 local_irq_save(flags); 324 irq->cb.func(phys_enc, irq->irq_idx); 325 local_irq_restore(flags); 326 ret = 0; 327 } else { 328 ret = -ETIMEDOUT; 329 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 330 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 331 DRMID(phys_enc->parent), intr_idx, 332 irq->hw_idx, irq->irq_idx, 333 phys_enc->hw_pp->idx - PINGPONG_0, 334 atomic_read(wait_info->atomic_cnt)); 335 } 336 } else { 337 ret = 0; 338 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 339 intr_idx, irq->hw_idx, irq->irq_idx, 340 phys_enc->hw_pp->idx - PINGPONG_0, 341 atomic_read(wait_info->atomic_cnt)); 342 } 343 344 return ret; 345 } 346 347 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 348 enum dpu_intr_idx intr_idx) 349 { 350 struct dpu_encoder_irq *irq; 351 int ret = 0; 352 353 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 354 DPU_ERROR("invalid params\n"); 355 return -EINVAL; 356 } 357 irq = &phys_enc->irq[intr_idx]; 358 359 if (irq->irq_idx >= 0) { 360 DPU_DEBUG_PHYS(phys_enc, 361 "skipping already registered irq %s type %d\n", 362 irq->name, irq->intr_type); 363 return 0; 364 } 365 366 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 367 irq->intr_type, irq->hw_idx); 368 if (irq->irq_idx < 0) { 369 DPU_ERROR_PHYS(phys_enc, 370 "failed to lookup IRQ index for %s type:%d\n", 371 irq->name, irq->intr_type); 372 return -EINVAL; 373 } 374 375 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 376 &irq->cb); 377 if (ret) { 378 DPU_ERROR_PHYS(phys_enc, 379 "failed to register IRQ callback for %s\n", 380 irq->name); 381 irq->irq_idx = -EINVAL; 382 return ret; 383 } 384 385 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 386 if (ret) { 387 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 388 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 389 irq->irq_idx); 390 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 391 irq->irq_idx, &irq->cb); 392 irq->irq_idx = -EINVAL; 393 return ret; 394 } 395 396 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 397 irq->hw_idx, irq->irq_idx); 398 399 return ret; 400 } 401 402 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 403 enum dpu_intr_idx intr_idx) 404 { 405 struct dpu_encoder_irq *irq; 406 int ret; 407 408 if (!phys_enc) { 409 DPU_ERROR("invalid encoder\n"); 410 return -EINVAL; 411 } 412 irq = &phys_enc->irq[intr_idx]; 413 414 /* silently skip irqs that weren't registered */ 415 if (irq->irq_idx < 0) { 416 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 417 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 418 irq->irq_idx); 419 return 0; 420 } 421 422 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 423 if (ret) { 424 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 425 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 426 irq->irq_idx, ret); 427 } 428 429 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 430 &irq->cb); 431 if (ret) { 432 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 433 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 434 irq->irq_idx, ret); 435 } 436 437 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 438 irq->hw_idx, irq->irq_idx); 439 440 irq->irq_idx = -EINVAL; 441 442 return 0; 443 } 444 445 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 446 struct dpu_encoder_hw_resources *hw_res, 447 struct drm_connector_state *conn_state) 448 { 449 struct dpu_encoder_virt *dpu_enc = NULL; 450 int i = 0; 451 452 if (!hw_res || !drm_enc || !conn_state) { 453 DPU_ERROR("invalid argument(s), drm_enc %d, res %d, state %d\n", 454 drm_enc != 0, hw_res != 0, conn_state != 0); 455 return; 456 } 457 458 dpu_enc = to_dpu_encoder_virt(drm_enc); 459 DPU_DEBUG_ENC(dpu_enc, "\n"); 460 461 /* Query resources used by phys encs, expected to be without overlap */ 462 memset(hw_res, 0, sizeof(*hw_res)); 463 hw_res->display_num_of_h_tiles = dpu_enc->display_num_of_h_tiles; 464 465 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 466 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 467 468 if (phys && phys->ops.get_hw_resources) 469 phys->ops.get_hw_resources(phys, hw_res, conn_state); 470 } 471 } 472 473 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 474 { 475 struct dpu_encoder_virt *dpu_enc = NULL; 476 int i = 0; 477 478 if (!drm_enc) { 479 DPU_ERROR("invalid encoder\n"); 480 return; 481 } 482 483 dpu_enc = to_dpu_encoder_virt(drm_enc); 484 DPU_DEBUG_ENC(dpu_enc, "\n"); 485 486 mutex_lock(&dpu_enc->enc_lock); 487 488 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 489 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 490 491 if (phys && phys->ops.destroy) { 492 phys->ops.destroy(phys); 493 --dpu_enc->num_phys_encs; 494 dpu_enc->phys_encs[i] = NULL; 495 } 496 } 497 498 if (dpu_enc->num_phys_encs) 499 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 500 dpu_enc->num_phys_encs); 501 dpu_enc->num_phys_encs = 0; 502 mutex_unlock(&dpu_enc->enc_lock); 503 504 drm_encoder_cleanup(drm_enc); 505 mutex_destroy(&dpu_enc->enc_lock); 506 507 kfree(dpu_enc); 508 } 509 510 void dpu_encoder_helper_split_config( 511 struct dpu_encoder_phys *phys_enc, 512 enum dpu_intf interface) 513 { 514 struct dpu_encoder_virt *dpu_enc; 515 struct split_pipe_cfg cfg = { 0 }; 516 struct dpu_hw_mdp *hw_mdptop; 517 struct msm_display_info *disp_info; 518 519 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 520 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 521 return; 522 } 523 524 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 525 hw_mdptop = phys_enc->hw_mdptop; 526 disp_info = &dpu_enc->disp_info; 527 528 if (disp_info->intf_type != DRM_MODE_CONNECTOR_DSI) 529 return; 530 531 /** 532 * disable split modes since encoder will be operating in as the only 533 * encoder, either for the entire use case in the case of, for example, 534 * single DSI, or for this frame in the case of left/right only partial 535 * update. 536 */ 537 if (phys_enc->split_role == ENC_ROLE_SOLO) { 538 if (hw_mdptop->ops.setup_split_pipe) 539 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 540 return; 541 } 542 543 cfg.en = true; 544 cfg.mode = phys_enc->intf_mode; 545 cfg.intf = interface; 546 547 if (cfg.en && phys_enc->ops.needs_single_flush && 548 phys_enc->ops.needs_single_flush(phys_enc)) 549 cfg.split_flush_en = true; 550 551 if (phys_enc->split_role == ENC_ROLE_MASTER) { 552 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 553 554 if (hw_mdptop->ops.setup_split_pipe) 555 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 556 } 557 } 558 559 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 560 struct drm_display_mode *adj_mode) 561 { 562 struct drm_display_mode *cur_mode; 563 564 if (!connector || !adj_mode) 565 return; 566 567 list_for_each_entry(cur_mode, &connector->modes, head) { 568 if (cur_mode->vdisplay == adj_mode->vdisplay && 569 cur_mode->hdisplay == adj_mode->hdisplay && 570 cur_mode->vrefresh == adj_mode->vrefresh) { 571 adj_mode->private = cur_mode->private; 572 adj_mode->private_flags |= cur_mode->private_flags; 573 } 574 } 575 } 576 577 static struct msm_display_topology dpu_encoder_get_topology( 578 struct dpu_encoder_virt *dpu_enc, 579 struct dpu_kms *dpu_kms, 580 struct drm_display_mode *mode) 581 { 582 struct msm_display_topology topology; 583 int i, intf_count = 0; 584 585 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 586 if (dpu_enc->phys_encs[i]) 587 intf_count++; 588 589 /* User split topology for width > 1080 */ 590 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 591 topology.num_enc = 0; 592 topology.num_intf = intf_count; 593 594 return topology; 595 } 596 static int dpu_encoder_virt_atomic_check( 597 struct drm_encoder *drm_enc, 598 struct drm_crtc_state *crtc_state, 599 struct drm_connector_state *conn_state) 600 { 601 struct dpu_encoder_virt *dpu_enc; 602 struct msm_drm_private *priv; 603 struct dpu_kms *dpu_kms; 604 const struct drm_display_mode *mode; 605 struct drm_display_mode *adj_mode; 606 struct msm_display_topology topology; 607 int i = 0; 608 int ret = 0; 609 610 if (!drm_enc || !crtc_state || !conn_state) { 611 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 612 drm_enc != 0, crtc_state != 0, conn_state != 0); 613 return -EINVAL; 614 } 615 616 dpu_enc = to_dpu_encoder_virt(drm_enc); 617 DPU_DEBUG_ENC(dpu_enc, "\n"); 618 619 priv = drm_enc->dev->dev_private; 620 dpu_kms = to_dpu_kms(priv->kms); 621 mode = &crtc_state->mode; 622 adj_mode = &crtc_state->adjusted_mode; 623 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 624 625 /* 626 * display drivers may populate private fields of the drm display mode 627 * structure while registering possible modes of a connector with DRM. 628 * These private fields are not populated back while DRM invokes 629 * the mode_set callbacks. This module retrieves and populates the 630 * private fields of the given mode. 631 */ 632 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 633 634 /* perform atomic check on the first physical encoder (master) */ 635 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 636 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 637 638 if (phys && phys->ops.atomic_check) 639 ret = phys->ops.atomic_check(phys, crtc_state, 640 conn_state); 641 else if (phys && phys->ops.mode_fixup) 642 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 643 ret = -EINVAL; 644 645 if (ret) { 646 DPU_ERROR_ENC(dpu_enc, 647 "mode unsupported, phys idx %d\n", i); 648 break; 649 } 650 } 651 652 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 653 654 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 655 if (!ret) { 656 /* 657 * Avoid reserving resources when mode set is pending. Topology 658 * info may not be available to complete reservation. 659 */ 660 if (drm_atomic_crtc_needs_modeset(crtc_state) 661 && dpu_enc->mode_set_complete) { 662 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 663 conn_state, topology, true); 664 dpu_enc->mode_set_complete = false; 665 } 666 } 667 668 if (!ret) 669 drm_mode_set_crtcinfo(adj_mode, 0); 670 671 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 672 adj_mode->private_flags); 673 674 return ret; 675 } 676 677 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 678 struct msm_display_info *disp_info) 679 { 680 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 681 struct msm_drm_private *priv; 682 struct dpu_kms *dpu_kms; 683 struct dpu_hw_mdp *hw_mdptop; 684 struct drm_encoder *drm_enc; 685 int i; 686 687 if (!dpu_enc || !disp_info) { 688 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 689 dpu_enc != NULL, disp_info != NULL); 690 return; 691 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 692 DPU_ERROR("invalid num phys enc %d/%d\n", 693 dpu_enc->num_phys_encs, 694 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 695 return; 696 } 697 698 drm_enc = &dpu_enc->base; 699 /* this pointers are checked in virt_enable_helper */ 700 priv = drm_enc->dev->dev_private; 701 702 dpu_kms = to_dpu_kms(priv->kms); 703 if (!dpu_kms) { 704 DPU_ERROR("invalid dpu_kms\n"); 705 return; 706 } 707 708 hw_mdptop = dpu_kms->hw_mdp; 709 if (!hw_mdptop) { 710 DPU_ERROR("invalid mdptop\n"); 711 return; 712 } 713 714 if (hw_mdptop->ops.setup_vsync_source && 715 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 716 for (i = 0; i < dpu_enc->num_phys_encs; i++) 717 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 718 719 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 720 if (disp_info->is_te_using_watchdog_timer) 721 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 722 else 723 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 724 725 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 726 } 727 } 728 729 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 730 { 731 struct dpu_encoder_virt *dpu_enc; 732 int i; 733 734 if (!drm_enc) { 735 DPU_ERROR("invalid encoder\n"); 736 return; 737 } 738 739 dpu_enc = to_dpu_encoder_virt(drm_enc); 740 741 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 742 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 743 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 744 745 if (phys && phys->ops.irq_control) 746 phys->ops.irq_control(phys, enable); 747 } 748 749 } 750 751 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 752 bool enable) 753 { 754 struct msm_drm_private *priv; 755 struct dpu_kms *dpu_kms; 756 struct dpu_encoder_virt *dpu_enc; 757 758 dpu_enc = to_dpu_encoder_virt(drm_enc); 759 priv = drm_enc->dev->dev_private; 760 dpu_kms = to_dpu_kms(priv->kms); 761 762 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 763 764 if (!dpu_enc->cur_master) { 765 DPU_ERROR("encoder master not set\n"); 766 return; 767 } 768 769 if (enable) { 770 /* enable DPU core clks */ 771 pm_runtime_get_sync(&dpu_kms->pdev->dev); 772 773 /* enable all the irq */ 774 _dpu_encoder_irq_control(drm_enc, true); 775 776 } else { 777 /* disable all the irq */ 778 _dpu_encoder_irq_control(drm_enc, false); 779 780 /* disable DPU core clks */ 781 pm_runtime_put_sync(&dpu_kms->pdev->dev); 782 } 783 784 } 785 786 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 787 u32 sw_event) 788 { 789 struct dpu_encoder_virt *dpu_enc; 790 struct msm_drm_private *priv; 791 struct msm_drm_thread *disp_thread; 792 bool is_vid_mode = false; 793 794 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 795 !drm_enc->crtc) { 796 DPU_ERROR("invalid parameters\n"); 797 return -EINVAL; 798 } 799 dpu_enc = to_dpu_encoder_virt(drm_enc); 800 priv = drm_enc->dev->dev_private; 801 is_vid_mode = dpu_enc->disp_info.capabilities & 802 MSM_DISPLAY_CAP_VID_MODE; 803 804 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) { 805 DPU_ERROR("invalid crtc index\n"); 806 return -EINVAL; 807 } 808 disp_thread = &priv->disp_thread[drm_enc->crtc->index]; 809 810 /* 811 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 812 * events and return early for other events (ie wb display). 813 */ 814 if (!dpu_enc->idle_pc_supported && 815 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 816 sw_event != DPU_ENC_RC_EVENT_STOP && 817 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 818 return 0; 819 820 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 821 dpu_enc->rc_state, "begin"); 822 823 switch (sw_event) { 824 case DPU_ENC_RC_EVENT_KICKOFF: 825 /* cancel delayed off work, if any */ 826 if (kthread_cancel_delayed_work_sync( 827 &dpu_enc->delayed_off_work)) 828 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 829 sw_event); 830 831 mutex_lock(&dpu_enc->rc_lock); 832 833 /* return if the resource control is already in ON state */ 834 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 835 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 836 DRMID(drm_enc), sw_event); 837 mutex_unlock(&dpu_enc->rc_lock); 838 return 0; 839 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 840 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 841 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 842 DRMID(drm_enc), sw_event, 843 dpu_enc->rc_state); 844 mutex_unlock(&dpu_enc->rc_lock); 845 return -EINVAL; 846 } 847 848 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 849 _dpu_encoder_irq_control(drm_enc, true); 850 else 851 _dpu_encoder_resource_control_helper(drm_enc, true); 852 853 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 854 855 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 856 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 857 "kickoff"); 858 859 mutex_unlock(&dpu_enc->rc_lock); 860 break; 861 862 case DPU_ENC_RC_EVENT_FRAME_DONE: 863 /* 864 * mutex lock is not used as this event happens at interrupt 865 * context. And locking is not required as, the other events 866 * like KICKOFF and STOP does a wait-for-idle before executing 867 * the resource_control 868 */ 869 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 870 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 871 DRMID(drm_enc), sw_event, 872 dpu_enc->rc_state); 873 return -EINVAL; 874 } 875 876 /* 877 * schedule off work item only when there are no 878 * frames pending 879 */ 880 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 881 DRM_DEBUG_KMS("id:%d skip schedule work\n", 882 DRMID(drm_enc)); 883 return 0; 884 } 885 886 kthread_queue_delayed_work( 887 &disp_thread->worker, 888 &dpu_enc->delayed_off_work, 889 msecs_to_jiffies(dpu_enc->idle_timeout)); 890 891 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 892 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 893 "frame done"); 894 break; 895 896 case DPU_ENC_RC_EVENT_PRE_STOP: 897 /* cancel delayed off work, if any */ 898 if (kthread_cancel_delayed_work_sync( 899 &dpu_enc->delayed_off_work)) 900 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 901 sw_event); 902 903 mutex_lock(&dpu_enc->rc_lock); 904 905 if (is_vid_mode && 906 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 907 _dpu_encoder_irq_control(drm_enc, true); 908 } 909 /* skip if is already OFF or IDLE, resources are off already */ 910 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 911 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 912 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 913 DRMID(drm_enc), sw_event, 914 dpu_enc->rc_state); 915 mutex_unlock(&dpu_enc->rc_lock); 916 return 0; 917 } 918 919 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 920 921 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 922 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 923 "pre stop"); 924 925 mutex_unlock(&dpu_enc->rc_lock); 926 break; 927 928 case DPU_ENC_RC_EVENT_STOP: 929 mutex_lock(&dpu_enc->rc_lock); 930 931 /* return if the resource control is already in OFF state */ 932 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 933 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 934 DRMID(drm_enc), sw_event); 935 mutex_unlock(&dpu_enc->rc_lock); 936 return 0; 937 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 938 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 939 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 940 mutex_unlock(&dpu_enc->rc_lock); 941 return -EINVAL; 942 } 943 944 /** 945 * expect to arrive here only if in either idle state or pre-off 946 * and in IDLE state the resources are already disabled 947 */ 948 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 949 _dpu_encoder_resource_control_helper(drm_enc, false); 950 951 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 952 953 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 954 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 955 "stop"); 956 957 mutex_unlock(&dpu_enc->rc_lock); 958 break; 959 960 case DPU_ENC_RC_EVENT_ENTER_IDLE: 961 mutex_lock(&dpu_enc->rc_lock); 962 963 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 964 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 965 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 966 mutex_unlock(&dpu_enc->rc_lock); 967 return 0; 968 } 969 970 /* 971 * if we are in ON but a frame was just kicked off, 972 * ignore the IDLE event, it's probably a stale timer event 973 */ 974 if (dpu_enc->frame_busy_mask[0]) { 975 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 976 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 977 mutex_unlock(&dpu_enc->rc_lock); 978 return 0; 979 } 980 981 if (is_vid_mode) 982 _dpu_encoder_irq_control(drm_enc, false); 983 else 984 _dpu_encoder_resource_control_helper(drm_enc, false); 985 986 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 987 988 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 989 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 990 "idle"); 991 992 mutex_unlock(&dpu_enc->rc_lock); 993 break; 994 995 default: 996 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 997 sw_event); 998 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 999 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1000 "error"); 1001 break; 1002 } 1003 1004 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1005 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1006 "end"); 1007 return 0; 1008 } 1009 1010 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 1011 struct drm_display_mode *mode, 1012 struct drm_display_mode *adj_mode) 1013 { 1014 struct dpu_encoder_virt *dpu_enc; 1015 struct msm_drm_private *priv; 1016 struct dpu_kms *dpu_kms; 1017 struct list_head *connector_list; 1018 struct drm_connector *conn = NULL, *conn_iter; 1019 struct dpu_rm_hw_iter pp_iter; 1020 struct msm_display_topology topology; 1021 enum dpu_rm_topology_name topology_name; 1022 int i = 0, ret; 1023 1024 if (!drm_enc) { 1025 DPU_ERROR("invalid encoder\n"); 1026 return; 1027 } 1028 1029 dpu_enc = to_dpu_encoder_virt(drm_enc); 1030 DPU_DEBUG_ENC(dpu_enc, "\n"); 1031 1032 priv = drm_enc->dev->dev_private; 1033 dpu_kms = to_dpu_kms(priv->kms); 1034 connector_list = &dpu_kms->dev->mode_config.connector_list; 1035 1036 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1037 1038 list_for_each_entry(conn_iter, connector_list, head) 1039 if (conn_iter->encoder == drm_enc) 1040 conn = conn_iter; 1041 1042 if (!conn) { 1043 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 1044 return; 1045 } else if (!conn->state) { 1046 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 1047 return; 1048 } 1049 1050 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 1051 1052 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 1053 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state, 1054 conn->state, topology, false); 1055 if (ret) { 1056 DPU_ERROR_ENC(dpu_enc, 1057 "failed to reserve hw resources, %d\n", ret); 1058 return; 1059 } 1060 1061 dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1062 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1063 dpu_enc->hw_pp[i] = NULL; 1064 if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter)) 1065 break; 1066 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw; 1067 } 1068 1069 topology_name = dpu_rm_get_topology_name(topology); 1070 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1071 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1072 1073 if (phys) { 1074 if (!dpu_enc->hw_pp[i]) { 1075 DPU_ERROR_ENC(dpu_enc, 1076 "invalid pingpong block for the encoder\n"); 1077 return; 1078 } 1079 phys->hw_pp = dpu_enc->hw_pp[i]; 1080 phys->connector = conn->state->connector; 1081 phys->topology_name = topology_name; 1082 if (phys->ops.mode_set) 1083 phys->ops.mode_set(phys, mode, adj_mode); 1084 } 1085 } 1086 1087 dpu_enc->mode_set_complete = true; 1088 } 1089 1090 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1091 { 1092 struct dpu_encoder_virt *dpu_enc = NULL; 1093 struct msm_drm_private *priv; 1094 struct dpu_kms *dpu_kms; 1095 1096 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1097 DPU_ERROR("invalid parameters\n"); 1098 return; 1099 } 1100 1101 priv = drm_enc->dev->dev_private; 1102 dpu_kms = to_dpu_kms(priv->kms); 1103 if (!dpu_kms) { 1104 DPU_ERROR("invalid dpu_kms\n"); 1105 return; 1106 } 1107 1108 dpu_enc = to_dpu_encoder_virt(drm_enc); 1109 if (!dpu_enc || !dpu_enc->cur_master) { 1110 DPU_ERROR("invalid dpu encoder/master\n"); 1111 return; 1112 } 1113 1114 if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort && 1115 dpu_enc->cur_master->hw_mdptop && 1116 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1117 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1118 dpu_enc->cur_master->hw_mdptop); 1119 1120 if (dpu_enc->cur_master->hw_mdptop && 1121 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1122 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1123 dpu_enc->cur_master->hw_mdptop, 1124 dpu_kms->catalog); 1125 1126 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1127 } 1128 1129 void dpu_encoder_virt_restore(struct drm_encoder *drm_enc) 1130 { 1131 struct dpu_encoder_virt *dpu_enc = NULL; 1132 int i; 1133 1134 if (!drm_enc) { 1135 DPU_ERROR("invalid encoder\n"); 1136 return; 1137 } 1138 dpu_enc = to_dpu_encoder_virt(drm_enc); 1139 1140 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1141 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1142 1143 if (phys && (phys != dpu_enc->cur_master) && phys->ops.restore) 1144 phys->ops.restore(phys); 1145 } 1146 1147 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1148 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1149 1150 _dpu_encoder_virt_enable_helper(drm_enc); 1151 } 1152 1153 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1154 { 1155 struct dpu_encoder_virt *dpu_enc = NULL; 1156 int i, ret = 0; 1157 struct drm_display_mode *cur_mode = NULL; 1158 1159 if (!drm_enc) { 1160 DPU_ERROR("invalid encoder\n"); 1161 return; 1162 } 1163 dpu_enc = to_dpu_encoder_virt(drm_enc); 1164 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1165 1166 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1167 cur_mode->vdisplay); 1168 1169 dpu_enc->cur_master = NULL; 1170 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1171 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1172 1173 if (phys && phys->ops.is_master && phys->ops.is_master(phys)) { 1174 DPU_DEBUG_ENC(dpu_enc, "master is now idx %d\n", i); 1175 dpu_enc->cur_master = phys; 1176 break; 1177 } 1178 } 1179 1180 if (!dpu_enc->cur_master) { 1181 DPU_ERROR("virt encoder has no master! num_phys %d\n", i); 1182 return; 1183 } 1184 1185 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1186 if (ret) { 1187 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1188 ret); 1189 return; 1190 } 1191 1192 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1193 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1194 1195 if (!phys) 1196 continue; 1197 1198 if (phys != dpu_enc->cur_master) { 1199 if (phys->ops.enable) 1200 phys->ops.enable(phys); 1201 } 1202 1203 if (dpu_enc->misr_enable && (dpu_enc->disp_info.capabilities & 1204 MSM_DISPLAY_CAP_VID_MODE) && phys->ops.setup_misr) 1205 phys->ops.setup_misr(phys, true, 1206 dpu_enc->misr_frame_count); 1207 } 1208 1209 if (dpu_enc->cur_master->ops.enable) 1210 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1211 1212 _dpu_encoder_virt_enable_helper(drm_enc); 1213 } 1214 1215 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1216 { 1217 struct dpu_encoder_virt *dpu_enc = NULL; 1218 struct msm_drm_private *priv; 1219 struct dpu_kms *dpu_kms; 1220 struct drm_display_mode *mode; 1221 int i = 0; 1222 1223 if (!drm_enc) { 1224 DPU_ERROR("invalid encoder\n"); 1225 return; 1226 } else if (!drm_enc->dev) { 1227 DPU_ERROR("invalid dev\n"); 1228 return; 1229 } else if (!drm_enc->dev->dev_private) { 1230 DPU_ERROR("invalid dev_private\n"); 1231 return; 1232 } 1233 1234 mode = &drm_enc->crtc->state->adjusted_mode; 1235 1236 dpu_enc = to_dpu_encoder_virt(drm_enc); 1237 DPU_DEBUG_ENC(dpu_enc, "\n"); 1238 1239 priv = drm_enc->dev->dev_private; 1240 dpu_kms = to_dpu_kms(priv->kms); 1241 1242 trace_dpu_enc_disable(DRMID(drm_enc)); 1243 1244 /* wait for idle */ 1245 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1246 1247 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1248 1249 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1250 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1251 1252 if (phys && phys->ops.disable) 1253 phys->ops.disable(phys); 1254 } 1255 1256 /* after phys waits for frame-done, should be no more frames pending */ 1257 if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 1258 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1259 del_timer_sync(&dpu_enc->frame_done_timer); 1260 } 1261 1262 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1263 1264 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1265 if (dpu_enc->phys_encs[i]) 1266 dpu_enc->phys_encs[i]->connector = NULL; 1267 } 1268 1269 dpu_enc->cur_master = NULL; 1270 1271 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1272 1273 dpu_rm_release(&dpu_kms->rm, drm_enc); 1274 } 1275 1276 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1277 enum dpu_intf_type type, u32 controller_id) 1278 { 1279 int i = 0; 1280 1281 for (i = 0; i < catalog->intf_count; i++) { 1282 if (catalog->intf[i].type == type 1283 && catalog->intf[i].controller_id == controller_id) { 1284 return catalog->intf[i].id; 1285 } 1286 } 1287 1288 return INTF_MAX; 1289 } 1290 1291 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1292 struct dpu_encoder_phys *phy_enc) 1293 { 1294 struct dpu_encoder_virt *dpu_enc = NULL; 1295 unsigned long lock_flags; 1296 1297 if (!drm_enc || !phy_enc) 1298 return; 1299 1300 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1301 dpu_enc = to_dpu_encoder_virt(drm_enc); 1302 1303 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1304 if (dpu_enc->crtc_vblank_cb) 1305 dpu_enc->crtc_vblank_cb(dpu_enc->crtc_vblank_cb_data); 1306 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1307 1308 atomic_inc(&phy_enc->vsync_cnt); 1309 DPU_ATRACE_END("encoder_vblank_callback"); 1310 } 1311 1312 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1313 struct dpu_encoder_phys *phy_enc) 1314 { 1315 if (!phy_enc) 1316 return; 1317 1318 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1319 atomic_inc(&phy_enc->underrun_cnt); 1320 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1321 atomic_read(&phy_enc->underrun_cnt)); 1322 DPU_ATRACE_END("encoder_underrun_callback"); 1323 } 1324 1325 void dpu_encoder_register_vblank_callback(struct drm_encoder *drm_enc, 1326 void (*vbl_cb)(void *), void *vbl_data) 1327 { 1328 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1329 unsigned long lock_flags; 1330 bool enable; 1331 int i; 1332 1333 enable = vbl_cb ? true : false; 1334 1335 if (!drm_enc) { 1336 DPU_ERROR("invalid encoder\n"); 1337 return; 1338 } 1339 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1340 1341 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1342 dpu_enc->crtc_vblank_cb = vbl_cb; 1343 dpu_enc->crtc_vblank_cb_data = vbl_data; 1344 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1345 1346 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1347 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1348 1349 if (phys && phys->ops.control_vblank_irq) 1350 phys->ops.control_vblank_irq(phys, enable); 1351 } 1352 } 1353 1354 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1355 void (*frame_event_cb)(void *, u32 event), 1356 void *frame_event_cb_data) 1357 { 1358 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1359 unsigned long lock_flags; 1360 bool enable; 1361 1362 enable = frame_event_cb ? true : false; 1363 1364 if (!drm_enc) { 1365 DPU_ERROR("invalid encoder\n"); 1366 return; 1367 } 1368 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1369 1370 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1371 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1372 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1373 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1374 } 1375 1376 static void dpu_encoder_frame_done_callback( 1377 struct drm_encoder *drm_enc, 1378 struct dpu_encoder_phys *ready_phys, u32 event) 1379 { 1380 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1381 unsigned int i; 1382 1383 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1384 | DPU_ENCODER_FRAME_EVENT_ERROR 1385 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1386 1387 if (!dpu_enc->frame_busy_mask[0]) { 1388 /** 1389 * suppress frame_done without waiter, 1390 * likely autorefresh 1391 */ 1392 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1393 event, ready_phys->intf_idx); 1394 return; 1395 } 1396 1397 /* One of the physical encoders has become idle */ 1398 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1399 if (dpu_enc->phys_encs[i] == ready_phys) { 1400 clear_bit(i, dpu_enc->frame_busy_mask); 1401 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1402 dpu_enc->frame_busy_mask[0]); 1403 } 1404 } 1405 1406 if (!dpu_enc->frame_busy_mask[0]) { 1407 atomic_set(&dpu_enc->frame_done_timeout, 0); 1408 del_timer(&dpu_enc->frame_done_timer); 1409 1410 dpu_encoder_resource_control(drm_enc, 1411 DPU_ENC_RC_EVENT_FRAME_DONE); 1412 1413 if (dpu_enc->crtc_frame_event_cb) 1414 dpu_enc->crtc_frame_event_cb( 1415 dpu_enc->crtc_frame_event_cb_data, 1416 event); 1417 } 1418 } else { 1419 if (dpu_enc->crtc_frame_event_cb) 1420 dpu_enc->crtc_frame_event_cb( 1421 dpu_enc->crtc_frame_event_cb_data, event); 1422 } 1423 } 1424 1425 static void dpu_encoder_off_work(struct kthread_work *work) 1426 { 1427 struct dpu_encoder_virt *dpu_enc = container_of(work, 1428 struct dpu_encoder_virt, delayed_off_work.work); 1429 1430 if (!dpu_enc) { 1431 DPU_ERROR("invalid dpu encoder\n"); 1432 return; 1433 } 1434 1435 dpu_encoder_resource_control(&dpu_enc->base, 1436 DPU_ENC_RC_EVENT_ENTER_IDLE); 1437 1438 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1439 DPU_ENCODER_FRAME_EVENT_IDLE); 1440 } 1441 1442 /** 1443 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1444 * drm_enc: Pointer to drm encoder structure 1445 * phys: Pointer to physical encoder structure 1446 * extra_flush_bits: Additional bit mask to include in flush trigger 1447 */ 1448 static inline void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1449 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1450 { 1451 struct dpu_hw_ctl *ctl; 1452 int pending_kickoff_cnt; 1453 u32 ret = UINT_MAX; 1454 1455 if (!drm_enc || !phys) { 1456 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1457 drm_enc != 0, phys != 0); 1458 return; 1459 } 1460 1461 if (!phys->hw_pp) { 1462 DPU_ERROR("invalid pingpong hw\n"); 1463 return; 1464 } 1465 1466 ctl = phys->hw_ctl; 1467 if (!ctl || !ctl->ops.trigger_flush) { 1468 DPU_ERROR("missing trigger cb\n"); 1469 return; 1470 } 1471 1472 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1473 1474 if (extra_flush_bits && ctl->ops.update_pending_flush) 1475 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1476 1477 ctl->ops.trigger_flush(ctl); 1478 1479 if (ctl->ops.get_pending_flush) 1480 ret = ctl->ops.get_pending_flush(ctl); 1481 1482 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1483 pending_kickoff_cnt, ctl->idx, ret); 1484 } 1485 1486 /** 1487 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1488 * phys: Pointer to physical encoder structure 1489 */ 1490 static inline void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1491 { 1492 if (!phys) { 1493 DPU_ERROR("invalid argument(s)\n"); 1494 return; 1495 } 1496 1497 if (!phys->hw_pp) { 1498 DPU_ERROR("invalid pingpong hw\n"); 1499 return; 1500 } 1501 1502 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1503 phys->ops.trigger_start(phys); 1504 } 1505 1506 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1507 { 1508 struct dpu_hw_ctl *ctl; 1509 1510 if (!phys_enc) { 1511 DPU_ERROR("invalid encoder\n"); 1512 return; 1513 } 1514 1515 ctl = phys_enc->hw_ctl; 1516 if (ctl && ctl->ops.trigger_start) { 1517 ctl->ops.trigger_start(ctl); 1518 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1519 } 1520 } 1521 1522 static int dpu_encoder_helper_wait_event_timeout( 1523 int32_t drm_id, 1524 int32_t hw_id, 1525 struct dpu_encoder_wait_info *info) 1526 { 1527 int rc = 0; 1528 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1529 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1530 s64 time; 1531 1532 do { 1533 rc = wait_event_timeout(*(info->wq), 1534 atomic_read(info->atomic_cnt) == 0, jiffies); 1535 time = ktime_to_ms(ktime_get()); 1536 1537 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1538 expected_time, 1539 atomic_read(info->atomic_cnt)); 1540 /* If we timed out, counter is valid and time is less, wait again */ 1541 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1542 (time < expected_time)); 1543 1544 return rc; 1545 } 1546 1547 void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1548 { 1549 struct dpu_encoder_virt *dpu_enc; 1550 struct dpu_hw_ctl *ctl; 1551 int rc; 1552 1553 if (!phys_enc) { 1554 DPU_ERROR("invalid encoder\n"); 1555 return; 1556 } 1557 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1558 ctl = phys_enc->hw_ctl; 1559 1560 if (!ctl || !ctl->ops.reset) 1561 return; 1562 1563 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1564 ctl->idx); 1565 1566 rc = ctl->ops.reset(ctl); 1567 if (rc) { 1568 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1569 dpu_dbg_dump(false, __func__, true, true); 1570 } 1571 1572 phys_enc->enable_state = DPU_ENC_ENABLED; 1573 } 1574 1575 /** 1576 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1577 * Iterate through the physical encoders and perform consolidated flush 1578 * and/or control start triggering as needed. This is done in the virtual 1579 * encoder rather than the individual physical ones in order to handle 1580 * use cases that require visibility into multiple physical encoders at 1581 * a time. 1582 * dpu_enc: Pointer to virtual encoder structure 1583 */ 1584 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1585 { 1586 struct dpu_hw_ctl *ctl; 1587 uint32_t i, pending_flush; 1588 unsigned long lock_flags; 1589 1590 if (!dpu_enc) { 1591 DPU_ERROR("invalid encoder\n"); 1592 return; 1593 } 1594 1595 pending_flush = 0x0; 1596 1597 /* update pending counts and trigger kickoff ctl flush atomically */ 1598 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1599 1600 /* don't perform flush/start operations for slave encoders */ 1601 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1602 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1603 1604 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1605 continue; 1606 1607 ctl = phys->hw_ctl; 1608 if (!ctl) 1609 continue; 1610 1611 if (phys->split_role != ENC_ROLE_SLAVE) 1612 set_bit(i, dpu_enc->frame_busy_mask); 1613 if (!phys->ops.needs_single_flush || 1614 !phys->ops.needs_single_flush(phys)) 1615 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1616 else if (ctl->ops.get_pending_flush) 1617 pending_flush |= ctl->ops.get_pending_flush(ctl); 1618 } 1619 1620 /* for split flush, combine pending flush masks and send to master */ 1621 if (pending_flush && dpu_enc->cur_master) { 1622 _dpu_encoder_trigger_flush( 1623 &dpu_enc->base, 1624 dpu_enc->cur_master, 1625 pending_flush); 1626 } 1627 1628 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1629 1630 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1631 } 1632 1633 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1634 { 1635 struct dpu_encoder_virt *dpu_enc; 1636 struct dpu_encoder_phys *phys; 1637 unsigned int i; 1638 struct dpu_hw_ctl *ctl; 1639 struct msm_display_info *disp_info; 1640 1641 if (!drm_enc) { 1642 DPU_ERROR("invalid encoder\n"); 1643 return; 1644 } 1645 dpu_enc = to_dpu_encoder_virt(drm_enc); 1646 disp_info = &dpu_enc->disp_info; 1647 1648 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1649 phys = dpu_enc->phys_encs[i]; 1650 1651 if (phys && phys->hw_ctl) { 1652 ctl = phys->hw_ctl; 1653 if (ctl->ops.clear_pending_flush) 1654 ctl->ops.clear_pending_flush(ctl); 1655 1656 /* update only for command mode primary ctl */ 1657 if ((phys == dpu_enc->cur_master) && 1658 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1659 && ctl->ops.trigger_pending) 1660 ctl->ops.trigger_pending(ctl); 1661 } 1662 } 1663 } 1664 1665 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1666 struct drm_display_mode *mode) 1667 { 1668 u64 pclk_rate; 1669 u32 pclk_period; 1670 u32 line_time; 1671 1672 /* 1673 * For linetime calculation, only operate on master encoder. 1674 */ 1675 if (!dpu_enc->cur_master) 1676 return 0; 1677 1678 if (!dpu_enc->cur_master->ops.get_line_count) { 1679 DPU_ERROR("get_line_count function not defined\n"); 1680 return 0; 1681 } 1682 1683 pclk_rate = mode->clock; /* pixel clock in kHz */ 1684 if (pclk_rate == 0) { 1685 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1686 return 0; 1687 } 1688 1689 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1690 if (pclk_period == 0) { 1691 DPU_ERROR("pclk period is 0\n"); 1692 return 0; 1693 } 1694 1695 /* 1696 * Line time calculation based on Pixel clock and HTOTAL. 1697 * Final unit is in ns. 1698 */ 1699 line_time = (pclk_period * mode->htotal) / 1000; 1700 if (line_time == 0) { 1701 DPU_ERROR("line time calculation is 0\n"); 1702 return 0; 1703 } 1704 1705 DPU_DEBUG_ENC(dpu_enc, 1706 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1707 pclk_rate, pclk_period, line_time); 1708 1709 return line_time; 1710 } 1711 1712 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1713 ktime_t *wakeup_time) 1714 { 1715 struct drm_display_mode *mode; 1716 struct dpu_encoder_virt *dpu_enc; 1717 u32 cur_line; 1718 u32 line_time; 1719 u32 vtotal, time_to_vsync; 1720 ktime_t cur_time; 1721 1722 dpu_enc = to_dpu_encoder_virt(drm_enc); 1723 1724 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1725 DPU_ERROR("crtc/crtc state object is NULL\n"); 1726 return -EINVAL; 1727 } 1728 mode = &drm_enc->crtc->state->adjusted_mode; 1729 1730 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1731 if (!line_time) 1732 return -EINVAL; 1733 1734 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1735 1736 vtotal = mode->vtotal; 1737 if (cur_line >= vtotal) 1738 time_to_vsync = line_time * vtotal; 1739 else 1740 time_to_vsync = line_time * (vtotal - cur_line); 1741 1742 if (time_to_vsync == 0) { 1743 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1744 vtotal); 1745 return -EINVAL; 1746 } 1747 1748 cur_time = ktime_get(); 1749 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1750 1751 DPU_DEBUG_ENC(dpu_enc, 1752 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1753 cur_line, vtotal, time_to_vsync, 1754 ktime_to_ms(cur_time), 1755 ktime_to_ms(*wakeup_time)); 1756 return 0; 1757 } 1758 1759 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1760 { 1761 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1762 vsync_event_timer); 1763 struct drm_encoder *drm_enc = &dpu_enc->base; 1764 struct msm_drm_private *priv; 1765 struct msm_drm_thread *event_thread; 1766 1767 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1768 !drm_enc->crtc) { 1769 DPU_ERROR("invalid parameters\n"); 1770 return; 1771 } 1772 1773 priv = drm_enc->dev->dev_private; 1774 1775 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1776 DPU_ERROR("invalid crtc index\n"); 1777 return; 1778 } 1779 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1780 if (!event_thread) { 1781 DPU_ERROR("event_thread not found for crtc:%d\n", 1782 drm_enc->crtc->index); 1783 return; 1784 } 1785 1786 del_timer(&dpu_enc->vsync_event_timer); 1787 } 1788 1789 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1790 { 1791 struct dpu_encoder_virt *dpu_enc = container_of(work, 1792 struct dpu_encoder_virt, vsync_event_work); 1793 ktime_t wakeup_time; 1794 1795 if (!dpu_enc) { 1796 DPU_ERROR("invalid dpu encoder\n"); 1797 return; 1798 } 1799 1800 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1801 return; 1802 1803 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1804 mod_timer(&dpu_enc->vsync_event_timer, 1805 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1806 } 1807 1808 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, 1809 struct dpu_encoder_kickoff_params *params) 1810 { 1811 struct dpu_encoder_virt *dpu_enc; 1812 struct dpu_encoder_phys *phys; 1813 bool needs_hw_reset = false; 1814 unsigned int i; 1815 1816 if (!drm_enc || !params) { 1817 DPU_ERROR("invalid args\n"); 1818 return; 1819 } 1820 dpu_enc = to_dpu_encoder_virt(drm_enc); 1821 1822 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1823 1824 /* prepare for next kickoff, may include waiting on previous kickoff */ 1825 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1826 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1827 phys = dpu_enc->phys_encs[i]; 1828 if (phys) { 1829 if (phys->ops.prepare_for_kickoff) 1830 phys->ops.prepare_for_kickoff(phys, params); 1831 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1832 needs_hw_reset = true; 1833 } 1834 } 1835 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1836 1837 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1838 1839 /* if any phys needs reset, reset all phys, in-order */ 1840 if (needs_hw_reset) { 1841 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1842 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1843 phys = dpu_enc->phys_encs[i]; 1844 if (phys && phys->ops.hw_reset) 1845 phys->ops.hw_reset(phys); 1846 } 1847 } 1848 } 1849 1850 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1851 { 1852 struct dpu_encoder_virt *dpu_enc; 1853 struct dpu_encoder_phys *phys; 1854 ktime_t wakeup_time; 1855 unsigned int i; 1856 1857 if (!drm_enc) { 1858 DPU_ERROR("invalid encoder\n"); 1859 return; 1860 } 1861 DPU_ATRACE_BEGIN("encoder_kickoff"); 1862 dpu_enc = to_dpu_encoder_virt(drm_enc); 1863 1864 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1865 1866 atomic_set(&dpu_enc->frame_done_timeout, 1867 DPU_FRAME_DONE_TIMEOUT * 1000 / 1868 drm_enc->crtc->state->adjusted_mode.vrefresh); 1869 mod_timer(&dpu_enc->frame_done_timer, jiffies + 1870 ((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000)); 1871 1872 /* All phys encs are ready to go, trigger the kickoff */ 1873 _dpu_encoder_kickoff_phys(dpu_enc); 1874 1875 /* allow phys encs to handle any post-kickoff business */ 1876 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1877 phys = dpu_enc->phys_encs[i]; 1878 if (phys && phys->ops.handle_post_kickoff) 1879 phys->ops.handle_post_kickoff(phys); 1880 } 1881 1882 if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DSI && 1883 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1884 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1885 ktime_to_ms(wakeup_time)); 1886 mod_timer(&dpu_enc->vsync_event_timer, 1887 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1888 } 1889 1890 DPU_ATRACE_END("encoder_kickoff"); 1891 } 1892 1893 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1894 { 1895 struct dpu_encoder_virt *dpu_enc; 1896 struct dpu_encoder_phys *phys; 1897 int i; 1898 1899 if (!drm_enc) { 1900 DPU_ERROR("invalid encoder\n"); 1901 return; 1902 } 1903 dpu_enc = to_dpu_encoder_virt(drm_enc); 1904 1905 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1906 phys = dpu_enc->phys_encs[i]; 1907 if (phys && phys->ops.prepare_commit) 1908 phys->ops.prepare_commit(phys); 1909 } 1910 } 1911 1912 #ifdef CONFIG_DEBUG_FS 1913 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1914 { 1915 struct dpu_encoder_virt *dpu_enc; 1916 int i; 1917 1918 if (!s || !s->private) 1919 return -EINVAL; 1920 1921 dpu_enc = s->private; 1922 1923 mutex_lock(&dpu_enc->enc_lock); 1924 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1925 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1926 1927 if (!phys) 1928 continue; 1929 1930 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1931 phys->intf_idx - INTF_0, 1932 atomic_read(&phys->vsync_cnt), 1933 atomic_read(&phys->underrun_cnt)); 1934 1935 switch (phys->intf_mode) { 1936 case INTF_MODE_VIDEO: 1937 seq_puts(s, "mode: video\n"); 1938 break; 1939 case INTF_MODE_CMD: 1940 seq_puts(s, "mode: command\n"); 1941 break; 1942 default: 1943 seq_puts(s, "mode: ???\n"); 1944 break; 1945 } 1946 } 1947 mutex_unlock(&dpu_enc->enc_lock); 1948 1949 return 0; 1950 } 1951 1952 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1953 struct file *file) 1954 { 1955 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1956 } 1957 1958 static ssize_t _dpu_encoder_misr_setup(struct file *file, 1959 const char __user *user_buf, size_t count, loff_t *ppos) 1960 { 1961 struct dpu_encoder_virt *dpu_enc; 1962 int i = 0, rc; 1963 char buf[MISR_BUFF_SIZE + 1]; 1964 size_t buff_copy; 1965 u32 frame_count, enable; 1966 1967 if (!file || !file->private_data) 1968 return -EINVAL; 1969 1970 dpu_enc = file->private_data; 1971 1972 buff_copy = min_t(size_t, count, MISR_BUFF_SIZE); 1973 if (copy_from_user(buf, user_buf, buff_copy)) 1974 return -EINVAL; 1975 1976 buf[buff_copy] = 0; /* end of string */ 1977 1978 if (sscanf(buf, "%u %u", &enable, &frame_count) != 2) 1979 return -EINVAL; 1980 1981 rc = _dpu_encoder_power_enable(dpu_enc, true); 1982 if (rc) 1983 return rc; 1984 1985 mutex_lock(&dpu_enc->enc_lock); 1986 dpu_enc->misr_enable = enable; 1987 dpu_enc->misr_frame_count = frame_count; 1988 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1989 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1990 1991 if (!phys || !phys->ops.setup_misr) 1992 continue; 1993 1994 phys->ops.setup_misr(phys, enable, frame_count); 1995 } 1996 mutex_unlock(&dpu_enc->enc_lock); 1997 _dpu_encoder_power_enable(dpu_enc, false); 1998 1999 return count; 2000 } 2001 2002 static ssize_t _dpu_encoder_misr_read(struct file *file, 2003 char __user *user_buff, size_t count, loff_t *ppos) 2004 { 2005 struct dpu_encoder_virt *dpu_enc; 2006 int i = 0, len = 0; 2007 char buf[MISR_BUFF_SIZE + 1] = {'\0'}; 2008 int rc; 2009 2010 if (*ppos) 2011 return 0; 2012 2013 if (!file || !file->private_data) 2014 return -EINVAL; 2015 2016 dpu_enc = file->private_data; 2017 2018 rc = _dpu_encoder_power_enable(dpu_enc, true); 2019 if (rc) 2020 return rc; 2021 2022 mutex_lock(&dpu_enc->enc_lock); 2023 if (!dpu_enc->misr_enable) { 2024 len += snprintf(buf + len, MISR_BUFF_SIZE - len, 2025 "disabled\n"); 2026 goto buff_check; 2027 } else if (dpu_enc->disp_info.capabilities & 2028 ~MSM_DISPLAY_CAP_VID_MODE) { 2029 len += snprintf(buf + len, MISR_BUFF_SIZE - len, 2030 "unsupported\n"); 2031 goto buff_check; 2032 } 2033 2034 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2035 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2036 2037 if (!phys || !phys->ops.collect_misr) 2038 continue; 2039 2040 len += snprintf(buf + len, MISR_BUFF_SIZE - len, 2041 "Intf idx:%d\n", phys->intf_idx - INTF_0); 2042 len += snprintf(buf + len, MISR_BUFF_SIZE - len, "0x%x\n", 2043 phys->ops.collect_misr(phys)); 2044 } 2045 2046 buff_check: 2047 if (count <= len) { 2048 len = 0; 2049 goto end; 2050 } 2051 2052 if (copy_to_user(user_buff, buf, len)) { 2053 len = -EFAULT; 2054 goto end; 2055 } 2056 2057 *ppos += len; /* increase offset */ 2058 2059 end: 2060 mutex_unlock(&dpu_enc->enc_lock); 2061 _dpu_encoder_power_enable(dpu_enc, false); 2062 return len; 2063 } 2064 2065 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2066 { 2067 struct dpu_encoder_virt *dpu_enc; 2068 struct msm_drm_private *priv; 2069 struct dpu_kms *dpu_kms; 2070 int i; 2071 2072 static const struct file_operations debugfs_status_fops = { 2073 .open = _dpu_encoder_debugfs_status_open, 2074 .read = seq_read, 2075 .llseek = seq_lseek, 2076 .release = single_release, 2077 }; 2078 2079 static const struct file_operations debugfs_misr_fops = { 2080 .open = simple_open, 2081 .read = _dpu_encoder_misr_read, 2082 .write = _dpu_encoder_misr_setup, 2083 }; 2084 2085 char name[DPU_NAME_SIZE]; 2086 2087 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 2088 DPU_ERROR("invalid encoder or kms\n"); 2089 return -EINVAL; 2090 } 2091 2092 dpu_enc = to_dpu_encoder_virt(drm_enc); 2093 priv = drm_enc->dev->dev_private; 2094 dpu_kms = to_dpu_kms(priv->kms); 2095 2096 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 2097 2098 /* create overall sub-directory for the encoder */ 2099 dpu_enc->debugfs_root = debugfs_create_dir(name, 2100 drm_enc->dev->primary->debugfs_root); 2101 if (!dpu_enc->debugfs_root) 2102 return -ENOMEM; 2103 2104 /* don't error check these */ 2105 debugfs_create_file("status", 0600, 2106 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 2107 2108 debugfs_create_file("misr_data", 0600, 2109 dpu_enc->debugfs_root, dpu_enc, &debugfs_misr_fops); 2110 2111 for (i = 0; i < dpu_enc->num_phys_encs; i++) 2112 if (dpu_enc->phys_encs[i] && 2113 dpu_enc->phys_encs[i]->ops.late_register) 2114 dpu_enc->phys_encs[i]->ops.late_register( 2115 dpu_enc->phys_encs[i], 2116 dpu_enc->debugfs_root); 2117 2118 return 0; 2119 } 2120 2121 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 2122 { 2123 struct dpu_encoder_virt *dpu_enc; 2124 2125 if (!drm_enc) 2126 return; 2127 2128 dpu_enc = to_dpu_encoder_virt(drm_enc); 2129 debugfs_remove_recursive(dpu_enc->debugfs_root); 2130 } 2131 #else 2132 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2133 { 2134 return 0; 2135 } 2136 2137 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 2138 { 2139 } 2140 #endif 2141 2142 static int dpu_encoder_late_register(struct drm_encoder *encoder) 2143 { 2144 return _dpu_encoder_init_debugfs(encoder); 2145 } 2146 2147 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 2148 { 2149 _dpu_encoder_destroy_debugfs(encoder); 2150 } 2151 2152 static int dpu_encoder_virt_add_phys_encs( 2153 u32 display_caps, 2154 struct dpu_encoder_virt *dpu_enc, 2155 struct dpu_enc_phys_init_params *params) 2156 { 2157 struct dpu_encoder_phys *enc = NULL; 2158 2159 DPU_DEBUG_ENC(dpu_enc, "\n"); 2160 2161 /* 2162 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2163 * in this function, check up-front. 2164 */ 2165 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2166 ARRAY_SIZE(dpu_enc->phys_encs)) { 2167 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2168 dpu_enc->num_phys_encs); 2169 return -EINVAL; 2170 } 2171 2172 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 2173 enc = dpu_encoder_phys_vid_init(params); 2174 2175 if (IS_ERR_OR_NULL(enc)) { 2176 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2177 PTR_ERR(enc)); 2178 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2179 } 2180 2181 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2182 ++dpu_enc->num_phys_encs; 2183 } 2184 2185 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 2186 enc = dpu_encoder_phys_cmd_init(params); 2187 2188 if (IS_ERR_OR_NULL(enc)) { 2189 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2190 PTR_ERR(enc)); 2191 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2192 } 2193 2194 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2195 ++dpu_enc->num_phys_encs; 2196 } 2197 2198 return 0; 2199 } 2200 2201 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2202 .handle_vblank_virt = dpu_encoder_vblank_callback, 2203 .handle_underrun_virt = dpu_encoder_underrun_callback, 2204 .handle_frame_done = dpu_encoder_frame_done_callback, 2205 }; 2206 2207 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2208 struct dpu_kms *dpu_kms, 2209 struct msm_display_info *disp_info, 2210 int *drm_enc_mode) 2211 { 2212 int ret = 0; 2213 int i = 0; 2214 enum dpu_intf_type intf_type; 2215 struct dpu_enc_phys_init_params phys_params; 2216 2217 if (!dpu_enc || !dpu_kms) { 2218 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2219 dpu_enc != 0, dpu_kms != 0); 2220 return -EINVAL; 2221 } 2222 2223 memset(&phys_params, 0, sizeof(phys_params)); 2224 phys_params.dpu_kms = dpu_kms; 2225 phys_params.parent = &dpu_enc->base; 2226 phys_params.parent_ops = &dpu_encoder_parent_ops; 2227 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2228 2229 DPU_DEBUG("\n"); 2230 2231 if (disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) { 2232 *drm_enc_mode = DRM_MODE_ENCODER_DSI; 2233 intf_type = INTF_DSI; 2234 } else if (disp_info->intf_type == DRM_MODE_CONNECTOR_HDMIA) { 2235 *drm_enc_mode = DRM_MODE_ENCODER_TMDS; 2236 intf_type = INTF_HDMI; 2237 } else if (disp_info->intf_type == DRM_MODE_CONNECTOR_DisplayPort) { 2238 *drm_enc_mode = DRM_MODE_ENCODER_TMDS; 2239 intf_type = INTF_DP; 2240 } else { 2241 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2242 return -EINVAL; 2243 } 2244 2245 WARN_ON(disp_info->num_of_h_tiles < 1); 2246 2247 dpu_enc->display_num_of_h_tiles = disp_info->num_of_h_tiles; 2248 2249 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2250 2251 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2252 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2253 dpu_enc->idle_pc_supported = 2254 dpu_kms->catalog->caps->has_idle_pc; 2255 2256 mutex_lock(&dpu_enc->enc_lock); 2257 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2258 /* 2259 * Left-most tile is at index 0, content is controller id 2260 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2261 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2262 */ 2263 u32 controller_id = disp_info->h_tile_instance[i]; 2264 2265 if (disp_info->num_of_h_tiles > 1) { 2266 if (i == 0) 2267 phys_params.split_role = ENC_ROLE_MASTER; 2268 else 2269 phys_params.split_role = ENC_ROLE_SLAVE; 2270 } else { 2271 phys_params.split_role = ENC_ROLE_SOLO; 2272 } 2273 2274 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2275 i, controller_id, phys_params.split_role); 2276 2277 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2278 intf_type, 2279 controller_id); 2280 if (phys_params.intf_idx == INTF_MAX) { 2281 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2282 intf_type, controller_id); 2283 ret = -EINVAL; 2284 } 2285 2286 if (!ret) { 2287 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2288 dpu_enc, 2289 &phys_params); 2290 if (ret) 2291 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2292 } 2293 } 2294 2295 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2296 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2297 2298 if (phys) { 2299 atomic_set(&phys->vsync_cnt, 0); 2300 atomic_set(&phys->underrun_cnt, 0); 2301 } 2302 } 2303 mutex_unlock(&dpu_enc->enc_lock); 2304 2305 return ret; 2306 } 2307 2308 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2309 { 2310 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2311 frame_done_timer); 2312 struct drm_encoder *drm_enc = &dpu_enc->base; 2313 struct msm_drm_private *priv; 2314 u32 event; 2315 2316 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2317 DPU_ERROR("invalid parameters\n"); 2318 return; 2319 } 2320 priv = drm_enc->dev->dev_private; 2321 2322 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2323 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2324 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2325 return; 2326 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 2327 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2328 return; 2329 } 2330 2331 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2332 2333 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2334 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2335 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2336 } 2337 2338 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2339 .mode_set = dpu_encoder_virt_mode_set, 2340 .disable = dpu_encoder_virt_disable, 2341 .enable = dpu_kms_encoder_enable, 2342 .atomic_check = dpu_encoder_virt_atomic_check, 2343 2344 /* This is called by dpu_kms_encoder_enable */ 2345 .commit = dpu_encoder_virt_enable, 2346 }; 2347 2348 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2349 .destroy = dpu_encoder_destroy, 2350 .late_register = dpu_encoder_late_register, 2351 .early_unregister = dpu_encoder_early_unregister, 2352 }; 2353 2354 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2355 struct msm_display_info *disp_info) 2356 { 2357 struct msm_drm_private *priv = dev->dev_private; 2358 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2359 struct drm_encoder *drm_enc = NULL; 2360 struct dpu_encoder_virt *dpu_enc = NULL; 2361 int drm_enc_mode = DRM_MODE_ENCODER_NONE; 2362 int ret = 0; 2363 2364 dpu_enc = to_dpu_encoder_virt(enc); 2365 2366 mutex_init(&dpu_enc->enc_lock); 2367 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info, 2368 &drm_enc_mode); 2369 if (ret) 2370 goto fail; 2371 2372 dpu_enc->cur_master = NULL; 2373 spin_lock_init(&dpu_enc->enc_spinlock); 2374 2375 atomic_set(&dpu_enc->frame_done_timeout, 0); 2376 timer_setup(&dpu_enc->frame_done_timer, 2377 dpu_encoder_frame_done_timeout, 0); 2378 2379 if (disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) 2380 timer_setup(&dpu_enc->vsync_event_timer, 2381 dpu_encoder_vsync_event_handler, 2382 0); 2383 2384 2385 mutex_init(&dpu_enc->rc_lock); 2386 kthread_init_delayed_work(&dpu_enc->delayed_off_work, 2387 dpu_encoder_off_work); 2388 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2389 2390 kthread_init_work(&dpu_enc->vsync_event_work, 2391 dpu_encoder_vsync_event_work_handler); 2392 2393 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2394 2395 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2396 2397 return ret; 2398 2399 fail: 2400 DPU_ERROR("failed to create encoder\n"); 2401 if (drm_enc) 2402 dpu_encoder_destroy(drm_enc); 2403 2404 return ret; 2405 2406 2407 } 2408 2409 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2410 int drm_enc_mode) 2411 { 2412 struct dpu_encoder_virt *dpu_enc = NULL; 2413 int rc = 0; 2414 2415 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2416 if (!dpu_enc) 2417 return ERR_PTR(ENOMEM); 2418 2419 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2420 drm_enc_mode, NULL); 2421 if (rc) { 2422 devm_kfree(dev->dev, dpu_enc); 2423 return ERR_PTR(rc); 2424 } 2425 2426 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2427 2428 return &dpu_enc->base; 2429 } 2430 2431 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2432 enum msm_event_wait event) 2433 { 2434 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2435 struct dpu_encoder_virt *dpu_enc = NULL; 2436 int i, ret = 0; 2437 2438 if (!drm_enc) { 2439 DPU_ERROR("invalid encoder\n"); 2440 return -EINVAL; 2441 } 2442 dpu_enc = to_dpu_encoder_virt(drm_enc); 2443 DPU_DEBUG_ENC(dpu_enc, "\n"); 2444 2445 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2446 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2447 if (!phys) 2448 continue; 2449 2450 switch (event) { 2451 case MSM_ENC_COMMIT_DONE: 2452 fn_wait = phys->ops.wait_for_commit_done; 2453 break; 2454 case MSM_ENC_TX_COMPLETE: 2455 fn_wait = phys->ops.wait_for_tx_complete; 2456 break; 2457 case MSM_ENC_VBLANK: 2458 fn_wait = phys->ops.wait_for_vblank; 2459 break; 2460 default: 2461 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2462 event); 2463 return -EINVAL; 2464 }; 2465 2466 if (fn_wait) { 2467 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2468 ret = fn_wait(phys); 2469 DPU_ATRACE_END("wait_for_completion_event"); 2470 if (ret) 2471 return ret; 2472 } 2473 } 2474 2475 return ret; 2476 } 2477 2478 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2479 { 2480 struct dpu_encoder_virt *dpu_enc = NULL; 2481 int i; 2482 2483 if (!encoder) { 2484 DPU_ERROR("invalid encoder\n"); 2485 return INTF_MODE_NONE; 2486 } 2487 dpu_enc = to_dpu_encoder_virt(encoder); 2488 2489 if (dpu_enc->cur_master) 2490 return dpu_enc->cur_master->intf_mode; 2491 2492 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2493 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2494 2495 if (phys) 2496 return phys->intf_mode; 2497 } 2498 2499 return INTF_MODE_NONE; 2500 } 2501