1 /*
2  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
20 #include <linux/kthread.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include "msm_drv.h"
25 #include "dpu_kms.h"
26 #include <drm/drm_crtc.h>
27 #include <drm/drm_crtc_helper.h>
28 #include "dpu_hwio.h"
29 #include "dpu_hw_catalog.h"
30 #include "dpu_hw_intf.h"
31 #include "dpu_hw_ctl.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
45 		(p) ? (p)->parent->base.id : -1, \
46 		(p) ? (p)->intf_idx - INTF_0 : -1, \
47 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
48 		##__VA_ARGS__)
49 
50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
51 		(p) ? (p)->parent->base.id : -1, \
52 		(p) ? (p)->intf_idx - INTF_0 : -1, \
53 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
54 		##__VA_ARGS__)
55 
56 /*
57  * Two to anticipate panels that can do cmd/vid dynamic switching
58  * plan is to create all possible physical encoder types, and switch between
59  * them at runtime
60  */
61 #define NUM_PHYS_ENCODER_TYPES 2
62 
63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
64 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
65 
66 #define MAX_CHANNELS_PER_ENC 2
67 
68 #define IDLE_SHORT_TIMEOUT	1
69 
70 #define MAX_VDISPLAY_SPLIT 1080
71 
72 /**
73  * enum dpu_enc_rc_events - events for resource control state machine
74  * @DPU_ENC_RC_EVENT_KICKOFF:
75  *	This event happens at NORMAL priority.
76  *	Event that signals the start of the transfer. When this event is
77  *	received, enable MDP/DSI core clocks. Regardless of the previous
78  *	state, the resource should be in ON state at the end of this event.
79  * @DPU_ENC_RC_EVENT_FRAME_DONE:
80  *	This event happens at INTERRUPT level.
81  *	Event signals the end of the data transfer after the PP FRAME_DONE
82  *	event. At the end of this event, a delayed work is scheduled to go to
83  *	IDLE_PC state after IDLE_TIMEOUT time.
84  * @DPU_ENC_RC_EVENT_PRE_STOP:
85  *	This event happens at NORMAL priority.
86  *	This event, when received during the ON state, leave the RC STATE
87  *	in the PRE_OFF state. It should be followed by the STOP event as
88  *	part of encoder disable.
89  *	If received during IDLE or OFF states, it will do nothing.
90  * @DPU_ENC_RC_EVENT_STOP:
91  *	This event happens at NORMAL priority.
92  *	When this event is received, disable all the MDP/DSI core clocks, and
93  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
94  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
95  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
96  *	Resource state should be in OFF at the end of the event.
97  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
98  *	This event happens at NORMAL priority from a work item.
99  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
100  *	This would disable MDP/DSI core clocks and change the resource state
101  *	to IDLE.
102  */
103 enum dpu_enc_rc_events {
104 	DPU_ENC_RC_EVENT_KICKOFF = 1,
105 	DPU_ENC_RC_EVENT_FRAME_DONE,
106 	DPU_ENC_RC_EVENT_PRE_STOP,
107 	DPU_ENC_RC_EVENT_STOP,
108 	DPU_ENC_RC_EVENT_ENTER_IDLE
109 };
110 
111 /*
112  * enum dpu_enc_rc_states - states that the resource control maintains
113  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
114  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
115  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
116  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
117  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
118  */
119 enum dpu_enc_rc_states {
120 	DPU_ENC_RC_STATE_OFF,
121 	DPU_ENC_RC_STATE_PRE_OFF,
122 	DPU_ENC_RC_STATE_ON,
123 	DPU_ENC_RC_STATE_IDLE
124 };
125 
126 /**
127  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
128  *	encoders. Virtual encoder manages one "logical" display. Physical
129  *	encoders manage one intf block, tied to a specific panel/sub-panel.
130  *	Virtual encoder defers as much as possible to the physical encoders.
131  *	Virtual encoder registers itself with the DRM Framework as the encoder.
132  * @base:		drm_encoder base class for registration with DRM
133  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
134  * @bus_scaling_client:	Client handle to the bus scaling interface
135  * @enabled:		True if the encoder is active, protected by enc_lock
136  * @num_phys_encs:	Actual number of physical encoders contained.
137  * @phys_encs:		Container of physical encoders managed.
138  * @cur_master:		Pointer to the current master in this mode. Optimization
139  *			Only valid after enable. Cleared as disable.
140  * @hw_pp		Handle to the pingpong blocks used for the display. No.
141  *			pingpong blocks can be different than num_phys_encs.
142  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
143  *			for partial update right-only cases, such as pingpong
144  *			split where virtual pingpong does not generate IRQs
145  * @crtc:		Pointer to the currently assigned crtc. Normally you
146  *			would use crtc->state->encoder_mask to determine the
147  *			link between encoder/crtc. However in this case we need
148  *			to track crtc in the disable() hook which is called
149  *			_after_ encoder_mask is cleared.
150  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
151  *				all CTL paths
152  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
153  * @debugfs_root:		Debug file system root file node
154  * @enc_lock:			Lock around physical encoder
155  *				create/destroy/enable/disable
156  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
157  *				busy processing current command.
158  *				Bit0 = phys_encs[0] etc.
159  * @crtc_frame_event_cb:	callback handler for frame event
160  * @crtc_frame_event_cb_data:	callback handler private data
161  * @frame_done_timeout:		frame done timeout in Hz
162  * @frame_done_timer:		watchdog timer for frame done event
163  * @vsync_event_timer:		vsync timer
164  * @disp_info:			local copy of msm_display_info struct
165  * @idle_pc_supported:		indicate if idle power collaps is supported
166  * @rc_lock:			resource control mutex lock to protect
167  *				virt encoder over various state changes
168  * @rc_state:			resource controller state
169  * @delayed_off_work:		delayed worker to schedule disabling of
170  *				clks and resources after IDLE_TIMEOUT time.
171  * @vsync_event_work:		worker to handle vsync event for autorefresh
172  * @topology:                   topology of the display
173  * @mode_set_complete:          flag to indicate modeset completion
174  * @idle_timeout:		idle timeout duration in milliseconds
175  */
176 struct dpu_encoder_virt {
177 	struct drm_encoder base;
178 	spinlock_t enc_spinlock;
179 	uint32_t bus_scaling_client;
180 
181 	bool enabled;
182 
183 	unsigned int num_phys_encs;
184 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
185 	struct dpu_encoder_phys *cur_master;
186 	struct dpu_encoder_phys *cur_slave;
187 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
188 
189 	bool intfs_swapped;
190 
191 	struct drm_crtc *crtc;
192 
193 	struct dentry *debugfs_root;
194 	struct mutex enc_lock;
195 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
196 	void (*crtc_frame_event_cb)(void *, u32 event);
197 	void *crtc_frame_event_cb_data;
198 
199 	atomic_t frame_done_timeout;
200 	struct timer_list frame_done_timer;
201 	struct timer_list vsync_event_timer;
202 
203 	struct msm_display_info disp_info;
204 
205 	bool idle_pc_supported;
206 	struct mutex rc_lock;
207 	enum dpu_enc_rc_states rc_state;
208 	struct kthread_delayed_work delayed_off_work;
209 	struct kthread_work vsync_event_work;
210 	struct msm_display_topology topology;
211 	bool mode_set_complete;
212 
213 	u32 idle_timeout;
214 };
215 
216 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
217 
218 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
219 		enum dpu_intr_idx intr_idx)
220 {
221 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
222 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
223 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
224 
225 	if (phys_enc->parent_ops->handle_frame_done)
226 		phys_enc->parent_ops->handle_frame_done(
227 				phys_enc->parent, phys_enc,
228 				DPU_ENCODER_FRAME_EVENT_ERROR);
229 }
230 
231 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
232 		int32_t hw_id, struct dpu_encoder_wait_info *info);
233 
234 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
235 		enum dpu_intr_idx intr_idx,
236 		struct dpu_encoder_wait_info *wait_info)
237 {
238 	struct dpu_encoder_irq *irq;
239 	u32 irq_status;
240 	int ret;
241 
242 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
243 		DPU_ERROR("invalid params\n");
244 		return -EINVAL;
245 	}
246 	irq = &phys_enc->irq[intr_idx];
247 
248 	/* note: do master / slave checking outside */
249 
250 	/* return EWOULDBLOCK since we know the wait isn't necessary */
251 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
252 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
253 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
254 			  irq->irq_idx);
255 		return -EWOULDBLOCK;
256 	}
257 
258 	if (irq->irq_idx < 0) {
259 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
260 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
261 			      irq->name);
262 		return 0;
263 	}
264 
265 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
266 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
267 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
268 		      atomic_read(wait_info->atomic_cnt));
269 
270 	ret = dpu_encoder_helper_wait_event_timeout(
271 			DRMID(phys_enc->parent),
272 			irq->hw_idx,
273 			wait_info);
274 
275 	if (ret <= 0) {
276 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
277 				irq->irq_idx, true);
278 		if (irq_status) {
279 			unsigned long flags;
280 
281 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
282 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
283 				      DRMID(phys_enc->parent), intr_idx,
284 				      irq->hw_idx, irq->irq_idx,
285 				      phys_enc->hw_pp->idx - PINGPONG_0,
286 				      atomic_read(wait_info->atomic_cnt));
287 			local_irq_save(flags);
288 			irq->cb.func(phys_enc, irq->irq_idx);
289 			local_irq_restore(flags);
290 			ret = 0;
291 		} else {
292 			ret = -ETIMEDOUT;
293 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
294 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
295 				      DRMID(phys_enc->parent), intr_idx,
296 				      irq->hw_idx, irq->irq_idx,
297 				      phys_enc->hw_pp->idx - PINGPONG_0,
298 				      atomic_read(wait_info->atomic_cnt));
299 		}
300 	} else {
301 		ret = 0;
302 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
303 			intr_idx, irq->hw_idx, irq->irq_idx,
304 			phys_enc->hw_pp->idx - PINGPONG_0,
305 			atomic_read(wait_info->atomic_cnt));
306 	}
307 
308 	return ret;
309 }
310 
311 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
312 		enum dpu_intr_idx intr_idx)
313 {
314 	struct dpu_encoder_irq *irq;
315 	int ret = 0;
316 
317 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
318 		DPU_ERROR("invalid params\n");
319 		return -EINVAL;
320 	}
321 	irq = &phys_enc->irq[intr_idx];
322 
323 	if (irq->irq_idx >= 0) {
324 		DPU_DEBUG_PHYS(phys_enc,
325 				"skipping already registered irq %s type %d\n",
326 				irq->name, irq->intr_type);
327 		return 0;
328 	}
329 
330 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
331 			irq->intr_type, irq->hw_idx);
332 	if (irq->irq_idx < 0) {
333 		DPU_ERROR_PHYS(phys_enc,
334 			"failed to lookup IRQ index for %s type:%d\n",
335 			irq->name, irq->intr_type);
336 		return -EINVAL;
337 	}
338 
339 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
340 			&irq->cb);
341 	if (ret) {
342 		DPU_ERROR_PHYS(phys_enc,
343 			"failed to register IRQ callback for %s\n",
344 			irq->name);
345 		irq->irq_idx = -EINVAL;
346 		return ret;
347 	}
348 
349 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
350 	if (ret) {
351 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
352 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
353 			  irq->irq_idx);
354 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
355 				irq->irq_idx, &irq->cb);
356 		irq->irq_idx = -EINVAL;
357 		return ret;
358 	}
359 
360 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
361 				irq->hw_idx, irq->irq_idx);
362 
363 	return ret;
364 }
365 
366 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
367 		enum dpu_intr_idx intr_idx)
368 {
369 	struct dpu_encoder_irq *irq;
370 	int ret;
371 
372 	if (!phys_enc) {
373 		DPU_ERROR("invalid encoder\n");
374 		return -EINVAL;
375 	}
376 	irq = &phys_enc->irq[intr_idx];
377 
378 	/* silently skip irqs that weren't registered */
379 	if (irq->irq_idx < 0) {
380 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
381 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
382 			  irq->irq_idx);
383 		return 0;
384 	}
385 
386 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
387 	if (ret) {
388 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
389 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
390 			  irq->irq_idx, ret);
391 	}
392 
393 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
394 			&irq->cb);
395 	if (ret) {
396 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
397 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
398 			  irq->irq_idx, ret);
399 	}
400 
401 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
402 					     irq->hw_idx, irq->irq_idx);
403 
404 	irq->irq_idx = -EINVAL;
405 
406 	return 0;
407 }
408 
409 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
410 				  struct dpu_encoder_hw_resources *hw_res)
411 {
412 	struct dpu_encoder_virt *dpu_enc = NULL;
413 	int i = 0;
414 
415 	dpu_enc = to_dpu_encoder_virt(drm_enc);
416 	DPU_DEBUG_ENC(dpu_enc, "\n");
417 
418 	/* Query resources used by phys encs, expected to be without overlap */
419 	memset(hw_res, 0, sizeof(*hw_res));
420 
421 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
422 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
423 
424 		if (phys && phys->ops.get_hw_resources)
425 			phys->ops.get_hw_resources(phys, hw_res);
426 	}
427 }
428 
429 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
430 {
431 	struct dpu_encoder_virt *dpu_enc = NULL;
432 	int i = 0;
433 
434 	if (!drm_enc) {
435 		DPU_ERROR("invalid encoder\n");
436 		return;
437 	}
438 
439 	dpu_enc = to_dpu_encoder_virt(drm_enc);
440 	DPU_DEBUG_ENC(dpu_enc, "\n");
441 
442 	mutex_lock(&dpu_enc->enc_lock);
443 
444 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
445 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
446 
447 		if (phys && phys->ops.destroy) {
448 			phys->ops.destroy(phys);
449 			--dpu_enc->num_phys_encs;
450 			dpu_enc->phys_encs[i] = NULL;
451 		}
452 	}
453 
454 	if (dpu_enc->num_phys_encs)
455 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
456 				dpu_enc->num_phys_encs);
457 	dpu_enc->num_phys_encs = 0;
458 	mutex_unlock(&dpu_enc->enc_lock);
459 
460 	drm_encoder_cleanup(drm_enc);
461 	mutex_destroy(&dpu_enc->enc_lock);
462 }
463 
464 void dpu_encoder_helper_split_config(
465 		struct dpu_encoder_phys *phys_enc,
466 		enum dpu_intf interface)
467 {
468 	struct dpu_encoder_virt *dpu_enc;
469 	struct split_pipe_cfg cfg = { 0 };
470 	struct dpu_hw_mdp *hw_mdptop;
471 	struct msm_display_info *disp_info;
472 
473 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
474 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
475 		return;
476 	}
477 
478 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
479 	hw_mdptop = phys_enc->hw_mdptop;
480 	disp_info = &dpu_enc->disp_info;
481 
482 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
483 		return;
484 
485 	/**
486 	 * disable split modes since encoder will be operating in as the only
487 	 * encoder, either for the entire use case in the case of, for example,
488 	 * single DSI, or for this frame in the case of left/right only partial
489 	 * update.
490 	 */
491 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
492 		if (hw_mdptop->ops.setup_split_pipe)
493 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
494 		return;
495 	}
496 
497 	cfg.en = true;
498 	cfg.mode = phys_enc->intf_mode;
499 	cfg.intf = interface;
500 
501 	if (cfg.en && phys_enc->ops.needs_single_flush &&
502 			phys_enc->ops.needs_single_flush(phys_enc))
503 		cfg.split_flush_en = true;
504 
505 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
506 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
507 
508 		if (hw_mdptop->ops.setup_split_pipe)
509 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
510 	}
511 }
512 
513 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
514 		struct drm_display_mode *adj_mode)
515 {
516 	struct drm_display_mode *cur_mode;
517 
518 	if (!connector || !adj_mode)
519 		return;
520 
521 	list_for_each_entry(cur_mode, &connector->modes, head) {
522 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
523 			cur_mode->hdisplay == adj_mode->hdisplay &&
524 			cur_mode->vrefresh == adj_mode->vrefresh) {
525 			adj_mode->private = cur_mode->private;
526 			adj_mode->private_flags |= cur_mode->private_flags;
527 		}
528 	}
529 }
530 
531 static struct msm_display_topology dpu_encoder_get_topology(
532 			struct dpu_encoder_virt *dpu_enc,
533 			struct dpu_kms *dpu_kms,
534 			struct drm_display_mode *mode)
535 {
536 	struct msm_display_topology topology;
537 	int i, intf_count = 0;
538 
539 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
540 		if (dpu_enc->phys_encs[i])
541 			intf_count++;
542 
543 	/* User split topology for width > 1080 */
544 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
545 	topology.num_enc = 0;
546 	topology.num_intf = intf_count;
547 
548 	return topology;
549 }
550 static int dpu_encoder_virt_atomic_check(
551 		struct drm_encoder *drm_enc,
552 		struct drm_crtc_state *crtc_state,
553 		struct drm_connector_state *conn_state)
554 {
555 	struct dpu_encoder_virt *dpu_enc;
556 	struct msm_drm_private *priv;
557 	struct dpu_kms *dpu_kms;
558 	const struct drm_display_mode *mode;
559 	struct drm_display_mode *adj_mode;
560 	struct msm_display_topology topology;
561 	int i = 0;
562 	int ret = 0;
563 
564 	if (!drm_enc || !crtc_state || !conn_state) {
565 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
566 				drm_enc != 0, crtc_state != 0, conn_state != 0);
567 		return -EINVAL;
568 	}
569 
570 	dpu_enc = to_dpu_encoder_virt(drm_enc);
571 	DPU_DEBUG_ENC(dpu_enc, "\n");
572 
573 	priv = drm_enc->dev->dev_private;
574 	dpu_kms = to_dpu_kms(priv->kms);
575 	mode = &crtc_state->mode;
576 	adj_mode = &crtc_state->adjusted_mode;
577 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
578 
579 	/*
580 	 * display drivers may populate private fields of the drm display mode
581 	 * structure while registering possible modes of a connector with DRM.
582 	 * These private fields are not populated back while DRM invokes
583 	 * the mode_set callbacks. This module retrieves and populates the
584 	 * private fields of the given mode.
585 	 */
586 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
587 
588 	/* perform atomic check on the first physical encoder (master) */
589 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
590 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
591 
592 		if (phys && phys->ops.atomic_check)
593 			ret = phys->ops.atomic_check(phys, crtc_state,
594 					conn_state);
595 		else if (phys && phys->ops.mode_fixup)
596 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
597 				ret = -EINVAL;
598 
599 		if (ret) {
600 			DPU_ERROR_ENC(dpu_enc,
601 					"mode unsupported, phys idx %d\n", i);
602 			break;
603 		}
604 	}
605 
606 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
607 
608 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
609 	if (!ret) {
610 		/*
611 		 * Avoid reserving resources when mode set is pending. Topology
612 		 * info may not be available to complete reservation.
613 		 */
614 		if (drm_atomic_crtc_needs_modeset(crtc_state)
615 				&& dpu_enc->mode_set_complete) {
616 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
617 					     topology, true);
618 			dpu_enc->mode_set_complete = false;
619 		}
620 	}
621 
622 	if (!ret)
623 		drm_mode_set_crtcinfo(adj_mode, 0);
624 
625 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
626 			adj_mode->private_flags);
627 
628 	return ret;
629 }
630 
631 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
632 			struct msm_display_info *disp_info)
633 {
634 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
635 	struct msm_drm_private *priv;
636 	struct dpu_kms *dpu_kms;
637 	struct dpu_hw_mdp *hw_mdptop;
638 	struct drm_encoder *drm_enc;
639 	int i;
640 
641 	if (!dpu_enc || !disp_info) {
642 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
643 					dpu_enc != NULL, disp_info != NULL);
644 		return;
645 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
646 		DPU_ERROR("invalid num phys enc %d/%d\n",
647 				dpu_enc->num_phys_encs,
648 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
649 		return;
650 	}
651 
652 	drm_enc = &dpu_enc->base;
653 	/* this pointers are checked in virt_enable_helper */
654 	priv = drm_enc->dev->dev_private;
655 
656 	dpu_kms = to_dpu_kms(priv->kms);
657 	if (!dpu_kms) {
658 		DPU_ERROR("invalid dpu_kms\n");
659 		return;
660 	}
661 
662 	hw_mdptop = dpu_kms->hw_mdp;
663 	if (!hw_mdptop) {
664 		DPU_ERROR("invalid mdptop\n");
665 		return;
666 	}
667 
668 	if (hw_mdptop->ops.setup_vsync_source &&
669 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
670 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
671 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
672 
673 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
674 		if (disp_info->is_te_using_watchdog_timer)
675 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
676 		else
677 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
678 
679 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
680 	}
681 }
682 
683 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
684 {
685 	struct dpu_encoder_virt *dpu_enc;
686 	int i;
687 
688 	if (!drm_enc) {
689 		DPU_ERROR("invalid encoder\n");
690 		return;
691 	}
692 
693 	dpu_enc = to_dpu_encoder_virt(drm_enc);
694 
695 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
696 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
697 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
698 
699 		if (phys && phys->ops.irq_control)
700 			phys->ops.irq_control(phys, enable);
701 	}
702 
703 }
704 
705 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
706 		bool enable)
707 {
708 	struct msm_drm_private *priv;
709 	struct dpu_kms *dpu_kms;
710 	struct dpu_encoder_virt *dpu_enc;
711 
712 	dpu_enc = to_dpu_encoder_virt(drm_enc);
713 	priv = drm_enc->dev->dev_private;
714 	dpu_kms = to_dpu_kms(priv->kms);
715 
716 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
717 
718 	if (!dpu_enc->cur_master) {
719 		DPU_ERROR("encoder master not set\n");
720 		return;
721 	}
722 
723 	if (enable) {
724 		/* enable DPU core clks */
725 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
726 
727 		/* enable all the irq */
728 		_dpu_encoder_irq_control(drm_enc, true);
729 
730 	} else {
731 		/* disable all the irq */
732 		_dpu_encoder_irq_control(drm_enc, false);
733 
734 		/* disable DPU core clks */
735 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
736 	}
737 
738 }
739 
740 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
741 		u32 sw_event)
742 {
743 	struct dpu_encoder_virt *dpu_enc;
744 	struct msm_drm_private *priv;
745 	struct msm_drm_thread *disp_thread;
746 	bool is_vid_mode = false;
747 
748 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
749 			!drm_enc->crtc) {
750 		DPU_ERROR("invalid parameters\n");
751 		return -EINVAL;
752 	}
753 	dpu_enc = to_dpu_encoder_virt(drm_enc);
754 	priv = drm_enc->dev->dev_private;
755 	is_vid_mode = dpu_enc->disp_info.capabilities &
756 						MSM_DISPLAY_CAP_VID_MODE;
757 
758 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) {
759 		DPU_ERROR("invalid crtc index\n");
760 		return -EINVAL;
761 	}
762 	disp_thread = &priv->disp_thread[drm_enc->crtc->index];
763 
764 	/*
765 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
766 	 * events and return early for other events (ie wb display).
767 	 */
768 	if (!dpu_enc->idle_pc_supported &&
769 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
770 			sw_event != DPU_ENC_RC_EVENT_STOP &&
771 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
772 		return 0;
773 
774 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
775 			 dpu_enc->rc_state, "begin");
776 
777 	switch (sw_event) {
778 	case DPU_ENC_RC_EVENT_KICKOFF:
779 		/* cancel delayed off work, if any */
780 		if (kthread_cancel_delayed_work_sync(
781 				&dpu_enc->delayed_off_work))
782 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
783 					sw_event);
784 
785 		mutex_lock(&dpu_enc->rc_lock);
786 
787 		/* return if the resource control is already in ON state */
788 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
789 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
790 				      DRMID(drm_enc), sw_event);
791 			mutex_unlock(&dpu_enc->rc_lock);
792 			return 0;
793 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
794 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
795 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
796 				      DRMID(drm_enc), sw_event,
797 				      dpu_enc->rc_state);
798 			mutex_unlock(&dpu_enc->rc_lock);
799 			return -EINVAL;
800 		}
801 
802 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
803 			_dpu_encoder_irq_control(drm_enc, true);
804 		else
805 			_dpu_encoder_resource_control_helper(drm_enc, true);
806 
807 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
808 
809 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
810 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
811 				 "kickoff");
812 
813 		mutex_unlock(&dpu_enc->rc_lock);
814 		break;
815 
816 	case DPU_ENC_RC_EVENT_FRAME_DONE:
817 		/*
818 		 * mutex lock is not used as this event happens at interrupt
819 		 * context. And locking is not required as, the other events
820 		 * like KICKOFF and STOP does a wait-for-idle before executing
821 		 * the resource_control
822 		 */
823 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
824 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
825 				      DRMID(drm_enc), sw_event,
826 				      dpu_enc->rc_state);
827 			return -EINVAL;
828 		}
829 
830 		/*
831 		 * schedule off work item only when there are no
832 		 * frames pending
833 		 */
834 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
835 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
836 				      DRMID(drm_enc));
837 			return 0;
838 		}
839 
840 		kthread_queue_delayed_work(
841 			&disp_thread->worker,
842 			&dpu_enc->delayed_off_work,
843 			msecs_to_jiffies(dpu_enc->idle_timeout));
844 
845 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
846 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
847 				 "frame done");
848 		break;
849 
850 	case DPU_ENC_RC_EVENT_PRE_STOP:
851 		/* cancel delayed off work, if any */
852 		if (kthread_cancel_delayed_work_sync(
853 				&dpu_enc->delayed_off_work))
854 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
855 					sw_event);
856 
857 		mutex_lock(&dpu_enc->rc_lock);
858 
859 		if (is_vid_mode &&
860 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
861 			_dpu_encoder_irq_control(drm_enc, true);
862 		}
863 		/* skip if is already OFF or IDLE, resources are off already */
864 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
865 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
866 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
867 				      DRMID(drm_enc), sw_event,
868 				      dpu_enc->rc_state);
869 			mutex_unlock(&dpu_enc->rc_lock);
870 			return 0;
871 		}
872 
873 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
874 
875 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
876 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
877 				 "pre stop");
878 
879 		mutex_unlock(&dpu_enc->rc_lock);
880 		break;
881 
882 	case DPU_ENC_RC_EVENT_STOP:
883 		mutex_lock(&dpu_enc->rc_lock);
884 
885 		/* return if the resource control is already in OFF state */
886 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
887 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
888 				      DRMID(drm_enc), sw_event);
889 			mutex_unlock(&dpu_enc->rc_lock);
890 			return 0;
891 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
892 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
893 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
894 			mutex_unlock(&dpu_enc->rc_lock);
895 			return -EINVAL;
896 		}
897 
898 		/**
899 		 * expect to arrive here only if in either idle state or pre-off
900 		 * and in IDLE state the resources are already disabled
901 		 */
902 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
903 			_dpu_encoder_resource_control_helper(drm_enc, false);
904 
905 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
906 
907 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
908 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
909 				 "stop");
910 
911 		mutex_unlock(&dpu_enc->rc_lock);
912 		break;
913 
914 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
915 		mutex_lock(&dpu_enc->rc_lock);
916 
917 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
918 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
919 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
920 			mutex_unlock(&dpu_enc->rc_lock);
921 			return 0;
922 		}
923 
924 		/*
925 		 * if we are in ON but a frame was just kicked off,
926 		 * ignore the IDLE event, it's probably a stale timer event
927 		 */
928 		if (dpu_enc->frame_busy_mask[0]) {
929 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
930 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
931 			mutex_unlock(&dpu_enc->rc_lock);
932 			return 0;
933 		}
934 
935 		if (is_vid_mode)
936 			_dpu_encoder_irq_control(drm_enc, false);
937 		else
938 			_dpu_encoder_resource_control_helper(drm_enc, false);
939 
940 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
941 
942 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
943 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
944 				 "idle");
945 
946 		mutex_unlock(&dpu_enc->rc_lock);
947 		break;
948 
949 	default:
950 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
951 			  sw_event);
952 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 				 "error");
955 		break;
956 	}
957 
958 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
959 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
960 			 "end");
961 	return 0;
962 }
963 
964 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
965 				      struct drm_display_mode *mode,
966 				      struct drm_display_mode *adj_mode)
967 {
968 	struct dpu_encoder_virt *dpu_enc;
969 	struct msm_drm_private *priv;
970 	struct dpu_kms *dpu_kms;
971 	struct list_head *connector_list;
972 	struct drm_connector *conn = NULL, *conn_iter;
973 	struct dpu_rm_hw_iter pp_iter, ctl_iter;
974 	struct msm_display_topology topology;
975 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
976 	int i = 0, ret;
977 
978 	if (!drm_enc) {
979 		DPU_ERROR("invalid encoder\n");
980 		return;
981 	}
982 
983 	dpu_enc = to_dpu_encoder_virt(drm_enc);
984 	DPU_DEBUG_ENC(dpu_enc, "\n");
985 
986 	priv = drm_enc->dev->dev_private;
987 	dpu_kms = to_dpu_kms(priv->kms);
988 	connector_list = &dpu_kms->dev->mode_config.connector_list;
989 
990 	trace_dpu_enc_mode_set(DRMID(drm_enc));
991 
992 	list_for_each_entry(conn_iter, connector_list, head)
993 		if (conn_iter->encoder == drm_enc)
994 			conn = conn_iter;
995 
996 	if (!conn) {
997 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
998 		return;
999 	} else if (!conn->state) {
1000 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1001 		return;
1002 	}
1003 
1004 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1005 
1006 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
1007 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state,
1008 			     topology, false);
1009 	if (ret) {
1010 		DPU_ERROR_ENC(dpu_enc,
1011 				"failed to reserve hw resources, %d\n", ret);
1012 		return;
1013 	}
1014 
1015 	dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1016 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1017 		dpu_enc->hw_pp[i] = NULL;
1018 		if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter))
1019 			break;
1020 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw;
1021 	}
1022 
1023 	dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1024 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1025 		if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter))
1026 			break;
1027 		hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw;
1028 	}
1029 
1030 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1031 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1032 
1033 		if (phys) {
1034 			if (!dpu_enc->hw_pp[i]) {
1035 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1036 					     "at idx: %d\n", i);
1037 				return;
1038 			}
1039 
1040 			if (!hw_ctl[i]) {
1041 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1042 					     "at idx: %d\n", i);
1043 				return;
1044 			}
1045 
1046 			phys->hw_pp = dpu_enc->hw_pp[i];
1047 			phys->hw_ctl = hw_ctl[i];
1048 
1049 			phys->connector = conn->state->connector;
1050 			if (phys->ops.mode_set)
1051 				phys->ops.mode_set(phys, mode, adj_mode);
1052 		}
1053 	}
1054 
1055 	dpu_enc->mode_set_complete = true;
1056 }
1057 
1058 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1059 {
1060 	struct dpu_encoder_virt *dpu_enc = NULL;
1061 	struct msm_drm_private *priv;
1062 	struct dpu_kms *dpu_kms;
1063 
1064 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1065 		DPU_ERROR("invalid parameters\n");
1066 		return;
1067 	}
1068 
1069 	priv = drm_enc->dev->dev_private;
1070 	dpu_kms = to_dpu_kms(priv->kms);
1071 	if (!dpu_kms) {
1072 		DPU_ERROR("invalid dpu_kms\n");
1073 		return;
1074 	}
1075 
1076 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1077 	if (!dpu_enc || !dpu_enc->cur_master) {
1078 		DPU_ERROR("invalid dpu encoder/master\n");
1079 		return;
1080 	}
1081 
1082 	if (dpu_enc->cur_master->hw_mdptop &&
1083 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1084 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1085 				dpu_enc->cur_master->hw_mdptop,
1086 				dpu_kms->catalog);
1087 
1088 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1089 }
1090 
1091 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1092 {
1093 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1094 
1095 	mutex_lock(&dpu_enc->enc_lock);
1096 
1097 	if (!dpu_enc->enabled)
1098 		goto out;
1099 
1100 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1101 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1102 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1103 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1104 
1105 	_dpu_encoder_virt_enable_helper(drm_enc);
1106 
1107 out:
1108 	mutex_unlock(&dpu_enc->enc_lock);
1109 }
1110 
1111 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1112 {
1113 	struct dpu_encoder_virt *dpu_enc = NULL;
1114 	int ret = 0;
1115 	struct drm_display_mode *cur_mode = NULL;
1116 
1117 	if (!drm_enc) {
1118 		DPU_ERROR("invalid encoder\n");
1119 		return;
1120 	}
1121 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1122 
1123 	mutex_lock(&dpu_enc->enc_lock);
1124 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1125 
1126 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1127 			     cur_mode->vdisplay);
1128 
1129 	/* always enable slave encoder before master */
1130 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1131 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1132 
1133 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1134 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1135 
1136 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1137 	if (ret) {
1138 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1139 				ret);
1140 		goto out;
1141 	}
1142 
1143 	_dpu_encoder_virt_enable_helper(drm_enc);
1144 
1145 	dpu_enc->enabled = true;
1146 
1147 out:
1148 	mutex_unlock(&dpu_enc->enc_lock);
1149 }
1150 
1151 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1152 {
1153 	struct dpu_encoder_virt *dpu_enc = NULL;
1154 	struct msm_drm_private *priv;
1155 	struct dpu_kms *dpu_kms;
1156 	struct drm_display_mode *mode;
1157 	int i = 0;
1158 
1159 	if (!drm_enc) {
1160 		DPU_ERROR("invalid encoder\n");
1161 		return;
1162 	} else if (!drm_enc->dev) {
1163 		DPU_ERROR("invalid dev\n");
1164 		return;
1165 	} else if (!drm_enc->dev->dev_private) {
1166 		DPU_ERROR("invalid dev_private\n");
1167 		return;
1168 	}
1169 
1170 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1171 	DPU_DEBUG_ENC(dpu_enc, "\n");
1172 
1173 	mutex_lock(&dpu_enc->enc_lock);
1174 	dpu_enc->enabled = false;
1175 
1176 	mode = &drm_enc->crtc->state->adjusted_mode;
1177 
1178 	priv = drm_enc->dev->dev_private;
1179 	dpu_kms = to_dpu_kms(priv->kms);
1180 
1181 	trace_dpu_enc_disable(DRMID(drm_enc));
1182 
1183 	/* wait for idle */
1184 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1185 
1186 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1187 
1188 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1189 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1190 
1191 		if (phys && phys->ops.disable)
1192 			phys->ops.disable(phys);
1193 	}
1194 
1195 	/* after phys waits for frame-done, should be no more frames pending */
1196 	if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
1197 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1198 		del_timer_sync(&dpu_enc->frame_done_timer);
1199 	}
1200 
1201 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1202 
1203 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1204 		if (dpu_enc->phys_encs[i])
1205 			dpu_enc->phys_encs[i]->connector = NULL;
1206 	}
1207 
1208 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1209 
1210 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1211 
1212 	mutex_unlock(&dpu_enc->enc_lock);
1213 }
1214 
1215 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1216 		enum dpu_intf_type type, u32 controller_id)
1217 {
1218 	int i = 0;
1219 
1220 	for (i = 0; i < catalog->intf_count; i++) {
1221 		if (catalog->intf[i].type == type
1222 		    && catalog->intf[i].controller_id == controller_id) {
1223 			return catalog->intf[i].id;
1224 		}
1225 	}
1226 
1227 	return INTF_MAX;
1228 }
1229 
1230 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1231 		struct dpu_encoder_phys *phy_enc)
1232 {
1233 	struct dpu_encoder_virt *dpu_enc = NULL;
1234 	unsigned long lock_flags;
1235 
1236 	if (!drm_enc || !phy_enc)
1237 		return;
1238 
1239 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1240 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1241 
1242 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1243 	if (dpu_enc->crtc)
1244 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1245 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1246 
1247 	atomic_inc(&phy_enc->vsync_cnt);
1248 	DPU_ATRACE_END("encoder_vblank_callback");
1249 }
1250 
1251 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1252 		struct dpu_encoder_phys *phy_enc)
1253 {
1254 	if (!phy_enc)
1255 		return;
1256 
1257 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1258 	atomic_inc(&phy_enc->underrun_cnt);
1259 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1260 				  atomic_read(&phy_enc->underrun_cnt));
1261 	DPU_ATRACE_END("encoder_underrun_callback");
1262 }
1263 
1264 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1265 {
1266 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1267 	unsigned long lock_flags;
1268 
1269 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1270 	/* crtc should always be cleared before re-assigning */
1271 	WARN_ON(crtc && dpu_enc->crtc);
1272 	dpu_enc->crtc = crtc;
1273 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1274 }
1275 
1276 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1277 					struct drm_crtc *crtc, bool enable)
1278 {
1279 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1280 	unsigned long lock_flags;
1281 	int i;
1282 
1283 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1284 
1285 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1286 	if (dpu_enc->crtc != crtc) {
1287 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1288 		return;
1289 	}
1290 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1291 
1292 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1293 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1294 
1295 		if (phys && phys->ops.control_vblank_irq)
1296 			phys->ops.control_vblank_irq(phys, enable);
1297 	}
1298 }
1299 
1300 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1301 		void (*frame_event_cb)(void *, u32 event),
1302 		void *frame_event_cb_data)
1303 {
1304 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1305 	unsigned long lock_flags;
1306 	bool enable;
1307 
1308 	enable = frame_event_cb ? true : false;
1309 
1310 	if (!drm_enc) {
1311 		DPU_ERROR("invalid encoder\n");
1312 		return;
1313 	}
1314 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1315 
1316 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1317 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1318 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1319 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1320 }
1321 
1322 static void dpu_encoder_frame_done_callback(
1323 		struct drm_encoder *drm_enc,
1324 		struct dpu_encoder_phys *ready_phys, u32 event)
1325 {
1326 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1327 	unsigned int i;
1328 
1329 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1330 			| DPU_ENCODER_FRAME_EVENT_ERROR
1331 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1332 
1333 		if (!dpu_enc->frame_busy_mask[0]) {
1334 			/**
1335 			 * suppress frame_done without waiter,
1336 			 * likely autorefresh
1337 			 */
1338 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1339 					event, ready_phys->intf_idx);
1340 			return;
1341 		}
1342 
1343 		/* One of the physical encoders has become idle */
1344 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1345 			if (dpu_enc->phys_encs[i] == ready_phys) {
1346 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1347 						dpu_enc->frame_busy_mask[0]);
1348 				clear_bit(i, dpu_enc->frame_busy_mask);
1349 			}
1350 		}
1351 
1352 		if (!dpu_enc->frame_busy_mask[0]) {
1353 			atomic_set(&dpu_enc->frame_done_timeout, 0);
1354 			del_timer(&dpu_enc->frame_done_timer);
1355 
1356 			dpu_encoder_resource_control(drm_enc,
1357 					DPU_ENC_RC_EVENT_FRAME_DONE);
1358 
1359 			if (dpu_enc->crtc_frame_event_cb)
1360 				dpu_enc->crtc_frame_event_cb(
1361 					dpu_enc->crtc_frame_event_cb_data,
1362 					event);
1363 		}
1364 	} else {
1365 		if (dpu_enc->crtc_frame_event_cb)
1366 			dpu_enc->crtc_frame_event_cb(
1367 				dpu_enc->crtc_frame_event_cb_data, event);
1368 	}
1369 }
1370 
1371 static void dpu_encoder_off_work(struct kthread_work *work)
1372 {
1373 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1374 			struct dpu_encoder_virt, delayed_off_work.work);
1375 
1376 	if (!dpu_enc) {
1377 		DPU_ERROR("invalid dpu encoder\n");
1378 		return;
1379 	}
1380 
1381 	dpu_encoder_resource_control(&dpu_enc->base,
1382 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1383 
1384 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1385 				DPU_ENCODER_FRAME_EVENT_IDLE);
1386 }
1387 
1388 /**
1389  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1390  * drm_enc: Pointer to drm encoder structure
1391  * phys: Pointer to physical encoder structure
1392  * extra_flush_bits: Additional bit mask to include in flush trigger
1393  */
1394 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1395 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits,
1396 		bool async)
1397 {
1398 	struct dpu_hw_ctl *ctl;
1399 	int pending_kickoff_cnt;
1400 	u32 ret = UINT_MAX;
1401 
1402 	if (!drm_enc || !phys) {
1403 		DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1404 				drm_enc != 0, phys != 0);
1405 		return;
1406 	}
1407 
1408 	if (!phys->hw_pp) {
1409 		DPU_ERROR("invalid pingpong hw\n");
1410 		return;
1411 	}
1412 
1413 	ctl = phys->hw_ctl;
1414 	if (!ctl || !ctl->ops.trigger_flush) {
1415 		DPU_ERROR("missing trigger cb\n");
1416 		return;
1417 	}
1418 
1419 	if (!async)
1420 		pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1421 	else
1422 		pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt);
1423 
1424 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1425 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1426 
1427 	ctl->ops.trigger_flush(ctl);
1428 
1429 	if (ctl->ops.get_pending_flush)
1430 		ret = ctl->ops.get_pending_flush(ctl);
1431 
1432 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1433 				    pending_kickoff_cnt, ctl->idx,
1434 				    extra_flush_bits, ret);
1435 }
1436 
1437 /**
1438  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1439  * phys: Pointer to physical encoder structure
1440  */
1441 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1442 {
1443 	if (!phys) {
1444 		DPU_ERROR("invalid argument(s)\n");
1445 		return;
1446 	}
1447 
1448 	if (!phys->hw_pp) {
1449 		DPU_ERROR("invalid pingpong hw\n");
1450 		return;
1451 	}
1452 
1453 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1454 		phys->ops.trigger_start(phys);
1455 }
1456 
1457 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1458 {
1459 	struct dpu_hw_ctl *ctl;
1460 
1461 	if (!phys_enc) {
1462 		DPU_ERROR("invalid encoder\n");
1463 		return;
1464 	}
1465 
1466 	ctl = phys_enc->hw_ctl;
1467 	if (ctl && ctl->ops.trigger_start) {
1468 		ctl->ops.trigger_start(ctl);
1469 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1470 	}
1471 }
1472 
1473 static int dpu_encoder_helper_wait_event_timeout(
1474 		int32_t drm_id,
1475 		int32_t hw_id,
1476 		struct dpu_encoder_wait_info *info)
1477 {
1478 	int rc = 0;
1479 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1480 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1481 	s64 time;
1482 
1483 	do {
1484 		rc = wait_event_timeout(*(info->wq),
1485 				atomic_read(info->atomic_cnt) == 0, jiffies);
1486 		time = ktime_to_ms(ktime_get());
1487 
1488 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1489 						 expected_time,
1490 						 atomic_read(info->atomic_cnt));
1491 	/* If we timed out, counter is valid and time is less, wait again */
1492 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1493 			(time < expected_time));
1494 
1495 	return rc;
1496 }
1497 
1498 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1499 {
1500 	struct dpu_encoder_virt *dpu_enc;
1501 	struct dpu_hw_ctl *ctl;
1502 	int rc;
1503 
1504 	if (!phys_enc) {
1505 		DPU_ERROR("invalid encoder\n");
1506 		return;
1507 	}
1508 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1509 	ctl = phys_enc->hw_ctl;
1510 
1511 	if (!ctl || !ctl->ops.reset)
1512 		return;
1513 
1514 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1515 		      ctl->idx);
1516 
1517 	rc = ctl->ops.reset(ctl);
1518 	if (rc)
1519 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1520 
1521 	phys_enc->enable_state = DPU_ENC_ENABLED;
1522 }
1523 
1524 /**
1525  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1526  *	Iterate through the physical encoders and perform consolidated flush
1527  *	and/or control start triggering as needed. This is done in the virtual
1528  *	encoder rather than the individual physical ones in order to handle
1529  *	use cases that require visibility into multiple physical encoders at
1530  *	a time.
1531  * dpu_enc: Pointer to virtual encoder structure
1532  */
1533 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc,
1534 				      bool async)
1535 {
1536 	struct dpu_hw_ctl *ctl;
1537 	uint32_t i, pending_flush;
1538 	unsigned long lock_flags;
1539 
1540 	if (!dpu_enc) {
1541 		DPU_ERROR("invalid encoder\n");
1542 		return;
1543 	}
1544 
1545 	pending_flush = 0x0;
1546 
1547 	/* update pending counts and trigger kickoff ctl flush atomically */
1548 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1549 
1550 	/* don't perform flush/start operations for slave encoders */
1551 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1552 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1553 
1554 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1555 			continue;
1556 
1557 		ctl = phys->hw_ctl;
1558 		if (!ctl)
1559 			continue;
1560 
1561 		if (phys->split_role != ENC_ROLE_SLAVE)
1562 			set_bit(i, dpu_enc->frame_busy_mask);
1563 		if (!phys->ops.needs_single_flush ||
1564 				!phys->ops.needs_single_flush(phys))
1565 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0,
1566 						   async);
1567 		else if (ctl->ops.get_pending_flush)
1568 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1569 	}
1570 
1571 	/* for split flush, combine pending flush masks and send to master */
1572 	if (pending_flush && dpu_enc->cur_master) {
1573 		_dpu_encoder_trigger_flush(
1574 				&dpu_enc->base,
1575 				dpu_enc->cur_master,
1576 				pending_flush, async);
1577 	}
1578 
1579 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1580 
1581 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1582 }
1583 
1584 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1585 {
1586 	struct dpu_encoder_virt *dpu_enc;
1587 	struct dpu_encoder_phys *phys;
1588 	unsigned int i;
1589 	struct dpu_hw_ctl *ctl;
1590 	struct msm_display_info *disp_info;
1591 
1592 	if (!drm_enc) {
1593 		DPU_ERROR("invalid encoder\n");
1594 		return;
1595 	}
1596 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1597 	disp_info = &dpu_enc->disp_info;
1598 
1599 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1600 		phys = dpu_enc->phys_encs[i];
1601 
1602 		if (phys && phys->hw_ctl) {
1603 			ctl = phys->hw_ctl;
1604 			if (ctl->ops.clear_pending_flush)
1605 				ctl->ops.clear_pending_flush(ctl);
1606 
1607 			/* update only for command mode primary ctl */
1608 			if ((phys == dpu_enc->cur_master) &&
1609 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1610 			    && ctl->ops.trigger_pending)
1611 				ctl->ops.trigger_pending(ctl);
1612 		}
1613 	}
1614 }
1615 
1616 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1617 		struct drm_display_mode *mode)
1618 {
1619 	u64 pclk_rate;
1620 	u32 pclk_period;
1621 	u32 line_time;
1622 
1623 	/*
1624 	 * For linetime calculation, only operate on master encoder.
1625 	 */
1626 	if (!dpu_enc->cur_master)
1627 		return 0;
1628 
1629 	if (!dpu_enc->cur_master->ops.get_line_count) {
1630 		DPU_ERROR("get_line_count function not defined\n");
1631 		return 0;
1632 	}
1633 
1634 	pclk_rate = mode->clock; /* pixel clock in kHz */
1635 	if (pclk_rate == 0) {
1636 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1637 		return 0;
1638 	}
1639 
1640 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1641 	if (pclk_period == 0) {
1642 		DPU_ERROR("pclk period is 0\n");
1643 		return 0;
1644 	}
1645 
1646 	/*
1647 	 * Line time calculation based on Pixel clock and HTOTAL.
1648 	 * Final unit is in ns.
1649 	 */
1650 	line_time = (pclk_period * mode->htotal) / 1000;
1651 	if (line_time == 0) {
1652 		DPU_ERROR("line time calculation is 0\n");
1653 		return 0;
1654 	}
1655 
1656 	DPU_DEBUG_ENC(dpu_enc,
1657 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1658 			pclk_rate, pclk_period, line_time);
1659 
1660 	return line_time;
1661 }
1662 
1663 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1664 		ktime_t *wakeup_time)
1665 {
1666 	struct drm_display_mode *mode;
1667 	struct dpu_encoder_virt *dpu_enc;
1668 	u32 cur_line;
1669 	u32 line_time;
1670 	u32 vtotal, time_to_vsync;
1671 	ktime_t cur_time;
1672 
1673 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1674 
1675 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1676 		DPU_ERROR("crtc/crtc state object is NULL\n");
1677 		return -EINVAL;
1678 	}
1679 	mode = &drm_enc->crtc->state->adjusted_mode;
1680 
1681 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1682 	if (!line_time)
1683 		return -EINVAL;
1684 
1685 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1686 
1687 	vtotal = mode->vtotal;
1688 	if (cur_line >= vtotal)
1689 		time_to_vsync = line_time * vtotal;
1690 	else
1691 		time_to_vsync = line_time * (vtotal - cur_line);
1692 
1693 	if (time_to_vsync == 0) {
1694 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1695 				vtotal);
1696 		return -EINVAL;
1697 	}
1698 
1699 	cur_time = ktime_get();
1700 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1701 
1702 	DPU_DEBUG_ENC(dpu_enc,
1703 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1704 			cur_line, vtotal, time_to_vsync,
1705 			ktime_to_ms(cur_time),
1706 			ktime_to_ms(*wakeup_time));
1707 	return 0;
1708 }
1709 
1710 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1711 {
1712 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1713 			vsync_event_timer);
1714 	struct drm_encoder *drm_enc = &dpu_enc->base;
1715 	struct msm_drm_private *priv;
1716 	struct msm_drm_thread *event_thread;
1717 
1718 	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1719 			!drm_enc->crtc) {
1720 		DPU_ERROR("invalid parameters\n");
1721 		return;
1722 	}
1723 
1724 	priv = drm_enc->dev->dev_private;
1725 
1726 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1727 		DPU_ERROR("invalid crtc index\n");
1728 		return;
1729 	}
1730 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1731 	if (!event_thread) {
1732 		DPU_ERROR("event_thread not found for crtc:%d\n",
1733 				drm_enc->crtc->index);
1734 		return;
1735 	}
1736 
1737 	del_timer(&dpu_enc->vsync_event_timer);
1738 }
1739 
1740 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1741 {
1742 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1743 			struct dpu_encoder_virt, vsync_event_work);
1744 	ktime_t wakeup_time;
1745 
1746 	if (!dpu_enc) {
1747 		DPU_ERROR("invalid dpu encoder\n");
1748 		return;
1749 	}
1750 
1751 	if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1752 		return;
1753 
1754 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1755 	mod_timer(&dpu_enc->vsync_event_timer,
1756 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1757 }
1758 
1759 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc,
1760 		struct dpu_encoder_kickoff_params *params, bool async)
1761 {
1762 	struct dpu_encoder_virt *dpu_enc;
1763 	struct dpu_encoder_phys *phys;
1764 	bool needs_hw_reset = false;
1765 	unsigned int i;
1766 
1767 	if (!drm_enc || !params) {
1768 		DPU_ERROR("invalid args\n");
1769 		return;
1770 	}
1771 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1772 
1773 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1774 
1775 	/* prepare for next kickoff, may include waiting on previous kickoff */
1776 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1777 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1778 		phys = dpu_enc->phys_encs[i];
1779 		if (phys) {
1780 			if (phys->ops.prepare_for_kickoff)
1781 				phys->ops.prepare_for_kickoff(phys, params);
1782 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1783 				needs_hw_reset = true;
1784 		}
1785 	}
1786 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1787 
1788 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1789 
1790 	/* if any phys needs reset, reset all phys, in-order */
1791 	if (needs_hw_reset) {
1792 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1793 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1794 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1795 		}
1796 	}
1797 }
1798 
1799 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async)
1800 {
1801 	struct dpu_encoder_virt *dpu_enc;
1802 	struct dpu_encoder_phys *phys;
1803 	ktime_t wakeup_time;
1804 	unsigned int i;
1805 
1806 	if (!drm_enc) {
1807 		DPU_ERROR("invalid encoder\n");
1808 		return;
1809 	}
1810 	DPU_ATRACE_BEGIN("encoder_kickoff");
1811 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1812 
1813 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1814 
1815 	atomic_set(&dpu_enc->frame_done_timeout,
1816 			DPU_FRAME_DONE_TIMEOUT * 1000 /
1817 			drm_enc->crtc->state->adjusted_mode.vrefresh);
1818 	mod_timer(&dpu_enc->frame_done_timer, jiffies +
1819 		((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000));
1820 
1821 	/* All phys encs are ready to go, trigger the kickoff */
1822 	_dpu_encoder_kickoff_phys(dpu_enc, async);
1823 
1824 	/* allow phys encs to handle any post-kickoff business */
1825 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1826 		phys = dpu_enc->phys_encs[i];
1827 		if (phys && phys->ops.handle_post_kickoff)
1828 			phys->ops.handle_post_kickoff(phys);
1829 	}
1830 
1831 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1832 			!_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1833 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1834 					    ktime_to_ms(wakeup_time));
1835 		mod_timer(&dpu_enc->vsync_event_timer,
1836 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1837 	}
1838 
1839 	DPU_ATRACE_END("encoder_kickoff");
1840 }
1841 
1842 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1843 {
1844 	struct dpu_encoder_virt *dpu_enc;
1845 	struct dpu_encoder_phys *phys;
1846 	int i;
1847 
1848 	if (!drm_enc) {
1849 		DPU_ERROR("invalid encoder\n");
1850 		return;
1851 	}
1852 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1853 
1854 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1855 		phys = dpu_enc->phys_encs[i];
1856 		if (phys && phys->ops.prepare_commit)
1857 			phys->ops.prepare_commit(phys);
1858 	}
1859 }
1860 
1861 #ifdef CONFIG_DEBUG_FS
1862 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1863 {
1864 	struct dpu_encoder_virt *dpu_enc = s->private;
1865 	int i;
1866 
1867 	mutex_lock(&dpu_enc->enc_lock);
1868 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1869 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1870 
1871 		if (!phys)
1872 			continue;
1873 
1874 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1875 				phys->intf_idx - INTF_0,
1876 				atomic_read(&phys->vsync_cnt),
1877 				atomic_read(&phys->underrun_cnt));
1878 
1879 		switch (phys->intf_mode) {
1880 		case INTF_MODE_VIDEO:
1881 			seq_puts(s, "mode: video\n");
1882 			break;
1883 		case INTF_MODE_CMD:
1884 			seq_puts(s, "mode: command\n");
1885 			break;
1886 		default:
1887 			seq_puts(s, "mode: ???\n");
1888 			break;
1889 		}
1890 	}
1891 	mutex_unlock(&dpu_enc->enc_lock);
1892 
1893 	return 0;
1894 }
1895 
1896 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1897 		struct file *file)
1898 {
1899 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1900 }
1901 
1902 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1903 {
1904 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1905 	struct msm_drm_private *priv;
1906 	struct dpu_kms *dpu_kms;
1907 	int i;
1908 
1909 	static const struct file_operations debugfs_status_fops = {
1910 		.open =		_dpu_encoder_debugfs_status_open,
1911 		.read =		seq_read,
1912 		.llseek =	seq_lseek,
1913 		.release =	single_release,
1914 	};
1915 
1916 	char name[DPU_NAME_SIZE];
1917 
1918 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1919 		DPU_ERROR("invalid encoder or kms\n");
1920 		return -EINVAL;
1921 	}
1922 
1923 	priv = drm_enc->dev->dev_private;
1924 	dpu_kms = to_dpu_kms(priv->kms);
1925 
1926 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1927 
1928 	/* create overall sub-directory for the encoder */
1929 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1930 			drm_enc->dev->primary->debugfs_root);
1931 	if (!dpu_enc->debugfs_root)
1932 		return -ENOMEM;
1933 
1934 	/* don't error check these */
1935 	debugfs_create_file("status", 0600,
1936 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1937 
1938 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1939 		if (dpu_enc->phys_encs[i] &&
1940 				dpu_enc->phys_encs[i]->ops.late_register)
1941 			dpu_enc->phys_encs[i]->ops.late_register(
1942 					dpu_enc->phys_encs[i],
1943 					dpu_enc->debugfs_root);
1944 
1945 	return 0;
1946 }
1947 #else
1948 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1949 {
1950 	return 0;
1951 }
1952 #endif
1953 
1954 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1955 {
1956 	return _dpu_encoder_init_debugfs(encoder);
1957 }
1958 
1959 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1960 {
1961 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1962 
1963 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1964 }
1965 
1966 static int dpu_encoder_virt_add_phys_encs(
1967 		u32 display_caps,
1968 		struct dpu_encoder_virt *dpu_enc,
1969 		struct dpu_enc_phys_init_params *params)
1970 {
1971 	struct dpu_encoder_phys *enc = NULL;
1972 
1973 	DPU_DEBUG_ENC(dpu_enc, "\n");
1974 
1975 	/*
1976 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1977 	 * in this function, check up-front.
1978 	 */
1979 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1980 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1981 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1982 			  dpu_enc->num_phys_encs);
1983 		return -EINVAL;
1984 	}
1985 
1986 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1987 		enc = dpu_encoder_phys_vid_init(params);
1988 
1989 		if (IS_ERR_OR_NULL(enc)) {
1990 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1991 				PTR_ERR(enc));
1992 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
1993 		}
1994 
1995 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1996 		++dpu_enc->num_phys_encs;
1997 	}
1998 
1999 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2000 		enc = dpu_encoder_phys_cmd_init(params);
2001 
2002 		if (IS_ERR_OR_NULL(enc)) {
2003 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2004 				PTR_ERR(enc));
2005 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2006 		}
2007 
2008 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2009 		++dpu_enc->num_phys_encs;
2010 	}
2011 
2012 	if (params->split_role == ENC_ROLE_SLAVE)
2013 		dpu_enc->cur_slave = enc;
2014 	else
2015 		dpu_enc->cur_master = enc;
2016 
2017 	return 0;
2018 }
2019 
2020 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2021 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2022 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2023 	.handle_frame_done = dpu_encoder_frame_done_callback,
2024 };
2025 
2026 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2027 				 struct dpu_kms *dpu_kms,
2028 				 struct msm_display_info *disp_info)
2029 {
2030 	int ret = 0;
2031 	int i = 0;
2032 	enum dpu_intf_type intf_type;
2033 	struct dpu_enc_phys_init_params phys_params;
2034 
2035 	if (!dpu_enc || !dpu_kms) {
2036 		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2037 				dpu_enc != 0, dpu_kms != 0);
2038 		return -EINVAL;
2039 	}
2040 
2041 	dpu_enc->cur_master = NULL;
2042 
2043 	memset(&phys_params, 0, sizeof(phys_params));
2044 	phys_params.dpu_kms = dpu_kms;
2045 	phys_params.parent = &dpu_enc->base;
2046 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2047 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2048 
2049 	DPU_DEBUG("\n");
2050 
2051 	switch (disp_info->intf_type) {
2052 	case DRM_MODE_ENCODER_DSI:
2053 		intf_type = INTF_DSI;
2054 		break;
2055 	default:
2056 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2057 		return -EINVAL;
2058 	}
2059 
2060 	WARN_ON(disp_info->num_of_h_tiles < 1);
2061 
2062 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2063 
2064 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2065 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2066 		dpu_enc->idle_pc_supported =
2067 				dpu_kms->catalog->caps->has_idle_pc;
2068 
2069 	mutex_lock(&dpu_enc->enc_lock);
2070 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2071 		/*
2072 		 * Left-most tile is at index 0, content is controller id
2073 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2074 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2075 		 */
2076 		u32 controller_id = disp_info->h_tile_instance[i];
2077 
2078 		if (disp_info->num_of_h_tiles > 1) {
2079 			if (i == 0)
2080 				phys_params.split_role = ENC_ROLE_MASTER;
2081 			else
2082 				phys_params.split_role = ENC_ROLE_SLAVE;
2083 		} else {
2084 			phys_params.split_role = ENC_ROLE_SOLO;
2085 		}
2086 
2087 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2088 				i, controller_id, phys_params.split_role);
2089 
2090 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2091 													intf_type,
2092 													controller_id);
2093 		if (phys_params.intf_idx == INTF_MAX) {
2094 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2095 						  intf_type, controller_id);
2096 			ret = -EINVAL;
2097 		}
2098 
2099 		if (!ret) {
2100 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2101 												 dpu_enc,
2102 												 &phys_params);
2103 			if (ret)
2104 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2105 		}
2106 	}
2107 
2108 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2109 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2110 
2111 		if (phys) {
2112 			atomic_set(&phys->vsync_cnt, 0);
2113 			atomic_set(&phys->underrun_cnt, 0);
2114 		}
2115 	}
2116 	mutex_unlock(&dpu_enc->enc_lock);
2117 
2118 	return ret;
2119 }
2120 
2121 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2122 {
2123 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2124 			frame_done_timer);
2125 	struct drm_encoder *drm_enc = &dpu_enc->base;
2126 	struct msm_drm_private *priv;
2127 	u32 event;
2128 
2129 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2130 		DPU_ERROR("invalid parameters\n");
2131 		return;
2132 	}
2133 	priv = drm_enc->dev->dev_private;
2134 
2135 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2136 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2137 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2138 		return;
2139 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) {
2140 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2141 		return;
2142 	}
2143 
2144 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2145 
2146 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2147 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2148 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2149 }
2150 
2151 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2152 	.mode_set = dpu_encoder_virt_mode_set,
2153 	.disable = dpu_encoder_virt_disable,
2154 	.enable = dpu_kms_encoder_enable,
2155 	.atomic_check = dpu_encoder_virt_atomic_check,
2156 
2157 	/* This is called by dpu_kms_encoder_enable */
2158 	.commit = dpu_encoder_virt_enable,
2159 };
2160 
2161 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2162 		.destroy = dpu_encoder_destroy,
2163 		.late_register = dpu_encoder_late_register,
2164 		.early_unregister = dpu_encoder_early_unregister,
2165 };
2166 
2167 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2168 		struct msm_display_info *disp_info)
2169 {
2170 	struct msm_drm_private *priv = dev->dev_private;
2171 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2172 	struct drm_encoder *drm_enc = NULL;
2173 	struct dpu_encoder_virt *dpu_enc = NULL;
2174 	int ret = 0;
2175 
2176 	dpu_enc = to_dpu_encoder_virt(enc);
2177 
2178 	mutex_init(&dpu_enc->enc_lock);
2179 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2180 	if (ret)
2181 		goto fail;
2182 
2183 	spin_lock_init(&dpu_enc->enc_spinlock);
2184 
2185 	atomic_set(&dpu_enc->frame_done_timeout, 0);
2186 	timer_setup(&dpu_enc->frame_done_timer,
2187 			dpu_encoder_frame_done_timeout, 0);
2188 
2189 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2190 		timer_setup(&dpu_enc->vsync_event_timer,
2191 				dpu_encoder_vsync_event_handler,
2192 				0);
2193 
2194 
2195 	mutex_init(&dpu_enc->rc_lock);
2196 	kthread_init_delayed_work(&dpu_enc->delayed_off_work,
2197 			dpu_encoder_off_work);
2198 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2199 
2200 	kthread_init_work(&dpu_enc->vsync_event_work,
2201 			dpu_encoder_vsync_event_work_handler);
2202 
2203 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2204 
2205 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2206 
2207 	return ret;
2208 
2209 fail:
2210 	DPU_ERROR("failed to create encoder\n");
2211 	if (drm_enc)
2212 		dpu_encoder_destroy(drm_enc);
2213 
2214 	return ret;
2215 
2216 
2217 }
2218 
2219 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2220 		int drm_enc_mode)
2221 {
2222 	struct dpu_encoder_virt *dpu_enc = NULL;
2223 	int rc = 0;
2224 
2225 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2226 	if (!dpu_enc)
2227 		return ERR_PTR(ENOMEM);
2228 
2229 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2230 			drm_enc_mode, NULL);
2231 	if (rc) {
2232 		devm_kfree(dev->dev, dpu_enc);
2233 		return ERR_PTR(rc);
2234 	}
2235 
2236 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2237 
2238 	dpu_enc->enabled = false;
2239 
2240 	return &dpu_enc->base;
2241 }
2242 
2243 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2244 	enum msm_event_wait event)
2245 {
2246 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2247 	struct dpu_encoder_virt *dpu_enc = NULL;
2248 	int i, ret = 0;
2249 
2250 	if (!drm_enc) {
2251 		DPU_ERROR("invalid encoder\n");
2252 		return -EINVAL;
2253 	}
2254 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2255 	DPU_DEBUG_ENC(dpu_enc, "\n");
2256 
2257 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2258 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2259 		if (!phys)
2260 			continue;
2261 
2262 		switch (event) {
2263 		case MSM_ENC_COMMIT_DONE:
2264 			fn_wait = phys->ops.wait_for_commit_done;
2265 			break;
2266 		case MSM_ENC_TX_COMPLETE:
2267 			fn_wait = phys->ops.wait_for_tx_complete;
2268 			break;
2269 		case MSM_ENC_VBLANK:
2270 			fn_wait = phys->ops.wait_for_vblank;
2271 			break;
2272 		default:
2273 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2274 					event);
2275 			return -EINVAL;
2276 		};
2277 
2278 		if (fn_wait) {
2279 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2280 			ret = fn_wait(phys);
2281 			DPU_ATRACE_END("wait_for_completion_event");
2282 			if (ret)
2283 				return ret;
2284 		}
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2291 {
2292 	struct dpu_encoder_virt *dpu_enc = NULL;
2293 	int i;
2294 
2295 	if (!encoder) {
2296 		DPU_ERROR("invalid encoder\n");
2297 		return INTF_MODE_NONE;
2298 	}
2299 	dpu_enc = to_dpu_encoder_virt(encoder);
2300 
2301 	if (dpu_enc->cur_master)
2302 		return dpu_enc->cur_master->intf_mode;
2303 
2304 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2305 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2306 
2307 		if (phys)
2308 			return phys->intf_mode;
2309 	}
2310 
2311 	return INTF_MODE_NONE;
2312 }
2313