1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 #include <linux/debugfs.h> 12 #include <linux/kthread.h> 13 #include <linux/seq_file.h> 14 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_file.h> 17 #include <drm/drm_probe_helper.h> 18 19 #include "msm_drv.h" 20 #include "dpu_kms.h" 21 #include "dpu_hwio.h" 22 #include "dpu_hw_catalog.h" 23 #include "dpu_hw_intf.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_hw_dsc.h" 27 #include "dpu_hw_merge3d.h" 28 #include "dpu_formats.h" 29 #include "dpu_encoder_phys.h" 30 #include "dpu_crtc.h" 31 #include "dpu_trace.h" 32 #include "dpu_core_irq.h" 33 #include "disp/msm_disp_snapshot.h" 34 35 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ 36 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 37 38 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 /* 42 * Two to anticipate panels that can do cmd/vid dynamic switching 43 * plan is to create all possible physical encoder types, and switch between 44 * them at runtime 45 */ 46 #define NUM_PHYS_ENCODER_TYPES 2 47 48 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 49 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 50 51 #define MAX_CHANNELS_PER_ENC 2 52 53 #define IDLE_SHORT_TIMEOUT 1 54 55 #define MAX_HDISPLAY_SPLIT 1080 56 57 /* timeout in frames waiting for frame done */ 58 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 59 60 /** 61 * enum dpu_enc_rc_events - events for resource control state machine 62 * @DPU_ENC_RC_EVENT_KICKOFF: 63 * This event happens at NORMAL priority. 64 * Event that signals the start of the transfer. When this event is 65 * received, enable MDP/DSI core clocks. Regardless of the previous 66 * state, the resource should be in ON state at the end of this event. 67 * @DPU_ENC_RC_EVENT_FRAME_DONE: 68 * This event happens at INTERRUPT level. 69 * Event signals the end of the data transfer after the PP FRAME_DONE 70 * event. At the end of this event, a delayed work is scheduled to go to 71 * IDLE_PC state after IDLE_TIMEOUT time. 72 * @DPU_ENC_RC_EVENT_PRE_STOP: 73 * This event happens at NORMAL priority. 74 * This event, when received during the ON state, leave the RC STATE 75 * in the PRE_OFF state. It should be followed by the STOP event as 76 * part of encoder disable. 77 * If received during IDLE or OFF states, it will do nothing. 78 * @DPU_ENC_RC_EVENT_STOP: 79 * This event happens at NORMAL priority. 80 * When this event is received, disable all the MDP/DSI core clocks, and 81 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 82 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 83 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 84 * Resource state should be in OFF at the end of the event. 85 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 86 * This event happens at NORMAL priority from a work item. 87 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 88 * This would disable MDP/DSI core clocks and change the resource state 89 * to IDLE. 90 */ 91 enum dpu_enc_rc_events { 92 DPU_ENC_RC_EVENT_KICKOFF = 1, 93 DPU_ENC_RC_EVENT_FRAME_DONE, 94 DPU_ENC_RC_EVENT_PRE_STOP, 95 DPU_ENC_RC_EVENT_STOP, 96 DPU_ENC_RC_EVENT_ENTER_IDLE 97 }; 98 99 /* 100 * enum dpu_enc_rc_states - states that the resource control maintains 101 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 102 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 103 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 104 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 105 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 106 */ 107 enum dpu_enc_rc_states { 108 DPU_ENC_RC_STATE_OFF, 109 DPU_ENC_RC_STATE_PRE_OFF, 110 DPU_ENC_RC_STATE_ON, 111 DPU_ENC_RC_STATE_IDLE 112 }; 113 114 /** 115 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 116 * encoders. Virtual encoder manages one "logical" display. Physical 117 * encoders manage one intf block, tied to a specific panel/sub-panel. 118 * Virtual encoder defers as much as possible to the physical encoders. 119 * Virtual encoder registers itself with the DRM Framework as the encoder. 120 * @base: drm_encoder base class for registration with DRM 121 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 122 * @enabled: True if the encoder is active, protected by enc_lock 123 * @num_phys_encs: Actual number of physical encoders contained. 124 * @phys_encs: Container of physical encoders managed. 125 * @cur_master: Pointer to the current master in this mode. Optimization 126 * Only valid after enable. Cleared as disable. 127 * @cur_slave: As above but for the slave encoder. 128 * @hw_pp: Handle to the pingpong blocks used for the display. No. 129 * pingpong blocks can be different than num_phys_encs. 130 * @hw_dsc: Handle to the DSC blocks used for the display. 131 * @dsc_mask: Bitmask of used DSC blocks. 132 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped 133 * for partial update right-only cases, such as pingpong 134 * split where virtual pingpong does not generate IRQs 135 * @crtc: Pointer to the currently assigned crtc. Normally you 136 * would use crtc->state->encoder_mask to determine the 137 * link between encoder/crtc. However in this case we need 138 * to track crtc in the disable() hook which is called 139 * _after_ encoder_mask is cleared. 140 * @connector: If a mode is set, cached pointer to the active connector 141 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 142 * all CTL paths 143 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 144 * @debugfs_root: Debug file system root file node 145 * @enc_lock: Lock around physical encoder 146 * create/destroy/enable/disable 147 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 148 * busy processing current command. 149 * Bit0 = phys_encs[0] etc. 150 * @crtc_frame_event_cb: callback handler for frame event 151 * @crtc_frame_event_cb_data: callback handler private data 152 * @frame_done_timeout_ms: frame done timeout in ms 153 * @frame_done_timer: watchdog timer for frame done event 154 * @vsync_event_timer: vsync timer 155 * @disp_info: local copy of msm_display_info struct 156 * @idle_pc_supported: indicate if idle power collaps is supported 157 * @rc_lock: resource control mutex lock to protect 158 * virt encoder over various state changes 159 * @rc_state: resource controller state 160 * @delayed_off_work: delayed worker to schedule disabling of 161 * clks and resources after IDLE_TIMEOUT time. 162 * @vsync_event_work: worker to handle vsync event for autorefresh 163 * @topology: topology of the display 164 * @idle_timeout: idle timeout duration in milliseconds 165 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders 166 */ 167 struct dpu_encoder_virt { 168 struct drm_encoder base; 169 spinlock_t enc_spinlock; 170 171 bool enabled; 172 173 unsigned int num_phys_encs; 174 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 175 struct dpu_encoder_phys *cur_master; 176 struct dpu_encoder_phys *cur_slave; 177 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 178 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 179 180 unsigned int dsc_mask; 181 182 bool intfs_swapped; 183 184 struct drm_crtc *crtc; 185 struct drm_connector *connector; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 206 u32 idle_timeout; 207 208 bool wide_bus_en; 209 210 /* DSC configuration */ 211 struct drm_dsc_config *dsc; 212 }; 213 214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 215 216 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 218 }; 219 220 221 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc) 222 { 223 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 224 225 return dpu_enc->wide_bus_en; 226 } 227 228 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc) 229 { 230 struct dpu_encoder_virt *dpu_enc; 231 int i, num_intf = 0; 232 233 dpu_enc = to_dpu_encoder_virt(drm_enc); 234 235 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 236 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 237 238 if (phys->hw_intf && phys->hw_intf->ops.setup_misr 239 && phys->hw_intf->ops.collect_misr) 240 num_intf++; 241 } 242 243 return num_intf; 244 } 245 246 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc) 247 { 248 struct dpu_encoder_virt *dpu_enc; 249 250 int i; 251 252 dpu_enc = to_dpu_encoder_virt(drm_enc); 253 254 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 255 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 256 257 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr) 258 continue; 259 260 phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1); 261 } 262 } 263 264 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos) 265 { 266 struct dpu_encoder_virt *dpu_enc; 267 268 int i, rc = 0, entries_added = 0; 269 270 if (!drm_enc->crtc) { 271 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index); 272 return -EINVAL; 273 } 274 275 dpu_enc = to_dpu_encoder_virt(drm_enc); 276 277 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 278 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 279 280 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr) 281 continue; 282 283 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]); 284 if (rc) 285 return rc; 286 entries_added++; 287 } 288 289 return entries_added; 290 } 291 292 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 293 { 294 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 295 296 if (!hw_pp->ops.setup_dither) 297 return; 298 299 switch (bpc) { 300 case 6: 301 dither_cfg.c0_bitdepth = 6; 302 dither_cfg.c1_bitdepth = 6; 303 dither_cfg.c2_bitdepth = 6; 304 dither_cfg.c3_bitdepth = 6; 305 dither_cfg.temporal_en = 0; 306 break; 307 default: 308 hw_pp->ops.setup_dither(hw_pp, NULL); 309 return; 310 } 311 312 memcpy(&dither_cfg.matrix, dither_matrix, 313 sizeof(u32) * DITHER_MATRIX_SZ); 314 315 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 316 } 317 318 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode) 319 { 320 switch (intf_mode) { 321 case INTF_MODE_VIDEO: 322 return "INTF_MODE_VIDEO"; 323 case INTF_MODE_CMD: 324 return "INTF_MODE_CMD"; 325 case INTF_MODE_WB_BLOCK: 326 return "INTF_MODE_WB_BLOCK"; 327 case INTF_MODE_WB_LINE: 328 return "INTF_MODE_WB_LINE"; 329 default: 330 return "INTF_MODE_UNKNOWN"; 331 } 332 } 333 334 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 335 enum dpu_intr_idx intr_idx) 336 { 337 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n", 338 DRMID(phys_enc->parent), 339 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode), 340 phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0, 341 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 342 343 if (phys_enc->parent_ops->handle_frame_done) 344 phys_enc->parent_ops->handle_frame_done( 345 phys_enc->parent, phys_enc, 346 DPU_ENCODER_FRAME_EVENT_ERROR); 347 } 348 349 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 350 u32 irq_idx, struct dpu_encoder_wait_info *info); 351 352 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 353 int irq, 354 void (*func)(void *arg, int irq_idx), 355 struct dpu_encoder_wait_info *wait_info) 356 { 357 u32 irq_status; 358 int ret; 359 360 if (!wait_info) { 361 DPU_ERROR("invalid params\n"); 362 return -EINVAL; 363 } 364 /* note: do master / slave checking outside */ 365 366 /* return EWOULDBLOCK since we know the wait isn't necessary */ 367 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 368 DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n", 369 DRMID(phys_enc->parent), func, 370 irq); 371 return -EWOULDBLOCK; 372 } 373 374 if (irq < 0) { 375 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n", 376 DRMID(phys_enc->parent), func); 377 return 0; 378 } 379 380 DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n", 381 DRMID(phys_enc->parent), func, 382 irq, phys_enc->hw_pp->idx - PINGPONG_0, 383 atomic_read(wait_info->atomic_cnt)); 384 385 ret = dpu_encoder_helper_wait_event_timeout( 386 DRMID(phys_enc->parent), 387 irq, 388 wait_info); 389 390 if (ret <= 0) { 391 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq); 392 if (irq_status) { 393 unsigned long flags; 394 395 DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n", 396 DRMID(phys_enc->parent), func, 397 irq, 398 phys_enc->hw_pp->idx - PINGPONG_0, 399 atomic_read(wait_info->atomic_cnt)); 400 local_irq_save(flags); 401 func(phys_enc, irq); 402 local_irq_restore(flags); 403 ret = 0; 404 } else { 405 ret = -ETIMEDOUT; 406 DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n", 407 DRMID(phys_enc->parent), func, 408 irq, 409 phys_enc->hw_pp->idx - PINGPONG_0, 410 atomic_read(wait_info->atomic_cnt)); 411 } 412 } else { 413 ret = 0; 414 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 415 func, irq, 416 phys_enc->hw_pp->idx - PINGPONG_0, 417 atomic_read(wait_info->atomic_cnt)); 418 } 419 420 return ret; 421 } 422 423 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) 424 { 425 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 426 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; 427 return phys ? atomic_read(&phys->vsync_cnt) : 0; 428 } 429 430 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) 431 { 432 struct dpu_encoder_virt *dpu_enc; 433 struct dpu_encoder_phys *phys; 434 int linecount = 0; 435 436 dpu_enc = to_dpu_encoder_virt(drm_enc); 437 phys = dpu_enc ? dpu_enc->cur_master : NULL; 438 439 if (phys && phys->ops.get_line_count) 440 linecount = phys->ops.get_line_count(phys); 441 442 return linecount; 443 } 444 445 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 446 { 447 struct dpu_encoder_virt *dpu_enc = NULL; 448 int i = 0; 449 450 if (!drm_enc) { 451 DPU_ERROR("invalid encoder\n"); 452 return; 453 } 454 455 dpu_enc = to_dpu_encoder_virt(drm_enc); 456 DPU_DEBUG_ENC(dpu_enc, "\n"); 457 458 mutex_lock(&dpu_enc->enc_lock); 459 460 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 461 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 462 463 if (phys->ops.destroy) { 464 phys->ops.destroy(phys); 465 --dpu_enc->num_phys_encs; 466 dpu_enc->phys_encs[i] = NULL; 467 } 468 } 469 470 if (dpu_enc->num_phys_encs) 471 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 472 dpu_enc->num_phys_encs); 473 dpu_enc->num_phys_encs = 0; 474 mutex_unlock(&dpu_enc->enc_lock); 475 476 drm_encoder_cleanup(drm_enc); 477 mutex_destroy(&dpu_enc->enc_lock); 478 } 479 480 void dpu_encoder_helper_split_config( 481 struct dpu_encoder_phys *phys_enc, 482 enum dpu_intf interface) 483 { 484 struct dpu_encoder_virt *dpu_enc; 485 struct split_pipe_cfg cfg = { 0 }; 486 struct dpu_hw_mdp *hw_mdptop; 487 struct msm_display_info *disp_info; 488 489 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 490 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 491 return; 492 } 493 494 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 495 hw_mdptop = phys_enc->hw_mdptop; 496 disp_info = &dpu_enc->disp_info; 497 498 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 499 return; 500 501 /** 502 * disable split modes since encoder will be operating in as the only 503 * encoder, either for the entire use case in the case of, for example, 504 * single DSI, or for this frame in the case of left/right only partial 505 * update. 506 */ 507 if (phys_enc->split_role == ENC_ROLE_SOLO) { 508 if (hw_mdptop->ops.setup_split_pipe) 509 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 510 return; 511 } 512 513 cfg.en = true; 514 cfg.mode = phys_enc->intf_mode; 515 cfg.intf = interface; 516 517 if (cfg.en && phys_enc->ops.needs_single_flush && 518 phys_enc->ops.needs_single_flush(phys_enc)) 519 cfg.split_flush_en = true; 520 521 if (phys_enc->split_role == ENC_ROLE_MASTER) { 522 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 523 524 if (hw_mdptop->ops.setup_split_pipe) 525 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 526 } 527 } 528 529 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc) 530 { 531 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 532 int i, intf_count = 0, num_dsc = 0; 533 534 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 535 if (dpu_enc->phys_encs[i]) 536 intf_count++; 537 538 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */ 539 if (dpu_enc->dsc) 540 num_dsc = 2; 541 542 return (num_dsc > 0) && (num_dsc > intf_count); 543 } 544 545 static struct msm_display_topology dpu_encoder_get_topology( 546 struct dpu_encoder_virt *dpu_enc, 547 struct dpu_kms *dpu_kms, 548 struct drm_display_mode *mode) 549 { 550 struct msm_display_topology topology = {0}; 551 int i, intf_count = 0; 552 553 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 554 if (dpu_enc->phys_encs[i]) 555 intf_count++; 556 557 /* Datapath topology selection 558 * 559 * Dual display 560 * 2 LM, 2 INTF ( Split display using 2 interfaces) 561 * 562 * Single display 563 * 1 LM, 1 INTF 564 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 565 * 566 * Adding color blocks only to primary interface if available in 567 * sufficient number 568 */ 569 if (intf_count == 2) 570 topology.num_lm = 2; 571 else if (!dpu_kms->catalog->caps->has_3d_merge) 572 topology.num_lm = 1; 573 else 574 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 575 576 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) { 577 if (dpu_kms->catalog->dspp && 578 (dpu_kms->catalog->dspp_count >= topology.num_lm)) 579 topology.num_dspp = topology.num_lm; 580 } 581 582 topology.num_enc = 0; 583 topology.num_intf = intf_count; 584 585 if (dpu_enc->dsc) { 586 /* In case of Display Stream Compression (DSC), we would use 587 * 2 encoders, 2 layer mixers and 1 interface 588 * this is power optimal and can drive up to (including) 4k 589 * screens 590 */ 591 topology.num_enc = 2; 592 topology.num_dsc = 2; 593 topology.num_intf = 1; 594 topology.num_lm = 2; 595 } 596 597 return topology; 598 } 599 600 static int dpu_encoder_virt_atomic_check( 601 struct drm_encoder *drm_enc, 602 struct drm_crtc_state *crtc_state, 603 struct drm_connector_state *conn_state) 604 { 605 struct dpu_encoder_virt *dpu_enc; 606 struct msm_drm_private *priv; 607 struct dpu_kms *dpu_kms; 608 struct drm_display_mode *adj_mode; 609 struct msm_display_topology topology; 610 struct dpu_global_state *global_state; 611 int i = 0; 612 int ret = 0; 613 614 if (!drm_enc || !crtc_state || !conn_state) { 615 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 616 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 617 return -EINVAL; 618 } 619 620 dpu_enc = to_dpu_encoder_virt(drm_enc); 621 DPU_DEBUG_ENC(dpu_enc, "\n"); 622 623 priv = drm_enc->dev->dev_private; 624 dpu_kms = to_dpu_kms(priv->kms); 625 adj_mode = &crtc_state->adjusted_mode; 626 global_state = dpu_kms_get_global_state(crtc_state->state); 627 if (IS_ERR(global_state)) 628 return PTR_ERR(global_state); 629 630 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 631 632 /* perform atomic check on the first physical encoder (master) */ 633 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 634 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 635 636 if (phys->ops.atomic_check) 637 ret = phys->ops.atomic_check(phys, crtc_state, 638 conn_state); 639 if (ret) { 640 DPU_ERROR_ENC(dpu_enc, 641 "mode unsupported, phys idx %d\n", i); 642 break; 643 } 644 } 645 646 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 647 648 /* Reserve dynamic resources now. */ 649 if (!ret) { 650 /* 651 * Release and Allocate resources on every modeset 652 * Dont allocate when active is false. 653 */ 654 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 655 dpu_rm_release(global_state, drm_enc); 656 657 if (!crtc_state->active_changed || crtc_state->active) 658 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 659 drm_enc, crtc_state, topology); 660 } 661 } 662 663 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 664 665 return ret; 666 } 667 668 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 669 struct msm_display_info *disp_info) 670 { 671 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 672 struct msm_drm_private *priv; 673 struct dpu_kms *dpu_kms; 674 struct dpu_hw_mdp *hw_mdptop; 675 struct drm_encoder *drm_enc; 676 int i; 677 678 if (!dpu_enc || !disp_info) { 679 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 680 dpu_enc != NULL, disp_info != NULL); 681 return; 682 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 683 DPU_ERROR("invalid num phys enc %d/%d\n", 684 dpu_enc->num_phys_encs, 685 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 686 return; 687 } 688 689 drm_enc = &dpu_enc->base; 690 /* this pointers are checked in virt_enable_helper */ 691 priv = drm_enc->dev->dev_private; 692 693 dpu_kms = to_dpu_kms(priv->kms); 694 hw_mdptop = dpu_kms->hw_mdp; 695 if (!hw_mdptop) { 696 DPU_ERROR("invalid mdptop\n"); 697 return; 698 } 699 700 if (hw_mdptop->ops.setup_vsync_source && 701 disp_info->is_cmd_mode) { 702 for (i = 0; i < dpu_enc->num_phys_encs; i++) 703 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 704 705 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 706 if (disp_info->is_te_using_watchdog_timer) 707 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 708 else 709 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 710 711 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 712 } 713 } 714 715 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 716 { 717 struct dpu_encoder_virt *dpu_enc; 718 int i; 719 720 if (!drm_enc) { 721 DPU_ERROR("invalid encoder\n"); 722 return; 723 } 724 725 dpu_enc = to_dpu_encoder_virt(drm_enc); 726 727 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 728 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 729 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 730 731 if (phys->ops.irq_control) 732 phys->ops.irq_control(phys, enable); 733 } 734 735 } 736 737 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 738 bool enable) 739 { 740 struct msm_drm_private *priv; 741 struct dpu_kms *dpu_kms; 742 struct dpu_encoder_virt *dpu_enc; 743 744 dpu_enc = to_dpu_encoder_virt(drm_enc); 745 priv = drm_enc->dev->dev_private; 746 dpu_kms = to_dpu_kms(priv->kms); 747 748 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 749 750 if (!dpu_enc->cur_master) { 751 DPU_ERROR("encoder master not set\n"); 752 return; 753 } 754 755 if (enable) { 756 /* enable DPU core clks */ 757 pm_runtime_get_sync(&dpu_kms->pdev->dev); 758 759 /* enable all the irq */ 760 _dpu_encoder_irq_control(drm_enc, true); 761 762 } else { 763 /* disable all the irq */ 764 _dpu_encoder_irq_control(drm_enc, false); 765 766 /* disable DPU core clks */ 767 pm_runtime_put_sync(&dpu_kms->pdev->dev); 768 } 769 770 } 771 772 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 773 u32 sw_event) 774 { 775 struct dpu_encoder_virt *dpu_enc; 776 struct msm_drm_private *priv; 777 bool is_vid_mode = false; 778 779 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 780 DPU_ERROR("invalid parameters\n"); 781 return -EINVAL; 782 } 783 dpu_enc = to_dpu_encoder_virt(drm_enc); 784 priv = drm_enc->dev->dev_private; 785 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode; 786 787 /* 788 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 789 * events and return early for other events (ie wb display). 790 */ 791 if (!dpu_enc->idle_pc_supported && 792 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 793 sw_event != DPU_ENC_RC_EVENT_STOP && 794 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 795 return 0; 796 797 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 798 dpu_enc->rc_state, "begin"); 799 800 switch (sw_event) { 801 case DPU_ENC_RC_EVENT_KICKOFF: 802 /* cancel delayed off work, if any */ 803 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 804 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 805 sw_event); 806 807 mutex_lock(&dpu_enc->rc_lock); 808 809 /* return if the resource control is already in ON state */ 810 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 811 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", 812 DRMID(drm_enc), sw_event); 813 mutex_unlock(&dpu_enc->rc_lock); 814 return 0; 815 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 816 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 817 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", 818 DRMID(drm_enc), sw_event, 819 dpu_enc->rc_state); 820 mutex_unlock(&dpu_enc->rc_lock); 821 return -EINVAL; 822 } 823 824 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 825 _dpu_encoder_irq_control(drm_enc, true); 826 else 827 _dpu_encoder_resource_control_helper(drm_enc, true); 828 829 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 830 831 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 832 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 833 "kickoff"); 834 835 mutex_unlock(&dpu_enc->rc_lock); 836 break; 837 838 case DPU_ENC_RC_EVENT_FRAME_DONE: 839 /* 840 * mutex lock is not used as this event happens at interrupt 841 * context. And locking is not required as, the other events 842 * like KICKOFF and STOP does a wait-for-idle before executing 843 * the resource_control 844 */ 845 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 846 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 847 DRMID(drm_enc), sw_event, 848 dpu_enc->rc_state); 849 return -EINVAL; 850 } 851 852 /* 853 * schedule off work item only when there are no 854 * frames pending 855 */ 856 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 857 DRM_DEBUG_KMS("id:%d skip schedule work\n", 858 DRMID(drm_enc)); 859 return 0; 860 } 861 862 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 863 msecs_to_jiffies(dpu_enc->idle_timeout)); 864 865 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 866 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 867 "frame done"); 868 break; 869 870 case DPU_ENC_RC_EVENT_PRE_STOP: 871 /* cancel delayed off work, if any */ 872 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 873 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 874 sw_event); 875 876 mutex_lock(&dpu_enc->rc_lock); 877 878 if (is_vid_mode && 879 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 880 _dpu_encoder_irq_control(drm_enc, true); 881 } 882 /* skip if is already OFF or IDLE, resources are off already */ 883 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 884 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 885 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 886 DRMID(drm_enc), sw_event, 887 dpu_enc->rc_state); 888 mutex_unlock(&dpu_enc->rc_lock); 889 return 0; 890 } 891 892 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 893 894 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 895 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 896 "pre stop"); 897 898 mutex_unlock(&dpu_enc->rc_lock); 899 break; 900 901 case DPU_ENC_RC_EVENT_STOP: 902 mutex_lock(&dpu_enc->rc_lock); 903 904 /* return if the resource control is already in OFF state */ 905 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 906 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 907 DRMID(drm_enc), sw_event); 908 mutex_unlock(&dpu_enc->rc_lock); 909 return 0; 910 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 911 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 912 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 913 mutex_unlock(&dpu_enc->rc_lock); 914 return -EINVAL; 915 } 916 917 /** 918 * expect to arrive here only if in either idle state or pre-off 919 * and in IDLE state the resources are already disabled 920 */ 921 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 922 _dpu_encoder_resource_control_helper(drm_enc, false); 923 924 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 925 926 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 927 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 928 "stop"); 929 930 mutex_unlock(&dpu_enc->rc_lock); 931 break; 932 933 case DPU_ENC_RC_EVENT_ENTER_IDLE: 934 mutex_lock(&dpu_enc->rc_lock); 935 936 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 937 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 938 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 939 mutex_unlock(&dpu_enc->rc_lock); 940 return 0; 941 } 942 943 /* 944 * if we are in ON but a frame was just kicked off, 945 * ignore the IDLE event, it's probably a stale timer event 946 */ 947 if (dpu_enc->frame_busy_mask[0]) { 948 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 949 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 950 mutex_unlock(&dpu_enc->rc_lock); 951 return 0; 952 } 953 954 if (is_vid_mode) 955 _dpu_encoder_irq_control(drm_enc, false); 956 else 957 _dpu_encoder_resource_control_helper(drm_enc, false); 958 959 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 960 961 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 962 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 963 "idle"); 964 965 mutex_unlock(&dpu_enc->rc_lock); 966 break; 967 968 default: 969 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 970 sw_event); 971 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 972 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 973 "error"); 974 break; 975 } 976 977 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 978 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 979 "end"); 980 return 0; 981 } 982 983 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc, 984 struct drm_writeback_job *job) 985 { 986 struct dpu_encoder_virt *dpu_enc; 987 int i; 988 989 dpu_enc = to_dpu_encoder_virt(drm_enc); 990 991 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 992 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 993 994 if (phys->ops.prepare_wb_job) 995 phys->ops.prepare_wb_job(phys, job); 996 997 } 998 } 999 1000 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc, 1001 struct drm_writeback_job *job) 1002 { 1003 struct dpu_encoder_virt *dpu_enc; 1004 int i; 1005 1006 dpu_enc = to_dpu_encoder_virt(drm_enc); 1007 1008 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1009 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1010 1011 if (phys->ops.cleanup_wb_job) 1012 phys->ops.cleanup_wb_job(phys, job); 1013 1014 } 1015 } 1016 1017 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc, 1018 struct drm_crtc_state *crtc_state, 1019 struct drm_connector_state *conn_state) 1020 { 1021 struct dpu_encoder_virt *dpu_enc; 1022 struct msm_drm_private *priv; 1023 struct dpu_kms *dpu_kms; 1024 struct dpu_crtc_state *cstate; 1025 struct dpu_global_state *global_state; 1026 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 1027 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 1028 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 1029 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 1030 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC]; 1031 int num_lm, num_ctl, num_pp, num_dsc; 1032 unsigned int dsc_mask = 0; 1033 int i; 1034 1035 if (!drm_enc) { 1036 DPU_ERROR("invalid encoder\n"); 1037 return; 1038 } 1039 1040 dpu_enc = to_dpu_encoder_virt(drm_enc); 1041 DPU_DEBUG_ENC(dpu_enc, "\n"); 1042 1043 priv = drm_enc->dev->dev_private; 1044 dpu_kms = to_dpu_kms(priv->kms); 1045 1046 global_state = dpu_kms_get_existing_global_state(dpu_kms); 1047 if (IS_ERR_OR_NULL(global_state)) { 1048 DPU_ERROR("Failed to get global state"); 1049 return; 1050 } 1051 1052 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1053 1054 /* Query resource that have been reserved in atomic check step. */ 1055 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1056 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 1057 ARRAY_SIZE(hw_pp)); 1058 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1059 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 1060 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1061 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1062 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1063 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 1064 ARRAY_SIZE(hw_dspp)); 1065 1066 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1067 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1068 : NULL; 1069 1070 if (dpu_enc->dsc) { 1071 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1072 drm_enc->base.id, DPU_HW_BLK_DSC, 1073 hw_dsc, ARRAY_SIZE(hw_dsc)); 1074 for (i = 0; i < num_dsc; i++) { 1075 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]); 1076 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0); 1077 } 1078 } 1079 1080 dpu_enc->dsc_mask = dsc_mask; 1081 1082 cstate = to_dpu_crtc_state(crtc_state); 1083 1084 for (i = 0; i < num_lm; i++) { 1085 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1086 1087 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1088 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1089 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1090 } 1091 1092 cstate->num_mixers = num_lm; 1093 1094 dpu_enc->connector = conn_state->connector; 1095 1096 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1097 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1098 1099 if (!dpu_enc->hw_pp[i]) { 1100 DPU_ERROR_ENC(dpu_enc, 1101 "no pp block assigned at idx: %d\n", i); 1102 return; 1103 } 1104 1105 if (!hw_ctl[i]) { 1106 DPU_ERROR_ENC(dpu_enc, 1107 "no ctl block assigned at idx: %d\n", i); 1108 return; 1109 } 1110 1111 phys->hw_pp = dpu_enc->hw_pp[i]; 1112 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1113 1114 phys->cached_mode = crtc_state->adjusted_mode; 1115 if (phys->ops.atomic_mode_set) 1116 phys->ops.atomic_mode_set(phys, crtc_state, conn_state); 1117 } 1118 } 1119 1120 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1121 { 1122 struct dpu_encoder_virt *dpu_enc = NULL; 1123 int i; 1124 1125 if (!drm_enc || !drm_enc->dev) { 1126 DPU_ERROR("invalid parameters\n"); 1127 return; 1128 } 1129 1130 dpu_enc = to_dpu_encoder_virt(drm_enc); 1131 if (!dpu_enc || !dpu_enc->cur_master) { 1132 DPU_ERROR("invalid dpu encoder/master\n"); 1133 return; 1134 } 1135 1136 1137 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS && 1138 dpu_enc->cur_master->hw_mdptop && 1139 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1140 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1141 dpu_enc->cur_master->hw_mdptop); 1142 1143 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1144 1145 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1146 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1147 unsigned bpc = dpu_enc->connector->display_info.bpc; 1148 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1149 if (!dpu_enc->hw_pp[i]) 1150 continue; 1151 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1152 } 1153 } 1154 } 1155 1156 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1157 { 1158 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1159 1160 mutex_lock(&dpu_enc->enc_lock); 1161 1162 if (!dpu_enc->enabled) 1163 goto out; 1164 1165 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1166 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1167 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1168 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1169 1170 _dpu_encoder_virt_enable_helper(drm_enc); 1171 1172 out: 1173 mutex_unlock(&dpu_enc->enc_lock); 1174 } 1175 1176 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1177 { 1178 struct dpu_encoder_virt *dpu_enc = NULL; 1179 int ret = 0; 1180 struct drm_display_mode *cur_mode = NULL; 1181 1182 dpu_enc = to_dpu_encoder_virt(drm_enc); 1183 1184 mutex_lock(&dpu_enc->enc_lock); 1185 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1186 1187 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1188 cur_mode->vdisplay); 1189 1190 /* always enable slave encoder before master */ 1191 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1192 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1193 1194 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1195 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1196 1197 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1198 if (ret) { 1199 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1200 ret); 1201 goto out; 1202 } 1203 1204 _dpu_encoder_virt_enable_helper(drm_enc); 1205 1206 dpu_enc->enabled = true; 1207 1208 out: 1209 mutex_unlock(&dpu_enc->enc_lock); 1210 } 1211 1212 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1213 { 1214 struct dpu_encoder_virt *dpu_enc = NULL; 1215 int i = 0; 1216 1217 dpu_enc = to_dpu_encoder_virt(drm_enc); 1218 DPU_DEBUG_ENC(dpu_enc, "\n"); 1219 1220 mutex_lock(&dpu_enc->enc_lock); 1221 dpu_enc->enabled = false; 1222 1223 trace_dpu_enc_disable(DRMID(drm_enc)); 1224 1225 /* wait for idle */ 1226 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1227 1228 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1229 1230 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1231 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1232 1233 if (phys->ops.disable) 1234 phys->ops.disable(phys); 1235 } 1236 1237 1238 /* after phys waits for frame-done, should be no more frames pending */ 1239 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1240 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1241 del_timer_sync(&dpu_enc->frame_done_timer); 1242 } 1243 1244 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1245 1246 dpu_enc->connector = NULL; 1247 1248 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1249 1250 mutex_unlock(&dpu_enc->enc_lock); 1251 } 1252 1253 static enum dpu_intf dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog, 1254 enum dpu_intf_type type, u32 controller_id) 1255 { 1256 int i = 0; 1257 1258 if (type == INTF_WB) 1259 return INTF_MAX; 1260 1261 for (i = 0; i < catalog->intf_count; i++) { 1262 if (catalog->intf[i].type == type 1263 && catalog->intf[i].controller_id == controller_id) { 1264 return catalog->intf[i].id; 1265 } 1266 } 1267 1268 return INTF_MAX; 1269 } 1270 1271 static enum dpu_wb dpu_encoder_get_wb(const struct dpu_mdss_cfg *catalog, 1272 enum dpu_intf_type type, u32 controller_id) 1273 { 1274 int i = 0; 1275 1276 if (type != INTF_WB) 1277 return WB_MAX; 1278 1279 for (i = 0; i < catalog->wb_count; i++) { 1280 if (catalog->wb[i].id == controller_id) 1281 return catalog->wb[i].id; 1282 } 1283 1284 return WB_MAX; 1285 } 1286 1287 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1288 struct dpu_encoder_phys *phy_enc) 1289 { 1290 struct dpu_encoder_virt *dpu_enc = NULL; 1291 unsigned long lock_flags; 1292 1293 if (!drm_enc || !phy_enc) 1294 return; 1295 1296 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1297 dpu_enc = to_dpu_encoder_virt(drm_enc); 1298 1299 atomic_inc(&phy_enc->vsync_cnt); 1300 1301 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1302 if (dpu_enc->crtc) 1303 dpu_crtc_vblank_callback(dpu_enc->crtc); 1304 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1305 1306 DPU_ATRACE_END("encoder_vblank_callback"); 1307 } 1308 1309 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1310 struct dpu_encoder_phys *phy_enc) 1311 { 1312 if (!phy_enc) 1313 return; 1314 1315 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1316 atomic_inc(&phy_enc->underrun_cnt); 1317 1318 /* trigger dump only on the first underrun */ 1319 if (atomic_read(&phy_enc->underrun_cnt) == 1) 1320 msm_disp_snapshot_state(drm_enc->dev); 1321 1322 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1323 atomic_read(&phy_enc->underrun_cnt)); 1324 DPU_ATRACE_END("encoder_underrun_callback"); 1325 } 1326 1327 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1328 { 1329 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1330 unsigned long lock_flags; 1331 1332 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1333 /* crtc should always be cleared before re-assigning */ 1334 WARN_ON(crtc && dpu_enc->crtc); 1335 dpu_enc->crtc = crtc; 1336 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1337 } 1338 1339 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1340 struct drm_crtc *crtc, bool enable) 1341 { 1342 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1343 unsigned long lock_flags; 1344 int i; 1345 1346 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1347 1348 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1349 if (dpu_enc->crtc != crtc) { 1350 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1351 return; 1352 } 1353 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1354 1355 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1356 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1357 1358 if (phys->ops.control_vblank_irq) 1359 phys->ops.control_vblank_irq(phys, enable); 1360 } 1361 } 1362 1363 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1364 void (*frame_event_cb)(void *, u32 event), 1365 void *frame_event_cb_data) 1366 { 1367 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1368 unsigned long lock_flags; 1369 bool enable; 1370 1371 enable = frame_event_cb ? true : false; 1372 1373 if (!drm_enc) { 1374 DPU_ERROR("invalid encoder\n"); 1375 return; 1376 } 1377 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1378 1379 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1380 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1381 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1382 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1383 } 1384 1385 static void dpu_encoder_frame_done_callback( 1386 struct drm_encoder *drm_enc, 1387 struct dpu_encoder_phys *ready_phys, u32 event) 1388 { 1389 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1390 unsigned int i; 1391 1392 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1393 | DPU_ENCODER_FRAME_EVENT_ERROR 1394 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1395 1396 if (!dpu_enc->frame_busy_mask[0]) { 1397 /** 1398 * suppress frame_done without waiter, 1399 * likely autorefresh 1400 */ 1401 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, 1402 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode), 1403 ready_phys->intf_idx, ready_phys->wb_idx); 1404 return; 1405 } 1406 1407 /* One of the physical encoders has become idle */ 1408 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1409 if (dpu_enc->phys_encs[i] == ready_phys) { 1410 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1411 dpu_enc->frame_busy_mask[0]); 1412 clear_bit(i, dpu_enc->frame_busy_mask); 1413 } 1414 } 1415 1416 if (!dpu_enc->frame_busy_mask[0]) { 1417 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1418 del_timer(&dpu_enc->frame_done_timer); 1419 1420 dpu_encoder_resource_control(drm_enc, 1421 DPU_ENC_RC_EVENT_FRAME_DONE); 1422 1423 if (dpu_enc->crtc_frame_event_cb) 1424 dpu_enc->crtc_frame_event_cb( 1425 dpu_enc->crtc_frame_event_cb_data, 1426 event); 1427 } 1428 } else { 1429 if (dpu_enc->crtc_frame_event_cb) 1430 dpu_enc->crtc_frame_event_cb( 1431 dpu_enc->crtc_frame_event_cb_data, event); 1432 } 1433 } 1434 1435 static void dpu_encoder_off_work(struct work_struct *work) 1436 { 1437 struct dpu_encoder_virt *dpu_enc = container_of(work, 1438 struct dpu_encoder_virt, delayed_off_work.work); 1439 1440 dpu_encoder_resource_control(&dpu_enc->base, 1441 DPU_ENC_RC_EVENT_ENTER_IDLE); 1442 1443 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1444 DPU_ENCODER_FRAME_EVENT_IDLE); 1445 } 1446 1447 /** 1448 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1449 * @drm_enc: Pointer to drm encoder structure 1450 * @phys: Pointer to physical encoder structure 1451 * @extra_flush_bits: Additional bit mask to include in flush trigger 1452 */ 1453 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1454 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1455 { 1456 struct dpu_hw_ctl *ctl; 1457 int pending_kickoff_cnt; 1458 u32 ret = UINT_MAX; 1459 1460 if (!phys->hw_pp) { 1461 DPU_ERROR("invalid pingpong hw\n"); 1462 return; 1463 } 1464 1465 ctl = phys->hw_ctl; 1466 if (!ctl->ops.trigger_flush) { 1467 DPU_ERROR("missing trigger cb\n"); 1468 return; 1469 } 1470 1471 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1472 1473 if (extra_flush_bits && ctl->ops.update_pending_flush) 1474 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1475 1476 ctl->ops.trigger_flush(ctl); 1477 1478 if (ctl->ops.get_pending_flush) 1479 ret = ctl->ops.get_pending_flush(ctl); 1480 1481 trace_dpu_enc_trigger_flush(DRMID(drm_enc), 1482 dpu_encoder_helper_get_intf_type(phys->intf_mode), 1483 phys->intf_idx, phys->wb_idx, 1484 pending_kickoff_cnt, ctl->idx, 1485 extra_flush_bits, ret); 1486 } 1487 1488 /** 1489 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1490 * @phys: Pointer to physical encoder structure 1491 */ 1492 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1493 { 1494 if (!phys) { 1495 DPU_ERROR("invalid argument(s)\n"); 1496 return; 1497 } 1498 1499 if (!phys->hw_pp) { 1500 DPU_ERROR("invalid pingpong hw\n"); 1501 return; 1502 } 1503 1504 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1505 phys->ops.trigger_start(phys); 1506 } 1507 1508 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1509 { 1510 struct dpu_hw_ctl *ctl; 1511 1512 ctl = phys_enc->hw_ctl; 1513 if (ctl->ops.trigger_start) { 1514 ctl->ops.trigger_start(ctl); 1515 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1516 } 1517 } 1518 1519 static int dpu_encoder_helper_wait_event_timeout( 1520 int32_t drm_id, 1521 u32 irq_idx, 1522 struct dpu_encoder_wait_info *info) 1523 { 1524 int rc = 0; 1525 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1526 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1527 s64 time; 1528 1529 do { 1530 rc = wait_event_timeout(*(info->wq), 1531 atomic_read(info->atomic_cnt) == 0, jiffies); 1532 time = ktime_to_ms(ktime_get()); 1533 1534 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time, 1535 expected_time, 1536 atomic_read(info->atomic_cnt)); 1537 /* If we timed out, counter is valid and time is less, wait again */ 1538 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1539 (time < expected_time)); 1540 1541 return rc; 1542 } 1543 1544 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1545 { 1546 struct dpu_encoder_virt *dpu_enc; 1547 struct dpu_hw_ctl *ctl; 1548 int rc; 1549 struct drm_encoder *drm_enc; 1550 1551 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1552 ctl = phys_enc->hw_ctl; 1553 drm_enc = phys_enc->parent; 1554 1555 if (!ctl->ops.reset) 1556 return; 1557 1558 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), 1559 ctl->idx); 1560 1561 rc = ctl->ops.reset(ctl); 1562 if (rc) { 1563 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1564 msm_disp_snapshot_state(drm_enc->dev); 1565 } 1566 1567 phys_enc->enable_state = DPU_ENC_ENABLED; 1568 } 1569 1570 /** 1571 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1572 * Iterate through the physical encoders and perform consolidated flush 1573 * and/or control start triggering as needed. This is done in the virtual 1574 * encoder rather than the individual physical ones in order to handle 1575 * use cases that require visibility into multiple physical encoders at 1576 * a time. 1577 * @dpu_enc: Pointer to virtual encoder structure 1578 */ 1579 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1580 { 1581 struct dpu_hw_ctl *ctl; 1582 uint32_t i, pending_flush; 1583 unsigned long lock_flags; 1584 1585 pending_flush = 0x0; 1586 1587 /* update pending counts and trigger kickoff ctl flush atomically */ 1588 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1589 1590 /* don't perform flush/start operations for slave encoders */ 1591 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1592 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1593 1594 if (phys->enable_state == DPU_ENC_DISABLED) 1595 continue; 1596 1597 ctl = phys->hw_ctl; 1598 1599 /* 1600 * This is cleared in frame_done worker, which isn't invoked 1601 * for async commits. So don't set this for async, since it'll 1602 * roll over to the next commit. 1603 */ 1604 if (phys->split_role != ENC_ROLE_SLAVE) 1605 set_bit(i, dpu_enc->frame_busy_mask); 1606 1607 if (!phys->ops.needs_single_flush || 1608 !phys->ops.needs_single_flush(phys)) 1609 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1610 else if (ctl->ops.get_pending_flush) 1611 pending_flush |= ctl->ops.get_pending_flush(ctl); 1612 } 1613 1614 /* for split flush, combine pending flush masks and send to master */ 1615 if (pending_flush && dpu_enc->cur_master) { 1616 _dpu_encoder_trigger_flush( 1617 &dpu_enc->base, 1618 dpu_enc->cur_master, 1619 pending_flush); 1620 } 1621 1622 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1623 1624 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1625 } 1626 1627 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1628 { 1629 struct dpu_encoder_virt *dpu_enc; 1630 struct dpu_encoder_phys *phys; 1631 unsigned int i; 1632 struct dpu_hw_ctl *ctl; 1633 struct msm_display_info *disp_info; 1634 1635 if (!drm_enc) { 1636 DPU_ERROR("invalid encoder\n"); 1637 return; 1638 } 1639 dpu_enc = to_dpu_encoder_virt(drm_enc); 1640 disp_info = &dpu_enc->disp_info; 1641 1642 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1643 phys = dpu_enc->phys_encs[i]; 1644 1645 ctl = phys->hw_ctl; 1646 if (ctl->ops.clear_pending_flush) 1647 ctl->ops.clear_pending_flush(ctl); 1648 1649 /* update only for command mode primary ctl */ 1650 if ((phys == dpu_enc->cur_master) && 1651 disp_info->is_cmd_mode 1652 && ctl->ops.trigger_pending) 1653 ctl->ops.trigger_pending(ctl); 1654 } 1655 } 1656 1657 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1658 struct drm_display_mode *mode) 1659 { 1660 u64 pclk_rate; 1661 u32 pclk_period; 1662 u32 line_time; 1663 1664 /* 1665 * For linetime calculation, only operate on master encoder. 1666 */ 1667 if (!dpu_enc->cur_master) 1668 return 0; 1669 1670 if (!dpu_enc->cur_master->ops.get_line_count) { 1671 DPU_ERROR("get_line_count function not defined\n"); 1672 return 0; 1673 } 1674 1675 pclk_rate = mode->clock; /* pixel clock in kHz */ 1676 if (pclk_rate == 0) { 1677 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1678 return 0; 1679 } 1680 1681 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1682 if (pclk_period == 0) { 1683 DPU_ERROR("pclk period is 0\n"); 1684 return 0; 1685 } 1686 1687 /* 1688 * Line time calculation based on Pixel clock and HTOTAL. 1689 * Final unit is in ns. 1690 */ 1691 line_time = (pclk_period * mode->htotal) / 1000; 1692 if (line_time == 0) { 1693 DPU_ERROR("line time calculation is 0\n"); 1694 return 0; 1695 } 1696 1697 DPU_DEBUG_ENC(dpu_enc, 1698 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1699 pclk_rate, pclk_period, line_time); 1700 1701 return line_time; 1702 } 1703 1704 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1705 { 1706 struct drm_display_mode *mode; 1707 struct dpu_encoder_virt *dpu_enc; 1708 u32 cur_line; 1709 u32 line_time; 1710 u32 vtotal, time_to_vsync; 1711 ktime_t cur_time; 1712 1713 dpu_enc = to_dpu_encoder_virt(drm_enc); 1714 1715 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1716 DPU_ERROR("crtc/crtc state object is NULL\n"); 1717 return -EINVAL; 1718 } 1719 mode = &drm_enc->crtc->state->adjusted_mode; 1720 1721 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1722 if (!line_time) 1723 return -EINVAL; 1724 1725 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1726 1727 vtotal = mode->vtotal; 1728 if (cur_line >= vtotal) 1729 time_to_vsync = line_time * vtotal; 1730 else 1731 time_to_vsync = line_time * (vtotal - cur_line); 1732 1733 if (time_to_vsync == 0) { 1734 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1735 vtotal); 1736 return -EINVAL; 1737 } 1738 1739 cur_time = ktime_get(); 1740 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1741 1742 DPU_DEBUG_ENC(dpu_enc, 1743 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1744 cur_line, vtotal, time_to_vsync, 1745 ktime_to_ms(cur_time), 1746 ktime_to_ms(*wakeup_time)); 1747 return 0; 1748 } 1749 1750 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1751 { 1752 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1753 vsync_event_timer); 1754 struct drm_encoder *drm_enc = &dpu_enc->base; 1755 struct msm_drm_private *priv; 1756 struct msm_drm_thread *event_thread; 1757 1758 if (!drm_enc->dev || !drm_enc->crtc) { 1759 DPU_ERROR("invalid parameters\n"); 1760 return; 1761 } 1762 1763 priv = drm_enc->dev->dev_private; 1764 1765 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1766 DPU_ERROR("invalid crtc index\n"); 1767 return; 1768 } 1769 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1770 if (!event_thread) { 1771 DPU_ERROR("event_thread not found for crtc:%d\n", 1772 drm_enc->crtc->index); 1773 return; 1774 } 1775 1776 del_timer(&dpu_enc->vsync_event_timer); 1777 } 1778 1779 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1780 { 1781 struct dpu_encoder_virt *dpu_enc = container_of(work, 1782 struct dpu_encoder_virt, vsync_event_work); 1783 ktime_t wakeup_time; 1784 1785 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1786 return; 1787 1788 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1789 mod_timer(&dpu_enc->vsync_event_timer, 1790 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1791 } 1792 1793 static u32 1794 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc, 1795 u32 enc_ip_width) 1796 { 1797 int ssm_delay, total_pixels, soft_slice_per_enc; 1798 1799 soft_slice_per_enc = enc_ip_width / dsc->slice_width; 1800 1801 /* 1802 * minimum number of initial line pixels is a sum of: 1803 * 1. sub-stream multiplexer delay (83 groups for 8bpc, 1804 * 91 for 10 bpc) * 3 1805 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3 1806 * 3. the initial xmit delay 1807 * 4. total pipeline delay through the "lock step" of encoder (47) 1808 * 5. 6 additional pixels as the output of the rate buffer is 1809 * 48 bits wide 1810 */ 1811 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92); 1812 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47; 1813 if (soft_slice_per_enc > 1) 1814 total_pixels += (ssm_delay * 3); 1815 return DIV_ROUND_UP(total_pixels, dsc->slice_width); 1816 } 1817 1818 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc, 1819 struct dpu_hw_pingpong *hw_pp, 1820 struct drm_dsc_config *dsc, 1821 u32 common_mode, 1822 u32 initial_lines) 1823 { 1824 if (hw_dsc->ops.dsc_config) 1825 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines); 1826 1827 if (hw_dsc->ops.dsc_config_thresh) 1828 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc); 1829 1830 if (hw_pp->ops.setup_dsc) 1831 hw_pp->ops.setup_dsc(hw_pp); 1832 1833 if (hw_pp->ops.enable_dsc) 1834 hw_pp->ops.enable_dsc(hw_pp); 1835 } 1836 1837 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc, 1838 struct drm_dsc_config *dsc) 1839 { 1840 /* coding only for 2LM, 2enc, 1 dsc config */ 1841 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 1842 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 1843 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 1844 int this_frame_slices; 1845 int intf_ip_w, enc_ip_w; 1846 int dsc_common_mode; 1847 int pic_width; 1848 u32 initial_lines; 1849 int i; 1850 1851 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1852 hw_pp[i] = dpu_enc->hw_pp[i]; 1853 hw_dsc[i] = dpu_enc->hw_dsc[i]; 1854 1855 if (!hw_pp[i] || !hw_dsc[i]) { 1856 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n"); 1857 return; 1858 } 1859 } 1860 1861 dsc_common_mode = 0; 1862 pic_width = dsc->pic_width; 1863 1864 dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL; 1865 if (enc_master->intf_mode == INTF_MODE_VIDEO) 1866 dsc_common_mode |= DSC_MODE_VIDEO; 1867 1868 this_frame_slices = pic_width / dsc->slice_width; 1869 intf_ip_w = this_frame_slices * dsc->slice_width; 1870 1871 /* 1872 * dsc merge case: when using 2 encoders for the same stream, 1873 * no. of slices need to be same on both the encoders. 1874 */ 1875 enc_ip_w = intf_ip_w / 2; 1876 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w); 1877 1878 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1879 dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines); 1880 } 1881 1882 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1883 { 1884 struct dpu_encoder_virt *dpu_enc; 1885 struct dpu_encoder_phys *phys; 1886 bool needs_hw_reset = false; 1887 unsigned int i; 1888 1889 dpu_enc = to_dpu_encoder_virt(drm_enc); 1890 1891 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1892 1893 /* prepare for next kickoff, may include waiting on previous kickoff */ 1894 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1895 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1896 phys = dpu_enc->phys_encs[i]; 1897 if (phys->ops.prepare_for_kickoff) 1898 phys->ops.prepare_for_kickoff(phys); 1899 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1900 needs_hw_reset = true; 1901 } 1902 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1903 1904 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1905 1906 /* if any phys needs reset, reset all phys, in-order */ 1907 if (needs_hw_reset) { 1908 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1909 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1910 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1911 } 1912 } 1913 1914 if (dpu_enc->dsc) 1915 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc); 1916 } 1917 1918 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc) 1919 { 1920 struct dpu_encoder_virt *dpu_enc; 1921 unsigned int i; 1922 struct dpu_encoder_phys *phys; 1923 1924 dpu_enc = to_dpu_encoder_virt(drm_enc); 1925 1926 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1927 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1928 phys = dpu_enc->phys_encs[i]; 1929 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) { 1930 DPU_DEBUG("invalid FB not kicking off\n"); 1931 return false; 1932 } 1933 } 1934 } 1935 1936 return true; 1937 } 1938 1939 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1940 { 1941 struct dpu_encoder_virt *dpu_enc; 1942 struct dpu_encoder_phys *phys; 1943 ktime_t wakeup_time; 1944 unsigned long timeout_ms; 1945 unsigned int i; 1946 1947 DPU_ATRACE_BEGIN("encoder_kickoff"); 1948 dpu_enc = to_dpu_encoder_virt(drm_enc); 1949 1950 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1951 1952 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1953 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1954 1955 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1956 mod_timer(&dpu_enc->frame_done_timer, 1957 jiffies + msecs_to_jiffies(timeout_ms)); 1958 1959 /* All phys encs are ready to go, trigger the kickoff */ 1960 _dpu_encoder_kickoff_phys(dpu_enc); 1961 1962 /* allow phys encs to handle any post-kickoff business */ 1963 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1964 phys = dpu_enc->phys_encs[i]; 1965 if (phys->ops.handle_post_kickoff) 1966 phys->ops.handle_post_kickoff(phys); 1967 } 1968 1969 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1970 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1971 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1972 ktime_to_ms(wakeup_time)); 1973 mod_timer(&dpu_enc->vsync_event_timer, 1974 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1975 } 1976 1977 DPU_ATRACE_END("encoder_kickoff"); 1978 } 1979 1980 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc) 1981 { 1982 struct dpu_hw_mixer_cfg mixer; 1983 int i, num_lm; 1984 struct dpu_global_state *global_state; 1985 struct dpu_hw_blk *hw_lm[2]; 1986 struct dpu_hw_mixer *hw_mixer[2]; 1987 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 1988 1989 memset(&mixer, 0, sizeof(mixer)); 1990 1991 /* reset all mixers for this encoder */ 1992 if (phys_enc->hw_ctl->ops.clear_all_blendstages) 1993 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl); 1994 1995 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms); 1996 1997 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state, 1998 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1999 2000 for (i = 0; i < num_lm; i++) { 2001 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]); 2002 if (phys_enc->hw_ctl->ops.update_pending_flush_mixer) 2003 phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx); 2004 2005 /* clear all blendstages */ 2006 if (phys_enc->hw_ctl->ops.setup_blendstage) 2007 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL); 2008 } 2009 } 2010 2011 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc) 2012 { 2013 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 2014 struct dpu_hw_intf_cfg intf_cfg = { 0 }; 2015 int i; 2016 struct dpu_encoder_virt *dpu_enc; 2017 2018 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 2019 2020 phys_enc->hw_ctl->ops.reset(ctl); 2021 2022 dpu_encoder_helper_reset_mixers(phys_enc); 2023 2024 /* 2025 * TODO: move the once-only operation like CTL flush/trigger 2026 * into dpu_encoder_virt_disable() and all operations which need 2027 * to be done per phys encoder into the phys_disable() op. 2028 */ 2029 if (phys_enc->hw_wb) { 2030 /* disable the PP block */ 2031 if (phys_enc->hw_wb->ops.bind_pingpong_blk) 2032 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false, 2033 phys_enc->hw_pp->idx); 2034 2035 /* mark WB flush as pending */ 2036 if (phys_enc->hw_ctl->ops.update_pending_flush_wb) 2037 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx); 2038 } else { 2039 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2040 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) 2041 phys_enc->hw_intf->ops.bind_pingpong_blk( 2042 dpu_enc->phys_encs[i]->hw_intf, false, 2043 dpu_enc->phys_encs[i]->hw_pp->idx); 2044 2045 /* mark INTF flush as pending */ 2046 if (phys_enc->hw_ctl->ops.update_pending_flush_intf) 2047 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl, 2048 dpu_enc->phys_encs[i]->hw_intf->idx); 2049 } 2050 } 2051 2052 /* reset the merge 3D HW block */ 2053 if (phys_enc->hw_pp->merge_3d) { 2054 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, 2055 BLEND_3D_NONE); 2056 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d) 2057 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl, 2058 phys_enc->hw_pp->merge_3d->idx); 2059 } 2060 2061 intf_cfg.stream_sel = 0; /* Don't care value for video mode */ 2062 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); 2063 2064 if (phys_enc->hw_intf) 2065 intf_cfg.intf = phys_enc->hw_intf->idx; 2066 if (phys_enc->hw_wb) 2067 intf_cfg.wb = phys_enc->hw_wb->idx; 2068 2069 if (phys_enc->hw_pp->merge_3d) 2070 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; 2071 2072 if (ctl->ops.reset_intf_cfg) 2073 ctl->ops.reset_intf_cfg(ctl, &intf_cfg); 2074 2075 ctl->ops.trigger_flush(ctl); 2076 ctl->ops.trigger_start(ctl); 2077 ctl->ops.clear_pending_flush(ctl); 2078 } 2079 2080 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 2081 { 2082 struct dpu_encoder_virt *dpu_enc; 2083 struct dpu_encoder_phys *phys; 2084 int i; 2085 2086 if (!drm_enc) { 2087 DPU_ERROR("invalid encoder\n"); 2088 return; 2089 } 2090 dpu_enc = to_dpu_encoder_virt(drm_enc); 2091 2092 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2093 phys = dpu_enc->phys_encs[i]; 2094 if (phys->ops.prepare_commit) 2095 phys->ops.prepare_commit(phys); 2096 } 2097 } 2098 2099 #ifdef CONFIG_DEBUG_FS 2100 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 2101 { 2102 struct dpu_encoder_virt *dpu_enc = s->private; 2103 int i; 2104 2105 mutex_lock(&dpu_enc->enc_lock); 2106 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2107 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2108 2109 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d ", 2110 phys->intf_idx - INTF_0, phys->wb_idx - WB_0, 2111 atomic_read(&phys->vsync_cnt), 2112 atomic_read(&phys->underrun_cnt)); 2113 2114 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode)); 2115 } 2116 mutex_unlock(&dpu_enc->enc_lock); 2117 2118 return 0; 2119 } 2120 2121 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); 2122 2123 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2124 { 2125 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 2126 int i; 2127 2128 char name[DPU_NAME_SIZE]; 2129 2130 if (!drm_enc->dev) { 2131 DPU_ERROR("invalid encoder or kms\n"); 2132 return -EINVAL; 2133 } 2134 2135 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 2136 2137 /* create overall sub-directory for the encoder */ 2138 dpu_enc->debugfs_root = debugfs_create_dir(name, 2139 drm_enc->dev->primary->debugfs_root); 2140 2141 /* don't error check these */ 2142 debugfs_create_file("status", 0600, 2143 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops); 2144 2145 for (i = 0; i < dpu_enc->num_phys_encs; i++) 2146 if (dpu_enc->phys_encs[i]->ops.late_register) 2147 dpu_enc->phys_encs[i]->ops.late_register( 2148 dpu_enc->phys_encs[i], 2149 dpu_enc->debugfs_root); 2150 2151 return 0; 2152 } 2153 #else 2154 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2155 { 2156 return 0; 2157 } 2158 #endif 2159 2160 static int dpu_encoder_late_register(struct drm_encoder *encoder) 2161 { 2162 return _dpu_encoder_init_debugfs(encoder); 2163 } 2164 2165 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 2166 { 2167 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2168 2169 debugfs_remove_recursive(dpu_enc->debugfs_root); 2170 } 2171 2172 static int dpu_encoder_virt_add_phys_encs( 2173 struct msm_display_info *disp_info, 2174 struct dpu_encoder_virt *dpu_enc, 2175 struct dpu_enc_phys_init_params *params) 2176 { 2177 struct dpu_encoder_phys *enc = NULL; 2178 2179 DPU_DEBUG_ENC(dpu_enc, "\n"); 2180 2181 /* 2182 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2183 * in this function, check up-front. 2184 */ 2185 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2186 ARRAY_SIZE(dpu_enc->phys_encs)) { 2187 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2188 dpu_enc->num_phys_encs); 2189 return -EINVAL; 2190 } 2191 2192 2193 if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) { 2194 enc = dpu_encoder_phys_wb_init(params); 2195 2196 if (IS_ERR(enc)) { 2197 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n", 2198 PTR_ERR(enc)); 2199 return PTR_ERR(enc); 2200 } 2201 2202 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2203 ++dpu_enc->num_phys_encs; 2204 } else if (disp_info->is_cmd_mode) { 2205 enc = dpu_encoder_phys_cmd_init(params); 2206 2207 if (IS_ERR(enc)) { 2208 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2209 PTR_ERR(enc)); 2210 return PTR_ERR(enc); 2211 } 2212 2213 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2214 ++dpu_enc->num_phys_encs; 2215 } else { 2216 enc = dpu_encoder_phys_vid_init(params); 2217 2218 if (IS_ERR(enc)) { 2219 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2220 PTR_ERR(enc)); 2221 return PTR_ERR(enc); 2222 } 2223 2224 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2225 ++dpu_enc->num_phys_encs; 2226 } 2227 2228 if (params->split_role == ENC_ROLE_SLAVE) 2229 dpu_enc->cur_slave = enc; 2230 else 2231 dpu_enc->cur_master = enc; 2232 2233 return 0; 2234 } 2235 2236 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2237 .handle_vblank_virt = dpu_encoder_vblank_callback, 2238 .handle_underrun_virt = dpu_encoder_underrun_callback, 2239 .handle_frame_done = dpu_encoder_frame_done_callback, 2240 }; 2241 2242 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2243 struct dpu_kms *dpu_kms, 2244 struct msm_display_info *disp_info) 2245 { 2246 int ret = 0; 2247 int i = 0; 2248 enum dpu_intf_type intf_type = INTF_NONE; 2249 struct dpu_enc_phys_init_params phys_params; 2250 2251 if (!dpu_enc) { 2252 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 2253 return -EINVAL; 2254 } 2255 2256 dpu_enc->cur_master = NULL; 2257 2258 memset(&phys_params, 0, sizeof(phys_params)); 2259 phys_params.dpu_kms = dpu_kms; 2260 phys_params.parent = &dpu_enc->base; 2261 phys_params.parent_ops = &dpu_encoder_parent_ops; 2262 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2263 2264 switch (disp_info->intf_type) { 2265 case DRM_MODE_ENCODER_DSI: 2266 intf_type = INTF_DSI; 2267 break; 2268 case DRM_MODE_ENCODER_TMDS: 2269 intf_type = INTF_DP; 2270 break; 2271 case DRM_MODE_ENCODER_VIRTUAL: 2272 intf_type = INTF_WB; 2273 break; 2274 } 2275 2276 WARN_ON(disp_info->num_of_h_tiles < 1); 2277 2278 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2279 2280 if (disp_info->intf_type != DRM_MODE_ENCODER_VIRTUAL) 2281 dpu_enc->idle_pc_supported = 2282 dpu_kms->catalog->caps->has_idle_pc; 2283 2284 dpu_enc->dsc = disp_info->dsc; 2285 2286 mutex_lock(&dpu_enc->enc_lock); 2287 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2288 /* 2289 * Left-most tile is at index 0, content is controller id 2290 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2291 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2292 */ 2293 u32 controller_id = disp_info->h_tile_instance[i]; 2294 2295 if (disp_info->num_of_h_tiles > 1) { 2296 if (i == 0) 2297 phys_params.split_role = ENC_ROLE_MASTER; 2298 else 2299 phys_params.split_role = ENC_ROLE_SLAVE; 2300 } else { 2301 phys_params.split_role = ENC_ROLE_SOLO; 2302 } 2303 2304 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2305 i, controller_id, phys_params.split_role); 2306 2307 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2308 intf_type, 2309 controller_id); 2310 2311 phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog, 2312 intf_type, controller_id); 2313 /* 2314 * The phys_params might represent either an INTF or a WB unit, but not 2315 * both of them at the same time. 2316 */ 2317 if ((phys_params.intf_idx == INTF_MAX) && 2318 (phys_params.wb_idx == WB_MAX)) { 2319 DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n", 2320 intf_type, controller_id); 2321 ret = -EINVAL; 2322 } 2323 2324 if ((phys_params.intf_idx != INTF_MAX) && 2325 (phys_params.wb_idx != WB_MAX)) { 2326 DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n", 2327 intf_type, controller_id); 2328 ret = -EINVAL; 2329 } 2330 2331 if (!ret) { 2332 ret = dpu_encoder_virt_add_phys_encs(disp_info, 2333 dpu_enc, &phys_params); 2334 if (ret) 2335 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2336 } 2337 } 2338 2339 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2340 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2341 atomic_set(&phys->vsync_cnt, 0); 2342 atomic_set(&phys->underrun_cnt, 0); 2343 2344 if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX) 2345 phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx); 2346 2347 if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX) 2348 phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx); 2349 2350 if (!phys->hw_intf && !phys->hw_wb) { 2351 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i); 2352 ret = -EINVAL; 2353 } 2354 2355 if (phys->hw_intf && phys->hw_wb) { 2356 DPU_ERROR_ENC(dpu_enc, 2357 "invalid phys both intf and wb block at idx: %d\n", i); 2358 ret = -EINVAL; 2359 } 2360 } 2361 2362 mutex_unlock(&dpu_enc->enc_lock); 2363 2364 return ret; 2365 } 2366 2367 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2368 { 2369 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2370 frame_done_timer); 2371 struct drm_encoder *drm_enc = &dpu_enc->base; 2372 u32 event; 2373 2374 if (!drm_enc->dev) { 2375 DPU_ERROR("invalid parameters\n"); 2376 return; 2377 } 2378 2379 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2380 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2381 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2382 return; 2383 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2384 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2385 return; 2386 } 2387 2388 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2389 2390 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2391 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2392 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2393 } 2394 2395 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2396 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set, 2397 .disable = dpu_encoder_virt_disable, 2398 .enable = dpu_encoder_virt_enable, 2399 .atomic_check = dpu_encoder_virt_atomic_check, 2400 }; 2401 2402 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2403 .destroy = dpu_encoder_destroy, 2404 .late_register = dpu_encoder_late_register, 2405 .early_unregister = dpu_encoder_early_unregister, 2406 }; 2407 2408 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2409 struct msm_display_info *disp_info) 2410 { 2411 struct msm_drm_private *priv = dev->dev_private; 2412 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2413 struct drm_encoder *drm_enc = NULL; 2414 struct dpu_encoder_virt *dpu_enc = NULL; 2415 int ret = 0; 2416 2417 dpu_enc = to_dpu_encoder_virt(enc); 2418 2419 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2420 if (ret) 2421 goto fail; 2422 2423 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2424 timer_setup(&dpu_enc->frame_done_timer, 2425 dpu_encoder_frame_done_timeout, 0); 2426 2427 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2428 timer_setup(&dpu_enc->vsync_event_timer, 2429 dpu_encoder_vsync_event_handler, 2430 0); 2431 else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS) 2432 dpu_enc->wide_bus_en = msm_dp_wide_bus_available( 2433 priv->dp[disp_info->h_tile_instance[0]]); 2434 2435 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2436 dpu_encoder_off_work); 2437 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2438 2439 kthread_init_work(&dpu_enc->vsync_event_work, 2440 dpu_encoder_vsync_event_work_handler); 2441 2442 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2443 2444 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2445 2446 return ret; 2447 2448 fail: 2449 DPU_ERROR("failed to create encoder\n"); 2450 if (drm_enc) 2451 dpu_encoder_destroy(drm_enc); 2452 2453 return ret; 2454 2455 2456 } 2457 2458 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2459 int drm_enc_mode) 2460 { 2461 struct dpu_encoder_virt *dpu_enc = NULL; 2462 int rc = 0; 2463 2464 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2465 if (!dpu_enc) 2466 return ERR_PTR(-ENOMEM); 2467 2468 2469 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2470 drm_enc_mode, NULL); 2471 if (rc) { 2472 devm_kfree(dev->dev, dpu_enc); 2473 return ERR_PTR(rc); 2474 } 2475 2476 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2477 2478 spin_lock_init(&dpu_enc->enc_spinlock); 2479 dpu_enc->enabled = false; 2480 mutex_init(&dpu_enc->enc_lock); 2481 mutex_init(&dpu_enc->rc_lock); 2482 2483 return &dpu_enc->base; 2484 } 2485 2486 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2487 enum msm_event_wait event) 2488 { 2489 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2490 struct dpu_encoder_virt *dpu_enc = NULL; 2491 int i, ret = 0; 2492 2493 if (!drm_enc) { 2494 DPU_ERROR("invalid encoder\n"); 2495 return -EINVAL; 2496 } 2497 dpu_enc = to_dpu_encoder_virt(drm_enc); 2498 DPU_DEBUG_ENC(dpu_enc, "\n"); 2499 2500 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2501 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2502 2503 switch (event) { 2504 case MSM_ENC_COMMIT_DONE: 2505 fn_wait = phys->ops.wait_for_commit_done; 2506 break; 2507 case MSM_ENC_TX_COMPLETE: 2508 fn_wait = phys->ops.wait_for_tx_complete; 2509 break; 2510 case MSM_ENC_VBLANK: 2511 fn_wait = phys->ops.wait_for_vblank; 2512 break; 2513 default: 2514 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2515 event); 2516 return -EINVAL; 2517 } 2518 2519 if (fn_wait) { 2520 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2521 ret = fn_wait(phys); 2522 DPU_ATRACE_END("wait_for_completion_event"); 2523 if (ret) 2524 return ret; 2525 } 2526 } 2527 2528 return ret; 2529 } 2530 2531 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2532 { 2533 struct dpu_encoder_virt *dpu_enc = NULL; 2534 2535 if (!encoder) { 2536 DPU_ERROR("invalid encoder\n"); 2537 return INTF_MODE_NONE; 2538 } 2539 dpu_enc = to_dpu_encoder_virt(encoder); 2540 2541 if (dpu_enc->cur_master) 2542 return dpu_enc->cur_master->intf_mode; 2543 2544 if (dpu_enc->num_phys_encs) 2545 return dpu_enc->phys_encs[0]->intf_mode; 2546 2547 return INTF_MODE_NONE; 2548 } 2549 2550 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc) 2551 { 2552 struct drm_encoder *encoder = phys_enc->parent; 2553 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2554 2555 return dpu_enc->dsc_mask; 2556 } 2557