xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_formats.h"
24 #include "dpu_encoder_phys.h"
25 #include "dpu_crtc.h"
26 #include "dpu_trace.h"
27 #include "dpu_core_irq.h"
28 
29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
30 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
31 
32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
33 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
34 
35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
36 		(p) ? (p)->parent->base.id : -1, \
37 		(p) ? (p)->intf_idx - INTF_0 : -1, \
38 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
39 		##__VA_ARGS__)
40 
41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
42 		(p) ? (p)->parent->base.id : -1, \
43 		(p) ? (p)->intf_idx - INTF_0 : -1, \
44 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
45 		##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @bus_scaling_client:	Client handle to the bus scaling interface
129  * @enabled:		True if the encoder is active, protected by enc_lock
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @hw_pp		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
137  *			for partial update right-only cases, such as pingpong
138  *			split where virtual pingpong does not generate IRQs
139  * @crtc:		Pointer to the currently assigned crtc. Normally you
140  *			would use crtc->state->encoder_mask to determine the
141  *			link between encoder/crtc. However in this case we need
142  *			to track crtc in the disable() hook which is called
143  *			_after_ encoder_mask is cleared.
144  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
145  *				all CTL paths
146  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
147  * @debugfs_root:		Debug file system root file node
148  * @enc_lock:			Lock around physical encoder
149  *				create/destroy/enable/disable
150  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
151  *				busy processing current command.
152  *				Bit0 = phys_encs[0] etc.
153  * @crtc_frame_event_cb:	callback handler for frame event
154  * @crtc_frame_event_cb_data:	callback handler private data
155  * @frame_done_timeout_ms:	frame done timeout in ms
156  * @frame_done_timer:		watchdog timer for frame done event
157  * @vsync_event_timer:		vsync timer
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @vsync_event_work:		worker to handle vsync event for autorefresh
166  * @topology:                   topology of the display
167  * @idle_timeout:		idle timeout duration in milliseconds
168  */
169 struct dpu_encoder_virt {
170 	struct drm_encoder base;
171 	spinlock_t enc_spinlock;
172 	uint32_t bus_scaling_client;
173 
174 	bool enabled;
175 
176 	unsigned int num_phys_encs;
177 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
178 	struct dpu_encoder_phys *cur_master;
179 	struct dpu_encoder_phys *cur_slave;
180 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
181 
182 	bool intfs_swapped;
183 
184 	struct drm_crtc *crtc;
185 
186 	struct dentry *debugfs_root;
187 	struct mutex enc_lock;
188 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
189 	void (*crtc_frame_event_cb)(void *, u32 event);
190 	void *crtc_frame_event_cb_data;
191 
192 	atomic_t frame_done_timeout_ms;
193 	struct timer_list frame_done_timer;
194 	struct timer_list vsync_event_timer;
195 
196 	struct msm_display_info disp_info;
197 
198 	bool idle_pc_supported;
199 	struct mutex rc_lock;
200 	enum dpu_enc_rc_states rc_state;
201 	struct delayed_work delayed_off_work;
202 	struct kthread_work vsync_event_work;
203 	struct msm_display_topology topology;
204 
205 	u32 idle_timeout;
206 };
207 
208 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
209 
210 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
211 		enum dpu_intr_idx intr_idx)
212 {
213 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
214 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
215 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
216 
217 	if (phys_enc->parent_ops->handle_frame_done)
218 		phys_enc->parent_ops->handle_frame_done(
219 				phys_enc->parent, phys_enc,
220 				DPU_ENCODER_FRAME_EVENT_ERROR);
221 }
222 
223 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
224 		int32_t hw_id, struct dpu_encoder_wait_info *info);
225 
226 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
227 		enum dpu_intr_idx intr_idx,
228 		struct dpu_encoder_wait_info *wait_info)
229 {
230 	struct dpu_encoder_irq *irq;
231 	u32 irq_status;
232 	int ret;
233 
234 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
235 		DPU_ERROR("invalid params\n");
236 		return -EINVAL;
237 	}
238 	irq = &phys_enc->irq[intr_idx];
239 
240 	/* note: do master / slave checking outside */
241 
242 	/* return EWOULDBLOCK since we know the wait isn't necessary */
243 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
244 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
245 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
246 			  irq->irq_idx);
247 		return -EWOULDBLOCK;
248 	}
249 
250 	if (irq->irq_idx < 0) {
251 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
252 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
253 			      irq->name);
254 		return 0;
255 	}
256 
257 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
258 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
259 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
260 		      atomic_read(wait_info->atomic_cnt));
261 
262 	ret = dpu_encoder_helper_wait_event_timeout(
263 			DRMID(phys_enc->parent),
264 			irq->hw_idx,
265 			wait_info);
266 
267 	if (ret <= 0) {
268 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
269 				irq->irq_idx, true);
270 		if (irq_status) {
271 			unsigned long flags;
272 
273 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
274 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
275 				      DRMID(phys_enc->parent), intr_idx,
276 				      irq->hw_idx, irq->irq_idx,
277 				      phys_enc->hw_pp->idx - PINGPONG_0,
278 				      atomic_read(wait_info->atomic_cnt));
279 			local_irq_save(flags);
280 			irq->cb.func(phys_enc, irq->irq_idx);
281 			local_irq_restore(flags);
282 			ret = 0;
283 		} else {
284 			ret = -ETIMEDOUT;
285 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
286 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
287 				      DRMID(phys_enc->parent), intr_idx,
288 				      irq->hw_idx, irq->irq_idx,
289 				      phys_enc->hw_pp->idx - PINGPONG_0,
290 				      atomic_read(wait_info->atomic_cnt));
291 		}
292 	} else {
293 		ret = 0;
294 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
295 			intr_idx, irq->hw_idx, irq->irq_idx,
296 			phys_enc->hw_pp->idx - PINGPONG_0,
297 			atomic_read(wait_info->atomic_cnt));
298 	}
299 
300 	return ret;
301 }
302 
303 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
304 		enum dpu_intr_idx intr_idx)
305 {
306 	struct dpu_encoder_irq *irq;
307 	int ret = 0;
308 
309 	if (intr_idx >= INTR_IDX_MAX) {
310 		DPU_ERROR("invalid params\n");
311 		return -EINVAL;
312 	}
313 	irq = &phys_enc->irq[intr_idx];
314 
315 	if (irq->irq_idx >= 0) {
316 		DPU_DEBUG_PHYS(phys_enc,
317 				"skipping already registered irq %s type %d\n",
318 				irq->name, irq->intr_type);
319 		return 0;
320 	}
321 
322 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
323 			irq->intr_type, irq->hw_idx);
324 	if (irq->irq_idx < 0) {
325 		DPU_ERROR_PHYS(phys_enc,
326 			"failed to lookup IRQ index for %s type:%d\n",
327 			irq->name, irq->intr_type);
328 		return -EINVAL;
329 	}
330 
331 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
332 			&irq->cb);
333 	if (ret) {
334 		DPU_ERROR_PHYS(phys_enc,
335 			"failed to register IRQ callback for %s\n",
336 			irq->name);
337 		irq->irq_idx = -EINVAL;
338 		return ret;
339 	}
340 
341 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
342 	if (ret) {
343 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
344 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
345 			  irq->irq_idx);
346 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
347 				irq->irq_idx, &irq->cb);
348 		irq->irq_idx = -EINVAL;
349 		return ret;
350 	}
351 
352 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
353 				irq->hw_idx, irq->irq_idx);
354 
355 	return ret;
356 }
357 
358 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
359 		enum dpu_intr_idx intr_idx)
360 {
361 	struct dpu_encoder_irq *irq;
362 	int ret;
363 
364 	irq = &phys_enc->irq[intr_idx];
365 
366 	/* silently skip irqs that weren't registered */
367 	if (irq->irq_idx < 0) {
368 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
369 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
370 			  irq->irq_idx);
371 		return 0;
372 	}
373 
374 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
375 	if (ret) {
376 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
377 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
378 			  irq->irq_idx, ret);
379 	}
380 
381 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
382 			&irq->cb);
383 	if (ret) {
384 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
385 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
386 			  irq->irq_idx, ret);
387 	}
388 
389 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
390 					     irq->hw_idx, irq->irq_idx);
391 
392 	irq->irq_idx = -EINVAL;
393 
394 	return 0;
395 }
396 
397 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
398 				  struct dpu_encoder_hw_resources *hw_res)
399 {
400 	struct dpu_encoder_virt *dpu_enc = NULL;
401 	int i = 0;
402 
403 	dpu_enc = to_dpu_encoder_virt(drm_enc);
404 	DPU_DEBUG_ENC(dpu_enc, "\n");
405 
406 	/* Query resources used by phys encs, expected to be without overlap */
407 	memset(hw_res, 0, sizeof(*hw_res));
408 
409 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
410 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
411 
412 		if (phys->ops.get_hw_resources)
413 			phys->ops.get_hw_resources(phys, hw_res);
414 	}
415 }
416 
417 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
418 {
419 	struct dpu_encoder_virt *dpu_enc = NULL;
420 	int i = 0;
421 
422 	if (!drm_enc) {
423 		DPU_ERROR("invalid encoder\n");
424 		return;
425 	}
426 
427 	dpu_enc = to_dpu_encoder_virt(drm_enc);
428 	DPU_DEBUG_ENC(dpu_enc, "\n");
429 
430 	mutex_lock(&dpu_enc->enc_lock);
431 
432 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
433 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
434 
435 		if (phys->ops.destroy) {
436 			phys->ops.destroy(phys);
437 			--dpu_enc->num_phys_encs;
438 			dpu_enc->phys_encs[i] = NULL;
439 		}
440 	}
441 
442 	if (dpu_enc->num_phys_encs)
443 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
444 				dpu_enc->num_phys_encs);
445 	dpu_enc->num_phys_encs = 0;
446 	mutex_unlock(&dpu_enc->enc_lock);
447 
448 	drm_encoder_cleanup(drm_enc);
449 	mutex_destroy(&dpu_enc->enc_lock);
450 }
451 
452 void dpu_encoder_helper_split_config(
453 		struct dpu_encoder_phys *phys_enc,
454 		enum dpu_intf interface)
455 {
456 	struct dpu_encoder_virt *dpu_enc;
457 	struct split_pipe_cfg cfg = { 0 };
458 	struct dpu_hw_mdp *hw_mdptop;
459 	struct msm_display_info *disp_info;
460 
461 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
462 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
463 		return;
464 	}
465 
466 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
467 	hw_mdptop = phys_enc->hw_mdptop;
468 	disp_info = &dpu_enc->disp_info;
469 
470 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
471 		return;
472 
473 	/**
474 	 * disable split modes since encoder will be operating in as the only
475 	 * encoder, either for the entire use case in the case of, for example,
476 	 * single DSI, or for this frame in the case of left/right only partial
477 	 * update.
478 	 */
479 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
480 		if (hw_mdptop->ops.setup_split_pipe)
481 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
482 		return;
483 	}
484 
485 	cfg.en = true;
486 	cfg.mode = phys_enc->intf_mode;
487 	cfg.intf = interface;
488 
489 	if (cfg.en && phys_enc->ops.needs_single_flush &&
490 			phys_enc->ops.needs_single_flush(phys_enc))
491 		cfg.split_flush_en = true;
492 
493 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
494 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
495 
496 		if (hw_mdptop->ops.setup_split_pipe)
497 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
498 	}
499 }
500 
501 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
502 		struct drm_display_mode *adj_mode)
503 {
504 	struct drm_display_mode *cur_mode;
505 
506 	if (!connector || !adj_mode)
507 		return;
508 
509 	list_for_each_entry(cur_mode, &connector->modes, head) {
510 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
511 		    cur_mode->hdisplay == adj_mode->hdisplay &&
512 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
513 			adj_mode->private_flags |= cur_mode->private_flags;
514 		}
515 	}
516 }
517 
518 static struct msm_display_topology dpu_encoder_get_topology(
519 			struct dpu_encoder_virt *dpu_enc,
520 			struct dpu_kms *dpu_kms,
521 			struct drm_display_mode *mode)
522 {
523 	struct msm_display_topology topology;
524 	int i, intf_count = 0;
525 
526 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
527 		if (dpu_enc->phys_encs[i])
528 			intf_count++;
529 
530 	/* Datapath topology selection
531 	 *
532 	 * Dual display
533 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
534 	 *
535 	 * Single display
536 	 * 1 LM, 1 INTF
537 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
538 	 *
539 	 */
540 	if (intf_count == 2)
541 		topology.num_lm = 2;
542 	else if (!dpu_kms->catalog->caps->has_3d_merge)
543 		topology.num_lm = 1;
544 	else
545 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
546 
547 	topology.num_enc = 0;
548 	topology.num_intf = intf_count;
549 
550 	return topology;
551 }
552 static int dpu_encoder_virt_atomic_check(
553 		struct drm_encoder *drm_enc,
554 		struct drm_crtc_state *crtc_state,
555 		struct drm_connector_state *conn_state)
556 {
557 	struct dpu_encoder_virt *dpu_enc;
558 	struct msm_drm_private *priv;
559 	struct dpu_kms *dpu_kms;
560 	const struct drm_display_mode *mode;
561 	struct drm_display_mode *adj_mode;
562 	struct msm_display_topology topology;
563 	struct dpu_global_state *global_state;
564 	int i = 0;
565 	int ret = 0;
566 
567 	if (!drm_enc || !crtc_state || !conn_state) {
568 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
569 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
570 		return -EINVAL;
571 	}
572 
573 	dpu_enc = to_dpu_encoder_virt(drm_enc);
574 	DPU_DEBUG_ENC(dpu_enc, "\n");
575 
576 	priv = drm_enc->dev->dev_private;
577 	dpu_kms = to_dpu_kms(priv->kms);
578 	mode = &crtc_state->mode;
579 	adj_mode = &crtc_state->adjusted_mode;
580 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
581 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
582 
583 	/*
584 	 * display drivers may populate private fields of the drm display mode
585 	 * structure while registering possible modes of a connector with DRM.
586 	 * These private fields are not populated back while DRM invokes
587 	 * the mode_set callbacks. This module retrieves and populates the
588 	 * private fields of the given mode.
589 	 */
590 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
591 
592 	/* perform atomic check on the first physical encoder (master) */
593 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
594 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
595 
596 		if (phys->ops.atomic_check)
597 			ret = phys->ops.atomic_check(phys, crtc_state,
598 					conn_state);
599 		else if (phys->ops.mode_fixup)
600 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
601 				ret = -EINVAL;
602 
603 		if (ret) {
604 			DPU_ERROR_ENC(dpu_enc,
605 					"mode unsupported, phys idx %d\n", i);
606 			break;
607 		}
608 	}
609 
610 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
611 
612 	/* Reserve dynamic resources now. */
613 	if (!ret) {
614 		/*
615 		 * Avoid reserving resources when mode set is pending. Topology
616 		 * info may not be available to complete reservation.
617 		 */
618 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
619 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
620 					drm_enc, crtc_state, topology);
621 		}
622 	}
623 
624 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
625 			adj_mode->private_flags);
626 
627 	return ret;
628 }
629 
630 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
631 			struct msm_display_info *disp_info)
632 {
633 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
634 	struct msm_drm_private *priv;
635 	struct dpu_kms *dpu_kms;
636 	struct dpu_hw_mdp *hw_mdptop;
637 	struct drm_encoder *drm_enc;
638 	int i;
639 
640 	if (!dpu_enc || !disp_info) {
641 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
642 					dpu_enc != NULL, disp_info != NULL);
643 		return;
644 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
645 		DPU_ERROR("invalid num phys enc %d/%d\n",
646 				dpu_enc->num_phys_encs,
647 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
648 		return;
649 	}
650 
651 	drm_enc = &dpu_enc->base;
652 	/* this pointers are checked in virt_enable_helper */
653 	priv = drm_enc->dev->dev_private;
654 
655 	dpu_kms = to_dpu_kms(priv->kms);
656 	hw_mdptop = dpu_kms->hw_mdp;
657 	if (!hw_mdptop) {
658 		DPU_ERROR("invalid mdptop\n");
659 		return;
660 	}
661 
662 	if (hw_mdptop->ops.setup_vsync_source &&
663 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
664 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
665 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
666 
667 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
668 		if (disp_info->is_te_using_watchdog_timer)
669 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
670 		else
671 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
672 
673 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
674 	}
675 }
676 
677 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
678 {
679 	struct dpu_encoder_virt *dpu_enc;
680 	int i;
681 
682 	if (!drm_enc) {
683 		DPU_ERROR("invalid encoder\n");
684 		return;
685 	}
686 
687 	dpu_enc = to_dpu_encoder_virt(drm_enc);
688 
689 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
690 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
691 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
692 
693 		if (phys->ops.irq_control)
694 			phys->ops.irq_control(phys, enable);
695 	}
696 
697 }
698 
699 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
700 		bool enable)
701 {
702 	struct msm_drm_private *priv;
703 	struct dpu_kms *dpu_kms;
704 	struct dpu_encoder_virt *dpu_enc;
705 
706 	dpu_enc = to_dpu_encoder_virt(drm_enc);
707 	priv = drm_enc->dev->dev_private;
708 	dpu_kms = to_dpu_kms(priv->kms);
709 
710 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
711 
712 	if (!dpu_enc->cur_master) {
713 		DPU_ERROR("encoder master not set\n");
714 		return;
715 	}
716 
717 	if (enable) {
718 		/* enable DPU core clks */
719 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
720 
721 		/* enable all the irq */
722 		_dpu_encoder_irq_control(drm_enc, true);
723 
724 	} else {
725 		/* disable all the irq */
726 		_dpu_encoder_irq_control(drm_enc, false);
727 
728 		/* disable DPU core clks */
729 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
730 	}
731 
732 }
733 
734 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
735 		u32 sw_event)
736 {
737 	struct dpu_encoder_virt *dpu_enc;
738 	struct msm_drm_private *priv;
739 	bool is_vid_mode = false;
740 
741 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
742 		DPU_ERROR("invalid parameters\n");
743 		return -EINVAL;
744 	}
745 	dpu_enc = to_dpu_encoder_virt(drm_enc);
746 	priv = drm_enc->dev->dev_private;
747 	is_vid_mode = dpu_enc->disp_info.capabilities &
748 						MSM_DISPLAY_CAP_VID_MODE;
749 
750 	/*
751 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
752 	 * events and return early for other events (ie wb display).
753 	 */
754 	if (!dpu_enc->idle_pc_supported &&
755 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
756 			sw_event != DPU_ENC_RC_EVENT_STOP &&
757 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
758 		return 0;
759 
760 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
761 			 dpu_enc->rc_state, "begin");
762 
763 	switch (sw_event) {
764 	case DPU_ENC_RC_EVENT_KICKOFF:
765 		/* cancel delayed off work, if any */
766 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
767 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
768 					sw_event);
769 
770 		mutex_lock(&dpu_enc->rc_lock);
771 
772 		/* return if the resource control is already in ON state */
773 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
774 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
775 				      DRMID(drm_enc), sw_event);
776 			mutex_unlock(&dpu_enc->rc_lock);
777 			return 0;
778 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
779 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
780 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
781 				      DRMID(drm_enc), sw_event,
782 				      dpu_enc->rc_state);
783 			mutex_unlock(&dpu_enc->rc_lock);
784 			return -EINVAL;
785 		}
786 
787 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
788 			_dpu_encoder_irq_control(drm_enc, true);
789 		else
790 			_dpu_encoder_resource_control_helper(drm_enc, true);
791 
792 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
793 
794 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
795 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
796 				 "kickoff");
797 
798 		mutex_unlock(&dpu_enc->rc_lock);
799 		break;
800 
801 	case DPU_ENC_RC_EVENT_FRAME_DONE:
802 		/*
803 		 * mutex lock is not used as this event happens at interrupt
804 		 * context. And locking is not required as, the other events
805 		 * like KICKOFF and STOP does a wait-for-idle before executing
806 		 * the resource_control
807 		 */
808 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
809 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
810 				      DRMID(drm_enc), sw_event,
811 				      dpu_enc->rc_state);
812 			return -EINVAL;
813 		}
814 
815 		/*
816 		 * schedule off work item only when there are no
817 		 * frames pending
818 		 */
819 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
820 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
821 				      DRMID(drm_enc));
822 			return 0;
823 		}
824 
825 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
826 				   msecs_to_jiffies(dpu_enc->idle_timeout));
827 
828 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
829 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
830 				 "frame done");
831 		break;
832 
833 	case DPU_ENC_RC_EVENT_PRE_STOP:
834 		/* cancel delayed off work, if any */
835 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
836 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
837 					sw_event);
838 
839 		mutex_lock(&dpu_enc->rc_lock);
840 
841 		if (is_vid_mode &&
842 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
843 			_dpu_encoder_irq_control(drm_enc, true);
844 		}
845 		/* skip if is already OFF or IDLE, resources are off already */
846 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
847 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
848 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
849 				      DRMID(drm_enc), sw_event,
850 				      dpu_enc->rc_state);
851 			mutex_unlock(&dpu_enc->rc_lock);
852 			return 0;
853 		}
854 
855 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
856 
857 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
858 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
859 				 "pre stop");
860 
861 		mutex_unlock(&dpu_enc->rc_lock);
862 		break;
863 
864 	case DPU_ENC_RC_EVENT_STOP:
865 		mutex_lock(&dpu_enc->rc_lock);
866 
867 		/* return if the resource control is already in OFF state */
868 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
869 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
870 				      DRMID(drm_enc), sw_event);
871 			mutex_unlock(&dpu_enc->rc_lock);
872 			return 0;
873 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
874 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
875 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
876 			mutex_unlock(&dpu_enc->rc_lock);
877 			return -EINVAL;
878 		}
879 
880 		/**
881 		 * expect to arrive here only if in either idle state or pre-off
882 		 * and in IDLE state the resources are already disabled
883 		 */
884 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
885 			_dpu_encoder_resource_control_helper(drm_enc, false);
886 
887 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
888 
889 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
890 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
891 				 "stop");
892 
893 		mutex_unlock(&dpu_enc->rc_lock);
894 		break;
895 
896 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
897 		mutex_lock(&dpu_enc->rc_lock);
898 
899 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
900 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
901 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
902 			mutex_unlock(&dpu_enc->rc_lock);
903 			return 0;
904 		}
905 
906 		/*
907 		 * if we are in ON but a frame was just kicked off,
908 		 * ignore the IDLE event, it's probably a stale timer event
909 		 */
910 		if (dpu_enc->frame_busy_mask[0]) {
911 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
912 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
913 			mutex_unlock(&dpu_enc->rc_lock);
914 			return 0;
915 		}
916 
917 		if (is_vid_mode)
918 			_dpu_encoder_irq_control(drm_enc, false);
919 		else
920 			_dpu_encoder_resource_control_helper(drm_enc, false);
921 
922 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
923 
924 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
925 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
926 				 "idle");
927 
928 		mutex_unlock(&dpu_enc->rc_lock);
929 		break;
930 
931 	default:
932 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
933 			  sw_event);
934 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
935 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
936 				 "error");
937 		break;
938 	}
939 
940 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
941 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
942 			 "end");
943 	return 0;
944 }
945 
946 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
947 				      struct drm_display_mode *mode,
948 				      struct drm_display_mode *adj_mode)
949 {
950 	struct dpu_encoder_virt *dpu_enc;
951 	struct msm_drm_private *priv;
952 	struct dpu_kms *dpu_kms;
953 	struct list_head *connector_list;
954 	struct drm_connector *conn = NULL, *conn_iter;
955 	struct drm_crtc *drm_crtc;
956 	struct dpu_crtc_state *cstate;
957 	struct dpu_global_state *global_state;
958 	struct msm_display_topology topology;
959 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
960 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
961 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
962 	int num_lm, num_ctl, num_pp;
963 	int i, j;
964 
965 	if (!drm_enc) {
966 		DPU_ERROR("invalid encoder\n");
967 		return;
968 	}
969 
970 	dpu_enc = to_dpu_encoder_virt(drm_enc);
971 	DPU_DEBUG_ENC(dpu_enc, "\n");
972 
973 	priv = drm_enc->dev->dev_private;
974 	dpu_kms = to_dpu_kms(priv->kms);
975 	connector_list = &dpu_kms->dev->mode_config.connector_list;
976 
977 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
978 	if (IS_ERR_OR_NULL(global_state)) {
979 		DPU_ERROR("Failed to get global state");
980 		return;
981 	}
982 
983 	trace_dpu_enc_mode_set(DRMID(drm_enc));
984 
985 	list_for_each_entry(conn_iter, connector_list, head)
986 		if (conn_iter->encoder == drm_enc)
987 			conn = conn_iter;
988 
989 	if (!conn) {
990 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
991 		return;
992 	} else if (!conn->state) {
993 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
994 		return;
995 	}
996 
997 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
998 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
999 			break;
1000 
1001 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1002 
1003 	/* Query resource that have been reserved in atomic check step. */
1004 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1005 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1006 		ARRAY_SIZE(hw_pp));
1007 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1008 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1009 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1010 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1011 
1012 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1013 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1014 						: NULL;
1015 
1016 	cstate = to_dpu_crtc_state(drm_crtc->state);
1017 
1018 	for (i = 0; i < num_lm; i++) {
1019 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1020 
1021 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1022 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1023 	}
1024 
1025 	cstate->num_mixers = num_lm;
1026 
1027 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1028 		int num_blk;
1029 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1030 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1031 
1032 		if (!dpu_enc->hw_pp[i]) {
1033 			DPU_ERROR_ENC(dpu_enc,
1034 				"no pp block assigned at idx: %d\n", i);
1035 			return;
1036 		}
1037 
1038 		if (!hw_ctl[i]) {
1039 			DPU_ERROR_ENC(dpu_enc,
1040 				"no ctl block assigned at idx: %d\n", i);
1041 			return;
1042 		}
1043 
1044 		phys->hw_pp = dpu_enc->hw_pp[i];
1045 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1046 
1047 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1048 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1049 			hw_blk, ARRAY_SIZE(hw_blk));
1050 		for (j = 0; j < num_blk; j++) {
1051 			struct dpu_hw_intf *hw_intf;
1052 
1053 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1054 			if (hw_intf->idx == phys->intf_idx)
1055 				phys->hw_intf = hw_intf;
1056 		}
1057 
1058 		if (!phys->hw_intf) {
1059 			DPU_ERROR_ENC(dpu_enc,
1060 				      "no intf block assigned at idx: %d\n", i);
1061 			return;
1062 		}
1063 
1064 		phys->connector = conn->state->connector;
1065 		if (phys->ops.mode_set)
1066 			phys->ops.mode_set(phys, mode, adj_mode);
1067 	}
1068 }
1069 
1070 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1071 {
1072 	struct dpu_encoder_virt *dpu_enc = NULL;
1073 	struct msm_drm_private *priv;
1074 	struct dpu_kms *dpu_kms;
1075 
1076 	if (!drm_enc || !drm_enc->dev) {
1077 		DPU_ERROR("invalid parameters\n");
1078 		return;
1079 	}
1080 
1081 	priv = drm_enc->dev->dev_private;
1082 	dpu_kms = to_dpu_kms(priv->kms);
1083 
1084 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1085 	if (!dpu_enc || !dpu_enc->cur_master) {
1086 		DPU_ERROR("invalid dpu encoder/master\n");
1087 		return;
1088 	}
1089 
1090 	if (dpu_enc->cur_master->hw_mdptop &&
1091 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1092 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1093 				dpu_enc->cur_master->hw_mdptop,
1094 				dpu_kms->catalog);
1095 
1096 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1097 }
1098 
1099 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1100 {
1101 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1102 
1103 	mutex_lock(&dpu_enc->enc_lock);
1104 
1105 	if (!dpu_enc->enabled)
1106 		goto out;
1107 
1108 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1109 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1110 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1111 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1112 
1113 	_dpu_encoder_virt_enable_helper(drm_enc);
1114 
1115 out:
1116 	mutex_unlock(&dpu_enc->enc_lock);
1117 }
1118 
1119 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1120 {
1121 	struct dpu_encoder_virt *dpu_enc = NULL;
1122 	int ret = 0;
1123 	struct drm_display_mode *cur_mode = NULL;
1124 
1125 	if (!drm_enc) {
1126 		DPU_ERROR("invalid encoder\n");
1127 		return;
1128 	}
1129 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1130 
1131 	mutex_lock(&dpu_enc->enc_lock);
1132 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1133 
1134 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1135 			     cur_mode->vdisplay);
1136 
1137 	/* always enable slave encoder before master */
1138 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1139 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1140 
1141 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1142 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1143 
1144 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1145 	if (ret) {
1146 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1147 				ret);
1148 		goto out;
1149 	}
1150 
1151 	_dpu_encoder_virt_enable_helper(drm_enc);
1152 
1153 	dpu_enc->enabled = true;
1154 
1155 out:
1156 	mutex_unlock(&dpu_enc->enc_lock);
1157 }
1158 
1159 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1160 {
1161 	struct dpu_encoder_virt *dpu_enc = NULL;
1162 	struct msm_drm_private *priv;
1163 	struct dpu_kms *dpu_kms;
1164 	struct dpu_global_state *global_state;
1165 	int i = 0;
1166 
1167 	if (!drm_enc) {
1168 		DPU_ERROR("invalid encoder\n");
1169 		return;
1170 	} else if (!drm_enc->dev) {
1171 		DPU_ERROR("invalid dev\n");
1172 		return;
1173 	}
1174 
1175 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1176 	DPU_DEBUG_ENC(dpu_enc, "\n");
1177 
1178 	mutex_lock(&dpu_enc->enc_lock);
1179 	dpu_enc->enabled = false;
1180 
1181 	priv = drm_enc->dev->dev_private;
1182 	dpu_kms = to_dpu_kms(priv->kms);
1183 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1184 
1185 	trace_dpu_enc_disable(DRMID(drm_enc));
1186 
1187 	/* wait for idle */
1188 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1189 
1190 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1191 
1192 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1193 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1194 
1195 		if (phys->ops.disable)
1196 			phys->ops.disable(phys);
1197 	}
1198 
1199 	/* after phys waits for frame-done, should be no more frames pending */
1200 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1201 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1202 		del_timer_sync(&dpu_enc->frame_done_timer);
1203 	}
1204 
1205 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1206 
1207 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1208 		dpu_enc->phys_encs[i]->connector = NULL;
1209 	}
1210 
1211 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1212 
1213 	dpu_rm_release(global_state, drm_enc);
1214 
1215 	mutex_unlock(&dpu_enc->enc_lock);
1216 }
1217 
1218 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1219 		enum dpu_intf_type type, u32 controller_id)
1220 {
1221 	int i = 0;
1222 
1223 	for (i = 0; i < catalog->intf_count; i++) {
1224 		if (catalog->intf[i].type == type
1225 		    && catalog->intf[i].controller_id == controller_id) {
1226 			return catalog->intf[i].id;
1227 		}
1228 	}
1229 
1230 	return INTF_MAX;
1231 }
1232 
1233 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1234 		struct dpu_encoder_phys *phy_enc)
1235 {
1236 	struct dpu_encoder_virt *dpu_enc = NULL;
1237 	unsigned long lock_flags;
1238 
1239 	if (!drm_enc || !phy_enc)
1240 		return;
1241 
1242 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1243 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1244 
1245 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1246 	if (dpu_enc->crtc)
1247 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1248 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1249 
1250 	atomic_inc(&phy_enc->vsync_cnt);
1251 	DPU_ATRACE_END("encoder_vblank_callback");
1252 }
1253 
1254 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1255 		struct dpu_encoder_phys *phy_enc)
1256 {
1257 	if (!phy_enc)
1258 		return;
1259 
1260 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1261 	atomic_inc(&phy_enc->underrun_cnt);
1262 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1263 				  atomic_read(&phy_enc->underrun_cnt));
1264 	DPU_ATRACE_END("encoder_underrun_callback");
1265 }
1266 
1267 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1268 {
1269 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1270 	unsigned long lock_flags;
1271 
1272 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1273 	/* crtc should always be cleared before re-assigning */
1274 	WARN_ON(crtc && dpu_enc->crtc);
1275 	dpu_enc->crtc = crtc;
1276 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1277 }
1278 
1279 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1280 					struct drm_crtc *crtc, bool enable)
1281 {
1282 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1283 	unsigned long lock_flags;
1284 	int i;
1285 
1286 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1287 
1288 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1289 	if (dpu_enc->crtc != crtc) {
1290 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1291 		return;
1292 	}
1293 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1294 
1295 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1296 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1297 
1298 		if (phys->ops.control_vblank_irq)
1299 			phys->ops.control_vblank_irq(phys, enable);
1300 	}
1301 }
1302 
1303 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1304 		void (*frame_event_cb)(void *, u32 event),
1305 		void *frame_event_cb_data)
1306 {
1307 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1308 	unsigned long lock_flags;
1309 	bool enable;
1310 
1311 	enable = frame_event_cb ? true : false;
1312 
1313 	if (!drm_enc) {
1314 		DPU_ERROR("invalid encoder\n");
1315 		return;
1316 	}
1317 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1318 
1319 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1320 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1321 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1322 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1323 }
1324 
1325 static void dpu_encoder_frame_done_callback(
1326 		struct drm_encoder *drm_enc,
1327 		struct dpu_encoder_phys *ready_phys, u32 event)
1328 {
1329 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1330 	unsigned int i;
1331 
1332 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1333 			| DPU_ENCODER_FRAME_EVENT_ERROR
1334 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1335 
1336 		if (!dpu_enc->frame_busy_mask[0]) {
1337 			/**
1338 			 * suppress frame_done without waiter,
1339 			 * likely autorefresh
1340 			 */
1341 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1342 					event, ready_phys->intf_idx);
1343 			return;
1344 		}
1345 
1346 		/* One of the physical encoders has become idle */
1347 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1348 			if (dpu_enc->phys_encs[i] == ready_phys) {
1349 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1350 						dpu_enc->frame_busy_mask[0]);
1351 				clear_bit(i, dpu_enc->frame_busy_mask);
1352 			}
1353 		}
1354 
1355 		if (!dpu_enc->frame_busy_mask[0]) {
1356 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1357 			del_timer(&dpu_enc->frame_done_timer);
1358 
1359 			dpu_encoder_resource_control(drm_enc,
1360 					DPU_ENC_RC_EVENT_FRAME_DONE);
1361 
1362 			if (dpu_enc->crtc_frame_event_cb)
1363 				dpu_enc->crtc_frame_event_cb(
1364 					dpu_enc->crtc_frame_event_cb_data,
1365 					event);
1366 		}
1367 	} else {
1368 		if (dpu_enc->crtc_frame_event_cb)
1369 			dpu_enc->crtc_frame_event_cb(
1370 				dpu_enc->crtc_frame_event_cb_data, event);
1371 	}
1372 }
1373 
1374 static void dpu_encoder_off_work(struct work_struct *work)
1375 {
1376 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1377 			struct dpu_encoder_virt, delayed_off_work.work);
1378 
1379 	if (!dpu_enc) {
1380 		DPU_ERROR("invalid dpu encoder\n");
1381 		return;
1382 	}
1383 
1384 	dpu_encoder_resource_control(&dpu_enc->base,
1385 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1386 
1387 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1388 				DPU_ENCODER_FRAME_EVENT_IDLE);
1389 }
1390 
1391 /**
1392  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1393  * drm_enc: Pointer to drm encoder structure
1394  * phys: Pointer to physical encoder structure
1395  * extra_flush_bits: Additional bit mask to include in flush trigger
1396  */
1397 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1398 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1399 {
1400 	struct dpu_hw_ctl *ctl;
1401 	int pending_kickoff_cnt;
1402 	u32 ret = UINT_MAX;
1403 
1404 	if (!phys->hw_pp) {
1405 		DPU_ERROR("invalid pingpong hw\n");
1406 		return;
1407 	}
1408 
1409 	ctl = phys->hw_ctl;
1410 	if (!ctl->ops.trigger_flush) {
1411 		DPU_ERROR("missing trigger cb\n");
1412 		return;
1413 	}
1414 
1415 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1416 
1417 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1418 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1419 
1420 	ctl->ops.trigger_flush(ctl);
1421 
1422 	if (ctl->ops.get_pending_flush)
1423 		ret = ctl->ops.get_pending_flush(ctl);
1424 
1425 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1426 				    pending_kickoff_cnt, ctl->idx,
1427 				    extra_flush_bits, ret);
1428 }
1429 
1430 /**
1431  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1432  * phys: Pointer to physical encoder structure
1433  */
1434 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1435 {
1436 	if (!phys) {
1437 		DPU_ERROR("invalid argument(s)\n");
1438 		return;
1439 	}
1440 
1441 	if (!phys->hw_pp) {
1442 		DPU_ERROR("invalid pingpong hw\n");
1443 		return;
1444 	}
1445 
1446 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1447 		phys->ops.trigger_start(phys);
1448 }
1449 
1450 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1451 {
1452 	struct dpu_hw_ctl *ctl;
1453 
1454 	ctl = phys_enc->hw_ctl;
1455 	if (ctl->ops.trigger_start) {
1456 		ctl->ops.trigger_start(ctl);
1457 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1458 	}
1459 }
1460 
1461 static int dpu_encoder_helper_wait_event_timeout(
1462 		int32_t drm_id,
1463 		int32_t hw_id,
1464 		struct dpu_encoder_wait_info *info)
1465 {
1466 	int rc = 0;
1467 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1468 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1469 	s64 time;
1470 
1471 	do {
1472 		rc = wait_event_timeout(*(info->wq),
1473 				atomic_read(info->atomic_cnt) == 0, jiffies);
1474 		time = ktime_to_ms(ktime_get());
1475 
1476 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1477 						 expected_time,
1478 						 atomic_read(info->atomic_cnt));
1479 	/* If we timed out, counter is valid and time is less, wait again */
1480 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1481 			(time < expected_time));
1482 
1483 	return rc;
1484 }
1485 
1486 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1487 {
1488 	struct dpu_encoder_virt *dpu_enc;
1489 	struct dpu_hw_ctl *ctl;
1490 	int rc;
1491 
1492 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1493 	ctl = phys_enc->hw_ctl;
1494 
1495 	if (!ctl->ops.reset)
1496 		return;
1497 
1498 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1499 		      ctl->idx);
1500 
1501 	rc = ctl->ops.reset(ctl);
1502 	if (rc)
1503 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1504 
1505 	phys_enc->enable_state = DPU_ENC_ENABLED;
1506 }
1507 
1508 /**
1509  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1510  *	Iterate through the physical encoders and perform consolidated flush
1511  *	and/or control start triggering as needed. This is done in the virtual
1512  *	encoder rather than the individual physical ones in order to handle
1513  *	use cases that require visibility into multiple physical encoders at
1514  *	a time.
1515  * dpu_enc: Pointer to virtual encoder structure
1516  */
1517 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1518 {
1519 	struct dpu_hw_ctl *ctl;
1520 	uint32_t i, pending_flush;
1521 	unsigned long lock_flags;
1522 
1523 	pending_flush = 0x0;
1524 
1525 	/* update pending counts and trigger kickoff ctl flush atomically */
1526 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1527 
1528 	/* don't perform flush/start operations for slave encoders */
1529 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1530 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1531 
1532 		if (phys->enable_state == DPU_ENC_DISABLED)
1533 			continue;
1534 
1535 		ctl = phys->hw_ctl;
1536 
1537 		/*
1538 		 * This is cleared in frame_done worker, which isn't invoked
1539 		 * for async commits. So don't set this for async, since it'll
1540 		 * roll over to the next commit.
1541 		 */
1542 		if (phys->split_role != ENC_ROLE_SLAVE)
1543 			set_bit(i, dpu_enc->frame_busy_mask);
1544 
1545 		if (!phys->ops.needs_single_flush ||
1546 				!phys->ops.needs_single_flush(phys))
1547 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1548 		else if (ctl->ops.get_pending_flush)
1549 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1550 	}
1551 
1552 	/* for split flush, combine pending flush masks and send to master */
1553 	if (pending_flush && dpu_enc->cur_master) {
1554 		_dpu_encoder_trigger_flush(
1555 				&dpu_enc->base,
1556 				dpu_enc->cur_master,
1557 				pending_flush);
1558 	}
1559 
1560 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1561 
1562 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1563 }
1564 
1565 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1566 {
1567 	struct dpu_encoder_virt *dpu_enc;
1568 	struct dpu_encoder_phys *phys;
1569 	unsigned int i;
1570 	struct dpu_hw_ctl *ctl;
1571 	struct msm_display_info *disp_info;
1572 
1573 	if (!drm_enc) {
1574 		DPU_ERROR("invalid encoder\n");
1575 		return;
1576 	}
1577 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1578 	disp_info = &dpu_enc->disp_info;
1579 
1580 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1581 		phys = dpu_enc->phys_encs[i];
1582 
1583 		ctl = phys->hw_ctl;
1584 		if (ctl->ops.clear_pending_flush)
1585 			ctl->ops.clear_pending_flush(ctl);
1586 
1587 		/* update only for command mode primary ctl */
1588 		if ((phys == dpu_enc->cur_master) &&
1589 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1590 		    && ctl->ops.trigger_pending)
1591 			ctl->ops.trigger_pending(ctl);
1592 	}
1593 }
1594 
1595 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1596 		struct drm_display_mode *mode)
1597 {
1598 	u64 pclk_rate;
1599 	u32 pclk_period;
1600 	u32 line_time;
1601 
1602 	/*
1603 	 * For linetime calculation, only operate on master encoder.
1604 	 */
1605 	if (!dpu_enc->cur_master)
1606 		return 0;
1607 
1608 	if (!dpu_enc->cur_master->ops.get_line_count) {
1609 		DPU_ERROR("get_line_count function not defined\n");
1610 		return 0;
1611 	}
1612 
1613 	pclk_rate = mode->clock; /* pixel clock in kHz */
1614 	if (pclk_rate == 0) {
1615 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1616 		return 0;
1617 	}
1618 
1619 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1620 	if (pclk_period == 0) {
1621 		DPU_ERROR("pclk period is 0\n");
1622 		return 0;
1623 	}
1624 
1625 	/*
1626 	 * Line time calculation based on Pixel clock and HTOTAL.
1627 	 * Final unit is in ns.
1628 	 */
1629 	line_time = (pclk_period * mode->htotal) / 1000;
1630 	if (line_time == 0) {
1631 		DPU_ERROR("line time calculation is 0\n");
1632 		return 0;
1633 	}
1634 
1635 	DPU_DEBUG_ENC(dpu_enc,
1636 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1637 			pclk_rate, pclk_period, line_time);
1638 
1639 	return line_time;
1640 }
1641 
1642 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1643 {
1644 	struct drm_display_mode *mode;
1645 	struct dpu_encoder_virt *dpu_enc;
1646 	u32 cur_line;
1647 	u32 line_time;
1648 	u32 vtotal, time_to_vsync;
1649 	ktime_t cur_time;
1650 
1651 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1652 
1653 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1654 		DPU_ERROR("crtc/crtc state object is NULL\n");
1655 		return -EINVAL;
1656 	}
1657 	mode = &drm_enc->crtc->state->adjusted_mode;
1658 
1659 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1660 	if (!line_time)
1661 		return -EINVAL;
1662 
1663 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1664 
1665 	vtotal = mode->vtotal;
1666 	if (cur_line >= vtotal)
1667 		time_to_vsync = line_time * vtotal;
1668 	else
1669 		time_to_vsync = line_time * (vtotal - cur_line);
1670 
1671 	if (time_to_vsync == 0) {
1672 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1673 				vtotal);
1674 		return -EINVAL;
1675 	}
1676 
1677 	cur_time = ktime_get();
1678 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1679 
1680 	DPU_DEBUG_ENC(dpu_enc,
1681 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1682 			cur_line, vtotal, time_to_vsync,
1683 			ktime_to_ms(cur_time),
1684 			ktime_to_ms(*wakeup_time));
1685 	return 0;
1686 }
1687 
1688 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1689 {
1690 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1691 			vsync_event_timer);
1692 	struct drm_encoder *drm_enc = &dpu_enc->base;
1693 	struct msm_drm_private *priv;
1694 	struct msm_drm_thread *event_thread;
1695 
1696 	if (!drm_enc->dev || !drm_enc->crtc) {
1697 		DPU_ERROR("invalid parameters\n");
1698 		return;
1699 	}
1700 
1701 	priv = drm_enc->dev->dev_private;
1702 
1703 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1704 		DPU_ERROR("invalid crtc index\n");
1705 		return;
1706 	}
1707 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1708 	if (!event_thread) {
1709 		DPU_ERROR("event_thread not found for crtc:%d\n",
1710 				drm_enc->crtc->index);
1711 		return;
1712 	}
1713 
1714 	del_timer(&dpu_enc->vsync_event_timer);
1715 }
1716 
1717 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1718 {
1719 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1720 			struct dpu_encoder_virt, vsync_event_work);
1721 	ktime_t wakeup_time;
1722 
1723 	if (!dpu_enc) {
1724 		DPU_ERROR("invalid dpu encoder\n");
1725 		return;
1726 	}
1727 
1728 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1729 		return;
1730 
1731 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1732 	mod_timer(&dpu_enc->vsync_event_timer,
1733 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1734 }
1735 
1736 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1737 {
1738 	struct dpu_encoder_virt *dpu_enc;
1739 	struct dpu_encoder_phys *phys;
1740 	bool needs_hw_reset = false;
1741 	unsigned int i;
1742 
1743 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1744 
1745 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1746 
1747 	/* prepare for next kickoff, may include waiting on previous kickoff */
1748 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1749 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1750 		phys = dpu_enc->phys_encs[i];
1751 		if (phys->ops.prepare_for_kickoff)
1752 			phys->ops.prepare_for_kickoff(phys);
1753 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1754 			needs_hw_reset = true;
1755 	}
1756 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1757 
1758 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1759 
1760 	/* if any phys needs reset, reset all phys, in-order */
1761 	if (needs_hw_reset) {
1762 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1763 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1764 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1765 		}
1766 	}
1767 }
1768 
1769 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1770 {
1771 	struct dpu_encoder_virt *dpu_enc;
1772 	struct dpu_encoder_phys *phys;
1773 	ktime_t wakeup_time;
1774 	unsigned long timeout_ms;
1775 	unsigned int i;
1776 
1777 	DPU_ATRACE_BEGIN("encoder_kickoff");
1778 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1779 
1780 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1781 
1782 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1783 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1784 
1785 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1786 	mod_timer(&dpu_enc->frame_done_timer,
1787 			jiffies + msecs_to_jiffies(timeout_ms));
1788 
1789 	/* All phys encs are ready to go, trigger the kickoff */
1790 	_dpu_encoder_kickoff_phys(dpu_enc);
1791 
1792 	/* allow phys encs to handle any post-kickoff business */
1793 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1794 		phys = dpu_enc->phys_encs[i];
1795 		if (phys->ops.handle_post_kickoff)
1796 			phys->ops.handle_post_kickoff(phys);
1797 	}
1798 
1799 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1800 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1801 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1802 					    ktime_to_ms(wakeup_time));
1803 		mod_timer(&dpu_enc->vsync_event_timer,
1804 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1805 	}
1806 
1807 	DPU_ATRACE_END("encoder_kickoff");
1808 }
1809 
1810 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1811 {
1812 	struct dpu_encoder_virt *dpu_enc;
1813 	struct dpu_encoder_phys *phys;
1814 	int i;
1815 
1816 	if (!drm_enc) {
1817 		DPU_ERROR("invalid encoder\n");
1818 		return;
1819 	}
1820 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1821 
1822 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1823 		phys = dpu_enc->phys_encs[i];
1824 		if (phys->ops.prepare_commit)
1825 			phys->ops.prepare_commit(phys);
1826 	}
1827 }
1828 
1829 #ifdef CONFIG_DEBUG_FS
1830 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1831 {
1832 	struct dpu_encoder_virt *dpu_enc = s->private;
1833 	int i;
1834 
1835 	mutex_lock(&dpu_enc->enc_lock);
1836 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1837 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1838 
1839 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1840 				phys->intf_idx - INTF_0,
1841 				atomic_read(&phys->vsync_cnt),
1842 				atomic_read(&phys->underrun_cnt));
1843 
1844 		switch (phys->intf_mode) {
1845 		case INTF_MODE_VIDEO:
1846 			seq_puts(s, "mode: video\n");
1847 			break;
1848 		case INTF_MODE_CMD:
1849 			seq_puts(s, "mode: command\n");
1850 			break;
1851 		default:
1852 			seq_puts(s, "mode: ???\n");
1853 			break;
1854 		}
1855 	}
1856 	mutex_unlock(&dpu_enc->enc_lock);
1857 
1858 	return 0;
1859 }
1860 
1861 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1862 		struct file *file)
1863 {
1864 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1865 }
1866 
1867 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1868 {
1869 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1870 	int i;
1871 
1872 	static const struct file_operations debugfs_status_fops = {
1873 		.open =		_dpu_encoder_debugfs_status_open,
1874 		.read =		seq_read,
1875 		.llseek =	seq_lseek,
1876 		.release =	single_release,
1877 	};
1878 
1879 	char name[DPU_NAME_SIZE];
1880 
1881 	if (!drm_enc->dev) {
1882 		DPU_ERROR("invalid encoder or kms\n");
1883 		return -EINVAL;
1884 	}
1885 
1886 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1887 
1888 	/* create overall sub-directory for the encoder */
1889 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1890 			drm_enc->dev->primary->debugfs_root);
1891 
1892 	/* don't error check these */
1893 	debugfs_create_file("status", 0600,
1894 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1895 
1896 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1897 		if (dpu_enc->phys_encs[i]->ops.late_register)
1898 			dpu_enc->phys_encs[i]->ops.late_register(
1899 					dpu_enc->phys_encs[i],
1900 					dpu_enc->debugfs_root);
1901 
1902 	return 0;
1903 }
1904 #else
1905 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1906 {
1907 	return 0;
1908 }
1909 #endif
1910 
1911 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1912 {
1913 	return _dpu_encoder_init_debugfs(encoder);
1914 }
1915 
1916 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1917 {
1918 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1919 
1920 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1921 }
1922 
1923 static int dpu_encoder_virt_add_phys_encs(
1924 		u32 display_caps,
1925 		struct dpu_encoder_virt *dpu_enc,
1926 		struct dpu_enc_phys_init_params *params)
1927 {
1928 	struct dpu_encoder_phys *enc = NULL;
1929 
1930 	DPU_DEBUG_ENC(dpu_enc, "\n");
1931 
1932 	/*
1933 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1934 	 * in this function, check up-front.
1935 	 */
1936 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1937 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1938 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1939 			  dpu_enc->num_phys_encs);
1940 		return -EINVAL;
1941 	}
1942 
1943 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1944 		enc = dpu_encoder_phys_vid_init(params);
1945 
1946 		if (IS_ERR_OR_NULL(enc)) {
1947 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1948 				PTR_ERR(enc));
1949 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1950 		}
1951 
1952 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1953 		++dpu_enc->num_phys_encs;
1954 	}
1955 
1956 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1957 		enc = dpu_encoder_phys_cmd_init(params);
1958 
1959 		if (IS_ERR_OR_NULL(enc)) {
1960 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1961 				PTR_ERR(enc));
1962 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1963 		}
1964 
1965 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1966 		++dpu_enc->num_phys_encs;
1967 	}
1968 
1969 	if (params->split_role == ENC_ROLE_SLAVE)
1970 		dpu_enc->cur_slave = enc;
1971 	else
1972 		dpu_enc->cur_master = enc;
1973 
1974 	return 0;
1975 }
1976 
1977 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
1978 	.handle_vblank_virt = dpu_encoder_vblank_callback,
1979 	.handle_underrun_virt = dpu_encoder_underrun_callback,
1980 	.handle_frame_done = dpu_encoder_frame_done_callback,
1981 };
1982 
1983 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
1984 				 struct dpu_kms *dpu_kms,
1985 				 struct msm_display_info *disp_info)
1986 {
1987 	int ret = 0;
1988 	int i = 0;
1989 	enum dpu_intf_type intf_type;
1990 	struct dpu_enc_phys_init_params phys_params;
1991 
1992 	if (!dpu_enc) {
1993 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
1994 		return -EINVAL;
1995 	}
1996 
1997 	dpu_enc->cur_master = NULL;
1998 
1999 	memset(&phys_params, 0, sizeof(phys_params));
2000 	phys_params.dpu_kms = dpu_kms;
2001 	phys_params.parent = &dpu_enc->base;
2002 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2003 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2004 
2005 	DPU_DEBUG("\n");
2006 
2007 	switch (disp_info->intf_type) {
2008 	case DRM_MODE_ENCODER_DSI:
2009 		intf_type = INTF_DSI;
2010 		break;
2011 	default:
2012 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	WARN_ON(disp_info->num_of_h_tiles < 1);
2017 
2018 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2019 
2020 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2021 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2022 		dpu_enc->idle_pc_supported =
2023 				dpu_kms->catalog->caps->has_idle_pc;
2024 
2025 	mutex_lock(&dpu_enc->enc_lock);
2026 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2027 		/*
2028 		 * Left-most tile is at index 0, content is controller id
2029 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2030 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2031 		 */
2032 		u32 controller_id = disp_info->h_tile_instance[i];
2033 
2034 		if (disp_info->num_of_h_tiles > 1) {
2035 			if (i == 0)
2036 				phys_params.split_role = ENC_ROLE_MASTER;
2037 			else
2038 				phys_params.split_role = ENC_ROLE_SLAVE;
2039 		} else {
2040 			phys_params.split_role = ENC_ROLE_SOLO;
2041 		}
2042 
2043 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2044 				i, controller_id, phys_params.split_role);
2045 
2046 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2047 													intf_type,
2048 													controller_id);
2049 		if (phys_params.intf_idx == INTF_MAX) {
2050 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2051 						  intf_type, controller_id);
2052 			ret = -EINVAL;
2053 		}
2054 
2055 		if (!ret) {
2056 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2057 												 dpu_enc,
2058 												 &phys_params);
2059 			if (ret)
2060 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2061 		}
2062 	}
2063 
2064 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2065 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2066 		atomic_set(&phys->vsync_cnt, 0);
2067 		atomic_set(&phys->underrun_cnt, 0);
2068 	}
2069 	mutex_unlock(&dpu_enc->enc_lock);
2070 
2071 	return ret;
2072 }
2073 
2074 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2075 {
2076 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2077 			frame_done_timer);
2078 	struct drm_encoder *drm_enc = &dpu_enc->base;
2079 	u32 event;
2080 
2081 	if (!drm_enc->dev) {
2082 		DPU_ERROR("invalid parameters\n");
2083 		return;
2084 	}
2085 
2086 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2087 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2088 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2089 		return;
2090 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2091 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2092 		return;
2093 	}
2094 
2095 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2096 
2097 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2098 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2099 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2100 }
2101 
2102 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2103 	.mode_set = dpu_encoder_virt_mode_set,
2104 	.disable = dpu_encoder_virt_disable,
2105 	.enable = dpu_kms_encoder_enable,
2106 	.atomic_check = dpu_encoder_virt_atomic_check,
2107 
2108 	/* This is called by dpu_kms_encoder_enable */
2109 	.commit = dpu_encoder_virt_enable,
2110 };
2111 
2112 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2113 		.destroy = dpu_encoder_destroy,
2114 		.late_register = dpu_encoder_late_register,
2115 		.early_unregister = dpu_encoder_early_unregister,
2116 };
2117 
2118 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2119 		struct msm_display_info *disp_info)
2120 {
2121 	struct msm_drm_private *priv = dev->dev_private;
2122 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2123 	struct drm_encoder *drm_enc = NULL;
2124 	struct dpu_encoder_virt *dpu_enc = NULL;
2125 	int ret = 0;
2126 
2127 	dpu_enc = to_dpu_encoder_virt(enc);
2128 
2129 	mutex_init(&dpu_enc->enc_lock);
2130 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2131 	if (ret)
2132 		goto fail;
2133 
2134 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2135 	timer_setup(&dpu_enc->frame_done_timer,
2136 			dpu_encoder_frame_done_timeout, 0);
2137 
2138 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2139 		timer_setup(&dpu_enc->vsync_event_timer,
2140 				dpu_encoder_vsync_event_handler,
2141 				0);
2142 
2143 
2144 	mutex_init(&dpu_enc->rc_lock);
2145 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2146 			dpu_encoder_off_work);
2147 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2148 
2149 	kthread_init_work(&dpu_enc->vsync_event_work,
2150 			dpu_encoder_vsync_event_work_handler);
2151 
2152 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2153 
2154 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2155 
2156 	return ret;
2157 
2158 fail:
2159 	DPU_ERROR("failed to create encoder\n");
2160 	if (drm_enc)
2161 		dpu_encoder_destroy(drm_enc);
2162 
2163 	return ret;
2164 
2165 
2166 }
2167 
2168 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2169 		int drm_enc_mode)
2170 {
2171 	struct dpu_encoder_virt *dpu_enc = NULL;
2172 	int rc = 0;
2173 
2174 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2175 	if (!dpu_enc)
2176 		return ERR_PTR(ENOMEM);
2177 
2178 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2179 			drm_enc_mode, NULL);
2180 	if (rc) {
2181 		devm_kfree(dev->dev, dpu_enc);
2182 		return ERR_PTR(rc);
2183 	}
2184 
2185 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2186 
2187 	spin_lock_init(&dpu_enc->enc_spinlock);
2188 	dpu_enc->enabled = false;
2189 
2190 	return &dpu_enc->base;
2191 }
2192 
2193 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2194 	enum msm_event_wait event)
2195 {
2196 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2197 	struct dpu_encoder_virt *dpu_enc = NULL;
2198 	int i, ret = 0;
2199 
2200 	if (!drm_enc) {
2201 		DPU_ERROR("invalid encoder\n");
2202 		return -EINVAL;
2203 	}
2204 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2205 	DPU_DEBUG_ENC(dpu_enc, "\n");
2206 
2207 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2208 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2209 
2210 		switch (event) {
2211 		case MSM_ENC_COMMIT_DONE:
2212 			fn_wait = phys->ops.wait_for_commit_done;
2213 			break;
2214 		case MSM_ENC_TX_COMPLETE:
2215 			fn_wait = phys->ops.wait_for_tx_complete;
2216 			break;
2217 		case MSM_ENC_VBLANK:
2218 			fn_wait = phys->ops.wait_for_vblank;
2219 			break;
2220 		default:
2221 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2222 					event);
2223 			return -EINVAL;
2224 		}
2225 
2226 		if (fn_wait) {
2227 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2228 			ret = fn_wait(phys);
2229 			DPU_ATRACE_END("wait_for_completion_event");
2230 			if (ret)
2231 				return ret;
2232 		}
2233 	}
2234 
2235 	return ret;
2236 }
2237 
2238 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2239 {
2240 	struct dpu_encoder_virt *dpu_enc = NULL;
2241 
2242 	if (!encoder) {
2243 		DPU_ERROR("invalid encoder\n");
2244 		return INTF_MODE_NONE;
2245 	}
2246 	dpu_enc = to_dpu_encoder_virt(encoder);
2247 
2248 	if (dpu_enc->cur_master)
2249 		return dpu_enc->cur_master->intf_mode;
2250 
2251 	if (dpu_enc->num_phys_encs)
2252 		return dpu_enc->phys_encs[0]->intf_mode;
2253 
2254 	return INTF_MODE_NONE;
2255 }
2256