1 /* 2 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 20 #include <linux/kthread.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include "msm_drv.h" 25 #include "dpu_kms.h" 26 #include <drm/drm_crtc.h> 27 #include <drm/drm_crtc_helper.h> 28 #include "dpu_hwio.h" 29 #include "dpu_hw_catalog.h" 30 #include "dpu_hw_intf.h" 31 #include "dpu_hw_ctl.h" 32 #include "dpu_formats.h" 33 #include "dpu_encoder_phys.h" 34 #include "dpu_crtc.h" 35 #include "dpu_trace.h" 36 #include "dpu_core_irq.h" 37 38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 43 44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 45 (p) ? (p)->parent->base.id : -1, \ 46 (p) ? (p)->intf_idx - INTF_0 : -1, \ 47 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 48 ##__VA_ARGS__) 49 50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 51 (p) ? (p)->parent->base.id : -1, \ 52 (p) ? (p)->intf_idx - INTF_0 : -1, \ 53 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 54 ##__VA_ARGS__) 55 56 /* 57 * Two to anticipate panels that can do cmd/vid dynamic switching 58 * plan is to create all possible physical encoder types, and switch between 59 * them at runtime 60 */ 61 #define NUM_PHYS_ENCODER_TYPES 2 62 63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 64 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 65 66 #define MAX_CHANNELS_PER_ENC 2 67 68 #define IDLE_SHORT_TIMEOUT 1 69 70 #define MAX_VDISPLAY_SPLIT 1080 71 72 /** 73 * enum dpu_enc_rc_events - events for resource control state machine 74 * @DPU_ENC_RC_EVENT_KICKOFF: 75 * This event happens at NORMAL priority. 76 * Event that signals the start of the transfer. When this event is 77 * received, enable MDP/DSI core clocks. Regardless of the previous 78 * state, the resource should be in ON state at the end of this event. 79 * @DPU_ENC_RC_EVENT_FRAME_DONE: 80 * This event happens at INTERRUPT level. 81 * Event signals the end of the data transfer after the PP FRAME_DONE 82 * event. At the end of this event, a delayed work is scheduled to go to 83 * IDLE_PC state after IDLE_TIMEOUT time. 84 * @DPU_ENC_RC_EVENT_PRE_STOP: 85 * This event happens at NORMAL priority. 86 * This event, when received during the ON state, leave the RC STATE 87 * in the PRE_OFF state. It should be followed by the STOP event as 88 * part of encoder disable. 89 * If received during IDLE or OFF states, it will do nothing. 90 * @DPU_ENC_RC_EVENT_STOP: 91 * This event happens at NORMAL priority. 92 * When this event is received, disable all the MDP/DSI core clocks, and 93 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 94 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 95 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 96 * Resource state should be in OFF at the end of the event. 97 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 98 * This event happens at NORMAL priority from a work item. 99 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 100 * This would disable MDP/DSI core clocks and change the resource state 101 * to IDLE. 102 */ 103 enum dpu_enc_rc_events { 104 DPU_ENC_RC_EVENT_KICKOFF = 1, 105 DPU_ENC_RC_EVENT_FRAME_DONE, 106 DPU_ENC_RC_EVENT_PRE_STOP, 107 DPU_ENC_RC_EVENT_STOP, 108 DPU_ENC_RC_EVENT_ENTER_IDLE 109 }; 110 111 /* 112 * enum dpu_enc_rc_states - states that the resource control maintains 113 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 114 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 115 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 116 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 117 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 118 */ 119 enum dpu_enc_rc_states { 120 DPU_ENC_RC_STATE_OFF, 121 DPU_ENC_RC_STATE_PRE_OFF, 122 DPU_ENC_RC_STATE_ON, 123 DPU_ENC_RC_STATE_IDLE 124 }; 125 126 /** 127 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 128 * encoders. Virtual encoder manages one "logical" display. Physical 129 * encoders manage one intf block, tied to a specific panel/sub-panel. 130 * Virtual encoder defers as much as possible to the physical encoders. 131 * Virtual encoder registers itself with the DRM Framework as the encoder. 132 * @base: drm_encoder base class for registration with DRM 133 * @enc_spin_lock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 134 * @bus_scaling_client: Client handle to the bus scaling interface 135 * @num_phys_encs: Actual number of physical encoders contained. 136 * @phys_encs: Container of physical encoders managed. 137 * @cur_master: Pointer to the current master in this mode. Optimization 138 * Only valid after enable. Cleared as disable. 139 * @hw_pp Handle to the pingpong blocks used for the display. No. 140 * pingpong blocks can be different than num_phys_encs. 141 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 142 * for partial update right-only cases, such as pingpong 143 * split where virtual pingpong does not generate IRQs 144 * @crtc_vblank_cb: Callback into the upper layer / CRTC for 145 * notification of the VBLANK 146 * @crtc_vblank_cb_data: Data from upper layer for VBLANK notification 147 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 148 * all CTL paths 149 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 150 * @debugfs_root: Debug file system root file node 151 * @enc_lock: Lock around physical encoder create/destroy and 152 access. 153 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 154 * busy processing current command. 155 * Bit0 = phys_encs[0] etc. 156 * @crtc_frame_event_cb: callback handler for frame event 157 * @crtc_frame_event_cb_data: callback handler private data 158 * @frame_done_timeout: frame done timeout in Hz 159 * @frame_done_timer: watchdog timer for frame done event 160 * @vsync_event_timer: vsync timer 161 * @disp_info: local copy of msm_display_info struct 162 * @idle_pc_supported: indicate if idle power collaps is supported 163 * @rc_lock: resource control mutex lock to protect 164 * virt encoder over various state changes 165 * @rc_state: resource controller state 166 * @delayed_off_work: delayed worker to schedule disabling of 167 * clks and resources after IDLE_TIMEOUT time. 168 * @vsync_event_work: worker to handle vsync event for autorefresh 169 * @topology: topology of the display 170 * @mode_set_complete: flag to indicate modeset completion 171 * @idle_timeout: idle timeout duration in milliseconds 172 */ 173 struct dpu_encoder_virt { 174 struct drm_encoder base; 175 spinlock_t enc_spinlock; 176 uint32_t bus_scaling_client; 177 178 unsigned int num_phys_encs; 179 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 180 struct dpu_encoder_phys *cur_master; 181 struct dpu_encoder_phys *cur_slave; 182 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 183 184 bool intfs_swapped; 185 186 void (*crtc_vblank_cb)(void *); 187 void *crtc_vblank_cb_data; 188 189 struct dentry *debugfs_root; 190 struct mutex enc_lock; 191 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 192 void (*crtc_frame_event_cb)(void *, u32 event); 193 void *crtc_frame_event_cb_data; 194 195 atomic_t frame_done_timeout; 196 struct timer_list frame_done_timer; 197 struct timer_list vsync_event_timer; 198 199 struct msm_display_info disp_info; 200 201 bool idle_pc_supported; 202 struct mutex rc_lock; 203 enum dpu_enc_rc_states rc_state; 204 struct kthread_delayed_work delayed_off_work; 205 struct kthread_work vsync_event_work; 206 struct msm_display_topology topology; 207 bool mode_set_complete; 208 209 u32 idle_timeout; 210 }; 211 212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 213 static inline int _dpu_encoder_power_enable(struct dpu_encoder_virt *dpu_enc, 214 bool enable) 215 { 216 struct drm_encoder *drm_enc; 217 struct msm_drm_private *priv; 218 struct dpu_kms *dpu_kms; 219 220 if (!dpu_enc) { 221 DPU_ERROR("invalid dpu enc\n"); 222 return -EINVAL; 223 } 224 225 drm_enc = &dpu_enc->base; 226 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 227 DPU_ERROR("drm device invalid\n"); 228 return -EINVAL; 229 } 230 231 priv = drm_enc->dev->dev_private; 232 if (!priv->kms) { 233 DPU_ERROR("invalid kms\n"); 234 return -EINVAL; 235 } 236 237 dpu_kms = to_dpu_kms(priv->kms); 238 239 if (enable) 240 pm_runtime_get_sync(&dpu_kms->pdev->dev); 241 else 242 pm_runtime_put_sync(&dpu_kms->pdev->dev); 243 244 return 0; 245 } 246 247 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 248 enum dpu_intr_idx intr_idx) 249 { 250 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 251 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 252 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 253 254 if (phys_enc->parent_ops->handle_frame_done) 255 phys_enc->parent_ops->handle_frame_done( 256 phys_enc->parent, phys_enc, 257 DPU_ENCODER_FRAME_EVENT_ERROR); 258 } 259 260 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 261 int32_t hw_id, struct dpu_encoder_wait_info *info); 262 263 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 264 enum dpu_intr_idx intr_idx, 265 struct dpu_encoder_wait_info *wait_info) 266 { 267 struct dpu_encoder_irq *irq; 268 u32 irq_status; 269 int ret; 270 271 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 272 DPU_ERROR("invalid params\n"); 273 return -EINVAL; 274 } 275 irq = &phys_enc->irq[intr_idx]; 276 277 /* note: do master / slave checking outside */ 278 279 /* return EWOULDBLOCK since we know the wait isn't necessary */ 280 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 281 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 282 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 283 irq->irq_idx); 284 return -EWOULDBLOCK; 285 } 286 287 if (irq->irq_idx < 0) { 288 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 290 irq->name); 291 return 0; 292 } 293 294 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 295 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 296 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 297 atomic_read(wait_info->atomic_cnt)); 298 299 ret = dpu_encoder_helper_wait_event_timeout( 300 DRMID(phys_enc->parent), 301 irq->hw_idx, 302 wait_info); 303 304 if (ret <= 0) { 305 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 306 irq->irq_idx, true); 307 if (irq_status) { 308 unsigned long flags; 309 310 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 311 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 312 DRMID(phys_enc->parent), intr_idx, 313 irq->hw_idx, irq->irq_idx, 314 phys_enc->hw_pp->idx - PINGPONG_0, 315 atomic_read(wait_info->atomic_cnt)); 316 local_irq_save(flags); 317 irq->cb.func(phys_enc, irq->irq_idx); 318 local_irq_restore(flags); 319 ret = 0; 320 } else { 321 ret = -ETIMEDOUT; 322 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 323 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 324 DRMID(phys_enc->parent), intr_idx, 325 irq->hw_idx, irq->irq_idx, 326 phys_enc->hw_pp->idx - PINGPONG_0, 327 atomic_read(wait_info->atomic_cnt)); 328 } 329 } else { 330 ret = 0; 331 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 332 intr_idx, irq->hw_idx, irq->irq_idx, 333 phys_enc->hw_pp->idx - PINGPONG_0, 334 atomic_read(wait_info->atomic_cnt)); 335 } 336 337 return ret; 338 } 339 340 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 341 enum dpu_intr_idx intr_idx) 342 { 343 struct dpu_encoder_irq *irq; 344 int ret = 0; 345 346 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 347 DPU_ERROR("invalid params\n"); 348 return -EINVAL; 349 } 350 irq = &phys_enc->irq[intr_idx]; 351 352 if (irq->irq_idx >= 0) { 353 DPU_DEBUG_PHYS(phys_enc, 354 "skipping already registered irq %s type %d\n", 355 irq->name, irq->intr_type); 356 return 0; 357 } 358 359 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 360 irq->intr_type, irq->hw_idx); 361 if (irq->irq_idx < 0) { 362 DPU_ERROR_PHYS(phys_enc, 363 "failed to lookup IRQ index for %s type:%d\n", 364 irq->name, irq->intr_type); 365 return -EINVAL; 366 } 367 368 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 369 &irq->cb); 370 if (ret) { 371 DPU_ERROR_PHYS(phys_enc, 372 "failed to register IRQ callback for %s\n", 373 irq->name); 374 irq->irq_idx = -EINVAL; 375 return ret; 376 } 377 378 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 379 if (ret) { 380 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 382 irq->irq_idx); 383 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 384 irq->irq_idx, &irq->cb); 385 irq->irq_idx = -EINVAL; 386 return ret; 387 } 388 389 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 390 irq->hw_idx, irq->irq_idx); 391 392 return ret; 393 } 394 395 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 396 enum dpu_intr_idx intr_idx) 397 { 398 struct dpu_encoder_irq *irq; 399 int ret; 400 401 if (!phys_enc) { 402 DPU_ERROR("invalid encoder\n"); 403 return -EINVAL; 404 } 405 irq = &phys_enc->irq[intr_idx]; 406 407 /* silently skip irqs that weren't registered */ 408 if (irq->irq_idx < 0) { 409 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 410 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 411 irq->irq_idx); 412 return 0; 413 } 414 415 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 416 if (ret) { 417 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 418 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 419 irq->irq_idx, ret); 420 } 421 422 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 423 &irq->cb); 424 if (ret) { 425 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 426 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 427 irq->irq_idx, ret); 428 } 429 430 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 431 irq->hw_idx, irq->irq_idx); 432 433 irq->irq_idx = -EINVAL; 434 435 return 0; 436 } 437 438 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 439 struct dpu_encoder_hw_resources *hw_res) 440 { 441 struct dpu_encoder_virt *dpu_enc = NULL; 442 int i = 0; 443 444 dpu_enc = to_dpu_encoder_virt(drm_enc); 445 DPU_DEBUG_ENC(dpu_enc, "\n"); 446 447 /* Query resources used by phys encs, expected to be without overlap */ 448 memset(hw_res, 0, sizeof(*hw_res)); 449 450 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 451 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 452 453 if (phys && phys->ops.get_hw_resources) 454 phys->ops.get_hw_resources(phys, hw_res); 455 } 456 } 457 458 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 459 { 460 struct dpu_encoder_virt *dpu_enc = NULL; 461 int i = 0; 462 463 if (!drm_enc) { 464 DPU_ERROR("invalid encoder\n"); 465 return; 466 } 467 468 dpu_enc = to_dpu_encoder_virt(drm_enc); 469 DPU_DEBUG_ENC(dpu_enc, "\n"); 470 471 mutex_lock(&dpu_enc->enc_lock); 472 473 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 474 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 475 476 if (phys && phys->ops.destroy) { 477 phys->ops.destroy(phys); 478 --dpu_enc->num_phys_encs; 479 dpu_enc->phys_encs[i] = NULL; 480 } 481 } 482 483 if (dpu_enc->num_phys_encs) 484 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 485 dpu_enc->num_phys_encs); 486 dpu_enc->num_phys_encs = 0; 487 mutex_unlock(&dpu_enc->enc_lock); 488 489 drm_encoder_cleanup(drm_enc); 490 mutex_destroy(&dpu_enc->enc_lock); 491 492 kfree(dpu_enc); 493 } 494 495 void dpu_encoder_helper_split_config( 496 struct dpu_encoder_phys *phys_enc, 497 enum dpu_intf interface) 498 { 499 struct dpu_encoder_virt *dpu_enc; 500 struct split_pipe_cfg cfg = { 0 }; 501 struct dpu_hw_mdp *hw_mdptop; 502 struct msm_display_info *disp_info; 503 504 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 505 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 506 return; 507 } 508 509 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 510 hw_mdptop = phys_enc->hw_mdptop; 511 disp_info = &dpu_enc->disp_info; 512 513 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 514 return; 515 516 /** 517 * disable split modes since encoder will be operating in as the only 518 * encoder, either for the entire use case in the case of, for example, 519 * single DSI, or for this frame in the case of left/right only partial 520 * update. 521 */ 522 if (phys_enc->split_role == ENC_ROLE_SOLO) { 523 if (hw_mdptop->ops.setup_split_pipe) 524 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 525 return; 526 } 527 528 cfg.en = true; 529 cfg.mode = phys_enc->intf_mode; 530 cfg.intf = interface; 531 532 if (cfg.en && phys_enc->ops.needs_single_flush && 533 phys_enc->ops.needs_single_flush(phys_enc)) 534 cfg.split_flush_en = true; 535 536 if (phys_enc->split_role == ENC_ROLE_MASTER) { 537 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 538 539 if (hw_mdptop->ops.setup_split_pipe) 540 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 541 } 542 } 543 544 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 545 struct drm_display_mode *adj_mode) 546 { 547 struct drm_display_mode *cur_mode; 548 549 if (!connector || !adj_mode) 550 return; 551 552 list_for_each_entry(cur_mode, &connector->modes, head) { 553 if (cur_mode->vdisplay == adj_mode->vdisplay && 554 cur_mode->hdisplay == adj_mode->hdisplay && 555 cur_mode->vrefresh == adj_mode->vrefresh) { 556 adj_mode->private = cur_mode->private; 557 adj_mode->private_flags |= cur_mode->private_flags; 558 } 559 } 560 } 561 562 static struct msm_display_topology dpu_encoder_get_topology( 563 struct dpu_encoder_virt *dpu_enc, 564 struct dpu_kms *dpu_kms, 565 struct drm_display_mode *mode) 566 { 567 struct msm_display_topology topology; 568 int i, intf_count = 0; 569 570 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 571 if (dpu_enc->phys_encs[i]) 572 intf_count++; 573 574 /* User split topology for width > 1080 */ 575 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 576 topology.num_enc = 0; 577 topology.num_intf = intf_count; 578 579 return topology; 580 } 581 static int dpu_encoder_virt_atomic_check( 582 struct drm_encoder *drm_enc, 583 struct drm_crtc_state *crtc_state, 584 struct drm_connector_state *conn_state) 585 { 586 struct dpu_encoder_virt *dpu_enc; 587 struct msm_drm_private *priv; 588 struct dpu_kms *dpu_kms; 589 const struct drm_display_mode *mode; 590 struct drm_display_mode *adj_mode; 591 struct msm_display_topology topology; 592 int i = 0; 593 int ret = 0; 594 595 if (!drm_enc || !crtc_state || !conn_state) { 596 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 597 drm_enc != 0, crtc_state != 0, conn_state != 0); 598 return -EINVAL; 599 } 600 601 dpu_enc = to_dpu_encoder_virt(drm_enc); 602 DPU_DEBUG_ENC(dpu_enc, "\n"); 603 604 priv = drm_enc->dev->dev_private; 605 dpu_kms = to_dpu_kms(priv->kms); 606 mode = &crtc_state->mode; 607 adj_mode = &crtc_state->adjusted_mode; 608 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 609 610 /* 611 * display drivers may populate private fields of the drm display mode 612 * structure while registering possible modes of a connector with DRM. 613 * These private fields are not populated back while DRM invokes 614 * the mode_set callbacks. This module retrieves and populates the 615 * private fields of the given mode. 616 */ 617 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 618 619 /* perform atomic check on the first physical encoder (master) */ 620 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 621 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 622 623 if (phys && phys->ops.atomic_check) 624 ret = phys->ops.atomic_check(phys, crtc_state, 625 conn_state); 626 else if (phys && phys->ops.mode_fixup) 627 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 628 ret = -EINVAL; 629 630 if (ret) { 631 DPU_ERROR_ENC(dpu_enc, 632 "mode unsupported, phys idx %d\n", i); 633 break; 634 } 635 } 636 637 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 638 639 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 640 if (!ret) { 641 /* 642 * Avoid reserving resources when mode set is pending. Topology 643 * info may not be available to complete reservation. 644 */ 645 if (drm_atomic_crtc_needs_modeset(crtc_state) 646 && dpu_enc->mode_set_complete) { 647 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 648 topology, true); 649 dpu_enc->mode_set_complete = false; 650 } 651 } 652 653 if (!ret) 654 drm_mode_set_crtcinfo(adj_mode, 0); 655 656 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 657 adj_mode->private_flags); 658 659 return ret; 660 } 661 662 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 663 struct msm_display_info *disp_info) 664 { 665 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 666 struct msm_drm_private *priv; 667 struct dpu_kms *dpu_kms; 668 struct dpu_hw_mdp *hw_mdptop; 669 struct drm_encoder *drm_enc; 670 int i; 671 672 if (!dpu_enc || !disp_info) { 673 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 674 dpu_enc != NULL, disp_info != NULL); 675 return; 676 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 677 DPU_ERROR("invalid num phys enc %d/%d\n", 678 dpu_enc->num_phys_encs, 679 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 680 return; 681 } 682 683 drm_enc = &dpu_enc->base; 684 /* this pointers are checked in virt_enable_helper */ 685 priv = drm_enc->dev->dev_private; 686 687 dpu_kms = to_dpu_kms(priv->kms); 688 if (!dpu_kms) { 689 DPU_ERROR("invalid dpu_kms\n"); 690 return; 691 } 692 693 hw_mdptop = dpu_kms->hw_mdp; 694 if (!hw_mdptop) { 695 DPU_ERROR("invalid mdptop\n"); 696 return; 697 } 698 699 if (hw_mdptop->ops.setup_vsync_source && 700 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 701 for (i = 0; i < dpu_enc->num_phys_encs; i++) 702 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 703 704 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 705 if (disp_info->is_te_using_watchdog_timer) 706 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 707 else 708 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 709 710 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 711 } 712 } 713 714 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 715 { 716 struct dpu_encoder_virt *dpu_enc; 717 int i; 718 719 if (!drm_enc) { 720 DPU_ERROR("invalid encoder\n"); 721 return; 722 } 723 724 dpu_enc = to_dpu_encoder_virt(drm_enc); 725 726 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 727 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 728 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 729 730 if (phys && phys->ops.irq_control) 731 phys->ops.irq_control(phys, enable); 732 } 733 734 } 735 736 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 737 bool enable) 738 { 739 struct msm_drm_private *priv; 740 struct dpu_kms *dpu_kms; 741 struct dpu_encoder_virt *dpu_enc; 742 743 dpu_enc = to_dpu_encoder_virt(drm_enc); 744 priv = drm_enc->dev->dev_private; 745 dpu_kms = to_dpu_kms(priv->kms); 746 747 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 748 749 if (!dpu_enc->cur_master) { 750 DPU_ERROR("encoder master not set\n"); 751 return; 752 } 753 754 if (enable) { 755 /* enable DPU core clks */ 756 pm_runtime_get_sync(&dpu_kms->pdev->dev); 757 758 /* enable all the irq */ 759 _dpu_encoder_irq_control(drm_enc, true); 760 761 } else { 762 /* disable all the irq */ 763 _dpu_encoder_irq_control(drm_enc, false); 764 765 /* disable DPU core clks */ 766 pm_runtime_put_sync(&dpu_kms->pdev->dev); 767 } 768 769 } 770 771 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 772 u32 sw_event) 773 { 774 struct dpu_encoder_virt *dpu_enc; 775 struct msm_drm_private *priv; 776 struct msm_drm_thread *disp_thread; 777 bool is_vid_mode = false; 778 779 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 780 !drm_enc->crtc) { 781 DPU_ERROR("invalid parameters\n"); 782 return -EINVAL; 783 } 784 dpu_enc = to_dpu_encoder_virt(drm_enc); 785 priv = drm_enc->dev->dev_private; 786 is_vid_mode = dpu_enc->disp_info.capabilities & 787 MSM_DISPLAY_CAP_VID_MODE; 788 789 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) { 790 DPU_ERROR("invalid crtc index\n"); 791 return -EINVAL; 792 } 793 disp_thread = &priv->disp_thread[drm_enc->crtc->index]; 794 795 /* 796 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 797 * events and return early for other events (ie wb display). 798 */ 799 if (!dpu_enc->idle_pc_supported && 800 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 801 sw_event != DPU_ENC_RC_EVENT_STOP && 802 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 803 return 0; 804 805 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 806 dpu_enc->rc_state, "begin"); 807 808 switch (sw_event) { 809 case DPU_ENC_RC_EVENT_KICKOFF: 810 /* cancel delayed off work, if any */ 811 if (kthread_cancel_delayed_work_sync( 812 &dpu_enc->delayed_off_work)) 813 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 814 sw_event); 815 816 mutex_lock(&dpu_enc->rc_lock); 817 818 /* return if the resource control is already in ON state */ 819 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 820 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 821 DRMID(drm_enc), sw_event); 822 mutex_unlock(&dpu_enc->rc_lock); 823 return 0; 824 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 825 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 826 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 827 DRMID(drm_enc), sw_event, 828 dpu_enc->rc_state); 829 mutex_unlock(&dpu_enc->rc_lock); 830 return -EINVAL; 831 } 832 833 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 834 _dpu_encoder_irq_control(drm_enc, true); 835 else 836 _dpu_encoder_resource_control_helper(drm_enc, true); 837 838 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 839 840 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 841 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 842 "kickoff"); 843 844 mutex_unlock(&dpu_enc->rc_lock); 845 break; 846 847 case DPU_ENC_RC_EVENT_FRAME_DONE: 848 /* 849 * mutex lock is not used as this event happens at interrupt 850 * context. And locking is not required as, the other events 851 * like KICKOFF and STOP does a wait-for-idle before executing 852 * the resource_control 853 */ 854 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 855 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 856 DRMID(drm_enc), sw_event, 857 dpu_enc->rc_state); 858 return -EINVAL; 859 } 860 861 /* 862 * schedule off work item only when there are no 863 * frames pending 864 */ 865 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 866 DRM_DEBUG_KMS("id:%d skip schedule work\n", 867 DRMID(drm_enc)); 868 return 0; 869 } 870 871 kthread_queue_delayed_work( 872 &disp_thread->worker, 873 &dpu_enc->delayed_off_work, 874 msecs_to_jiffies(dpu_enc->idle_timeout)); 875 876 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 877 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 878 "frame done"); 879 break; 880 881 case DPU_ENC_RC_EVENT_PRE_STOP: 882 /* cancel delayed off work, if any */ 883 if (kthread_cancel_delayed_work_sync( 884 &dpu_enc->delayed_off_work)) 885 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 886 sw_event); 887 888 mutex_lock(&dpu_enc->rc_lock); 889 890 if (is_vid_mode && 891 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 892 _dpu_encoder_irq_control(drm_enc, true); 893 } 894 /* skip if is already OFF or IDLE, resources are off already */ 895 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 896 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 897 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 898 DRMID(drm_enc), sw_event, 899 dpu_enc->rc_state); 900 mutex_unlock(&dpu_enc->rc_lock); 901 return 0; 902 } 903 904 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 905 906 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 907 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 908 "pre stop"); 909 910 mutex_unlock(&dpu_enc->rc_lock); 911 break; 912 913 case DPU_ENC_RC_EVENT_STOP: 914 mutex_lock(&dpu_enc->rc_lock); 915 916 /* return if the resource control is already in OFF state */ 917 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 918 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 919 DRMID(drm_enc), sw_event); 920 mutex_unlock(&dpu_enc->rc_lock); 921 return 0; 922 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 923 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 924 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 925 mutex_unlock(&dpu_enc->rc_lock); 926 return -EINVAL; 927 } 928 929 /** 930 * expect to arrive here only if in either idle state or pre-off 931 * and in IDLE state the resources are already disabled 932 */ 933 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 934 _dpu_encoder_resource_control_helper(drm_enc, false); 935 936 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 937 938 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 939 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 940 "stop"); 941 942 mutex_unlock(&dpu_enc->rc_lock); 943 break; 944 945 case DPU_ENC_RC_EVENT_ENTER_IDLE: 946 mutex_lock(&dpu_enc->rc_lock); 947 948 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 949 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 950 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 951 mutex_unlock(&dpu_enc->rc_lock); 952 return 0; 953 } 954 955 /* 956 * if we are in ON but a frame was just kicked off, 957 * ignore the IDLE event, it's probably a stale timer event 958 */ 959 if (dpu_enc->frame_busy_mask[0]) { 960 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 961 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 962 mutex_unlock(&dpu_enc->rc_lock); 963 return 0; 964 } 965 966 if (is_vid_mode) 967 _dpu_encoder_irq_control(drm_enc, false); 968 else 969 _dpu_encoder_resource_control_helper(drm_enc, false); 970 971 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 972 973 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 974 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 975 "idle"); 976 977 mutex_unlock(&dpu_enc->rc_lock); 978 break; 979 980 default: 981 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 982 sw_event); 983 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 984 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 985 "error"); 986 break; 987 } 988 989 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 990 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 991 "end"); 992 return 0; 993 } 994 995 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 996 struct drm_display_mode *mode, 997 struct drm_display_mode *adj_mode) 998 { 999 struct dpu_encoder_virt *dpu_enc; 1000 struct msm_drm_private *priv; 1001 struct dpu_kms *dpu_kms; 1002 struct list_head *connector_list; 1003 struct drm_connector *conn = NULL, *conn_iter; 1004 struct dpu_rm_hw_iter pp_iter, ctl_iter; 1005 struct msm_display_topology topology; 1006 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 1007 int i = 0, ret; 1008 1009 if (!drm_enc) { 1010 DPU_ERROR("invalid encoder\n"); 1011 return; 1012 } 1013 1014 dpu_enc = to_dpu_encoder_virt(drm_enc); 1015 DPU_DEBUG_ENC(dpu_enc, "\n"); 1016 1017 priv = drm_enc->dev->dev_private; 1018 dpu_kms = to_dpu_kms(priv->kms); 1019 connector_list = &dpu_kms->dev->mode_config.connector_list; 1020 1021 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1022 1023 list_for_each_entry(conn_iter, connector_list, head) 1024 if (conn_iter->encoder == drm_enc) 1025 conn = conn_iter; 1026 1027 if (!conn) { 1028 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 1029 return; 1030 } else if (!conn->state) { 1031 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 1032 return; 1033 } 1034 1035 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 1036 1037 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 1038 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state, 1039 topology, false); 1040 if (ret) { 1041 DPU_ERROR_ENC(dpu_enc, 1042 "failed to reserve hw resources, %d\n", ret); 1043 return; 1044 } 1045 1046 dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1047 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1048 dpu_enc->hw_pp[i] = NULL; 1049 if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter)) 1050 break; 1051 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw; 1052 } 1053 1054 dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1055 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1056 if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter)) 1057 break; 1058 hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw; 1059 } 1060 1061 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1062 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1063 1064 if (phys) { 1065 if (!dpu_enc->hw_pp[i]) { 1066 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1067 "at idx: %d\n", i); 1068 return; 1069 } 1070 1071 if (!hw_ctl[i]) { 1072 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1073 "at idx: %d\n", i); 1074 return; 1075 } 1076 1077 phys->hw_pp = dpu_enc->hw_pp[i]; 1078 phys->hw_ctl = hw_ctl[i]; 1079 1080 phys->connector = conn->state->connector; 1081 if (phys->ops.mode_set) 1082 phys->ops.mode_set(phys, mode, adj_mode); 1083 } 1084 } 1085 1086 dpu_enc->mode_set_complete = true; 1087 } 1088 1089 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1090 { 1091 struct dpu_encoder_virt *dpu_enc = NULL; 1092 struct msm_drm_private *priv; 1093 struct dpu_kms *dpu_kms; 1094 1095 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1096 DPU_ERROR("invalid parameters\n"); 1097 return; 1098 } 1099 1100 priv = drm_enc->dev->dev_private; 1101 dpu_kms = to_dpu_kms(priv->kms); 1102 if (!dpu_kms) { 1103 DPU_ERROR("invalid dpu_kms\n"); 1104 return; 1105 } 1106 1107 dpu_enc = to_dpu_encoder_virt(drm_enc); 1108 if (!dpu_enc || !dpu_enc->cur_master) { 1109 DPU_ERROR("invalid dpu encoder/master\n"); 1110 return; 1111 } 1112 1113 if (dpu_enc->cur_master->hw_mdptop && 1114 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1115 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1116 dpu_enc->cur_master->hw_mdptop, 1117 dpu_kms->catalog); 1118 1119 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1120 } 1121 1122 void dpu_encoder_virt_restore(struct drm_encoder *drm_enc) 1123 { 1124 struct dpu_encoder_virt *dpu_enc = NULL; 1125 int i; 1126 1127 if (!drm_enc) { 1128 DPU_ERROR("invalid encoder\n"); 1129 return; 1130 } 1131 dpu_enc = to_dpu_encoder_virt(drm_enc); 1132 1133 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1134 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1135 1136 if (phys && (phys != dpu_enc->cur_master) && phys->ops.restore) 1137 phys->ops.restore(phys); 1138 } 1139 1140 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1141 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1142 1143 _dpu_encoder_virt_enable_helper(drm_enc); 1144 } 1145 1146 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1147 { 1148 struct dpu_encoder_virt *dpu_enc = NULL; 1149 int ret = 0; 1150 struct drm_display_mode *cur_mode = NULL; 1151 1152 if (!drm_enc) { 1153 DPU_ERROR("invalid encoder\n"); 1154 return; 1155 } 1156 dpu_enc = to_dpu_encoder_virt(drm_enc); 1157 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1158 1159 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1160 cur_mode->vdisplay); 1161 1162 /* always enable slave encoder before master */ 1163 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1164 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1165 1166 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1167 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1168 1169 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1170 if (ret) { 1171 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1172 ret); 1173 return; 1174 } 1175 1176 _dpu_encoder_virt_enable_helper(drm_enc); 1177 } 1178 1179 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1180 { 1181 struct dpu_encoder_virt *dpu_enc = NULL; 1182 struct msm_drm_private *priv; 1183 struct dpu_kms *dpu_kms; 1184 struct drm_display_mode *mode; 1185 int i = 0; 1186 1187 if (!drm_enc) { 1188 DPU_ERROR("invalid encoder\n"); 1189 return; 1190 } else if (!drm_enc->dev) { 1191 DPU_ERROR("invalid dev\n"); 1192 return; 1193 } else if (!drm_enc->dev->dev_private) { 1194 DPU_ERROR("invalid dev_private\n"); 1195 return; 1196 } 1197 1198 mode = &drm_enc->crtc->state->adjusted_mode; 1199 1200 dpu_enc = to_dpu_encoder_virt(drm_enc); 1201 DPU_DEBUG_ENC(dpu_enc, "\n"); 1202 1203 priv = drm_enc->dev->dev_private; 1204 dpu_kms = to_dpu_kms(priv->kms); 1205 1206 trace_dpu_enc_disable(DRMID(drm_enc)); 1207 1208 /* wait for idle */ 1209 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1210 1211 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1212 1213 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1214 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1215 1216 if (phys && phys->ops.disable) 1217 phys->ops.disable(phys); 1218 } 1219 1220 /* after phys waits for frame-done, should be no more frames pending */ 1221 if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 1222 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1223 del_timer_sync(&dpu_enc->frame_done_timer); 1224 } 1225 1226 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1227 1228 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1229 if (dpu_enc->phys_encs[i]) 1230 dpu_enc->phys_encs[i]->connector = NULL; 1231 } 1232 1233 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1234 1235 dpu_rm_release(&dpu_kms->rm, drm_enc); 1236 } 1237 1238 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1239 enum dpu_intf_type type, u32 controller_id) 1240 { 1241 int i = 0; 1242 1243 for (i = 0; i < catalog->intf_count; i++) { 1244 if (catalog->intf[i].type == type 1245 && catalog->intf[i].controller_id == controller_id) { 1246 return catalog->intf[i].id; 1247 } 1248 } 1249 1250 return INTF_MAX; 1251 } 1252 1253 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1254 struct dpu_encoder_phys *phy_enc) 1255 { 1256 struct dpu_encoder_virt *dpu_enc = NULL; 1257 unsigned long lock_flags; 1258 1259 if (!drm_enc || !phy_enc) 1260 return; 1261 1262 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1263 dpu_enc = to_dpu_encoder_virt(drm_enc); 1264 1265 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1266 if (dpu_enc->crtc_vblank_cb) 1267 dpu_enc->crtc_vblank_cb(dpu_enc->crtc_vblank_cb_data); 1268 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1269 1270 atomic_inc(&phy_enc->vsync_cnt); 1271 DPU_ATRACE_END("encoder_vblank_callback"); 1272 } 1273 1274 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1275 struct dpu_encoder_phys *phy_enc) 1276 { 1277 if (!phy_enc) 1278 return; 1279 1280 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1281 atomic_inc(&phy_enc->underrun_cnt); 1282 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1283 atomic_read(&phy_enc->underrun_cnt)); 1284 DPU_ATRACE_END("encoder_underrun_callback"); 1285 } 1286 1287 void dpu_encoder_register_vblank_callback(struct drm_encoder *drm_enc, 1288 void (*vbl_cb)(void *), void *vbl_data) 1289 { 1290 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1291 unsigned long lock_flags; 1292 bool enable; 1293 int i; 1294 1295 enable = vbl_cb ? true : false; 1296 1297 if (!drm_enc) { 1298 DPU_ERROR("invalid encoder\n"); 1299 return; 1300 } 1301 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1302 1303 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1304 dpu_enc->crtc_vblank_cb = vbl_cb; 1305 dpu_enc->crtc_vblank_cb_data = vbl_data; 1306 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1307 1308 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1309 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1310 1311 if (phys && phys->ops.control_vblank_irq) 1312 phys->ops.control_vblank_irq(phys, enable); 1313 } 1314 } 1315 1316 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1317 void (*frame_event_cb)(void *, u32 event), 1318 void *frame_event_cb_data) 1319 { 1320 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1321 unsigned long lock_flags; 1322 bool enable; 1323 1324 enable = frame_event_cb ? true : false; 1325 1326 if (!drm_enc) { 1327 DPU_ERROR("invalid encoder\n"); 1328 return; 1329 } 1330 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1331 1332 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1333 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1334 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1335 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1336 } 1337 1338 static void dpu_encoder_frame_done_callback( 1339 struct drm_encoder *drm_enc, 1340 struct dpu_encoder_phys *ready_phys, u32 event) 1341 { 1342 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1343 unsigned int i; 1344 1345 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1346 | DPU_ENCODER_FRAME_EVENT_ERROR 1347 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1348 1349 if (!dpu_enc->frame_busy_mask[0]) { 1350 /** 1351 * suppress frame_done without waiter, 1352 * likely autorefresh 1353 */ 1354 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1355 event, ready_phys->intf_idx); 1356 return; 1357 } 1358 1359 /* One of the physical encoders has become idle */ 1360 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1361 if (dpu_enc->phys_encs[i] == ready_phys) { 1362 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1363 dpu_enc->frame_busy_mask[0]); 1364 clear_bit(i, dpu_enc->frame_busy_mask); 1365 } 1366 } 1367 1368 if (!dpu_enc->frame_busy_mask[0]) { 1369 atomic_set(&dpu_enc->frame_done_timeout, 0); 1370 del_timer(&dpu_enc->frame_done_timer); 1371 1372 dpu_encoder_resource_control(drm_enc, 1373 DPU_ENC_RC_EVENT_FRAME_DONE); 1374 1375 if (dpu_enc->crtc_frame_event_cb) 1376 dpu_enc->crtc_frame_event_cb( 1377 dpu_enc->crtc_frame_event_cb_data, 1378 event); 1379 } 1380 } else { 1381 if (dpu_enc->crtc_frame_event_cb) 1382 dpu_enc->crtc_frame_event_cb( 1383 dpu_enc->crtc_frame_event_cb_data, event); 1384 } 1385 } 1386 1387 static void dpu_encoder_off_work(struct kthread_work *work) 1388 { 1389 struct dpu_encoder_virt *dpu_enc = container_of(work, 1390 struct dpu_encoder_virt, delayed_off_work.work); 1391 1392 if (!dpu_enc) { 1393 DPU_ERROR("invalid dpu encoder\n"); 1394 return; 1395 } 1396 1397 dpu_encoder_resource_control(&dpu_enc->base, 1398 DPU_ENC_RC_EVENT_ENTER_IDLE); 1399 1400 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1401 DPU_ENCODER_FRAME_EVENT_IDLE); 1402 } 1403 1404 /** 1405 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1406 * drm_enc: Pointer to drm encoder structure 1407 * phys: Pointer to physical encoder structure 1408 * extra_flush_bits: Additional bit mask to include in flush trigger 1409 */ 1410 static inline void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1411 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1412 { 1413 struct dpu_hw_ctl *ctl; 1414 int pending_kickoff_cnt; 1415 u32 ret = UINT_MAX; 1416 1417 if (!drm_enc || !phys) { 1418 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1419 drm_enc != 0, phys != 0); 1420 return; 1421 } 1422 1423 if (!phys->hw_pp) { 1424 DPU_ERROR("invalid pingpong hw\n"); 1425 return; 1426 } 1427 1428 ctl = phys->hw_ctl; 1429 if (!ctl || !ctl->ops.trigger_flush) { 1430 DPU_ERROR("missing trigger cb\n"); 1431 return; 1432 } 1433 1434 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1435 1436 if (extra_flush_bits && ctl->ops.update_pending_flush) 1437 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1438 1439 ctl->ops.trigger_flush(ctl); 1440 1441 if (ctl->ops.get_pending_flush) 1442 ret = ctl->ops.get_pending_flush(ctl); 1443 1444 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1445 pending_kickoff_cnt, ctl->idx, 1446 extra_flush_bits, ret); 1447 } 1448 1449 /** 1450 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1451 * phys: Pointer to physical encoder structure 1452 */ 1453 static inline void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1454 { 1455 if (!phys) { 1456 DPU_ERROR("invalid argument(s)\n"); 1457 return; 1458 } 1459 1460 if (!phys->hw_pp) { 1461 DPU_ERROR("invalid pingpong hw\n"); 1462 return; 1463 } 1464 1465 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1466 phys->ops.trigger_start(phys); 1467 } 1468 1469 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1470 { 1471 struct dpu_hw_ctl *ctl; 1472 1473 if (!phys_enc) { 1474 DPU_ERROR("invalid encoder\n"); 1475 return; 1476 } 1477 1478 ctl = phys_enc->hw_ctl; 1479 if (ctl && ctl->ops.trigger_start) { 1480 ctl->ops.trigger_start(ctl); 1481 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1482 } 1483 } 1484 1485 static int dpu_encoder_helper_wait_event_timeout( 1486 int32_t drm_id, 1487 int32_t hw_id, 1488 struct dpu_encoder_wait_info *info) 1489 { 1490 int rc = 0; 1491 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1492 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1493 s64 time; 1494 1495 do { 1496 rc = wait_event_timeout(*(info->wq), 1497 atomic_read(info->atomic_cnt) == 0, jiffies); 1498 time = ktime_to_ms(ktime_get()); 1499 1500 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1501 expected_time, 1502 atomic_read(info->atomic_cnt)); 1503 /* If we timed out, counter is valid and time is less, wait again */ 1504 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1505 (time < expected_time)); 1506 1507 return rc; 1508 } 1509 1510 void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1511 { 1512 struct dpu_encoder_virt *dpu_enc; 1513 struct dpu_hw_ctl *ctl; 1514 int rc; 1515 1516 if (!phys_enc) { 1517 DPU_ERROR("invalid encoder\n"); 1518 return; 1519 } 1520 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1521 ctl = phys_enc->hw_ctl; 1522 1523 if (!ctl || !ctl->ops.reset) 1524 return; 1525 1526 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1527 ctl->idx); 1528 1529 rc = ctl->ops.reset(ctl); 1530 if (rc) { 1531 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1532 dpu_dbg_dump(false, __func__, true, true); 1533 } 1534 1535 phys_enc->enable_state = DPU_ENC_ENABLED; 1536 } 1537 1538 /** 1539 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1540 * Iterate through the physical encoders and perform consolidated flush 1541 * and/or control start triggering as needed. This is done in the virtual 1542 * encoder rather than the individual physical ones in order to handle 1543 * use cases that require visibility into multiple physical encoders at 1544 * a time. 1545 * dpu_enc: Pointer to virtual encoder structure 1546 */ 1547 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1548 { 1549 struct dpu_hw_ctl *ctl; 1550 uint32_t i, pending_flush; 1551 unsigned long lock_flags; 1552 1553 if (!dpu_enc) { 1554 DPU_ERROR("invalid encoder\n"); 1555 return; 1556 } 1557 1558 pending_flush = 0x0; 1559 1560 /* update pending counts and trigger kickoff ctl flush atomically */ 1561 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1562 1563 /* don't perform flush/start operations for slave encoders */ 1564 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1565 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1566 1567 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1568 continue; 1569 1570 ctl = phys->hw_ctl; 1571 if (!ctl) 1572 continue; 1573 1574 if (phys->split_role != ENC_ROLE_SLAVE) 1575 set_bit(i, dpu_enc->frame_busy_mask); 1576 if (!phys->ops.needs_single_flush || 1577 !phys->ops.needs_single_flush(phys)) 1578 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1579 else if (ctl->ops.get_pending_flush) 1580 pending_flush |= ctl->ops.get_pending_flush(ctl); 1581 } 1582 1583 /* for split flush, combine pending flush masks and send to master */ 1584 if (pending_flush && dpu_enc->cur_master) { 1585 _dpu_encoder_trigger_flush( 1586 &dpu_enc->base, 1587 dpu_enc->cur_master, 1588 pending_flush); 1589 } 1590 1591 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1592 1593 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1594 } 1595 1596 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1597 { 1598 struct dpu_encoder_virt *dpu_enc; 1599 struct dpu_encoder_phys *phys; 1600 unsigned int i; 1601 struct dpu_hw_ctl *ctl; 1602 struct msm_display_info *disp_info; 1603 1604 if (!drm_enc) { 1605 DPU_ERROR("invalid encoder\n"); 1606 return; 1607 } 1608 dpu_enc = to_dpu_encoder_virt(drm_enc); 1609 disp_info = &dpu_enc->disp_info; 1610 1611 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1612 phys = dpu_enc->phys_encs[i]; 1613 1614 if (phys && phys->hw_ctl) { 1615 ctl = phys->hw_ctl; 1616 if (ctl->ops.clear_pending_flush) 1617 ctl->ops.clear_pending_flush(ctl); 1618 1619 /* update only for command mode primary ctl */ 1620 if ((phys == dpu_enc->cur_master) && 1621 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1622 && ctl->ops.trigger_pending) 1623 ctl->ops.trigger_pending(ctl); 1624 } 1625 } 1626 } 1627 1628 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1629 struct drm_display_mode *mode) 1630 { 1631 u64 pclk_rate; 1632 u32 pclk_period; 1633 u32 line_time; 1634 1635 /* 1636 * For linetime calculation, only operate on master encoder. 1637 */ 1638 if (!dpu_enc->cur_master) 1639 return 0; 1640 1641 if (!dpu_enc->cur_master->ops.get_line_count) { 1642 DPU_ERROR("get_line_count function not defined\n"); 1643 return 0; 1644 } 1645 1646 pclk_rate = mode->clock; /* pixel clock in kHz */ 1647 if (pclk_rate == 0) { 1648 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1649 return 0; 1650 } 1651 1652 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1653 if (pclk_period == 0) { 1654 DPU_ERROR("pclk period is 0\n"); 1655 return 0; 1656 } 1657 1658 /* 1659 * Line time calculation based on Pixel clock and HTOTAL. 1660 * Final unit is in ns. 1661 */ 1662 line_time = (pclk_period * mode->htotal) / 1000; 1663 if (line_time == 0) { 1664 DPU_ERROR("line time calculation is 0\n"); 1665 return 0; 1666 } 1667 1668 DPU_DEBUG_ENC(dpu_enc, 1669 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1670 pclk_rate, pclk_period, line_time); 1671 1672 return line_time; 1673 } 1674 1675 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1676 ktime_t *wakeup_time) 1677 { 1678 struct drm_display_mode *mode; 1679 struct dpu_encoder_virt *dpu_enc; 1680 u32 cur_line; 1681 u32 line_time; 1682 u32 vtotal, time_to_vsync; 1683 ktime_t cur_time; 1684 1685 dpu_enc = to_dpu_encoder_virt(drm_enc); 1686 1687 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1688 DPU_ERROR("crtc/crtc state object is NULL\n"); 1689 return -EINVAL; 1690 } 1691 mode = &drm_enc->crtc->state->adjusted_mode; 1692 1693 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1694 if (!line_time) 1695 return -EINVAL; 1696 1697 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1698 1699 vtotal = mode->vtotal; 1700 if (cur_line >= vtotal) 1701 time_to_vsync = line_time * vtotal; 1702 else 1703 time_to_vsync = line_time * (vtotal - cur_line); 1704 1705 if (time_to_vsync == 0) { 1706 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1707 vtotal); 1708 return -EINVAL; 1709 } 1710 1711 cur_time = ktime_get(); 1712 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1713 1714 DPU_DEBUG_ENC(dpu_enc, 1715 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1716 cur_line, vtotal, time_to_vsync, 1717 ktime_to_ms(cur_time), 1718 ktime_to_ms(*wakeup_time)); 1719 return 0; 1720 } 1721 1722 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1723 { 1724 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1725 vsync_event_timer); 1726 struct drm_encoder *drm_enc = &dpu_enc->base; 1727 struct msm_drm_private *priv; 1728 struct msm_drm_thread *event_thread; 1729 1730 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1731 !drm_enc->crtc) { 1732 DPU_ERROR("invalid parameters\n"); 1733 return; 1734 } 1735 1736 priv = drm_enc->dev->dev_private; 1737 1738 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1739 DPU_ERROR("invalid crtc index\n"); 1740 return; 1741 } 1742 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1743 if (!event_thread) { 1744 DPU_ERROR("event_thread not found for crtc:%d\n", 1745 drm_enc->crtc->index); 1746 return; 1747 } 1748 1749 del_timer(&dpu_enc->vsync_event_timer); 1750 } 1751 1752 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1753 { 1754 struct dpu_encoder_virt *dpu_enc = container_of(work, 1755 struct dpu_encoder_virt, vsync_event_work); 1756 ktime_t wakeup_time; 1757 1758 if (!dpu_enc) { 1759 DPU_ERROR("invalid dpu encoder\n"); 1760 return; 1761 } 1762 1763 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1764 return; 1765 1766 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1767 mod_timer(&dpu_enc->vsync_event_timer, 1768 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1769 } 1770 1771 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, 1772 struct dpu_encoder_kickoff_params *params) 1773 { 1774 struct dpu_encoder_virt *dpu_enc; 1775 struct dpu_encoder_phys *phys; 1776 bool needs_hw_reset = false; 1777 unsigned int i; 1778 1779 if (!drm_enc || !params) { 1780 DPU_ERROR("invalid args\n"); 1781 return; 1782 } 1783 dpu_enc = to_dpu_encoder_virt(drm_enc); 1784 1785 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1786 1787 /* prepare for next kickoff, may include waiting on previous kickoff */ 1788 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1789 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1790 phys = dpu_enc->phys_encs[i]; 1791 if (phys) { 1792 if (phys->ops.prepare_for_kickoff) 1793 phys->ops.prepare_for_kickoff(phys, params); 1794 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1795 needs_hw_reset = true; 1796 } 1797 } 1798 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1799 1800 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1801 1802 /* if any phys needs reset, reset all phys, in-order */ 1803 if (needs_hw_reset) { 1804 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1805 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1806 phys = dpu_enc->phys_encs[i]; 1807 if (phys && phys->ops.hw_reset) 1808 phys->ops.hw_reset(phys); 1809 } 1810 } 1811 } 1812 1813 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1814 { 1815 struct dpu_encoder_virt *dpu_enc; 1816 struct dpu_encoder_phys *phys; 1817 ktime_t wakeup_time; 1818 unsigned int i; 1819 1820 if (!drm_enc) { 1821 DPU_ERROR("invalid encoder\n"); 1822 return; 1823 } 1824 DPU_ATRACE_BEGIN("encoder_kickoff"); 1825 dpu_enc = to_dpu_encoder_virt(drm_enc); 1826 1827 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1828 1829 atomic_set(&dpu_enc->frame_done_timeout, 1830 DPU_FRAME_DONE_TIMEOUT * 1000 / 1831 drm_enc->crtc->state->adjusted_mode.vrefresh); 1832 mod_timer(&dpu_enc->frame_done_timer, jiffies + 1833 ((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000)); 1834 1835 /* All phys encs are ready to go, trigger the kickoff */ 1836 _dpu_encoder_kickoff_phys(dpu_enc); 1837 1838 /* allow phys encs to handle any post-kickoff business */ 1839 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1840 phys = dpu_enc->phys_encs[i]; 1841 if (phys && phys->ops.handle_post_kickoff) 1842 phys->ops.handle_post_kickoff(phys); 1843 } 1844 1845 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1846 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1847 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1848 ktime_to_ms(wakeup_time)); 1849 mod_timer(&dpu_enc->vsync_event_timer, 1850 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1851 } 1852 1853 DPU_ATRACE_END("encoder_kickoff"); 1854 } 1855 1856 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1857 { 1858 struct dpu_encoder_virt *dpu_enc; 1859 struct dpu_encoder_phys *phys; 1860 int i; 1861 1862 if (!drm_enc) { 1863 DPU_ERROR("invalid encoder\n"); 1864 return; 1865 } 1866 dpu_enc = to_dpu_encoder_virt(drm_enc); 1867 1868 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1869 phys = dpu_enc->phys_encs[i]; 1870 if (phys && phys->ops.prepare_commit) 1871 phys->ops.prepare_commit(phys); 1872 } 1873 } 1874 1875 #ifdef CONFIG_DEBUG_FS 1876 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1877 { 1878 struct dpu_encoder_virt *dpu_enc; 1879 int i; 1880 1881 if (!s || !s->private) 1882 return -EINVAL; 1883 1884 dpu_enc = s->private; 1885 1886 mutex_lock(&dpu_enc->enc_lock); 1887 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1888 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1889 1890 if (!phys) 1891 continue; 1892 1893 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1894 phys->intf_idx - INTF_0, 1895 atomic_read(&phys->vsync_cnt), 1896 atomic_read(&phys->underrun_cnt)); 1897 1898 switch (phys->intf_mode) { 1899 case INTF_MODE_VIDEO: 1900 seq_puts(s, "mode: video\n"); 1901 break; 1902 case INTF_MODE_CMD: 1903 seq_puts(s, "mode: command\n"); 1904 break; 1905 default: 1906 seq_puts(s, "mode: ???\n"); 1907 break; 1908 } 1909 } 1910 mutex_unlock(&dpu_enc->enc_lock); 1911 1912 return 0; 1913 } 1914 1915 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1916 struct file *file) 1917 { 1918 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1919 } 1920 1921 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1922 { 1923 struct dpu_encoder_virt *dpu_enc; 1924 struct msm_drm_private *priv; 1925 struct dpu_kms *dpu_kms; 1926 int i; 1927 1928 static const struct file_operations debugfs_status_fops = { 1929 .open = _dpu_encoder_debugfs_status_open, 1930 .read = seq_read, 1931 .llseek = seq_lseek, 1932 .release = single_release, 1933 }; 1934 1935 char name[DPU_NAME_SIZE]; 1936 1937 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1938 DPU_ERROR("invalid encoder or kms\n"); 1939 return -EINVAL; 1940 } 1941 1942 dpu_enc = to_dpu_encoder_virt(drm_enc); 1943 priv = drm_enc->dev->dev_private; 1944 dpu_kms = to_dpu_kms(priv->kms); 1945 1946 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1947 1948 /* create overall sub-directory for the encoder */ 1949 dpu_enc->debugfs_root = debugfs_create_dir(name, 1950 drm_enc->dev->primary->debugfs_root); 1951 if (!dpu_enc->debugfs_root) 1952 return -ENOMEM; 1953 1954 /* don't error check these */ 1955 debugfs_create_file("status", 0600, 1956 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1957 1958 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1959 if (dpu_enc->phys_encs[i] && 1960 dpu_enc->phys_encs[i]->ops.late_register) 1961 dpu_enc->phys_encs[i]->ops.late_register( 1962 dpu_enc->phys_encs[i], 1963 dpu_enc->debugfs_root); 1964 1965 return 0; 1966 } 1967 1968 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 1969 { 1970 struct dpu_encoder_virt *dpu_enc; 1971 1972 if (!drm_enc) 1973 return; 1974 1975 dpu_enc = to_dpu_encoder_virt(drm_enc); 1976 debugfs_remove_recursive(dpu_enc->debugfs_root); 1977 } 1978 #else 1979 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1980 { 1981 return 0; 1982 } 1983 1984 static void _dpu_encoder_destroy_debugfs(struct drm_encoder *drm_enc) 1985 { 1986 } 1987 #endif 1988 1989 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1990 { 1991 return _dpu_encoder_init_debugfs(encoder); 1992 } 1993 1994 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1995 { 1996 _dpu_encoder_destroy_debugfs(encoder); 1997 } 1998 1999 static int dpu_encoder_virt_add_phys_encs( 2000 u32 display_caps, 2001 struct dpu_encoder_virt *dpu_enc, 2002 struct dpu_enc_phys_init_params *params) 2003 { 2004 struct dpu_encoder_phys *enc = NULL; 2005 2006 DPU_DEBUG_ENC(dpu_enc, "\n"); 2007 2008 /* 2009 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2010 * in this function, check up-front. 2011 */ 2012 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2013 ARRAY_SIZE(dpu_enc->phys_encs)) { 2014 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2015 dpu_enc->num_phys_encs); 2016 return -EINVAL; 2017 } 2018 2019 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 2020 enc = dpu_encoder_phys_vid_init(params); 2021 2022 if (IS_ERR_OR_NULL(enc)) { 2023 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2024 PTR_ERR(enc)); 2025 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2026 } 2027 2028 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2029 ++dpu_enc->num_phys_encs; 2030 } 2031 2032 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 2033 enc = dpu_encoder_phys_cmd_init(params); 2034 2035 if (IS_ERR_OR_NULL(enc)) { 2036 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2037 PTR_ERR(enc)); 2038 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2039 } 2040 2041 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2042 ++dpu_enc->num_phys_encs; 2043 } 2044 2045 if (params->split_role == ENC_ROLE_SLAVE) 2046 dpu_enc->cur_slave = enc; 2047 else 2048 dpu_enc->cur_master = enc; 2049 2050 return 0; 2051 } 2052 2053 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2054 .handle_vblank_virt = dpu_encoder_vblank_callback, 2055 .handle_underrun_virt = dpu_encoder_underrun_callback, 2056 .handle_frame_done = dpu_encoder_frame_done_callback, 2057 }; 2058 2059 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2060 struct dpu_kms *dpu_kms, 2061 struct msm_display_info *disp_info) 2062 { 2063 int ret = 0; 2064 int i = 0; 2065 enum dpu_intf_type intf_type; 2066 struct dpu_enc_phys_init_params phys_params; 2067 2068 if (!dpu_enc || !dpu_kms) { 2069 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2070 dpu_enc != 0, dpu_kms != 0); 2071 return -EINVAL; 2072 } 2073 2074 dpu_enc->cur_master = NULL; 2075 2076 memset(&phys_params, 0, sizeof(phys_params)); 2077 phys_params.dpu_kms = dpu_kms; 2078 phys_params.parent = &dpu_enc->base; 2079 phys_params.parent_ops = &dpu_encoder_parent_ops; 2080 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2081 2082 DPU_DEBUG("\n"); 2083 2084 switch (disp_info->intf_type) { 2085 case DRM_MODE_ENCODER_DSI: 2086 intf_type = INTF_DSI; 2087 break; 2088 default: 2089 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2090 return -EINVAL; 2091 } 2092 2093 WARN_ON(disp_info->num_of_h_tiles < 1); 2094 2095 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2096 2097 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2098 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2099 dpu_enc->idle_pc_supported = 2100 dpu_kms->catalog->caps->has_idle_pc; 2101 2102 mutex_lock(&dpu_enc->enc_lock); 2103 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2104 /* 2105 * Left-most tile is at index 0, content is controller id 2106 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2107 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2108 */ 2109 u32 controller_id = disp_info->h_tile_instance[i]; 2110 2111 if (disp_info->num_of_h_tiles > 1) { 2112 if (i == 0) 2113 phys_params.split_role = ENC_ROLE_MASTER; 2114 else 2115 phys_params.split_role = ENC_ROLE_SLAVE; 2116 } else { 2117 phys_params.split_role = ENC_ROLE_SOLO; 2118 } 2119 2120 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2121 i, controller_id, phys_params.split_role); 2122 2123 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2124 intf_type, 2125 controller_id); 2126 if (phys_params.intf_idx == INTF_MAX) { 2127 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2128 intf_type, controller_id); 2129 ret = -EINVAL; 2130 } 2131 2132 if (!ret) { 2133 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2134 dpu_enc, 2135 &phys_params); 2136 if (ret) 2137 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2138 } 2139 } 2140 2141 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2142 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2143 2144 if (phys) { 2145 atomic_set(&phys->vsync_cnt, 0); 2146 atomic_set(&phys->underrun_cnt, 0); 2147 } 2148 } 2149 mutex_unlock(&dpu_enc->enc_lock); 2150 2151 return ret; 2152 } 2153 2154 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2155 { 2156 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2157 frame_done_timer); 2158 struct drm_encoder *drm_enc = &dpu_enc->base; 2159 struct msm_drm_private *priv; 2160 u32 event; 2161 2162 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2163 DPU_ERROR("invalid parameters\n"); 2164 return; 2165 } 2166 priv = drm_enc->dev->dev_private; 2167 2168 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2169 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2170 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2171 return; 2172 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 2173 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2174 return; 2175 } 2176 2177 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2178 2179 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2180 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2181 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2182 } 2183 2184 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2185 .mode_set = dpu_encoder_virt_mode_set, 2186 .disable = dpu_encoder_virt_disable, 2187 .enable = dpu_kms_encoder_enable, 2188 .atomic_check = dpu_encoder_virt_atomic_check, 2189 2190 /* This is called by dpu_kms_encoder_enable */ 2191 .commit = dpu_encoder_virt_enable, 2192 }; 2193 2194 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2195 .destroy = dpu_encoder_destroy, 2196 .late_register = dpu_encoder_late_register, 2197 .early_unregister = dpu_encoder_early_unregister, 2198 }; 2199 2200 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2201 struct msm_display_info *disp_info) 2202 { 2203 struct msm_drm_private *priv = dev->dev_private; 2204 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2205 struct drm_encoder *drm_enc = NULL; 2206 struct dpu_encoder_virt *dpu_enc = NULL; 2207 int ret = 0; 2208 2209 dpu_enc = to_dpu_encoder_virt(enc); 2210 2211 mutex_init(&dpu_enc->enc_lock); 2212 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2213 if (ret) 2214 goto fail; 2215 2216 spin_lock_init(&dpu_enc->enc_spinlock); 2217 2218 atomic_set(&dpu_enc->frame_done_timeout, 0); 2219 timer_setup(&dpu_enc->frame_done_timer, 2220 dpu_encoder_frame_done_timeout, 0); 2221 2222 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2223 timer_setup(&dpu_enc->vsync_event_timer, 2224 dpu_encoder_vsync_event_handler, 2225 0); 2226 2227 2228 mutex_init(&dpu_enc->rc_lock); 2229 kthread_init_delayed_work(&dpu_enc->delayed_off_work, 2230 dpu_encoder_off_work); 2231 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2232 2233 kthread_init_work(&dpu_enc->vsync_event_work, 2234 dpu_encoder_vsync_event_work_handler); 2235 2236 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2237 2238 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2239 2240 return ret; 2241 2242 fail: 2243 DPU_ERROR("failed to create encoder\n"); 2244 if (drm_enc) 2245 dpu_encoder_destroy(drm_enc); 2246 2247 return ret; 2248 2249 2250 } 2251 2252 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2253 int drm_enc_mode) 2254 { 2255 struct dpu_encoder_virt *dpu_enc = NULL; 2256 int rc = 0; 2257 2258 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2259 if (!dpu_enc) 2260 return ERR_PTR(ENOMEM); 2261 2262 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2263 drm_enc_mode, NULL); 2264 if (rc) { 2265 devm_kfree(dev->dev, dpu_enc); 2266 return ERR_PTR(rc); 2267 } 2268 2269 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2270 2271 return &dpu_enc->base; 2272 } 2273 2274 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2275 enum msm_event_wait event) 2276 { 2277 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2278 struct dpu_encoder_virt *dpu_enc = NULL; 2279 int i, ret = 0; 2280 2281 if (!drm_enc) { 2282 DPU_ERROR("invalid encoder\n"); 2283 return -EINVAL; 2284 } 2285 dpu_enc = to_dpu_encoder_virt(drm_enc); 2286 DPU_DEBUG_ENC(dpu_enc, "\n"); 2287 2288 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2289 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2290 if (!phys) 2291 continue; 2292 2293 switch (event) { 2294 case MSM_ENC_COMMIT_DONE: 2295 fn_wait = phys->ops.wait_for_commit_done; 2296 break; 2297 case MSM_ENC_TX_COMPLETE: 2298 fn_wait = phys->ops.wait_for_tx_complete; 2299 break; 2300 case MSM_ENC_VBLANK: 2301 fn_wait = phys->ops.wait_for_vblank; 2302 break; 2303 default: 2304 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2305 event); 2306 return -EINVAL; 2307 }; 2308 2309 if (fn_wait) { 2310 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2311 ret = fn_wait(phys); 2312 DPU_ATRACE_END("wait_for_completion_event"); 2313 if (ret) 2314 return ret; 2315 } 2316 } 2317 2318 return ret; 2319 } 2320 2321 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2322 { 2323 struct dpu_encoder_virt *dpu_enc = NULL; 2324 int i; 2325 2326 if (!encoder) { 2327 DPU_ERROR("invalid encoder\n"); 2328 return INTF_MODE_NONE; 2329 } 2330 dpu_enc = to_dpu_encoder_virt(encoder); 2331 2332 if (dpu_enc->cur_master) 2333 return dpu_enc->cur_master->intf_mode; 2334 2335 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2336 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2337 2338 if (phys) 2339 return phys->intf_mode; 2340 } 2341 2342 return INTF_MODE_NONE; 2343 } 2344