1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_hw_dspp.h" 24 #include "dpu_formats.h" 25 #include "dpu_encoder_phys.h" 26 #include "dpu_crtc.h" 27 #include "dpu_trace.h" 28 #include "dpu_core_irq.h" 29 #include "disp/msm_disp_snapshot.h" 30 31 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ 32 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 33 34 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 35 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 36 37 #define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\ 38 (p) ? (p)->parent->base.id : -1, \ 39 (p) ? (p)->intf_idx - INTF_0 : -1, \ 40 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 41 ##__VA_ARGS__) 42 43 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 44 (p) ? (p)->parent->base.id : -1, \ 45 (p) ? (p)->intf_idx - INTF_0 : -1, \ 46 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 47 ##__VA_ARGS__) 48 49 /* 50 * Two to anticipate panels that can do cmd/vid dynamic switching 51 * plan is to create all possible physical encoder types, and switch between 52 * them at runtime 53 */ 54 #define NUM_PHYS_ENCODER_TYPES 2 55 56 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 57 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 58 59 #define MAX_CHANNELS_PER_ENC 2 60 61 #define IDLE_SHORT_TIMEOUT 1 62 63 #define MAX_HDISPLAY_SPLIT 1080 64 65 /* timeout in frames waiting for frame done */ 66 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 67 68 /** 69 * enum dpu_enc_rc_events - events for resource control state machine 70 * @DPU_ENC_RC_EVENT_KICKOFF: 71 * This event happens at NORMAL priority. 72 * Event that signals the start of the transfer. When this event is 73 * received, enable MDP/DSI core clocks. Regardless of the previous 74 * state, the resource should be in ON state at the end of this event. 75 * @DPU_ENC_RC_EVENT_FRAME_DONE: 76 * This event happens at INTERRUPT level. 77 * Event signals the end of the data transfer after the PP FRAME_DONE 78 * event. At the end of this event, a delayed work is scheduled to go to 79 * IDLE_PC state after IDLE_TIMEOUT time. 80 * @DPU_ENC_RC_EVENT_PRE_STOP: 81 * This event happens at NORMAL priority. 82 * This event, when received during the ON state, leave the RC STATE 83 * in the PRE_OFF state. It should be followed by the STOP event as 84 * part of encoder disable. 85 * If received during IDLE or OFF states, it will do nothing. 86 * @DPU_ENC_RC_EVENT_STOP: 87 * This event happens at NORMAL priority. 88 * When this event is received, disable all the MDP/DSI core clocks, and 89 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 90 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 91 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 92 * Resource state should be in OFF at the end of the event. 93 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 94 * This event happens at NORMAL priority from a work item. 95 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 96 * This would disable MDP/DSI core clocks and change the resource state 97 * to IDLE. 98 */ 99 enum dpu_enc_rc_events { 100 DPU_ENC_RC_EVENT_KICKOFF = 1, 101 DPU_ENC_RC_EVENT_FRAME_DONE, 102 DPU_ENC_RC_EVENT_PRE_STOP, 103 DPU_ENC_RC_EVENT_STOP, 104 DPU_ENC_RC_EVENT_ENTER_IDLE 105 }; 106 107 /* 108 * enum dpu_enc_rc_states - states that the resource control maintains 109 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 110 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 111 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 112 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 113 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 114 */ 115 enum dpu_enc_rc_states { 116 DPU_ENC_RC_STATE_OFF, 117 DPU_ENC_RC_STATE_PRE_OFF, 118 DPU_ENC_RC_STATE_ON, 119 DPU_ENC_RC_STATE_IDLE 120 }; 121 122 /** 123 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 124 * encoders. Virtual encoder manages one "logical" display. Physical 125 * encoders manage one intf block, tied to a specific panel/sub-panel. 126 * Virtual encoder defers as much as possible to the physical encoders. 127 * Virtual encoder registers itself with the DRM Framework as the encoder. 128 * @base: drm_encoder base class for registration with DRM 129 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 130 * @bus_scaling_client: Client handle to the bus scaling interface 131 * @enabled: True if the encoder is active, protected by enc_lock 132 * @num_phys_encs: Actual number of physical encoders contained. 133 * @phys_encs: Container of physical encoders managed. 134 * @cur_master: Pointer to the current master in this mode. Optimization 135 * Only valid after enable. Cleared as disable. 136 * @cur_slave: As above but for the slave encoder. 137 * @hw_pp: Handle to the pingpong blocks used for the display. No. 138 * pingpong blocks can be different than num_phys_encs. 139 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped 140 * for partial update right-only cases, such as pingpong 141 * split where virtual pingpong does not generate IRQs 142 * @crtc: Pointer to the currently assigned crtc. Normally you 143 * would use crtc->state->encoder_mask to determine the 144 * link between encoder/crtc. However in this case we need 145 * to track crtc in the disable() hook which is called 146 * _after_ encoder_mask is cleared. 147 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 148 * all CTL paths 149 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 150 * @debugfs_root: Debug file system root file node 151 * @enc_lock: Lock around physical encoder 152 * create/destroy/enable/disable 153 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 154 * busy processing current command. 155 * Bit0 = phys_encs[0] etc. 156 * @crtc_frame_event_cb: callback handler for frame event 157 * @crtc_frame_event_cb_data: callback handler private data 158 * @frame_done_timeout_ms: frame done timeout in ms 159 * @frame_done_timer: watchdog timer for frame done event 160 * @vsync_event_timer: vsync timer 161 * @disp_info: local copy of msm_display_info struct 162 * @idle_pc_supported: indicate if idle power collaps is supported 163 * @rc_lock: resource control mutex lock to protect 164 * virt encoder over various state changes 165 * @rc_state: resource controller state 166 * @delayed_off_work: delayed worker to schedule disabling of 167 * clks and resources after IDLE_TIMEOUT time. 168 * @vsync_event_work: worker to handle vsync event for autorefresh 169 * @topology: topology of the display 170 * @idle_timeout: idle timeout duration in milliseconds 171 * @dp: msm_dp pointer, for DP encoders 172 */ 173 struct dpu_encoder_virt { 174 struct drm_encoder base; 175 spinlock_t enc_spinlock; 176 uint32_t bus_scaling_client; 177 178 bool enabled; 179 180 unsigned int num_phys_encs; 181 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 182 struct dpu_encoder_phys *cur_master; 183 struct dpu_encoder_phys *cur_slave; 184 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 185 186 bool intfs_swapped; 187 188 struct drm_crtc *crtc; 189 190 struct dentry *debugfs_root; 191 struct mutex enc_lock; 192 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 193 void (*crtc_frame_event_cb)(void *, u32 event); 194 void *crtc_frame_event_cb_data; 195 196 atomic_t frame_done_timeout_ms; 197 struct timer_list frame_done_timer; 198 struct timer_list vsync_event_timer; 199 200 struct msm_display_info disp_info; 201 202 bool idle_pc_supported; 203 struct mutex rc_lock; 204 enum dpu_enc_rc_states rc_state; 205 struct delayed_work delayed_off_work; 206 struct kthread_work vsync_event_work; 207 struct msm_display_topology topology; 208 209 u32 idle_timeout; 210 211 struct msm_dp *dp; 212 }; 213 214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 215 216 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 218 }; 219 220 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 221 { 222 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 223 224 if (!hw_pp->ops.setup_dither) 225 return; 226 227 switch (bpc) { 228 case 6: 229 dither_cfg.c0_bitdepth = 6; 230 dither_cfg.c1_bitdepth = 6; 231 dither_cfg.c2_bitdepth = 6; 232 dither_cfg.c3_bitdepth = 6; 233 dither_cfg.temporal_en = 0; 234 break; 235 default: 236 hw_pp->ops.setup_dither(hw_pp, NULL); 237 return; 238 } 239 240 memcpy(&dither_cfg.matrix, dither_matrix, 241 sizeof(u32) * DITHER_MATRIX_SZ); 242 243 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 244 } 245 246 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 247 enum dpu_intr_idx intr_idx) 248 { 249 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 250 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 251 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 252 253 if (phys_enc->parent_ops->handle_frame_done) 254 phys_enc->parent_ops->handle_frame_done( 255 phys_enc->parent, phys_enc, 256 DPU_ENCODER_FRAME_EVENT_ERROR); 257 } 258 259 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 260 u32 irq_idx, struct dpu_encoder_wait_info *info); 261 262 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 263 enum dpu_intr_idx intr_idx, 264 struct dpu_encoder_wait_info *wait_info) 265 { 266 struct dpu_encoder_irq *irq; 267 u32 irq_status; 268 int ret; 269 270 if (!wait_info || intr_idx >= INTR_IDX_MAX) { 271 DPU_ERROR("invalid params\n"); 272 return -EINVAL; 273 } 274 irq = &phys_enc->irq[intr_idx]; 275 276 /* note: do master / slave checking outside */ 277 278 /* return EWOULDBLOCK since we know the wait isn't necessary */ 279 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 280 DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d\n", 281 DRMID(phys_enc->parent), intr_idx, 282 irq->irq_idx); 283 return -EWOULDBLOCK; 284 } 285 286 if (irq->irq_idx < 0) { 287 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s\n", 288 DRMID(phys_enc->parent), intr_idx, 289 irq->name); 290 return 0; 291 } 292 293 DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d\n", 294 DRMID(phys_enc->parent), intr_idx, 295 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 296 atomic_read(wait_info->atomic_cnt)); 297 298 ret = dpu_encoder_helper_wait_event_timeout( 299 DRMID(phys_enc->parent), 300 irq->irq_idx, 301 wait_info); 302 303 if (ret <= 0) { 304 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 305 irq->irq_idx, true); 306 if (irq_status) { 307 unsigned long flags; 308 309 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n", 310 DRMID(phys_enc->parent), intr_idx, 311 irq->irq_idx, 312 phys_enc->hw_pp->idx - PINGPONG_0, 313 atomic_read(wait_info->atomic_cnt)); 314 local_irq_save(flags); 315 irq->cb.func(phys_enc, irq->irq_idx); 316 local_irq_restore(flags); 317 ret = 0; 318 } else { 319 ret = -ETIMEDOUT; 320 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n", 321 DRMID(phys_enc->parent), intr_idx, 322 irq->irq_idx, 323 phys_enc->hw_pp->idx - PINGPONG_0, 324 atomic_read(wait_info->atomic_cnt)); 325 } 326 } else { 327 ret = 0; 328 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 329 intr_idx, irq->irq_idx, 330 phys_enc->hw_pp->idx - PINGPONG_0, 331 atomic_read(wait_info->atomic_cnt)); 332 } 333 334 return ret; 335 } 336 337 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 338 enum dpu_intr_idx intr_idx) 339 { 340 struct dpu_encoder_irq *irq; 341 int ret = 0; 342 343 if (intr_idx >= INTR_IDX_MAX) { 344 DPU_ERROR("invalid params\n"); 345 return -EINVAL; 346 } 347 irq = &phys_enc->irq[intr_idx]; 348 349 if (irq->irq_idx < 0) { 350 DPU_ERROR_PHYS(phys_enc, 351 "invalid IRQ index:%d\n", irq->irq_idx); 352 return -EINVAL; 353 } 354 355 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 356 &irq->cb); 357 if (ret) { 358 DPU_ERROR_PHYS(phys_enc, 359 "failed to register IRQ callback for %s\n", 360 irq->name); 361 irq->irq_idx = -EINVAL; 362 return ret; 363 } 364 365 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 366 irq->irq_idx); 367 368 return ret; 369 } 370 371 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 372 enum dpu_intr_idx intr_idx) 373 { 374 struct dpu_encoder_irq *irq; 375 int ret; 376 377 irq = &phys_enc->irq[intr_idx]; 378 379 /* silently skip irqs that weren't registered */ 380 if (irq->irq_idx < 0) { 381 DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d", 382 DRMID(phys_enc->parent), intr_idx, 383 irq->irq_idx); 384 return 0; 385 } 386 387 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 388 &irq->cb); 389 if (ret) { 390 DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d", 391 DRMID(phys_enc->parent), intr_idx, 392 irq->irq_idx, ret); 393 } 394 395 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 396 irq->irq_idx); 397 398 return 0; 399 } 400 401 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) 402 { 403 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 404 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; 405 return phys ? atomic_read(&phys->vsync_cnt) : 0; 406 } 407 408 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) 409 { 410 struct dpu_encoder_virt *dpu_enc; 411 struct dpu_encoder_phys *phys; 412 int linecount = 0; 413 414 dpu_enc = to_dpu_encoder_virt(drm_enc); 415 phys = dpu_enc ? dpu_enc->cur_master : NULL; 416 417 if (phys && phys->ops.get_line_count) 418 linecount = phys->ops.get_line_count(phys); 419 420 return linecount; 421 } 422 423 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 424 struct dpu_encoder_hw_resources *hw_res) 425 { 426 struct dpu_encoder_virt *dpu_enc = NULL; 427 int i = 0; 428 429 dpu_enc = to_dpu_encoder_virt(drm_enc); 430 DPU_DEBUG_ENC(dpu_enc, "\n"); 431 432 /* Query resources used by phys encs, expected to be without overlap */ 433 memset(hw_res, 0, sizeof(*hw_res)); 434 435 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 436 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 437 438 if (phys->ops.get_hw_resources) 439 phys->ops.get_hw_resources(phys, hw_res); 440 } 441 } 442 443 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 444 { 445 struct dpu_encoder_virt *dpu_enc = NULL; 446 int i = 0; 447 448 if (!drm_enc) { 449 DPU_ERROR("invalid encoder\n"); 450 return; 451 } 452 453 dpu_enc = to_dpu_encoder_virt(drm_enc); 454 DPU_DEBUG_ENC(dpu_enc, "\n"); 455 456 mutex_lock(&dpu_enc->enc_lock); 457 458 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 459 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 460 461 if (phys->ops.destroy) { 462 phys->ops.destroy(phys); 463 --dpu_enc->num_phys_encs; 464 dpu_enc->phys_encs[i] = NULL; 465 } 466 } 467 468 if (dpu_enc->num_phys_encs) 469 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 470 dpu_enc->num_phys_encs); 471 dpu_enc->num_phys_encs = 0; 472 mutex_unlock(&dpu_enc->enc_lock); 473 474 drm_encoder_cleanup(drm_enc); 475 mutex_destroy(&dpu_enc->enc_lock); 476 } 477 478 void dpu_encoder_helper_split_config( 479 struct dpu_encoder_phys *phys_enc, 480 enum dpu_intf interface) 481 { 482 struct dpu_encoder_virt *dpu_enc; 483 struct split_pipe_cfg cfg = { 0 }; 484 struct dpu_hw_mdp *hw_mdptop; 485 struct msm_display_info *disp_info; 486 487 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 488 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 489 return; 490 } 491 492 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 493 hw_mdptop = phys_enc->hw_mdptop; 494 disp_info = &dpu_enc->disp_info; 495 496 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 497 return; 498 499 /** 500 * disable split modes since encoder will be operating in as the only 501 * encoder, either for the entire use case in the case of, for example, 502 * single DSI, or for this frame in the case of left/right only partial 503 * update. 504 */ 505 if (phys_enc->split_role == ENC_ROLE_SOLO) { 506 if (hw_mdptop->ops.setup_split_pipe) 507 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 508 return; 509 } 510 511 cfg.en = true; 512 cfg.mode = phys_enc->intf_mode; 513 cfg.intf = interface; 514 515 if (cfg.en && phys_enc->ops.needs_single_flush && 516 phys_enc->ops.needs_single_flush(phys_enc)) 517 cfg.split_flush_en = true; 518 519 if (phys_enc->split_role == ENC_ROLE_MASTER) { 520 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 521 522 if (hw_mdptop->ops.setup_split_pipe) 523 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 524 } 525 } 526 527 static struct msm_display_topology dpu_encoder_get_topology( 528 struct dpu_encoder_virt *dpu_enc, 529 struct dpu_kms *dpu_kms, 530 struct drm_display_mode *mode) 531 { 532 struct msm_display_topology topology = {0}; 533 int i, intf_count = 0; 534 535 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 536 if (dpu_enc->phys_encs[i]) 537 intf_count++; 538 539 /* Datapath topology selection 540 * 541 * Dual display 542 * 2 LM, 2 INTF ( Split display using 2 interfaces) 543 * 544 * Single display 545 * 1 LM, 1 INTF 546 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 547 * 548 * Adding color blocks only to primary interface if available in 549 * sufficient number 550 */ 551 if (intf_count == 2) 552 topology.num_lm = 2; 553 else if (!dpu_kms->catalog->caps->has_3d_merge) 554 topology.num_lm = 1; 555 else 556 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 557 558 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) { 559 if (dpu_kms->catalog->dspp && 560 (dpu_kms->catalog->dspp_count >= topology.num_lm)) 561 topology.num_dspp = topology.num_lm; 562 } 563 564 topology.num_enc = 0; 565 topology.num_intf = intf_count; 566 567 return topology; 568 } 569 static int dpu_encoder_virt_atomic_check( 570 struct drm_encoder *drm_enc, 571 struct drm_crtc_state *crtc_state, 572 struct drm_connector_state *conn_state) 573 { 574 struct dpu_encoder_virt *dpu_enc; 575 struct msm_drm_private *priv; 576 struct dpu_kms *dpu_kms; 577 const struct drm_display_mode *mode; 578 struct drm_display_mode *adj_mode; 579 struct msm_display_topology topology; 580 struct dpu_global_state *global_state; 581 int i = 0; 582 int ret = 0; 583 584 if (!drm_enc || !crtc_state || !conn_state) { 585 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 586 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 587 return -EINVAL; 588 } 589 590 dpu_enc = to_dpu_encoder_virt(drm_enc); 591 DPU_DEBUG_ENC(dpu_enc, "\n"); 592 593 priv = drm_enc->dev->dev_private; 594 dpu_kms = to_dpu_kms(priv->kms); 595 mode = &crtc_state->mode; 596 adj_mode = &crtc_state->adjusted_mode; 597 global_state = dpu_kms_get_global_state(crtc_state->state); 598 if (IS_ERR(global_state)) 599 return PTR_ERR(global_state); 600 601 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 602 603 /* perform atomic check on the first physical encoder (master) */ 604 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 605 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 606 607 if (phys->ops.atomic_check) 608 ret = phys->ops.atomic_check(phys, crtc_state, 609 conn_state); 610 else if (phys->ops.mode_fixup) 611 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 612 ret = -EINVAL; 613 614 if (ret) { 615 DPU_ERROR_ENC(dpu_enc, 616 "mode unsupported, phys idx %d\n", i); 617 break; 618 } 619 } 620 621 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 622 623 /* Reserve dynamic resources now. */ 624 if (!ret) { 625 /* 626 * Release and Allocate resources on every modeset 627 * Dont allocate when active is false. 628 */ 629 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 630 dpu_rm_release(global_state, drm_enc); 631 632 if (!crtc_state->active_changed || crtc_state->active) 633 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 634 drm_enc, crtc_state, topology); 635 } 636 } 637 638 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 639 640 return ret; 641 } 642 643 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 644 struct msm_display_info *disp_info) 645 { 646 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 647 struct msm_drm_private *priv; 648 struct dpu_kms *dpu_kms; 649 struct dpu_hw_mdp *hw_mdptop; 650 struct drm_encoder *drm_enc; 651 int i; 652 653 if (!dpu_enc || !disp_info) { 654 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 655 dpu_enc != NULL, disp_info != NULL); 656 return; 657 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 658 DPU_ERROR("invalid num phys enc %d/%d\n", 659 dpu_enc->num_phys_encs, 660 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 661 return; 662 } 663 664 drm_enc = &dpu_enc->base; 665 /* this pointers are checked in virt_enable_helper */ 666 priv = drm_enc->dev->dev_private; 667 668 dpu_kms = to_dpu_kms(priv->kms); 669 hw_mdptop = dpu_kms->hw_mdp; 670 if (!hw_mdptop) { 671 DPU_ERROR("invalid mdptop\n"); 672 return; 673 } 674 675 if (hw_mdptop->ops.setup_vsync_source && 676 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 677 for (i = 0; i < dpu_enc->num_phys_encs; i++) 678 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 679 680 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 681 if (disp_info->is_te_using_watchdog_timer) 682 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 683 else 684 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 685 686 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 687 } 688 } 689 690 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 691 { 692 struct dpu_encoder_virt *dpu_enc; 693 int i; 694 695 if (!drm_enc) { 696 DPU_ERROR("invalid encoder\n"); 697 return; 698 } 699 700 dpu_enc = to_dpu_encoder_virt(drm_enc); 701 702 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 703 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 704 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 705 706 if (phys->ops.irq_control) 707 phys->ops.irq_control(phys, enable); 708 } 709 710 } 711 712 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 713 bool enable) 714 { 715 struct msm_drm_private *priv; 716 struct dpu_kms *dpu_kms; 717 struct dpu_encoder_virt *dpu_enc; 718 719 dpu_enc = to_dpu_encoder_virt(drm_enc); 720 priv = drm_enc->dev->dev_private; 721 dpu_kms = to_dpu_kms(priv->kms); 722 723 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 724 725 if (!dpu_enc->cur_master) { 726 DPU_ERROR("encoder master not set\n"); 727 return; 728 } 729 730 if (enable) { 731 /* enable DPU core clks */ 732 pm_runtime_get_sync(&dpu_kms->pdev->dev); 733 734 /* enable all the irq */ 735 _dpu_encoder_irq_control(drm_enc, true); 736 737 } else { 738 /* disable all the irq */ 739 _dpu_encoder_irq_control(drm_enc, false); 740 741 /* disable DPU core clks */ 742 pm_runtime_put_sync(&dpu_kms->pdev->dev); 743 } 744 745 } 746 747 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 748 u32 sw_event) 749 { 750 struct dpu_encoder_virt *dpu_enc; 751 struct msm_drm_private *priv; 752 bool is_vid_mode = false; 753 754 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 755 DPU_ERROR("invalid parameters\n"); 756 return -EINVAL; 757 } 758 dpu_enc = to_dpu_encoder_virt(drm_enc); 759 priv = drm_enc->dev->dev_private; 760 is_vid_mode = dpu_enc->disp_info.capabilities & 761 MSM_DISPLAY_CAP_VID_MODE; 762 763 /* 764 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 765 * events and return early for other events (ie wb display). 766 */ 767 if (!dpu_enc->idle_pc_supported && 768 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 769 sw_event != DPU_ENC_RC_EVENT_STOP && 770 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 771 return 0; 772 773 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 774 dpu_enc->rc_state, "begin"); 775 776 switch (sw_event) { 777 case DPU_ENC_RC_EVENT_KICKOFF: 778 /* cancel delayed off work, if any */ 779 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 780 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 781 sw_event); 782 783 mutex_lock(&dpu_enc->rc_lock); 784 785 /* return if the resource control is already in ON state */ 786 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 787 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", 788 DRMID(drm_enc), sw_event); 789 mutex_unlock(&dpu_enc->rc_lock); 790 return 0; 791 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 792 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 793 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", 794 DRMID(drm_enc), sw_event, 795 dpu_enc->rc_state); 796 mutex_unlock(&dpu_enc->rc_lock); 797 return -EINVAL; 798 } 799 800 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 801 _dpu_encoder_irq_control(drm_enc, true); 802 else 803 _dpu_encoder_resource_control_helper(drm_enc, true); 804 805 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 806 807 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 808 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 809 "kickoff"); 810 811 mutex_unlock(&dpu_enc->rc_lock); 812 break; 813 814 case DPU_ENC_RC_EVENT_FRAME_DONE: 815 /* 816 * mutex lock is not used as this event happens at interrupt 817 * context. And locking is not required as, the other events 818 * like KICKOFF and STOP does a wait-for-idle before executing 819 * the resource_control 820 */ 821 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 822 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 823 DRMID(drm_enc), sw_event, 824 dpu_enc->rc_state); 825 return -EINVAL; 826 } 827 828 /* 829 * schedule off work item only when there are no 830 * frames pending 831 */ 832 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 833 DRM_DEBUG_KMS("id:%d skip schedule work\n", 834 DRMID(drm_enc)); 835 return 0; 836 } 837 838 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 839 msecs_to_jiffies(dpu_enc->idle_timeout)); 840 841 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 842 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 843 "frame done"); 844 break; 845 846 case DPU_ENC_RC_EVENT_PRE_STOP: 847 /* cancel delayed off work, if any */ 848 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 849 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 850 sw_event); 851 852 mutex_lock(&dpu_enc->rc_lock); 853 854 if (is_vid_mode && 855 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 856 _dpu_encoder_irq_control(drm_enc, true); 857 } 858 /* skip if is already OFF or IDLE, resources are off already */ 859 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 860 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 861 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 862 DRMID(drm_enc), sw_event, 863 dpu_enc->rc_state); 864 mutex_unlock(&dpu_enc->rc_lock); 865 return 0; 866 } 867 868 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 869 870 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 871 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 872 "pre stop"); 873 874 mutex_unlock(&dpu_enc->rc_lock); 875 break; 876 877 case DPU_ENC_RC_EVENT_STOP: 878 mutex_lock(&dpu_enc->rc_lock); 879 880 /* return if the resource control is already in OFF state */ 881 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 882 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 883 DRMID(drm_enc), sw_event); 884 mutex_unlock(&dpu_enc->rc_lock); 885 return 0; 886 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 887 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 888 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 889 mutex_unlock(&dpu_enc->rc_lock); 890 return -EINVAL; 891 } 892 893 /** 894 * expect to arrive here only if in either idle state or pre-off 895 * and in IDLE state the resources are already disabled 896 */ 897 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 898 _dpu_encoder_resource_control_helper(drm_enc, false); 899 900 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 901 902 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 903 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 904 "stop"); 905 906 mutex_unlock(&dpu_enc->rc_lock); 907 break; 908 909 case DPU_ENC_RC_EVENT_ENTER_IDLE: 910 mutex_lock(&dpu_enc->rc_lock); 911 912 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 913 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 914 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 915 mutex_unlock(&dpu_enc->rc_lock); 916 return 0; 917 } 918 919 /* 920 * if we are in ON but a frame was just kicked off, 921 * ignore the IDLE event, it's probably a stale timer event 922 */ 923 if (dpu_enc->frame_busy_mask[0]) { 924 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 925 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 926 mutex_unlock(&dpu_enc->rc_lock); 927 return 0; 928 } 929 930 if (is_vid_mode) 931 _dpu_encoder_irq_control(drm_enc, false); 932 else 933 _dpu_encoder_resource_control_helper(drm_enc, false); 934 935 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 936 937 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 938 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 939 "idle"); 940 941 mutex_unlock(&dpu_enc->rc_lock); 942 break; 943 944 default: 945 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 946 sw_event); 947 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 948 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 949 "error"); 950 break; 951 } 952 953 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 954 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 955 "end"); 956 return 0; 957 } 958 959 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 960 struct drm_display_mode *mode, 961 struct drm_display_mode *adj_mode) 962 { 963 struct dpu_encoder_virt *dpu_enc; 964 struct msm_drm_private *priv; 965 struct dpu_kms *dpu_kms; 966 struct list_head *connector_list; 967 struct drm_connector *conn = NULL, *conn_iter; 968 struct drm_crtc *drm_crtc; 969 struct dpu_crtc_state *cstate; 970 struct dpu_global_state *global_state; 971 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 972 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 973 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 974 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 975 int num_lm, num_ctl, num_pp; 976 int i, j; 977 978 if (!drm_enc) { 979 DPU_ERROR("invalid encoder\n"); 980 return; 981 } 982 983 dpu_enc = to_dpu_encoder_virt(drm_enc); 984 DPU_DEBUG_ENC(dpu_enc, "\n"); 985 986 priv = drm_enc->dev->dev_private; 987 dpu_kms = to_dpu_kms(priv->kms); 988 connector_list = &dpu_kms->dev->mode_config.connector_list; 989 990 global_state = dpu_kms_get_existing_global_state(dpu_kms); 991 if (IS_ERR_OR_NULL(global_state)) { 992 DPU_ERROR("Failed to get global state"); 993 return; 994 } 995 996 trace_dpu_enc_mode_set(DRMID(drm_enc)); 997 998 list_for_each_entry(conn_iter, connector_list, head) 999 if (conn_iter->encoder == drm_enc) 1000 conn = conn_iter; 1001 1002 if (!conn) { 1003 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 1004 return; 1005 } else if (!conn->state) { 1006 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 1007 return; 1008 } 1009 1010 drm_for_each_crtc(drm_crtc, drm_enc->dev) 1011 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 1012 break; 1013 1014 /* Query resource that have been reserved in atomic check step. */ 1015 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1016 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 1017 ARRAY_SIZE(hw_pp)); 1018 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1019 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 1020 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1021 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1022 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1023 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 1024 ARRAY_SIZE(hw_dspp)); 1025 1026 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1027 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1028 : NULL; 1029 1030 cstate = to_dpu_crtc_state(drm_crtc->state); 1031 1032 for (i = 0; i < num_lm; i++) { 1033 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1034 1035 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1036 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1037 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1038 } 1039 1040 cstate->num_mixers = num_lm; 1041 1042 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1043 int num_blk; 1044 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC]; 1045 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1046 1047 if (!dpu_enc->hw_pp[i]) { 1048 DPU_ERROR_ENC(dpu_enc, 1049 "no pp block assigned at idx: %d\n", i); 1050 return; 1051 } 1052 1053 if (!hw_ctl[i]) { 1054 DPU_ERROR_ENC(dpu_enc, 1055 "no ctl block assigned at idx: %d\n", i); 1056 return; 1057 } 1058 1059 phys->hw_pp = dpu_enc->hw_pp[i]; 1060 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1061 1062 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm, 1063 global_state, drm_enc->base.id, DPU_HW_BLK_INTF, 1064 hw_blk, ARRAY_SIZE(hw_blk)); 1065 for (j = 0; j < num_blk; j++) { 1066 struct dpu_hw_intf *hw_intf; 1067 1068 hw_intf = to_dpu_hw_intf(hw_blk[i]); 1069 if (hw_intf->idx == phys->intf_idx) 1070 phys->hw_intf = hw_intf; 1071 } 1072 1073 if (!phys->hw_intf) { 1074 DPU_ERROR_ENC(dpu_enc, 1075 "no intf block assigned at idx: %d\n", i); 1076 return; 1077 } 1078 1079 phys->connector = conn->state->connector; 1080 if (phys->ops.mode_set) 1081 phys->ops.mode_set(phys, mode, adj_mode); 1082 } 1083 } 1084 1085 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1086 { 1087 struct dpu_encoder_virt *dpu_enc = NULL; 1088 int i; 1089 1090 if (!drm_enc || !drm_enc->dev) { 1091 DPU_ERROR("invalid parameters\n"); 1092 return; 1093 } 1094 1095 dpu_enc = to_dpu_encoder_virt(drm_enc); 1096 if (!dpu_enc || !dpu_enc->cur_master) { 1097 DPU_ERROR("invalid dpu encoder/master\n"); 1098 return; 1099 } 1100 1101 1102 if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort && 1103 dpu_enc->cur_master->hw_mdptop && 1104 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1105 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1106 dpu_enc->cur_master->hw_mdptop); 1107 1108 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1109 1110 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1111 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1112 unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc; 1113 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1114 if (!dpu_enc->hw_pp[i]) 1115 continue; 1116 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1117 } 1118 } 1119 } 1120 1121 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1122 { 1123 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1124 1125 mutex_lock(&dpu_enc->enc_lock); 1126 1127 if (!dpu_enc->enabled) 1128 goto out; 1129 1130 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1131 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1132 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1133 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1134 1135 _dpu_encoder_virt_enable_helper(drm_enc); 1136 1137 out: 1138 mutex_unlock(&dpu_enc->enc_lock); 1139 } 1140 1141 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1142 { 1143 struct dpu_encoder_virt *dpu_enc = NULL; 1144 int ret = 0; 1145 struct msm_drm_private *priv; 1146 struct drm_display_mode *cur_mode = NULL; 1147 1148 dpu_enc = to_dpu_encoder_virt(drm_enc); 1149 1150 mutex_lock(&dpu_enc->enc_lock); 1151 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1152 priv = drm_enc->dev->dev_private; 1153 1154 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1155 cur_mode->vdisplay); 1156 1157 /* always enable slave encoder before master */ 1158 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1159 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1160 1161 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1162 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1163 1164 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1165 if (ret) { 1166 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1167 ret); 1168 goto out; 1169 } 1170 1171 _dpu_encoder_virt_enable_helper(drm_enc); 1172 1173 dpu_enc->enabled = true; 1174 1175 out: 1176 mutex_unlock(&dpu_enc->enc_lock); 1177 } 1178 1179 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1180 { 1181 struct dpu_encoder_virt *dpu_enc = NULL; 1182 struct msm_drm_private *priv; 1183 int i = 0; 1184 1185 dpu_enc = to_dpu_encoder_virt(drm_enc); 1186 DPU_DEBUG_ENC(dpu_enc, "\n"); 1187 1188 mutex_lock(&dpu_enc->enc_lock); 1189 dpu_enc->enabled = false; 1190 1191 priv = drm_enc->dev->dev_private; 1192 1193 trace_dpu_enc_disable(DRMID(drm_enc)); 1194 1195 /* wait for idle */ 1196 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1197 1198 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1199 1200 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1201 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1202 1203 if (phys->ops.disable) 1204 phys->ops.disable(phys); 1205 } 1206 1207 1208 /* after phys waits for frame-done, should be no more frames pending */ 1209 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1210 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1211 del_timer_sync(&dpu_enc->frame_done_timer); 1212 } 1213 1214 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1215 1216 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1217 dpu_enc->phys_encs[i]->connector = NULL; 1218 } 1219 1220 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1221 1222 mutex_unlock(&dpu_enc->enc_lock); 1223 } 1224 1225 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1226 enum dpu_intf_type type, u32 controller_id) 1227 { 1228 int i = 0; 1229 1230 for (i = 0; i < catalog->intf_count; i++) { 1231 if (catalog->intf[i].type == type 1232 && catalog->intf[i].controller_id == controller_id) { 1233 return catalog->intf[i].id; 1234 } 1235 } 1236 1237 return INTF_MAX; 1238 } 1239 1240 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1241 struct dpu_encoder_phys *phy_enc) 1242 { 1243 struct dpu_encoder_virt *dpu_enc = NULL; 1244 unsigned long lock_flags; 1245 1246 if (!drm_enc || !phy_enc) 1247 return; 1248 1249 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1250 dpu_enc = to_dpu_encoder_virt(drm_enc); 1251 1252 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1253 if (dpu_enc->crtc) 1254 dpu_crtc_vblank_callback(dpu_enc->crtc); 1255 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1256 1257 atomic_inc(&phy_enc->vsync_cnt); 1258 DPU_ATRACE_END("encoder_vblank_callback"); 1259 } 1260 1261 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1262 struct dpu_encoder_phys *phy_enc) 1263 { 1264 if (!phy_enc) 1265 return; 1266 1267 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1268 atomic_inc(&phy_enc->underrun_cnt); 1269 1270 /* trigger dump only on the first underrun */ 1271 if (atomic_read(&phy_enc->underrun_cnt) == 1) 1272 msm_disp_snapshot_state(drm_enc->dev); 1273 1274 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1275 atomic_read(&phy_enc->underrun_cnt)); 1276 DPU_ATRACE_END("encoder_underrun_callback"); 1277 } 1278 1279 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1280 { 1281 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1282 unsigned long lock_flags; 1283 1284 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1285 /* crtc should always be cleared before re-assigning */ 1286 WARN_ON(crtc && dpu_enc->crtc); 1287 dpu_enc->crtc = crtc; 1288 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1289 } 1290 1291 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1292 struct drm_crtc *crtc, bool enable) 1293 { 1294 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1295 unsigned long lock_flags; 1296 int i; 1297 1298 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1299 1300 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1301 if (dpu_enc->crtc != crtc) { 1302 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1303 return; 1304 } 1305 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1306 1307 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1308 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1309 1310 if (phys->ops.control_vblank_irq) 1311 phys->ops.control_vblank_irq(phys, enable); 1312 } 1313 } 1314 1315 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1316 void (*frame_event_cb)(void *, u32 event), 1317 void *frame_event_cb_data) 1318 { 1319 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1320 unsigned long lock_flags; 1321 bool enable; 1322 1323 enable = frame_event_cb ? true : false; 1324 1325 if (!drm_enc) { 1326 DPU_ERROR("invalid encoder\n"); 1327 return; 1328 } 1329 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1330 1331 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1332 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1333 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1334 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1335 } 1336 1337 static void dpu_encoder_frame_done_callback( 1338 struct drm_encoder *drm_enc, 1339 struct dpu_encoder_phys *ready_phys, u32 event) 1340 { 1341 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1342 unsigned int i; 1343 1344 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1345 | DPU_ENCODER_FRAME_EVENT_ERROR 1346 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1347 1348 if (!dpu_enc->frame_busy_mask[0]) { 1349 /** 1350 * suppress frame_done without waiter, 1351 * likely autorefresh 1352 */ 1353 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1354 event, ready_phys->intf_idx); 1355 return; 1356 } 1357 1358 /* One of the physical encoders has become idle */ 1359 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1360 if (dpu_enc->phys_encs[i] == ready_phys) { 1361 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1362 dpu_enc->frame_busy_mask[0]); 1363 clear_bit(i, dpu_enc->frame_busy_mask); 1364 } 1365 } 1366 1367 if (!dpu_enc->frame_busy_mask[0]) { 1368 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1369 del_timer(&dpu_enc->frame_done_timer); 1370 1371 dpu_encoder_resource_control(drm_enc, 1372 DPU_ENC_RC_EVENT_FRAME_DONE); 1373 1374 if (dpu_enc->crtc_frame_event_cb) 1375 dpu_enc->crtc_frame_event_cb( 1376 dpu_enc->crtc_frame_event_cb_data, 1377 event); 1378 } 1379 } else { 1380 if (dpu_enc->crtc_frame_event_cb) 1381 dpu_enc->crtc_frame_event_cb( 1382 dpu_enc->crtc_frame_event_cb_data, event); 1383 } 1384 } 1385 1386 static void dpu_encoder_off_work(struct work_struct *work) 1387 { 1388 struct dpu_encoder_virt *dpu_enc = container_of(work, 1389 struct dpu_encoder_virt, delayed_off_work.work); 1390 1391 dpu_encoder_resource_control(&dpu_enc->base, 1392 DPU_ENC_RC_EVENT_ENTER_IDLE); 1393 1394 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1395 DPU_ENCODER_FRAME_EVENT_IDLE); 1396 } 1397 1398 /** 1399 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1400 * @drm_enc: Pointer to drm encoder structure 1401 * @phys: Pointer to physical encoder structure 1402 * @extra_flush_bits: Additional bit mask to include in flush trigger 1403 */ 1404 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1405 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1406 { 1407 struct dpu_hw_ctl *ctl; 1408 int pending_kickoff_cnt; 1409 u32 ret = UINT_MAX; 1410 1411 if (!phys->hw_pp) { 1412 DPU_ERROR("invalid pingpong hw\n"); 1413 return; 1414 } 1415 1416 ctl = phys->hw_ctl; 1417 if (!ctl->ops.trigger_flush) { 1418 DPU_ERROR("missing trigger cb\n"); 1419 return; 1420 } 1421 1422 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1423 1424 if (extra_flush_bits && ctl->ops.update_pending_flush) 1425 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1426 1427 ctl->ops.trigger_flush(ctl); 1428 1429 if (ctl->ops.get_pending_flush) 1430 ret = ctl->ops.get_pending_flush(ctl); 1431 1432 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1433 pending_kickoff_cnt, ctl->idx, 1434 extra_flush_bits, ret); 1435 } 1436 1437 /** 1438 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1439 * @phys: Pointer to physical encoder structure 1440 */ 1441 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1442 { 1443 if (!phys) { 1444 DPU_ERROR("invalid argument(s)\n"); 1445 return; 1446 } 1447 1448 if (!phys->hw_pp) { 1449 DPU_ERROR("invalid pingpong hw\n"); 1450 return; 1451 } 1452 1453 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1454 phys->ops.trigger_start(phys); 1455 } 1456 1457 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1458 { 1459 struct dpu_hw_ctl *ctl; 1460 1461 ctl = phys_enc->hw_ctl; 1462 if (ctl->ops.trigger_start) { 1463 ctl->ops.trigger_start(ctl); 1464 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1465 } 1466 } 1467 1468 static int dpu_encoder_helper_wait_event_timeout( 1469 int32_t drm_id, 1470 u32 irq_idx, 1471 struct dpu_encoder_wait_info *info) 1472 { 1473 int rc = 0; 1474 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1475 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1476 s64 time; 1477 1478 do { 1479 rc = wait_event_timeout(*(info->wq), 1480 atomic_read(info->atomic_cnt) == 0, jiffies); 1481 time = ktime_to_ms(ktime_get()); 1482 1483 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time, 1484 expected_time, 1485 atomic_read(info->atomic_cnt)); 1486 /* If we timed out, counter is valid and time is less, wait again */ 1487 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1488 (time < expected_time)); 1489 1490 return rc; 1491 } 1492 1493 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1494 { 1495 struct dpu_encoder_virt *dpu_enc; 1496 struct dpu_hw_ctl *ctl; 1497 int rc; 1498 struct drm_encoder *drm_enc; 1499 1500 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1501 ctl = phys_enc->hw_ctl; 1502 drm_enc = phys_enc->parent; 1503 1504 if (!ctl->ops.reset) 1505 return; 1506 1507 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), 1508 ctl->idx); 1509 1510 rc = ctl->ops.reset(ctl); 1511 if (rc) { 1512 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1513 msm_disp_snapshot_state(drm_enc->dev); 1514 } 1515 1516 phys_enc->enable_state = DPU_ENC_ENABLED; 1517 } 1518 1519 /** 1520 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1521 * Iterate through the physical encoders and perform consolidated flush 1522 * and/or control start triggering as needed. This is done in the virtual 1523 * encoder rather than the individual physical ones in order to handle 1524 * use cases that require visibility into multiple physical encoders at 1525 * a time. 1526 * @dpu_enc: Pointer to virtual encoder structure 1527 */ 1528 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1529 { 1530 struct dpu_hw_ctl *ctl; 1531 uint32_t i, pending_flush; 1532 unsigned long lock_flags; 1533 1534 pending_flush = 0x0; 1535 1536 /* update pending counts and trigger kickoff ctl flush atomically */ 1537 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1538 1539 /* don't perform flush/start operations for slave encoders */ 1540 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1541 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1542 1543 if (phys->enable_state == DPU_ENC_DISABLED) 1544 continue; 1545 1546 ctl = phys->hw_ctl; 1547 1548 /* 1549 * This is cleared in frame_done worker, which isn't invoked 1550 * for async commits. So don't set this for async, since it'll 1551 * roll over to the next commit. 1552 */ 1553 if (phys->split_role != ENC_ROLE_SLAVE) 1554 set_bit(i, dpu_enc->frame_busy_mask); 1555 1556 if (!phys->ops.needs_single_flush || 1557 !phys->ops.needs_single_flush(phys)) 1558 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1559 else if (ctl->ops.get_pending_flush) 1560 pending_flush |= ctl->ops.get_pending_flush(ctl); 1561 } 1562 1563 /* for split flush, combine pending flush masks and send to master */ 1564 if (pending_flush && dpu_enc->cur_master) { 1565 _dpu_encoder_trigger_flush( 1566 &dpu_enc->base, 1567 dpu_enc->cur_master, 1568 pending_flush); 1569 } 1570 1571 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1572 1573 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1574 } 1575 1576 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1577 { 1578 struct dpu_encoder_virt *dpu_enc; 1579 struct dpu_encoder_phys *phys; 1580 unsigned int i; 1581 struct dpu_hw_ctl *ctl; 1582 struct msm_display_info *disp_info; 1583 1584 if (!drm_enc) { 1585 DPU_ERROR("invalid encoder\n"); 1586 return; 1587 } 1588 dpu_enc = to_dpu_encoder_virt(drm_enc); 1589 disp_info = &dpu_enc->disp_info; 1590 1591 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1592 phys = dpu_enc->phys_encs[i]; 1593 1594 ctl = phys->hw_ctl; 1595 if (ctl->ops.clear_pending_flush) 1596 ctl->ops.clear_pending_flush(ctl); 1597 1598 /* update only for command mode primary ctl */ 1599 if ((phys == dpu_enc->cur_master) && 1600 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1601 && ctl->ops.trigger_pending) 1602 ctl->ops.trigger_pending(ctl); 1603 } 1604 } 1605 1606 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1607 struct drm_display_mode *mode) 1608 { 1609 u64 pclk_rate; 1610 u32 pclk_period; 1611 u32 line_time; 1612 1613 /* 1614 * For linetime calculation, only operate on master encoder. 1615 */ 1616 if (!dpu_enc->cur_master) 1617 return 0; 1618 1619 if (!dpu_enc->cur_master->ops.get_line_count) { 1620 DPU_ERROR("get_line_count function not defined\n"); 1621 return 0; 1622 } 1623 1624 pclk_rate = mode->clock; /* pixel clock in kHz */ 1625 if (pclk_rate == 0) { 1626 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1627 return 0; 1628 } 1629 1630 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1631 if (pclk_period == 0) { 1632 DPU_ERROR("pclk period is 0\n"); 1633 return 0; 1634 } 1635 1636 /* 1637 * Line time calculation based on Pixel clock and HTOTAL. 1638 * Final unit is in ns. 1639 */ 1640 line_time = (pclk_period * mode->htotal) / 1000; 1641 if (line_time == 0) { 1642 DPU_ERROR("line time calculation is 0\n"); 1643 return 0; 1644 } 1645 1646 DPU_DEBUG_ENC(dpu_enc, 1647 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1648 pclk_rate, pclk_period, line_time); 1649 1650 return line_time; 1651 } 1652 1653 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1654 { 1655 struct drm_display_mode *mode; 1656 struct dpu_encoder_virt *dpu_enc; 1657 u32 cur_line; 1658 u32 line_time; 1659 u32 vtotal, time_to_vsync; 1660 ktime_t cur_time; 1661 1662 dpu_enc = to_dpu_encoder_virt(drm_enc); 1663 1664 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1665 DPU_ERROR("crtc/crtc state object is NULL\n"); 1666 return -EINVAL; 1667 } 1668 mode = &drm_enc->crtc->state->adjusted_mode; 1669 1670 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1671 if (!line_time) 1672 return -EINVAL; 1673 1674 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1675 1676 vtotal = mode->vtotal; 1677 if (cur_line >= vtotal) 1678 time_to_vsync = line_time * vtotal; 1679 else 1680 time_to_vsync = line_time * (vtotal - cur_line); 1681 1682 if (time_to_vsync == 0) { 1683 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1684 vtotal); 1685 return -EINVAL; 1686 } 1687 1688 cur_time = ktime_get(); 1689 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1690 1691 DPU_DEBUG_ENC(dpu_enc, 1692 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1693 cur_line, vtotal, time_to_vsync, 1694 ktime_to_ms(cur_time), 1695 ktime_to_ms(*wakeup_time)); 1696 return 0; 1697 } 1698 1699 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1700 { 1701 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1702 vsync_event_timer); 1703 struct drm_encoder *drm_enc = &dpu_enc->base; 1704 struct msm_drm_private *priv; 1705 struct msm_drm_thread *event_thread; 1706 1707 if (!drm_enc->dev || !drm_enc->crtc) { 1708 DPU_ERROR("invalid parameters\n"); 1709 return; 1710 } 1711 1712 priv = drm_enc->dev->dev_private; 1713 1714 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1715 DPU_ERROR("invalid crtc index\n"); 1716 return; 1717 } 1718 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1719 if (!event_thread) { 1720 DPU_ERROR("event_thread not found for crtc:%d\n", 1721 drm_enc->crtc->index); 1722 return; 1723 } 1724 1725 del_timer(&dpu_enc->vsync_event_timer); 1726 } 1727 1728 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1729 { 1730 struct dpu_encoder_virt *dpu_enc = container_of(work, 1731 struct dpu_encoder_virt, vsync_event_work); 1732 ktime_t wakeup_time; 1733 1734 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1735 return; 1736 1737 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1738 mod_timer(&dpu_enc->vsync_event_timer, 1739 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1740 } 1741 1742 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1743 { 1744 struct dpu_encoder_virt *dpu_enc; 1745 struct dpu_encoder_phys *phys; 1746 bool needs_hw_reset = false; 1747 unsigned int i; 1748 1749 dpu_enc = to_dpu_encoder_virt(drm_enc); 1750 1751 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1752 1753 /* prepare for next kickoff, may include waiting on previous kickoff */ 1754 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1755 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1756 phys = dpu_enc->phys_encs[i]; 1757 if (phys->ops.prepare_for_kickoff) 1758 phys->ops.prepare_for_kickoff(phys); 1759 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1760 needs_hw_reset = true; 1761 } 1762 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1763 1764 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1765 1766 /* if any phys needs reset, reset all phys, in-order */ 1767 if (needs_hw_reset) { 1768 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1769 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1770 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1771 } 1772 } 1773 } 1774 1775 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1776 { 1777 struct dpu_encoder_virt *dpu_enc; 1778 struct dpu_encoder_phys *phys; 1779 ktime_t wakeup_time; 1780 unsigned long timeout_ms; 1781 unsigned int i; 1782 1783 DPU_ATRACE_BEGIN("encoder_kickoff"); 1784 dpu_enc = to_dpu_encoder_virt(drm_enc); 1785 1786 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1787 1788 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1789 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1790 1791 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1792 mod_timer(&dpu_enc->frame_done_timer, 1793 jiffies + msecs_to_jiffies(timeout_ms)); 1794 1795 /* All phys encs are ready to go, trigger the kickoff */ 1796 _dpu_encoder_kickoff_phys(dpu_enc); 1797 1798 /* allow phys encs to handle any post-kickoff business */ 1799 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1800 phys = dpu_enc->phys_encs[i]; 1801 if (phys->ops.handle_post_kickoff) 1802 phys->ops.handle_post_kickoff(phys); 1803 } 1804 1805 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1806 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1807 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1808 ktime_to_ms(wakeup_time)); 1809 mod_timer(&dpu_enc->vsync_event_timer, 1810 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1811 } 1812 1813 DPU_ATRACE_END("encoder_kickoff"); 1814 } 1815 1816 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1817 { 1818 struct dpu_encoder_virt *dpu_enc; 1819 struct dpu_encoder_phys *phys; 1820 int i; 1821 1822 if (!drm_enc) { 1823 DPU_ERROR("invalid encoder\n"); 1824 return; 1825 } 1826 dpu_enc = to_dpu_encoder_virt(drm_enc); 1827 1828 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1829 phys = dpu_enc->phys_encs[i]; 1830 if (phys->ops.prepare_commit) 1831 phys->ops.prepare_commit(phys); 1832 } 1833 } 1834 1835 #ifdef CONFIG_DEBUG_FS 1836 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1837 { 1838 struct dpu_encoder_virt *dpu_enc = s->private; 1839 int i; 1840 1841 mutex_lock(&dpu_enc->enc_lock); 1842 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1843 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1844 1845 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1846 phys->intf_idx - INTF_0, 1847 atomic_read(&phys->vsync_cnt), 1848 atomic_read(&phys->underrun_cnt)); 1849 1850 switch (phys->intf_mode) { 1851 case INTF_MODE_VIDEO: 1852 seq_puts(s, "mode: video\n"); 1853 break; 1854 case INTF_MODE_CMD: 1855 seq_puts(s, "mode: command\n"); 1856 break; 1857 default: 1858 seq_puts(s, "mode: ???\n"); 1859 break; 1860 } 1861 } 1862 mutex_unlock(&dpu_enc->enc_lock); 1863 1864 return 0; 1865 } 1866 1867 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); 1868 1869 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1870 { 1871 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1872 int i; 1873 1874 char name[DPU_NAME_SIZE]; 1875 1876 if (!drm_enc->dev) { 1877 DPU_ERROR("invalid encoder or kms\n"); 1878 return -EINVAL; 1879 } 1880 1881 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1882 1883 /* create overall sub-directory for the encoder */ 1884 dpu_enc->debugfs_root = debugfs_create_dir(name, 1885 drm_enc->dev->primary->debugfs_root); 1886 1887 /* don't error check these */ 1888 debugfs_create_file("status", 0600, 1889 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops); 1890 1891 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1892 if (dpu_enc->phys_encs[i]->ops.late_register) 1893 dpu_enc->phys_encs[i]->ops.late_register( 1894 dpu_enc->phys_encs[i], 1895 dpu_enc->debugfs_root); 1896 1897 return 0; 1898 } 1899 #else 1900 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1901 { 1902 return 0; 1903 } 1904 #endif 1905 1906 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1907 { 1908 return _dpu_encoder_init_debugfs(encoder); 1909 } 1910 1911 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1912 { 1913 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1914 1915 debugfs_remove_recursive(dpu_enc->debugfs_root); 1916 } 1917 1918 static int dpu_encoder_virt_add_phys_encs( 1919 u32 display_caps, 1920 struct dpu_encoder_virt *dpu_enc, 1921 struct dpu_enc_phys_init_params *params) 1922 { 1923 struct dpu_encoder_phys *enc = NULL; 1924 1925 DPU_DEBUG_ENC(dpu_enc, "\n"); 1926 1927 /* 1928 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1929 * in this function, check up-front. 1930 */ 1931 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1932 ARRAY_SIZE(dpu_enc->phys_encs)) { 1933 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1934 dpu_enc->num_phys_encs); 1935 return -EINVAL; 1936 } 1937 1938 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1939 enc = dpu_encoder_phys_vid_init(params); 1940 1941 if (IS_ERR_OR_NULL(enc)) { 1942 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1943 PTR_ERR(enc)); 1944 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1945 } 1946 1947 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1948 ++dpu_enc->num_phys_encs; 1949 } 1950 1951 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1952 enc = dpu_encoder_phys_cmd_init(params); 1953 1954 if (IS_ERR_OR_NULL(enc)) { 1955 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1956 PTR_ERR(enc)); 1957 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1958 } 1959 1960 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1961 ++dpu_enc->num_phys_encs; 1962 } 1963 1964 if (params->split_role == ENC_ROLE_SLAVE) 1965 dpu_enc->cur_slave = enc; 1966 else 1967 dpu_enc->cur_master = enc; 1968 1969 return 0; 1970 } 1971 1972 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 1973 .handle_vblank_virt = dpu_encoder_vblank_callback, 1974 .handle_underrun_virt = dpu_encoder_underrun_callback, 1975 .handle_frame_done = dpu_encoder_frame_done_callback, 1976 }; 1977 1978 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 1979 struct dpu_kms *dpu_kms, 1980 struct msm_display_info *disp_info) 1981 { 1982 int ret = 0; 1983 int i = 0; 1984 enum dpu_intf_type intf_type = INTF_NONE; 1985 struct dpu_enc_phys_init_params phys_params; 1986 1987 if (!dpu_enc) { 1988 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 1989 return -EINVAL; 1990 } 1991 1992 dpu_enc->cur_master = NULL; 1993 1994 memset(&phys_params, 0, sizeof(phys_params)); 1995 phys_params.dpu_kms = dpu_kms; 1996 phys_params.parent = &dpu_enc->base; 1997 phys_params.parent_ops = &dpu_encoder_parent_ops; 1998 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 1999 2000 switch (disp_info->intf_type) { 2001 case DRM_MODE_ENCODER_DSI: 2002 intf_type = INTF_DSI; 2003 break; 2004 case DRM_MODE_ENCODER_TMDS: 2005 intf_type = INTF_DP; 2006 break; 2007 } 2008 2009 WARN_ON(disp_info->num_of_h_tiles < 1); 2010 2011 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2012 2013 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2014 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2015 dpu_enc->idle_pc_supported = 2016 dpu_kms->catalog->caps->has_idle_pc; 2017 2018 mutex_lock(&dpu_enc->enc_lock); 2019 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2020 /* 2021 * Left-most tile is at index 0, content is controller id 2022 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2023 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2024 */ 2025 u32 controller_id = disp_info->h_tile_instance[i]; 2026 2027 if (disp_info->num_of_h_tiles > 1) { 2028 if (i == 0) 2029 phys_params.split_role = ENC_ROLE_MASTER; 2030 else 2031 phys_params.split_role = ENC_ROLE_SLAVE; 2032 } else { 2033 phys_params.split_role = ENC_ROLE_SOLO; 2034 } 2035 2036 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2037 i, controller_id, phys_params.split_role); 2038 2039 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2040 intf_type, 2041 controller_id); 2042 if (phys_params.intf_idx == INTF_MAX) { 2043 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2044 intf_type, controller_id); 2045 ret = -EINVAL; 2046 } 2047 2048 if (!ret) { 2049 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2050 dpu_enc, 2051 &phys_params); 2052 if (ret) 2053 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2054 } 2055 } 2056 2057 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2058 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2059 atomic_set(&phys->vsync_cnt, 0); 2060 atomic_set(&phys->underrun_cnt, 0); 2061 } 2062 mutex_unlock(&dpu_enc->enc_lock); 2063 2064 return ret; 2065 } 2066 2067 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2068 { 2069 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2070 frame_done_timer); 2071 struct drm_encoder *drm_enc = &dpu_enc->base; 2072 u32 event; 2073 2074 if (!drm_enc->dev) { 2075 DPU_ERROR("invalid parameters\n"); 2076 return; 2077 } 2078 2079 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2080 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2081 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2082 return; 2083 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2084 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2085 return; 2086 } 2087 2088 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2089 2090 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2091 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2092 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2093 } 2094 2095 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2096 .mode_set = dpu_encoder_virt_mode_set, 2097 .disable = dpu_encoder_virt_disable, 2098 .enable = dpu_encoder_virt_enable, 2099 .atomic_check = dpu_encoder_virt_atomic_check, 2100 }; 2101 2102 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2103 .destroy = dpu_encoder_destroy, 2104 .late_register = dpu_encoder_late_register, 2105 .early_unregister = dpu_encoder_early_unregister, 2106 }; 2107 2108 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2109 struct msm_display_info *disp_info) 2110 { 2111 struct msm_drm_private *priv = dev->dev_private; 2112 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2113 struct drm_encoder *drm_enc = NULL; 2114 struct dpu_encoder_virt *dpu_enc = NULL; 2115 int ret = 0; 2116 2117 dpu_enc = to_dpu_encoder_virt(enc); 2118 2119 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2120 if (ret) 2121 goto fail; 2122 2123 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2124 timer_setup(&dpu_enc->frame_done_timer, 2125 dpu_encoder_frame_done_timeout, 0); 2126 2127 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2128 timer_setup(&dpu_enc->vsync_event_timer, 2129 dpu_encoder_vsync_event_handler, 2130 0); 2131 else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS) 2132 dpu_enc->dp = priv->dp[disp_info->h_tile_instance[0]]; 2133 2134 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2135 dpu_encoder_off_work); 2136 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2137 2138 kthread_init_work(&dpu_enc->vsync_event_work, 2139 dpu_encoder_vsync_event_work_handler); 2140 2141 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2142 2143 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2144 2145 return ret; 2146 2147 fail: 2148 DPU_ERROR("failed to create encoder\n"); 2149 if (drm_enc) 2150 dpu_encoder_destroy(drm_enc); 2151 2152 return ret; 2153 2154 2155 } 2156 2157 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2158 int drm_enc_mode) 2159 { 2160 struct dpu_encoder_virt *dpu_enc = NULL; 2161 int rc = 0; 2162 2163 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2164 if (!dpu_enc) 2165 return ERR_PTR(-ENOMEM); 2166 2167 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2168 drm_enc_mode, NULL); 2169 if (rc) { 2170 devm_kfree(dev->dev, dpu_enc); 2171 return ERR_PTR(rc); 2172 } 2173 2174 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2175 2176 spin_lock_init(&dpu_enc->enc_spinlock); 2177 dpu_enc->enabled = false; 2178 mutex_init(&dpu_enc->enc_lock); 2179 mutex_init(&dpu_enc->rc_lock); 2180 2181 return &dpu_enc->base; 2182 } 2183 2184 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2185 enum msm_event_wait event) 2186 { 2187 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2188 struct dpu_encoder_virt *dpu_enc = NULL; 2189 int i, ret = 0; 2190 2191 if (!drm_enc) { 2192 DPU_ERROR("invalid encoder\n"); 2193 return -EINVAL; 2194 } 2195 dpu_enc = to_dpu_encoder_virt(drm_enc); 2196 DPU_DEBUG_ENC(dpu_enc, "\n"); 2197 2198 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2199 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2200 2201 switch (event) { 2202 case MSM_ENC_COMMIT_DONE: 2203 fn_wait = phys->ops.wait_for_commit_done; 2204 break; 2205 case MSM_ENC_TX_COMPLETE: 2206 fn_wait = phys->ops.wait_for_tx_complete; 2207 break; 2208 case MSM_ENC_VBLANK: 2209 fn_wait = phys->ops.wait_for_vblank; 2210 break; 2211 default: 2212 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2213 event); 2214 return -EINVAL; 2215 } 2216 2217 if (fn_wait) { 2218 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2219 ret = fn_wait(phys); 2220 DPU_ATRACE_END("wait_for_completion_event"); 2221 if (ret) 2222 return ret; 2223 } 2224 } 2225 2226 return ret; 2227 } 2228 2229 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2230 { 2231 struct dpu_encoder_virt *dpu_enc = NULL; 2232 2233 if (!encoder) { 2234 DPU_ERROR("invalid encoder\n"); 2235 return INTF_MODE_NONE; 2236 } 2237 dpu_enc = to_dpu_encoder_virt(encoder); 2238 2239 if (dpu_enc->cur_master) 2240 return dpu_enc->cur_master->intf_mode; 2241 2242 if (dpu_enc->num_phys_encs) 2243 return dpu_enc->phys_encs[0]->intf_mode; 2244 2245 return INTF_MODE_NONE; 2246 } 2247