xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 83775e158a3d2dc437132ab357ed6c9214ef0ae9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 /*
43  * Two to anticipate panels that can do cmd/vid dynamic switching
44  * plan is to create all possible physical encoder types, and switch between
45  * them at runtime
46  */
47 #define NUM_PHYS_ENCODER_TYPES 2
48 
49 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
50 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
51 
52 #define MAX_CHANNELS_PER_ENC 2
53 
54 #define IDLE_SHORT_TIMEOUT	1
55 
56 #define MAX_HDISPLAY_SPLIT 1080
57 
58 /* timeout in frames waiting for frame done */
59 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
60 
61 /**
62  * enum dpu_enc_rc_events - events for resource control state machine
63  * @DPU_ENC_RC_EVENT_KICKOFF:
64  *	This event happens at NORMAL priority.
65  *	Event that signals the start of the transfer. When this event is
66  *	received, enable MDP/DSI core clocks. Regardless of the previous
67  *	state, the resource should be in ON state at the end of this event.
68  * @DPU_ENC_RC_EVENT_FRAME_DONE:
69  *	This event happens at INTERRUPT level.
70  *	Event signals the end of the data transfer after the PP FRAME_DONE
71  *	event. At the end of this event, a delayed work is scheduled to go to
72  *	IDLE_PC state after IDLE_TIMEOUT time.
73  * @DPU_ENC_RC_EVENT_PRE_STOP:
74  *	This event happens at NORMAL priority.
75  *	This event, when received during the ON state, leave the RC STATE
76  *	in the PRE_OFF state. It should be followed by the STOP event as
77  *	part of encoder disable.
78  *	If received during IDLE or OFF states, it will do nothing.
79  * @DPU_ENC_RC_EVENT_STOP:
80  *	This event happens at NORMAL priority.
81  *	When this event is received, disable all the MDP/DSI core clocks, and
82  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
83  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
84  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
85  *	Resource state should be in OFF at the end of the event.
86  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
87  *	This event happens at NORMAL priority from a work item.
88  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
89  *	This would disable MDP/DSI core clocks and change the resource state
90  *	to IDLE.
91  */
92 enum dpu_enc_rc_events {
93 	DPU_ENC_RC_EVENT_KICKOFF = 1,
94 	DPU_ENC_RC_EVENT_FRAME_DONE,
95 	DPU_ENC_RC_EVENT_PRE_STOP,
96 	DPU_ENC_RC_EVENT_STOP,
97 	DPU_ENC_RC_EVENT_ENTER_IDLE
98 };
99 
100 /*
101  * enum dpu_enc_rc_states - states that the resource control maintains
102  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
103  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
104  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
105  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
106  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
107  */
108 enum dpu_enc_rc_states {
109 	DPU_ENC_RC_STATE_OFF,
110 	DPU_ENC_RC_STATE_PRE_OFF,
111 	DPU_ENC_RC_STATE_ON,
112 	DPU_ENC_RC_STATE_IDLE
113 };
114 
115 /**
116  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
117  *	encoders. Virtual encoder manages one "logical" display. Physical
118  *	encoders manage one intf block, tied to a specific panel/sub-panel.
119  *	Virtual encoder defers as much as possible to the physical encoders.
120  *	Virtual encoder registers itself with the DRM Framework as the encoder.
121  * @base:		drm_encoder base class for registration with DRM
122  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
123  * @enabled:		True if the encoder is active, protected by enc_lock
124  * @num_phys_encs:	Actual number of physical encoders contained.
125  * @phys_encs:		Container of physical encoders managed.
126  * @cur_master:		Pointer to the current master in this mode. Optimization
127  *			Only valid after enable. Cleared as disable.
128  * @cur_slave:		As above but for the slave encoder.
129  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
130  *			pingpong blocks can be different than num_phys_encs.
131  * @hw_dsc:		Handle to the DSC blocks used for the display.
132  * @dsc_mask:		Bitmask of used DSC blocks.
133  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
134  *			for partial update right-only cases, such as pingpong
135  *			split where virtual pingpong does not generate IRQs
136  * @crtc:		Pointer to the currently assigned crtc. Normally you
137  *			would use crtc->state->encoder_mask to determine the
138  *			link between encoder/crtc. However in this case we need
139  *			to track crtc in the disable() hook which is called
140  *			_after_ encoder_mask is cleared.
141  * @connector:		If a mode is set, cached pointer to the active connector
142  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
143  *				all CTL paths
144  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
145  * @debugfs_root:		Debug file system root file node
146  * @enc_lock:			Lock around physical encoder
147  *				create/destroy/enable/disable
148  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
149  *				busy processing current command.
150  *				Bit0 = phys_encs[0] etc.
151  * @crtc_frame_event_cb:	callback handler for frame event
152  * @crtc_frame_event_cb_data:	callback handler private data
153  * @frame_done_timeout_ms:	frame done timeout in ms
154  * @frame_done_timer:		watchdog timer for frame done event
155  * @vsync_event_timer:		vsync timer
156  * @disp_info:			local copy of msm_display_info struct
157  * @idle_pc_supported:		indicate if idle power collaps is supported
158  * @rc_lock:			resource control mutex lock to protect
159  *				virt encoder over various state changes
160  * @rc_state:			resource controller state
161  * @delayed_off_work:		delayed worker to schedule disabling of
162  *				clks and resources after IDLE_TIMEOUT time.
163  * @vsync_event_work:		worker to handle vsync event for autorefresh
164  * @topology:                   topology of the display
165  * @idle_timeout:		idle timeout duration in milliseconds
166  * @wide_bus_en:		wide bus is enabled on this interface
167  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
168  */
169 struct dpu_encoder_virt {
170 	struct drm_encoder base;
171 	spinlock_t enc_spinlock;
172 
173 	bool enabled;
174 
175 	unsigned int num_phys_encs;
176 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
177 	struct dpu_encoder_phys *cur_master;
178 	struct dpu_encoder_phys *cur_slave;
179 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
180 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
181 
182 	unsigned int dsc_mask;
183 
184 	bool intfs_swapped;
185 
186 	struct drm_crtc *crtc;
187 	struct drm_connector *connector;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 
208 	u32 idle_timeout;
209 
210 	bool wide_bus_en;
211 
212 	/* DSC configuration */
213 	struct drm_dsc_config *dsc;
214 };
215 
216 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
217 
218 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
219 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
220 };
221 
222 
223 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
224 {
225 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
226 
227 	return dpu_enc->wide_bus_en;
228 }
229 
230 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
231 {
232 	struct dpu_encoder_virt *dpu_enc;
233 	int i, num_intf = 0;
234 
235 	dpu_enc = to_dpu_encoder_virt(drm_enc);
236 
237 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
238 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
239 
240 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
241 				&& phys->hw_intf->ops.collect_misr)
242 			num_intf++;
243 	}
244 
245 	return num_intf;
246 }
247 
248 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
249 {
250 	struct dpu_encoder_virt *dpu_enc;
251 
252 	int i;
253 
254 	dpu_enc = to_dpu_encoder_virt(drm_enc);
255 
256 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
257 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
258 
259 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
260 			continue;
261 
262 		phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
263 	}
264 }
265 
266 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
267 {
268 	struct dpu_encoder_virt *dpu_enc;
269 
270 	int i, rc = 0, entries_added = 0;
271 
272 	if (!drm_enc->crtc) {
273 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
274 		return -EINVAL;
275 	}
276 
277 	dpu_enc = to_dpu_encoder_virt(drm_enc);
278 
279 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
280 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
281 
282 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
283 			continue;
284 
285 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
286 		if (rc)
287 			return rc;
288 		entries_added++;
289 	}
290 
291 	return entries_added;
292 }
293 
294 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
295 {
296 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
297 
298 	if (!hw_pp->ops.setup_dither)
299 		return;
300 
301 	switch (bpc) {
302 	case 6:
303 		dither_cfg.c0_bitdepth = 6;
304 		dither_cfg.c1_bitdepth = 6;
305 		dither_cfg.c2_bitdepth = 6;
306 		dither_cfg.c3_bitdepth = 6;
307 		dither_cfg.temporal_en = 0;
308 		break;
309 	default:
310 		hw_pp->ops.setup_dither(hw_pp, NULL);
311 		return;
312 	}
313 
314 	memcpy(&dither_cfg.matrix, dither_matrix,
315 			sizeof(u32) * DITHER_MATRIX_SZ);
316 
317 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
318 }
319 
320 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
321 {
322 	switch (intf_mode) {
323 	case INTF_MODE_VIDEO:
324 		return "INTF_MODE_VIDEO";
325 	case INTF_MODE_CMD:
326 		return "INTF_MODE_CMD";
327 	case INTF_MODE_WB_BLOCK:
328 		return "INTF_MODE_WB_BLOCK";
329 	case INTF_MODE_WB_LINE:
330 		return "INTF_MODE_WB_LINE";
331 	default:
332 		return "INTF_MODE_UNKNOWN";
333 	}
334 }
335 
336 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
337 		enum dpu_intr_idx intr_idx)
338 {
339 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
340 			DRMID(phys_enc->parent),
341 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
342 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
343 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
344 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
345 
346 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
347 				DPU_ENCODER_FRAME_EVENT_ERROR);
348 }
349 
350 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
351 		u32 irq_idx, struct dpu_encoder_wait_info *info);
352 
353 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
354 		int irq,
355 		void (*func)(void *arg, int irq_idx),
356 		struct dpu_encoder_wait_info *wait_info)
357 {
358 	u32 irq_status;
359 	int ret;
360 
361 	if (!wait_info) {
362 		DPU_ERROR("invalid params\n");
363 		return -EINVAL;
364 	}
365 	/* note: do master / slave checking outside */
366 
367 	/* return EWOULDBLOCK since we know the wait isn't necessary */
368 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
369 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
370 			  DRMID(phys_enc->parent), func,
371 			  irq);
372 		return -EWOULDBLOCK;
373 	}
374 
375 	if (irq < 0) {
376 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
377 			      DRMID(phys_enc->parent), func);
378 		return 0;
379 	}
380 
381 	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
382 		      DRMID(phys_enc->parent), func,
383 		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
384 		      atomic_read(wait_info->atomic_cnt));
385 
386 	ret = dpu_encoder_helper_wait_event_timeout(
387 			DRMID(phys_enc->parent),
388 			irq,
389 			wait_info);
390 
391 	if (ret <= 0) {
392 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
393 		if (irq_status) {
394 			unsigned long flags;
395 
396 			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
397 				      DRMID(phys_enc->parent), func,
398 				      irq,
399 				      phys_enc->hw_pp->idx - PINGPONG_0,
400 				      atomic_read(wait_info->atomic_cnt));
401 			local_irq_save(flags);
402 			func(phys_enc, irq);
403 			local_irq_restore(flags);
404 			ret = 0;
405 		} else {
406 			ret = -ETIMEDOUT;
407 			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
408 				      DRMID(phys_enc->parent), func,
409 				      irq,
410 				      phys_enc->hw_pp->idx - PINGPONG_0,
411 				      atomic_read(wait_info->atomic_cnt));
412 		}
413 	} else {
414 		ret = 0;
415 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
416 			func, irq,
417 			phys_enc->hw_pp->idx - PINGPONG_0,
418 			atomic_read(wait_info->atomic_cnt));
419 	}
420 
421 	return ret;
422 }
423 
424 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
425 {
426 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
427 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
428 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
429 }
430 
431 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
432 {
433 	struct dpu_encoder_virt *dpu_enc;
434 	struct dpu_encoder_phys *phys;
435 	int linecount = 0;
436 
437 	dpu_enc = to_dpu_encoder_virt(drm_enc);
438 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
439 
440 	if (phys && phys->ops.get_line_count)
441 		linecount = phys->ops.get_line_count(phys);
442 
443 	return linecount;
444 }
445 
446 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
447 {
448 	struct dpu_encoder_virt *dpu_enc = NULL;
449 	int i = 0;
450 
451 	if (!drm_enc) {
452 		DPU_ERROR("invalid encoder\n");
453 		return;
454 	}
455 
456 	dpu_enc = to_dpu_encoder_virt(drm_enc);
457 	DPU_DEBUG_ENC(dpu_enc, "\n");
458 
459 	mutex_lock(&dpu_enc->enc_lock);
460 
461 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
462 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
463 
464 		if (phys->ops.destroy) {
465 			phys->ops.destroy(phys);
466 			--dpu_enc->num_phys_encs;
467 			dpu_enc->phys_encs[i] = NULL;
468 		}
469 	}
470 
471 	if (dpu_enc->num_phys_encs)
472 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
473 				dpu_enc->num_phys_encs);
474 	dpu_enc->num_phys_encs = 0;
475 	mutex_unlock(&dpu_enc->enc_lock);
476 
477 	drm_encoder_cleanup(drm_enc);
478 	mutex_destroy(&dpu_enc->enc_lock);
479 }
480 
481 void dpu_encoder_helper_split_config(
482 		struct dpu_encoder_phys *phys_enc,
483 		enum dpu_intf interface)
484 {
485 	struct dpu_encoder_virt *dpu_enc;
486 	struct split_pipe_cfg cfg = { 0 };
487 	struct dpu_hw_mdp *hw_mdptop;
488 	struct msm_display_info *disp_info;
489 
490 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
491 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
492 		return;
493 	}
494 
495 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
496 	hw_mdptop = phys_enc->hw_mdptop;
497 	disp_info = &dpu_enc->disp_info;
498 
499 	if (disp_info->intf_type != INTF_DSI)
500 		return;
501 
502 	/**
503 	 * disable split modes since encoder will be operating in as the only
504 	 * encoder, either for the entire use case in the case of, for example,
505 	 * single DSI, or for this frame in the case of left/right only partial
506 	 * update.
507 	 */
508 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
509 		if (hw_mdptop->ops.setup_split_pipe)
510 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
511 		return;
512 	}
513 
514 	cfg.en = true;
515 	cfg.mode = phys_enc->intf_mode;
516 	cfg.intf = interface;
517 
518 	if (cfg.en && phys_enc->ops.needs_single_flush &&
519 			phys_enc->ops.needs_single_flush(phys_enc))
520 		cfg.split_flush_en = true;
521 
522 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
523 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
524 
525 		if (hw_mdptop->ops.setup_split_pipe)
526 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
527 	}
528 }
529 
530 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
531 {
532 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
533 	int i, intf_count = 0, num_dsc = 0;
534 
535 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
536 		if (dpu_enc->phys_encs[i])
537 			intf_count++;
538 
539 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
540 	if (dpu_enc->dsc)
541 		num_dsc = 2;
542 
543 	return (num_dsc > 0) && (num_dsc > intf_count);
544 }
545 
546 static struct msm_display_topology dpu_encoder_get_topology(
547 			struct dpu_encoder_virt *dpu_enc,
548 			struct dpu_kms *dpu_kms,
549 			struct drm_display_mode *mode,
550 			struct drm_crtc_state *crtc_state)
551 {
552 	struct msm_display_topology topology = {0};
553 	int i, intf_count = 0;
554 
555 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
556 		if (dpu_enc->phys_encs[i])
557 			intf_count++;
558 
559 	/* Datapath topology selection
560 	 *
561 	 * Dual display
562 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
563 	 *
564 	 * Single display
565 	 * 1 LM, 1 INTF
566 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
567 	 *
568 	 * Add dspps to the reservation requirements if ctm is requested
569 	 */
570 	if (intf_count == 2)
571 		topology.num_lm = 2;
572 	else if (!dpu_kms->catalog->caps->has_3d_merge)
573 		topology.num_lm = 1;
574 	else
575 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
576 
577 	if (crtc_state->ctm)
578 		topology.num_dspp = topology.num_lm;
579 
580 	topology.num_intf = intf_count;
581 
582 	if (dpu_enc->dsc) {
583 		/*
584 		 * In case of Display Stream Compression (DSC), we would use
585 		 * 2 DSC encoders, 2 layer mixers and 1 interface
586 		 * this is power optimal and can drive up to (including) 4k
587 		 * screens
588 		 */
589 		topology.num_dsc = 2;
590 		topology.num_lm = 2;
591 		topology.num_intf = 1;
592 	}
593 
594 	return topology;
595 }
596 
597 static int dpu_encoder_virt_atomic_check(
598 		struct drm_encoder *drm_enc,
599 		struct drm_crtc_state *crtc_state,
600 		struct drm_connector_state *conn_state)
601 {
602 	struct dpu_encoder_virt *dpu_enc;
603 	struct msm_drm_private *priv;
604 	struct dpu_kms *dpu_kms;
605 	struct drm_display_mode *adj_mode;
606 	struct msm_display_topology topology;
607 	struct dpu_global_state *global_state;
608 	int i = 0;
609 	int ret = 0;
610 
611 	if (!drm_enc || !crtc_state || !conn_state) {
612 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
613 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
614 		return -EINVAL;
615 	}
616 
617 	dpu_enc = to_dpu_encoder_virt(drm_enc);
618 	DPU_DEBUG_ENC(dpu_enc, "\n");
619 
620 	priv = drm_enc->dev->dev_private;
621 	dpu_kms = to_dpu_kms(priv->kms);
622 	adj_mode = &crtc_state->adjusted_mode;
623 	global_state = dpu_kms_get_global_state(crtc_state->state);
624 	if (IS_ERR(global_state))
625 		return PTR_ERR(global_state);
626 
627 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
628 
629 	/* perform atomic check on the first physical encoder (master) */
630 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
631 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
632 
633 		if (phys->ops.atomic_check)
634 			ret = phys->ops.atomic_check(phys, crtc_state,
635 					conn_state);
636 		if (ret) {
637 			DPU_ERROR_ENC(dpu_enc,
638 					"mode unsupported, phys idx %d\n", i);
639 			return ret;
640 		}
641 	}
642 
643 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state);
644 
645 	/*
646 	 * Release and Allocate resources on every modeset
647 	 * Dont allocate when active is false.
648 	 */
649 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
650 		dpu_rm_release(global_state, drm_enc);
651 
652 		if (!crtc_state->active_changed || crtc_state->enable)
653 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
654 					drm_enc, crtc_state, topology);
655 	}
656 
657 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
658 
659 	return ret;
660 }
661 
662 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
663 			struct msm_display_info *disp_info)
664 {
665 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
666 	struct msm_drm_private *priv;
667 	struct dpu_kms *dpu_kms;
668 	struct dpu_hw_mdp *hw_mdptop;
669 	struct drm_encoder *drm_enc;
670 	struct dpu_encoder_phys *phys_enc;
671 	int i;
672 
673 	if (!dpu_enc || !disp_info) {
674 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
675 					dpu_enc != NULL, disp_info != NULL);
676 		return;
677 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
678 		DPU_ERROR("invalid num phys enc %d/%d\n",
679 				dpu_enc->num_phys_encs,
680 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
681 		return;
682 	}
683 
684 	drm_enc = &dpu_enc->base;
685 	/* this pointers are checked in virt_enable_helper */
686 	priv = drm_enc->dev->dev_private;
687 
688 	dpu_kms = to_dpu_kms(priv->kms);
689 	hw_mdptop = dpu_kms->hw_mdp;
690 	if (!hw_mdptop) {
691 		DPU_ERROR("invalid mdptop\n");
692 		return;
693 	}
694 
695 	if (hw_mdptop->ops.setup_vsync_source &&
696 			disp_info->is_cmd_mode) {
697 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
698 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
699 
700 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
701 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
702 
703 		if (disp_info->is_te_using_watchdog_timer)
704 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
705 		else
706 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
707 
708 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
709 
710 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
711 			phys_enc = dpu_enc->phys_encs[i];
712 
713 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
714 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
715 						vsync_cfg.vsync_source);
716 		}
717 	}
718 }
719 
720 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
721 {
722 	struct dpu_encoder_virt *dpu_enc;
723 	int i;
724 
725 	if (!drm_enc) {
726 		DPU_ERROR("invalid encoder\n");
727 		return;
728 	}
729 
730 	dpu_enc = to_dpu_encoder_virt(drm_enc);
731 
732 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
733 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
734 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
735 
736 		if (phys->ops.irq_control)
737 			phys->ops.irq_control(phys, enable);
738 	}
739 
740 }
741 
742 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
743 		bool enable)
744 {
745 	struct msm_drm_private *priv;
746 	struct dpu_kms *dpu_kms;
747 	struct dpu_encoder_virt *dpu_enc;
748 
749 	dpu_enc = to_dpu_encoder_virt(drm_enc);
750 	priv = drm_enc->dev->dev_private;
751 	dpu_kms = to_dpu_kms(priv->kms);
752 
753 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
754 
755 	if (!dpu_enc->cur_master) {
756 		DPU_ERROR("encoder master not set\n");
757 		return;
758 	}
759 
760 	if (enable) {
761 		/* enable DPU core clks */
762 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
763 
764 		/* enable all the irq */
765 		_dpu_encoder_irq_control(drm_enc, true);
766 
767 	} else {
768 		/* disable all the irq */
769 		_dpu_encoder_irq_control(drm_enc, false);
770 
771 		/* disable DPU core clks */
772 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
773 	}
774 
775 }
776 
777 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
778 		u32 sw_event)
779 {
780 	struct dpu_encoder_virt *dpu_enc;
781 	struct msm_drm_private *priv;
782 	bool is_vid_mode = false;
783 
784 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
785 		DPU_ERROR("invalid parameters\n");
786 		return -EINVAL;
787 	}
788 	dpu_enc = to_dpu_encoder_virt(drm_enc);
789 	priv = drm_enc->dev->dev_private;
790 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
791 
792 	/*
793 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
794 	 * events and return early for other events (ie wb display).
795 	 */
796 	if (!dpu_enc->idle_pc_supported &&
797 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
798 			sw_event != DPU_ENC_RC_EVENT_STOP &&
799 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
800 		return 0;
801 
802 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
803 			 dpu_enc->rc_state, "begin");
804 
805 	switch (sw_event) {
806 	case DPU_ENC_RC_EVENT_KICKOFF:
807 		/* cancel delayed off work, if any */
808 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
809 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
810 					sw_event);
811 
812 		mutex_lock(&dpu_enc->rc_lock);
813 
814 		/* return if the resource control is already in ON state */
815 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
816 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
817 				      DRMID(drm_enc), sw_event);
818 			mutex_unlock(&dpu_enc->rc_lock);
819 			return 0;
820 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
821 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
822 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
823 				      DRMID(drm_enc), sw_event,
824 				      dpu_enc->rc_state);
825 			mutex_unlock(&dpu_enc->rc_lock);
826 			return -EINVAL;
827 		}
828 
829 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
830 			_dpu_encoder_irq_control(drm_enc, true);
831 		else
832 			_dpu_encoder_resource_control_helper(drm_enc, true);
833 
834 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
835 
836 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
837 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
838 				 "kickoff");
839 
840 		mutex_unlock(&dpu_enc->rc_lock);
841 		break;
842 
843 	case DPU_ENC_RC_EVENT_FRAME_DONE:
844 		/*
845 		 * mutex lock is not used as this event happens at interrupt
846 		 * context. And locking is not required as, the other events
847 		 * like KICKOFF and STOP does a wait-for-idle before executing
848 		 * the resource_control
849 		 */
850 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
851 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
852 				      DRMID(drm_enc), sw_event,
853 				      dpu_enc->rc_state);
854 			return -EINVAL;
855 		}
856 
857 		/*
858 		 * schedule off work item only when there are no
859 		 * frames pending
860 		 */
861 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
862 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
863 				      DRMID(drm_enc));
864 			return 0;
865 		}
866 
867 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
868 				   msecs_to_jiffies(dpu_enc->idle_timeout));
869 
870 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
871 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
872 				 "frame done");
873 		break;
874 
875 	case DPU_ENC_RC_EVENT_PRE_STOP:
876 		/* cancel delayed off work, if any */
877 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
878 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
879 					sw_event);
880 
881 		mutex_lock(&dpu_enc->rc_lock);
882 
883 		if (is_vid_mode &&
884 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
885 			_dpu_encoder_irq_control(drm_enc, true);
886 		}
887 		/* skip if is already OFF or IDLE, resources are off already */
888 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
889 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
890 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
891 				      DRMID(drm_enc), sw_event,
892 				      dpu_enc->rc_state);
893 			mutex_unlock(&dpu_enc->rc_lock);
894 			return 0;
895 		}
896 
897 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
898 
899 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
900 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
901 				 "pre stop");
902 
903 		mutex_unlock(&dpu_enc->rc_lock);
904 		break;
905 
906 	case DPU_ENC_RC_EVENT_STOP:
907 		mutex_lock(&dpu_enc->rc_lock);
908 
909 		/* return if the resource control is already in OFF state */
910 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
911 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
912 				      DRMID(drm_enc), sw_event);
913 			mutex_unlock(&dpu_enc->rc_lock);
914 			return 0;
915 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
916 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
917 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
918 			mutex_unlock(&dpu_enc->rc_lock);
919 			return -EINVAL;
920 		}
921 
922 		/**
923 		 * expect to arrive here only if in either idle state or pre-off
924 		 * and in IDLE state the resources are already disabled
925 		 */
926 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
927 			_dpu_encoder_resource_control_helper(drm_enc, false);
928 
929 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
930 
931 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
932 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
933 				 "stop");
934 
935 		mutex_unlock(&dpu_enc->rc_lock);
936 		break;
937 
938 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
939 		mutex_lock(&dpu_enc->rc_lock);
940 
941 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
942 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
943 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
944 			mutex_unlock(&dpu_enc->rc_lock);
945 			return 0;
946 		}
947 
948 		/*
949 		 * if we are in ON but a frame was just kicked off,
950 		 * ignore the IDLE event, it's probably a stale timer event
951 		 */
952 		if (dpu_enc->frame_busy_mask[0]) {
953 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
954 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
955 			mutex_unlock(&dpu_enc->rc_lock);
956 			return 0;
957 		}
958 
959 		if (is_vid_mode)
960 			_dpu_encoder_irq_control(drm_enc, false);
961 		else
962 			_dpu_encoder_resource_control_helper(drm_enc, false);
963 
964 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
965 
966 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
967 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
968 				 "idle");
969 
970 		mutex_unlock(&dpu_enc->rc_lock);
971 		break;
972 
973 	default:
974 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
975 			  sw_event);
976 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
977 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
978 				 "error");
979 		break;
980 	}
981 
982 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
983 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
984 			 "end");
985 	return 0;
986 }
987 
988 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
989 		struct drm_writeback_job *job)
990 {
991 	struct dpu_encoder_virt *dpu_enc;
992 	int i;
993 
994 	dpu_enc = to_dpu_encoder_virt(drm_enc);
995 
996 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
997 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
998 
999 		if (phys->ops.prepare_wb_job)
1000 			phys->ops.prepare_wb_job(phys, job);
1001 
1002 	}
1003 }
1004 
1005 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1006 		struct drm_writeback_job *job)
1007 {
1008 	struct dpu_encoder_virt *dpu_enc;
1009 	int i;
1010 
1011 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1012 
1013 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1014 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1015 
1016 		if (phys->ops.cleanup_wb_job)
1017 			phys->ops.cleanup_wb_job(phys, job);
1018 
1019 	}
1020 }
1021 
1022 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1023 					     struct drm_crtc_state *crtc_state,
1024 					     struct drm_connector_state *conn_state)
1025 {
1026 	struct dpu_encoder_virt *dpu_enc;
1027 	struct msm_drm_private *priv;
1028 	struct dpu_kms *dpu_kms;
1029 	struct dpu_crtc_state *cstate;
1030 	struct dpu_global_state *global_state;
1031 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1032 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1033 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1034 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1035 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1036 	int num_lm, num_ctl, num_pp, num_dsc;
1037 	unsigned int dsc_mask = 0;
1038 	int i;
1039 
1040 	if (!drm_enc) {
1041 		DPU_ERROR("invalid encoder\n");
1042 		return;
1043 	}
1044 
1045 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1046 	DPU_DEBUG_ENC(dpu_enc, "\n");
1047 
1048 	priv = drm_enc->dev->dev_private;
1049 	dpu_kms = to_dpu_kms(priv->kms);
1050 
1051 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1052 	if (IS_ERR_OR_NULL(global_state)) {
1053 		DPU_ERROR("Failed to get global state");
1054 		return;
1055 	}
1056 
1057 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1058 
1059 	/* Query resource that have been reserved in atomic check step. */
1060 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1061 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1062 		ARRAY_SIZE(hw_pp));
1063 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1064 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1065 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1066 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1067 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1068 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1069 		ARRAY_SIZE(hw_dspp));
1070 
1071 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1072 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1073 						: NULL;
1074 
1075 	if (dpu_enc->dsc) {
1076 		num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1077 							drm_enc->base.id, DPU_HW_BLK_DSC,
1078 							hw_dsc, ARRAY_SIZE(hw_dsc));
1079 		for (i = 0; i < num_dsc; i++) {
1080 			dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1081 			dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1082 		}
1083 	}
1084 
1085 	dpu_enc->dsc_mask = dsc_mask;
1086 
1087 	cstate = to_dpu_crtc_state(crtc_state);
1088 
1089 	for (i = 0; i < num_lm; i++) {
1090 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1091 
1092 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1093 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1094 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1095 	}
1096 
1097 	cstate->num_mixers = num_lm;
1098 
1099 	dpu_enc->connector = conn_state->connector;
1100 
1101 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1102 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1103 
1104 		if (!dpu_enc->hw_pp[i]) {
1105 			DPU_ERROR_ENC(dpu_enc,
1106 				"no pp block assigned at idx: %d\n", i);
1107 			return;
1108 		}
1109 
1110 		if (!hw_ctl[i]) {
1111 			DPU_ERROR_ENC(dpu_enc,
1112 				"no ctl block assigned at idx: %d\n", i);
1113 			return;
1114 		}
1115 
1116 		phys->hw_pp = dpu_enc->hw_pp[i];
1117 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1118 
1119 		phys->cached_mode = crtc_state->adjusted_mode;
1120 		if (phys->ops.atomic_mode_set)
1121 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1122 	}
1123 }
1124 
1125 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1126 {
1127 	struct dpu_encoder_virt *dpu_enc = NULL;
1128 	int i;
1129 
1130 	if (!drm_enc || !drm_enc->dev) {
1131 		DPU_ERROR("invalid parameters\n");
1132 		return;
1133 	}
1134 
1135 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1136 	if (!dpu_enc || !dpu_enc->cur_master) {
1137 		DPU_ERROR("invalid dpu encoder/master\n");
1138 		return;
1139 	}
1140 
1141 
1142 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1143 		dpu_enc->cur_master->hw_mdptop &&
1144 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1145 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1146 			dpu_enc->cur_master->hw_mdptop);
1147 
1148 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1149 
1150 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1151 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1152 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1153 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1154 			if (!dpu_enc->hw_pp[i])
1155 				continue;
1156 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1157 		}
1158 	}
1159 }
1160 
1161 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1162 {
1163 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1164 
1165 	mutex_lock(&dpu_enc->enc_lock);
1166 
1167 	if (!dpu_enc->enabled)
1168 		goto out;
1169 
1170 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1171 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1172 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1173 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1174 
1175 	_dpu_encoder_virt_enable_helper(drm_enc);
1176 
1177 out:
1178 	mutex_unlock(&dpu_enc->enc_lock);
1179 }
1180 
1181 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1182 					struct drm_atomic_state *state)
1183 {
1184 	struct dpu_encoder_virt *dpu_enc = NULL;
1185 	int ret = 0;
1186 	struct drm_display_mode *cur_mode = NULL;
1187 
1188 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1189 
1190 	mutex_lock(&dpu_enc->enc_lock);
1191 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1192 
1193 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1194 			     cur_mode->vdisplay);
1195 
1196 	/* always enable slave encoder before master */
1197 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1198 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1199 
1200 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1201 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1202 
1203 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1204 	if (ret) {
1205 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1206 				ret);
1207 		goto out;
1208 	}
1209 
1210 	_dpu_encoder_virt_enable_helper(drm_enc);
1211 
1212 	dpu_enc->enabled = true;
1213 
1214 out:
1215 	mutex_unlock(&dpu_enc->enc_lock);
1216 }
1217 
1218 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1219 					struct drm_atomic_state *state)
1220 {
1221 	struct dpu_encoder_virt *dpu_enc = NULL;
1222 	struct drm_crtc *crtc;
1223 	struct drm_crtc_state *old_state = NULL;
1224 	int i = 0;
1225 
1226 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1227 	DPU_DEBUG_ENC(dpu_enc, "\n");
1228 
1229 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1230 	if (crtc)
1231 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1232 
1233 	/*
1234 	 * The encoder is already disabled if self refresh mode was set earlier,
1235 	 * in the old_state for the corresponding crtc.
1236 	 */
1237 	if (old_state && old_state->self_refresh_active)
1238 		return;
1239 
1240 	mutex_lock(&dpu_enc->enc_lock);
1241 	dpu_enc->enabled = false;
1242 
1243 	trace_dpu_enc_disable(DRMID(drm_enc));
1244 
1245 	/* wait for idle */
1246 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1247 
1248 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1249 
1250 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1251 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1252 
1253 		if (phys->ops.disable)
1254 			phys->ops.disable(phys);
1255 	}
1256 
1257 
1258 	/* after phys waits for frame-done, should be no more frames pending */
1259 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1260 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1261 		del_timer_sync(&dpu_enc->frame_done_timer);
1262 	}
1263 
1264 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1265 
1266 	dpu_enc->connector = NULL;
1267 
1268 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1269 
1270 	mutex_unlock(&dpu_enc->enc_lock);
1271 }
1272 
1273 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1274 		struct dpu_rm *dpu_rm,
1275 		enum dpu_intf_type type, u32 controller_id)
1276 {
1277 	int i = 0;
1278 
1279 	if (type == INTF_WB)
1280 		return NULL;
1281 
1282 	for (i = 0; i < catalog->intf_count; i++) {
1283 		if (catalog->intf[i].type == type
1284 		    && catalog->intf[i].controller_id == controller_id) {
1285 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1286 		}
1287 	}
1288 
1289 	return NULL;
1290 }
1291 
1292 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1293 		struct dpu_encoder_phys *phy_enc)
1294 {
1295 	struct dpu_encoder_virt *dpu_enc = NULL;
1296 	unsigned long lock_flags;
1297 
1298 	if (!drm_enc || !phy_enc)
1299 		return;
1300 
1301 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1302 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1303 
1304 	atomic_inc(&phy_enc->vsync_cnt);
1305 
1306 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1307 	if (dpu_enc->crtc)
1308 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1309 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1310 
1311 	DPU_ATRACE_END("encoder_vblank_callback");
1312 }
1313 
1314 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1315 		struct dpu_encoder_phys *phy_enc)
1316 {
1317 	if (!phy_enc)
1318 		return;
1319 
1320 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1321 	atomic_inc(&phy_enc->underrun_cnt);
1322 
1323 	/* trigger dump only on the first underrun */
1324 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1325 		msm_disp_snapshot_state(drm_enc->dev);
1326 
1327 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1328 				  atomic_read(&phy_enc->underrun_cnt));
1329 	DPU_ATRACE_END("encoder_underrun_callback");
1330 }
1331 
1332 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1333 {
1334 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1335 	unsigned long lock_flags;
1336 
1337 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1338 	/* crtc should always be cleared before re-assigning */
1339 	WARN_ON(crtc && dpu_enc->crtc);
1340 	dpu_enc->crtc = crtc;
1341 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1342 }
1343 
1344 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1345 					struct drm_crtc *crtc, bool enable)
1346 {
1347 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1348 	unsigned long lock_flags;
1349 	int i;
1350 
1351 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1352 
1353 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1354 	if (dpu_enc->crtc != crtc) {
1355 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1356 		return;
1357 	}
1358 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1359 
1360 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1361 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1362 
1363 		if (phys->ops.control_vblank_irq)
1364 			phys->ops.control_vblank_irq(phys, enable);
1365 	}
1366 }
1367 
1368 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1369 		void (*frame_event_cb)(void *, u32 event),
1370 		void *frame_event_cb_data)
1371 {
1372 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1373 	unsigned long lock_flags;
1374 	bool enable;
1375 
1376 	enable = frame_event_cb ? true : false;
1377 
1378 	if (!drm_enc) {
1379 		DPU_ERROR("invalid encoder\n");
1380 		return;
1381 	}
1382 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1383 
1384 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1385 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1386 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1387 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1388 }
1389 
1390 void dpu_encoder_frame_done_callback(
1391 		struct drm_encoder *drm_enc,
1392 		struct dpu_encoder_phys *ready_phys, u32 event)
1393 {
1394 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1395 	unsigned int i;
1396 
1397 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1398 			| DPU_ENCODER_FRAME_EVENT_ERROR
1399 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1400 
1401 		if (!dpu_enc->frame_busy_mask[0]) {
1402 			/**
1403 			 * suppress frame_done without waiter,
1404 			 * likely autorefresh
1405 			 */
1406 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1407 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1408 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1409 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1410 			return;
1411 		}
1412 
1413 		/* One of the physical encoders has become idle */
1414 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1415 			if (dpu_enc->phys_encs[i] == ready_phys) {
1416 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1417 						dpu_enc->frame_busy_mask[0]);
1418 				clear_bit(i, dpu_enc->frame_busy_mask);
1419 			}
1420 		}
1421 
1422 		if (!dpu_enc->frame_busy_mask[0]) {
1423 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1424 			del_timer(&dpu_enc->frame_done_timer);
1425 
1426 			dpu_encoder_resource_control(drm_enc,
1427 					DPU_ENC_RC_EVENT_FRAME_DONE);
1428 
1429 			if (dpu_enc->crtc_frame_event_cb)
1430 				dpu_enc->crtc_frame_event_cb(
1431 					dpu_enc->crtc_frame_event_cb_data,
1432 					event);
1433 		}
1434 	} else {
1435 		if (dpu_enc->crtc_frame_event_cb)
1436 			dpu_enc->crtc_frame_event_cb(
1437 				dpu_enc->crtc_frame_event_cb_data, event);
1438 	}
1439 }
1440 
1441 static void dpu_encoder_off_work(struct work_struct *work)
1442 {
1443 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1444 			struct dpu_encoder_virt, delayed_off_work.work);
1445 
1446 	dpu_encoder_resource_control(&dpu_enc->base,
1447 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1448 
1449 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1450 				DPU_ENCODER_FRAME_EVENT_IDLE);
1451 }
1452 
1453 /**
1454  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1455  * @drm_enc: Pointer to drm encoder structure
1456  * @phys: Pointer to physical encoder structure
1457  * @extra_flush_bits: Additional bit mask to include in flush trigger
1458  */
1459 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1460 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1461 {
1462 	struct dpu_hw_ctl *ctl;
1463 	int pending_kickoff_cnt;
1464 	u32 ret = UINT_MAX;
1465 
1466 	if (!phys->hw_pp) {
1467 		DPU_ERROR("invalid pingpong hw\n");
1468 		return;
1469 	}
1470 
1471 	ctl = phys->hw_ctl;
1472 	if (!ctl->ops.trigger_flush) {
1473 		DPU_ERROR("missing trigger cb\n");
1474 		return;
1475 	}
1476 
1477 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1478 
1479 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1480 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1481 
1482 	ctl->ops.trigger_flush(ctl);
1483 
1484 	if (ctl->ops.get_pending_flush)
1485 		ret = ctl->ops.get_pending_flush(ctl);
1486 
1487 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1488 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1489 			phys->hw_intf ? phys->hw_intf->idx : -1,
1490 			phys->hw_wb ? phys->hw_wb->idx : -1,
1491 			pending_kickoff_cnt, ctl->idx,
1492 			extra_flush_bits, ret);
1493 }
1494 
1495 /**
1496  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1497  * @phys: Pointer to physical encoder structure
1498  */
1499 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1500 {
1501 	if (!phys) {
1502 		DPU_ERROR("invalid argument(s)\n");
1503 		return;
1504 	}
1505 
1506 	if (!phys->hw_pp) {
1507 		DPU_ERROR("invalid pingpong hw\n");
1508 		return;
1509 	}
1510 
1511 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1512 		phys->ops.trigger_start(phys);
1513 }
1514 
1515 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1516 {
1517 	struct dpu_hw_ctl *ctl;
1518 
1519 	ctl = phys_enc->hw_ctl;
1520 	if (ctl->ops.trigger_start) {
1521 		ctl->ops.trigger_start(ctl);
1522 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1523 	}
1524 }
1525 
1526 static int dpu_encoder_helper_wait_event_timeout(
1527 		int32_t drm_id,
1528 		u32 irq_idx,
1529 		struct dpu_encoder_wait_info *info)
1530 {
1531 	int rc = 0;
1532 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1533 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1534 	s64 time;
1535 
1536 	do {
1537 		rc = wait_event_timeout(*(info->wq),
1538 				atomic_read(info->atomic_cnt) == 0, jiffies);
1539 		time = ktime_to_ms(ktime_get());
1540 
1541 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1542 						 expected_time,
1543 						 atomic_read(info->atomic_cnt));
1544 	/* If we timed out, counter is valid and time is less, wait again */
1545 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1546 			(time < expected_time));
1547 
1548 	return rc;
1549 }
1550 
1551 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1552 {
1553 	struct dpu_encoder_virt *dpu_enc;
1554 	struct dpu_hw_ctl *ctl;
1555 	int rc;
1556 	struct drm_encoder *drm_enc;
1557 
1558 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1559 	ctl = phys_enc->hw_ctl;
1560 	drm_enc = phys_enc->parent;
1561 
1562 	if (!ctl->ops.reset)
1563 		return;
1564 
1565 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1566 		      ctl->idx);
1567 
1568 	rc = ctl->ops.reset(ctl);
1569 	if (rc) {
1570 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1571 		msm_disp_snapshot_state(drm_enc->dev);
1572 	}
1573 
1574 	phys_enc->enable_state = DPU_ENC_ENABLED;
1575 }
1576 
1577 /**
1578  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1579  *	Iterate through the physical encoders and perform consolidated flush
1580  *	and/or control start triggering as needed. This is done in the virtual
1581  *	encoder rather than the individual physical ones in order to handle
1582  *	use cases that require visibility into multiple physical encoders at
1583  *	a time.
1584  * @dpu_enc: Pointer to virtual encoder structure
1585  */
1586 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1587 {
1588 	struct dpu_hw_ctl *ctl;
1589 	uint32_t i, pending_flush;
1590 	unsigned long lock_flags;
1591 
1592 	pending_flush = 0x0;
1593 
1594 	/* update pending counts and trigger kickoff ctl flush atomically */
1595 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1596 
1597 	/* don't perform flush/start operations for slave encoders */
1598 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1599 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1600 
1601 		if (phys->enable_state == DPU_ENC_DISABLED)
1602 			continue;
1603 
1604 		ctl = phys->hw_ctl;
1605 
1606 		/*
1607 		 * This is cleared in frame_done worker, which isn't invoked
1608 		 * for async commits. So don't set this for async, since it'll
1609 		 * roll over to the next commit.
1610 		 */
1611 		if (phys->split_role != ENC_ROLE_SLAVE)
1612 			set_bit(i, dpu_enc->frame_busy_mask);
1613 
1614 		if (!phys->ops.needs_single_flush ||
1615 				!phys->ops.needs_single_flush(phys))
1616 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1617 		else if (ctl->ops.get_pending_flush)
1618 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1619 	}
1620 
1621 	/* for split flush, combine pending flush masks and send to master */
1622 	if (pending_flush && dpu_enc->cur_master) {
1623 		_dpu_encoder_trigger_flush(
1624 				&dpu_enc->base,
1625 				dpu_enc->cur_master,
1626 				pending_flush);
1627 	}
1628 
1629 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1630 
1631 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1632 }
1633 
1634 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1635 {
1636 	struct dpu_encoder_virt *dpu_enc;
1637 	struct dpu_encoder_phys *phys;
1638 	unsigned int i;
1639 	struct dpu_hw_ctl *ctl;
1640 	struct msm_display_info *disp_info;
1641 
1642 	if (!drm_enc) {
1643 		DPU_ERROR("invalid encoder\n");
1644 		return;
1645 	}
1646 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1647 	disp_info = &dpu_enc->disp_info;
1648 
1649 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1650 		phys = dpu_enc->phys_encs[i];
1651 
1652 		ctl = phys->hw_ctl;
1653 		if (ctl->ops.clear_pending_flush)
1654 			ctl->ops.clear_pending_flush(ctl);
1655 
1656 		/* update only for command mode primary ctl */
1657 		if ((phys == dpu_enc->cur_master) &&
1658 		    disp_info->is_cmd_mode
1659 		    && ctl->ops.trigger_pending)
1660 			ctl->ops.trigger_pending(ctl);
1661 	}
1662 }
1663 
1664 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1665 		struct drm_display_mode *mode)
1666 {
1667 	u64 pclk_rate;
1668 	u32 pclk_period;
1669 	u32 line_time;
1670 
1671 	/*
1672 	 * For linetime calculation, only operate on master encoder.
1673 	 */
1674 	if (!dpu_enc->cur_master)
1675 		return 0;
1676 
1677 	if (!dpu_enc->cur_master->ops.get_line_count) {
1678 		DPU_ERROR("get_line_count function not defined\n");
1679 		return 0;
1680 	}
1681 
1682 	pclk_rate = mode->clock; /* pixel clock in kHz */
1683 	if (pclk_rate == 0) {
1684 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1685 		return 0;
1686 	}
1687 
1688 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1689 	if (pclk_period == 0) {
1690 		DPU_ERROR("pclk period is 0\n");
1691 		return 0;
1692 	}
1693 
1694 	/*
1695 	 * Line time calculation based on Pixel clock and HTOTAL.
1696 	 * Final unit is in ns.
1697 	 */
1698 	line_time = (pclk_period * mode->htotal) / 1000;
1699 	if (line_time == 0) {
1700 		DPU_ERROR("line time calculation is 0\n");
1701 		return 0;
1702 	}
1703 
1704 	DPU_DEBUG_ENC(dpu_enc,
1705 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1706 			pclk_rate, pclk_period, line_time);
1707 
1708 	return line_time;
1709 }
1710 
1711 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1712 {
1713 	struct drm_display_mode *mode;
1714 	struct dpu_encoder_virt *dpu_enc;
1715 	u32 cur_line;
1716 	u32 line_time;
1717 	u32 vtotal, time_to_vsync;
1718 	ktime_t cur_time;
1719 
1720 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1721 
1722 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1723 		DPU_ERROR("crtc/crtc state object is NULL\n");
1724 		return -EINVAL;
1725 	}
1726 	mode = &drm_enc->crtc->state->adjusted_mode;
1727 
1728 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1729 	if (!line_time)
1730 		return -EINVAL;
1731 
1732 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1733 
1734 	vtotal = mode->vtotal;
1735 	if (cur_line >= vtotal)
1736 		time_to_vsync = line_time * vtotal;
1737 	else
1738 		time_to_vsync = line_time * (vtotal - cur_line);
1739 
1740 	if (time_to_vsync == 0) {
1741 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1742 				vtotal);
1743 		return -EINVAL;
1744 	}
1745 
1746 	cur_time = ktime_get();
1747 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1748 
1749 	DPU_DEBUG_ENC(dpu_enc,
1750 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1751 			cur_line, vtotal, time_to_vsync,
1752 			ktime_to_ms(cur_time),
1753 			ktime_to_ms(*wakeup_time));
1754 	return 0;
1755 }
1756 
1757 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1758 {
1759 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1760 			vsync_event_timer);
1761 	struct drm_encoder *drm_enc = &dpu_enc->base;
1762 	struct msm_drm_private *priv;
1763 	struct msm_drm_thread *event_thread;
1764 
1765 	if (!drm_enc->dev || !drm_enc->crtc) {
1766 		DPU_ERROR("invalid parameters\n");
1767 		return;
1768 	}
1769 
1770 	priv = drm_enc->dev->dev_private;
1771 
1772 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1773 		DPU_ERROR("invalid crtc index\n");
1774 		return;
1775 	}
1776 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1777 	if (!event_thread) {
1778 		DPU_ERROR("event_thread not found for crtc:%d\n",
1779 				drm_enc->crtc->index);
1780 		return;
1781 	}
1782 
1783 	del_timer(&dpu_enc->vsync_event_timer);
1784 }
1785 
1786 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1787 {
1788 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1789 			struct dpu_encoder_virt, vsync_event_work);
1790 	ktime_t wakeup_time;
1791 
1792 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1793 		return;
1794 
1795 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1796 	mod_timer(&dpu_enc->vsync_event_timer,
1797 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1798 }
1799 
1800 static u32
1801 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1802 				  u32 enc_ip_width)
1803 {
1804 	int ssm_delay, total_pixels, soft_slice_per_enc;
1805 
1806 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1807 
1808 	/*
1809 	 * minimum number of initial line pixels is a sum of:
1810 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1811 	 *    91 for 10 bpc) * 3
1812 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1813 	 * 3. the initial xmit delay
1814 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1815 	 * 5. 6 additional pixels as the output of the rate buffer is
1816 	 *    48 bits wide
1817 	 */
1818 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1819 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1820 	if (soft_slice_per_enc > 1)
1821 		total_pixels += (ssm_delay * 3);
1822 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1823 }
1824 
1825 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1826 				     struct dpu_hw_dsc *hw_dsc,
1827 				     struct dpu_hw_pingpong *hw_pp,
1828 				     struct drm_dsc_config *dsc,
1829 				     u32 common_mode,
1830 				     u32 initial_lines)
1831 {
1832 	if (hw_dsc->ops.dsc_config)
1833 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1834 
1835 	if (hw_dsc->ops.dsc_config_thresh)
1836 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1837 
1838 	if (hw_pp->ops.setup_dsc)
1839 		hw_pp->ops.setup_dsc(hw_pp);
1840 
1841 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1842 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1843 
1844 	if (hw_pp->ops.enable_dsc)
1845 		hw_pp->ops.enable_dsc(hw_pp);
1846 
1847 	if (ctl->ops.update_pending_flush_dsc)
1848 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1849 }
1850 
1851 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1852 				 struct drm_dsc_config *dsc)
1853 {
1854 	/* coding only for 2LM, 2enc, 1 dsc config */
1855 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1856 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1857 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1858 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1859 	int this_frame_slices;
1860 	int intf_ip_w, enc_ip_w;
1861 	int dsc_common_mode;
1862 	int pic_width;
1863 	u32 initial_lines;
1864 	int i;
1865 
1866 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1867 		hw_pp[i] = dpu_enc->hw_pp[i];
1868 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1869 
1870 		if (!hw_pp[i] || !hw_dsc[i]) {
1871 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1872 			return;
1873 		}
1874 	}
1875 
1876 	dsc_common_mode = 0;
1877 	pic_width = dsc->pic_width;
1878 
1879 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1880 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1881 		dsc_common_mode |= DSC_MODE_VIDEO;
1882 
1883 	this_frame_slices = pic_width / dsc->slice_width;
1884 	intf_ip_w = this_frame_slices * dsc->slice_width;
1885 
1886 	/*
1887 	 * dsc merge case: when using 2 encoders for the same stream,
1888 	 * no. of slices need to be same on both the encoders.
1889 	 */
1890 	enc_ip_w = intf_ip_w / 2;
1891 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1892 
1893 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1894 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1895 					 dsc, dsc_common_mode, initial_lines);
1896 }
1897 
1898 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1899 {
1900 	struct dpu_encoder_virt *dpu_enc;
1901 	struct dpu_encoder_phys *phys;
1902 	bool needs_hw_reset = false;
1903 	unsigned int i;
1904 
1905 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1906 
1907 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1908 
1909 	/* prepare for next kickoff, may include waiting on previous kickoff */
1910 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1911 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1912 		phys = dpu_enc->phys_encs[i];
1913 		if (phys->ops.prepare_for_kickoff)
1914 			phys->ops.prepare_for_kickoff(phys);
1915 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1916 			needs_hw_reset = true;
1917 	}
1918 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1919 
1920 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1921 
1922 	/* if any phys needs reset, reset all phys, in-order */
1923 	if (needs_hw_reset) {
1924 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1925 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1926 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1927 		}
1928 	}
1929 
1930 	if (dpu_enc->dsc)
1931 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1932 }
1933 
1934 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1935 {
1936 	struct dpu_encoder_virt *dpu_enc;
1937 	unsigned int i;
1938 	struct dpu_encoder_phys *phys;
1939 
1940 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1941 
1942 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1943 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1944 			phys = dpu_enc->phys_encs[i];
1945 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1946 				DPU_DEBUG("invalid FB not kicking off\n");
1947 				return false;
1948 			}
1949 		}
1950 	}
1951 
1952 	return true;
1953 }
1954 
1955 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1956 {
1957 	struct dpu_encoder_virt *dpu_enc;
1958 	struct dpu_encoder_phys *phys;
1959 	ktime_t wakeup_time;
1960 	unsigned long timeout_ms;
1961 	unsigned int i;
1962 
1963 	DPU_ATRACE_BEGIN("encoder_kickoff");
1964 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1965 
1966 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1967 
1968 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1969 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1970 
1971 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1972 	mod_timer(&dpu_enc->frame_done_timer,
1973 			jiffies + msecs_to_jiffies(timeout_ms));
1974 
1975 	/* All phys encs are ready to go, trigger the kickoff */
1976 	_dpu_encoder_kickoff_phys(dpu_enc);
1977 
1978 	/* allow phys encs to handle any post-kickoff business */
1979 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1980 		phys = dpu_enc->phys_encs[i];
1981 		if (phys->ops.handle_post_kickoff)
1982 			phys->ops.handle_post_kickoff(phys);
1983 	}
1984 
1985 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1986 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1987 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1988 					    ktime_to_ms(wakeup_time));
1989 		mod_timer(&dpu_enc->vsync_event_timer,
1990 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1991 	}
1992 
1993 	DPU_ATRACE_END("encoder_kickoff");
1994 }
1995 
1996 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1997 {
1998 	struct dpu_hw_mixer_cfg mixer;
1999 	int i, num_lm;
2000 	struct dpu_global_state *global_state;
2001 	struct dpu_hw_blk *hw_lm[2];
2002 	struct dpu_hw_mixer *hw_mixer[2];
2003 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2004 
2005 	memset(&mixer, 0, sizeof(mixer));
2006 
2007 	/* reset all mixers for this encoder */
2008 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2009 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2010 
2011 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2012 
2013 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2014 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2015 
2016 	for (i = 0; i < num_lm; i++) {
2017 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2018 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2019 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2020 
2021 		/* clear all blendstages */
2022 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2023 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2024 	}
2025 }
2026 
2027 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2028 				     struct dpu_hw_dsc *hw_dsc,
2029 				     struct dpu_hw_pingpong *hw_pp)
2030 {
2031 	if (hw_dsc->ops.dsc_disable)
2032 		hw_dsc->ops.dsc_disable(hw_dsc);
2033 
2034 	if (hw_pp->ops.disable_dsc)
2035 		hw_pp->ops.disable_dsc(hw_pp);
2036 
2037 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2038 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2039 
2040 	if (ctl->ops.update_pending_flush_dsc)
2041 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2042 }
2043 
2044 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2045 {
2046 	/* coding only for 2LM, 2enc, 1 dsc config */
2047 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2048 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2049 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2050 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2051 	int i;
2052 
2053 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2054 		hw_pp[i] = dpu_enc->hw_pp[i];
2055 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2056 
2057 		if (hw_pp[i] && hw_dsc[i])
2058 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2059 	}
2060 }
2061 
2062 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2063 {
2064 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2065 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2066 	int i;
2067 	struct dpu_encoder_virt *dpu_enc;
2068 
2069 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2070 
2071 	phys_enc->hw_ctl->ops.reset(ctl);
2072 
2073 	dpu_encoder_helper_reset_mixers(phys_enc);
2074 
2075 	/*
2076 	 * TODO: move the once-only operation like CTL flush/trigger
2077 	 * into dpu_encoder_virt_disable() and all operations which need
2078 	 * to be done per phys encoder into the phys_disable() op.
2079 	 */
2080 	if (phys_enc->hw_wb) {
2081 		/* disable the PP block */
2082 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2083 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2084 
2085 		/* mark WB flush as pending */
2086 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2087 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2088 	} else {
2089 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2090 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2091 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2092 						dpu_enc->phys_encs[i]->hw_intf,
2093 						PINGPONG_NONE);
2094 
2095 			/* mark INTF flush as pending */
2096 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2097 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2098 						dpu_enc->phys_encs[i]->hw_intf->idx);
2099 		}
2100 	}
2101 
2102 	/* reset the merge 3D HW block */
2103 	if (phys_enc->hw_pp->merge_3d) {
2104 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2105 				BLEND_3D_NONE);
2106 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2107 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2108 					phys_enc->hw_pp->merge_3d->idx);
2109 	}
2110 
2111 	if (dpu_enc->dsc)
2112 		dpu_encoder_unprep_dsc(dpu_enc);
2113 
2114 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2115 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2116 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2117 
2118 	if (phys_enc->hw_intf)
2119 		intf_cfg.intf = phys_enc->hw_intf->idx;
2120 	if (phys_enc->hw_wb)
2121 		intf_cfg.wb = phys_enc->hw_wb->idx;
2122 
2123 	if (phys_enc->hw_pp->merge_3d)
2124 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2125 
2126 	if (ctl->ops.reset_intf_cfg)
2127 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2128 
2129 	ctl->ops.trigger_flush(ctl);
2130 	ctl->ops.trigger_start(ctl);
2131 	ctl->ops.clear_pending_flush(ctl);
2132 }
2133 
2134 #ifdef CONFIG_DEBUG_FS
2135 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2136 {
2137 	struct dpu_encoder_virt *dpu_enc = s->private;
2138 	int i;
2139 
2140 	mutex_lock(&dpu_enc->enc_lock);
2141 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2142 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2143 
2144 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2145 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2146 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2147 				atomic_read(&phys->vsync_cnt),
2148 				atomic_read(&phys->underrun_cnt));
2149 
2150 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2151 	}
2152 	mutex_unlock(&dpu_enc->enc_lock);
2153 
2154 	return 0;
2155 }
2156 
2157 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2158 
2159 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2160 {
2161 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2162 
2163 	char name[12];
2164 
2165 	if (!drm_enc->dev) {
2166 		DPU_ERROR("invalid encoder or kms\n");
2167 		return -EINVAL;
2168 	}
2169 
2170 	snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2171 
2172 	/* create overall sub-directory for the encoder */
2173 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2174 			drm_enc->dev->primary->debugfs_root);
2175 
2176 	/* don't error check these */
2177 	debugfs_create_file("status", 0600,
2178 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2179 
2180 	return 0;
2181 }
2182 #else
2183 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2184 {
2185 	return 0;
2186 }
2187 #endif
2188 
2189 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2190 {
2191 	return _dpu_encoder_init_debugfs(encoder);
2192 }
2193 
2194 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2195 {
2196 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2197 
2198 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2199 }
2200 
2201 static int dpu_encoder_virt_add_phys_encs(
2202 		struct msm_display_info *disp_info,
2203 		struct dpu_encoder_virt *dpu_enc,
2204 		struct dpu_enc_phys_init_params *params)
2205 {
2206 	struct dpu_encoder_phys *enc = NULL;
2207 
2208 	DPU_DEBUG_ENC(dpu_enc, "\n");
2209 
2210 	/*
2211 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2212 	 * in this function, check up-front.
2213 	 */
2214 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2215 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2216 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2217 			  dpu_enc->num_phys_encs);
2218 		return -EINVAL;
2219 	}
2220 
2221 
2222 	if (disp_info->intf_type == INTF_WB) {
2223 		enc = dpu_encoder_phys_wb_init(params);
2224 
2225 		if (IS_ERR(enc)) {
2226 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2227 				PTR_ERR(enc));
2228 			return PTR_ERR(enc);
2229 		}
2230 
2231 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2232 		++dpu_enc->num_phys_encs;
2233 	} else if (disp_info->is_cmd_mode) {
2234 		enc = dpu_encoder_phys_cmd_init(params);
2235 
2236 		if (IS_ERR(enc)) {
2237 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2238 				PTR_ERR(enc));
2239 			return PTR_ERR(enc);
2240 		}
2241 
2242 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2243 		++dpu_enc->num_phys_encs;
2244 	} else {
2245 		enc = dpu_encoder_phys_vid_init(params);
2246 
2247 		if (IS_ERR(enc)) {
2248 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2249 				PTR_ERR(enc));
2250 			return PTR_ERR(enc);
2251 		}
2252 
2253 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2254 		++dpu_enc->num_phys_encs;
2255 	}
2256 
2257 	if (params->split_role == ENC_ROLE_SLAVE)
2258 		dpu_enc->cur_slave = enc;
2259 	else
2260 		dpu_enc->cur_master = enc;
2261 
2262 	return 0;
2263 }
2264 
2265 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2266 				 struct dpu_kms *dpu_kms,
2267 				 struct msm_display_info *disp_info)
2268 {
2269 	int ret = 0;
2270 	int i = 0;
2271 	struct dpu_enc_phys_init_params phys_params;
2272 
2273 	if (!dpu_enc) {
2274 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2275 		return -EINVAL;
2276 	}
2277 
2278 	dpu_enc->cur_master = NULL;
2279 
2280 	memset(&phys_params, 0, sizeof(phys_params));
2281 	phys_params.dpu_kms = dpu_kms;
2282 	phys_params.parent = &dpu_enc->base;
2283 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2284 
2285 	WARN_ON(disp_info->num_of_h_tiles < 1);
2286 
2287 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2288 
2289 	if (disp_info->intf_type != INTF_WB)
2290 		dpu_enc->idle_pc_supported =
2291 				dpu_kms->catalog->caps->has_idle_pc;
2292 
2293 	dpu_enc->dsc = disp_info->dsc;
2294 
2295 	mutex_lock(&dpu_enc->enc_lock);
2296 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2297 		/*
2298 		 * Left-most tile is at index 0, content is controller id
2299 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2300 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2301 		 */
2302 		u32 controller_id = disp_info->h_tile_instance[i];
2303 
2304 		if (disp_info->num_of_h_tiles > 1) {
2305 			if (i == 0)
2306 				phys_params.split_role = ENC_ROLE_MASTER;
2307 			else
2308 				phys_params.split_role = ENC_ROLE_SLAVE;
2309 		} else {
2310 			phys_params.split_role = ENC_ROLE_SOLO;
2311 		}
2312 
2313 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2314 				i, controller_id, phys_params.split_role);
2315 
2316 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2317 							   disp_info->intf_type,
2318 							   controller_id);
2319 
2320 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2321 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2322 
2323 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2324 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2325 			ret = -EINVAL;
2326 			break;
2327 		}
2328 
2329 		if (phys_params.hw_intf && phys_params.hw_wb) {
2330 			DPU_ERROR_ENC(dpu_enc,
2331 					"invalid phys both intf and wb block at idx: %d\n", i);
2332 			ret = -EINVAL;
2333 			break;
2334 		}
2335 
2336 		ret = dpu_encoder_virt_add_phys_encs(disp_info,
2337 				dpu_enc, &phys_params);
2338 		if (ret) {
2339 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2340 			break;
2341 		}
2342 	}
2343 
2344 	mutex_unlock(&dpu_enc->enc_lock);
2345 
2346 	return ret;
2347 }
2348 
2349 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2350 {
2351 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2352 			frame_done_timer);
2353 	struct drm_encoder *drm_enc = &dpu_enc->base;
2354 	u32 event;
2355 
2356 	if (!drm_enc->dev) {
2357 		DPU_ERROR("invalid parameters\n");
2358 		return;
2359 	}
2360 
2361 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2362 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2363 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2364 		return;
2365 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2366 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2367 		return;
2368 	}
2369 
2370 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2371 
2372 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2373 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2374 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2375 }
2376 
2377 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2378 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2379 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2380 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2381 	.atomic_check = dpu_encoder_virt_atomic_check,
2382 };
2383 
2384 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2385 		.destroy = dpu_encoder_destroy,
2386 		.late_register = dpu_encoder_late_register,
2387 		.early_unregister = dpu_encoder_early_unregister,
2388 };
2389 
2390 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2391 		int drm_enc_mode,
2392 		struct msm_display_info *disp_info)
2393 {
2394 	struct msm_drm_private *priv = dev->dev_private;
2395 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2396 	struct drm_encoder *drm_enc = NULL;
2397 	struct dpu_encoder_virt *dpu_enc = NULL;
2398 	int ret = 0;
2399 
2400 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2401 	if (!dpu_enc)
2402 		return ERR_PTR(-ENOMEM);
2403 
2404 	ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2405 			       drm_enc_mode, NULL);
2406 	if (ret) {
2407 		devm_kfree(dev->dev, dpu_enc);
2408 		return ERR_PTR(ret);
2409 	}
2410 
2411 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2412 
2413 	spin_lock_init(&dpu_enc->enc_spinlock);
2414 	dpu_enc->enabled = false;
2415 	mutex_init(&dpu_enc->enc_lock);
2416 	mutex_init(&dpu_enc->rc_lock);
2417 
2418 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2419 	if (ret)
2420 		goto fail;
2421 
2422 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2423 	timer_setup(&dpu_enc->frame_done_timer,
2424 			dpu_encoder_frame_done_timeout, 0);
2425 
2426 	if (disp_info->intf_type == INTF_DSI)
2427 		timer_setup(&dpu_enc->vsync_event_timer,
2428 				dpu_encoder_vsync_event_handler,
2429 				0);
2430 	else if (disp_info->intf_type == INTF_DP)
2431 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2432 				priv->dp[disp_info->h_tile_instance[0]]);
2433 
2434 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2435 			dpu_encoder_off_work);
2436 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2437 
2438 	kthread_init_work(&dpu_enc->vsync_event_work,
2439 			dpu_encoder_vsync_event_work_handler);
2440 
2441 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2442 
2443 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2444 
2445 	return &dpu_enc->base;
2446 
2447 fail:
2448 	DPU_ERROR("failed to create encoder\n");
2449 	if (drm_enc)
2450 		dpu_encoder_destroy(drm_enc);
2451 
2452 	return ERR_PTR(ret);
2453 }
2454 
2455 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2456 	enum msm_event_wait event)
2457 {
2458 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2459 	struct dpu_encoder_virt *dpu_enc = NULL;
2460 	int i, ret = 0;
2461 
2462 	if (!drm_enc) {
2463 		DPU_ERROR("invalid encoder\n");
2464 		return -EINVAL;
2465 	}
2466 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2467 	DPU_DEBUG_ENC(dpu_enc, "\n");
2468 
2469 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2470 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2471 
2472 		switch (event) {
2473 		case MSM_ENC_COMMIT_DONE:
2474 			fn_wait = phys->ops.wait_for_commit_done;
2475 			break;
2476 		case MSM_ENC_TX_COMPLETE:
2477 			fn_wait = phys->ops.wait_for_tx_complete;
2478 			break;
2479 		case MSM_ENC_VBLANK:
2480 			fn_wait = phys->ops.wait_for_vblank;
2481 			break;
2482 		default:
2483 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2484 					event);
2485 			return -EINVAL;
2486 		}
2487 
2488 		if (fn_wait) {
2489 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2490 			ret = fn_wait(phys);
2491 			DPU_ATRACE_END("wait_for_completion_event");
2492 			if (ret)
2493 				return ret;
2494 		}
2495 	}
2496 
2497 	return ret;
2498 }
2499 
2500 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2501 {
2502 	struct dpu_encoder_virt *dpu_enc = NULL;
2503 
2504 	if (!encoder) {
2505 		DPU_ERROR("invalid encoder\n");
2506 		return INTF_MODE_NONE;
2507 	}
2508 	dpu_enc = to_dpu_encoder_virt(encoder);
2509 
2510 	if (dpu_enc->cur_master)
2511 		return dpu_enc->cur_master->intf_mode;
2512 
2513 	if (dpu_enc->num_phys_encs)
2514 		return dpu_enc->phys_encs[0]->intf_mode;
2515 
2516 	return INTF_MODE_NONE;
2517 }
2518 
2519 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2520 {
2521 	struct drm_encoder *encoder = phys_enc->parent;
2522 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2523 
2524 	return dpu_enc->dsc_mask;
2525 }
2526 
2527 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2528 			  struct dpu_enc_phys_init_params *p)
2529 {
2530 	int i;
2531 
2532 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2533 	phys_enc->hw_intf = p->hw_intf;
2534 	phys_enc->hw_wb = p->hw_wb;
2535 	phys_enc->parent = p->parent;
2536 	phys_enc->dpu_kms = p->dpu_kms;
2537 	phys_enc->split_role = p->split_role;
2538 	phys_enc->enc_spinlock = p->enc_spinlock;
2539 	phys_enc->enable_state = DPU_ENC_DISABLED;
2540 
2541 	for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2542 		phys_enc->irq[i] = -EINVAL;
2543 
2544 	atomic_set(&phys_enc->vblank_refcount, 0);
2545 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2546 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2547 
2548 	atomic_set(&phys_enc->vsync_cnt, 0);
2549 	atomic_set(&phys_enc->underrun_cnt, 0);
2550 
2551 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2552 }
2553